det_db_head.py 4.57 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
LDOUBLEV's avatar
LDOUBLEV committed
2
#
WenmuZhou's avatar
WenmuZhou committed
3
4
5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
LDOUBLEV's avatar
LDOUBLEV committed
6
7
8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
WenmuZhou's avatar
WenmuZhou committed
9
10
11
12
13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
LDOUBLEV's avatar
LDOUBLEV committed
14
15
16
17
18
19

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
WenmuZhou's avatar
WenmuZhou committed
20
21
22
23
import paddle
from paddle import nn
import paddle.nn.functional as F
from paddle import ParamAttr
LDOUBLEV's avatar
LDOUBLEV committed
24
25


WenmuZhou's avatar
WenmuZhou committed
26
27
28
29
30
def get_bias_attr(k, name):
    stdv = 1.0 / math.sqrt(k * 1.0)
    initializer = paddle.nn.initializer.Uniform(-stdv, stdv)
    bias_attr = ParamAttr(initializer=initializer, name=name + "_b_attr")
    return bias_attr
LDOUBLEV's avatar
LDOUBLEV committed
31
32


WenmuZhou's avatar
WenmuZhou committed
33
34
35
class Head(nn.Layer):
    def __init__(self, in_channels, name_list):
        super(Head, self).__init__()
dyning's avatar
dyning committed
36
        self.conv1 = nn.Conv2D(
WenmuZhou's avatar
WenmuZhou committed
37
38
39
            in_channels=in_channels,
            out_channels=in_channels // 4,
            kernel_size=3,
LDOUBLEV's avatar
LDOUBLEV committed
40
            padding=1,
WenmuZhou's avatar
WenmuZhou committed
41
            weight_attr=ParamAttr(name=name_list[0] + '.w_0'),
LDOUBLEV's avatar
LDOUBLEV committed
42
            bias_attr=False)
WenmuZhou's avatar
WenmuZhou committed
43
44
45
46
47
48
49
50
51
52
53
        self.conv_bn1 = nn.BatchNorm(
            num_channels=in_channels // 4,
            param_attr=ParamAttr(
                name=name_list[1] + '.w_0',
                initializer=paddle.nn.initializer.Constant(value=1.0)),
            bias_attr=ParamAttr(
                name=name_list[1] + '.b_0',
                initializer=paddle.nn.initializer.Constant(value=1e-4)),
            moving_mean_name=name_list[1] + '.w_1',
            moving_variance_name=name_list[1] + '.w_2',
            act='relu')
dyning's avatar
dyning committed
54
        self.conv2 = nn.Conv2DTranspose(
WenmuZhou's avatar
WenmuZhou committed
55
56
57
            in_channels=in_channels // 4,
            out_channels=in_channels // 4,
            kernel_size=2,
LDOUBLEV's avatar
LDOUBLEV committed
58
            stride=2,
WenmuZhou's avatar
WenmuZhou committed
59
60
            weight_attr=ParamAttr(
                name=name_list[2] + '.w_0',
61
                initializer=paddle.nn.initializer.KaimingUniform()),
WenmuZhou's avatar
WenmuZhou committed
62
63
64
65
66
67
68
69
70
71
72
            bias_attr=get_bias_attr(in_channels // 4, name_list[-1] + "conv2"))
        self.conv_bn2 = nn.BatchNorm(
            num_channels=in_channels // 4,
            param_attr=ParamAttr(
                name=name_list[3] + '.w_0',
                initializer=paddle.nn.initializer.Constant(value=1.0)),
            bias_attr=ParamAttr(
                name=name_list[3] + '.b_0',
                initializer=paddle.nn.initializer.Constant(value=1e-4)),
            moving_mean_name=name_list[3] + '.w_1',
            moving_variance_name=name_list[3] + '.w_2',
LDOUBLEV's avatar
LDOUBLEV committed
73
            act="relu")
dyning's avatar
dyning committed
74
        self.conv3 = nn.Conv2DTranspose(
WenmuZhou's avatar
WenmuZhou committed
75
76
77
            in_channels=in_channels // 4,
            out_channels=1,
            kernel_size=2,
LDOUBLEV's avatar
LDOUBLEV committed
78
            stride=2,
WenmuZhou's avatar
WenmuZhou committed
79
80
            weight_attr=ParamAttr(
                name=name_list[4] + '.w_0',
81
                initializer=paddle.nn.initializer.KaimingUniform()),
WenmuZhou's avatar
WenmuZhou committed
82
83
            bias_attr=get_bias_attr(in_channels // 4, name_list[-1] + "conv3"),
        )
LDOUBLEV's avatar
LDOUBLEV committed
84

WenmuZhou's avatar
WenmuZhou committed
85
86
87
88
89
90
91
92
    def forward(self, x):
        x = self.conv1(x)
        x = self.conv_bn1(x)
        x = self.conv2(x)
        x = self.conv_bn2(x)
        x = self.conv3(x)
        x = F.sigmoid(x)
        return x
LDOUBLEV's avatar
LDOUBLEV committed
93
94


WenmuZhou's avatar
WenmuZhou committed
95
96
97
98
99
100
101
class DBHead(nn.Layer):
    """
    Differentiable Binarization (DB) for text detection:
        see https://arxiv.org/abs/1911.08947
    args:
        params(dict): super parameters for build DB network
    """
LDOUBLEV's avatar
LDOUBLEV committed
102

WenmuZhou's avatar
WenmuZhou committed
103
104
105
106
107
108
109
110
111
112
113
114
115
    def __init__(self, in_channels, k=50, **kwargs):
        super(DBHead, self).__init__()
        self.k = k
        binarize_name_list = [
            'conv2d_56', 'batch_norm_47', 'conv2d_transpose_0', 'batch_norm_48',
            'conv2d_transpose_1', 'binarize'
        ]
        thresh_name_list = [
            'conv2d_57', 'batch_norm_49', 'conv2d_transpose_2', 'batch_norm_50',
            'conv2d_transpose_3', 'thresh'
        ]
        self.binarize = Head(in_channels, binarize_name_list)
        self.thresh = Head(in_channels, thresh_name_list)
LDOUBLEV's avatar
LDOUBLEV committed
116

WenmuZhou's avatar
WenmuZhou committed
117
118
    def step_function(self, x, y):
        return paddle.reciprocal(1 + paddle.exp(-self.k * (x - y)))
LDOUBLEV's avatar
LDOUBLEV committed
119

WenmuZhou's avatar
WenmuZhou committed
120
121
122
    def forward(self, x):
        shrink_maps = self.binarize(x)
        if not self.training:
WenmuZhou's avatar
WenmuZhou committed
123
            return {'maps': shrink_maps}
LDOUBLEV's avatar
LDOUBLEV committed
124

WenmuZhou's avatar
WenmuZhou committed
125
        threshold_maps = self.thresh(x)
LDOUBLEV's avatar
LDOUBLEV committed
126
        binary_maps = self.step_function(shrink_maps, threshold_maps)
WenmuZhou's avatar
WenmuZhou committed
127
        y = paddle.concat([shrink_maps, threshold_maps, binary_maps], axis=1)
WenmuZhou's avatar
WenmuZhou committed
128
        return {'maps': y}