east_process.py 20.6 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import math
import cv2
import numpy as np
import json
19
import sys
LDOUBLEV's avatar
LDOUBLEV committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

class EASTProcessTrain(object):
    def __init__(self, params):
        self.img_set_dir = params['img_set_dir']
        self.random_scale = np.array([0.5, 1, 2.0, 3.0])
        self.background_ratio = params['background_ratio']
        self.min_crop_side_ratio = params['min_crop_side_ratio']
        image_shape = params['image_shape']
        self.input_size = image_shape[1]
        self.min_text_size = params['min_text_size']

    def preprocess(self, im):
        input_size = self.input_size
        im_shape = im.shape
        im_size_min = np.min(im_shape[0:2])
        im_size_max = np.max(im_shape[0:2])
        im_scale = float(input_size) / float(im_size_max)
        im = cv2.resize(im, None, None, fx=im_scale, fy=im_scale)
        img_mean = [0.485, 0.456, 0.406]
        img_std = [0.229, 0.224, 0.225]
        im = im[:, :, ::-1].astype(np.float32)
        im = im / 255
        im -= img_mean
        im /= img_std
        new_h, new_w, _ = im.shape
        im_padded = np.zeros((input_size, input_size, 3), dtype=np.float32)
        im_padded[:new_h, :new_w, :] = im
        im_padded = im_padded.transpose((2, 0, 1))
        im_padded = im_padded[np.newaxis, :]
        return im_padded, im_scale

    def convert_label_infor(self, label_infor):
        label_infor = label_infor.decode()
        label_infor = label_infor.encode('utf-8').decode('utf-8-sig')
        substr = label_infor.strip("\n").split("\t")
        img_path = self.img_set_dir + substr[0]
        label = json.loads(substr[1])
        nBox = len(label)
        wordBBs, txts, txt_tags = [], [], []
        for bno in range(0, nBox):
            wordBB = label[bno]['points']
            txt = label[bno]['transcription']
            wordBBs.append(wordBB)
            txts.append(txt)
            if txt == '###':
                txt_tags.append(True)
            else:
                txt_tags.append(False)
        wordBBs = np.array(wordBBs, dtype=np.float32)
        txt_tags = np.array(txt_tags, dtype=np.bool)
        return img_path, wordBBs, txt_tags, txts

    def rotate_im_poly(self, im, text_polys):
        """
        rotate image with 90 / 180 / 270 degre
        """
        im_w, im_h = im.shape[1], im.shape[0]
        dst_im = im.copy()
        dst_polys = []
        rand_degree_ratio = np.random.rand()
        rand_degree_cnt = 1
81
        if 0.333 < rand_degree_ratio < 0.666:
LDOUBLEV's avatar
LDOUBLEV committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
            rand_degree_cnt = 2
        elif rand_degree_ratio > 0.666:
            rand_degree_cnt = 3
        for i in range(rand_degree_cnt):
            dst_im = np.rot90(dst_im)
        rot_degree = -90 * rand_degree_cnt
        rot_angle = rot_degree * math.pi / 180.0
        n_poly = text_polys.shape[0]
        cx, cy = 0.5 * im_w, 0.5 * im_h
        ncx, ncy = 0.5 * dst_im.shape[1], 0.5 * dst_im.shape[0]
        for i in range(n_poly):
            wordBB = text_polys[i]
            poly = []
            for j in range(4):
                sx, sy = wordBB[j][0], wordBB[j][1]
                dx = math.cos(rot_angle) * (sx - cx)\
                    - math.sin(rot_angle) * (sy - cy) + ncx
                dy = math.sin(rot_angle) * (sx - cx)\
                    + math.cos(rot_angle) * (sy - cy) + ncy
                poly.append([dx, dy])
            dst_polys.append(poly)
        dst_polys = np.array(dst_polys, dtype=np.float32)
        return dst_im, dst_polys

    def polygon_area(self, poly):
        """
        compute area of a polygon
        :param poly:
        :return:
        """
        edge = [(poly[1][0] - poly[0][0]) * (poly[1][1] + poly[0][1]),
                (poly[2][0] - poly[1][0]) * (poly[2][1] + poly[1][1]),
                (poly[3][0] - poly[2][0]) * (poly[3][1] + poly[2][1]),
                (poly[0][0] - poly[3][0]) * (poly[0][1] + poly[3][1])]
        return np.sum(edge) / 2.

