readme.md 15.8 KB
Newer Older
MissPenguin's avatar
update  
MissPenguin committed
1
2
3
4
5
6
7
8
- [Tutorial of PaddleOCR Mobile deployment](#tutorial-of-paddleocr-mobile-deployment)
  - [1. Preparation](#1-preparation)
    - [Preparation environment](#preparation-environment)
    - [1.1 Prepare the cross-compilation environment](#11-prepare-the-cross-compilation-environment)
    - [1.2 Prepare Paddle-Lite library](#12-prepare-paddle-lite-library)
  - [2 Run](#2-run)
    - [2.1 Inference Model Optimization](#21-inference-model-optimization)
    - [2.2 Run optimized model on Phone](#22-run-optimized-model-on-phone)
WenmuZhou's avatar
WenmuZhou committed
9
10
      - [注意:](#注意)
  - [FAQ](#faq)
WenmuZhou's avatar
WenmuZhou committed
11

MissPenguin's avatar
update  
MissPenguin committed
12
# Tutorial of PaddleOCR Mobile deployment
WenmuZhou's avatar
WenmuZhou committed
13

MissPenguin's avatar
update  
MissPenguin committed
14
This tutorial will introduce how to use [Paddle Lite](https://github.com/PaddlePaddle/Paddle-Lite) to deploy PaddleOCR ultra-lightweight Chinese and English detection models on mobile phones.
WenmuZhou's avatar
WenmuZhou committed
15

MissPenguin's avatar
update  
MissPenguin committed
16
paddle-lite is a lightweight inference engine for PaddlePaddle. It provides efficient inference capabilities for mobile phones and IoT, and extensively integrates cross-platform hardware to provide lightweight deployment solutions for end-side deployment issues.
WenmuZhou's avatar
WenmuZhou committed
17

MissPenguin's avatar
update  
MissPenguin committed
18
## 1. Preparation
WenmuZhou's avatar
WenmuZhou committed
19

MissPenguin's avatar
update  
MissPenguin committed
20
### Preparation environment
WenmuZhou's avatar
WenmuZhou committed
21

MissPenguin's avatar
update  
MissPenguin committed
22
23
24
25
26
27
28
29
- Computer (for Compiling Paddle Lite)
- Mobile phone (arm7 or arm8)

### 1.1 Prepare the cross-compilation environment
The cross-compilation environment is used to compile C++ demos of Paddle Lite and PaddleOCR.
Supports multiple development environments.

For the compilation process of different development environments, please refer to the corresponding documents.
WenmuZhou's avatar
WenmuZhou committed
30
31
32
33
34

1. [Docker](https://paddle-lite.readthedocs.io/zh/latest/source_compile/compile_env.html#docker)
2. [Linux](https://paddle-lite.readthedocs.io/zh/latest/source_compile/compile_env.html#linux)
3. [MAC OS](https://paddle-lite.readthedocs.io/zh/latest/source_compile/compile_env.html#mac-os)

MissPenguin's avatar
update  
MissPenguin committed
35
### 1.2 Prepare Paddle-Lite library
WenmuZhou's avatar
WenmuZhou committed
36

MissPenguin's avatar
update  
MissPenguin committed
37
38
There are two ways to obtain the Paddle-Lite library:
- 1. Download directly, the download link of the Paddle-Lite library is as follows:
WenmuZhou's avatar
WenmuZhou committed
39

MissPenguin's avatar
update  
MissPenguin committed
40
      | Platform | Paddle-Lite library download link |
WenmuZhou's avatar
WenmuZhou committed
41
      |---|---|
WenmuZhou's avatar
WenmuZhou committed
42
43
      |Android|[arm7](https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.10/inference_lite_lib.android.armv7.gcc.c++_shared.with_extra.with_cv.tar.gz) / [arm8](https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.10/inference_lite_lib.android.armv8.gcc.c++_shared.with_extra.with_cv.tar.gz)|
      |IOS|[arm7](https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.10/inference_lite_lib.ios.armv7.with_cv.with_extra.with_log.tiny_publish.tar.gz) / [arm8](https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.10/inference_lite_lib.ios.armv8.with_cv.with_extra.with_log.tiny_publish.tar.gz)|
WenmuZhou's avatar
WenmuZhou committed
44

MissPenguin's avatar
update  
MissPenguin committed
45
      Note: 1. The above Paddle-Lite library is compiled from the Paddle-Lite 2.10 branch. For more information about Paddle-Lite 2.10, please refer to [link](https://github.com/PaddlePaddle/Paddle-Lite/releases/tag/v2.10).
WenmuZhou's avatar
WenmuZhou committed
46

