"mmdet3d/models/decode_heads/dgcnn_head.py" did not exist on "bf4e71c20ef3e46ea37035a038c311821fce9d6b"
det_resnet_vd.py 9.03 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
LDOUBLEV's avatar
LDOUBLEV committed
2
#
WenmuZhou's avatar
WenmuZhou committed
3
4
5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
LDOUBLEV's avatar
LDOUBLEV committed
6
7
8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
WenmuZhou's avatar
WenmuZhou committed
9
10
11
12
13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
LDOUBLEV's avatar
LDOUBLEV committed
14
15
16
17
18

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19
import paddle
WenmuZhou's avatar
WenmuZhou committed
20
from paddle import ParamAttr
21
import paddle.nn as nn
LDOUBLEV's avatar
LDOUBLEV committed
22
23
24
25

__all__ = ["ResNet"]


WenmuZhou's avatar
WenmuZhou committed
26
class ConvBNLayer(nn.Layer):
27
28
29
30
31
32
33
34
35
36
    def __init__(
            self,
            in_channels,
            out_channels,
            kernel_size,
            stride=1,
            groups=1,
            is_vd_mode=False,
            act=None,
            name=None, ):
WenmuZhou's avatar
WenmuZhou committed
37
        super(ConvBNLayer, self).__init__()
38
39
40
41
42

        self.is_vd_mode = is_vd_mode
        self._pool2d_avg = nn.AvgPool2d(
            kernel_size=2, stride=2, padding=0, ceil_mode=True)
        self._conv = nn.Conv2d(
WenmuZhou's avatar
WenmuZhou committed
43
44
45
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
LDOUBLEV's avatar
LDOUBLEV committed
46
            stride=stride,
WenmuZhou's avatar
WenmuZhou committed
47
            padding=(kernel_size - 1) // 2,
LDOUBLEV's avatar
LDOUBLEV committed
48
            groups=groups,
WenmuZhou's avatar
WenmuZhou committed
49
            weight_attr=ParamAttr(name=name + "_weights"),
LDOUBLEV's avatar
LDOUBLEV committed
50
51
52
53
54
            bias_attr=False)
        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
55
56
        self._batch_norm = nn.BatchNorm(
            out_channels,
LDOUBLEV's avatar
LDOUBLEV committed
57
            act=act,
58
59
60
61
            param_attr=ParamAttr(name=bn_name + '_scale'),
            bias_attr=ParamAttr(bn_name + '_offset'),
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance')
WenmuZhou's avatar
WenmuZhou committed
62

63
64
65
66
67
68
    def forward(self, inputs):
        if self.is_vd_mode:
            inputs = self._pool2d_avg(inputs)
        y = self._conv(inputs)
        y = self._batch_norm(y)
        return y
WenmuZhou's avatar
WenmuZhou committed
69
70


71
class BottleneckBlock(nn.Layer):
WenmuZhou's avatar
WenmuZhou committed
72
73
74
    def __init__(self,
                 in_channels,
                 out_channels,
75
76
77
                 stride,
                 shortcut=True,
                 if_first=False,
WenmuZhou's avatar
WenmuZhou committed
78
79
                 name=None):
        super(BottleneckBlock, self).__init__()
80

WenmuZhou's avatar
WenmuZhou committed
81
82
83
84
        self.conv0 = ConvBNLayer(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=1,
LDOUBLEV's avatar
LDOUBLEV committed
85
86
            act='relu',
            name=name + "_branch2a")
WenmuZhou's avatar
WenmuZhou committed
87
88
89
90
        self.conv1 = ConvBNLayer(
            in_channels=out_channels,
            out_channels=out_channels,
            kernel_size=3,
LDOUBLEV's avatar
LDOUBLEV committed
91
92
93
            stride=stride,
            act='relu',
            name=name + "_branch2b")
WenmuZhou's avatar
WenmuZhou committed
94
95
96
97
        self.conv2 = ConvBNLayer(
            in_channels=out_channels,
            out_channels=out_channels * 4,
            kernel_size=1,
LDOUBLEV's avatar
LDOUBLEV committed
98
99
100
            act=None,
            name=name + "_branch2c")

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
        if not shortcut:
            self.short = ConvBNLayer(
                in_channels=in_channels,
                out_channels=out_channels * 4,
                kernel_size=1,
                stride=1,
                is_vd_mode=False if if_first else True,
                name=name + "_branch1")

        self.shortcut = shortcut

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)
WenmuZhou's avatar
WenmuZhou committed
116

117
118
119
120
121
        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
        y = paddle.elementwise_add(x=short, y=conv2, act='relu')
WenmuZhou's avatar
WenmuZhou committed
122
        return y
LDOUBLEV's avatar
LDOUBLEV committed
123
124