    def check_and_validate_polys(self, polys, tags, img_height, img_width):
        """
        check so that the text poly is in the same direction,
        and also filter some invalid polygons
        :param polys:
        :param tags:
        :return:
        """
        h, w = img_height, img_width
        if polys.shape[0] == 0:
            return polys
        polys[:, :, 0] = np.clip(polys[:, :, 0], 0, w - 1)
        polys[:, :, 1] = np.clip(polys[:, :, 1], 0, h - 1)

        validated_polys = []
        validated_tags = []
        for poly, tag in zip(polys, tags):
            p_area = self.polygon_area(poly)
            #invalid poly
            if abs(p_area) < 1:
                continue
            if p_area > 0:
                #'poly in wrong direction'
141
                if not tag:
LDOUBLEV's avatar
LDOUBLEV committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
                    tag = True  #reversed cases should be ignore
                poly = poly[(0, 3, 2, 1), :]
            validated_polys.append(poly)
            validated_tags.append(tag)
        return np.array(validated_polys), np.array(validated_tags)

    def draw_img_polys(self, img, polys):
        if len(img.shape) == 4:
            img = np.squeeze(img, axis=0)
        if img.shape[0] == 3:
            img = img.transpose((1, 2, 0))
            img[:, :, 2] += 123.68
            img[:, :, 1] += 116.78
            img[:, :, 0] += 103.94
        cv2.imwrite("tmp.jpg", img)
        img = cv2.imread("tmp.jpg")
        for box in polys:
            box = box.astype(np.int32).reshape((-1, 1, 2))
            cv2.polylines(img, [box], True, color=(255, 255, 0), thickness=2)
        import random
        ino = random.randint(0, 100)
        cv2.imwrite("tmp_%d.jpg" % ino, img)
        return

    def shrink_poly(self, poly, r):
        """
        fit a poly inside the origin poly, maybe bugs here...
        used for generate the score map
        :param poly: the text poly
        :param r: r in the paper
        :return: the shrinked poly
        """
        # shrink ratio
        R = 0.3
        # find the longer pair
        dist0 = np.linalg.norm(poly[0] - poly[1])
        dist1 = np.linalg.norm(poly[2] - poly[3])
        dist2 = np.linalg.norm(poly[0] - poly[3])
        dist3 = np.linalg.norm(poly[1] - poly[2])
        if dist0 + dist1 > dist2 + dist3:
            # first move (p0, p1), (p2, p3), then (p0, p3), (p1, p2)
            ## p0, p1
            theta = np.arctan2((poly[1][1] - poly[0][1]),
                               (poly[1][0] - poly[0][0]))
            poly[0][0] += R * r[0] * np.cos(theta)
            poly[0][1] += R * r[0] * np.sin(theta)
            poly[1][0] -= R * r[1] * np.cos(theta)
            poly[1][1] -= R * r[1] * np.sin(theta)
            ## p2, p3
            theta = np.arctan2((poly[2][1] - poly[3][1]),
                               (poly[2][0] - poly[3][0]))
            poly[3][0] += R * r[3] * np.cos(theta)
            poly[3][1] += R * r[3] * np.sin(theta)
            poly[2][0] -= R * r[2] * np.cos(theta)
            poly[2][1] -= R * r[2] * np.sin(theta)
            ## p0, p3
            theta = np.arctan2((poly[3][0] - poly[0][0]),
                               (poly[3][1] - poly[0][1]))
            poly[0][0] += R * r[0] * np.sin(theta)
            poly[0][1] += R * r[0] * np.cos(theta)
            poly[3][0] -= R * r[3] * np.sin(theta)
            poly[3][1] -= R * r[3] * np.cos(theta)
            ## p1, p2
            theta = np.arctan2((poly[2][0] - poly[1][0]),
                               (poly[2][1] - poly[1][1]))
            poly[1][0] += R * r[1] * np.sin(theta)
            poly[1][1] += R * r[1] * np.cos(theta)
            poly[2][0] -= R * r[2] * np.sin(theta)
            poly[2][1] -= R * r[2] * np.cos(theta)
        else:
            ## p0, p3
            # print poly
            theta = np.arctan2((poly[3][0] - poly[0][0]),
                               (poly[3][1] - poly[0][1]))
            poly[0][0] += R * r[0] * np.sin(theta)
            poly[0][1] += R * r[0] * np.cos(theta)
            poly[3][0] -= R * r[3] * np.sin(theta)
            poly[3][1] -= R * r[3] * np.cos(theta)
            ## p1, p2
            theta = np.arctan2((poly[2][0] - poly[1][0]),
                               (poly[2][1] - poly[1][1]))
            poly[1][0] += R * r[1] * np.sin(theta)
            poly[1][1] += R * r[1] * np.cos(theta)
            poly[2][0] -= R * r[2] * np.sin(theta)
            poly[2][1] -= R * r[2] * np.cos(theta)
            ## p0, p1
            theta = np.arctan2((poly[1][1] - poly[0][1]),
                               (poly[1][0] - poly[0][0]))
            poly[0][0] += R * r[0] * np.cos(theta)
            poly[0][1] += R * r[0] * np.sin(theta)
            poly[1][0] -= R * r[1] * np.cos(theta)
            poly[1][1] -= R * r[1] * np.sin(theta)
            ## p2, p3
            theta = np.arctan2((poly[2][1] - poly[3][1]),
                               (poly[2][0] - poly[3][0]))
            poly[3][0] += R * r[3] * np.cos(theta)
            poly[3][1] += R * r[3] * np.sin(theta)
            poly[2][0] -= R * r[2] * np.cos(theta)
            poly[2][1] -= R * r[2] * np.sin(theta)
        return poly

