rec_icdar15_train.yml 2.15 KB
Newer Older
tink2123's avatar
tink2123 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
Global:
  use_gpu: true
  epoch_num: 72
  log_smooth_window: 20
  print_batch_step: 10
  save_model_dir: ./output/rec/ic15/
  save_epoch_step: 3
  # evaluation is run every 2000 iterations
  eval_batch_step: [0, 2000]
  # if pretrained_model is saved in static mode, load_static_weights must set to True
  cal_metric_during_train: True
  pretrained_model:
  checkpoints:
  save_inference_dir:
  use_visualdl: False
  infer_img: doc/imgs_words_en/word_10.png
  # for data or label process
  character_dict_path: ppocr/utils/ic15_dict.txt
  character_type: ch
  max_text_length: 25
  infer_mode: False
  use_space_char: False

Optimizer:
  name: Adam
  beta1: 0.9
  beta2: 0.999
  lr:
    learning_rate: 0.0005
  regularizer:
    name: 'L2'
    factor: 0

Architecture:
  model_type: rec
  algorithm: CRNN
  Transform:
  Backbone:
tink2123's avatar
tink2123 committed
39
40
41
    name: MobileNetV3
    scale: 0.5
    model_name: large
tink2123's avatar
tink2123 committed
42
43
44
  Neck:
    name: SequenceEncoder
    encoder_type: rnn
tink2123's avatar
tink2123 committed
45
    hidden_size: 96
tink2123's avatar
tink2123 committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
  Head:
    name: CTCHead
    fc_decay: 0

Loss:
  name: CTCLoss

PostProcess:
  name: CTCLabelDecode

Metric:
  name: RecMetric
  main_indicator: acc

Train:
  dataset:
    name: SimpleDataSet
    data_dir: ./train_data/
    label_file_list: ["./train_data/train_list.txt"]
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - CTCLabelEncode: # Class handling label
      - RecResizeImg:
          image_shape: [3, 32, 100]
      - KeepKeys:
          keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
  loader:
    shuffle: True
    batch_size_per_card: 256
    drop_last: True
    num_workers: 8

Eval:
  dataset:
    name: SimpleDataSet
    data_dir: ./train_data/
    label_file_list: ["./train_data/train_list.txt"]
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - CTCLabelEncode: # Class handling label
      - RecResizeImg:
          image_shape: [3, 32, 100]
      - KeepKeys:
          keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
  loader:
    shuffle: False
    drop_last: False
    batch_size_per_card: 256
    num_workers: 4