random_crop_data.py 4.65 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# -*- coding:utf-8 -*- 

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import numpy as np
import cv2
import random


def is_poly_in_rect(poly, x, y, w, h):
    poly = np.array(poly)
    if poly[:, 0].min() < x or poly[:, 0].max() > x + w:
        return False
    if poly[:, 1].min() < y or poly[:, 1].max() > y + h:
        return False
    return True


def is_poly_outside_rect(poly, x, y, w, h):
    poly = np.array(poly)
    if poly[:, 0].max() < x or poly[:, 0].min() > x + w:
        return True
    if poly[:, 1].max() < y or poly[:, 1].min() > y + h:
        return True
    return False


def split_regions(axis):
    regions = []
    min_axis = 0
    for i in range(1, axis.shape[0]):
        if axis[i] != axis[i - 1] + 1:
            region = axis[min_axis:i]
            min_axis = i
            regions.append(region)
    return regions


def random_select(axis, max_size):
    xx = np.random.choice(axis, size=2)
    xmin = np.min(xx)
    xmax = np.max(xx)
    xmin = np.clip(xmin, 0, max_size - 1)
    xmax = np.clip(xmax, 0, max_size - 1)
    return xmin, xmax


def region_wise_random_select(regions, max_size):
    selected_index = list(np.random.choice(len(regions), 2))
    selected_values = []
    for index in selected_index:
        axis = regions[index]
        xx = int(np.random.choice(axis, size=1))
        selected_values.append(xx)
    xmin = min(selected_values)
    xmax = max(selected_values)
    return xmin, xmax


def crop_area(im, text_polys, min_crop_side_ratio, max_tries):
    h, w, _ = im.shape
    h_array = np.zeros(h, dtype=np.int32)
    w_array = np.zeros(w, dtype=np.int32)
    for points in text_polys:
        points = np.round(points, decimals=0).astype(np.int32)
        minx = np.min(points[:, 0])
        maxx = np.max(points[:, 0])
        w_array[minx:maxx] = 1
        miny = np.min(points[:, 1])
        maxy = np.max(points[:, 1])
        h_array[miny:maxy] = 1
    # ensure the cropped area not across a text
    h_axis = np.where(h_array == 0)[0]
    w_axis = np.where(w_array == 0)[0]

    if len(h_axis) == 0 or len(w_axis) == 0:
        return 0, 0, w, h

    h_regions = split_regions(h_axis)
    w_regions = split_regions(w_axis)

    for i in range(max_tries):
        if len(w_regions) > 1:
            xmin, xmax = region_wise_random_select(w_regions, w)
        else:
            xmin, xmax = random_select(w_axis, w)
        if len(h_regions) > 1:
            ymin, ymax = region_wise_random_select(h_regions, h)
        else:
            ymin, ymax = random_select(h_axis, h)

        if xmax - xmin < min_crop_side_ratio * w or ymax - ymin < min_crop_side_ratio * h:
            # area too small
            continue
        num_poly_in_rect = 0
        for poly in text_polys:
            if not is_poly_outside_rect(poly, xmin, ymin, xmax - xmin,
                                        ymax - ymin):
                num_poly_in_rect += 1
                break

        if num_poly_in_rect > 0:
            return xmin, ymin, xmax - xmin, ymax - ymin

    return 0, 0, w, h


def RandomCropData(data, size):
    max_tries = 10
    min_crop_side_ratio = 0.1
    require_original_image = False
    keep_ratio = True

    im = data['image']
    text_polys = data['polys']
    ignore_tags = data['ignore_tags']
    texts = data['texts']
    all_care_polys = [
        text_polys[i] for i, tag in enumerate(ignore_tags) if not tag
    ]
    # 计算crop区域
    crop_x, crop_y, crop_w, crop_h = crop_area(im, all_care_polys,
                                               min_crop_side_ratio, max_tries)
    # crop 图片 保持比例填充
    scale_w = size[0] / crop_w
    scale_h = size[1] / crop_h
    scale = min(scale_w, scale_h)
    h = int(crop_h * scale)
    w = int(crop_w * scale)
    if keep_ratio:
        padimg = np.zeros((size[1], size[0], im.shape[2]), im.dtype)
        padimg[:h, :w] = cv2.resize(
            im[crop_y:crop_y + crop_h, crop_x:crop_x + crop_w], (w, h))
        img = padimg
    else:
        img = cv2.resize(im[crop_y:crop_y + crop_h, crop_x:crop_x + crop_w],
                         tuple(size))
    # crop 文本框
    text_polys_crop = []
    ignore_tags_crop = []
    texts_crop = []
    for poly, text, tag in zip(text_polys, texts, ignore_tags):
        poly = ((poly - (crop_x, crop_y)) * scale).tolist()
        if not is_poly_outside_rect(poly, 0, 0, w, h):
            text_polys_crop.append(poly)
            ignore_tags_crop.append(tag)
            texts_crop.append(text)
    data['image'] = img
    data['polys'] = np.array(text_polys_crop)
    data['ignore_tags'] = ignore_tags_crop
    data['texts'] = texts_crop
    return data