label_ops.py 21.2 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import numpy as np
tink2123's avatar
tink2123 committed
21
import string
LDOUBLEV's avatar
LDOUBLEV committed
22
import json
WenmuZhou's avatar
WenmuZhou committed
23

tink2123's avatar
tink2123 committed
24
25
from ppocr.utils.logging import get_logger

WenmuZhou's avatar
WenmuZhou committed
26
27
28
29
30
31
32
33
34
35
36
37

class ClsLabelEncode(object):
    def __init__(self, label_list, **kwargs):
        self.label_list = label_list

    def __call__(self, data):
        label = data['label']
        if label not in self.label_list:
            return None
        label = self.label_list.index(label)
        data['label'] = label
        return data
WenmuZhou's avatar
WenmuZhou committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57


class DetLabelEncode(object):
    def __init__(self, **kwargs):
        pass

    def __call__(self, data):
        label = data['label']
        label = json.loads(label)
        nBox = len(label)
        boxes, txts, txt_tags = [], [], []
        for bno in range(0, nBox):
            box = label[bno]['points']
            txt = label[bno]['transcription']
            boxes.append(box)
            txts.append(txt)
            if txt in ['*', '###']:
                txt_tags.append(True)
            else:
                txt_tags.append(False)
LDOUBLEV's avatar
LDOUBLEV committed
58
59
        if len(boxes) == 0:
            return None
MissPenguin's avatar
MissPenguin committed
60
        boxes = self.expand_points_num(boxes)
LDOUBLEV's avatar
LDOUBLEV committed
61
62
        boxes = np.array(boxes, dtype=np.float32)
        txt_tags = np.array(txt_tags, dtype=np.bool)
WenmuZhou's avatar
WenmuZhou committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

        data['polys'] = boxes
        data['texts'] = txts
        data['ignore_tags'] = txt_tags
        return data

    def order_points_clockwise(self, pts):
        rect = np.zeros((4, 2), dtype="float32")
        s = pts.sum(axis=1)
        rect[0] = pts[np.argmin(s)]
        rect[2] = pts[np.argmax(s)]
        diff = np.diff(pts, axis=1)
        rect[1] = pts[np.argmin(diff)]
        rect[3] = pts[np.argmax(diff)]
        return rect

MissPenguin's avatar
MissPenguin committed
79
80
81
82
83
84
85
86
87
88
89
    def expand_points_num(self, boxes):
        max_points_num = 0
        for box in boxes:
            if len(box) > max_points_num:
                max_points_num = len(box)
        ex_boxes = []
        for box in boxes:
            ex_box = box + [box[-1]] * (max_points_num - len(box))
            ex_boxes.append(ex_box)
        return ex_boxes

WenmuZhou's avatar
WenmuZhou committed
90
91
92
93
94
95
96
97
98
99

class BaseRecLabelEncode(object):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False):

        self.max_text_len = max_text_length
tink2123's avatar
tink2123 committed
100
101
        self.beg_str = "sos"
        self.end_str = "eos"
tink2123's avatar
tink2123 committed
102
        self.lower = False
tink2123's avatar
tink2123 committed
103
104
105
106
107
108

        if character_dict_path is None:
            logger = get_logger()
            logger.warning(
                "The character_dict_path is None, model can only recognize number and lower letters"
            )
WenmuZhou's avatar
WenmuZhou committed
109
110
            self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
            dict_character = list(self.character_str)
tink2123's avatar
tink2123 committed
111
112
            self.lower = True
        else:
WenmuZhou's avatar
WenmuZhou committed
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
            self.character_str = ""
            with open(character_dict_path, "rb") as fin:
                lines = fin.readlines()
                for line in lines:
                    line = line.decode('utf-8').strip("\n").strip("\r\n")
                    self.character_str += line
            if use_space_char:
                self.character_str += " "
            dict_character = list(self.character_str)
        dict_character = self.add_special_char(dict_character)
        self.dict = {}
        for i, char in enumerate(dict_character):
            self.dict[char] = i
        self.character = dict_character