    def generate_quad(self, im_size, polys, tags):
        """
        Generate quadrangle.
        """
        h, w = im_size
        poly_mask = np.zeros((h, w), dtype=np.uint8)
        score_map = np.zeros((h, w), dtype=np.uint8)
        # (x1, y1, ..., x4, y4, short_edge_norm)
        geo_map = np.zeros((h, w, 9), dtype=np.float32)
        # mask used during traning, to ignore some hard areas
        training_mask = np.ones((h, w), dtype=np.uint8)
        for poly_idx, poly_tag in enumerate(zip(polys, tags)):
            poly = poly_tag[0]
            tag = poly_tag[1]

            r = [None, None, None, None]
            for i in range(4):
                dist1 = np.linalg.norm(poly[i] - poly[(i + 1) % 4])
                dist2 = np.linalg.norm(poly[i] - poly[(i - 1) % 4])
                r[i] = min(dist1, dist2)
            # score map
            shrinked_poly = self.shrink_poly(
                poly.copy(), r).astype(np.int32)[np.newaxis, :, :]
            cv2.fillPoly(score_map, shrinked_poly, 1)
            cv2.fillPoly(poly_mask, shrinked_poly, poly_idx + 1)
            # if the poly is too small, then ignore it during training
            poly_h = min(
                np.linalg.norm(poly[0] - poly[3]),
                np.linalg.norm(poly[1] - poly[2]))
            poly_w = min(
                np.linalg.norm(poly[0] - poly[1]),
                np.linalg.norm(poly[2] - poly[3]))
            if min(poly_h, poly_w) < self.min_text_size:
                cv2.fillPoly(training_mask,
                             poly.astype(np.int32)[np.newaxis, :, :], 0)

            if tag:
                cv2.fillPoly(training_mask,
                             poly.astype(np.int32)[np.newaxis, :, :], 0)

            xy_in_poly = np.argwhere(poly_mask == (poly_idx + 1))
            # geo map.
            y_in_poly = xy_in_poly[:, 0]
            x_in_poly = xy_in_poly[:, 1]
            poly[:, 0] = np.minimum(np.maximum(poly[:, 0], 0), w)
            poly[:, 1] = np.minimum(np.maximum(poly[:, 1], 0), h)
            for pno in range(4):
                geo_channel_beg = pno * 2
                geo_map[y_in_poly, x_in_poly, geo_channel_beg] =\
                    x_in_poly - poly[pno, 0]
                geo_map[y_in_poly, x_in_poly, geo_channel_beg+1] =\
                    y_in_poly - poly[pno, 1]
            geo_map[y_in_poly, x_in_poly, 8] = \
                1.0 / max(min(poly_h, poly_w), 1.0)
        return score_map, geo_map, training_mask

    def crop_area(self,
                  im,
                  polys,
                  tags,
                  txts,
                  crop_background=False,
                  max_tries=50):
        """
        make random crop from the input image
        :param im:
        :param polys:
        :param tags:
        :param crop_background:
        :param max_tries:
        :return:
        """
        h, w, _ = im.shape
        pad_h = h // 10
        pad_w = w // 10
        h_array = np.zeros((h + pad_h * 2), dtype=np.int32)
        w_array = np.zeros((w + pad_w * 2), dtype=np.int32)
        for poly in polys:
            poly = np.round(poly, decimals=0).astype(np.int32)
            minx = np.min(poly[:, 0])
            maxx = np.max(poly[:, 0])
            w_array[minx + pad_w:maxx + pad_w] = 1
            miny = np.min(poly[:, 1])
            maxy = np.max(poly[:, 1])
            h_array[miny + pad_h:maxy + pad_h] = 1
        # ensure the cropped area not across a text
        h_axis = np.where(h_array == 0)[0]
        w_axis = np.where(w_array == 0)[0]
        if len(h_axis) == 0 or len(w_axis) == 0:
            return im, polys, tags, txts

