det_fce_head.py 3.31 KB
Newer Older
zhiminzhang0830's avatar
zhiminzhang0830 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
from paddle import nn
from paddle import ParamAttr
import paddle.nn.functional as F
from paddle.nn.initializer import Normal
import paddle
from functools import partial


def multi_apply(func, *args, **kwargs):
    """Apply function to a list of arguments.

    Note:
        This function applies the ``func`` to multiple inputs and
        map the multiple outputs of the ``func`` into different
        list. Each list contains the same type of outputs corresponding
        to different inputs.

    Args:
        func (Function): A function that will be applied to a list of
            arguments

    Returns:
        tuple(list): A tuple containing multiple list, each list contains \
            a kind of returned results by the function
    """
    pfunc = partial(func, **kwargs) if kwargs else func
    map_results = map(pfunc, *args)
    return tuple(map(list, zip(*map_results)))


class FCEHead(nn.Layer):
    """The class for implementing FCENet head.
    FCENet(CVPR2021): Fourier Contour Embedding for Arbitrary-shaped Text
    Detection.

    [https://arxiv.org/abs/2104.10442]

    Args:
        in_channels (int): The number of input channels.
        scales (list[int]) : The scale of each layer.
        fourier_degree (int) : The maximum Fourier transform degree k.
    """

    def __init__(self, in_channels, scales, fourier_degree=5):
        super().__init__()
        assert isinstance(in_channels, int)

        self.downsample_ratio = 1.0
        self.in_channels = in_channels
        self.scales = scales
        self.fourier_degree = fourier_degree
        self.out_channels_cls = 4
        self.out_channels_reg = (2 * self.fourier_degree + 1) * 2

        self.out_conv_cls = nn.Conv2D(
            in_channels=self.in_channels,
            out_channels=self.out_channels_cls,
            kernel_size=3,
            stride=1,
            padding=1,
            groups=1,
            weight_attr=ParamAttr(
                name='cls_weights',
                initializer=Normal(
                    mean=paddle.to_tensor(0.), std=paddle.to_tensor(0.01))),
            bias_attr=True)
        self.out_conv_reg = nn.Conv2D(
            in_channels=self.in_channels,
            out_channels=self.out_channels_reg,
            kernel_size=3,
            stride=1,
            padding=1,
            groups=1,
            weight_attr=ParamAttr(
                name='reg_weights',
                initializer=Normal(
                    mean=paddle.to_tensor(0.), std=paddle.to_tensor(0.01))),
            bias_attr=True)

    def forward(self, feats, targets=None):
        cls_res, reg_res = multi_apply(self.forward_single, feats)
        level_num = len(cls_res)
        # import pdb;pdb.set_trace()
        outs = {}

        if not self.training:
            for i in range(level_num):
                tr_pred = F.softmax(cls_res[i][:, 0:2, :, :], axis=1)
                tcl_pred = F.softmax(cls_res[i][:, 2:, :, :], axis=1)
                outs['level_{}'.format(i)] = paddle.concat(
                    [tr_pred, tcl_pred, reg_res[i]], axis=1)
        else:
            preds = [[cls_res[i], reg_res[i]] for i in range(level_num)]
            outs['levels'] = preds
        return outs

    def forward_single(self, x):
        cls_predict = self.out_conv_cls(x)
        reg_predict = self.out_conv_reg(x)
        return cls_predict, reg_predict