"test/vscode:/vscode.git/clone" did not exist on "3557ce90f12b635889ccad41ecd11398946c0159"
README_en.md 17.1 KB
Newer Older
1
2
English | [简体中文](README.md)

xxxpsyduck's avatar
xxxpsyduck committed
3
## INTRODUCTION
4
5
PaddleOCR aims to create a rich, leading, and practical OCR tools that help users train better models and apply them into practice.

tink2123's avatar
tink2123 committed
6
**Recent updates**
tink2123's avatar
tink2123 committed
7
- 2020.7.9 Add recognition model to support space, [recognition result](#space Chinese OCR results). For more information: [Recognition](./doc/doc_ch/recognition.md) and [quickstart](./doc/doc_ch/quickstart.md)
8
- 2020.7.9 Add data auguments and learning rate decay strategies,please read [config](./doc/doc_en/config_en.md)
9
- 2020.6.8 Add [dataset](./doc/doc_en/datasets_en.md) and keep updating
10
11
- 2020.6.5 Support exporting `attention` model to `inference_model`
- 2020.6.5 Support separate prediction and recognition, output result score
12
- [more](./doc/doc_en/update_en.md)
xxxpsyduck's avatar
xxxpsyduck committed
13

xxxpsyduck's avatar
xxxpsyduck committed
14
15
## FEATURES
- Lightweight Chinese OCR model, total model size is only 8.6M
16
17
18
19
    - Single model supports Chinese and English numbers combination recognition, vertical text recognition, long text recognition
    - Detection model DB (4.1M) + recognition model CRNN (4.5M)
- Various text detection algorithms: EAST, DB
- Various text recognition algorithms: Rosetta, CRNN, STAR-Net, RARE
xxxpsyduck's avatar
xxxpsyduck committed
20

tink2123's avatar
tink2123 committed
21
<a name="Supported-Chinese-model-list"></a>
22
### Supported Chinese models list:
xxxpsyduck's avatar
xxxpsyduck committed
23

tink2123's avatar
tink2123 committed
24
25
|Model Name|Description |Detection Model link|Recognition Model link| Support for space Recognition Model link|
|-|-|-|-|-|
tink2123's avatar
tink2123 committed
26
27
|chinese_db_crnn_mobile|lightweight Chinese OCR model|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance_infer.tar) / [pre-train model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance.tar)
|chinese_db_crnn_server|General Chinese OCR model|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance_infer.tar) / [pre-train model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance.tar)
xxxpsyduck's avatar
xxxpsyduck committed
28
29


30
For testing our Chinese OCR online:https://www.paddlepaddle.org.cn/hub/scene/ocr
xxxpsyduck's avatar
xxxpsyduck committed
31

xxxpsyduck's avatar
xxxpsyduck committed
32
**You can also quickly experience the lightweight Chinese OCR and General Chinese OCR models as follows:**
xxxpsyduck's avatar
xxxpsyduck committed
33

xxxpsyduck's avatar
xxxpsyduck committed
34
## **LIGHTWEIGHT CHINESE OCR AND GENERAL CHINESE OCR INFERENCE**
xxxpsyduck's avatar
xxxpsyduck committed
35

36
![](doc/imgs_results/11.jpg)
xxxpsyduck's avatar
xxxpsyduck committed
37

tink2123's avatar
tink2123 committed
38
The picture above is the result of our lightweight Chinese OCR model. For more testing results, please see the end of the article [lightweight Chinese OCR results](#lightweight-Chinese-OCR-results) , [General Chinese OCR results](#General-Chinese-OCR-results) and [Support for space Recognition Model](#Space-Chinese-OCR-results).
xxxpsyduck's avatar
xxxpsyduck committed
39

xxxpsyduck's avatar
xxxpsyduck committed
40
#### 1. ENVIRONMENT CONFIGURATION
xxxpsyduck's avatar
xxxpsyduck committed
41