        for i in range(max_tries):
            xx = np.random.choice(w_axis, size=2)
            xmin = np.min(xx) - pad_w
            xmax = np.max(xx) - pad_w
            xmin = np.clip(xmin, 0, w - 1)
            xmax = np.clip(xmax, 0, w - 1)
            yy = np.random.choice(h_axis, size=2)
            ymin = np.min(yy) - pad_h
            ymax = np.max(yy) - pad_h
            ymin = np.clip(ymin, 0, h - 1)
            ymax = np.clip(ymax, 0, h - 1)
            if xmax - xmin < self.min_crop_side_ratio * w or \
               ymax - ymin < self.min_crop_side_ratio * h:
                # area too small
                continue
            if polys.shape[0] != 0:
                poly_axis_in_area = (polys[:, :, 0] >= xmin)\
                    & (polys[:, :, 0] <= xmax)\
                    & (polys[:, :, 1] >= ymin)\
                    & (polys[:, :, 1] <= ymax)
                selected_polys = np.where(
                    np.sum(poly_axis_in_area, axis=1) == 4)[0]
            else:
                selected_polys = []

            if len(selected_polys) == 0:
                # no text in this area
                if crop_background:
                    im = im[ymin:ymax + 1, xmin:xmax + 1, :]
                    polys = []
                    tags = []
                    txts = []
                    return im, polys, tags, txts
                else:
                    continue

            im = im[ymin:ymax + 1, xmin:xmax + 1, :]
            polys = polys[selected_polys]
            tags = tags[selected_polys]
            txts_tmp = []
            for selected_poly in selected_polys:
                txts_tmp.append(txts[selected_poly])
            txts = txts_tmp
            polys[:, :, 0] -= xmin
            polys[:, :, 1] -= ymin
            return im, polys, tags, txts
        return im, polys, tags, txts

    def crop_background_infor(self, im, text_polys, text_tags, text_strs):
        im, text_polys, text_tags, text_strs = self.crop_area(
            im, text_polys, text_tags, text_strs, crop_background=True)
        if len(text_polys) > 0:
            return None
        # pad and resize image
        input_size = self.input_size
        im, ratio = self.preprocess(im)
        score_map = np.zeros((input_size, input_size), dtype=np.float32)
        geo_map = np.zeros((input_size, input_size, 9), dtype=np.float32)
        training_mask = np.ones((input_size, input_size), dtype=np.float32)
        return im, score_map, geo_map, training_mask

    def crop_foreground_infor(self, im, text_polys, text_tags, text_strs):
        im, text_polys, text_tags, text_strs = self.crop_area(
            im, text_polys, text_tags, text_strs, crop_background=False)
        if text_polys.shape[0] == 0:
            return None
        #continue for all ignore case
        if np.sum((text_tags * 1.0)) >= text_tags.size:
            return None
        # pad and resize image
        input_size = self.input_size
        im, ratio = self.preprocess(im)
        text_polys[:, :, 0] *= ratio
        text_polys[:, :, 1] *= ratio
        _, _, new_h, new_w = im.shape
        #         print(im.shape)
        #         self.draw_img_polys(im, text_polys)
        score_map, geo_map, training_mask = self.generate_quad(
            (new_h, new_w), text_polys, text_tags)
        return im, score_map, geo_map, training_mask

    def __call__(self, label_infor):
        infor = self.convert_label_infor(label_infor)
        im_path, text_polys, text_tags, text_strs = infor
        im = cv2.imread(im_path)
        if im is None:
            return None
        if text_polys.shape[0] == 0:
            return None
        #add rotate cases
        if np.random.rand() < 0.5:
            im, text_polys = self.rotate_im_poly(im, text_polys)
        h, w, _ = im.shape
        text_polys, text_tags = self.check_and_validate_polys(text_polys,
                                                              text_tags, h, w)
        if text_polys.shape[0] == 0:
            return None

