ocr_rec.cpp 6.22 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <include/ocr_rec.h>

namespace PaddleOCR {

MissPenguin's avatar
MissPenguin committed
19
void CRNNRecognizer::Run(cv::Mat &img) {
littletomatodonkey's avatar
littletomatodonkey committed
20
21
22
23
  cv::Mat srcimg;
  img.copyTo(srcimg);
  cv::Mat resize_img;

MissPenguin's avatar
MissPenguin committed
24
  float wh_ratio = float(srcimg.cols) / float(srcimg.rows);
littletomatodonkey's avatar
littletomatodonkey committed
25

MissPenguin's avatar
MissPenguin committed
26
  this->resize_op_.Run(srcimg, resize_img, wh_ratio, this->use_tensorrt_);
littletomatodonkey's avatar
littletomatodonkey committed
27

MissPenguin's avatar
MissPenguin committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
  this->normalize_op_.Run(&resize_img, this->mean_, this->scale_,
                          this->is_scale_);

  std::vector<float> input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f);

  this->permute_op_.Run(&resize_img, input.data());

  // Inference.
  auto input_names = this->predictor_->GetInputNames();
  auto input_t = this->predictor_->GetInputHandle(input_names[0]);
  input_t->Reshape({1, 3, resize_img.rows, resize_img.cols});
  input_t->CopyFromCpu(input.data());
  this->predictor_->Run();

  std::vector<float> predict_batch;
  auto output_names = this->predictor_->GetOutputNames();
  auto output_t = this->predictor_->GetOutputHandle(output_names[0]);
  auto predict_shape = output_t->shape();

  int out_num = std::accumulate(predict_shape.begin(), predict_shape.end(), 1,
                                std::multiplies<int>());
  predict_batch.resize(out_num);

  output_t->CopyToCpu(predict_batch.data());

  // ctc decode
  std::vector<std::string> str_res;
  int argmax_idx;
  int last_index = 0;
  float score = 0.f;
  int count = 0;
  float max_value = 0.0f;

  for (int n = 0; n < predict_shape[1]; n++) {
    argmax_idx =
        int(Utility::argmax(&predict_batch[n * predict_shape[2]],
                            &predict_batch[(n + 1) * predict_shape[2]]));
    max_value =
        float(*std::max_element(&predict_batch[n * predict_shape[2]],
                                &predict_batch[(n + 1) * predict_shape[2]]));

    if (argmax_idx > 0 && (!(n > 0 && argmax_idx == last_index))) {
      score += max_value;
      count += 1;
      str_res.push_back(label_list_[argmax_idx]);
WenmuZhou's avatar
WenmuZhou committed
73
    }
MissPenguin's avatar
MissPenguin committed
74
75
76
77
78
    last_index = argmax_idx;
  }
  score /= count;
  for (int i = 0; i < str_res.size(); i++) {
    std::cout << str_res[i];
littletomatodonkey's avatar
littletomatodonkey committed
79
  }
MissPenguin's avatar
MissPenguin committed
80
  std::cout << "\tscore: " << score << std::endl;
littletomatodonkey's avatar
littletomatodonkey committed
81
82
}

littletomatodonkey's avatar
littletomatodonkey committed
83
void CRNNRecognizer::LoadModel(const std::string &model_dir) {
LDOUBLEV's avatar
LDOUBLEV committed
84
85
  //   AnalysisConfig config;
  paddle_infer::Config config;
WenmuZhou's avatar
WenmuZhou committed
86
87
  config.SetModel(model_dir + "/inference.pdmodel",
                  model_dir + "/inference.pdiparams");
littletomatodonkey's avatar
littletomatodonkey committed
88

littletomatodonkey's avatar
littletomatodonkey committed
89
90
  if (this->use_gpu_) {
    config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
91
92
93
94
95
96
    if (this->use_tensorrt_) {
      config.EnableTensorRtEngine(
          1 << 20, 10, 3,
          this->use_fp16_ ? paddle_infer::Config::Precision::kHalf
                          : paddle_infer::Config::Precision::kFloat32,
          false, false);
LDOUBLEV's avatar
LDOUBLEV committed
97
98
99
100
101
102
103
104
105
      std::map<std::string, std::vector<int>> min_input_shape = {
          {"x", {1, 3, 32, 10}}};
      std::map<std::string, std::vector<int>> max_input_shape = {
          {"x", {1, 3, 32, 2000}}};
      std::map<std::string, std::vector<int>> opt_input_shape = {
          {"x", {1, 3, 32, 320}}};