    def add_special_char(self, dict_character):
        return dict_character

    def encode(self, text):
        """convert text-label into text-index.
        input:
            text: text labels of each image. [batch_size]

        output:
            text: concatenated text index for CTCLoss.
                    [sum(text_lengths)] = [text_index_0 + text_index_1 + ... + text_index_(n - 1)]
            length: length of each text. [batch_size]
        """
WenmuZhou's avatar
WenmuZhou committed
141
        if len(text) == 0 or len(text) > self.max_text_len:
WenmuZhou's avatar
WenmuZhou committed
142
            return None
tink2123's avatar
tink2123 committed
143
        if self.lower:
WenmuZhou's avatar
WenmuZhou committed
144
145
146
147
148
149
150
151
152
153
154
155
156
            text = text.lower()
        text_list = []
        for char in text:
            if char not in self.dict:
                # logger = get_logger()
                # logger.warning('{} is not in dict'.format(char))
                continue
            text_list.append(self.dict[char])
        if len(text_list) == 0:
            return None
        return text_list


Topdu's avatar
Topdu committed
157
158
159
160
161
162
163
164
165
class NRTRLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):

tink2123's avatar
tink2123 committed
166
167
        super(NRTRLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
tink2123's avatar
tink2123 committed
168

Topdu's avatar
Topdu committed
169
170
171
172
173
    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
Topdu's avatar
Topdu committed
174
175
        if len(text) >= self.max_text_len - 1:
            return None
Topdu's avatar
Topdu committed
176
177
178
179
180
181
        data['length'] = np.array(len(text))
        text.insert(0, 2)
        text.append(3)
        text = text + [0] * (self.max_text_len - len(text))
        data['label'] = np.array(text)
        return data
tink2123's avatar
tink2123 committed
182

Topdu's avatar
Topdu committed
183
    def add_special_char(self, dict_character):
tink2123's avatar
tink2123 committed
184
        dict_character = ['blank', '<unk>', '<s>', '</s>'] + dict_character
Topdu's avatar
Topdu committed
185
186
        return dict_character

tink2123's avatar
tink2123 committed
187

WenmuZhou's avatar
WenmuZhou committed
188
189
190
191
192
193
194
195
class CTCLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
tink2123's avatar
tink2123 committed
196
197
        super(CTCLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
WenmuZhou's avatar
WenmuZhou committed
198
199
200
201
202
203
204
205
206

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
        data['length'] = np.array(len(text))
        text = text + [0] * (self.max_text_len - len(text))
        data['label'] = np.array(text)
207
208
209
210
211

        label = [0] * len(self.character)
        for x in text:
            label[x] += 1
        data['label_ace'] = np.array(label)
WenmuZhou's avatar
WenmuZhou committed
212
213
214
215
216
217
218
        return data

    def add_special_char(self, dict_character):
        dict_character = ['blank'] + dict_character
        return dict_character


Jethong's avatar
Jethong committed
219
class E2ELabelEncodeTest(BaseRecLabelEncode):
Jethong's avatar
Jethong committed
220
221
222
223
224
    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
tink2123's avatar
tink2123 committed
225
226
        super(E2ELabelEncodeTest, self).__init__(
            max_text_length, character_dict_path, use_space_char)
Jethong's avatar
Jethong committed
227
228