42
Please see [Quick installation](./doc/doc_en/installation_en.md)
xxxpsyduck's avatar
xxxpsyduck committed
43

xxxpsyduck's avatar
xxxpsyduck committed
44
#### 2. DOWNLOAD INFERENCE MODELS
xxxpsyduck's avatar
xxxpsyduck committed
45

xxxpsyduck's avatar
xxxpsyduck committed
46
#### (1) Download lightweight Chinese OCR models
47
*If wget is not installed in the windows system, you can copy the link to the browser to download the model. After model downloaded, unzip it and place it in the corresponding directory*
xxxpsyduck's avatar
xxxpsyduck committed
48

tink2123's avatar
tink2123 committed
49
50
51
52
53
54
55
56
57
58
59
60
61
Copy the detection and recognition 'inference model' address in [Chinese model List](#Supported-Chinese-model-list), download and unpack:

```
mkdir inference && cd inference
# Download the detection part of the Chinese OCR and decompress it
wget {url/of/detection/inference_model} && tar xf {name/of/detection/inference_model/package}
# Download the recognition part of the Chinese OCR and decompress it
wget {url/of/recognition/inference_model} && tar xf {name/of/recognition/inference_model/package}
cd ..
```

Take lightweight Chinese OCR model as an example:

xxxpsyduck's avatar
xxxpsyduck committed
62
63
```
mkdir inference && cd inference
xxxpsyduck's avatar
xxxpsyduck committed
64
# Download the detection part of the lightweight Chinese OCR and decompress it
xxxpsyduck's avatar
xxxpsyduck committed
65
wget https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar && tar xf ch_det_mv3_db_infer.tar
xxxpsyduck's avatar
xxxpsyduck committed
66
# Download the recognition part of the lightweight Chinese OCR and decompress it
xxxpsyduck's avatar
xxxpsyduck committed
67
wget https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar && tar xf ch_rec_mv3_crnn_infer.tar
68
69
70
# Download the space-recognized part of the lightweight Chinese OCR and decompress it
wget https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance_infer.tar && tar xf ch_rec_mv3_crnn_enhance_infer.tar

xxxpsyduck's avatar
xxxpsyduck committed
71
72
cd ..
```
tink2123's avatar
tink2123 committed
73
74
75

After the decompression is completed, the file structure should be as follows:

xxxpsyduck's avatar
xxxpsyduck committed
76
```
tink2123's avatar
tink2123 committed
77
78
79
80
81
82
83
84
|-inference
    |-ch_rec_mv3_crnn
        |- model
        |- params
    |-ch_det_mv3_db
        |- model
        |- params
    ...
xxxpsyduck's avatar
xxxpsyduck committed
85
86
```

xxxpsyduck's avatar
xxxpsyduck committed
87
#### 3. SINGLE IMAGE AND BATCH PREDICTION
xxxpsyduck's avatar
xxxpsyduck committed
88

89
The following code implements text detection and recognition inference tandemly. When performing prediction, you need to specify the path of a single image or image folder through the parameter `image_dir`, the parameter `det_model_dir` specifies the path to detection model, and the parameter `rec_model_dir` specifies the path to the recognition model. The visual prediction results are saved to the `./inference_results` folder by default.
xxxpsyduck's avatar
xxxpsyduck committed
90

91
```bash
tink2123's avatar
revert  
tink2123 committed
92

93
# Prediction on a single image by specifying image path to image_dir
xxxpsyduck's avatar
xxxpsyduck committed
94
95
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_mv3_db/"  --rec_model_dir="./inference/ch_rec_mv3_crnn/"

96
# Prediction on a batch of images by specifying image folder path to image_dir
xxxpsyduck's avatar
xxxpsyduck committed
97
98
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/" --det_model_dir="./inference/ch_det_mv3_db/"  --rec_model_dir="./inference/ch_rec_mv3_crnn/"

99
# If you want to use CPU for prediction, you need to set the use_gpu parameter to False
xxxpsyduck's avatar
xxxpsyduck committed
100
101
102
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_mv3_db/"  --rec_model_dir="./inference/ch_rec_mv3_crnn/" --use_gpu=False
```

