"configs/model_pipeline.json" did not exist on "5a4db4905e69be19b412bcfa25d9bcd5683a426c"
pgnet_dataset.py 6.52 KB
Newer Older
Jethong's avatar
Jethong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import os
from paddle.io import Dataset
from .imaug import transform, create_operators
import random


class PGDateSet(Dataset):
Jethong's avatar
Jethong committed
22
    def __init__(self, config, mode, logger, seed=None):
Jethong's avatar
Jethong committed
23
24
25
        super(PGDateSet, self).__init__()

        self.logger = logger
Jethong's avatar
Jethong committed
26
        self.seed = seed
Jethong's avatar
Jethong committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
        global_config = config['Global']
        dataset_config = config[mode]['dataset']
        loader_config = config[mode]['loader']

        label_file_list = dataset_config.pop('label_file_list')
        data_source_num = len(label_file_list)
        ratio_list = dataset_config.get("ratio_list", [1.0])
        if isinstance(ratio_list, (float, int)):
            ratio_list = [float(ratio_list)] * int(data_source_num)
        self.data_format = dataset_config.get('data_format', 'icdar')
        assert len(
            ratio_list
        ) == data_source_num, "The length of ratio_list should be the same as the file_list."
        self.do_shuffle = loader_config['shuffle']

        logger.info("Initialize indexs of datasets:%s" % label_file_list)
        self.data_lines = self.get_image_info_list(label_file_list, ratio_list,
                                                   self.data_format)
        self.data_idx_order_list = list(range(len(self.data_lines)))
        if mode.lower() == "train":
            self.shuffle_data_random()

        self.ops = create_operators(dataset_config['transforms'], global_config)

    def shuffle_data_random(self):
        if self.do_shuffle:
Jethong's avatar
Jethong committed
53
            random.seed(self.seed)
Jethong's avatar
Jethong committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
            random.shuffle(self.data_lines)
        return

    def extract_polys(self, poly_txt_path):
        """
        Read text_polys, txt_tags, txts from give txt file.
        """
        text_polys, txt_tags, txts = [], [], []
        with open(poly_txt_path) as f:
            for line in f.readlines():
                poly_str, txt = line.strip().split('\t')
                poly = map(float, poly_str.split(','))
                text_polys.append(
                    np.array(
                        list(poly), dtype=np.float32).reshape(-1, 2))
                txts.append(txt)
                if txt == '###':
                    txt_tags.append(True)
                else:
                    txt_tags.append(False)

        return np.array(list(map(np.array, text_polys))), \
               np.array(txt_tags, dtype=np.bool), txts

    def extract_info_textnet(self, im_fn, img_dir=''):
        """
        Extract information from line in textnet format.
        """
        info_list = im_fn.split('\t')
        img_path = ''
        for ext in ['.jpg', '.png', '.jpeg', '.JPG']:
            if os.path.exists(os.path.join(img_dir, info_list[0] + ext)):
                img_path = os.path.join(img_dir, info_list[0] + ext)
                break

        if img_path == '':
            print('Image {0} NOT found in {1}, and it will be ignored.'.format(
                info_list[0], img_dir))

        nBox = (len(info_list) - 1) // 9
        wordBBs, txts, txt_tags = [], [], []
        for n in range(0, nBox):
            wordBB = list(map(float, info_list[n * 9 + 1:(n + 1) * 9]))
            txt = info_list[(n + 1) * 9]
            wordBBs.append([[wordBB[0], wordBB[1]], [wordBB[2], wordBB[3]],
                            [wordBB[4], wordBB[5]], [wordBB[6], wordBB[7]]])
            txts.append(txt)
            if txt == '###':
                txt_tags.append(True)
            else:
                txt_tags.append(False)
        return img_path, np.array(wordBBs, dtype=np.float32), txt_tags, txts

    def get_image_info_list(self, file_list, ratio_list, data_format='textnet'):
        if isinstance(file_list, str):
            file_list = [file_list]
        data_lines = []
        for idx, data_source in enumerate(file_list):
            image_files = []
            if data_format == 'icdar':
                image_files = [
                    (data_source, x)
                    for x in os.listdir(os.path.join(data_source, 'rgb'))
                    if x.split('.')[-1] in ['jpg', 'png', 'jpeg', 'JPG']
                ]
            elif data_format == 'textnet':
                with open(data_source) as f:
                    image_files = [(data_source, x.strip())
                                   for x in f.readlines()]
            else:
                print("Unrecognized data format...")
                exit(-1)
Jethong's avatar
Jethong committed
126
            random.seed(self.seed)
Jethong's avatar
Jethong committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
            image_files = random.sample(
                image_files, round(len(image_files) * ratio_list[idx]))
            data_lines.extend(image_files)
        return data_lines

    def __getitem__(self, idx):
        file_idx = self.data_idx_order_list[idx]
        data_path, data_line = self.data_lines[file_idx]
        try:
            if self.data_format == 'icdar':
                im_path = os.path.join(data_path, 'rgb', data_line)
                poly_path = os.path.join(data_path, 'poly',
                                         data_line.split('.')[0] + '.txt')
                text_polys, text_tags, text_strs = self.extract_polys(poly_path)
            else:
                image_dir = os.path.join(os.path.dirname(data_path), 'image')
                im_path, text_polys, text_tags, text_strs = self.extract_info_textnet(
                    data_line, image_dir)

            data = {
                'img_path': im_path,
                'polys': text_polys,
                'tags': text_tags,
                'strs': text_strs
            }
            with open(data['img_path'], 'rb') as f:
                img = f.read()
                data['image'] = img
            outs = transform(data, self.ops)
        except Exception as e:
            self.logger.error(
                "When parsing line {}, error happened with msg: {}".format(
                    self.data_idx_order_list[idx], e))
            outs = None
        if outs is None:
            return self.__getitem__(np.random.randint(self.__len__()))
        return outs

    def __len__(self):
        return len(self.data_idx_order_list)