    def __call__(self, data):
Jethong's avatar
Jethong committed
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
        import json
        padnum = len(self.dict)
        label = data['label']
        label = json.loads(label)
        nBox = len(label)
        boxes, txts, txt_tags = [], [], []
        for bno in range(0, nBox):
            box = label[bno]['points']
            txt = label[bno]['transcription']
            boxes.append(box)
            txts.append(txt)
            if txt in ['*', '###']:
                txt_tags.append(True)
            else:
                txt_tags.append(False)
        boxes = np.array(boxes, dtype=np.float32)
        txt_tags = np.array(txt_tags, dtype=np.bool)
        data['polys'] = boxes
Jethong's avatar
Jethong committed
247
        data['ignore_tags'] = txt_tags
Jethong's avatar
Jethong committed
248
        temp_texts = []
Jethong's avatar
Jethong committed
249
        for text in txts:
Jethong's avatar
Jethong committed
250
251
252
253
            text = text.lower()
            text = self.encode(text)
            if text is None:
                return None
Jethong's avatar
Jethong committed
254
255
            text = text + [padnum] * (self.max_text_len - len(text)
                                      )  # use 36 to pad
Jethong's avatar
Jethong committed
256
257
258
259
260
            temp_texts.append(text)
        data['texts'] = np.array(temp_texts)
        return data


Jethong's avatar
Jethong committed
261
class E2ELabelEncodeTrain(object):
Jethong's avatar
Jethong committed
262
263
    def __init__(self, **kwargs):
        pass
Jethong's avatar
Jethong committed
264
265

    def __call__(self, data):
Jethong's avatar
Jethong committed
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
        import json
        label = data['label']
        label = json.loads(label)
        nBox = len(label)
        boxes, txts, txt_tags = [], [], []
        for bno in range(0, nBox):
            box = label[bno]['points']
            txt = label[bno]['transcription']
            boxes.append(box)
            txts.append(txt)
            if txt in ['*', '###']:
                txt_tags.append(True)
            else:
                txt_tags.append(False)
        boxes = np.array(boxes, dtype=np.float32)
        txt_tags = np.array(txt_tags, dtype=np.bool)

        data['polys'] = boxes
        data['texts'] = txts
Jethong's avatar
Jethong committed
285
        data['ignore_tags'] = txt_tags
Jethong's avatar
Jethong committed
286
287
288
        return data


WenmuZhou's avatar
WenmuZhou committed
289
290
291
292
293
294
295
296
class AttnLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
tink2123's avatar
tink2123 committed
297
298
        super(AttnLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
WenmuZhou's avatar
WenmuZhou committed
299
300

    def add_special_char(self, dict_character):
LDOUBLEV's avatar
LDOUBLEV committed
301
302
303
        self.beg_str = "sos"
        self.end_str = "eos"
        dict_character = [self.beg_str] + dict_character + [self.end_str]
WenmuZhou's avatar
WenmuZhou committed
304
305
        return dict_character

LDOUBLEV's avatar
LDOUBLEV committed
306
307
    def __call__(self, data):
        text = data['label']
WenmuZhou's avatar
WenmuZhou committed
308
        text = self.encode(text)
LDOUBLEV's avatar
LDOUBLEV committed
309
310
        if text is None:
            return None
LDOUBLEV's avatar
LDOUBLEV committed
311
        if len(text) >= self.max_text_len:
LDOUBLEV's avatar
LDOUBLEV committed
312
313
314
            return None
        data['length'] = np.array(len(text))
        text = [0] + text + [len(self.character) - 1] + [0] * (self.max_text_len
tink2123's avatar
tink2123 committed
315
                                                               - len(text) - 2)
LDOUBLEV's avatar
LDOUBLEV committed
316
317
318
319
320
321
322
        data['label'] = np.array(text)
        return data

    def get_ignored_tokens(self):
        beg_idx = self.get_beg_end_flag_idx("beg")
        end_idx = self.get_beg_end_flag_idx("end")
        return [beg_idx, end_idx]
WenmuZhou's avatar
WenmuZhou committed
323
324
325
326
327
328
329
330
331
332

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "beg":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "end":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "Unsupport type %s in get_beg_end_flag_idx" \
                          % beg_or_end
        return idx
tink2123's avatar
tink2123 committed
333
334


tink2123's avatar
tink2123 committed
335
336
337
338
339
340
341
342
class SEEDLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
tink2123's avatar
tink2123 committed
343
344
        super(SEEDLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
tink2123's avatar
tink2123 committed
345
346
347
348
349
350
351
352
353
354
355
356
357

    def add_special_char(self, dict_character):
        self.end_str = "eos"
        dict_character = dict_character + [self.end_str]
        return dict_character

