workerlog.0 4.14 MB
Newer Older
wangsen's avatar
wangsen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
[2024/07/27 11:19:01] ppocr INFO: Architecture : 
[2024/07/27 11:19:01] ppocr INFO:     Backbone : 
[2024/07/27 11:19:01] ppocr INFO:         model_name : large
[2024/07/27 11:19:01] ppocr INFO:         name : MobileNetV3
[2024/07/27 11:19:01] ppocr INFO:         scale : 0.5
[2024/07/27 11:19:01] ppocr INFO:     Head : 
[2024/07/27 11:19:01] ppocr INFO:         k : 50
[2024/07/27 11:19:01] ppocr INFO:         name : DBHead
[2024/07/27 11:19:01] ppocr INFO:     Neck : 
[2024/07/27 11:19:01] ppocr INFO:         name : DBFPN
[2024/07/27 11:19:01] ppocr INFO:         out_channels : 256
[2024/07/27 11:19:01] ppocr INFO:     Transform : None
[2024/07/27 11:19:01] ppocr INFO:     algorithm : DB
[2024/07/27 11:19:01] ppocr INFO:     model_type : det
[2024/07/27 11:19:01] ppocr INFO: Eval : 
[2024/07/27 11:19:01] ppocr INFO:     dataset : 
[2024/07/27 11:19:01] ppocr INFO:         data_dir : /datasets/icdar2015/text_localization/
[2024/07/27 11:19:01] ppocr INFO:         label_file_list : ['/datasets/icdar2015/text_localization/test_icdar2015_label.txt']
[2024/07/27 11:19:01] ppocr INFO:         name : SimpleDataSet
[2024/07/27 11:19:01] ppocr INFO:         transforms : 
[2024/07/27 11:19:01] ppocr INFO:             DecodeImage : 
[2024/07/27 11:19:01] ppocr INFO:                 channel_first : False
[2024/07/27 11:19:01] ppocr INFO:                 img_mode : BGR
[2024/07/27 11:19:01] ppocr INFO:             DetLabelEncode : None
[2024/07/27 11:19:01] ppocr INFO:             DetResizeForTest : 
[2024/07/27 11:19:01] ppocr INFO:                 image_shape : [736, 1280]
[2024/07/27 11:19:01] ppocr INFO:             NormalizeImage : 
[2024/07/27 11:19:01] ppocr INFO:                 mean : [0.485, 0.456, 0.406]
[2024/07/27 11:19:01] ppocr INFO:                 order : hwc
[2024/07/27 11:19:01] ppocr INFO:                 scale : 1./255.
[2024/07/27 11:19:01] ppocr INFO:                 std : [0.229, 0.224, 0.225]
[2024/07/27 11:19:01] ppocr INFO:             ToCHWImage : None
[2024/07/27 11:19:01] ppocr INFO:             KeepKeys : 
[2024/07/27 11:19:01] ppocr INFO:                 keep_keys : ['image', 'shape', 'polys', 'ignore_tags']
[2024/07/27 11:19:01] ppocr INFO:     loader : 
[2024/07/27 11:19:01] ppocr INFO:         batch_size_per_card : 1
[2024/07/27 11:19:01] ppocr INFO:         drop_last : False
[2024/07/27 11:19:01] ppocr INFO:         num_workers : 0
[2024/07/27 11:19:01] ppocr INFO:         shuffle : False
[2024/07/27 11:19:01] ppocr INFO:         use_shared_memory : False
[2024/07/27 11:19:01] ppocr INFO: Global : 
[2024/07/27 11:19:01] ppocr INFO:     cal_metric_during_train : False
[2024/07/27 11:19:01] ppocr INFO:     checkpoints : None
[2024/07/27 11:19:01] ppocr INFO:     distributed : True
[2024/07/27 11:19:01] ppocr INFO:     epoch_num : 1500
[2024/07/27 11:19:01] ppocr INFO:     eval_batch_step : [0, 60]
[2024/07/27 11:19:01] ppocr INFO:     infer_img : doc/imgs_en/img_10.jpg
[2024/07/27 11:19:01] ppocr INFO:     log_smooth_window : 20
[2024/07/27 11:19:01] ppocr INFO:     pretrained_model : ./pretrain_models/MobileNetV3_large_x0_5_pretrained
[2024/07/27 11:19:01] ppocr INFO:     print_batch_step : 10
[2024/07/27 11:19:01] ppocr INFO:     save_epoch_step : 1200
[2024/07/27 11:19:01] ppocr INFO:     save_inference_dir : None
[2024/07/27 11:19:01] ppocr INFO:     save_model_dir : ./output/db_mv3/
[2024/07/27 11:19:01] ppocr INFO:     save_res_path : ./output/det_db/predicts_db.txt
[2024/07/27 11:19:01] ppocr INFO:     use_gpu : True
[2024/07/27 11:19:01] ppocr INFO:     use_visualdl : False
[2024/07/27 11:19:01] ppocr INFO:     use_xpu : False
[2024/07/27 11:19:01] ppocr INFO: Loss : 
