quickstart_en.md 8 KB
Newer Older
MissPenguin's avatar
MissPenguin committed
1
2
# PaddleOCR Quick Start

MissPenguin's avatar
MissPenguin committed
3
**Note:** This tutorial mainly introduces the usage of PP-OCR series models, please refer to [PP-Structure Quick Start](../../ppstructure/docs/quickstart_en.md) for the quick use of document analysis related functions.
MissPenguin's avatar
MissPenguin committed
4
5

- [1. Installation](#1-installation)
WenmuZhou's avatar
WenmuZhou committed
6
7
    - [1.1 Install PaddlePaddle](#11-install-paddlepaddle)
    - [1.2 Install PaddleOCR Whl Package](#12-install-paddleocr-whl-package)
MissPenguin's avatar
MissPenguin committed
8
- [2. Easy-to-Use](#2-easy-to-use)
WenmuZhou's avatar
WenmuZhou committed
9
10
11
12
13
    - [2.1 Use by Command Line](#21-use-by-command-line)
      - [2.1.1 Chinese and English Model](#211-chinese-and-english-model)
      - [2.1.2 Multi-language Model](#212-multi-language-model)
    - [2.2 Use by Code](#22-use-by-code)
      - [2.2.1 Chinese & English Model and Multilingual Model](#221-chinese--english-model-and-multilingual-model)
MissPenguin's avatar
MissPenguin committed
14
- [3. Summary](#3-summary)
littletomatodonkey's avatar
littletomatodonkey committed
15
16
17



Leif's avatar
Leif committed
18
<a name="1nstallation"></a>
littletomatodonkey's avatar
littletomatodonkey committed
19

Leif's avatar
Leif committed
20
## 1. Installation
littletomatodonkey's avatar
littletomatodonkey committed
21

Leif's avatar
Leif committed
22
<a name="11-install-paddlepaddle"></a>
WenmuZhou's avatar
WenmuZhou committed
23

Leif's avatar
Leif committed
24
25
26
### 1.1 Install PaddlePaddle

> If you do not have a Python environment, please refer to [Environment Preparation](./environment_en.md).
littletomatodonkey's avatar
littletomatodonkey committed
27

Leif's avatar
Leif committed
28
- If you have CUDA 9 or CUDA 10 installed on your machine, please run the following command to install
littletomatodonkey's avatar
littletomatodonkey committed
29

Leif's avatar
Leif committed
30
31
32
33
34
35
36
37
38
  ```bash
  python3 -m pip install paddlepaddle-gpu -i https://mirror.baidu.com/pypi/simple
  ```

- If you have no available GPU on your machine, please run the following command to install the CPU version

  ```bash
  python3 -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
  ```
littletomatodonkey's avatar
littletomatodonkey committed
39

Leif's avatar
Leif committed
40
For more software version requirements, please refer to the instructions in [Installation Document](https://www.paddlepaddle.org.cn/install/quick) for operation.
WenmuZhou's avatar
WenmuZhou committed
41

Leif's avatar
Leif committed
42
43
44
<a name="12-install-paddleocr-whl-package"></a>

### 1.2 Install PaddleOCR Whl Package
Leif's avatar
Leif committed
45
46
47

```bash
pip install "paddleocr>=2.0.1" # Recommend to use version 2.0.1+
littletomatodonkey's avatar
littletomatodonkey committed
48
49
```

Leif's avatar
Leif committed
50
- **For windows users:** If you getting this error `OSError: [WinError 126] The specified module could not be found` when you install shapely on windows. Please try to download Shapely whl file [here](http://www.lfd.uci.edu/~gohlke/pythonlibs/#shapely).
Leif's avatar
Leif committed
51

Leif's avatar
Leif committed
52
  Reference: [Solve shapely installation on windows](https://stackoverflow.com/questions/44398265/install-shapely-oserror-winerror-126-the-specified-module-could-not-be-found)
Leif's avatar
Leif committed
53

Leif's avatar
Leif committed
54
- **For layout analysis users**, run the following command to install **Layout-Parser**
littletomatodonkey's avatar
littletomatodonkey committed
55

Leif's avatar
Leif committed
56
57
58
59
60
61
62
63
64
65
  ```bash
  pip3 install -U https://paddleocr.bj.bcebos.com/whl/layoutparser-0.0.0-py3-none-any.whl
  ```

<a name="2-easy-to-use"></a>

## 2. Easy-to-Use

<a name="21-use-by-command-line"></a>

66
### 2.1 Use by Command Line
Leif's avatar
Leif committed
67

Leif's avatar
Leif committed
68
PaddleOCR provides a series of test images, click [here](https://paddleocr.bj.bcebos.com/dygraph_v2.1/ppocr_img.zip) to download, and then switch to the corresponding directory in the terminal
Leif's avatar
Leif committed
69
70

```bash
Leif's avatar
Leif committed
71
cd /path/to/ppocr_img
littletomatodonkey's avatar
littletomatodonkey committed
72
```
Leif's avatar
Leif committed
73

