recognition.md 17.5 KB
Newer Older
tink2123's avatar
tink2123 committed
1
# 文字识别
tink2123's avatar
tink2123 committed
2

tink2123's avatar
tink2123 committed
3
本文提供了PaddleOCR文本识别任务的全流程指南,包括数据准备、模型训练、调优、评估、预测,各个阶段的详细说明:
WenmuZhou's avatar
WenmuZhou committed
4

WenmuZhou's avatar
WenmuZhou committed
5
6
7
8
9
10
11
- [1 数据准备](#数据准备)
    - [1.1 自定义数据集](#自定义数据集)
    - [1.2 数据下载](#数据下载)
    - [1.3 字典](#字典)  
    - [1.4 支持空格](#支持空格)
- [2 启动训练](#启动训练)
    - [2.1 数据增强](#数据增强)
tink2123's avatar
tink2123 committed
12
13
    - [2.2 通用模型训练](#通用模型训练)
    - [2.3 多语言模型训练](#多语言模型训练)
WenmuZhou's avatar
WenmuZhou committed
14
15
- [3 评估](#评估)
- [4 预测](#预测)
16
- [5 转Inference模型测试](#Inference)
WenmuZhou's avatar
WenmuZhou committed
17
18
19


<a name="数据准备"></a>
tink2123's avatar
tink2123 committed
20
## 1. 数据准备
tink2123's avatar
tink2123 committed
21
22


WenmuZhou's avatar
WenmuZhou committed
23
PaddleOCR 支持两种数据格式:
tink2123's avatar
tink2123 committed
24
25
 - `lmdb` 用于训练以lmdb格式存储的数据集(LMDBDataSet);
 - `通用数据` 用于训练以文本文件存储的数据集(SimpleDataSet);
tink2123's avatar
tink2123 committed
26
27
28
29

训练数据的默认存储路径是 `PaddleOCR/train_data`,如果您的磁盘上已有数据集,只需创建软链接至数据集目录:

```
WenmuZhou's avatar
WenmuZhou committed
30
# linux and mac os
31
ln -sf <path/to/dataset> <path/to/paddle_ocr>/train_data/dataset
WenmuZhou's avatar
WenmuZhou committed
32
33
# windows
mklink /d <path/to/paddle_ocr>/train_data/dataset <path/to/dataset>
tink2123's avatar
tink2123 committed
34
35
```

WenmuZhou's avatar
WenmuZhou committed
36
<a name="准备数据集"></a>
tink2123's avatar
tink2123 committed
37
### 1.1 自定义数据集
WenmuZhou's avatar
WenmuZhou committed
38
下面以通用数据集为例, 介绍如何准备数据集:
tink2123's avatar
tink2123 committed
39

WenmuZhou's avatar
WenmuZhou committed
40
* 训练集
tink2123's avatar
tink2123 committed
41

WenmuZhou's avatar
WenmuZhou committed
42
建议将训练图片放入同一个文件夹,并用一个txt文件(rec_gt_train.txt)记录图片路径和标签,txt文件里的内容如下:
WenmuZhou's avatar
WenmuZhou committed
43

WenmuZhou's avatar
WenmuZhou committed
44
**注意:** txt文件中默认请将图片路径和图片标签用 \t 分割,如用其他方式分割将造成训练报错。
tink2123's avatar
tink2123 committed
45

WenmuZhou's avatar
WenmuZhou committed
46
47
```
" 图像文件名                 图像标注信息 "
tink2123's avatar
tink2123 committed
48

WenmuZhou's avatar
WenmuZhou committed
49
50
train_data/rec/train/word_001.jpg   简单可依赖
train_data/rec/train/word_002.jpg   用科技让复杂的世界更简单
WenmuZhou's avatar
WenmuZhou committed
51
52
...
```
tink2123's avatar
tink2123 committed
53

WenmuZhou's avatar
WenmuZhou committed
54
55
56
最终训练集应有如下文件结构:
```
|-train_data
WenmuZhou's avatar
WenmuZhou committed
57
  |-rec
WenmuZhou's avatar
WenmuZhou committed
58
59
60
61
62
63
    |- rec_gt_train.txt
    |- train
        |- word_001.png
        |- word_002.jpg
        |- word_003.jpg
        | ...
tink2123's avatar
tink2123 committed
64
65
```

