operators.py 14 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
"""
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import sys
import six
import cv2
import numpy as np


class DecodeImage(object):
    """ decode image """

    def __init__(self, img_mode='RGB', channel_first=False, **kwargs):
        self.img_mode = img_mode
        self.channel_first = channel_first

    def __call__(self, data):
        img = data['image']
        if six.PY2:
            assert type(img) is str and len(
                img) > 0, "invalid input 'img' in DecodeImage"
        else:
            assert type(img) is bytes and len(
                img) > 0, "invalid input 'img' in DecodeImage"
        img = np.frombuffer(img, dtype='uint8')
        img = cv2.imdecode(img, 1)
LDOUBLEV's avatar
LDOUBLEV committed
45
46
        if img is None:
            return None
WenmuZhou's avatar
WenmuZhou committed
47
48
49
50
51
52
53
54
55
56
57
58
59
        if self.img_mode == 'GRAY':
            img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
        elif self.img_mode == 'RGB':
            assert img.shape[2] == 3, 'invalid shape of image[%s]' % (img.shape)
            img = img[:, :, ::-1]

        if self.channel_first:
            img = img.transpose((2, 0, 1))

        data['image'] = img
        return data


Topdu's avatar
Topdu committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
class NRTRDecodeImage(object):
    """ decode image """

    def __init__(self, img_mode='RGB', channel_first=False, **kwargs):
        self.img_mode = img_mode
        self.channel_first = channel_first

    def __call__(self, data):
        img = data['image']
        if six.PY2:
            assert type(img) is str and len(
                img) > 0, "invalid input 'img' in DecodeImage"
        else:
            assert type(img) is bytes and len(
                img) > 0, "invalid input 'img' in DecodeImage"
        img = np.frombuffer(img, dtype='uint8')

        img = cv2.imdecode(img, 1)

        if img is None:
            return None
        if self.img_mode == 'GRAY':
            img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
        elif self.img_mode == 'RGB':
            assert img.shape[2] == 3, 'invalid shape of image[%s]' % (img.shape)
            img = img[:, :, ::-1]
tink2123's avatar
tink2123 committed
86
        img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
Topdu's avatar
Topdu committed
87
88
89
90
91
        if self.channel_first:
            img = img.transpose((2, 0, 1))
        data['image'] = img
        return data

tink2123's avatar
tink2123 committed
92

WenmuZhou's avatar
WenmuZhou committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
class NormalizeImage(object):
    """ normalize image such as substract mean, divide std
    """

    def __init__(self, scale=None, mean=None, std=None, order='chw', **kwargs):
        if isinstance(scale, str):
            scale = eval(scale)
        self.scale = np.float32(scale if scale is not None else 1.0 / 255.0)
        mean = mean if mean is not None else [0.485, 0.456, 0.406]
        std = std if std is not None else [0.229, 0.224, 0.225]

        shape = (3, 1, 1) if order == 'chw' else (1, 1, 3)
        self.mean = np.array(mean).reshape(shape).astype('float32')
        self.std = np.array(std).reshape(shape).astype('float32')

    def __call__(self, data):
        img = data['image']
        from PIL import Image
        if isinstance(img, Image.Image):
            img = np.array(img)
        assert isinstance(img,
                          np.ndarray), "invalid input 'img' in NormalizeImage"
        data['image'] = (
            img.astype('float32') * self.scale - self.mean) / self.std
        return data


class ToCHWImage(object):
    """ convert hwc image to chw image
    """

    def __init__(self, **kwargs):
        pass

    def __call__(self, data):
        img = data['image']
        from PIL import Image
        if isinstance(img, Image.Image):
            img = np.array(img)
        data['image'] = img.transpose((2, 0, 1))
        return data


tink2123's avatar
tink2123 committed
136
137
class Fasttext(object):
    def __init__(self, path="None", **kwargs):
tink2123's avatar
tink2123 committed
138
        import fasttext
tink2123's avatar
tink2123 committed
139
140
141
142
143
144
145
146
147
        self.fast_model = fasttext.load_model(path)

    def __call__(self, data):
        label = data['label']
        fast_label = self.fast_model[label]
        data['fast_label'] = fast_label
        return data


dyning's avatar
dyning committed
148
class KeepKeys(object):
WenmuZhou's avatar
WenmuZhou committed
149
150
151
152
153
154
155
156
157
158
    def __init__(self, keep_keys, **kwargs):
        self.keep_keys = keep_keys

    def __call__(self, data):
        data_list = []
        for key in self.keep_keys:
            data_list.append(data[key])
        return data_list


