README.md 5.85 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
# OCR Pipeline WebService

(English|[简体中文](./README_CN.md))

This document will introduce how to use the [PaddleServing](https://github.com/PaddlePaddle/Serving/blob/develop/README_CN.md) to deploy the PPOCR dynamic graph model as a pipeline online service.

LDOUBLEV's avatar
LDOUBLEV committed
7
8
Compared with hubserving deployment, PaddleServing supports high concurrency and efficient communication between the client and the server.
The introduction and tutorial of Paddle Serving service deployment framework reference [document](https://aistudio.baidu.com/aistudio/projectdetail/1550674).
LDOUBLEV's avatar
LDOUBLEV committed
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45


## Contents
- Environmental preparation
- Model conversion
- Paddle Serving pipeline deployment
- FAQ

## Environmental preparation

Need to prepare PaddleOCR operating environment and Paddle Serving operating environment.

1. Prepare PaddleOCR operating environment reference [link](../../doc/doc_ch/installation.md)

2. Prepare the operating environment of PaddleServing, the steps are as follows

Install serving, used to start the service
```
pip3 install paddle-serving-server==0.5.0 # for CPU
pip3 install paddle-serving-server-gpu==0.5.0 # for GPU
# Other GPU environments need to confirm the environment and then choose to execute the following commands
pip3 install paddle-serving-server-gpu==0.5.0.post9 # GPU with CUDA9.0
pip3 install paddle-serving-server-gpu==0.5.0.post10 # GPU with CUDA10.0
pip3 install paddle-serving-server-gpu==0.5.0.post101 # GPU with CUDA10.1 + TensorRT6
pip3 install paddle-serving-server-gpu==0.5.0.post11 # GPU with CUDA10.1 + TensorRT7
```

2. Install the client to send requests to the service
```
pip3 install paddle-serving-client==0.5.0 # for CPU

pip3 install paddle-serving-client-gpu==0.5.0 # for GPU
```

3. Install serving-app
```
pip3 install paddle-serving-app==0.3.0
LDOUBLEV's avatar
LDOUBLEV committed
46
47
48
49
50
51
52
53
# fix local_predict to support load dynamic model
# find the install directoory of paddle_serving_app
vim /usr/local/lib/python3.7/site-packages/paddle_serving_app/local_predict.py
# replace line 85 of local_predict.py config = AnalysisConfig(model_path) with:
if os.path.exists(os.path.join(model_path, "__params__")):
    config = AnalysisConfig(os.path.join(model_path, "__model__"), os.path.join(model_path, "__params__"))
else:
    config = AnalysisConfig(model_path)
LDOUBLEV's avatar
LDOUBLEV committed
54
55
```

LDOUBLEV's avatar
LDOUBLEV committed
56

LDOUBLEV's avatar
LDOUBLEV committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
**note:** If you want to install the latest version of PaddleServing, refer to [link](https://github.com/PaddlePaddle/Serving/blob/develop/doc/LATEST_PACKAGES.md).


## Model conversion
When using PaddleServing for service deployment, you need to convert the saved inference model into a serving model that is easy to deploy.

First, download the [inference model] of PPOCR(https://github.com/PaddlePaddle/PaddleOCR#pp-ocr-20-series-model-listupdate-on-dec-15)
```
# Download and unzip the OCR text detection model
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar && tar xf ch_ppocr_server_v2.0_det_infer.tar
# Download and unzip the OCR text recognition model
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar && tar xf ch_ppocr_server_v2.0_rec_infer.tar

# Conversion detection model
python3 -m paddle_serving_client.convert --dirname ./ch_ppocr_server_v2.0_det_infer/ \
                                         --model_filename inference.pdmodel          \
                                         --params_filename inference.pdiparams       \
                                         --serving_server ./ppocr_det_server_2.0_serving/ \
                                         --serving_client ./ppocr_det_server_2.0_client/

# Conversion recognition model
python3 -m paddle_serving_client.convert --dirname ./ch_ppocr_server_v2.0_rec_infer/ \
                                         --model_filename inference.pdmodel          \
                                         --params_filename inference.pdiparams       \
                                         --serving_server ./ppocr_rec_server_2.0_serving/  \
                                         --serving_client ./ppocr_rec_server_2.0_client/

```

After the detection model is converted, there will be additional folders of `ppocr_det_server_2.0_serving` and `ppocr_det_server_2.0_client` in the current folder, with the following format:
```
|- ppocr_det_server_2.0_serving/
   |- __model__
   |- __params__
   |- serving_server_conf.prototxt
   |- serving_server_conf.stream.prototxt

|- ppocr_det_server_2.0_client
   |- serving_client_conf.prototxt
   |- serving_client_conf.stream.prototxt

```
The recognition model is the same.

## Paddle Serving pipeline deployment

1. Download the PaddleOCR code, if you have already downloaded it, you can skip this step.
```
git clone https://github.com/PaddlePaddle/PaddleOCR

# Enter the working directory  
cd PaddleOCR/deploy/pdserver/
```

The pdserver directory contains the code to start the pipeline service and send prediction requests, including:
```
__init__.py
config.yml # Start the service configuration file
ocr_reader.py # OCR model pre-processing and post-processing code implementation
pipeline_http_client.py # Script to send pipeline prediction request
web_service.py # Start the script of the pipeline server
```

2. Run the following command to start the service.
```
# Start the service and save the running log in log.txt
python3 web_service.py &>log.txt &
```
After the service is successfully started, a log similar to the following will be printed in log.txt
![](./imgs/start_server.png)


3. Send service request
```
python3 pipeline_http_client.py
```
After successfully running, the predicted result of the model will be printed in the cmd window. An example of the result is:
![](./imgs/results.png)  


## FAQ
** Q1**: No result return after sending the request
** A1**: Do not set the proxy when starting the service and sending the request. You can close the proxy before starting the service and before sending the request. The command to close the proxy is:
```
unset https_proxy
unset http_proxy
```