WenmuZhou's avatar
WenmuZhou committed
66
67
68
69
70
71
- 测试集

同训练集类似,测试集也需要提供一个包含所有图片的文件夹(test)和一个rec_gt_test.txt,测试集的结构如下所示:

```
|-train_data
WenmuZhou's avatar
WenmuZhou committed
72
  |-rec
WenmuZhou's avatar
WenmuZhou committed
73
74
75
76
77
78
    |- rec_gt_test.txt
    |- test
        |- word_001.jpg
        |- word_002.jpg
        |- word_003.jpg
        | ...
tink2123's avatar
tink2123 committed
79
```
WenmuZhou's avatar
WenmuZhou committed
80
81
82

<a name="数据下载"></a>

tink2123's avatar
tink2123 committed
83
### 1.2 数据下载
WenmuZhou's avatar
WenmuZhou committed
84

tink2123's avatar
tink2123 committed
85
- ICDAR2015
WenmuZhou's avatar
WenmuZhou committed
86

tink2123's avatar
tink2123 committed
87
若您本地没有数据集,可以在官网下载 [ICDAR2015](http://rrc.cvc.uab.es/?ch=4&com=downloads) 数据,用于快速验证。也可以参考[DTRB](https://github.com/clovaai/deep-text-recognition-benchmark#download-lmdb-dataset-for-traininig-and-evaluation-from-here) ,下载 benchmark 所需的lmdb格式数据集。
tink2123's avatar
fix doc  
tink2123 committed
88

89
90
如果希望复现SAR的论文指标,需要下载[SynthAdd](https://pan.baidu.com/share/init?surl=uV0LtoNmcxbO-0YA7Ch4dg), 提取码:627x。此外,真实数据集icdar2013, icdar2015, cocotext, IIIT5也作为训练数据的一部分。具体数据细节可以参考论文SAR。

tink2123's avatar
tink2123 committed
91
如果你使用的是icdar2015的公开数据集,PaddleOCR 提供了一份用于训练 ICDAR2015 数据集的标签文件,通过以下方式下载:
92

tink2123's avatar
fix doc  
tink2123 committed
93
94
95
96
```
# 训练集标签
wget -P ./train_data/ic15_data  https://paddleocr.bj.bcebos.com/dataset/rec_gt_train.txt
# 测试集标签
tink2123's avatar
tink2123 committed
97
wget -P ./train_data/ic15_data  https://paddleocr.bj.bcebos.com/dataset/rec_gt_test.txt
tink2123's avatar
fix doc  
tink2123 committed
98
```
tink2123's avatar
tink2123 committed
99

tink2123's avatar
tink2123 committed
100
PaddleOCR 也提供了数据格式转换脚本,可以将ICDAR官网 label 转换为PaddleOCR支持的数据格式。 数据转换工具在 `ppocr/utils/gen_label.py`, 这里以训练集为例:
WenmuZhou's avatar
WenmuZhou committed
101
102
103
104
105
106

```
# 将官网下载的标签文件转换为 rec_gt_label.txt
python gen_label.py --mode="rec" --input_path="{path/of/origin/label}" --output_label="rec_gt_label.txt"
```

tink2123's avatar
tink2123 committed
107
108
109
110
111
112
113
114
115
116
数据样式格式如下,(a)为原始图片,(b)为每张图片对应的 Ground Truth 文本文件:
![](../datasets/icdar_rec.png)

- 多语言数据集

多语言模型的训练数据集均为100w的合成数据,使用了开源合成工具 [text_renderer](https://github.com/Sanster/text_renderer) ,少量的字体可以通过下面两种方式下载。
* [百度网盘](https://pan.baidu.com/s/1bS_u207Rm7YbY33wOECKDA) 提取码:frgi
* [google drive](https://drive.google.com/file/d/18cSWX7wXSy4G0tbKJ0d9PuIaiwRLHpjA/view)


WenmuZhou's avatar
WenmuZhou committed
117
<a name="字典"></a>
tink2123's avatar
tink2123 committed
118
### 1.3 字典
tink2123's avatar
tink2123 committed
119
120
121

