"docker/vscode:/vscode.git/clone" did not exist on "d8bcb33f4ba56e334482ba2833a6b89fba23107a"
program.py 12.9 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

WenmuZhou's avatar
WenmuZhou committed
19
import os
LDOUBLEV's avatar
LDOUBLEV committed
20
21
22
import sys
import yaml
import time
WenmuZhou's avatar
WenmuZhou committed
23
24
25
26
27
28
import shutil
import paddle
import paddle.distributed as dist
from tqdm import tqdm
from argparse import ArgumentParser, RawDescriptionHelpFormatter

LDOUBLEV's avatar
LDOUBLEV committed
29
30
from ppocr.utils.stats import TrainingStats
from ppocr.utils.save_load import save_model
dyning's avatar
dyning committed
31
32
33
34
from ppocr.utils.utility import print_dict
from ppocr.utils.logging import get_logger
from ppocr.data import build_dataloader
import numpy as np
LDOUBLEV's avatar
LDOUBLEV committed
35

dyning's avatar
dyning committed
36

LDOUBLEV's avatar
LDOUBLEV committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
class ArgsParser(ArgumentParser):
    def __init__(self):
        super(ArgsParser, self).__init__(
            formatter_class=RawDescriptionHelpFormatter)
        self.add_argument("-c", "--config", help="configuration file to use")
        self.add_argument(
            "-o", "--opt", nargs='+', help="set configuration options")

    def parse_args(self, argv=None):
        args = super(ArgsParser, self).parse_args(argv)
        assert args.config is not None, \
            "Please specify --config=configure_file_path."
        args.opt = self._parse_opt(args.opt)
        return args

    def _parse_opt(self, opts):
        config = {}
        if not opts:
            return config
        for s in opts:
            s = s.strip()
            k, v = s.split('=')
            config[k] = yaml.load(v, Loader=yaml.Loader)
        return config


class AttrDict(dict):
    """Single level attribute dict, NOT recursive"""

    def __init__(self, **kwargs):
        super(AttrDict, self).__init__()
        super(AttrDict, self).update(kwargs)

    def __getattr__(self, key):
        if key in self:
            return self[key]
        raise AttributeError("object has no attribute '{}'".format(key))


global_config = AttrDict()

lyl120117's avatar
lyl120117 committed
78
79
default_config = {'Global': {'debug': False, }}

LDOUBLEV's avatar
LDOUBLEV committed
80
81
82
83
84
85
86
87

def load_config(file_path):
    """
    Load config from yml/yaml file.
    Args:
        file_path (str): Path of the config file to be loaded.
    Returns: global config
    """
lyl120117's avatar
lyl120117 committed
88
    merge_config(default_config)
LDOUBLEV's avatar
LDOUBLEV committed
89
90
    _, ext = os.path.splitext(file_path)
    assert ext in ['.yml', '.yaml'], "only support yaml files for now"
WenmuZhou's avatar
WenmuZhou committed
91
    merge_config(yaml.load(open(file_path, 'rb'), Loader=yaml.Loader))
LDOUBLEV's avatar
LDOUBLEV committed
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
    return global_config


def merge_config(config):
    """
    Merge config into global config.
    Args:
        config (dict): Config to be merged.
    Returns: global config
    """
    for key, value in config.items():
        if "." not in key:
            if isinstance(value, dict) and key in global_config:
                global_config[key].update(value)
            else:
                global_config[key] = value
        else:
            sub_keys = key.split('.')
tink2123's avatar
tink2123 committed
110
111
112
113
            assert (
                sub_keys[0] in global_config
            ), "the sub_keys can only be one of global_config: {}, but get: {}, please check your running command".format(
                global_config.keys(), sub_keys[0])
LDOUBLEV's avatar
LDOUBLEV committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
            cur = global_config[sub_keys[0]]
            for idx, sub_key in enumerate(sub_keys[1:]):
                assert (sub_key in cur)
                if idx == len(sub_keys) - 2:
                    cur[sub_key] = value
                else:
                    cur = cur[sub_key]


def check_gpu(use_gpu):
    """
    Log error and exit when set use_gpu=true in paddlepaddle
    cpu version.
    """
    err = "Config use_gpu cannot be set as true while you are " \
          "using paddlepaddle cpu version ! \nPlease try: \n" \
          "\t1. Install paddlepaddle-gpu to run model on GPU \n" \
          "\t2. Set use_gpu as false in config file to run " \
          "model on CPU"

    try:
WenmuZhou's avatar
WenmuZhou committed
135
136
        if use_gpu and not paddle.fluid.is_compiled_with_cuda():
            print(err)
LDOUBLEV's avatar
LDOUBLEV committed
137
138
139
140
141
            sys.exit(1)
    except Exception as e:
        pass


