rec_resnet50_fpn.py 6.92 KB
Newer Older
tink2123's avatar
tink2123 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math

import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr


__all__ = ["ResNet", "ResNet18", "ResNet34", "ResNet50", "ResNet101", "ResNet152"]

Trainable = True
w_nolr = fluid.ParamAttr(
        trainable = Trainable)
train_parameters = {
    "input_size": [3, 224, 224],
    "input_mean": [0.485, 0.456, 0.406],
    "input_std": [0.229, 0.224, 0.225],
    "learning_strategy": {
        "name": "piecewise_decay",
        "batch_size": 256,
        "epochs": [30, 60, 90],
        "steps": [0.1, 0.01, 0.001, 0.0001]
    }
}

class ResNet():
    def __init__(self, params):
        self.layers = params['layers']
        self.params = train_parameters


    def __call__(self, input):
        layers = self.layers
        supported_layers = [18, 34, 50, 101, 152]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(supported_layers, layers)

        if layers == 18:
            depth = [2, 2, 2, 2]
        elif layers == 34 or layers == 50:
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
        stride_list = [(2,2),(2,2),(1,1),(1,1)]
        num_filters = [64, 128, 256, 512]

        conv = self.conv_bn_layer(
            input=input, num_filters=64, filter_size=7, stride=2, act='relu', name="conv1")
        F = [] 
        if layers >= 50:
            for block in range(len(depth)):
                for i in range(depth[block]):
                    if layers in [101, 152] and block == 2:
                        if i == 0:
                            conv_name = "res" + str(block + 2) + "a"
                        else:
                            conv_name = "res" + str(block + 2) + "b" + str(i)
                    else:
                        conv_name = "res" + str(block + 2) + chr(97 + i)
                    conv = self.bottleneck_block(
                        input=conv,
                        num_filters=num_filters[block],
                        stride=stride_list[block]  if i == 0 else 1, name=conv_name)
                F.append(conv)

        base = F[-1]
        for i in [-2, -3]:  
            b, c, w, h = F[i].shape
            if (w,h) == base.shape[2:]:
                base = base
            else:
                base = fluid.layers.conv2d_transpose( input=base, num_filters=c,filter_size=4, stride=2,
                    padding=1,act=None,
                    param_attr=w_nolr,
                    bias_attr=w_nolr)
                base = fluid.layers.batch_norm(base, act = "relu", param_attr=w_nolr, bias_attr=w_nolr)
            base = fluid.layers.concat([base, F[i]], axis=1)
            base = fluid.layers.conv2d(base, num_filters=c, filter_size=1, param_attr=w_nolr, bias_attr=w_nolr)
            base = fluid.layers.conv2d(base, num_filters=c, filter_size=3,padding = 1, param_attr=w_nolr, bias_attr=w_nolr)
            base = fluid.layers.batch_norm(base, act = "relu", param_attr=w_nolr, bias_attr=w_nolr)

        base = fluid.layers.conv2d(base, num_filters=512, filter_size=1,bias_attr=w_nolr,param_attr=w_nolr)

        return base

    def conv_bn_layer(self,
                      input,
                      num_filters,
                      filter_size,
                      stride=1,
                      groups=1,
                      act=None,
                      name=None):
        conv = fluid.layers.conv2d(
            input=input,
            num_filters=num_filters,
            filter_size= 2  if stride==(1,1)  else filter_size,
            dilation = 2 if stride==(1,1) else 1,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            act=None,
            param_attr=ParamAttr(name=name + "_weights",trainable = Trainable),
            bias_attr=False,
            name=name + '.conv2d.output.1')

        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
        return fluid.layers.batch_norm(input=conv,
                                       act=act,
                                       name=bn_name + '.output.1',
                                       param_attr=ParamAttr(name=bn_name + '_scale',trainable = Trainable),
                                       bias_attr=ParamAttr(bn_name + '_offset',trainable = Trainable),
                                       moving_mean_name=bn_name + '_mean',
                                       moving_variance_name=bn_name + '_variance', )

    def shortcut(self, input, ch_out, stride, is_first, name):
        ch_in = input.shape[1]
        if ch_in != ch_out or stride != 1 or is_first == True:
            if stride == (1,1):
                return self.conv_bn_layer(input, ch_out, 1, 1, name=name)
            else: #stride == (2,2)
                return self.conv_bn_layer(input, ch_out, 1, stride, name=name)
                
        else:
            return input

    def bottleneck_block(self, input, num_filters, stride, name):
        conv0 = self.conv_bn_layer(
            input=input, num_filters=num_filters, filter_size=1, act='relu', name=name + "_branch2a")
        conv1 = self.conv_bn_layer(
            input=conv0,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act='relu',
            name=name + "_branch2b")
        conv2 = self.conv_bn_layer(
            input=conv1, num_filters=num_filters * 4, filter_size=1, act=None, name=name + "_branch2c")

        short = self.shortcut(input, num_filters * 4, stride, is_first=False, name=name + "_branch1")

        return fluid.layers.elementwise_add(x=short, y=conv2, act='relu', name=name + ".add.output.5")

    def basic_block(self, input, num_filters, stride, is_first, name):
        conv0 = self.conv_bn_layer(input=input, num_filters=num_filters, filter_size=3, act='relu', stride=stride,
                                   name=name + "_branch2a")
        conv1 = self.conv_bn_layer(input=conv0, num_filters=num_filters, filter_size=3, act=None,
                                   name=name + "_branch2b")
        short = self.shortcut(input, num_filters, stride, is_first, name=name + "_branch1")
        return fluid.layers.elementwise_add(x=short, y=conv1, act='relu')