最后需要提供一个字典({word_dict_name}.txt),使模型在训练时,可以将所有出现的字符映射为字典的索引。

tink2123's avatar
tink2123 committed
122
因此字典需要包含所有希望被正确识别的字符,{word_dict_name}.txt需要写成如下格式,并以 `utf-8` 编码格式保存:
tink2123's avatar
tink2123 committed
123

tink2123's avatar
tink2123 committed
124
125
```
l
tink2123's avatar
tink2123 committed
126
127
d
a
tink2123's avatar
tink2123 committed
128
129
d
r
tink2123's avatar
tink2123 committed
130
n
tink2123's avatar
tink2123 committed
131
```
tink2123's avatar
tink2123 committed
132
133
134

word_dict.txt 每行有一个单字,将字符与数字索引映射在一起,“and” 将被映射成 [2 5 1]

WenmuZhou's avatar
WenmuZhou committed
135
136
137
138
* 内置字典

PaddleOCR内置了一部分字典,可以按需使用。

tink2123's avatar
tink2123 committed
139
`ppocr/utils/ppocr_keys_v1.txt` 是一个包含6623个字符的中文字典
WenmuZhou's avatar
WenmuZhou committed
140

tink2123's avatar
tink2123 committed
141
`ppocr/utils/ic15_dict.txt` 是一个包含36个字符的英文字典
WenmuZhou's avatar
WenmuZhou committed
142
143
144

`ppocr/utils/dict/french_dict.txt` 是一个包含118个字符的法文字典

145
`ppocr/utils/dict/japan_dict.txt` 是一个包含4399个字符的日文字典
WenmuZhou's avatar
WenmuZhou committed
146

147
`ppocr/utils/dict/korean_dict.txt` 是一个包含3636个字符的韩文字典
WenmuZhou's avatar
WenmuZhou committed
148

149
`ppocr/utils/dict/german_dict.txt` 是一个包含131个字符的德文字典
WenmuZhou's avatar
WenmuZhou committed
150

tink2123's avatar
tink2123 committed
151
`ppocr/utils/en_dict.txt` 是一个包含96个字符的英文字典
tink2123's avatar
tink2123 committed
152

WenmuZhou's avatar
WenmuZhou committed
153

WenmuZhou's avatar
WenmuZhou committed
154

tink2123's avatar
tink2123 committed
155

WenmuZhou's avatar
WenmuZhou committed
156
目前的多语言模型仍处在demo阶段,会持续优化模型并补充语种,**非常欢迎您为我们提供其他语言的字典和字体**
littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
157
如您愿意可将字典文件提交至 [dict](../../ppocr/utils/dict),我们会在Repo中感谢您。
WenmuZhou's avatar
WenmuZhou committed
158

tink2123's avatar
tink2123 committed
159
- 自定义字典
tink2123's avatar
tink2123 committed
160

tink2123's avatar
tink2123 committed
161
162
如需自定义dic文件,请在 `configs/rec/rec_icdar15_train.yml` 中添加 `character_dict_path` 字段, 指向您的字典路径。

WenmuZhou's avatar
WenmuZhou committed
163
<a name="支持空格"></a>
tink2123's avatar
tink2123 committed
164
### 1.4 添加空格类别
tink2123's avatar
tink2123 committed
165

xmy0916's avatar
xmy0916 committed
166
如果希望支持识别"空格"类别, 请将yml文件中的 `use_space_char` 字段设置为 `True`
tink2123's avatar
tink2123 committed
167

tink2123's avatar
tink2123 committed
168

WenmuZhou's avatar
WenmuZhou committed
169
<a name="启动训练"></a>
tink2123's avatar
tink2123 committed
170
## 2. 启动训练
tink2123's avatar
tink2123 committed
171

tink2123's avatar
tink2123 committed
172
<a name="数据增强"></a>
tink2123's avatar
tink2123 committed
173
### 2.1 数据增强
tink2123's avatar
tink2123 committed
174
175
176
177
178
179
180
181
182
183

PaddleOCR提供了多种数据增强方式,默认配置文件中已经添加了数据增广。

默认的扰动方式有:颜色空间转换(cvtColor)、模糊(blur)、抖动(jitter)、噪声(Gasuss noise)、随机切割(random crop)、透视(perspective)、颜色反转(reverse)、TIA数据增广。

训练过程中每种扰动方式以40%的概率被选择,具体代码实现请参考:[rec_img_aug.py](../../ppocr/data/imaug/rec_img_aug.py)

