train_re.py 9.56 KB
Newer Older
WenmuZhou's avatar
add re  
WenmuZhou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))

import random
import numpy as np
import paddle

from paddlenlp.transformers import LayoutXLMTokenizer, LayoutXLMModel, LayoutXLMForRelationExtraction

from xfun import XFUNDataset
from utils import parse_args, get_bio_label_maps, print_arguments
from data_collator import DataCollator
from metric import re_score

from ppocr.utils.logging import get_logger


def set_seed(seed):
    random.seed(seed)
    np.random.seed(seed)
    paddle.seed(seed)


def cal_metric(re_preds, re_labels, entities):
    gt_relations = []
    for b in range(len(re_labels)):
        rel_sent = []
        for head, tail in zip(re_labels[b]["head"], re_labels[b]["tail"]):
            rel = {}
            rel["head_id"] = head
            rel["head"] = (entities[b]["start"][rel["head_id"]],
                           entities[b]["end"][rel["head_id"]])
            rel["head_type"] = entities[b]["label"][rel["head_id"]]

            rel["tail_id"] = tail
            rel["tail"] = (entities[b]["start"][rel["tail_id"]],
                           entities[b]["end"][rel["tail_id"]])
            rel["tail_type"] = entities[b]["label"][rel["tail_id"]]

            rel["type"] = 1
            rel_sent.append(rel)
        gt_relations.append(rel_sent)
    re_metrics = re_score(re_preds, gt_relations, mode="boundaries")
    return re_metrics


def evaluate(model, eval_dataloader, logger, prefix=""):
    # Eval!
    logger.info("***** Running evaluation {} *****".format(prefix))
    logger.info("  Num examples = {}".format(len(eval_dataloader.dataset)))

    re_preds = []
    re_labels = []
    entities = []
    eval_loss = 0.0
    model.eval()
    for idx, batch in enumerate(eval_dataloader):
        with paddle.no_grad():
            outputs = model(**batch)
            loss = outputs['loss'].mean().item()
            if paddle.distributed.get_rank() == 0:
                logger.info("[Eval] process: {}/{}, loss: {:.5f}".format(
                    idx, len(eval_dataloader), loss))

            eval_loss += loss
        re_preds.extend(outputs['pred_relations'])
        re_labels.extend(batch['relations'])
        entities.extend(batch['entities'])
    re_metrics = cal_metric(re_preds, re_labels, entities)
    re_metrics = {
        "precision": re_metrics["ALL"]["p"],
        "recall": re_metrics["ALL"]["r"],
        "f1": re_metrics["ALL"]["f1"],
    }
    model.train()
    return re_metrics


def train(args):
    logger = get_logger(log_file=os.path.join(args.output_dir, "train.log"))
    print_arguments(args, logger)

    # Added here for reproducibility (even between python 2 and 3)
    set_seed(args.seed)

    label2id_map, id2label_map = get_bio_label_maps(args.label_map_path)
    pad_token_label_id = paddle.nn.CrossEntropyLoss().ignore_index

    # dist mode
    if paddle.distributed.get_world_size() > 1:
        paddle.distributed.init_parallel_env()

    tokenizer = LayoutXLMTokenizer.from_pretrained(args.model_name_or_path)

    model = LayoutXLMModel.from_pretrained(args.model_name_or_path)
    model = LayoutXLMForRelationExtraction(model, dropout=None)

    # dist mode
    if paddle.distributed.get_world_size() > 1:
        model = paddle.distributed.DataParallel(model)

    train_dataset = XFUNDataset(
        tokenizer,
        data_dir=args.train_data_dir,
        label_path=args.train_label_path,
        label2id_map=label2id_map,
        img_size=(224, 224),
        max_seq_len=args.max_seq_length,
        pad_token_label_id=pad_token_label_id,
        contains_re=True,
        add_special_ids=False,
        return_attention_mask=True,
        load_mode='all')

    eval_dataset = XFUNDataset(
        tokenizer,
        data_dir=args.eval_data_dir,
        label_path=args.eval_label_path,
        label2id_map=label2id_map,
        img_size=(224, 224),
        max_seq_len=args.max_seq_length,
        pad_token_label_id=pad_token_label_id,
        contains_re=True,
        add_special_ids=False,
        return_attention_mask=True,
        load_mode='all')

