rec_mv3_tps_bilstm_attn.yml 1.1 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
Global:
  algorithm: RARE
tink2123's avatar
tink2123 committed
3
  use_gpu: true
LDOUBLEV's avatar
LDOUBLEV committed
4
5
6
  epoch_num: 72
  log_smooth_window: 20
  print_batch_step: 10
LDOUBLEV's avatar
LDOUBLEV committed
7
  save_model_dir: output/rec_RARE
LDOUBLEV's avatar
LDOUBLEV committed
8
9
  save_epoch_step: 3
  eval_batch_step: 2000
tink2123's avatar
tink2123 committed
10
11
  train_batch_size_per_card: 256
  test_batch_size_per_card: 256
LDOUBLEV's avatar
LDOUBLEV committed
12
13
  image_shape: [3, 32, 100]
  max_text_length: 25
tink2123's avatar
tink2123 committed
14
  character_type: en
LDOUBLEV's avatar
LDOUBLEV committed
15
  loss_type: attention
tink2123's avatar
tink2123 committed
16
  tps: true
LDOUBLEV's avatar
LDOUBLEV committed
17
  reader_yml: ./configs/rec/rec_benchmark_reader.yml
18
19
20
  pretrain_weights:
  checkpoints:
  save_inference_dir:
tink2123's avatar
tink2123 committed
21
22
23
  infer_img:


LDOUBLEV's avatar
LDOUBLEV committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
Architecture:
  function: ppocr.modeling.architectures.rec_model,RecModel

TPS:
  function: ppocr.modeling.stns.tps,TPS
  num_fiducial: 20
  loc_lr: 0.1
  model_name: small
  
Backbone:
  function: ppocr.modeling.backbones.rec_mobilenet_v3,MobileNetV3
  scale: 0.5
  model_name: large
 
Head:
  function: ppocr.modeling.heads.rec_attention_head,AttentionPredict
  encoder_type: rnn
  SeqRNN:
    hidden_size: 96
  Attention:
    decoder_size: 96
    word_vector_dim: 96
  
Loss:
  function: ppocr.modeling.losses.rec_attention_loss,AttentionLoss
  
Optimizer:
  function: ppocr.optimizer,AdamDecay
  base_lr: 0.001
  beta1: 0.9
  beta2: 0.999