det_mobilenet_v3.py 9.33 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
LDOUBLEV's avatar
LDOUBLEV committed
2
#
WenmuZhou's avatar
WenmuZhou committed
3
4
5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
LDOUBLEV's avatar
LDOUBLEV committed
6
7
8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
WenmuZhou's avatar
WenmuZhou committed
9
10
11
12
13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
LDOUBLEV's avatar
LDOUBLEV committed
14
15
16
17
18

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

WenmuZhou's avatar
WenmuZhou committed
19
20
21
22
import paddle
from paddle import nn
import paddle.nn.functional as F
from paddle import ParamAttr
LDOUBLEV's avatar
LDOUBLEV committed
23
24
25
26

__all__ = ['MobileNetV3']


WenmuZhou's avatar
WenmuZhou committed
27
28
29
30
31
32
33
34
35
36
37
def make_divisible(v, divisor=8, min_value=None):
    if min_value is None:
        min_value = divisor
    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
    if new_v < 0.9 * v:
        new_v += divisor
    return new_v


class MobileNetV3(nn.Layer):
    def __init__(self, in_channels=3, model_name='large', scale=0.5, **kwargs):
LDOUBLEV's avatar
LDOUBLEV committed
38
39
40
41
42
        """
        the MobilenetV3 backbone network for detection module.
        Args:
            params(dict): the super parameters for build network
        """
WenmuZhou's avatar
WenmuZhou committed
43
        super(MobileNetV3, self).__init__()
LDOUBLEV's avatar
LDOUBLEV committed
44
        if model_name == "large":
WenmuZhou's avatar
WenmuZhou committed
45
            cfg = [
LDOUBLEV's avatar
LDOUBLEV committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
                # k, exp, c,  se,     nl,  s,
                [3, 16, 16, False, 'relu', 1],
                [3, 64, 24, False, 'relu', 2],
                [3, 72, 24, False, 'relu', 1],
                [5, 72, 40, True, 'relu', 2],
                [5, 120, 40, True, 'relu', 1],
                [5, 120, 40, True, 'relu', 1],
                [3, 240, 80, False, 'hard_swish', 2],
                [3, 200, 80, False, 'hard_swish', 1],
                [3, 184, 80, False, 'hard_swish', 1],
                [3, 184, 80, False, 'hard_swish', 1],
                [3, 480, 112, True, 'hard_swish', 1],
                [3, 672, 112, True, 'hard_swish', 1],
                [5, 672, 160, True, 'hard_swish', 2],
                [5, 960, 160, True, 'hard_swish', 1],
                [5, 960, 160, True, 'hard_swish', 1],
            ]
WenmuZhou's avatar
WenmuZhou committed
63
            cls_ch_squeeze = 960
LDOUBLEV's avatar
LDOUBLEV committed
64
        elif model_name == "small":
WenmuZhou's avatar
WenmuZhou committed
65
            cfg = [
LDOUBLEV's avatar
LDOUBLEV committed
66
67
68
69
70
71
72
73
74
75
76
77
78
                # k, exp, c,  se,     nl,  s,
                [3, 16, 16, True, 'relu', 2],
                [3, 72, 24, False, 'relu', 2],
                [3, 88, 24, False, 'relu', 1],
                [5, 96, 40, True, 'hard_swish', 2],
                [5, 240, 40, True, 'hard_swish', 1],
                [5, 240, 40, True, 'hard_swish', 1],
                [5, 120, 48, True, 'hard_swish', 1],
                [5, 144, 48, True, 'hard_swish', 1],
                [5, 288, 96, True, 'hard_swish', 2],
                [5, 576, 96, True, 'hard_swish', 1],
                [5, 576, 96, True, 'hard_swish', 1],
            ]
WenmuZhou's avatar
WenmuZhou committed
79
            cls_ch_squeeze = 576
LDOUBLEV's avatar
LDOUBLEV committed
80
81
82
83
84
        else:
            raise NotImplementedError("mode[" + model_name +
                                      "_model] is not implemented!")

        supported_scale = [0.35, 0.5, 0.75, 1.0, 1.25]
WenmuZhou's avatar
WenmuZhou committed
85
86
87
88
89
90
91
92
        assert scale in supported_scale, \
            "supported scale are {} but input scale is {}".format(supported_scale, scale)
        inplanes = 16
        # conv1
        self.conv = ConvBNLayer(
            in_channels=in_channels,
            out_channels=make_divisible(inplanes * scale),
            kernel_size=3,
LDOUBLEV's avatar
LDOUBLEV committed
93
94
            stride=2,
            padding=1,
WenmuZhou's avatar
WenmuZhou committed
95
            groups=1,
LDOUBLEV's avatar
LDOUBLEV committed
96
97
98
            if_act=True,
            act='hard_swish',
            name='conv1')
WenmuZhou's avatar
WenmuZhou committed
99
100
101
102

        self.stages = []
        self.out_channels = []
        block_list = []
LDOUBLEV's avatar
LDOUBLEV committed
103
        i = 0
WenmuZhou's avatar
WenmuZhou committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
        inplanes = make_divisible(inplanes * scale)
        for (k, exp, c, se, nl, s) in cfg:
            if s == 2 and i > 2:
                self.out_channels.append(inplanes)
                self.stages.append(nn.Sequential(*block_list))
                block_list = []
            block_list.append(
                ResidualUnit(
                    in_channels=inplanes,
                    mid_channels=make_divisible(scale * exp),
                    out_channels=make_divisible(scale * c),
                    kernel_size=k,
                    stride=s,
                    use_se=se,
                    act=nl,
                    name="conv" + str(i + 2)))
            inplanes = make_divisible(scale * c)
LDOUBLEV's avatar
LDOUBLEV committed
121
            i += 1
WenmuZhou's avatar
WenmuZhou committed
122
123
124
125
126
127
128
129
130
131
132
        block_list.append(
            ConvBNLayer(
                in_channels=inplanes,
                out_channels=make_divisible(scale * cls_ch_squeeze),
                kernel_size=1,
                stride=1,
                padding=0,
                groups=1,
                if_act=True,
                act='hard_swish',
                name='conv_last'))
LDOUBLEV's avatar
LDOUBLEV committed
133