MissPenguin's avatar
update  
MissPenguin committed
47
- 2. [Recommended] Compile Paddle-Lite to get the prediction library. The compilation method of Paddle-Lite is as follows:
WenmuZhou's avatar
WenmuZhou committed
48
49
50
```
git clone https://github.com/PaddlePaddle/Paddle-Lite.git
cd Paddle-Lite
MissPenguin's avatar
update  
MissPenguin committed
51
# Switch to Paddle-Lite release/v2.10 stable branch
WenmuZhou's avatar
WenmuZhou committed
52
git checkout release/v2.10
WenmuZhou's avatar
WenmuZhou committed
53
54
55
./lite/tools/build_android.sh  --arch=armv8  --with_cv=ON --with_extra=ON
```

MissPenguin's avatar
update  
MissPenguin committed
56
57
58
Note: When compiling Paddle-Lite to obtain the Paddle-Lite library, you need to turn on the two options `--with_cv=ON --with_extra=ON`, `--arch` means the `arm` version, here is designated as armv8,

More compilation commands refer to the introduction [link](https://paddle-lite.readthedocs.io/zh/release-v2.10_a/source_compile/linux_x86_compile_android.html)
WenmuZhou's avatar
WenmuZhou committed
59

MissPenguin's avatar
update  
MissPenguin committed
60
61
62
63
After directly downloading the Paddle-Lite library and decompressing it, you can get the `inference_lite_lib.android.armv8/` folder, and the Paddle-Lite library obtained by compiling Paddle-Lite is located
`Paddle-Lite/build.lite.android.armv8.gcc/inference_lite_lib.android.armv8/` folder.

The structure of the prediction library is as follows:
WenmuZhou's avatar
WenmuZhou committed
64
65
```
inference_lite_lib.android.armv8/
MissPenguin's avatar
update  
MissPenguin committed
66
67
|-- cxx                                        C++ prebuild library
|   |-- include                                C++
WenmuZhou's avatar
WenmuZhou committed
68
69
70
71
72
73
74
|   |   |-- paddle_api.h
|   |   |-- paddle_image_preprocess.h
|   |   |-- paddle_lite_factory_helper.h
|   |   |-- paddle_place.h
|   |   |-- paddle_use_kernels.h
|   |   |-- paddle_use_ops.h
|   |   `-- paddle_use_passes.h
MissPenguin's avatar
update  
MissPenguin committed
75
76
77
78
|   `-- lib                                           C++ library
|       |-- libpaddle_api_light_bundled.a             C++ static library
|       `-- libpaddle_light_api_shared.so             C++ dynamic library
|-- java                                     Java library
WenmuZhou's avatar
WenmuZhou committed
79
80
81
82
83
|   |-- jar
|   |   `-- PaddlePredictor.jar
|   |-- so
|   |   `-- libpaddle_lite_jni.so
|   `-- src
MissPenguin's avatar
update  
MissPenguin committed
84
85
86
|-- demo                                     C++ and Java demo
|   |-- cxx                                  C++ demo
|   `-- java                                 Java demo
WenmuZhou's avatar
WenmuZhou committed
87
88
```

MissPenguin's avatar
update  
MissPenguin committed
89
## 2 Run
WenmuZhou's avatar
WenmuZhou committed
90

MissPenguin's avatar
update  
MissPenguin committed
91
### 2.1 Inference Model Optimization
WenmuZhou's avatar
WenmuZhou committed
92

MissPenguin's avatar
update  
MissPenguin committed
93
Paddle Lite provides a variety of strategies to automatically optimize the original training model, including quantization, sub-graph fusion, hybrid scheduling, Kernel optimization and so on. In order to make the optimization process more convenient and easy to use, Paddle Lite provide opt tools to automatically complete the optimization steps and output a lightweight, optimal executable model.
WenmuZhou's avatar
WenmuZhou committed
94

MissPenguin's avatar
update  
MissPenguin committed
95
If you have prepared the model file ending in .nb, you can skip this step.
WenmuZhou's avatar
WenmuZhou committed
96

MissPenguin's avatar
update  
MissPenguin committed
97
The following table also provides a series of models that can be deployed on mobile phones to recognize Chinese. You can directly download the optimized model.
WenmuZhou's avatar
WenmuZhou committed
98

