infer_rec.py 6.54 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
LDOUBLEV's avatar
LDOUBLEV committed
20
21
import os
import sys
22
__dir__ = os.path.dirname(os.path.abspath(__file__))
LDOUBLEV's avatar
LDOUBLEV committed
23
sys.path.append(__dir__)
24
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
LDOUBLEV's avatar
LDOUBLEV committed
25

tink2123's avatar
tink2123 committed
26

LDOUBLEV's avatar
LDOUBLEV committed
27
28
29
30
31
32
33
34
35
36
37
38
39
def set_paddle_flags(**kwargs):
    for key, value in kwargs.items():
        if os.environ.get(key, None) is None:
            os.environ[key] = str(value)


# NOTE(paddle-dev): All of these flags should be
# set before `import paddle`. Otherwise, it would
# not take any effect.
set_paddle_flags(
    FLAGS_eager_delete_tensor_gb=0,  # enable GC to save memory
)

LDOUBLEV's avatar
LDOUBLEV committed
40
import tools.program as program
LDOUBLEV's avatar
LDOUBLEV committed
41
42
43
44
45
46
47
from paddle import fluid
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from ppocr.data.reader_main import reader_main
from ppocr.utils.save_load import init_model
from ppocr.utils.character import CharacterOps
from ppocr.utils.utility import create_module
tink2123's avatar
tink2123 committed
48
from ppocr.utils.utility import get_image_file_list
LDOUBLEV's avatar
LDOUBLEV committed
49
50
51
52
53
54
55


def main():
    config = program.load_config(FLAGS.config)
    program.merge_config(FLAGS.opt)
    logger.info(config)
    char_ops = CharacterOps(config['Global'])
tink2123's avatar
tink2123 committed
56
    loss_type = config['Global']['loss_type']
LDOUBLEV's avatar
LDOUBLEV committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
    config['Global']['char_ops'] = char_ops

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
    #     check_gpu(use_gpu)

    place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

    rec_model = create_module(config['Architecture']['function'])(params=config)
    startup_prog = fluid.Program()
    eval_prog = fluid.Program()
    with fluid.program_guard(eval_prog, startup_prog):
        with fluid.unique_name.guard():
            _, outputs = rec_model(mode="test")
            fetch_name_list = list(outputs.keys())
            fetch_varname_list = [outputs[v].name for v in fetch_name_list]
    eval_prog = eval_prog.clone(for_test=True)
    exe.run(startup_prog)

    init_model(config, eval_prog, exe)

tink2123's avatar
tink2123 committed
79
    blobs = reader_main(config, 'test')()
tink2123's avatar
tink2123 committed
80
    infer_img = config['Global']['infer_img']
tink2123's avatar
tink2123 committed
81
    infer_list = get_image_file_list(infer_img)
tink2123's avatar
tink2123 committed
82
83
84
85
    max_img_num = len(infer_list)
    if len(infer_list) == 0:
        logger.info("Can not find img in infer_img dir.")
    for i in range(max_img_num):
littletomatodonkey's avatar
littletomatodonkey committed
86
        logger.info("infer_img:%s" % infer_list[i])
tink2123's avatar
tink2123 committed
87
        img = next(blobs)
tink2123's avatar
tink2123 committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
        if loss_type != "srn":
            predict = exe.run(program=eval_prog,
                              feed={"image": img},
                              fetch_list=fetch_varname_list,
                              return_numpy=False)
        else:
            encoder_word_pos_list = []
            gsrm_word_pos_list = []
            gsrm_slf_attn_bias1_list = []
            gsrm_slf_attn_bias2_list = []
            encoder_word_pos_list.append(img[1])
            gsrm_word_pos_list.append(img[2])
            gsrm_slf_attn_bias1_list.append(img[3])
            gsrm_slf_attn_bias2_list.append(img[4])