*由于OpenCV的兼容性问题,扰动操作暂时只支持Linux*

<a name="通用模型训练"></a>
tink2123's avatar
tink2123 committed
184
### 2.2 通用模型训练
tink2123's avatar
tink2123 committed
185

tink2123's avatar
tink2123 committed
186
PaddleOCR提供了训练脚本、评估脚本和预测脚本,本节将以 CRNN 识别模型为例:
tink2123's avatar
tink2123 committed
187

tink2123's avatar
tink2123 committed
188
首先下载pretrain model,您可以下载训练好的模型在 icdar2015 数据上进行finetune
tink2123's avatar
tink2123 committed
189
190

```
tink2123's avatar
tink2123 committed
191
192
cd PaddleOCR/
# 下载MobileNetV3的预训练模型
tink2123's avatar
tink2123 committed
193
wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_bilstm_ctc_v2.0_train.tar
tink2123's avatar
tink2123 committed
194
195
# 解压模型参数
cd pretrain_models
tink2123's avatar
tink2123 committed
196
tar -xf rec_mv3_none_bilstm_ctc_v2.0_train.tar && rm -rf rec_mv3_none_bilstm_ctc_v2.0_train.tar
tink2123's avatar
tink2123 committed
197
198
199
200
```

开始训练:

tink2123's avatar
tink2123 committed
201
202
*如果您安装的是cpu版本,请将配置文件中的 `use_gpu` 字段修改为false*

tink2123's avatar
tink2123 committed
203
```
tink2123's avatar
tink2123 committed
204
# GPU训练 支持单卡,多卡训练
tink2123's avatar
tink2123 committed
205
# 训练icdar15英文数据 训练日志会自动保存为 "{save_model_dir}" 下的train.log
tink2123's avatar
tink2123 committed
206

tink2123's avatar
tink2123 committed
207
208
#单卡训练(训练周期长,不建议)
python3 tools/train.py -c configs/rec/rec_icdar15_train.yml
tink2123's avatar
tink2123 committed
209

tink2123's avatar
tink2123 committed
210
211
212
#多卡训练,通过--gpus参数指定卡号
python3 -m paddle.distributed.launch --gpus '0,1,2,3'  tools/train.py -c configs/rec/rec_icdar15_train.yml
```
tink2123's avatar
tink2123 committed
213
214


tink2123's avatar
tink2123 committed
215
PaddleOCR支持训练和评估交替进行, 可以在 `configs/rec/rec_icdar15_train.yml` 中修改 `eval_batch_step` 设置评估频率,默认每500个iter评估一次。评估过程中默认将最佳acc模型,保存为 `output/rec_CRNN/best_accuracy`
tink2123's avatar
tink2123 committed
216
217
218

如果验证集很大,测试将会比较耗时,建议减少评估次数,或训练完再进行评估。

MissPenguin's avatar
MissPenguin committed
219
**提示:** 可通过 -c 参数选择 `configs/rec/` 路径下的多种模型配置进行训练,PaddleOCR支持的识别算法有:
tink2123's avatar
tink2123 committed
220
221
222
223