WenmuZhou's avatar
WenmuZhou committed
142
def train(config,
dyning's avatar
dyning committed
143
144
145
          train_dataloader,
          valid_dataloader,
          device,
WenmuZhou's avatar
WenmuZhou committed
146
147
148
149
150
151
152
153
154
155
156
          model,
          loss_class,
          optimizer,
          lr_scheduler,
          post_process_class,
          eval_class,
          pre_best_model_dict,
          logger,
          vdl_writer=None):
    cal_metric_during_train = config['Global'].get('cal_metric_during_train',
                                                   False)
LDOUBLEV's avatar
LDOUBLEV committed
157
158
159
160
    log_smooth_window = config['Global']['log_smooth_window']
    epoch_num = config['Global']['epoch_num']
    print_batch_step = config['Global']['print_batch_step']
    eval_batch_step = config['Global']['eval_batch_step']
WenmuZhou's avatar
WenmuZhou committed
161

dyning's avatar
dyning committed
162
    global_step = 0
LDOUBLEV's avatar
LDOUBLEV committed
163
164
165
166
167
168
169
    start_eval_step = 0
    if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
        start_eval_step = eval_batch_step[0]
        eval_batch_step = eval_batch_step[1]
        logger.info(
            "During the training process, after the {}th iteration, an evaluation is run every {} iterations".
            format(start_eval_step, eval_batch_step))
LDOUBLEV's avatar
LDOUBLEV committed
170
171
    save_epoch_step = config['Global']['save_epoch_step']
    save_model_dir = config['Global']['save_model_dir']
172
173
    if not os.path.exists(save_model_dir):
        os.makedirs(save_model_dir)
WenmuZhou's avatar
WenmuZhou committed
174
175
176
177
178
179
180
181
182
183
184
185
    main_indicator = eval_class.main_indicator
    best_model_dict = {main_indicator: 0}
    best_model_dict.update(pre_best_model_dict)
    train_stats = TrainingStats(log_smooth_window, ['lr'])
    model.train()

    if 'start_epoch' in best_model_dict:
        start_epoch = best_model_dict['start_epoch']
    else:
        start_epoch = 0

    for epoch in range(start_epoch, epoch_num):
dyning's avatar
dyning committed
186
        if epoch > 0:
WenmuZhou's avatar
fix bug  
WenmuZhou committed
187
            train_dataloader = build_dataloader(config, 'Train', device, logger)
dyning's avatar
dyning committed
188

WenmuZhou's avatar
WenmuZhou committed
189
190
191
192
193
194
195
196
197
        for idx, batch in enumerate(train_dataloader):
            if idx >= len(train_dataloader):
                break
            lr = optimizer.get_lr()
            t1 = time.time()
            images = batch[0]
            preds = model(images)
            loss = loss_class(preds, batch)
            avg_loss = loss['loss']
dyning's avatar
dyning committed
198
            avg_loss.backward()
WenmuZhou's avatar
WenmuZhou committed
199
200
            optimizer.step()
            optimizer.clear_grad()
dyning's avatar
dyning committed
201
202
            if not isinstance(lr_scheduler, float):
                lr_scheduler.step()
WenmuZhou's avatar
WenmuZhou committed
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

            # logger and visualdl
            stats = {k: v.numpy().mean() for k, v in loss.items()}
            stats['lr'] = lr
            train_stats.update(stats)

            if cal_metric_during_train:  # onlt rec and cls need
                batch = [item.numpy() for item in batch]
                post_result = post_process_class(preds, batch[1])
                eval_class(post_result, batch)
                metirc = eval_class.get_metric()
                train_stats.update(metirc)

            t2 = time.time()
            train_batch_elapse = t2 - t1

            if vdl_writer is not None and dist.get_rank() == 0:
                for k, v in train_stats.get().items():
                    vdl_writer.add_scalar('TRAIN/{}'.format(k), v, global_step)
                vdl_writer.add_scalar('TRAIN/lr', lr, global_step)

dyning's avatar
dyning committed
224
225
            if dist.get_rank(
            ) == 0 and global_step > 0 and global_step % print_batch_step == 0:
WenmuZhou's avatar
WenmuZhou committed
226
227
228
229
230
231
232
                logs = train_stats.log()
                strs = 'epoch: [{}/{}], iter: {}, {}, time: {:.3f}'.format(
                    epoch, epoch_num, global_step, logs, train_batch_elapse)
                logger.info(strs)
            # eval
            if global_step > start_eval_step and \
                    (global_step - start_eval_step) % eval_batch_step == 0 and dist.get_rank() == 0:
dyning's avatar
dyning committed
233
                cur_metirc = eval(model, valid_dataloader, post_process_class,
WenmuZhou's avatar
WenmuZhou committed
234
                                  eval_class)
WenmuZhou's avatar
WenmuZhou committed
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
                cur_metirc_str = 'cur metirc, {}'.format(', '.join(
                    ['{}: {}'.format(k, v) for k, v in cur_metirc.items()]))
                logger.info(cur_metirc_str)