Leif's avatar
Leif committed
74
If you do not use the provided test image, you can replace the following `--image_dir` parameter with the corresponding test image path
Leif's avatar
Leif committed
75

Leif's avatar
Leif committed
76
<a name="211-english-and-chinese-model"></a>
Leif's avatar
Leif committed
77

Leif's avatar
Leif committed
78
#### 2.1.1 Chinese and English Model
Leif's avatar
Leif committed
79

80
* Detection, direction classification and recognition: set the parameter`--use_gpu false` to disable the gpu device
Leif's avatar
Leif committed
81

Leif's avatar
Leif committed
82
  ```bash
andyjpaddle's avatar
andyjpaddle committed
83
  paddleocr --image_dir ./imgs_en/img_12.jpg --use_angle_cls true --lang en --use_gpu false
Leif's avatar
Leif committed
84
  ```
littletomatodonkey's avatar
littletomatodonkey committed
85

Leif's avatar
Leif committed
86
  Output will be a list, each item contains bounding box, text and recognition confidence
littletomatodonkey's avatar
littletomatodonkey committed
87

Leif's avatar
Leif committed
88
  ```bash
89
90
91
  [[[441.0, 174.0], [1166.0, 176.0], [1165.0, 222.0], [441.0, 221.0]], ('ACKNOWLEDGEMENTS', 0.9971134662628174)]
  [[[403.0, 346.0], [1204.0, 348.0], [1204.0, 384.0], [402.0, 383.0]], ('We would like to thank all the designers and', 0.9761400818824768)]
  [[[403.0, 396.0], [1204.0, 398.0], [1204.0, 434.0], [402.0, 433.0]], ('contributors who have been involved in the', 0.9791957139968872)]
Leif's avatar
Leif committed
92
93
94
95
96
97
98
99
  ......
  ```

* Only detection: set `--rec` to `false`

  ```bash
  paddleocr --image_dir ./imgs_en/img_12.jpg --rec false
  ```
Leif's avatar
Leif committed
100

Leif's avatar
Leif committed
101
102
103
  Output will be a list, each item only contains bounding box

  ```bash
104
105
106
  [[397.0, 802.0], [1092.0, 802.0], [1092.0, 841.0], [397.0, 841.0]]
  [[397.0, 750.0], [1211.0, 750.0], [1211.0, 789.0], [397.0, 789.0]]
  [[397.0, 702.0], [1209.0, 698.0], [1209.0, 734.0], [397.0, 738.0]]
Leif's avatar
Leif committed
107
108
109
110
111
112
  ......
  ```

* Only recognition: set `--det` to `false`

  ```bash
andyjpaddle's avatar
andyjpaddle committed
113
  paddleocr --image_dir ./imgs_words_en/word_10.png --det false --lang en
Leif's avatar
Leif committed
114
115
116
117
118
  ```

  Output will be a list, each item contains text and recognition confidence

  ```bash
119
  ['PAIN', 0.9934559464454651]
Leif's avatar
Leif committed
120
121
  ```

andyjpaddle's avatar
andyjpaddle committed
122
If you need to use the 2.0 model, please specify the parameter `--ocr_version PP-OCR`, paddleocr uses the PP-OCRv3 model by default(`--ocr_version PP-OCRv3`). More whl package usage can be found in [whl package](./whl_en.md)
Leif's avatar
Leif committed
123
<a name="212-multi-language-model"></a>
Leif's avatar
Leif committed
124
125
126

#### 2.1.2 Multi-language Model

andyjpaddle's avatar
andyjpaddle committed
127
PaddleOCR currently supports 80 languages, which can be switched by modifying the `--lang` parameter.
Leif's avatar
Leif committed
128
129

``` bash
andyjpaddle's avatar
andyjpaddle committed
130
paddleocr --image_dir ./doc/imgs_en/254.jpg --lang=en
littletomatodonkey's avatar
littletomatodonkey committed
131
132
```

Leif's avatar
Leif committed
133
134
135
136
137
138
139
<div align="center">
    <img src="../imgs_en/254.jpg" width="300" height="600">
    <img src="../imgs_results/multi_lang/img_02.jpg" width="600" height="600">
</div>
The result is a list, each item contains a text box, text and recognition confidence

```text
140
141
142
[[[67.0, 51.0], [327.0, 46.0], [327.0, 74.0], [68.0, 80.0]], ('PHOCAPITAL', 0.9944712519645691)]
[[[72.0, 92.0], [453.0, 84.0], [454.0, 114.0], [73.0, 122.0]], ('107 State Street', 0.9744491577148438)]
[[[69.0, 135.0], [501.0, 125.0], [501.0, 156.0], [70.0, 165.0]], ('Montpelier Vermont', 0.9357033967971802)]
Leif's avatar
Leif committed
143
144
......
```
littletomatodonkey's avatar
littletomatodonkey committed
145

