"...lm-evaluation-harness.git" did not exist on "ebccca1ef345356eeac91ff128d09674c802ad1f"
__init__.py 3.25 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
WenmuZhou's avatar
WenmuZhou committed
14
15
16
17
18
19
20
21
22
23

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import os
import sys
import numpy as np
import paddle
dyning's avatar
dyning committed
24
25
import signal
import random
WenmuZhou's avatar
WenmuZhou committed
26
27
28
29
30

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))

import copy
dyning's avatar
dyning committed
31
from paddle.io import Dataset, DataLoader, BatchSampler, DistributedBatchSampler
WenmuZhou's avatar
WenmuZhou committed
32
33
34
import paddle.distributed as dist

from ppocr.data.imaug import transform, create_operators
dyning's avatar
dyning committed
35
from ppocr.data.simple_dataset import SimpleDataSet
tink2123's avatar
tink2123 committed
36
from ppocr.data.lmdb_dataset import LMDBDataSet
37
from ppocr.data.pgnet_dataset import PGDataSet
MissPenguin's avatar
MissPenguin committed
38
from ppocr.data.pubtab_dataset import PubTabDataSet
WenmuZhou's avatar
WenmuZhou committed
39
40
41

__all__ = ['build_dataloader', 'transform', 'create_operators']

dyning's avatar
dyning committed
42

dyning's avatar
dyning committed
43
44
45
46
47
48
49
def term_mp(sig_num, frame):
    """ kill all child processes
    """
    pid = os.getpid()
    pgid = os.getpgid(os.getpid())
    print("main proc {} exit, kill process group " "{}".format(pid, pgid))
    os.killpg(pgid, signal.SIGKILL)
WenmuZhou's avatar
WenmuZhou committed
50

dyning's avatar
dyning committed
51

dyning's avatar
dyning committed
52
53
signal.signal(signal.SIGINT, term_mp)
signal.signal(signal.SIGTERM, term_mp)
WenmuZhou's avatar
WenmuZhou committed
54

dyning's avatar
dyning committed
55

56
def build_dataloader(config, mode, device, logger, seed=None):
dyning's avatar
dyning committed
57
    config = copy.deepcopy(config)
dyning's avatar
dyning committed
58

MissPenguin's avatar
MissPenguin committed
59
    support_dict = ['SimpleDataSet', 'LMDBDataSet', 'PGDataSet', 'PubTabDataSet']
dyning's avatar
dyning committed
60
    module_name = config[mode]['dataset']['name']
WenmuZhou's avatar
WenmuZhou committed
61
62
    assert module_name in support_dict, Exception(
        'DataSet only support {}'.format(support_dict))
dyning's avatar
dyning committed
63
64
65
    assert mode in ['Train', 'Eval', 'Test'
                    ], "Mode should be Train, Eval or Test."

66
    dataset = eval(module_name)(config, mode, logger, seed)
dyning's avatar
dyning committed
67
68
69
    loader_config = config[mode]['loader']
    batch_size = loader_config['batch_size_per_card']
    drop_last = loader_config['drop_last']
LDOUBLEV's avatar
LDOUBLEV committed
70
    shuffle = loader_config['shuffle']
dyning's avatar
dyning committed
71
    num_workers = loader_config['num_workers']
72
73
74
75
    if 'use_shared_memory' in loader_config.keys():
        use_shared_memory = loader_config['use_shared_memory']
    else:
        use_shared_memory = True
dyning's avatar
dyning committed
76
    if mode == "Train":
Jethong's avatar
Jethong committed
77
        # Distribute data to multiple cards
dyning's avatar
dyning committed
78
79
80
        batch_sampler = DistributedBatchSampler(
            dataset=dataset,
            batch_size=batch_size,
LDOUBLEV's avatar
LDOUBLEV committed
81
            shuffle=shuffle,
dyning's avatar
dyning committed
82
            drop_last=drop_last)
WenmuZhou's avatar
WenmuZhou committed
83
    else:
Jethong's avatar
Jethong committed
84
        # Distribute data to single card
dyning's avatar
dyning committed
85
86
87
        batch_sampler = BatchSampler(
            dataset=dataset,
            batch_size=batch_size,
LDOUBLEV's avatar
LDOUBLEV committed
88
            shuffle=shuffle,
dyning's avatar
dyning committed
89
90
            drop_last=drop_last)

dyning's avatar
dyning committed
91
92
93
94
95
    data_loader = DataLoader(
        dataset=dataset,
        batch_sampler=batch_sampler,
        places=device,
        num_workers=num_workers,
96
97
        return_list=True,
        use_shared_memory=use_shared_memory)
dyning's avatar
dyning committed
98

dyning's avatar
dyning committed
99
    return data_loader