LDOUBLEV's avatar
LDOUBLEV committed
159
160
161
162
163
164
165
166
167
168
169
170
171
172
class Resize(object):
    def __init__(self, size=(640, 640), **kwargs):
        self.size = size

    def resize_image(self, img):
        resize_h, resize_w = self.size
        ori_h, ori_w = img.shape[:2]  # (h, w, c)
        ratio_h = float(resize_h) / ori_h
        ratio_w = float(resize_w) / ori_w
        img = cv2.resize(img, (int(resize_w), int(resize_h)))
        return img, [ratio_h, ratio_w]

    def __call__(self, data):
        img = data['image']
173
174
        if 'polys' in data:
            text_polys = data['polys']
LDOUBLEV's avatar
LDOUBLEV committed
175
176

        img_resize, [ratio_h, ratio_w] = self.resize_image(img)
177
178
179
180
181
182
183
184
        if 'polys' in data:
            new_boxes = []
            for box in text_polys:
                new_box = []
                for cord in box:
                    new_box.append([cord[0] * ratio_w, cord[1] * ratio_h])
                new_boxes.append(new_box)
            data['polys'] = np.array(new_boxes, dtype=np.float32)
LDOUBLEV's avatar
LDOUBLEV committed
185
186
187
188
        data['image'] = img_resize
        return data


WenmuZhou's avatar
WenmuZhou committed
189
190
191
192
193
194
195
class DetResizeForTest(object):
    def __init__(self, **kwargs):
        super(DetResizeForTest, self).__init__()
        self.resize_type = 0
        if 'image_shape' in kwargs:
            self.image_shape = kwargs['image_shape']
            self.resize_type = 1
zhoujun's avatar
zhoujun committed
196
        elif 'limit_side_len' in kwargs:
WenmuZhou's avatar
WenmuZhou committed
197
198
            self.limit_side_len = kwargs['limit_side_len']
            self.limit_type = kwargs.get('limit_type', 'min')
zhoujun's avatar
zhoujun committed
199
        elif 'resize_long' in kwargs:
MissPenguin's avatar
MissPenguin committed
200
201
            self.resize_type = 2
            self.resize_long = kwargs.get('resize_long', 960)
WenmuZhou's avatar
WenmuZhou committed
202
203
204
205
206
207
        else:
            self.limit_side_len = 736
            self.limit_type = 'min'

    def __call__(self, data):
        img = data['image']
MissPenguin's avatar
MissPenguin committed
208
        src_h, src_w, _ = img.shape
WenmuZhou's avatar
WenmuZhou committed
209
210

        if self.resize_type == 0:
MissPenguin's avatar
MissPenguin committed
211
212
213
214
            # img, shape = self.resize_image_type0(img)
            img, [ratio_h, ratio_w] = self.resize_image_type0(img)
        elif self.resize_type == 2:
            img, [ratio_h, ratio_w] = self.resize_image_type2(img)
WenmuZhou's avatar
WenmuZhou committed
215
        else:
MissPenguin's avatar
MissPenguin committed
216
217
            # img, shape = self.resize_image_type1(img)
            img, [ratio_h, ratio_w] = self.resize_image_type1(img)
WenmuZhou's avatar
WenmuZhou committed
218
        data['image'] = img
MissPenguin's avatar
MissPenguin committed
219
        data['shape'] = np.array([src_h, src_w, ratio_h, ratio_w])
WenmuZhou's avatar
WenmuZhou committed
220
221
222
223
224
        return data