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
        if len(text) >= self.max_text_len:
            return None
tink2123's avatar
rm anno  
tink2123 committed
358
        data['length'] = np.array(len(text)) + 1  # conclude eos
tink2123's avatar
tink2123 committed
359
360
361
362
363
364
        text = text + [len(self.character) - 1] * (self.max_text_len - len(text)
                                                   )
        data['label'] = np.array(text)
        return data


tink2123's avatar
tink2123 committed
365
366
367
368
369
370
371
372
class SRNLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length=25,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
tink2123's avatar
tink2123 committed
373
374
        super(SRNLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
tink2123's avatar
tink2123 committed
375
376
377
378
379
380
381
382

    def add_special_char(self, dict_character):
        dict_character = dict_character + [self.beg_str, self.end_str]
        return dict_character

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
tink2123's avatar
tink2123 committed
383
        char_num = len(self.character)
tink2123's avatar
tink2123 committed
384
385
386
387
388
        if text is None:
            return None
        if len(text) > self.max_text_len:
            return None
        data['length'] = np.array(len(text))
tink2123's avatar
tink2123 committed
389
        text = text + [char_num - 1] * (self.max_text_len - len(text))
tink2123's avatar
tink2123 committed
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
        data['label'] = np.array(text)
        return data

    def get_ignored_tokens(self):
        beg_idx = self.get_beg_end_flag_idx("beg")
        end_idx = self.get_beg_end_flag_idx("end")
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "beg":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "end":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "Unsupport type %s in get_beg_end_flag_idx" \
                          % beg_or_end
        return idx
MissPenguin's avatar
MissPenguin committed
407

LDOUBLEV's avatar
LDOUBLEV committed
408

MissPenguin's avatar
MissPenguin committed
409
410
class TableLabelEncode(object):
    """ Convert between text-label and text-index """
LDOUBLEV's avatar
LDOUBLEV committed
411
412
413
414
415
416
417
418

    def __init__(self,
                 max_text_length,
                 max_elem_length,
                 max_cell_num,
                 character_dict_path,
                 span_weight=1.0,
                 **kwargs):
MissPenguin's avatar
MissPenguin committed
419
420
421
        self.max_text_length = max_text_length
        self.max_elem_length = max_elem_length
        self.max_cell_num = max_cell_num
LDOUBLEV's avatar
LDOUBLEV committed
422
423
        list_character, list_elem = self.load_char_elem_dict(
            character_dict_path)
MissPenguin's avatar
MissPenguin committed
424
425
426
427
428
429
430
431
432
        list_character = self.add_special_char(list_character)
        list_elem = self.add_special_char(list_elem)
        self.dict_character = {}
        for i, char in enumerate(list_character):
            self.dict_character[char] = i
        self.dict_elem = {}
        for i, elem in enumerate(list_elem):
            self.dict_elem[elem] = i
        self.span_weight = span_weight
LDOUBLEV's avatar
LDOUBLEV committed
433

MissPenguin's avatar
MissPenguin committed
434
435
436
437
438
    def load_char_elem_dict(self, character_dict_path):
        list_character = []
        list_elem = []
        with open(character_dict_path, "rb") as fin:
            lines = fin.readlines()
WenmuZhou's avatar
WenmuZhou committed
439
            substr = lines[0].decode('utf-8').strip("\r\n").split("\t")
MissPenguin's avatar
MissPenguin committed
440
441
            character_num = int(substr[0])
            elem_num = int(substr[1])
LDOUBLEV's avatar
LDOUBLEV committed
442
            for cno in range(1, 1 + character_num):
WenmuZhou's avatar
WenmuZhou committed
443
                character = lines[cno].decode('utf-8').strip("\r\n")
MissPenguin's avatar
MissPenguin committed
444
                list_character.append(character)
LDOUBLEV's avatar
LDOUBLEV committed
445
            for eno in range(1 + character_num, 1 + character_num + elem_num):
WenmuZhou's avatar
WenmuZhou committed
446
                elem = lines[eno].decode('utf-8').strip("\r\n")
MissPenguin's avatar
MissPenguin committed
447
448
                list_elem.append(elem)
        return list_character, list_elem
LDOUBLEV's avatar
LDOUBLEV committed
449