[2024/07/27 11:19:01] ppocr INFO:     alpha : 5
[2024/07/27 11:19:01] ppocr INFO:     balance_loss : True
[2024/07/27 11:19:01] ppocr INFO:     beta : 10
[2024/07/27 11:19:01] ppocr INFO:     main_loss_type : DiceLoss
[2024/07/27 11:19:01] ppocr INFO:     name : DBLoss
[2024/07/27 11:19:01] ppocr INFO:     ohem_ratio : 3
[2024/07/27 11:19:01] ppocr INFO: Metric : 
[2024/07/27 11:19:01] ppocr INFO:     main_indicator : hmean
[2024/07/27 11:19:01] ppocr INFO:     name : DetMetric
[2024/07/27 11:19:01] ppocr INFO: Optimizer : 
[2024/07/27 11:19:01] ppocr INFO:     beta1 : 0.9
[2024/07/27 11:19:01] ppocr INFO:     beta2 : 0.999
[2024/07/27 11:19:01] ppocr INFO:     lr : 
[2024/07/27 11:19:01] ppocr INFO:         learning_rate : 0.001
[2024/07/27 11:19:01] ppocr INFO:     name : Adam
[2024/07/27 11:19:01] ppocr INFO:     regularizer : 
[2024/07/27 11:19:01] ppocr INFO:         factor : 0
[2024/07/27 11:19:01] ppocr INFO:         name : L2
[2024/07/27 11:19:01] ppocr INFO: PostProcess : 
[2024/07/27 11:19:01] ppocr INFO:     box_thresh : 0.6
[2024/07/27 11:19:01] ppocr INFO:     max_candidates : 1000
[2024/07/27 11:19:01] ppocr INFO:     name : DBPostProcess
[2024/07/27 11:19:01] ppocr INFO:     thresh : 0.3
[2024/07/27 11:19:01] ppocr INFO:     unclip_ratio : 1.5
[2024/07/27 11:19:01] ppocr INFO: Train : 
[2024/07/27 11:19:01] ppocr INFO:     dataset : 
[2024/07/27 11:19:01] ppocr INFO:         data_dir : /datasets/icdar2015/text_localization/
[2024/07/27 11:19:01] ppocr INFO:         label_file_list : ['/datasets/icdar2015/text_localization/train_icdar2015_label.txt']
[2024/07/27 11:19:01] ppocr INFO:         name : SimpleDataSet
[2024/07/27 11:19:01] ppocr INFO:         ratio_list : [1.0]
[2024/07/27 11:19:01] ppocr INFO:         transforms : 
[2024/07/27 11:19:01] ppocr INFO:             DecodeImage : 
[2024/07/27 11:19:01] ppocr INFO:                 channel_first : False
[2024/07/27 11:19:01] ppocr INFO:                 img_mode : BGR
[2024/07/27 11:19:01] ppocr INFO:             DetLabelEncode : None
[2024/07/27 11:19:01] ppocr INFO:             IaaAugment : 
[2024/07/27 11:19:01] ppocr INFO:                 augmenter_args : 
[2024/07/27 11:19:01] ppocr INFO:                     args : 
[2024/07/27 11:19:01] ppocr INFO:                         p : 0.5
[2024/07/27 11:19:01] ppocr INFO:                     type : Fliplr
[2024/07/27 11:19:01] ppocr INFO:                     args : 
[2024/07/27 11:19:01] ppocr INFO:                         rotate : [-10, 10]
[2024/07/27 11:19:01] ppocr INFO:                     type : Affine
[2024/07/27 11:19:01] ppocr INFO:                     args : 
[2024/07/27 11:19:01] ppocr INFO:                         size : [0.5, 3]
[2024/07/27 11:19:01] ppocr INFO:                     type : Resize
[2024/07/27 11:19:01] ppocr INFO:             EastRandomCropData : 
[2024/07/27 11:19:01] ppocr INFO:                 keep_ratio : True
[2024/07/27 11:19:01] ppocr INFO:                 max_tries : 50
[2024/07/27 11:19:01] ppocr INFO:                 size : [640, 640]
[2024/07/27 11:19:01] ppocr INFO:             MakeBorderMap : 
[2024/07/27 11:19:01] ppocr INFO:                 shrink_ratio : 0.4
[2024/07/27 11:19:01] ppocr INFO:                 thresh_max : 0.7
[2024/07/27 11:19:01] ppocr INFO:                 thresh_min : 0.3
[2024/07/27 11:19:01] ppocr INFO:             MakeShrinkMap : 
[2024/07/27 11:19:01] ppocr INFO:                 min_text_size : 8
[2024/07/27 11:19:01] ppocr INFO:                 shrink_ratio : 0.4
[2024/07/27 11:19:01] ppocr INFO:             NormalizeImage : 
[2024/07/27 11:19:01] ppocr INFO:                 mean : [0.485, 0.456, 0.406]
[2024/07/27 11:19:01] ppocr INFO:                 order : hwc
[2024/07/27 11:19:01] ppocr INFO:                 scale : 1./255.
