export_model.py 5.37 KB
Newer Older
baiyfbupt's avatar
baiyfbupt committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..', '..', '..')))
sys.path.append(
    os.path.abspath(os.path.join(__dir__, '..', '..', '..', 'tools')))

import argparse

import paddle
from paddle.jit import to_static

from ppocr.modeling.architectures import build_model
from ppocr.postprocess import build_post_process
31
from ppocr.utils.save_load import load_model
baiyfbupt's avatar
baiyfbupt committed
32
33
34
35
36
37
38
39
from ppocr.utils.logging import get_logger
from tools.program import load_config, merge_config, ArgsParser
from ppocr.metrics import build_metric
import tools.program as program
from paddleslim.dygraph.quant import QAT
from ppocr.data import build_dataloader


40
41
42
43
44
45
46
47
48
49
50
def export_single_model(quanter, model, infer_shape, save_path, logger):
    quanter.save_quantized_model(
        model,
        save_path,
        input_spec=[
            paddle.static.InputSpec(
                shape=[None] + infer_shape, dtype='float32')
        ])
    logger.info('inference QAT model is saved to {}'.format(save_path))


baiyfbupt's avatar
baiyfbupt committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
def main():
    ############################################################################################################
    # 1. quantization configs
    ############################################################################################################
    quant_config = {
        # weight preprocess type, default is None and no preprocessing is performed. 
        'weight_preprocess_type': None,
        # activation preprocess type, default is None and no preprocessing is performed.
        'activation_preprocess_type': None,
        # weight quantize type, default is 'channel_wise_abs_max'
        'weight_quantize_type': 'channel_wise_abs_max',
        # activation quantize type, default is 'moving_average_abs_max'
        'activation_quantize_type': 'moving_average_abs_max',
        # weight quantize bit num, default is 8
        'weight_bits': 8,
        # activation quantize bit num, default is 8
        'activation_bits': 8,
        # data type after quantization, such as 'uint8', 'int8', etc. default is 'int8'
        'dtype': 'int8',
        # window size for 'range_abs_max' quantization. default is 10000
        'window_size': 10000,
        # The decay coefficient of moving average, default is 0.9
        'moving_rate': 0.9,
        # for dygraph quantization, layers of type in quantizable_layer_type will be quantized
        'quantizable_layer_type': ['Conv2D', 'Linear'],
    }
    FLAGS = ArgsParser().parse_args()
    config = load_config(FLAGS.config)
WenmuZhou's avatar
WenmuZhou committed
79
    config = merge_config(config, FLAGS.opt)
baiyfbupt's avatar
baiyfbupt committed
80
81
82
83
84
85
86
87
88
89
    logger = get_logger()
    # build post process

    post_process_class = build_post_process(config['PostProcess'],
                                            config['Global'])

    # build model
    # for rec algorithm
    if hasattr(post_process_class, 'character'):
        char_num = len(getattr(post_process_class, 'character'))
90
91
92
93
94
95
96
97
        if config['Architecture']["algorithm"] in ["Distillation",
                                                   ]:  # distillation model
            for key in config['Architecture']["Models"]:
                config['Architecture']["Models"][key]["Head"][
                    'out_channels'] = char_num
        else:  # base rec model
            config['Architecture']["Head"]['out_channels'] = char_num

baiyfbupt's avatar
baiyfbupt committed
98
99
100
101
102
103
    model = build_model(config['Architecture'])

    # get QAT model
    quanter = QAT(config=quant_config)
    quanter.quantize(model)

104
    load_model(config, model)
baiyfbupt's avatar
baiyfbupt committed
105
106
107
108
109
110
111
112
    model.eval()

    # build metric
    eval_class = build_metric(config['Metric'])

    # build dataloader
    valid_dataloader = build_dataloader(config, 'Eval', device, logger)

LDOUBLEV's avatar
LDOUBLEV committed
113
    use_srn = config['Architecture']['algorithm'] == "SRN"
andyjpaddle's avatar
andyjpaddle committed
114
    model_type = config['Architecture'].get('model_type', None)
baiyfbupt's avatar
baiyfbupt committed
115
    # start eval
LDOUBLEV's avatar
LDOUBLEV committed
116
    metric = program.eval(model, valid_dataloader, post_process_class,
LDOUBLEV's avatar
LDOUBLEV committed
117
                          eval_class, model_type, use_srn)
Double_V's avatar
Double_V committed
118

baiyfbupt's avatar
baiyfbupt committed
119
    logger.info('metric eval ***************')
120
    for k, v in metric.items():
baiyfbupt's avatar
baiyfbupt committed
121
122
        logger.info('{}:{}'.format(k, v))

andyjpaddle's avatar
andyjpaddle committed
123
    infer_shape = [3, 32, 100] if model_type == "rec" else [3, 640, 640]
baiyfbupt's avatar
baiyfbupt committed
124

125
126
127
128
129
130
131
132
133
134
135
    save_path = config["Global"]["save_inference_dir"]

    arch_config = config["Architecture"]
    if arch_config["algorithm"] in ["Distillation", ]:  # distillation model
        for idx, name in enumerate(model.model_name_list):
            sub_model_save_path = os.path.join(save_path, name, "inference")
            export_single_model(quanter, model.model_list[idx], infer_shape,
                                sub_model_save_path, logger)
    else:
        save_path = os.path.join(save_path, "inference")
        export_single_model(quanter, model, infer_shape, save_path, logger)
baiyfbupt's avatar
baiyfbupt committed
136
137
138
139
140


if __name__ == "__main__":
    config, device, logger, vdl_writer = program.preprocess()
    main()