MissPenguin's avatar
update  
MissPenguin committed
99
|Version|Introduction|Model size|Detection model|Text Direction model|Recognition model|Paddle-Lite branch|
WenmuZhou's avatar
WenmuZhou committed
100
|---|---|---|---|---|---|---|
MissPenguin's avatar
update  
MissPenguin committed
101
102
|PP-OCRv2|extra-lightweight chinese OCR optimized model|11M|[download link](https://paddleocr.bj.bcebos.com/PP-OCRv2/lite/ch_PP-OCRv2_det_infer_opt.nb)|[download link](https://paddleocr.bj.bcebos.com/PP-OCRv2/lite/ch_ppocr_mobile_v2.0_cls_infer_opt.nb)|[download link](https://paddleocr.bj.bcebos.com/PP-OCRv2/lite/ch_PP-OCRv2_rec_infer_opt.nb)|v2.10|
|PP-OCRv2(slim)|extra-lightweight chinese OCR optimized model|4.6M|[download link](https://paddleocr.bj.bcebos.com/PP-OCRv2/lite/ch_PP-OCRv2_det_slim_opt.nb)|[download link](https://paddleocr.bj.bcebos.com/PP-OCRv2/lite/ch_ppocr_mobile_v2.0_cls_slim_opt.nb)|[download link](https://paddleocr.bj.bcebos.com/PP-OCRv2/lite/ch_PP-OCRv2_rec_slim_opt.nb)|v2.10|
WenmuZhou's avatar
WenmuZhou committed
103

MissPenguin's avatar
update  
MissPenguin committed
104
If you directly use the model in the above table for deployment, you can skip the following steps and directly read [Section 2.2](#2.2-Run-optimized-model-on-Phone).
WenmuZhou's avatar
WenmuZhou committed
105

MissPenguin's avatar
update  
MissPenguin committed
106
If the model to be deployed is not in the above table, you need to follow the steps below to obtain the optimized model.
WenmuZhou's avatar
WenmuZhou committed
107

MissPenguin's avatar
update  
MissPenguin committed
108
The `opt` tool can be obtained by compiling Paddle Lite.
WenmuZhou's avatar
WenmuZhou committed
109
110
111
```
git clone https://github.com/PaddlePaddle/Paddle-Lite.git
cd Paddle-Lite
WenmuZhou's avatar
WenmuZhou committed
112
git checkout release/v2.10
WenmuZhou's avatar
WenmuZhou committed
113
114
115
./lite/tools/build.sh build_optimize_tool
```

MissPenguin's avatar
update  
MissPenguin committed
116
117
After the compilation is complete, the opt file is located under build.opt/lite/api/, You can view the operating options and usage of opt in the following ways:

WenmuZhou's avatar
WenmuZhou committed
118
119
120
121
122
```
cd build.opt/lite/api/
./opt
```

MissPenguin's avatar
update  
MissPenguin committed
123
|Options|Description|
WenmuZhou's avatar
WenmuZhou committed
124
|---|---|
MissPenguin's avatar
update  
MissPenguin committed
125
126
127
128
129
130
131
|--model_dir|The path of the PaddlePaddle model to be optimized (non-combined form)|
|--model_file|The network structure file path of the PaddlePaddle model (combined form) to be optimized|
|--param_file|The weight file path of the PaddlePaddle model (combined form) to be optimized|
|--optimize_out_type|Output model type, currently supports two types: protobuf and naive_buffer, among which naive_buffer is a more lightweight serialization/deserialization implementation. If you need to perform model prediction on the mobile side, please set this option to naive_buffer. The default is protobuf|
|--optimize_out|The output path of the optimized model|
|--valid_targets|The executable backend of the model, the default is arm. Currently it supports x86, arm, opencl, npu, xpu, multiple backends can be specified at the same time (separated by spaces), and Model Optimize Tool will automatically select the best method. If you need to support Huawei NPU (DaVinci architecture NPU equipped with Kirin 810/990 Soc), it should be set to npu, arm|
|--record_tailoring_info|When using the function of cutting library files according to the model, set this option to true to record the kernel and OP information contained in the optimized model. The default is false|
WenmuZhou's avatar
WenmuZhou committed
132

MissPenguin's avatar
update  
MissPenguin committed
133
`--model_dir` is suitable for the non-combined mode of the model to be optimized, and the inference model of PaddleOCR is the combined mode, that is, the model structure and model parameters are stored in a single file.
WenmuZhou's avatar
WenmuZhou committed
134