MissPenguin's avatar
MissPenguin committed
450
451
452
453
454
    def add_special_char(self, list_character):
        self.beg_str = "sos"
        self.end_str = "eos"
        list_character = [self.beg_str] + list_character + [self.end_str]
        return list_character
LDOUBLEV's avatar
LDOUBLEV committed
455

MissPenguin's avatar
MissPenguin committed
456
457
458
459
460
461
    def get_span_idx_list(self):
        span_idx_list = []
        for elem in self.dict_elem:
            if 'span' in elem:
                span_idx_list.append(self.dict_elem[elem])
        return span_idx_list
LDOUBLEV's avatar
LDOUBLEV committed
462

MissPenguin's avatar
MissPenguin committed
463
464
465
466
467
468
469
470
    def __call__(self, data):
        cells = data['cells']
        structure = data['structure']['tokens']
        structure = self.encode(structure, 'elem')
        if structure is None:
            return None
        elem_num = len(structure)
        structure = [0] + structure + [len(self.dict_elem) - 1]
LDOUBLEV's avatar
LDOUBLEV committed
471
472
        structure = structure + [0] * (self.max_elem_length + 2 - len(structure)
                                       )
MissPenguin's avatar
MissPenguin committed
473
474
475
476
477
        structure = np.array(structure)
        data['structure'] = structure
        elem_char_idx1 = self.dict_elem['<td>']
        elem_char_idx2 = self.dict_elem['<td']
        span_idx_list = self.get_span_idx_list()
LDOUBLEV's avatar
LDOUBLEV committed
478
479
        td_idx_list = np.logical_or(structure == elem_char_idx1,
                                    structure == elem_char_idx2)
MissPenguin's avatar
MissPenguin committed
480
        td_idx_list = np.where(td_idx_list)[0]
LDOUBLEV's avatar
LDOUBLEV committed
481
482
483

        structure_mask = np.ones(
            (self.max_elem_length + 2, 1), dtype=np.float32)
MissPenguin's avatar
MissPenguin committed
484
        bbox_list = np.zeros((self.max_elem_length + 2, 4), dtype=np.float32)
LDOUBLEV's avatar
LDOUBLEV committed
485
486
        bbox_list_mask = np.zeros(
            (self.max_elem_length + 2, 1), dtype=np.float32)
MissPenguin's avatar
MissPenguin committed
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
        img_height, img_width, img_ch = data['image'].shape
        if len(span_idx_list) > 0:
            span_weight = len(td_idx_list) * 1.0 / len(span_idx_list)
            span_weight = min(max(span_weight, 1.0), self.span_weight)
        for cno in range(len(cells)):
            if 'bbox' in cells[cno]:
                bbox = cells[cno]['bbox'].copy()
                bbox[0] = bbox[0] * 1.0 / img_width
                bbox[1] = bbox[1] * 1.0 / img_height
                bbox[2] = bbox[2] * 1.0 / img_width
                bbox[3] = bbox[3] * 1.0 / img_height
                td_idx = td_idx_list[cno]
                bbox_list[td_idx] = bbox
                bbox_list_mask[td_idx] = 1.0
                cand_span_idx = td_idx + 1
                if cand_span_idx < (self.max_elem_length + 2):
                    if structure[cand_span_idx] in span_idx_list:
                        structure_mask[cand_span_idx] = span_weight