            encoder_word_pos_list = np.concatenate(
                encoder_word_pos_list, axis=0).astype(np.int64)
            gsrm_word_pos_list = np.concatenate(
                gsrm_word_pos_list, axis=0).astype(np.int64)
            gsrm_slf_attn_bias1_list = np.concatenate(
                gsrm_slf_attn_bias1_list, axis=0).astype(np.float32)
            gsrm_slf_attn_bias2_list = np.concatenate(
                gsrm_slf_attn_bias2_list, axis=0).astype(np.float32)

            predict = exe.run(program=eval_prog, \
                       feed={'image': img[0], 'encoder_word_pos': encoder_word_pos_list,
                             'gsrm_word_pos': gsrm_word_pos_list, 'gsrm_slf_attn_bias1': gsrm_slf_attn_bias1_list,
                             'gsrm_slf_attn_bias2': gsrm_slf_attn_bias2_list}, \
                       fetch_list=fetch_varname_list, \
                       return_numpy=False)
dyning's avatar
dyning committed
118
119
        if loss_type == "ctc":
            preds = np.array(predict[0])
LDOUBLEV's avatar
LDOUBLEV committed
120
121
122
            preds = preds.reshape(-1)
            preds_lod = predict[0].lod()[0]
            preds_text = char_ops.decode(preds)
dyning's avatar
dyning committed
123
124
125
126
            probs = np.array(predict[1])
            ind = np.argmax(probs, axis=1)
            blank = probs.shape[1]
            valid_ind = np.where(ind != (blank - 1))[0]
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
127
            if len(valid_ind) == 0:
128
                continue
dyning's avatar
dyning committed
129
130
131
132
            score = np.mean(probs[valid_ind, ind[valid_ind]])
        elif loss_type == "attention":
            preds = np.array(predict[0])
            probs = np.array(predict[1])
LDOUBLEV's avatar
LDOUBLEV committed
133
134
            end_pos = np.where(preds[0, :] == 1)[0]
            if len(end_pos) <= 1:
dyning's avatar
dyning committed
135
136
                preds = preds[0, 1:]
                score = np.mean(probs[0, 1:])
LDOUBLEV's avatar
LDOUBLEV committed
137
            else:
dyning's avatar
dyning committed
138
139
140
141
                preds = preds[0, 1:end_pos[1]]
                score = np.mean(probs[0, 1:end_pos[1]])
            preds = preds.reshape(-1)
            preds_text = char_ops.decode(preds)
tink2123's avatar
tink2123 committed
142
        elif loss_type == "srn":
tink2123's avatar
tink2123 committed
143
            char_num = char_ops.get_char_num()
tink2123's avatar
tink2123 committed
144
145
146
147
            preds = np.array(predict[0])
            preds = preds.reshape(-1)
            probs = np.array(predict[1])
            ind = np.argmax(probs, axis=1)
tink2123's avatar
tink2123 committed
148
            valid_ind = np.where(preds != int(char_num-1))[0]
tink2123's avatar
tink2123 committed
149
150
151
152
153
            if len(valid_ind) == 0:
                continue
            score = np.mean(probs[valid_ind, ind[valid_ind]])
            preds = preds[:valid_ind[-1] + 1]
            preds_text = char_ops.decode(preds)
littletomatodonkey's avatar
littletomatodonkey committed
154
155
156
        logger.info("\t index: {}".format(preds))
        logger.info("\t word : {}".format(preds_text))
        logger.info("\t score: {}".format(score))
LDOUBLEV's avatar
LDOUBLEV committed
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

    # save for inference model
    target_var = []
    for key, values in outputs.items():
        target_var.append(values)

    fluid.io.save_inference_model(
        "./output/",
        feeded_var_names=['image'],
        target_vars=target_var,
        executor=exe,
        main_program=eval_prog,
        model_filename="model",
        params_filename="params")


if __name__ == '__main__':
    parser = program.ArgsParser()
    FLAGS = parser.parse_args()
    main()