    train_sampler = paddle.io.DistributedBatchSampler(
        train_dataset, batch_size=args.per_gpu_train_batch_size, shuffle=True)
    args.train_batch_size = args.per_gpu_train_batch_size * \
                            max(1, paddle.distributed.get_world_size())
    train_dataloader = paddle.io.DataLoader(
        train_dataset,
        batch_sampler=train_sampler,
        num_workers=8,
        use_shared_memory=True,
        collate_fn=DataCollator())

    eval_dataloader = paddle.io.DataLoader(
        eval_dataset,
        batch_size=args.per_gpu_eval_batch_size,
        num_workers=8,
        shuffle=False,
        collate_fn=DataCollator())

    t_total = len(train_dataloader) * args.num_train_epochs

    # build linear decay with warmup lr sch
    lr_scheduler = paddle.optimizer.lr.PolynomialDecay(
        learning_rate=args.learning_rate,
        decay_steps=t_total,
        end_lr=0.0,
        power=1.0)
    if args.warmup_steps > 0:
        lr_scheduler = paddle.optimizer.lr.LinearWarmup(
            lr_scheduler,
            args.warmup_steps,
            start_lr=0,
            end_lr=args.learning_rate, )
    grad_clip = paddle.nn.ClipGradByNorm(clip_norm=10)
    optimizer = paddle.optimizer.Adam(
        learning_rate=args.learning_rate,
        parameters=model.parameters(),
        epsilon=args.adam_epsilon,
        grad_clip=grad_clip,
        weight_decay=args.weight_decay)

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = {}".format(len(train_dataset)))
    logger.info("  Num Epochs = {}".format(args.num_train_epochs))
    logger.info("  Instantaneous batch size per GPU = {}".format(
        args.per_gpu_train_batch_size))
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = {}".
        format(args.train_batch_size * paddle.distributed.get_world_size()))
    logger.info("  Total optimization steps = {}".format(t_total))

    global_step = 0
    model.clear_gradients()
    train_dataloader_len = len(train_dataloader)
    best_metirc = {'f1': 0}
    model.train()

    for epoch in range(int(args.num_train_epochs)):
        for step, batch in enumerate(train_dataloader):
            outputs = model(**batch)
            # model outputs are always tuple in ppnlp (see doc)
            loss = outputs['loss']
            loss = loss.mean()

            logger.info(
                "epoch: [{}/{}], iter: [{}/{}], global_step:{}, train loss: {}, lr: {}".
                format(epoch, args.num_train_epochs, step, train_dataloader_len,
                       global_step, np.mean(loss.numpy()), optimizer.get_lr()))

            loss.backward()
            optimizer.step()
            optimizer.clear_grad()
            # lr_scheduler.step()  # Update learning rate schedule

            global_step += 1

            if (paddle.distributed.get_rank() == 0 and args.eval_steps > 0 and
                    global_step % args.eval_steps == 0):
                # Log metrics
                if (paddle.distributed.get_rank() == 0 and args.
                        evaluate_during_training):  # Only evaluate when single GPU otherwise metrics may not average well
                    results = evaluate(model, eval_dataloader, logger)
                    if results['f1'] > best_metirc['f1']:
                        best_metirc = results
                        output_dir = os.path.join(args.output_dir,
                                                  "checkpoint-best")
                        os.makedirs(output_dir, exist_ok=True)
                        model.save_pretrained(output_dir)
                        tokenizer.save_pretrained(output_dir)
                        paddle.save(args,
                                    os.path.join(output_dir,
                                                 "training_args.bin"))
                        logger.info("Saving model checkpoint to {}".format(
                            output_dir))
                    logger.info("eval results: {}".format(results))
                    logger.info("best_metirc: {}".format(best_metirc))

            if (paddle.distributed.get_rank() == 0 and args.save_steps > 0 and
                    global_step % args.save_steps == 0):
                # Save model checkpoint
                output_dir = os.path.join(args.output_dir, "checkpoint-latest")
                os.makedirs(output_dir, exist_ok=True)
                if paddle.distributed.get_rank() == 0:
                    model.save_pretrained(output_dir)
                    tokenizer.save_pretrained(output_dir)
                    paddle.save(args,
                                os.path.join(output_dir, "training_args.bin"))
                    logger.info("Saving model checkpoint to {}".format(
                        output_dir))
    logger.info("best_metirc: {}".format(best_metirc))


if __name__ == "__main__":
    args = parse_args()
    os.makedirs(args.output_dir, exist_ok=True)
    train(args)