MissPenguin's avatar
update  
MissPenguin committed
135
The following takes the ultra-lightweight Chinese model of PaddleOCR as an example to introduce the use of the compiled opt file to complete the conversion of the inference model to the Paddle-Lite optimized model
WenmuZhou's avatar
WenmuZhou committed
136
137

```
MissPenguin's avatar
update  
MissPenguin committed
138
# 【[Recommendation] Download the Chinese and English inference model of PP-OCRv2
WenmuZhou's avatar
WenmuZhou committed
139
140
wget  https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_slim_quant_infer.tar && tar xf  ch_PP-OCRv2_det_slim_quant_infer.tar
wget  https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_slim_quant_infer.tar && tar xf  ch_PP-OCRv2_rec_slim_quant_infer.tar
WenmuZhou's avatar
WenmuZhou committed
141
wget  https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_cls_slim_infer.tar && tar xf  ch_ppocr_mobile_v2.0_cls_slim_infer.tar
MissPenguin's avatar
update  
MissPenguin committed
142
# Convert detection model
WenmuZhou's avatar
WenmuZhou committed
143
./opt --model_file=./ch_PP-OCRv2_det_slim_quant_infer/inference.pdmodel  --param_file=./ch_PP-OCRv2_det_slim_quant_infer/inference.pdiparams  --optimize_out=./ch_PP-OCRv2_det_slim_opt --valid_targets=arm  --optimize_out_type=naive_buffer
MissPenguin's avatar
update  
MissPenguin committed
144
# Convert recognition model
WenmuZhou's avatar
WenmuZhou committed
145
./opt --model_file=./ch_PP-OCRv2_rec_slim_quant_infer/inference.pdmodel  --param_file=./ch_PP-OCRv2_rec_slim_quant_infer/inference.pdiparams  --optimize_out=./ch_PP-OCRv2_rec_slim_opt --valid_targets=arm  --optimize_out_type=naive_buffer
MissPenguin's avatar
update  
MissPenguin committed
146
# Convert angle classifier model
WenmuZhou's avatar
WenmuZhou committed
147
./opt --model_file=./ch_ppocr_mobile_v2.0_cls_slim_infer/inference.pdmodel  --param_file=./ch_ppocr_mobile_v2.0_cls_slim_infer/inference.pdiparams  --optimize_out=./ch_ppocr_mobile_v2.0_cls_slim_opt --valid_targets=arm  --optimize_out_type=naive_buffer
WenmuZhou's avatar
WenmuZhou committed
148

WenmuZhou's avatar
WenmuZhou committed
149
150
```

MissPenguin's avatar
update  
MissPenguin committed
151
After the conversion is successful, there will be more files ending with `.nb` in the inference model directory, which is the successfully converted model file.
WenmuZhou's avatar
WenmuZhou committed
152

MissPenguin's avatar
update  
MissPenguin committed
153
154
<a name="2.2-Run-optimized-model-on-Phone"></a>
### 2.2 Run optimized model on Phone
WenmuZhou's avatar
WenmuZhou committed
155

MissPenguin's avatar
update  
MissPenguin committed
156
157
158
159
Some preparatory work is required first.
 1. Prepare an Android phone with arm8. If the compiled prediction library and opt file are armv7, you need an arm7 phone and modify ARM_ABI = arm7 in the Makefile.
 2. Make sure the phone is connected to the computer, open the USB debugging option of the phone, and select the file transfer mode.
 3. Install the adb tool on the computer.
WenmuZhou's avatar
WenmuZhou committed
160

MissPenguin's avatar
update  
MissPenguin committed
161
    3.1. Install ADB for MAC:
WenmuZhou's avatar
WenmuZhou committed
162
163
164
    ```
    brew cask install android-platform-tools
    ```
MissPenguin's avatar
update  
MissPenguin committed
165
    3.2. Install ADB for Linux
WenmuZhou's avatar
WenmuZhou committed
166
167
168
169
    ```
    sudo apt update
    sudo apt install -y wget adb
    ```
MissPenguin's avatar
update  
MissPenguin committed
170
    3.3. Install ADB for windows
WenmuZhou's avatar
WenmuZhou committed
171

MissPenguin's avatar
update  
MissPenguin committed
172
    To install on win, you need to go to Google's Android platform to download the adb package for installation:[link](https://developer.android.com/studio)
WenmuZhou's avatar
WenmuZhou committed
173