                # logger metric
                if vdl_writer is not None:
                    for k, v in cur_metirc.items():
                        if isinstance(v, (float, int)):
                            vdl_writer.add_scalar('EVAL/{}'.format(k),
                                                  cur_metirc[k], global_step)
                if cur_metirc[main_indicator] >= best_model_dict[
                        main_indicator]:
                    best_model_dict.update(cur_metirc)
                    best_model_dict['best_epoch'] = epoch
                    save_model(
                        model,
                        optimizer,
                        save_model_dir,
                        logger,
                        is_best=True,
                        prefix='best_accuracy',
                        best_model_dict=best_model_dict,
                        epoch=epoch)
                best_str = 'best metirc, {}'.format(', '.join([
                    '{}: {}'.format(k, v) for k, v in best_model_dict.items()
                ]))
                logger.info(best_str)
                # logger best metric
                if vdl_writer is not None:
                    vdl_writer.add_scalar('EVAL/best_{}'.format(main_indicator),
                                          best_model_dict[main_indicator],
                                          global_step)
            global_step += 1
        if dist.get_rank() == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
                is_best=False,
                prefix='latest',
                best_model_dict=best_model_dict,
                epoch=epoch)
        if dist.get_rank() == 0 and epoch > 0 and epoch % save_epoch_step == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
                is_best=False,
                prefix='iter_epoch_{}'.format(epoch),
                best_model_dict=best_model_dict,
                epoch=epoch)
    best_str = 'best metirc, {}'.format(', '.join(
        ['{}: {}'.format(k, v) for k, v in best_model_dict.items()]))
    logger.info(best_str)
    if dist.get_rank() == 0 and vdl_writer is not None:
        vdl_writer.close()
LDOUBLEV's avatar
LDOUBLEV committed
293
294
295
    return


WenmuZhou's avatar
WenmuZhou committed
296
def eval(model, valid_dataloader, post_process_class, eval_class):
WenmuZhou's avatar
WenmuZhou committed
297
298
299
300
    model.eval()
    with paddle.no_grad():
        total_frame = 0.0
        total_time = 0.0
WenmuZhou's avatar
fix bug  
WenmuZhou committed
301
        pbar = tqdm(total=len(valid_dataloader), desc='eval model:')
WenmuZhou's avatar
WenmuZhou committed
302
303
304
        for idx, batch in enumerate(valid_dataloader):
            if idx >= len(valid_dataloader):
                break
WenmuZhou's avatar
fix bug  
WenmuZhou committed
305
            images = batch[0]
WenmuZhou's avatar
WenmuZhou committed
306
307
308
309
310
311
312
313
314
            start = time.time()
            preds = model(images)

            batch = [item.numpy() for item in batch]
            # Obtain usable results from post-processing methods
            post_result = post_process_class(preds, batch[1])
            total_time += time.time() - start
            # Evaluate the results of the current batch
            eval_class(post_result, batch)
WenmuZhou's avatar
fix bug  
WenmuZhou committed
315
            pbar.update(1)
WenmuZhou's avatar
WenmuZhou committed
316
317
318
            total_frame += len(images)
        # Get final metirc,eg. acc or hmean
        metirc = eval_class.get_metric()
dyning's avatar
dyning committed
319

WenmuZhou's avatar
fix bug  
WenmuZhou committed
320
    pbar.close()
WenmuZhou's avatar
WenmuZhou committed
321
322
323
    model.train()
    metirc['fps'] = total_frame / total_time
    return metirc
licx's avatar
licx committed
324

tink2123's avatar
tink2123 committed
325

licx's avatar
licx committed
326
327
328
329
330
331
332
333
334
def preprocess():
    FLAGS = ArgsParser().parse_args()
    config = load_config(FLAGS.config)
    merge_config(FLAGS.opt)

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
    check_gpu(use_gpu)

WenmuZhou's avatar
WenmuZhou committed
335
336
337
338
    alg = config['Architecture']['algorithm']
    assert alg in [
        'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN'
    ]
licx's avatar
licx committed
339

WenmuZhou's avatar
WenmuZhou committed
340
341
    device = 'gpu:{}'.format(dist.ParallelEnv().dev_id) if use_gpu else 'cpu'
    device = paddle.set_device(device)
dyning's avatar
dyning committed
342

dyning's avatar
dyning committed
343
344
345
346
347
348
349
    config['Global']['distributed'] = dist.get_world_size() != 1

    # save_config
    save_model_dir = config['Global']['save_model_dir']
    os.makedirs(save_model_dir, exist_ok=True)
    with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f:
        yaml.dump(dict(config), f, default_flow_style=False, sort_keys=False)
dyning's avatar
dyning committed
350

WenmuZhou's avatar
WenmuZhou committed
351
352
    logger = get_logger(
        name='root', log_file='{}/train.log'.format(save_model_dir))
dyning's avatar
dyning committed
353
354
355
356
357
358
359
360
361
362
363
    if config['Global']['use_visualdl']:
        from visualdl import LogWriter
        vdl_writer_path = '{}/vdl/'.format(save_model_dir)
        os.makedirs(vdl_writer_path, exist_ok=True)
        vdl_writer = LogWriter(logdir=vdl_writer_path)
    else:
        vdl_writer = None
    print_dict(config, logger)
    logger.info('train with paddle {} and device {}'.format(paddle.__version__,
                                                            device))
    return config, device, logger, vdl_writer