WenmuZhou's avatar
WenmuZhou committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
        self.stages.append(nn.Sequential(*block_list))
        self.out_channels.append(make_divisible(scale * cls_ch_squeeze))
        for i, stage in enumerate(self.stages):
            self.add_sublayer(sublayer=stage, name="stage{}".format(i))

    def forward(self, x):
        x = self.conv(x)
        out_list = []
        for stage in self.stages:
            x = stage(x)
            out_list.append(x)
        return out_list


class ConvBNLayer(nn.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride,
                 padding,
                 groups=1,
                 if_act=True,
                 act=None,
                 name=None):
        super(ConvBNLayer, self).__init__()
        self.if_act = if_act
        self.act = act
        self.conv = nn.Conv2d(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
LDOUBLEV's avatar
LDOUBLEV committed
166
167
            stride=stride,
            padding=padding,
WenmuZhou's avatar
WenmuZhou committed
168
169
            groups=groups,
            weight_attr=ParamAttr(name=name + '_weights'),
LDOUBLEV's avatar
LDOUBLEV committed
170
            bias_attr=False)
WenmuZhou's avatar
WenmuZhou committed
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

        self.bn = nn.BatchNorm(
            num_channels=out_channels,
            act=None,
            param_attr=ParamAttr(name=name + "_bn_scale"),
            bias_attr=ParamAttr(name=name + "_bn_offset"),
            moving_mean_name=name + "_bn_mean",
            moving_variance_name=name + "_bn_variance")

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        if self.if_act:
            if self.act == "relu":
                x = F.relu(x)
            elif self.act == "hard_swish":
                x = F.hard_swish(x)
            else:
                print("The activation function is selected incorrectly.")
                exit()
        return x


class ResidualUnit(nn.Layer):
    def __init__(self,
                 in_channels,
                 mid_channels,
                 out_channels,
                 kernel_size,
                 stride,
                 use_se,
                 act=None,
                 name=''):
        super(ResidualUnit, self).__init__()
        self.if_shortcut = stride == 1 and in_channels == out_channels
        self.if_se = use_se

        self.expand_conv = ConvBNLayer(
            in_channels=in_channels,
            out_channels=mid_channels,
            kernel_size=1,
LDOUBLEV's avatar
LDOUBLEV committed
212
213
214
215
            stride=1,
            padding=0,
            if_act=True,
            act=act,
WenmuZhou's avatar
WenmuZhou committed
216
217
218
219
220
            name=name + "_expand")
        self.bottleneck_conv = ConvBNLayer(
            in_channels=mid_channels,
            out_channels=mid_channels,
            kernel_size=kernel_size,
LDOUBLEV's avatar
LDOUBLEV committed
221
            stride=stride,
WenmuZhou's avatar
WenmuZhou committed
222
223
            padding=int((kernel_size - 1) // 2),
            groups=mid_channels,
LDOUBLEV's avatar
LDOUBLEV committed
224
225
            if_act=True,
            act=act,
WenmuZhou's avatar
WenmuZhou committed
226
227
228
229
230
231
232
            name=name + "_depthwise")
        if self.if_se:
            self.mid_se = SEModule(mid_channels, name=name + "_se")
        self.linear_conv = ConvBNLayer(
            in_channels=mid_channels,
            out_channels=out_channels,
            kernel_size=1,
LDOUBLEV's avatar
LDOUBLEV committed
233
234
235
            stride=1,
            padding=0,
            if_act=False,
WenmuZhou's avatar
WenmuZhou committed
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
            act=None,
            name=name + "_linear")

    def forward(self, inputs):
        x = self.expand_conv(inputs)
        x = self.bottleneck_conv(x)
        if self.if_se:
            x = self.mid_se(x)
        x = self.linear_conv(x)
        if self.if_shortcut:
            x = paddle.elementwise_add(inputs, x)
        return x


class SEModule(nn.Layer):
    def __init__(self, in_channels, reduction=4, name=""):
        super(SEModule, self).__init__()
        self.avg_pool = nn.Pool2D(
            pool_type="avg", global_pooling=True, use_cudnn=False)
        self.conv1 = nn.Conv2d(
            in_channels=in_channels,
            out_channels=in_channels // reduction,
            kernel_size=1,
            stride=1,
            padding=0,
            weight_attr=ParamAttr(name=name + "_1_weights"),
            bias_attr=ParamAttr(name=name + "_1_offset"))
        self.conv2 = nn.Conv2d(
            in_channels=in_channels // reduction,
            out_channels=in_channels,
            kernel_size=1,
            stride=1,
            padding=0,
            weight_attr=ParamAttr(name + "_2_weights"),
            bias_attr=ParamAttr(name=name + "_2_offset"))

    def forward(self, inputs):
        outputs = self.avg_pool(inputs)
        outputs = self.conv1(outputs)
        outputs = F.relu(outputs)
        outputs = self.conv2(outputs)
        outputs = F.hard_sigmoid(outputs)
        return inputs * outputs