    def resize_image_type1(self, img):
        resize_h, resize_w = self.image_shape
        ori_h, ori_w = img.shape[:2]  # (h, w, c)
MissPenguin's avatar
MissPenguin committed
225
226
        ratio_h = float(resize_h) / ori_h
        ratio_w = float(resize_w) / ori_w
WenmuZhou's avatar
WenmuZhou committed
227
        img = cv2.resize(img, (int(resize_w), int(resize_h)))
MissPenguin's avatar
MissPenguin committed
228
229
        # return img, np.array([ori_h, ori_w])
        return img, [ratio_h, ratio_w]
WenmuZhou's avatar
WenmuZhou committed
230
231
232
233
234
235
236
237
238
239

    def resize_image_type0(self, img):
        """
        resize image to a size multiple of 32 which is required by the network
        args:
            img(array): array with shape [h, w, c]
        return(tuple):
            img, (ratio_h, ratio_w)
        """
        limit_side_len = self.limit_side_len
WenmuZhou's avatar
WenmuZhou committed
240
        h, w, c = img.shape
WenmuZhou's avatar
WenmuZhou committed
241
242
243
244
245
246
247
248
249
250

        # limit the max side
        if self.limit_type == 'max':
            if max(h, w) > limit_side_len:
                if h > w:
                    ratio = float(limit_side_len) / h
                else:
                    ratio = float(limit_side_len) / w
            else:
                ratio = 1.
WenmuZhou's avatar
WenmuZhou committed
251
        elif self.limit_type == 'min':
WenmuZhou's avatar
WenmuZhou committed
252
253
254
255
256
257
258
            if min(h, w) < limit_side_len:
                if h < w:
                    ratio = float(limit_side_len) / h
                else:
                    ratio = float(limit_side_len) / w
            else:
                ratio = 1.
WenmuZhou's avatar
WenmuZhou committed
259
        elif self.limit_type == 'resize_long':
LDOUBLEV's avatar
LDOUBLEV committed
260
            ratio = float(limit_side_len) / max(h, w)
WenmuZhou's avatar
WenmuZhou committed
261
262
        else:
            raise Exception('not support limit type, image ')
WenmuZhou's avatar
WenmuZhou committed
263
264
265
        resize_h = int(h * ratio)
        resize_w = int(w * ratio)

zhoujun's avatar
zhoujun committed
266
267
        resize_h = max(int(round(resize_h / 32) * 32), 32)
        resize_w = max(int(round(resize_w / 32) * 32), 32)
WenmuZhou's avatar
WenmuZhou committed
268
269
270
271
272
273
274
275

        try:
            if int(resize_w) <= 0 or int(resize_h) <= 0:
                return None, (None, None)
            img = cv2.resize(img, (int(resize_w), int(resize_h)))
        except:
            print(img.shape, resize_w, resize_h)
            sys.exit(0)
MissPenguin's avatar
MissPenguin committed
276
277
278
        ratio_h = resize_h / float(h)
        ratio_w = resize_w / float(w)
        return img, [ratio_h, ratio_w]
LDOUBLEV's avatar
LDOUBLEV committed
279

MissPenguin's avatar
MissPenguin committed
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
    def resize_image_type2(self, img):
        h, w, _ = img.shape

        resize_w = w
        resize_h = h

        if resize_h > resize_w:
            ratio = float(self.resize_long) / resize_h
        else:
            ratio = float(self.resize_long) / resize_w

        resize_h = int(resize_h * ratio)
        resize_w = int(resize_w * ratio)

        max_stride = 128
        resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
        resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
        img = cv2.resize(img, (int(resize_w), int(resize_h)))
        ratio_h = resize_h / float(h)
        ratio_w = resize_w / float(w)

        return img, [ratio_h, ratio_w]
Jethong's avatar
Jethong committed
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324


class E2EResizeForTest(object):
    def __init__(self, **kwargs):
        super(E2EResizeForTest, self).__init__()
        self.max_side_len = kwargs['max_side_len']
        self.valid_set = kwargs['valid_set']

    def __call__(self, data):
        img = data['image']
        src_h, src_w, _ = img.shape
        if self.valid_set == 'totaltext':
            im_resized, [ratio_h, ratio_w] = self.resize_image_for_totaltext(
                img, max_side_len=self.max_side_len)
        else:
            im_resized, (ratio_h, ratio_w) = self.resize_image(
                img, max_side_len=self.max_side_len)
        data['image'] = im_resized
        data['shape'] = np.array([src_h, src_w, ratio_h, ratio_w])
        return data

    def resize_image_for_totaltext(self, im, max_side_len=512):