Leif's avatar
Leif committed
146
Commonly used multilingual abbreviations include
littletomatodonkey's avatar
littletomatodonkey committed
147

Leif's avatar
Leif committed
148
149
150
151
152
| Language            | Abbreviation |      | Language | Abbreviation |      | Language | Abbreviation |
| ------------------- | ------------ | ---- | -------- | ------------ | ---- | -------- | ------------ |
| Chinese & English   | ch           |      | French   | fr           |      | Japanese | japan        |
| English             | en           |      | German   | german       |      | Korean   | korean       |
| Chinese Traditional | chinese_cht  |      | Italian  | it           |      | Russian  | ru           |
littletomatodonkey's avatar
littletomatodonkey committed
153

Leif's avatar
Leif committed
154
A list of all languages and their corresponding abbreviations can be found in [Multi-Language Model Tutorial](./multi_languages_en.md)
littletomatodonkey's avatar
littletomatodonkey committed
155

Leif's avatar
Leif committed
156

Leif's avatar
Leif committed
157
<a name="22-use-by-code"></a>
Leif's avatar
Leif committed
158

Leif's avatar
Leif committed
159
160
### 2.2 Use by Code
<a name="221-chinese---english-model-and-multilingual-model"></a>
Leif's avatar
Leif committed
161

Leif's avatar
Leif committed
162
#### 2.2.1 Chinese & English Model and Multilingual Model
Leif's avatar
Leif committed
163

Leif's avatar
Leif committed
164
* detection, angle classification and recognition:
Leif's avatar
Leif committed
165

Leif's avatar
Leif committed
166
167
168
169
170
171
172
```python
from paddleocr import PaddleOCR,draw_ocr
# Paddleocr supports Chinese, English, French, German, Korean and Japanese.
# You can set the parameter `lang` as `ch`, `en`, `fr`, `german`, `korean`, `japan`
# to switch the language model in order.
ocr = PaddleOCR(use_angle_cls=True, lang='en') # need to run only once to download and load model into memory
img_path = './imgs_en/img_12.jpg'
Leif's avatar
Leif committed
173
174
175
176
177
result = ocr.ocr(img_path, cls=True)
for line in result:
    print(line)


Leif's avatar
Leif committed
178
179
# draw result
from PIL import Image
Leif's avatar
Leif committed
180
181
182
183
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
Leif's avatar
Leif committed
184
im_show = draw_ocr(image, boxes, txts, scores, font_path='./fonts/simfang.ttf')
Leif's avatar
Leif committed
185
186
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
littletomatodonkey's avatar
littletomatodonkey committed
187
```
Leif's avatar
Leif committed
188

Leif's avatar
Leif committed
189
Output will be a list, each item contains bounding box, text and recognition confidence
Leif's avatar
Leif committed
190
191

```bash
192
193
194
195
[[[441.0, 174.0], [1166.0, 176.0], [1165.0, 222.0], [441.0, 221.0]], ('ACKNOWLEDGEMENTS', 0.9971134662628174)]
  [[[403.0, 346.0], [1204.0, 348.0], [1204.0, 384.0], [402.0, 383.0]], ('We would like to thank all the designers and', 0.9761400818824768)]
  [[[403.0, 396.0], [1204.0, 398.0], [1204.0, 434.0], [402.0, 433.0]], ('contributors who have been involved in the', 0.9791957139968872)]
  ......
littletomatodonkey's avatar
littletomatodonkey committed
196
197
```

Leif's avatar
Leif committed
198
Visualization of results
littletomatodonkey's avatar
littletomatodonkey committed
199

Leif's avatar
Leif committed
200
<div align="center">
Leif's avatar
Leif committed
201
    <img src="../imgs_results/whl/12_det_rec.jpg" width="800">
Leif's avatar
Leif committed
202
</div>
Leif's avatar
Leif committed
203

Leif's avatar
Leif committed
204
205
206
207
208

<a name="3"></a>

## 3. Summary

MissPenguin's avatar
MissPenguin committed
209
In this section, you have mastered the use of PaddleOCR whl package.
Leif's avatar
Leif committed
210

andyjpaddle's avatar
andyjpaddle committed
211
PaddleOCR is a rich and practical OCR tool library that get through the whole process of data production, model training, compression, inference and deployment, please refer to the [tutorials](../../README.md#tutorials) to start the journey of PaddleOCR.