config.yml 2.84 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
#rpc端口, rpc_port和http_port不允许同时为空。当rpc_port为空且http_port不为空时,会自动将rpc_port设置为http_port+1
rpc_port: 18090

#http端口, rpc_port和http_port不允许同时为空。当rpc_port可用且http_port为空时,不自动生成http_port
http_port: 9999

#worker_num, 最大并发数。当build_dag_each_worker=True时, 框架会创建worker_num个进程,每个进程内构建grpcSever和DAG
##当build_dag_each_worker=False时,框架会设置主线程grpc线程池的max_workers=worker_num
worker_num: 20

#build_dag_each_worker, False,框架在进程内创建一条DAG;True,框架会每个进程内创建多个独立的DAG
build_dag_each_worker: false

dag:
    #op资源类型, True, 为线程模型;False,为进程模型
    is_thread_op: False

    #重试次数
    retry: 1

    #使用性能分析, True,生成Timeline性能数据,对性能有一定影响;False为不使用
    use_profile: False
    
    tracer:
        interval_s: 10
op:
    det:
        #并发数,is_thread_op=True时,为线程并发;否则为进程并发
        concurrency: 4

        #当op配置没有server_endpoints时,从local_service_conf读取本地服务配置
        local_service_conf:
            #client类型,包括brpc, grpc和local_predictor.local_predictor不启动Serving服务,进程内预测
            client_type: local_predictor

            #det模型路径
            model_config: /paddle/serving/models/det_serving_server/ #ocr_det_model

            #Fetch结果列表,以client_config中fetch_var的alias_name为准
            fetch_list: ["save_infer_model/scale_0.tmp_1"]

            #计算硬件ID,当devices为""或不写时为CPU预测;当devices为"0", "0,1,2"时为GPU预测,表示使用的GPU卡
            devices: "2"
            
            ir_optim: True
    rec:
        #并发数,is_thread_op=True时,为线程并发;否则为进程并发
        concurrency: 1

        #超时时间, 单位ms
        timeout: -1
 
        #Serving交互重试次数,默认不重试
        retry: 1

        #当op配置没有server_endpoints时,从local_service_conf读取本地服务配置
        local_service_conf:

            #client类型,包括brpc, grpc和local_predictor。local_predictor不启动Serving服务,进程内预测
            client_type: local_predictor

            #rec模型路径
            model_config: /paddle/serving/models/rec_serving_server/ #ocr_rec_model

            #Fetch结果列表,以client_config中fetch_var的alias_name为准
            fetch_list: ["save_infer_model/scale_0.tmp_1"] #["ctc_greedy_decoder_0.tmp_0", "softmax_0.tmp_0"] 

            #计算硬件ID,当devices为""或不写时为CPU预测;当devices为"0", "0,1,2"时为GPU预测,表示使用的GPU卡
            devices: "2"
            
            ir_optim: True