rnn.py 6.24 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

andyjpaddle's avatar
andyjpaddle committed
19
import paddle
WenmuZhou's avatar
WenmuZhou committed
20
21
22
from paddle import nn

from ppocr.modeling.heads.rec_ctc_head import get_para_bias_attr
andyjpaddle's avatar
andyjpaddle committed
23
from ppocr.modeling.backbones.rec_svtrnet import Block, ConvBNLayer, trunc_normal_, zeros_, ones_
WenmuZhou's avatar
WenmuZhou committed
24
25
26
27
28
29
30
31
32


class Im2Seq(nn.Layer):
    def __init__(self, in_channels, **kwargs):
        super().__init__()
        self.out_channels = in_channels

    def forward(self, x):
        B, C, H, W = x.shape
WenmuZhou's avatar
WenmuZhou committed
33
34
35
        assert H == 1
        x = x.squeeze(axis=2)
        x = x.transpose([0, 2, 1])  # (NTC)(batch, width, channels)
WenmuZhou's avatar
WenmuZhou committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
        return x


class EncoderWithRNN(nn.Layer):
    def __init__(self, in_channels, hidden_size):
        super(EncoderWithRNN, self).__init__()
        self.out_channels = hidden_size * 2
        self.lstm = nn.LSTM(
            in_channels, hidden_size, direction='bidirectional', num_layers=2)

    def forward(self, x):
        x, _ = self.lstm(x)
        return x


class EncoderWithFC(nn.Layer):
    def __init__(self, in_channels, hidden_size):
        super(EncoderWithFC, self).__init__()
        self.out_channels = hidden_size
        weight_attr, bias_attr = get_para_bias_attr(
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
56
            l2_decay=0.00001, k=in_channels)
WenmuZhou's avatar
WenmuZhou committed
57
58
59
60
61
62
63
64
65
66
67
68
        self.fc = nn.Linear(
            in_channels,
            hidden_size,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            name='reduce_encoder_fea')

    def forward(self, x):
        x = self.fc(x)
        return x


andyjpaddle's avatar
andyjpaddle committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
class EncoderWithSVTR(nn.Layer):
    def __init__(
            self,
            in_channels,
            dims=64,  # XS
            depth=2,
            hidden_dims=120,
            use_guide=False,
            num_heads=8,
            qkv_bias=True,
            mlp_ratio=2.0,
            drop_rate=0.1,
            attn_drop_rate=0.1,
            drop_path=0.,
            qk_scale=None):
        super(EncoderWithSVTR, self).__init__()
        self.depth = depth
        self.use_guide = use_guide
        self.conv1 = ConvBNLayer(
            in_channels, in_channels // 8, padding=1, act=nn.Swish)
        self.conv2 = ConvBNLayer(
            in_channels // 8, hidden_dims, kernel_size=1, act=nn.Swish)

        self.svtr_block = nn.LayerList([
            Block(
                dim=hidden_dims,
                num_heads=num_heads,
                mixer='Global',
                HW=None,
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                drop=drop_rate,
                act_layer=nn.Swish,
                attn_drop=attn_drop_rate,
                drop_path=drop_path,
                norm_layer='nn.LayerNorm',
                epsilon=1e-05,
                prenorm=False) for i in range(depth)
        ])
        self.norm = nn.LayerNorm(hidden_dims, epsilon=1e-6)
        self.conv3 = ConvBNLayer(
            hidden_dims, in_channels, kernel_size=1, act=nn.Swish)
        # last conv-nxn, the input is concat of input tensor and conv3 output tensor
        self.conv4 = ConvBNLayer(
            2 * in_channels, in_channels // 8, padding=1, act=nn.Swish)

        self.conv1x1 = ConvBNLayer(
            in_channels // 8, dims, kernel_size=1, act=nn.Swish)
        self.out_channels = dims
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight)
            if isinstance(m, nn.Linear) and m.bias is not None:
                zeros_(m.bias)
        elif isinstance(m, nn.LayerNorm):
            zeros_(m.bias)
            ones_(m.weight)

    def forward(self, x):
        # for use guide
        if self.use_guide:
            z = x.clone()
            z.stop_gradient = True
        else:
            z = x
        # for short cut
        h = z
        # reduce dim
        z = self.conv1(z)
        z = self.conv2(z)
        # SVTR global block
        B, C, H, W = z.shape
        z = z.flatten(2).transpose([0, 2, 1])
        for blk in self.svtr_block:
            z = blk(z)
        z = self.norm(z)
        # last stage
        z = z.reshape([0, H, W, C]).transpose([0, 3, 1, 2])
        z = self.conv3(z)
        z = paddle.concat((h, z), axis=1)
        z = self.conv1x1(self.conv4(z))
        return z


WenmuZhou's avatar
WenmuZhou committed
156
class SequenceEncoder(nn.Layer):
WenmuZhou's avatar
WenmuZhou committed
157
    def __init__(self, in_channels, encoder_type, hidden_size=48, **kwargs):
WenmuZhou's avatar
WenmuZhou committed
158
        super(SequenceEncoder, self).__init__()
WenmuZhou's avatar
WenmuZhou committed
159
        self.encoder_reshape = Im2Seq(in_channels)
WenmuZhou's avatar
WenmuZhou committed
160
        self.out_channels = self.encoder_reshape.out_channels
andyjpaddle's avatar
andyjpaddle committed
161
        self.encoder_type = encoder_type
WenmuZhou's avatar
WenmuZhou committed
162
163
164
165
        if encoder_type == 'reshape':
            self.only_reshape = True
        else:
            support_encoder_dict = {
WenmuZhou's avatar
WenmuZhou committed
166
                'reshape': Im2Seq,
WenmuZhou's avatar
WenmuZhou committed
167
                'fc': EncoderWithFC,
andyjpaddle's avatar
andyjpaddle committed
168
169
                'rnn': EncoderWithRNN,
                'svtr': EncoderWithSVTR
WenmuZhou's avatar
WenmuZhou committed
170
            }
WenmuZhou's avatar
WenmuZhou committed
171
172
            assert encoder_type in support_encoder_dict, '{} must in {}'.format(
                encoder_type, support_encoder_dict.keys())
andyjpaddle's avatar
andyjpaddle committed
173
174
175
176
177
178
            if encoder_type == "svtr":
                self.encoder = support_encoder_dict[encoder_type](
                    self.encoder_reshape.out_channels, **kwargs)
            else:
                self.encoder = support_encoder_dict[encoder_type](
                    self.encoder_reshape.out_channels, hidden_size)
WenmuZhou's avatar
WenmuZhou committed
179
180
181
182
            self.out_channels = self.encoder.out_channels
            self.only_reshape = False

    def forward(self, x):
andyjpaddle's avatar
andyjpaddle committed
183
184
185
186
187
188
        if self.encoder_type != 'svtr':
            x = self.encoder_reshape(x)
            if not self.only_reshape:
                x = self.encoder(x)
            return x
        else:
WenmuZhou's avatar
WenmuZhou committed
189
            x = self.encoder(x)
andyjpaddle's avatar
andyjpaddle committed
190
191
            x = self.encoder_reshape(x)
            return x