WenmuZhou's avatar
WenmuZhou committed
125
class BasicBlock(nn.Layer):
126
127
128
129
130
131
132
    def __init__(self,
                 in_channels,
                 out_channels,
                 stride,
                 shortcut=True,
                 if_first=False,
                 name=None):
WenmuZhou's avatar
WenmuZhou committed
133
        super(BasicBlock, self).__init__()
134
        self.stride = stride
WenmuZhou's avatar
WenmuZhou committed
135
136
137
138
        self.conv0 = ConvBNLayer(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=3,
LDOUBLEV's avatar
LDOUBLEV committed
139
            stride=stride,
140
            act='relu',
LDOUBLEV's avatar
LDOUBLEV committed
141
            name=name + "_branch2a")
WenmuZhou's avatar
WenmuZhou committed
142
143
144
145
        self.conv1 = ConvBNLayer(
            in_channels=out_channels,
            out_channels=out_channels,
            kernel_size=3,
LDOUBLEV's avatar
LDOUBLEV committed
146
147
            act=None,
            name=name + "_branch2b")
WenmuZhou's avatar
WenmuZhou committed
148

149
150
151
152
153
154
155
156
157
158
159
160
161
162
        if not shortcut:
            self.short = ConvBNLayer(
                in_channels=in_channels,
                out_channels=out_channels,
                kernel_size=1,
                stride=1,
                is_vd_mode=False if if_first else True,
                name=name + "_branch1")

        self.shortcut = shortcut

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
WenmuZhou's avatar
WenmuZhou committed
163

164
165
166
167
168
169
        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
        y = paddle.elementwise_add(x=short, y=conv1, act='relu')
        return y
WenmuZhou's avatar
WenmuZhou committed
170
171


172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
class ResNet(nn.Layer):
    def __init__(self, in_channels=3, layers=50, **kwargs):
        super(ResNet, self).__init__()

        self.layers = layers
        supported_layers = [18, 34, 50, 101, 152, 200]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(
                supported_layers, layers)

        if layers == 18:
            depth = [2, 2, 2, 2]
        elif layers == 34 or layers == 50:
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
        elif layers == 200:
            depth = [3, 12, 48, 3]
        num_channels = [64, 256, 512,
                        1024] if layers >= 50 else [64, 64, 128, 256]
        num_filters = [64, 128, 256, 512]

        self.conv1_1 = ConvBNLayer(
            in_channels=in_channels,
            out_channels=32,
            kernel_size=3,
            stride=2,
            act='relu',
            name="conv1_1")
        self.conv1_2 = ConvBNLayer(
            in_channels=32,
            out_channels=32,
            kernel_size=3,
            stride=1,
            act='relu',
            name="conv1_2")
        self.conv1_3 = ConvBNLayer(
            in_channels=32,
            out_channels=64,
            kernel_size=3,
            stride=1,
            act='relu',
            name="conv1_3")
        self.pool2d_max = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        self.stages = []
        self.out_channels = []
        if layers >= 50:
            for block in range(len(depth)):
                block_list = []
                shortcut = False
                for i in range(depth[block]):
                    if layers in [101, 152] and block == 2:
                        if i == 0:
                            conv_name = "res" + str(block + 2) + "a"
                        else:
                            conv_name = "res" + str(block + 2) + "b" + str(i)
                    else:
                        conv_name = "res" + str(block + 2) + chr(97 + i)
                    bottleneck_block = self.add_sublayer(
                        'bb_%d_%d' % (block, i),
                        BottleneckBlock(
                            in_channels=num_channels[block]
                            if i == 0 else num_filters[block] * 4,
                            out_channels=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
                            if_first=block == i == 0,
                            name=conv_name))
                    shortcut = True
                    block_list.append(bottleneck_block)
                self.out_channels.append(num_filters[block] * 4)
                self.stages.append(nn.Sequential(*block_list))
        else:
            for block in range(len(depth)):
                block_list = []
                shortcut = False
                for i in range(depth[block]):
                    conv_name = "res" + str(block + 2) + chr(97 + i)
                    basic_block = self.add_sublayer(
                        'bb_%d_%d' % (block, i),
                        BasicBlock(
                            in_channels=num_channels[block]
                            if i == 0 else num_filters[block],
                            out_channels=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
                            if_first=block == i == 0,
                            name=conv_name))
                    shortcut = True
                    block_list.append(basic_block)
                self.out_channels.append(num_filters[block])
                self.stages.append(nn.Sequential(*block_list))
WenmuZhou's avatar
WenmuZhou committed
267

268
269
270
271
272
273
274
275
276
277
    def forward(self, inputs):
        y = self.conv1_1(inputs)
        y = self.conv1_2(y)
        y = self.conv1_3(y)
        y = self.pool2d_max(y)
        out = []
        for block in self.stages:
            y = block(y)
            out.append(y)
        return out