model.py 4.26 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os, sys

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append('/home/zhoujun20/PaddleOCR')

import paddle
from paddle import nn
from ppocr.modeling.transform import build_transform
from ppocr.modeling.backbones import build_backbone
from ppocr.modeling.necks import build_neck
from ppocr.modeling.heads import build_head

__all__ = ['Model']


class Model(nn.Layer):
    def __init__(self, config):
        """
        Detection module for OCR.
        args:
            config (dict): the super parameters for module.
        """
        super(Model, self).__init__()
        algorithm = config['algorithm']
        self.type = config['type']
        self.model_name = '{}_{}'.format(self.type, algorithm)

        in_channels = config.get('in_channels', 3)
        # build transfrom,
        # for rec, transfrom can be TPS,None
        # for det and cls, transfrom shoule to be None,
        #                  if you make model differently, you can use transfrom in det and cls
        if 'Transform' not in config or config['Transform'] is None:
            self.use_transform = False
        else:
            self.use_transform = True
            config['Transform']['in_channels'] = in_channels
            self.transform = build_transform(config['Transform'])
            in_channels = self.transform.out_channels

        # build backbone, backbone is need for del, rec and cls
        config["Backbone"]['in_channels'] = in_channels
        self.backbone = build_backbone(config["Backbone"], self.type)
        in_channels = self.backbone.out_channels

        # build neck
        # for rec, neck can be cnn,rnn or reshape(None)
        # for det, neck can be FPN, BIFPN and so on.
        # for cls, neck should be none
        if 'Neck' not in config or config['Neck'] is None:
            self.use_neck = False
        else:
            self.use_neck = True
            config['Neck']['in_channels'] = in_channels
            self.neck = build_neck(config['Neck'])
            in_channels = self.neck.out_channels

        # # build head, head is need for del, rec and cls
        config["Head"]['in_channels'] = in_channels
        self.head = build_head(config["Head"])

    # @paddle.jit.to_static
    def forward(self, x):
        if self.use_transform:
            x = self.transform(x)
        x = self.backbone(x)
        if self.use_neck:
            x = self.neck(x)
        x = self.head(x)
        return x


def check_static():
    import numpy as np
    from ppocr.utils.save_load import load_dygraph_pretrain
    from ppocr.utils.logging import get_logger
    from tools import program

    config = program.load_config('configs/det/det_r50_vd_db.yml')

    # import cv2
    # data = cv2.imread('doc/imgs/1.jpg')
    # data = normalize(data)
    logger = get_logger()
    data = np.zeros((1, 3, 640, 640), dtype=np.float32)
    paddle.disable_static()

    config['Architecture']['in_channels'] = 3
    config['Architecture']["Head"]['out_channels'] = 6624
    model = Model(config['Architecture'])
    model.eval()
    load_dygraph_pretrain(
        model,
        logger,
        '/Users/zhoujun20/Desktop/code/PaddleOCR/db/db',
        load_static_weights=True)
    x = paddle.to_variable(data)
    y = model(x)
    for y1 in y:
        print(y1.shape)
    #
    # # from matplotlib import pyplot as plt
    # # plt.imshow(y.numpy())
    # # plt.show()
    static_out = np.load('/Users/zhoujun20/Desktop/code/PaddleOCR/db/db.npy')
    diff = y.numpy() - static_out
    print(y.shape, static_out.shape, diff.mean())


if __name__ == '__main__':
    check_static()