MissPenguin's avatar
update  
MissPenguin committed
174
175
    Verify whether adb is installed successfully
     ```
WenmuZhou's avatar
WenmuZhou committed
176
177
    adb devices
    ```
MissPenguin's avatar
update  
MissPenguin committed
178
    If there is device output, it means the installation is successful。
WenmuZhou's avatar
WenmuZhou committed
179
180
181
182
183
    ```
       List of devices attached
       744be294    device
    ```

MissPenguin's avatar
update  
MissPenguin committed
184
 4. Prepare optimized models, prediction library files, test images and dictionary files used.
WenmuZhou's avatar
WenmuZhou committed
185
186
187
 ```
 git clone https://github.com/PaddlePaddle/PaddleOCR.git
 cd PaddleOCR/deploy/lite/
MissPenguin's avatar
update  
MissPenguin committed
188
 # run prepare.sh
WenmuZhou's avatar
WenmuZhou committed
189
190
 sh prepare.sh /{lite prediction library path}/inference_lite_lib.android.armv8

MissPenguin's avatar
update  
MissPenguin committed
191
 #
WenmuZhou's avatar
WenmuZhou committed
192
193
 cd /{lite prediction library path}/inference_lite_lib.android.armv8/
 cd demo/cxx/ocr/
MissPenguin's avatar
update  
MissPenguin committed
194
195
196
197
 # copy paddle-lite C++ .so file to debug/ directory
 cp ../../../cxx/lib/libpaddle_light_api_shared.so ./debug/

 cd inference_lite_lib.android.armv8/demo/cxx/ocr/
WenmuZhou's avatar
WenmuZhou committed
198
199
200
 cp ../../../cxx/lib/libpaddle_light_api_shared.so ./debug/
 ```

MissPenguin's avatar
update  
MissPenguin committed
201
Prepare the test image, taking PaddleOCR/doc/imgs/11.jpg as an example, copy the image file to the demo/cxx/ocr/debug/ folder. Prepare the model files optimized by the lite opt tool, ch_det_mv3_db_opt.nb, ch_rec_mv3_crnn_opt.nb, and place them under the demo/cxx/ocr/debug/ folder.
WenmuZhou's avatar
WenmuZhou committed
202

MissPenguin's avatar
update  
MissPenguin committed
203
The structure of the OCR demo is as follows after the above command is executed:
WenmuZhou's avatar
WenmuZhou committed
204
205
206
207

```
demo/cxx/ocr/
|-- debug/  
MissPenguin's avatar
update  
MissPenguin committed
208
209
210
211
212
213
214
215
216
|   |--ch_PP-OCRv2_det_slim_opt.nb           Detection model
|   |--ch_PP-OCRv2_rec_slim_opt.nb           Recognition model
|   |--ch_ppocr_mobile_v2.0_cls_slim_opt.nb           Text direction classification model
|   |--11.jpg                           Image for OCR
|   |--ppocr_keys_v1.txt                Dictionary file
|   |--libpaddle_light_api_shared.so    C++ .so file
|   |--config.txt                       Config file
|-- config.txt                  Config file
|-- cls_process.cc              Pre-processing and post-processing files for the angle classifier
WenmuZhou's avatar
WenmuZhou committed
217
|-- cls_process.h
MissPenguin's avatar
update  
MissPenguin committed
218
|-- crnn_process.cc             Pre-processing and post-processing files for the CRNN model
WenmuZhou's avatar
WenmuZhou committed
219
|-- crnn_process.h
MissPenguin's avatar
update  
MissPenguin committed
220
|-- db_post_process.cc          Pre-processing and post-processing files for the DB model
WenmuZhou's avatar
WenmuZhou committed
221
|-- db_post_process.h
MissPenguin's avatar
update  
MissPenguin committed
222
223
|-- Makefile  
|-- ocr_db_crnn.cc              C++ main code
WenmuZhou's avatar
WenmuZhou committed
224
225
226
```

#### 注意:
MissPenguin's avatar
update  
MissPenguin committed
227
1. `ppocr_keys_v1.txt` is a Chinese dictionary file. If the nb model is used for English recognition or other language recognition, dictionary file should be replaced with a dictionary of the corresponding language. PaddleOCR provides a variety of dictionaries under ppocr/utils/, including:
WenmuZhou's avatar
WenmuZhou committed
228
```
MissPenguin's avatar
update  
MissPenguin committed
229
230
231
232
233
234
dict/french_dict.txt     # french
dict/german_dict.txt     # german
ic15_dict.txt       # english
dict/japan_dict.txt      # japan
dict/korean_dict.txt     # korean
ppocr_keys_v1.txt   # chinese
WenmuZhou's avatar
WenmuZhou committed
235
236
```

