predict_system.py 5.08 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
import subprocess

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))

os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
import cv2
import numpy as np
import time

import layoutparser as lp

from ppocr.utils.utility import get_image_file_list, check_and_read_gif
from ppocr.utils.logging import get_logger
from tools.infer.predict_system import TextSystem
from ppstructure.table.predict_table import TableSystem, to_excel
from ppstructure.utility import parse_args,draw_result

logger = get_logger()


class OCRSystem(object):
    def __init__(self, args):
        args.det_limit_type = 'resize_long'
        args.drop_score = 0
        self.text_system = TextSystem(args)
        self.table_system = TableSystem(args, self.text_system.text_detector, self.text_system.text_recognizer)
        self.table_layout = lp.PaddleDetectionLayoutModel("lp://PubLayNet/ppyolov2_r50vd_dcn_365e_publaynet/config",
                                                          threshold=0.5, enable_mkldnn=args.enable_mkldnn,
                                                          enforce_cpu=not args.use_gpu, thread_num=args.cpu_threads)
        self.use_angle_cls = args.use_angle_cls
        self.drop_score = args.drop_score

    def __call__(self, img):
        ori_im = img.copy()
        layout_res = self.table_layout.detect(img[..., ::-1])
        res_list = []
        for region in layout_res:
            x1, y1, x2, y2 = region.coordinates
            x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
            roi_img = ori_im[y1:y2, x1:x2, :]
            if region.type == 'Table':
                res = self.table_system(roi_img)
            else:
                filter_boxes, filter_rec_res = self.text_system(roi_img)
                filter_boxes = [x + [x1, y1] for x in filter_boxes]
                filter_boxes = [x.reshape(-1).tolist() for x in filter_boxes]

                res = (filter_boxes, filter_rec_res)
            res_list.append({'type': region.type, 'bbox': [x1, y1, x2, y2], 'res': res})
        return res_list

def save_res(res, save_folder, img_name):
    excel_save_folder = os.path.join(save_folder, img_name)
    os.makedirs(excel_save_folder, exist_ok=True)
    # save res
    for region in res:
        if region['type'] == 'Table':
            excel_path = os.path.join(excel_save_folder, '{}.xlsx'.format(region['bbox']))
            to_excel(region['res'], excel_path)
        elif region['type'] == 'Figure':
            pass
        else:
            with open(os.path.join(excel_save_folder, 'res.txt'), 'a', encoding='utf8') as f:
                for box, rec_res in zip(region['res'][0], region['res'][1]):
                    f.write('{}\t{}\n'.format(np.array(box).reshape(-1).tolist(), rec_res))


def main(args):
    image_file_list = get_image_file_list(args.image_dir)
    image_file_list = image_file_list
    image_file_list = image_file_list[args.process_id::args.total_process_num]
    save_folder = args.output
    os.makedirs(save_folder, exist_ok=True)

    structure_sys = OCRSystem(args)
    img_num = len(image_file_list)
    for i, image_file in enumerate(image_file_list):
        logger.info("[{}/{}] {}".format(i, img_num, image_file))
        img, flag = check_and_read_gif(image_file)
        img_name = os.path.basename(image_file).split('.')[0]

        if not flag:
            img = cv2.imread(image_file)
        if img is None:
            logger.error("error in loading image:{}".format(image_file))
            continue
        starttime = time.time()
        res = structure_sys(img)
        save_res(res, save_folder, img_name)
        draw_img = draw_result(img,res, args.vis_font_path)
        cv2.imwrite(os.path.join(save_folder, img_name, 'show.jpg'), draw_img)
        logger.info('result save to {}'.format(os.path.join(save_folder, img_name)))
        elapse = time.time() - starttime
        logger.info("Predict time : {:.3f}s".format(elapse))


if __name__ == "__main__":
    args = parse_args()
    if args.use_mp:
        p_list = []
        total_process_num = args.total_process_num
        for process_id in range(total_process_num):
            cmd = [sys.executable, "-u"] + sys.argv + [
                "--process_id={}".format(process_id),
                "--use_mp={}".format(False)
            ]
            p = subprocess.Popen(cmd, stdout=sys.stdout, stderr=sys.stdout)
            p_list.append(p)
        for p in p_list:
            p.wait()
    else:
        main(args)