db_process.py 6.37 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import math
import cv2
import numpy as np
import json
import sys

from .data_augment import AugmentData
from .random_crop_data import RandomCropData
from .make_shrink_map import MakeShrinkMap
from .make_border_map import MakeBorderMap


class DBProcessTrain(object):
    def __init__(self, params):
        self.img_set_dir = params['img_set_dir']
        self.image_shape = params['image_shape']

    def order_points_clockwise(self, pts):
        rect = np.zeros((4, 2), dtype="float32")
        s = pts.sum(axis=1)
        rect[0] = pts[np.argmin(s)]
        rect[2] = pts[np.argmax(s)]
        diff = np.diff(pts, axis=1)
        rect[1] = pts[np.argmin(diff)]
        rect[3] = pts[np.argmax(diff)]
        return rect

    def make_data_dict(self, imgvalue, entry):
        boxes = []
        texts = []
        ignores = []
        for rect in entry:
            points = rect['points']
            transcription = rect['transcription']
            try:
                box = self.order_points_clockwise(
                    np.array(points).reshape(-1, 2))
                if cv2.contourArea(box) > 0:
                    boxes.append(box)
                    texts.append(transcription)
                    ignores.append(transcription in ['*', '###'])
            except:
                print('load label failed!')
        data = {
            'image': imgvalue,
            'shape': [imgvalue.shape[0], imgvalue.shape[1]],
            'polys': np.array(boxes),
            'texts': texts,
            'ignore_tags': ignores,
        }
        return data

    def NormalizeImage(self, data):
        im = data['image']
        img_mean = [0.485, 0.456, 0.406]
        img_std = [0.229, 0.224, 0.225]
        im = im.astype(np.float32, copy=False)
        im = im / 255
        im -= img_mean
        im /= img_std
        channel_swap = (2, 0, 1)
        im = im.transpose(channel_swap)
        data['image'] = im
        return data

    def FilterKeys(self, data):
        filter_keys = ['polys', 'texts', 'ignore_tags', 'shape']
        for key in filter_keys:
            if key in data:
                del data[key]
        return data

    def convert_label_infor(self, label_infor):
        label_infor = label_infor.decode()
        label_infor = label_infor.encode('utf-8').decode('utf-8-sig')
        substr = label_infor.strip("\n").split("\t")
        img_path = self.img_set_dir + substr[0]
        label = json.loads(substr[1])
        return img_path, label

    def __call__(self, label_infor):
        img_path, gt_label = self.convert_label_infor(label_infor)
        imgvalue = cv2.imread(img_path)
        if imgvalue is None:
            return None
        data = self.make_data_dict(imgvalue, gt_label)
        data = AugmentData(data)
        data = RandomCropData(data, self.image_shape[1:])
        data = MakeShrinkMap(data)
        data = MakeBorderMap(data)
        data = self.NormalizeImage(data)
        data = self.FilterKeys(data)
        return data['image'], data['shrink_map'], data['shrink_mask'], data[
            'threshold_map'], data['threshold_mask']


class DBProcessTest(object):
    def __init__(self, params):
        super(DBProcessTest, self).__init__()
        self.resize_type = 0
        if 'det_image_shape' in params:
            self.image_shape = params['det_image_shape']
            # print(self.image_shape)
            self.resize_type = 1
        if 'max_side_len' in params:
            self.max_side_len = params['max_side_len']
        else:
            self.max_side_len = 2400

    def resize_image_type0(self, im):
        """
        resize image to a size multiple of 32 which is required by the network
        :param im: the resized image
        :param max_side_len: limit of max image size to avoid out of memory in gpu
        :return: the resized image and the resize ratio
        """
        max_side_len = self.max_side_len
        h, w, _ = im.shape

        resize_w = w
        resize_h = h

        # limit the max side
        if max(resize_h, resize_w) > max_side_len:
            if resize_h > resize_w:
                ratio = float(max_side_len) / resize_h
            else:
                ratio = float(max_side_len) / resize_w
        else:
            ratio = 1.
        resize_h = int(resize_h * ratio)
        resize_w = int(resize_w * ratio)
        if resize_h % 32 == 0:
            resize_h = resize_h
        else:
            resize_h = (resize_h // 32 + 1) * 32
        if resize_w % 32 == 0:
            resize_w = resize_w
        else:
            resize_w = (resize_w // 32 + 1) * 32
        try:
            if int(resize_w) <= 0 or int(resize_h) <= 0:
                return None, (None, None)
            im = cv2.resize(im, (int(resize_w), int(resize_h)))
        except:
            print(im.shape, resize_w, resize_h)
            sys.exit(0)
        ratio_h = resize_h / float(h)
        ratio_w = resize_w / float(w)
        return im, (ratio_h, ratio_w)

    def resize_image_type1(self, im):
        resize_h, resize_w = self.image_shape
        ori_h, ori_w = im.shape[:2]  # (h, w, c)
        im = cv2.resize(im, (int(resize_w), int(resize_h)))
        ratio_h = float(resize_h) / ori_h
        ratio_w = float(resize_w) / ori_w
        return im, (ratio_h, ratio_w)

    def normalize(self, im):
        img_mean = [0.485, 0.456, 0.406]
        img_std = [0.229, 0.224, 0.225]
        im = im.astype(np.float32, copy=False)
        im = im / 255
        im -= img_mean
        im /= img_std
        channel_swap = (2, 0, 1)
        im = im.transpose(channel_swap)
        return im

    def __call__(self, im):
        if self.resize_type == 0:
            im, (ratio_h, ratio_w) = self.resize_image_type0(im)
        else:
            im, (ratio_h, ratio_w) = self.resize_image_type1(im)
        im = self.normalize(im)
        im = im[np.newaxis, :]
        return [im, (ratio_h, ratio_w)]