det_mv3_east.yml 2.85 KB
Newer Older
MissPenguin's avatar
MissPenguin committed
1
2
3
4
5
6
7
8
9
Global:
  use_gpu: true
  epoch_num: 10000
  log_smooth_window: 20
  print_batch_step: 2
  save_model_dir: ./output/east_mv3/
  save_epoch_step: 1000
  # evaluation is run every 5000 iterations after the 4000th iteration
  eval_batch_step: [4000, 5000]
littletomatodonkey's avatar
littletomatodonkey committed
10
11
12
13
  # 1. If pretrained_model is saved in static mode, such as classification pretrained model
  #    from static branch, load_static_weights must be set as True.
  # 2. If you want to finetune the pretrained models we provide in the docs,
  #    you should set load_static_weights as False.
MissPenguin's avatar
MissPenguin committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
  load_static_weights: True
  cal_metric_during_train: False
  pretrained_model: ./pretrain_models/MobileNetV3_large_x0_5_pretrained
  checkpoints: 
  save_inference_dir:
  use_visualdl: False
  infer_img: 
  save_res_path: ./output/det_east/predicts_east.txt

Architecture:
  model_type: det
  algorithm: EAST
  Transform:
  Backbone:
    name: MobileNetV3
    scale: 0.5
    model_name: large
  Neck:
    name: EASTFPN
    model_name: small
  Head:
    name: EASTHead
    model_name: small

Loss:
  name: EASTLoss
  
Optimizer:
  name: Adam
  beta1: 0.9
  beta2: 0.999
  lr:
  #  name: Cosine
    learning_rate: 0.001
  #  warmup_epoch: 0
  regularizer:
    name: 'L2'
    factor: 0

PostProcess:
  name: EASTPostProcess
  score_thresh: 0.8
  cover_thresh: 0.1
  nms_thresh: 0.2

Metric:
  name: DetMetric
  main_indicator: hmean

Train:
  dataset:
    name: SimpleDataSet
    data_dir: ./train_data/icdar2015/text_localization/
    label_file_list:
      - ./train_data/icdar2015/text_localization/train_icdar2015_label.txt
    ratio_list: [1.0]
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - DetLabelEncode: # Class handling label
      - EASTProcessTrain:
          image_shape: [512, 512]
          background_ratio: 0.125
          min_crop_side_ratio: 0.1
          min_text_size: 10
      - KeepKeys:
          keep_keys: ['image', 'score_map', 'geo_map', 'training_mask'] # dataloader will return list in this order
  loader:
    shuffle: True
    drop_last: False
    batch_size_per_card: 16
    num_workers: 8

Eval:
  dataset:
    name: SimpleDataSet
    data_dir: ./train_data/icdar2015/text_localization/
    label_file_list:
      - ./train_data/icdar2015/text_localization/test_icdar2015_label.txt
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - DetLabelEncode: # Class handling label
      - DetResizeForTest:
          limit_side_len: 2400
          limit_type: max
      - NormalizeImage:
          scale: 1./255.
          mean: [0.485, 0.456, 0.406]
          std: [0.229, 0.224, 0.225]
          order: 'hwc'
      - ToCHWImage:
      - KeepKeys:
          keep_keys: ['image', 'shape', 'polys', 'ignore_tags']
  loader:
    shuffle: False
    drop_last: False
    batch_size_per_card: 1 # must be 1
    num_workers: 2