103
To run inference of the Generic Chinese OCR model, follow these steps above to download the corresponding models and update the relevant parameters. Examples are as follows:
xxxpsyduck's avatar
xxxpsyduck committed
104
```
105
# Prediction on a single image by specifying image path to image_dir
xxxpsyduck's avatar
xxxpsyduck committed
106
107
108
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_r50_vd_db/"  --rec_model_dir="./inference/ch_rec_r34_vd_crnn/"
```

109
110
111
112
113
114
115
To run inference of the space-Generic Chinese OCR model, follow these steps above to download the corresponding models and update the relevant parameters. Examples are as follows:

```
# Prediction on a single image by specifying image path to image_dir
python3 tools/infer/predict_system.py --image_dir="./doc/imgs_en/img_12.jpg" --det_model_dir="./inference/ch_det_r50_vd_db/"  --rec_model_dir="./inference/ch_rec_r34_vd_crnn_enhance/"
```

116
For more text detection and recognition models, please refer to the document [Inference](./doc/doc_en/inference_en.md)
xxxpsyduck's avatar
xxxpsyduck committed
117

xxxpsyduck's avatar
xxxpsyduck committed
118
## DOCUMENTATION
119
120
121
122
- [Quick installation](./doc/doc_en/installation_en.md)
- [Text detection model training/evaluation/prediction](./doc/doc_en/detection_en.md)
- [Text recognition model training/evaluation/prediction](./doc/doc_en/recognition_en.md)
- [Inference](./doc/doc_en/inference_en.md)
tink2123's avatar
tink2123 committed
123
- [Introduction of yml file](./doc/doc_en/config_en.md)
124
- [Dataset](./doc/doc_en/datasets_en.md)
tink2123's avatar
tink2123 committed
125
- [FAQ]((#FAQ)
xxxpsyduck's avatar
xxxpsyduck committed
126

xxxpsyduck's avatar
xxxpsyduck committed
127
## TEXT DETECTION ALGORITHM
xxxpsyduck's avatar
xxxpsyduck committed
128

129
PaddleOCR open source text detection algorithms list:
xxxpsyduck's avatar
xxxpsyduck committed
130
131
- [x]  EAST([paper](https://arxiv.org/abs/1704.03155))
- [x]  DB([paper](https://arxiv.org/abs/1911.08947))
132
- [ ]  SAST([paper](https://arxiv.org/abs/1908.05498))(Baidu Self-Research, comming soon)
xxxpsyduck's avatar
xxxpsyduck committed
133

134
On the ICDAR2015 dataset, the text detection result is as follows:
xxxpsyduck's avatar
xxxpsyduck committed
135

136
|Model|Backbone|precision|recall|Hmean|Download link|
xxxpsyduck's avatar
xxxpsyduck committed
137
|-|-|-|-|-|-|
138
139
140
141
|EAST|ResNet50_vd|88.18%|85.51%|86.82%|[Download link](https://paddleocr.bj.bcebos.com/det_r50_vd_east.tar)|
|EAST|MobileNetV3|81.67%|79.83%|80.74%|[Download link](https://paddleocr.bj.bcebos.com/det_mv3_east.tar)|
|DB|ResNet50_vd|83.79%|80.65%|82.19%|[Download link](https://paddleocr.bj.bcebos.com/det_r50_vd_db.tar)|
|DB|MobileNetV3|75.92%|73.18%|74.53%|[Download link](https://paddleocr.bj.bcebos.com/det_mv3_db.tar)|
xxxpsyduck's avatar
xxxpsyduck committed
142

MissPenguin's avatar
MissPenguin committed
143
For use of [LSVT](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_en/datasets_en.md#1-icdar2019-lsvt) street view dataset with a total of 3w training data,the related configuration and pre-trained models for Chinese detection task are as follows:
144
|Model|Backbone|Configuration file|Pre-trained model|
xxxpsyduck's avatar
xxxpsyduck committed
145
|-|-|-|-|
xxxpsyduck's avatar
xxxpsyduck committed
146
|lightweight Chinese model|MobileNetV3|det_mv3_db.yml|[Download link](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar)|
147
|General Chinese OCR model|ResNet50_vd|det_r50_vd_db.yml|[Download link](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar)|
xxxpsyduck's avatar
xxxpsyduck committed
148