        data['bbox_list'] = bbox_list
        data['bbox_list_mask'] = bbox_list_mask
        data['structure_mask'] = structure_mask
        char_beg_idx = self.get_beg_end_flag_idx('beg', 'char')
        char_end_idx = self.get_beg_end_flag_idx('end', 'char')
        elem_beg_idx = self.get_beg_end_flag_idx('beg', 'elem')
        elem_end_idx = self.get_beg_end_flag_idx('end', 'elem')
LDOUBLEV's avatar
LDOUBLEV committed
513
514
515
516
517
        data['sp_tokens'] = np.array([
            char_beg_idx, char_end_idx, elem_beg_idx, elem_end_idx,
            elem_char_idx1, elem_char_idx2, self.max_text_length,
            self.max_elem_length, self.max_cell_num, elem_num
        ])
MissPenguin's avatar
MissPenguin committed
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
        return data

    def encode(self, text, char_or_elem):
        """convert text-label into text-index.
        """
        if char_or_elem == "char":
            max_len = self.max_text_length
            current_dict = self.dict_character
        else:
            max_len = self.max_elem_length
            current_dict = self.dict_elem
        if len(text) > max_len:
            return None
        if len(text) == 0:
            if char_or_elem == "char":
                return [self.dict_character['space']]
            else:
                return None
        text_list = []
        for char in text:
            if char not in current_dict:
                return None
            text_list.append(current_dict[char])
        if len(text_list) == 0:
            if char_or_elem == "char":
                return [self.dict_character['space']]
            else:
                return None
        return text_list

    def get_ignored_tokens(self, char_or_elem):
        beg_idx = self.get_beg_end_flag_idx("beg", char_or_elem)
        end_idx = self.get_beg_end_flag_idx("end", char_or_elem)
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end, char_or_elem):
        if char_or_elem == "char":
            if beg_or_end == "beg":
                idx = np.array(self.dict_character[self.beg_str])
            elif beg_or_end == "end":
                idx = np.array(self.dict_character[self.end_str])
            else:
                assert False, "Unsupport type %s in get_beg_end_flag_idx of char" \
                              % beg_or_end
        elif char_or_elem == "elem":
            if beg_or_end == "beg":
                idx = np.array(self.dict_elem[self.beg_str])
            elif beg_or_end == "end":
                idx = np.array(self.dict_elem[self.end_str])
            else:
                assert False, "Unsupport type %s in get_beg_end_flag_idx of elem" \
LDOUBLEV's avatar
LDOUBLEV committed
569
                              % beg_or_end
MissPenguin's avatar
MissPenguin committed
570
571
        else:
            assert False, "Unsupport type %s in char_or_elem" \
LDOUBLEV's avatar
LDOUBLEV committed
572
                              % char_or_elem
MissPenguin's avatar
MissPenguin committed
573
        return idx
andyjpaddle's avatar
andyjpaddle committed
574
575
576
577
578
579
580
581
582
583


class SARLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
tink2123's avatar
tink2123 committed
584
585
        super(SARLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
andyjpaddle's avatar
andyjpaddle committed
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

    def add_special_char(self, dict_character):
        beg_end_str = "<BOS/EOS>"
        unknown_str = "<UKN>"
        padding_str = "<PAD>"
        dict_character = dict_character + [unknown_str]
        self.unknown_idx = len(dict_character) - 1
        dict_character = dict_character + [beg_end_str]
        self.start_idx = len(dict_character) - 1
        self.end_idx = len(dict_character) - 1
        dict_character = dict_character + [padding_str]
        self.padding_idx = len(dict_character) - 1

        return dict_character

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
        if len(text) >= self.max_text_len - 1:
            return None
        data['length'] = np.array(len(text))
        target = [self.start_idx] + text + [self.end_idx]
        padded_text = [self.padding_idx for _ in range(self.max_text_len)]
tink2123's avatar
tink2123 committed
611

andyjpaddle's avatar
andyjpaddle committed
612
613
614
615
616
617
        padded_text[:len(target)] = target
        data['label'] = np.array(padded_text)
        return data

    def get_ignored_tokens(self):
        return [self.padding_idx]