[2024/07/27 11:19:01] ppocr INFO:                 std : [0.229, 0.224, 0.225]
[2024/07/27 11:19:01] ppocr INFO:             ToCHWImage : None
[2024/07/27 11:19:01] ppocr INFO:             KeepKeys : 
[2024/07/27 11:19:01] ppocr INFO:                 keep_keys : ['image', 'threshold_map', 'threshold_mask', 'shrink_map', 'shrink_mask']
[2024/07/27 11:19:01] ppocr INFO:     loader : 
[2024/07/27 11:19:01] ppocr INFO:         batch_size_per_card : 48
[2024/07/27 11:19:01] ppocr INFO:         drop_last : False
[2024/07/27 11:19:01] ppocr INFO:         num_workers : 8
[2024/07/27 11:19:01] ppocr INFO:         shuffle : True
[2024/07/27 11:19:01] ppocr INFO:         use_shared_memory : False
[2024/07/27 11:19:01] ppocr INFO: profiler_options : None
[2024/07/27 11:19:01] ppocr INFO: train with paddle 2.5.2 and device Place(gpu:0)
======================= Modified FLAGS detected =======================
FLAGS(name='FLAGS_selected_gpus', current_value='0', default_value='')
FLAGS(name='FLAGS_cudnn_batchnorm_spatial_persistent', current_value=True, default_value=False)
=======================================================================
I0727 11:19:01.153348  2855 tcp_utils.cc:181] The server starts to listen on IP_ANY:52742
I0727 11:19:01.153559  2855 tcp_utils.cc:130] Successfully connected to 127.0.0.1:52742
I0727 11:19:04.271463  2855 process_group_nccl.cc:120] ProcessGroupNCCL pg_timeout_ 1800000
[2024/07/27 11:19:04] ppocr INFO: Initialize indexs of datasets:['/datasets/icdar2015/text_localization/train_icdar2015_label.txt']
[2024/07/27 11:19:04] ppocr INFO: Initialize indexs of datasets:['/datasets/icdar2015/text_localization/test_icdar2015_label.txt']
W0727 11:19:04.289928  2855 gpu_resources.cc:119] Please NOTE: device: 0, GPU Compute Capability: 90.2, Driver API Version: 50724.2, Runtime API Version: 50724.2
[2024/07/27 11:19:05] ppocr INFO: load pretrain successful from ./pretrain_models/MobileNetV3_large_x0_5_pretrained
[2024/07/27 11:19:05] ppocr INFO: train dataloader has 3 iters
[2024/07/27 11:19:05] ppocr INFO: valid dataloader has 500 iters
[2024/07/27 11:19:05] ppocr INFO: During the training process, after the 0th iteration, an evaluation is run every 60 iterations
[2024/07/27 11:20:25] ppocr INFO: epoch: [1/1500], global_step: 3, lr: 0.001000, loss: 9.480772, loss_shrink_maps: 4.930692, loss_threshold_maps: 3.563909, loss_binary_maps: 0.986170, avg_reader_cost: 13.32391 s, avg_batch_cost: 19.60355 s, avg_samples: 12.5, ips: 0.63764 samples/s, eta: 3 days, 9:37:37
[2024/07/27 11:20:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:20:37] ppocr INFO: epoch: [2/1500], global_step: 6, lr: 0.001000, loss: 8.544098, loss_shrink_maps: 4.935206, loss_threshold_maps: 2.603798, loss_binary_maps: 0.988400, avg_reader_cost: 2.95120 s, avg_batch_cost: 3.18849 s, avg_samples: 12.5, ips: 3.92035 samples/s, eta: 1 day, 23:25:12
[2024/07/27 11:20:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:20:49] ppocr INFO: epoch: [3/1500], global_step: 9, lr: 0.001000, loss: 7.708382, loss_shrink_maps: 4.930692, loss_threshold_maps: 1.779346, loss_binary_maps: 0.987835, avg_reader_cost: 2.90512 s, avg_batch_cost: 3.15215 s, avg_samples: 12.5, ips: 3.96555 samples/s, eta: 1 day, 11:57:41