325
        h, w, _ = im.shape
Jethong's avatar
Jethong committed
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
        resize_w = w
        resize_h = h
        ratio = 1.25
        if h * ratio > max_side_len:
            ratio = float(max_side_len) / resize_h
        resize_h = int(resize_h * ratio)
        resize_w = int(resize_w * ratio)

        max_stride = 128
        resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
        resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
        im = cv2.resize(im, (int(resize_w), int(resize_h)))
        ratio_h = resize_h / float(h)
        ratio_w = resize_w / float(w)
        return im, (ratio_h, ratio_w)

    def resize_image(self, im, max_side_len=512):
        """
        resize image to a size multiple of max_stride which is required by the network
        :param im: the resized image
        :param max_side_len: limit of max image size to avoid out of memory in gpu
        :return: the resized image and the resize ratio
        """
        h, w, _ = im.shape

        resize_w = w
        resize_h = h

        # Fix the longer side
        if resize_h > resize_w:
            ratio = float(max_side_len) / resize_h
        else:
            ratio = float(max_side_len) / resize_w

        resize_h = int(resize_h * ratio)
        resize_w = int(resize_w * ratio)

        max_stride = 128
        resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
        resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
        im = cv2.resize(im, (int(resize_w), int(resize_h)))
        ratio_h = resize_h / float(h)
        ratio_w = resize_w / float(w)

        return im, (ratio_h, ratio_w)
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
371
372
373
374
375
376
377
378
379
380
381
382


class KieResize(object):
    def __init__(self, **kwargs):
        super(KieResize, self).__init__()
        self.max_side, self.min_side = kwargs['img_scale'][0], kwargs[
            'img_scale'][1]

    def __call__(self, data):
        img = data['image']
        points = data['points']
        src_h, src_w, _ = img.shape
LDOUBLEV's avatar
debug  
LDOUBLEV committed
383
384
        im_resized, scale_factor, [ratio_h, ratio_w
                                   ], [new_h, new_w] = self.resize_image(img)
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
385
386
387
388
389
        resize_points = self.resize_boxes(img, points, scale_factor)
        data['ori_image'] = img
        data['ori_boxes'] = points
        data['points'] = resize_points
        data['image'] = im_resized
LDOUBLEV's avatar
debug  
LDOUBLEV committed
390
        data['shape'] = np.array([new_h, new_w])
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
391
392
393
        return data

    def resize_image(self, img):
LDOUBLEV's avatar
debug  
LDOUBLEV committed
394
        norm_img = np.zeros([1024, 1024, 3], dtype='float32')
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
395
396
397
398
399
400
        scale = [512, 1024]
        h, w = img.shape[:2]
        max_long_edge = max(scale)
        max_short_edge = min(scale)
        scale_factor = min(max_long_edge / max(h, w),
                           max_short_edge / min(h, w))
LDOUBLEV's avatar
debug  
LDOUBLEV committed
401
402
403
404
405
406
        resize_w, resize_h = int(w * float(scale_factor) + 0.5), int(h * float(
            scale_factor) + 0.5)
        max_stride = 32
        resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
        resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
        im = cv2.resize(img, (resize_w, resize_h))
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
407
408
409
410
411
412
        new_h, new_w = im.shape[:2]
        w_scale = new_w / w
        h_scale = new_h / h
        scale_factor = np.array(
            [w_scale, h_scale, w_scale, h_scale], dtype=np.float32)
        norm_img[:new_h, :new_w, :] = im
LDOUBLEV's avatar
debug  
LDOUBLEV committed
413
        return norm_img, scale_factor, [h_scale, w_scale], [new_h, new_w]
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
414
415
416
417
418
419
420

    def resize_boxes(self, im, points, scale_factor):
        points = points * scale_factor
        img_shape = im.shape[:2]
        points[:, 0::2] = np.clip(points[:, 0::2], 0, img_shape[1])
        points[:, 1::2] = np.clip(points[:, 1::2], 0, img_shape[0])
        return points