train_ser.py 10.7 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
WenmuZhou's avatar
add re  
WenmuZhou committed
16
17
18
19
20
21
import sys

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))

littletomatodonkey's avatar
littletomatodonkey committed
22
23
24
25
26
27
28
29
30
31
32
33
import random
import copy
import logging

import argparse
import paddle
import numpy as np
from seqeval.metrics import classification_report, f1_score, precision_score, recall_score
from paddlenlp.transformers import LayoutXLMModel, LayoutXLMTokenizer, LayoutXLMForTokenClassification
from xfun import XFUNDataset
from utils import parse_args
from utils import get_bio_label_maps
WenmuZhou's avatar
add re  
WenmuZhou committed
34
from utils import print_arguments
littletomatodonkey's avatar
littletomatodonkey committed
35

WenmuZhou's avatar
add re  
WenmuZhou committed
36
from ppocr.utils.logging import get_logger
littletomatodonkey's avatar
littletomatodonkey committed
37
38
39
40
41
42
43
44
45
46


def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    paddle.seed(args.seed)


def train(args):
    os.makedirs(args.output_dir, exist_ok=True)
WenmuZhou's avatar
add re  
WenmuZhou committed
47
48
    logger = get_logger(log_file=os.path.join(args.output_dir, "train.log"))
    print_arguments(args, logger)
littletomatodonkey's avatar
littletomatodonkey committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

    label2id_map, id2label_map = get_bio_label_maps(args.label_map_path)
    pad_token_label_id = paddle.nn.CrossEntropyLoss().ignore_index

    # dist mode
    if paddle.distributed.get_world_size() > 1:
        paddle.distributed.init_parallel_env()

    tokenizer = LayoutXLMTokenizer.from_pretrained(args.model_name_or_path)
    base_model = LayoutXLMModel.from_pretrained(args.model_name_or_path)
    model = LayoutXLMForTokenClassification(
        base_model, num_classes=len(label2id_map), dropout=None)

    # dist mode
    if paddle.distributed.get_world_size() > 1:
        model = paddle.DataParallel(model)

    train_dataset = XFUNDataset(
        tokenizer,
        data_dir=args.train_data_dir,
        label_path=args.train_label_path,
        label2id_map=label2id_map,
        img_size=(224, 224),
        pad_token_label_id=pad_token_label_id,
        contains_re=False,
        add_special_ids=False,
        return_attention_mask=True,
        load_mode='all')

    train_sampler = paddle.io.DistributedBatchSampler(
        train_dataset, batch_size=args.per_gpu_train_batch_size, shuffle=True)

    args.train_batch_size = args.per_gpu_train_batch_size * max(
        1, paddle.distributed.get_world_size())

    train_dataloader = paddle.io.DataLoader(
        train_dataset,
        batch_sampler=train_sampler,
        num_workers=0,
        use_shared_memory=True,
        collate_fn=None, )

    t_total = len(train_dataloader) * args.num_train_epochs

    # build linear decay with warmup lr sch
    lr_scheduler = paddle.optimizer.lr.PolynomialDecay(
        learning_rate=args.learning_rate,
        decay_steps=t_total,
        end_lr=0.0,
        power=1.0)
    if args.warmup_steps > 0:
        lr_scheduler = paddle.optimizer.lr.LinearWarmup(
            lr_scheduler,
            args.warmup_steps,
            start_lr=0,
            end_lr=args.learning_rate, )

    optimizer = paddle.optimizer.AdamW(
        learning_rate=lr_scheduler,
        parameters=model.parameters(),
        epsilon=args.adam_epsilon,
        weight_decay=args.weight_decay)

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d",
                args.per_gpu_train_batch_size)
    logger.info(
        "  Total train batch size (w. parallel, distributed) = %d",
        args.train_batch_size * paddle.distributed.get_world_size(), )
    logger.info("  Total optimization steps = %d", t_total)

    global_step = 0
    tr_loss = 0.0
    set_seed(args)
    best_metrics = None

    for epoch_id in range(args.num_train_epochs):
        for step, batch in enumerate(train_dataloader):
            model.train()
            outputs = model(**batch)
            # model outputs are always tuple in ppnlp (see doc)
            loss = outputs[0]
            loss = loss.mean()
            logger.info(
WenmuZhou's avatar
add re  
WenmuZhou committed
136
                "epoch: [{}/{}], iter: [{}/{}], global_step:{}, train loss: {}, lr: {}".
littletomatodonkey's avatar
littletomatodonkey committed
137
                format(epoch_id, args.num_train_epochs, step,
WenmuZhou's avatar
add re  
WenmuZhou committed
138
139
                       len(train_dataloader), global_step,
                       loss.numpy()[0], lr_scheduler.get_lr()))
littletomatodonkey's avatar
littletomatodonkey committed
140
141
142
143
144
145
146
147
148
149
150
151
152
153

            loss.backward()
            tr_loss += loss.item()
            optimizer.step()
            lr_scheduler.step()  # Update learning rate schedule
            optimizer.clear_grad()
            global_step += 1

            if (paddle.distributed.get_rank() == 0 and args.eval_steps > 0 and
                    global_step % args.eval_steps == 0):
                # Log metrics
                # Only evaluate when single GPU otherwise metrics may not average well
                if paddle.distributed.get_rank(
                ) == 0 and args.evaluate_during_training:
WenmuZhou's avatar
add re  
WenmuZhou committed
154
155
156
                    results, _ = evaluate(args, model, tokenizer, label2id_map,
                                          id2label_map, pad_token_label_id,
                                          logger)
littletomatodonkey's avatar
littletomatodonkey committed
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