| 配置文件 |  算法名称 |   backbone |   trans   |   seq      |     pred     |
| :--------: |  :-------:   | :-------:  |   :-------:   |   :-----:   |  :-----:   |
xmy0916's avatar
xmy0916 committed
224
225
| [rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml) |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  |
| [rec_chinese_common_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_common_train_v2.0.yml) |  CRNN | ResNet34_vd |  None   |  BiLSTM |  ctc  |
tink2123's avatar
tink2123 committed
226
227
228
229
230
| rec_icdar15_train.yml |  CRNN |   Mobilenet_v3 large 0.5 |  None   |  BiLSTM |  ctc  |
| rec_mv3_none_bilstm_ctc.yml |  CRNN |   Mobilenet_v3 large 0.5 |  None   |  BiLSTM |  ctc  |
| rec_mv3_none_none_ctc.yml |  Rosetta |   Mobilenet_v3 large 0.5 |  None   |  None |  ctc  |
| rec_r34_vd_none_bilstm_ctc.yml |  CRNN |   Resnet34_vd |  None   |  BiLSTM |  ctc  |
| rec_r34_vd_none_none_ctc.yml |  Rosetta |   Resnet34_vd |  None   |  None |  ctc  |
LDOUBLEV's avatar
LDOUBLEV committed
231
232
| rec_mv3_tps_bilstm_att.yml |  CRNN |   Mobilenet_v3 |  TPS   |  BiLSTM |  att  |
| rec_r34_vd_tps_bilstm_att.yml |  CRNN |   Resnet34_vd |  TPS   |  BiLSTM |  att  |
tink2123's avatar
tink2123 committed
233
| rec_r50fpn_vd_none_srn.yml    | SRN | Resnet50_fpn_vd    | None    | rnn | srn |
Topdu's avatar
Topdu committed
234
| rec_mtb_nrtr.yml    | NRTR | nrtr_mtb    | None    | transformer encoder | transformer decoder |
andyjpaddle's avatar
andyjpaddle committed
235
| rec_r31_sar.yml               | SAR | ResNet31 | None | LSTM encoder | LSTM decoder |
tink2123's avatar
tink2123 committed
236
237
238
| rec_resnet_stn_bilstm_att.yml | SEED | Aster_Resnet | STN | BiLSTM | att |

*其中SEED模型需要额外加载FastText训练好的[语言模型](https://dl.fbaipublicfiles.com/fasttext/vectors-crawl/cc.en.300.bin.gz)
tink2123's avatar
tink2123 committed
239

xmy0916's avatar
xmy0916 committed
240
训练中文数据,推荐使用[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml),如您希望尝试其他算法在中文数据集上的效果,请参考下列说明修改配置文件:
tink2123's avatar
tink2123 committed
241

xmy0916's avatar
xmy0916 committed
242
`rec_chinese_lite_train_v2.0.yml` 为例:
tink2123's avatar
tink2123 committed
243
244
245
```
Global:
  ...
xmy0916's avatar
xmy0916 committed
246
247
  # 添加自定义字典,如修改字典请将路径指向新字典
  character_dict_path: ppocr/utils/ppocr_keys_v1.txt
tink2123's avatar
tink2123 committed
248
  ...
xmy0916's avatar
xmy0916 committed
249
  # 识别空格
xmy0916's avatar
xmy0916 committed
250
  use_space_char: True
tink2123's avatar
tink2123 committed
251

252
253
254
255

Optimizer:
  ...
  # 添加学习率衰减策略
xmy0916's avatar
xmy0916 committed
256
257
258
259
260
261
262
263
264
  lr:
    name: Cosine
    learning_rate: 0.001
  ...

...

Train:
  dataset:
MissPenguin's avatar
MissPenguin committed
265
    # 数据集格式,支持LMDBDataSet以及SimpleDataSet
xmy0916's avatar
xmy0916 committed
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
    name: SimpleDataSet
    # 数据集路径
    data_dir: ./train_data/
    # 训练集标签文件
    label_file_list: ["./train_data/train_list.txt"]
    transforms:
      ...
      - RecResizeImg:
          # 修改 image_shape 以适应长文本
          image_shape: [3, 32, 320]
      ...
  loader:
    ...
    # 单卡训练的batch_size
    batch_size_per_card: 256
    ...

Eval:
  dataset:
MissPenguin's avatar
MissPenguin committed
285
    # 数据集格式,支持LMDBDataSet以及SimpleDataSet
xmy0916's avatar
xmy0916 committed
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
    name: SimpleDataSet
    # 数据集路径
    data_dir: ./train_data
    # 验证集标签文件
    label_file_list: ["./train_data/val_list.txt"]
    transforms:
      ...
      - RecResizeImg:
          # 修改 image_shape 以适应长文本
          image_shape: [3, 32, 320]
      ...
  loader:
    # 单卡验证的batch_size
    batch_size_per_card: 256
    ...
tink2123's avatar
tink2123 committed
301
```
tink2123's avatar
tink2123 committed
302
**注意,预测/评估时的配置文件请务必与训练一致。**
tink2123's avatar
tink2123 committed
303

tink2123's avatar
tink2123 committed
304
<a name="多语言模型训练"></a>
tink2123's avatar
tink2123 committed
305
### 2.3 多语言模型训练
WenmuZhou's avatar
WenmuZhou committed
306