      config.SetTRTDynamicShapeInfo(min_input_shape, max_input_shape,
                                    opt_input_shape);
106
    }
littletomatodonkey's avatar
littletomatodonkey committed
107
108
  } else {
    config.DisableGpu();
littletomatodonkey's avatar
littletomatodonkey committed
109
110
    if (this->use_mkldnn_) {
      config.EnableMKLDNN();
WenmuZhou's avatar
WenmuZhou committed
111
112
      // cache 10 different shapes for mkldnn to avoid memory leak
      config.SetMkldnnCacheCapacity(10);
littletomatodonkey's avatar
littletomatodonkey committed
113
    }
littletomatodonkey's avatar
littletomatodonkey committed
114
115
    config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_);
  }
littletomatodonkey's avatar
littletomatodonkey committed
116

LDOUBLEV's avatar
LDOUBLEV committed
117
  config.SwitchUseFeedFetchOps(false);
littletomatodonkey's avatar
littletomatodonkey committed
118
  // true for multiple input
littletomatodonkey's avatar
littletomatodonkey committed
119
  config.SwitchSpecifyInputNames(true);
littletomatodonkey's avatar
littletomatodonkey committed
120
121
122
123

  config.SwitchIrOptim(true);

  config.EnableMemoryOptim();
littletomatodonkey's avatar
littletomatodonkey committed
124
  config.DisableGlogInfo();
littletomatodonkey's avatar
littletomatodonkey committed
125

LDOUBLEV's avatar
LDOUBLEV committed
126
  this->predictor_ = CreatePredictor(config);
littletomatodonkey's avatar
littletomatodonkey committed
127
128
}

littletomatodonkey's avatar
littletomatodonkey committed
129
130
cv::Mat CRNNRecognizer::GetRotateCropImage(const cv::Mat &srcimage,
                                           std::vector<std::vector<int>> box) {
littletomatodonkey's avatar
littletomatodonkey committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
  cv::Mat image;
  srcimage.copyTo(image);
  std::vector<std::vector<int>> points = box;

  int x_collect[4] = {box[0][0], box[1][0], box[2][0], box[3][0]};
  int y_collect[4] = {box[0][1], box[1][1], box[2][1], box[3][1]};
  int left = int(*std::min_element(x_collect, x_collect + 4));
  int right = int(*std::max_element(x_collect, x_collect + 4));
  int top = int(*std::min_element(y_collect, y_collect + 4));
  int bottom = int(*std::max_element(y_collect, y_collect + 4));

  cv::Mat img_crop;
  image(cv::Rect(left, top, right - left, bottom - top)).copyTo(img_crop);

  for (int i = 0; i < points.size(); i++) {
    points[i][0] -= left;
    points[i][1] -= top;
  }

  int img_crop_width = int(sqrt(pow(points[0][0] - points[1][0], 2) +
                                pow(points[0][1] - points[1][1], 2)));
  int img_crop_height = int(sqrt(pow(points[0][0] - points[3][0], 2) +
                                 pow(points[0][1] - points[3][1], 2)));

  cv::Point2f pts_std[4];
  pts_std[0] = cv::Point2f(0., 0.);
  pts_std[1] = cv::Point2f(img_crop_width, 0.);
  pts_std[2] = cv::Point2f(img_crop_width, img_crop_height);
  pts_std[3] = cv::Point2f(0.f, img_crop_height);

  cv::Point2f pointsf[4];
  pointsf[0] = cv::Point2f(points[0][0], points[0][1]);
  pointsf[1] = cv::Point2f(points[1][0], points[1][1]);
  pointsf[2] = cv::Point2f(points[2][0], points[2][1]);
  pointsf[3] = cv::Point2f(points[3][0], points[3][1]);

  cv::Mat M = cv::getPerspectiveTransform(pointsf, pts_std);

  cv::Mat dst_img;
  cv::warpPerspective(img_crop, dst_img, M,
                      cv::Size(img_crop_width, img_crop_height),
                      cv::BORDER_REPLICATE);

  if (float(dst_img.rows) >= float(dst_img.cols) * 1.5) {
    cv::Mat srcCopy = cv::Mat(dst_img.rows, dst_img.cols, dst_img.depth());
    cv::transpose(dst_img, srcCopy);
    cv::flip(srcCopy, srcCopy, 0);
    return srcCopy;
  } else {
    return dst_img;
  }
}

littletomatodonkey's avatar
littletomatodonkey committed
184
} // namespace PaddleOCR