                    if best_metrics is None or results["f1"] >= best_metrics[
                            "f1"]:
                        best_metrics = copy.deepcopy(results)
                        output_dir = os.path.join(args.output_dir, "best_model")
                        os.makedirs(output_dir, exist_ok=True)
                        if paddle.distributed.get_rank() == 0:
                            model.save_pretrained(output_dir)
                            tokenizer.save_pretrained(output_dir)
                            paddle.save(
                                args,
                                os.path.join(output_dir, "training_args.bin"))
                            logger.info("Saving model checkpoint to %s",
                                        output_dir)

                    logger.info("[epoch {}/{}][iter: {}/{}] results: {}".format(
                        epoch_id, args.num_train_epochs, step,
                        len(train_dataloader), results))
                    if best_metrics is not None:
                        logger.info("best metrics: {}".format(best_metrics))

            if paddle.distributed.get_rank(
            ) == 0 and args.save_steps > 0 and global_step % args.save_steps == 0:
                # Save model checkpoint
                output_dir = os.path.join(args.output_dir,
                                          "checkpoint-{}".format(global_step))
                os.makedirs(output_dir, exist_ok=True)
                if paddle.distributed.get_rank() == 0:
                    model.save_pretrained(output_dir)
                    tokenizer.save_pretrained(output_dir)
                    paddle.save(args,
                                os.path.join(output_dir, "training_args.bin"))
                    logger.info("Saving model checkpoint to %s", output_dir)

    return global_step, tr_loss / global_step


def evaluate(args,
             model,
             tokenizer,
             label2id_map,
             id2label_map,
             pad_token_label_id,
WenmuZhou's avatar
add re  
WenmuZhou committed
200
             logger,
littletomatodonkey's avatar
littletomatodonkey committed
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
             prefix=""):
    eval_dataset = XFUNDataset(
        tokenizer,
        data_dir=args.eval_data_dir,
        label_path=args.eval_label_path,
        label2id_map=label2id_map,
        img_size=(224, 224),
        pad_token_label_id=pad_token_label_id,
        contains_re=False,
        add_special_ids=False,
        return_attention_mask=True,
        load_mode='all')

    args.eval_batch_size = args.per_gpu_eval_batch_size * max(
        1, paddle.distributed.get_world_size())

    eval_dataloader = paddle.io.DataLoader(
        eval_dataset,
        batch_size=args.eval_batch_size,
        num_workers=0,
        use_shared_memory=True,
        collate_fn=None, )

    # Eval!
    logger.info("***** Running evaluation %s *****", prefix)
    logger.info("  Num examples = %d", len(eval_dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)
    eval_loss = 0.0
    nb_eval_steps = 0
    preds = None
    out_label_ids = None
    model.eval()
    for idx, batch in enumerate(eval_dataloader):
        with paddle.no_grad():
            outputs = model(**batch)
            tmp_eval_loss, logits = outputs[:2]

            tmp_eval_loss = tmp_eval_loss.mean()

            if paddle.distributed.get_rank() == 0:
                logger.info("[Eval]process: {}/{}, loss: {:.5f}".format(
                    idx, len(eval_dataloader), tmp_eval_loss.numpy()[0]))

            eval_loss += tmp_eval_loss.item()
        nb_eval_steps += 1
        if preds is None:
            preds = logits.numpy()
            out_label_ids = batch["labels"].numpy()
        else:
            preds = np.append(preds, logits.numpy(), axis=0)
            out_label_ids = np.append(
                out_label_ids, batch["labels"].numpy(), axis=0)

    eval_loss = eval_loss / nb_eval_steps
    preds = np.argmax(preds, axis=2)

    # label_map = {i: label.upper() for i, label in enumerate(labels)}

    out_label_list = [[] for _ in range(out_label_ids.shape[0])]
    preds_list = [[] for _ in range(out_label_ids.shape[0])]

    for i in range(out_label_ids.shape[0]):
        for j in range(out_label_ids.shape[1]):
            if out_label_ids[i, j] != pad_token_label_id:
                out_label_list[i].append(id2label_map[out_label_ids[i][j]])
                preds_list[i].append(id2label_map[preds[i][j]])

    results = {
        "loss": eval_loss,
        "precision": precision_score(out_label_list, preds_list),
        "recall": recall_score(out_label_list, preds_list),
        "f1": f1_score(out_label_list, preds_list),
    }

    with open(os.path.join(args.output_dir, "test_gt.txt"), "w") as fout:
        for lbl in out_label_list:
            for l in lbl:
                fout.write(l + "\t")
            fout.write("\n")
    with open(os.path.join(args.output_dir, "test_pred.txt"), "w") as fout:
        for lbl in preds_list:
            for l in lbl:
                fout.write(l + "\t")
            fout.write("\n")

    report = classification_report(out_label_list, preds_list)
    logger.info("\n" + report)

    logger.info("***** Eval results %s *****", prefix)
    for key in sorted(results.keys()):
        logger.info("  %s = %s", key, str(results[key]))

    return results, preds_list


if __name__ == "__main__":
    args = parse_args()
    train(args)