db_postprocess_torch.py 4.62 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import cv2
import numpy as np
import pyclipper
from shapely.geometry import Polygon


class DBPostProcess():
    def __init__(self,
                 thresh=0.3,
                 box_thresh=0.7,
                 max_candidates=1000,
                 unclip_ratio=1.5):
        self.min_size = 3
        self.thresh = thresh
        self.box_thresh = box_thresh
        self.max_candidates = max_candidates
        self.unclip_ratio = unclip_ratio

    def __call__(self, pred, shape_list, is_output_polygon=False):
        '''
        batch: (image, polygons, ignore_tags
        h_w_list: 包含[h,w]的数组
        pred:
            binary: text region segmentation map, with shape (N, 1,H, W)
        '''
        pred = pred.numpy()[:, 0, :, :]
        segmentation = self.binarize(pred)
        batch_out = []
        for batch_index in range(pred.shape[0]):
            height, width = shape_list[batch_index]
            boxes, scores = self.post_p(
                pred[batch_index],
                segmentation[batch_index],
                width,
                height,
                is_output_polygon=is_output_polygon)
            batch_out.append({"points": boxes})
        return batch_out

    def binarize(self, pred):
        return pred > self.thresh

    def post_p(self,
               pred,
               bitmap,
               dest_width,
               dest_height,
               is_output_polygon=True):
        '''
        _bitmap: single map with shape (H, W),
            whose values are binarized as {0, 1}
        '''
        height, width = pred.shape
        boxes = []
        new_scores = []
        contours, _ = cv2.findContours((bitmap * 255).astype(np.uint8),
                                       cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
        for contour in contours[:self.max_candidates]:
            epsilon = 0.005 * cv2.arcLength(contour, True)
            approx = cv2.approxPolyDP(contour, epsilon, True)
            points = approx.reshape((-1, 2))
            if points.shape[0] < 4:
                continue
            score = self.box_score_fast(pred, points.reshape(-1, 2))
            if self.box_thresh > score:
                continue

            if points.shape[0] > 2:
                box = self.unclip(points, unclip_ratio=self.unclip_ratio)
                if len(box) > 1 or len(box) == 0:
                    continue
            else:
                continue
            four_point_box, sside = self.get_mini_boxes(box.reshape((-1, 1, 2)))
            if sside < self.min_size + 2:
                continue

            if not is_output_polygon:
                box = np.array(four_point_box)
            else:
                box = box.reshape(-1, 2)
            box[:, 0] = np.clip(
                np.round(box[:, 0] / width * dest_width), 0, dest_width)
            box[:, 1] = np.clip(
                np.round(box[:, 1] / height * dest_height), 0, dest_height)
            boxes.append(box)
            new_scores.append(score)
        return boxes, new_scores

    def unclip(self, box, unclip_ratio=1.5):
        poly = Polygon(box)
        distance = poly.area * unclip_ratio / poly.length
        offset = pyclipper.PyclipperOffset()
        offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
        expanded = np.array(offset.Execute(distance))
        return expanded

    def get_mini_boxes(self, contour):
        bounding_box = cv2.minAreaRect(contour)
        points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])

        index_1, index_2, index_3, index_4 = 0, 1, 2, 3
        if points[1][1] > points[0][1]:
            index_1 = 0
            index_4 = 1
        else:
            index_1 = 1
            index_4 = 0
        if points[3][1] > points[2][1]:
            index_2 = 2
            index_3 = 3
        else:
            index_2 = 3
            index_3 = 2

        box = [
            points[index_1], points[index_2], points[index_3], points[index_4]
        ]
        return box, min(bounding_box[1])

    def box_score_fast(self, bitmap, _box):
        h, w = bitmap.shape[:2]
        box = _box.copy()
        xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int), 0, w - 1)
        xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int), 0, w - 1)
        ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int), 0, h - 1)
        ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int), 0, h - 1)

        mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
        box[:, 0] = box[:, 0] - xmin
        box[:, 1] = box[:, 1] - ymin
        cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1)
        return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]