149
* Note: For the training and evaluation of the above DB model, post-processing parameters box_thresh=0.6 and unclip_ratio=1.5 need to be set. If using different datasets and different models for training, these two parameters can be adjusted for better result.
xxxpsyduck's avatar
xxxpsyduck committed
150

MissPenguin's avatar
MissPenguin committed
151
For the training guide and use of PaddleOCR text detection algorithms, please refer to the document [Text detection model training/evaluation/prediction](./doc/doc_en/detection_en.md)
xxxpsyduck's avatar
xxxpsyduck committed
152

xxxpsyduck's avatar
xxxpsyduck committed
153
## TEXT RECOGNITION ALGORITHM
xxxpsyduck's avatar
xxxpsyduck committed
154

155
PaddleOCR open-source text recognition algorithms list:
xxxpsyduck's avatar
xxxpsyduck committed
156
157
158
159
- [x]  CRNN([paper](https://arxiv.org/abs/1507.05717))
- [x]  Rosetta([paper](https://arxiv.org/abs/1910.05085))
- [x]  STAR-Net([paper](http://www.bmva.org/bmvc/2016/papers/paper043/index.html))
- [x]  RARE([paper](https://arxiv.org/abs/1603.03915v1))
160
- [ ]  SRN([paper](https://arxiv.org/abs/2003.12294))(Baidu Self-Research, comming soon)
xxxpsyduck's avatar
xxxpsyduck committed
161

162
Refer to [DTRB](https://arxiv.org/abs/1904.01906), the training and evaluation result of these above text recognition (using MJSynth and SynthText for training, evaluate on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE) is as follow:
xxxpsyduck's avatar
xxxpsyduck committed
163

164
|Model|Backbone|Avg Accuracy|Module combination|Download link|
xxxpsyduck's avatar
xxxpsyduck committed
165
|-|-|-|-|-|
166
167
168
169
170
171
172
173
174
|Rosetta|Resnet34_vd|80.24%|rec_r34_vd_none_none_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_none_ctc.tar)|
|Rosetta|MobileNetV3|78.16%|rec_mv3_none_none_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_mv3_none_none_ctc.tar)|
|CRNN|Resnet34_vd|82.20%|rec_r34_vd_none_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_bilstm_ctc.tar)|
|CRNN|MobileNetV3|79.37%|rec_mv3_none_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_mv3_none_bilstm_ctc.tar)|
|STAR-Net|Resnet34_vd|83.93%|rec_r34_vd_tps_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_ctc.tar)|
|STAR-Net|MobileNetV3|81.56%|rec_mv3_tps_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_ctc.tar)|
|RARE|Resnet34_vd|84.90%|rec_r34_vd_tps_bilstm_attn|[Download link](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_attn.tar)|
|RARE|MobileNetV3|83.32%|rec_mv3_tps_bilstm_attn|[Download link](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_attn.tar)|

MissPenguin's avatar
MissPenguin committed
175
We use [LSVT](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_en/datasets_en.md#1-icdar2019-lsvt) dataset and cropout 30w  traning data from original photos by using position groundtruth and make some calibration needed. In addition, based on the LSVT corpus, 500w synthetic data is generated to train the Chinese model. The related configuration and pre-trained models are as follows:
176
|Model|Backbone|Configuration file|Pre-trained model|
xxxpsyduck's avatar
xxxpsyduck committed
177
|-|-|-|-|
tink2123's avatar
tink2123 committed
178
179
|lightweight Chinese model|MobileNetV3|rec_chinese_lite_train.yml|[Download link](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance_infer.tar) & [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance.tar)|
|General Chinese OCR model|Resnet34_vd|rec_chinese_common_train.yml|[Download link](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance_infer.tar) & [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance.tar)|
xxxpsyduck's avatar
xxxpsyduck committed
180