tink2123's avatar
tink2123 committed
307
PaddleOCR目前已支持80种(除中文外)语种识别,`configs/rec/multi_languages` 路径下提供了一个多语言的配置文件模版: [rec_multi_language_lite_train.yml](../../configs/rec/multi_language/rec_multi_language_lite_train.yml)
tink2123's avatar
tink2123 committed
308

tink2123's avatar
tink2123 committed
309
按语系划分,目前PaddleOCR支持的语种有:
tink2123's avatar
tink2123 committed
310

tink2123's avatar
tink2123 committed
311
312
313
314
315
316
317
318
319
320
321
322
| 配置文件 |  算法名称 |   backbone |   trans   |   seq      |     pred     |  language |
| :--------: |  :-------:   | :-------:  |   :-------:   |   :-----:   |  :-----:   | :-----:  |
| rec_chinese_cht_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | 中文繁体  |
| rec_en_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | 英语(区分大小写)   |
| rec_french_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | 法语 |  
| rec_ger_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | 德语   |
| rec_japan_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | 日语  |
| rec_korean_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | 韩语  |
| rec_latin_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | 拉丁字母  |
| rec_arabic_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | 阿拉伯字母 |
| rec_cyrillic_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | 斯拉夫字母  |
| rec_devanagari_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | 梵文字母  |
tink2123's avatar
tink2123 committed
323
324

更多支持语种请参考: [多语言模型](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/doc/doc_ch/multi_languages.md#%E8%AF%AD%E7%A7%8D%E7%BC%A9%E5%86%99)
WenmuZhou's avatar
WenmuZhou committed
325
326
327
328
329
330
331
332
333
334

如您希望在现有模型效果的基础上调优,请参考下列说明修改配置文件:

`rec_french_lite_train` 为例:
```
Global:
  ...
  # 添加自定义字典,如修改字典请将路径指向新字典
  character_dict_path: ./ppocr/utils/dict/french_dict.txt
  ...
xmy0916's avatar
xmy0916 committed
335
  # 识别空格
xmy0916's avatar
xmy0916 committed
336
  use_space_char: True
WenmuZhou's avatar
WenmuZhou committed
337
338

...
xmy0916's avatar
xmy0916 committed
339
340
341

Train:
  dataset:
MissPenguin's avatar
MissPenguin committed
342
    # 数据集格式,支持LMDBDataSet以及SimpleDataSet
xmy0916's avatar
xmy0916 committed
343
344
345
346
347
348
349
350
351
    name: SimpleDataSet
    # 数据集路径
    data_dir: ./train_data/
    # 训练集标签文件
    label_file_list: ["./train_data/french_train.txt"]
    ...

Eval:
  dataset:
MissPenguin's avatar
MissPenguin committed
352
    # 数据集格式,支持LMDBDataSet以及SimpleDataSet
xmy0916's avatar
xmy0916 committed
353
354
355
356
357
358
    name: SimpleDataSet
    # 数据集路径
    data_dir: ./train_data
    # 验证集标签文件
    label_file_list: ["./train_data/french_val.txt"]
    ...
WenmuZhou's avatar
WenmuZhou committed
359
360
```
<a name="评估"></a>
tink2123's avatar
tink2123 committed
361
## 3 评估
tink2123's avatar
tink2123 committed
362

xmy0916's avatar
xmy0916 committed
363
评估数据集可以通过 `configs/rec/rec_icdar15_train.yml`  修改Eval中的 `label_file_path` 设置。
tink2123's avatar
tink2123 committed
364
365

```
tink2123's avatar
tink2123 committed
366
# GPU 评估, Global.checkpoints 为待测权重
xmy0916's avatar
xmy0916 committed
367
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_icdar15_train.yml -o Global.checkpoints={path/to/weights}/best_accuracy
tink2123's avatar
tink2123 committed
368
369
```

WenmuZhou's avatar
WenmuZhou committed
370
<a name="预测"></a>
tink2123's avatar
tink2123 committed
371
## 4 预测
tink2123's avatar
tink2123 committed
372

tink2123's avatar
tink2123 committed
373
使用 PaddleOCR 训练好的模型,可以通过以下脚本进行快速预测。
tink2123's avatar
tink2123 committed
374

tink2123's avatar
tink2123 committed
375
376
377
378
379
默认预测图片存储在 `infer_img` 里,通过 `-o Global.checkpoints` 加载训练好的参数文件:

根据配置文件中设置的的 `save_model_dir``save_epoch_step` 字段,会有以下几种参数被保存下来:

```
tink2123's avatar
tink2123 committed
380
output/rec/
tink2123's avatar
tink2123 committed
381
382
383
384
385
386
387
388
389
390
391
392
393
├── best_accuracy.pdopt  
├── best_accuracy.pdparams  
├── best_accuracy.states  
├── config.yml  
├── iter_epoch_3.pdopt  
├── iter_epoch_3.pdparams  
├── iter_epoch_3.states  
├── latest.pdopt  
├── latest.pdparams  
├── latest.states  
└── train.log
```
其中 best_accuracy.* 是评估集上的最优模型;iter_epoch_x.* 是以 `save_epoch_step` 为间隔保存下来的模型;latest.* 是最后一个epoch的模型。
tink2123's avatar
tink2123 committed
394
395

```
tink2123's avatar
tink2123 committed
396
# 预测英文结果
WenmuZhou's avatar
WenmuZhou committed
397
python3 tools/infer_rec.py -c configs/rec/rec_icdar15_train.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.load_static_weights=false Global.infer_img=doc/imgs_words/en/word_1.png
tink2123's avatar
tink2123 committed
398
```
tink2123's avatar
tink2123 committed
399
400
401

预测图片:

402
![](../imgs_words/en/word_1.png)
tink2123's avatar
tink2123 committed
403
404
405
406

得到输入图像的预测结果:

```
tink2123's avatar
tink2123 committed
407
infer_img: doc/imgs_words/en/word_1.png
tink2123's avatar
tink2123 committed
408
        result: ('joint', 0.9998967)
tink2123's avatar
tink2123 committed
409
410
```

xmy0916's avatar
xmy0916 committed
411
预测使用的配置文件必须与训练一致,如您通过 `python3 tools/train.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml` 完成了中文模型的训练,
tink2123's avatar
tink2123 committed
412
413
414
415
您可以使用如下命令进行中文模型预测。

```
# 预测中文结果
WenmuZhou's avatar
WenmuZhou committed
416
python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.load_static_weights=false Global.infer_img=doc/imgs_words/ch/word_1.jpg
tink2123's avatar
tink2123 committed
417
418
```

tink2123's avatar
tink2123 committed
419
预测图片:
tink2123's avatar
tink2123 committed
420

421
![](../imgs_words/ch/word_1.jpg)
xiaoting's avatar
xiaoting committed
422

tink2123's avatar
tink2123 committed
423
424
425
得到输入图像的预测结果:

```
tink2123's avatar
tink2123 committed
426
infer_img: doc/imgs_words/ch/word_1.jpg
tink2123's avatar
tink2123 committed
427
        result: ('韩国小馆', 0.997218)
tink2123's avatar
tink2123 committed
428
```
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462

<a name="Inference"></a>

## 5. 转Inference模型测试

识别模型转inference模型与检测的方式相同,如下:

```
# -c 后面设置训练算法的yml配置文件
# -o 配置可选参数
# Global.pretrained_model 参数设置待转换的训练模型地址,不用添加文件后缀 .pdmodel,.pdopt或.pdparams。
# Global.save_inference_dir参数设置转换的模型将保存的地址。

python3 tools/export_model.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_rec_train/best_accuracy  Global.save_inference_dir=./inference/rec_crnn/
```

**注意:**如果您是在自己的数据集上训练的模型,并且调整了中文字符的字典文件,请注意修改配置文件中的`character_dict_path`是否是所需要的字典文件。

转换成功后,在目录下有三个文件:

```
/inference/rec_crnn/
    ├── inference.pdiparams         # 识别inference模型的参数文件
    ├── inference.pdiparams.info    # 识别inference模型的参数信息,可忽略
    └── inference.pdmodel           # 识别inference模型的program文件
```

- 自定义模型推理

  如果训练时修改了文本的字典,在使用inference模型预测时,需要通过`--rec_char_dict_path`指定使用的字典路径,并且设置 `rec_char_type=ch`

  ```
  python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 32, 100" --rec_char_type="ch" --rec_char_dict_path="your text dict path"
  ```