[2024/07/27 11:20:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:20:59] ppocr INFO: epoch: [4/1500], global_step: 10, lr: 0.001000, loss: 7.494616, loss_shrink_maps: 4.931758, loss_threshold_maps: 1.572014, loss_binary_maps: 0.987142, avg_reader_cost: 0.78054 s, avg_batch_cost: 1.00046 s, avg_samples: 4.8, ips: 4.79781 samples/s, eta: 1 day, 9:36:21
[2024/07/27 11:21:01] ppocr INFO: epoch: [4/1500], global_step: 12, lr: 0.001000, loss: 7.228681, loss_shrink_maps: 4.931758, loss_threshold_maps: 1.315077, loss_binary_maps: 0.986440, avg_reader_cost: 2.09298 s, avg_batch_cost: 2.23981 s, avg_samples: 7.7, ips: 3.43778 samples/s, eta: 1 day, 6:19:09
[2024/07/27 11:21:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:21:13] ppocr INFO: epoch: [5/1500], global_step: 15, lr: 0.001000, loss: 7.112224, loss_shrink_maps: 4.930692, loss_threshold_maps: 1.184255, loss_binary_maps: 0.986170, avg_reader_cost: 2.83620 s, avg_batch_cost: 3.17688 s, avg_samples: 12.5, ips: 3.93468 samples/s, eta: 1 day, 2:52:40
[2024/07/27 11:21:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:21:25] ppocr INFO: epoch: [6/1500], global_step: 18, lr: 0.001000, loss: 7.093850, loss_shrink_maps: 4.930370, loss_threshold_maps: 1.176808, loss_binary_maps: 0.985607, avg_reader_cost: 2.90469 s, avg_batch_cost: 3.14202 s, avg_samples: 12.5, ips: 3.97833 samples/s, eta: 1 day, 0:33:23
[2024/07/27 11:21:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:21:36] ppocr INFO: epoch: [7/1500], global_step: 20, lr: 0.001000, loss: 7.082152, loss_shrink_maps: 4.929456, loss_threshold_maps: 1.166440, loss_binary_maps: 0.985553, avg_reader_cost: 1.78845 s, avg_batch_cost: 2.07187 s, avg_samples: 9.6, ips: 4.63350 samples/s, eta: 23:22:48
[2024/07/27 11:21:37] ppocr INFO: epoch: [7/1500], global_step: 21, lr: 0.001000, loss: 7.067038, loss_shrink_maps: 4.929456, loss_threshold_maps: 1.150968, loss_binary_maps: 0.985553, avg_reader_cost: 1.08215 s, avg_batch_cost: 1.13755 s, avg_samples: 2.9, ips: 2.54934 samples/s, eta: 22:56:08
[2024/07/27 11:21:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:21:48] ppocr INFO: epoch: [8/1500], global_step: 24, lr: 0.001000, loss: 7.042310, loss_shrink_maps: 4.925900, loss_threshold_maps: 1.135616, loss_binary_maps: 0.983872, avg_reader_cost: 2.74143 s, avg_batch_cost: 3.07715 s, avg_samples: 12.5, ips: 4.06220 samples/s, eta: 21:38:58
[2024/07/27 11:21:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:22:00] ppocr INFO: epoch: [9/1500], global_step: 27, lr: 0.001000, loss: 6.963614, loss_shrink_maps: 4.904892, loss_threshold_maps: 1.096257, loss_binary_maps: 0.979010, avg_reader_cost: 2.87324 s, avg_batch_cost: 3.24731 s, avg_samples: 12.5, ips: 3.84934 samples/s, eta: 20:43:31
[2024/07/27 11:22:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:22:12] ppocr INFO: epoch: [10/1500], global_step: 30, lr: 0.001000, loss: 6.922710, loss_shrink_maps: 4.890026, loss_threshold_maps: 1.045500, loss_binary_maps: 0.974394, avg_reader_cost: 2.89083 s, avg_batch_cost: 3.13008 s, avg_samples: 12.5, ips: 3.99350 samples/s, eta: 19:56:09
[2024/07/27 11:22:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:22:24] ppocr INFO: epoch: [11/1500], global_step: 33, lr: 0.001000, loss: 6.859891, loss_shrink_maps: 4.888492, loss_threshold_maps: 1.009600, loss_binary_maps: 0.973823, avg_reader_cost: 2.75596 s, avg_batch_cost: 3.10461 s, avg_samples: 12.5, ips: 4.02628 samples/s, eta: 19:16:43