MissPenguin's avatar
MissPenguin committed
181
Please refer to the document for training guide and use of PaddleOCR text recognition algorithms [Text recognition model training/evaluation/prediction](./doc/doc_en/recognition_en.md)
xxxpsyduck's avatar
xxxpsyduck committed
182

xxxpsyduck's avatar
xxxpsyduck committed
183
## END-TO-END OCR ALGORITHM
184
- [ ]  [End2End-PSL](https://arxiv.org/abs/1909.07808)(Baidu Self-Research, comming soon)
xxxpsyduck's avatar
xxxpsyduck committed
185

tink2123's avatar
tink2123 committed
186
<a name="lightweight-Chinese-OCR-results"></a>
xxxpsyduck's avatar
xxxpsyduck committed
187
## LIGHTWEIGHT CHINESE OCR RESULTS
xxxpsyduck's avatar
xxxpsyduck committed
188
189
190
191
192
193
194
195
196
![](doc/imgs_results/1.jpg)
![](doc/imgs_results/7.jpg)
![](doc/imgs_results/12.jpg)
![](doc/imgs_results/4.jpg)
![](doc/imgs_results/6.jpg)
![](doc/imgs_results/9.jpg)
![](doc/imgs_results/16.png)
![](doc/imgs_results/22.jpg)

tink2123's avatar
tink2123 committed
197
<a name="General-Chinese-OCR-results"></a>
198
## General Chinese OCR results
xxxpsyduck's avatar
xxxpsyduck committed
199
200
201
202
![](doc/imgs_results/chinese_db_crnn_server/11.jpg)
![](doc/imgs_results/chinese_db_crnn_server/2.jpg)
![](doc/imgs_results/chinese_db_crnn_server/8.jpg)

tink2123's avatar
tink2123 committed
203
204
<a name="Space-Chinese-OCR-results"></a>

tink2123's avatar
tink2123 committed
205
206
207
208
209
210
211
212
213
## space Chinese OCR results

### LIGHTWEIGHT CHINESE OCR RESULTS

![](doc/imgs_results/img_11.jpg)

### General Chinese OCR results
![](doc/imgs_results/chinese_db_crnn_server/en_paper.jpg)

tink2123's avatar
tink2123 committed
214
<a name="FAQ"></a>
xxxpsyduck's avatar
xxxpsyduck committed
215
## FAQ
tink2123's avatar
tink2123 committed
216
1. Error when using attention-based recognition model: KeyError: 'predict'
xxxpsyduck's avatar
xxxpsyduck committed
217

218
    The inference of recognition model based on attention loss is still being debugged. For Chinese text recognition, it is recommended to choose the recognition model based on CTC loss first. In practice, it is also found that the recognition model based on attention loss is not as effective as the one based on CTC loss.
LDOUBLEV's avatar
LDOUBLEV committed
219

tink2123's avatar
tink2123 committed
220
2. About inference speed
xxxpsyduck's avatar
xxxpsyduck committed
221

222
    When there are a lot of texts in the picture, the prediction time will increase. You can use `--rec_batch_num` to set a smaller prediction batch size. The default value is 30, which can be changed to 10 or other values.
xxxpsyduck's avatar
xxxpsyduck committed
223

tink2123's avatar
tink2123 committed
224
3. Service deployment and mobile deployment
xxxpsyduck's avatar
xxxpsyduck committed
225

226
    It is expected that the service deployment based on Serving and the mobile deployment based on Paddle Lite will be released successively in mid-to-late June. Stay tuned for more updates.
LDOUBLEV's avatar
LDOUBLEV committed
227

tink2123's avatar
tink2123 committed
228
4. Release time of self-developed algorithm
229
230

    Baidu Self-developed algorithms such as SAST, SRN and end2end PSL will be released in June or July. Please be patient.
LDOUBLEV's avatar
LDOUBLEV committed
231