MissPenguin's avatar
update  
MissPenguin committed
237
2.  `config.txt` of the detector and classifier, as shown below:
WenmuZhou's avatar
WenmuZhou committed
238
```
MissPenguin's avatar
update  
MissPenguin committed
239
240
241
242
243
max_side_len  960         #  Limit the maximum image height and width to 960
det_db_thresh  0.3        # Used to filter the binarized image of DB prediction, setting 0.-0.3 has no obvious effect on the result
det_db_box_thresh  0.5    # DDB post-processing filter box threshold, if there is a missing box detected, it can be reduced as appropriate
det_db_unclip_ratio  1.6  # Indicates the compactness of the text box, the smaller the value, the closer the text box to the text
use_direction_classify  0  # Whether to use the direction classifier, 0 means not to use, 1 means to use
WenmuZhou's avatar
WenmuZhou committed
244
245
```

MissPenguin's avatar
update  
MissPenguin committed
246
 5. Run Model on phone
WenmuZhou's avatar
WenmuZhou committed
247

MissPenguin's avatar
update  
MissPenguin committed
248
After the above steps are completed, you can use adb to push the file to the phone to run, the steps are as follows:
WenmuZhou's avatar
WenmuZhou committed
249
250

 ```
MissPenguin's avatar
update  
MissPenguin committed
251
252
 # Execute the compilation and get the executable file ocr_db_crnn
 # The first execution of this command will download dependent libraries such as opencv. After the download is complete, you need to execute it again
WenmuZhou's avatar
WenmuZhou committed
253
 make -j
MissPenguin's avatar
update  
MissPenguin committed
254
 # Move the compiled executable file to the debug folder
WenmuZhou's avatar
WenmuZhou committed
255
 mv ocr_db_crnn ./debug/
MissPenguin's avatar
update  
MissPenguin committed
256
 # Push the debug folder to the phone
WenmuZhou's avatar
WenmuZhou committed
257
258
259
260
 adb push debug /data/local/tmp/
 adb shell
 cd /data/local/tmp/debug
 export LD_LIBRARY_PATH=${PWD}:$LD_LIBRARY_PATH
MissPenguin's avatar
update  
MissPenguin committed
261
262
263
 # The use of ocr_db_crnn is:
 # ./ocr_db_crnn Detection model file Orientation classifier model file Recognition model file Test image path Dictionary file path
 ./ocr_db_crnn ch_PP-OCRv2_det_slim_opt.nb  ch_PP-OCRv2_rec_slim_opt.nb  ch_ppocr_mobile_v2.0_cls_opt.nb  ./11.jpg  ppocr_keys_v1.txt
WenmuZhou's avatar
WenmuZhou committed
264
265
 ```

MissPenguin's avatar
update  
MissPenguin committed
266
If you modify the code, you need to recompile and push to the phone.
WenmuZhou's avatar
WenmuZhou committed
267

MissPenguin's avatar
update  
MissPenguin committed
268
The outputs are as follows:
WenmuZhou's avatar
WenmuZhou committed
269
270

<div align="center">
WenmuZhou's avatar
WenmuZhou committed
271
    <img src="imgs/lite_demo.png" width="600">
WenmuZhou's avatar
WenmuZhou committed
272
273
274
</div>

## FAQ
WenmuZhou's avatar
WenmuZhou committed
275

MissPenguin's avatar
update  
MissPenguin committed
276
277
278
Q1: What if I want to change the model, do I need to run it again according to the process?

A1: If you have performed the above steps, you only need to replace the .nb model file to complete the model replacement.
WenmuZhou's avatar
WenmuZhou committed
279

MissPenguin's avatar
update  
MissPenguin committed
280
Q2: How to test with another picture?
WenmuZhou's avatar
WenmuZhou committed
281

MissPenguin's avatar
update  
MissPenguin committed
282
A2: Replace the .jpg test image under ./debug with the image you want to test, and run adb push to push new image to the phone.
WenmuZhou's avatar
WenmuZhou committed
283

MissPenguin's avatar
update  
MissPenguin committed
284
Q3: How to package it into the mobile APP?
WenmuZhou's avatar
WenmuZhou committed
285

MissPenguin's avatar
update  
MissPenguin committed
286
A3: This demo aims to provide the core algorithm part that can run OCR on mobile phones. Further, PaddleOCR/deploy/android_demo is an example of encapsulating this demo into a mobile app for reference.