rec_icdar15_train.yml 981 Bytes
Newer Older
tink2123's avatar
tink2123 committed
1
2
3
Global:
  algorithm: CRNN
  use_gpu: true
tink2123's avatar
tink2123 committed
4
  epoch_num: 1000
tink2123's avatar
tink2123 committed
5
6
  log_smooth_window: 20
  print_batch_step: 10
tink2123's avatar
tink2123 committed
7
  save_model_dir: ./output/rec_CRNN
tink2123's avatar
tink2123 committed
8
9
  save_epoch_step: 300
  eval_batch_step: 500
tink2123's avatar
tink2123 committed
10
11
12
13
  train_batch_size_per_card: 256
  test_batch_size_per_card: 256
  image_shape: [3, 32, 100]
  max_text_length: 25
tink2123's avatar
tink2123 committed
14
  character_type: en
tink2123's avatar
tink2123 committed
15
  loss_type: ctc
tink2123's avatar
tink2123 committed
16
  reader_yml: ./configs/rec/rec_icdar15_reader.yml
tink2123's avatar
tink2123 committed
17
  pretrain_weights: ./pretrain_models/rec_mv3_none_bilstm_ctc/best_accuracy 
tink2123's avatar
tink2123 committed
18
19
  checkpoints:
  save_inference_dir:
tink2123's avatar
tink2123 committed
20
21
  infer_img:

tink2123's avatar
tink2123 committed
22
23
24
25
26
27
Architecture:
  function: ppocr.modeling.architectures.rec_model,RecModel

Backbone:
  function: ppocr.modeling.backbones.rec_mobilenet_v3,MobileNetV3
  scale: 0.5
tink2123's avatar
tink2123 committed
28
  model_name: large
tink2123's avatar
tink2123 committed
29
30
31
32
33

Head:
  function: ppocr.modeling.heads.rec_ctc_head,CTCPredict
  encoder_type: rnn
  SeqRNN:
tink2123's avatar
tink2123 committed
34
    hidden_size: 96
tink2123's avatar
tink2123 committed
35
36
37
38
39
40
    
Loss:
  function: ppocr.modeling.losses.rec_ctc_loss,CTCLoss

Optimizer:
  function: ppocr.optimizer,AdamDecay
tink2123's avatar
tink2123 committed
41
  base_lr: 0.0005
tink2123's avatar
tink2123 committed
42
43
  beta1: 0.9
  beta2: 0.999