232
[more](./doc/doc_en/FAQ_en.md)
xxxpsyduck's avatar
xxxpsyduck committed
233

xxxpsyduck's avatar
xxxpsyduck committed
234
## WELCOME TO THE PaddleOCR TECHNICAL EXCHANGE GROUP
xxxpsyduck's avatar
xxxpsyduck committed
235
WeChat: paddlehelp, note OCR, our assistant will get you into the group~
236

xxxpsyduck's avatar
xxxpsyduck committed
237
<img src="./doc/paddlehelp.jpg"  width = "200" height = "200" />
xxxpsyduck's avatar
xxxpsyduck committed
238

xxxpsyduck's avatar
xxxpsyduck committed
239
## REFERENCES
xxxpsyduck's avatar
xxxpsyduck committed
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
```
1. EAST:
@inproceedings{zhou2017east,
  title={EAST: an efficient and accurate scene text detector},
  author={Zhou, Xinyu and Yao, Cong and Wen, He and Wang, Yuzhi and Zhou, Shuchang and He, Weiran and Liang, Jiajun},
  booktitle={Proceedings of the IEEE conference on Computer Vision and Pattern Recognition},
  pages={5551--5560},
  year={2017}
}

2. DB:
@article{liao2019real,
  title={Real-time Scene Text Detection with Differentiable Binarization},
  author={Liao, Minghui and Wan, Zhaoyi and Yao, Cong and Chen, Kai and Bai, Xiang},
  journal={arXiv preprint arXiv:1911.08947},
  year={2019}
}

3. DTRB:
@inproceedings{baek2019wrong,
  title={What is wrong with scene text recognition model comparisons? dataset and model analysis},
  author={Baek, Jeonghun and Kim, Geewook and Lee, Junyeop and Park, Sungrae and Han, Dongyoon and Yun, Sangdoo and Oh, Seong Joon and Lee, Hwalsuk},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  pages={4715--4723},
  year={2019}
}

4. SAST:
@inproceedings{wang2019single,
  title={A Single-Shot Arbitrarily-Shaped Text Detector based on Context Attended Multi-Task Learning},
  author={Wang, Pengfei and Zhang, Chengquan and Qi, Fei and Huang, Zuming and En, Mengyi and Han, Junyu and Liu, Jingtuo and Ding, Errui and Shi, Guangming},
  booktitle={Proceedings of the 27th ACM International Conference on Multimedia},
  pages={1277--1285},
  year={2019}
}

5. SRN:
@article{yu2020towards,
  title={Towards Accurate Scene Text Recognition with Semantic Reasoning Networks},
  author={Yu, Deli and Li, Xuan and Zhang, Chengquan and Han, Junyu and Liu, Jingtuo and Ding, Errui},
  journal={arXiv preprint arXiv:2003.12294},
  year={2020}
}

6. end2end-psl:
@inproceedings{sun2019chinese,
  title={Chinese Street View Text: Large-scale Chinese Text Reading with Partially Supervised Learning},
  author={Sun, Yipeng and Liu, Jiaming and Liu, Wei and Han, Junyu and Ding, Errui and Liu, Jingtuo},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  pages={9086--9095},
  year={2019}
}
```

xxxpsyduck's avatar
xxxpsyduck committed
294
## LICENSE
295
This project is released under <a href="https://github.com/PaddlePaddle/PaddleOCR/blob/master/LICENSE">Apache 2.0 license</a>
xxxpsyduck's avatar
xxxpsyduck committed
296

xxxpsyduck's avatar
xxxpsyduck committed
297
## CONTRIBUTION
298
We welcome all the contributions to PaddleOCR and appreciate for your feedback very much.
tink2123's avatar
tink2123 committed
299
300

- Many thanks to [Khanh Tran](https://github.com/xxxpsyduck) for contributing the English documentation.
LDOUBLEV's avatar
LDOUBLEV committed
301
- Many thanks to [zhangxin](https://github.com/ZhangXinNan) for contributing the new visualize function、add .gitgnore and discard set PYTHONPATH manually.
302
- Many thanks to [lyl120117](https://github.com/lyl120117) for contributing the code for printing the network structure.