        # random scale this image
        rd_scale = np.random.choice(self.random_scale)
        im = cv2.resize(im, dsize=None, fx=rd_scale, fy=rd_scale)
        text_polys *= rd_scale
        if np.random.rand() < self.background_ratio:
            outs = self.crop_background_infor(im, text_polys, text_tags,
                                              text_strs)
        else:
            outs = self.crop_foreground_infor(im, text_polys, text_tags,
                                              text_strs)

        if outs is None:
            return None
        im, score_map, geo_map, training_mask = outs
        score_map = score_map[np.newaxis, ::4, ::4].astype(np.float32)
        geo_map = np.swapaxes(geo_map, 1, 2)
        geo_map = np.swapaxes(geo_map, 1, 0)
        geo_map = geo_map[:, ::4, ::4].astype(np.float32)
        training_mask = training_mask[np.newaxis, ::4, ::4]
        training_mask = training_mask.astype(np.float32)
        return im, score_map, geo_map, training_mask


class EASTProcessTest(object):
    def __init__(self, params):
        super(EASTProcessTest, self).__init__()
458
459
460
461
462
        self.resize_type = 0
        if 'test_image_shape' in params:
            self.image_shape = params['test_image_shape']
            # print(self.image_shape)
            self.resize_type = 1
LDOUBLEV's avatar
LDOUBLEV committed
463
464
465
466
467
        if 'max_side_len' in params:
            self.max_side_len = params['max_side_len']
        else:
            self.max_side_len = 2400

468
    def resize_image_type0(self, im):
LDOUBLEV's avatar
LDOUBLEV committed
469
470
        """
        resize image to a size multiple of 32 which is required by the network
471
472
473
474
        args:
            img(array): array with shape [h, w, c]
        return(tuple):
            img, (ratio_h, ratio_w)
LDOUBLEV's avatar
LDOUBLEV committed
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
        """
        max_side_len = self.max_side_len
        h, w, _ = im.shape

        resize_w = w
        resize_h = h

        # limit the max side
        if max(resize_h, resize_w) > max_side_len:
            if resize_h > resize_w:
                ratio = float(max_side_len) / resize_h
            else:
                ratio = float(max_side_len) / resize_w
        else:
            ratio = 1.
        resize_h = int(resize_h * ratio)
        resize_w = int(resize_w * ratio)
        if resize_h % 32 == 0:
            resize_h = resize_h
LDOUBLEV's avatar
LDOUBLEV committed
494
495
        elif resize_h // 32 <= 1:
            resize_h = 32
LDOUBLEV's avatar
LDOUBLEV committed
496
497
498
499
        else:
            resize_h = (resize_h // 32 - 1) * 32
        if resize_w % 32 == 0:
            resize_w = resize_w
LDOUBLEV's avatar
LDOUBLEV committed
500
501
        elif resize_w // 32 <= 1:
            resize_w = 32
LDOUBLEV's avatar
LDOUBLEV committed
502
503
        else:
            resize_w = (resize_w // 32 - 1) * 32
504
505
506
507
508
509
510
        try:
            if int(resize_w) <= 0 or int(resize_h) <= 0:
                return None, (None, None)
            im = cv2.resize(im, (int(resize_w), int(resize_h)))
        except:
            print(im.shape, resize_w, resize_h)
            sys.exit(0)
LDOUBLEV's avatar
LDOUBLEV committed
511
512
513
514
        ratio_h = resize_h / float(h)
        ratio_w = resize_w / float(w)
        return im, (ratio_h, ratio_w)

515
516
517
518
519
520
521
522
    def resize_image_type1(self, im):
        resize_h, resize_w = self.image_shape
        ori_h, ori_w = im.shape[:2]  # (h, w, c)
        im = cv2.resize(im, (int(resize_w), int(resize_h)))
        ratio_h = float(resize_h) / ori_h
        ratio_w = float(resize_w) / ori_w
        return im, (ratio_h, ratio_w)

LDOUBLEV's avatar
LDOUBLEV committed
523
    def __call__(self, im):
524
525
526
527
        if self.resize_type == 0:
            im, (ratio_h, ratio_w) = self.resize_image_type0(im)
        else:
            im, (ratio_h, ratio_w) = self.resize_image_type1(im)
LDOUBLEV's avatar
LDOUBLEV committed
528
529
530
531
532
533
534
535
536
        img_mean = [0.485, 0.456, 0.406]
        img_std = [0.229, 0.224, 0.225]
        im = im[:, :, ::-1].astype(np.float32)
        im = im / 255
        im -= img_mean
        im /= img_std
        im = im.transpose((2, 0, 1))
        im = im[np.newaxis, :]
        return [im, (ratio_h, ratio_w)]