[2024/07/27 11:22:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:22:36] ppocr INFO: epoch: [12/1500], global_step: 36, lr: 0.001000, loss: 6.831796, loss_shrink_maps: 4.880192, loss_threshold_maps: 0.993817, loss_binary_maps: 0.972217, avg_reader_cost: 2.90053 s, avg_batch_cost: 3.25971 s, avg_samples: 12.5, ips: 3.83470 samples/s, eta: 18:46:59
[2024/07/27 11:22:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:22:48] ppocr INFO: epoch: [13/1500], global_step: 39, lr: 0.001000, loss: 6.818047, loss_shrink_maps: 4.862352, loss_threshold_maps: 0.956775, loss_binary_maps: 0.968630, avg_reader_cost: 2.75273 s, avg_batch_cost: 3.04437 s, avg_samples: 12.5, ips: 4.10594 samples/s, eta: 18:17:38
[2024/07/27 11:22:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:22:59] ppocr INFO: epoch: [14/1500], global_step: 40, lr: 0.001000, loss: 6.809054, loss_shrink_maps: 4.859376, loss_threshold_maps: 0.955596, loss_binary_maps: 0.967310, avg_reader_cost: 0.91054 s, avg_batch_cost: 1.00106 s, avg_samples: 4.8, ips: 4.79493 samples/s, eta: 18:08:33
[2024/07/27 11:23:00] ppocr INFO: epoch: [14/1500], global_step: 42, lr: 0.001000, loss: 6.778828, loss_shrink_maps: 4.852133, loss_threshold_maps: 0.944726, loss_binary_maps: 0.956009, avg_reader_cost: 2.09526 s, avg_batch_cost: 2.24368 s, avg_samples: 7.7, ips: 3.43186 samples/s, eta: 17:55:56
[2024/07/27 11:23:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:23:12] ppocr INFO: epoch: [15/1500], global_step: 45, lr: 0.001000, loss: 6.698614, loss_shrink_maps: 4.836128, loss_threshold_maps: 0.934905, loss_binary_maps: 0.946085, avg_reader_cost: 2.79339 s, avg_batch_cost: 3.19919 s, avg_samples: 12.5, ips: 3.90724 samples/s, eta: 17:36:19
[2024/07/27 11:23:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:23:24] ppocr INFO: epoch: [16/1500], global_step: 48, lr: 0.001000, loss: 6.661482, loss_shrink_maps: 4.807730, loss_threshold_maps: 0.914088, loss_binary_maps: 0.942309, avg_reader_cost: 2.78737 s, avg_batch_cost: 3.15760 s, avg_samples: 12.5, ips: 3.95870 samples/s, eta: 17:18:27
[2024/07/27 11:23:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:23:36] ppocr INFO: epoch: [17/1500], global_step: 50, lr: 0.001000, loss: 6.626173, loss_shrink_maps: 4.804862, loss_threshold_maps: 0.898176, loss_binary_maps: 0.934271, avg_reader_cost: 1.86880 s, avg_batch_cost: 2.05809 s, avg_samples: 9.6, ips: 4.66451 samples/s, eta: 17:06:59
[2024/07/27 11:23:36] ppocr INFO: epoch: [17/1500], global_step: 51, lr: 0.001000, loss: 6.610918, loss_shrink_maps: 4.804862, loss_threshold_maps: 0.891841, loss_binary_maps: 0.923617, avg_reader_cost: 1.07517 s, avg_batch_cost: 1.13042 s, avg_samples: 2.9, ips: 2.56542 samples/s, eta: 17:03:04
[2024/07/27 11:23:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:23:48] ppocr INFO: epoch: [18/1500], global_step: 54, lr: 0.001000, loss: 6.571888, loss_shrink_maps: 4.799198, loss_threshold_maps: 0.888733, loss_binary_maps: 0.911923, avg_reader_cost: 2.97674 s, avg_batch_cost: 3.30318 s, avg_samples: 12.5, ips: 3.78423 samples/s, eta: 16:50:54
[2024/07/27 11:23:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:24:00] ppocr INFO: epoch: [19/1500], global_step: 57, lr: 0.001000, loss: 6.543092, loss_shrink_maps: 4.794786, loss_threshold_maps: 0.876342, loss_binary_maps: 0.891371, avg_reader_cost: 2.77563 s, avg_batch_cost: 3.10389 s, avg_samples: 12.5, ips: 4.02720 samples/s, eta: 16:37:22
[2024/07/27 11:24:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:24:12] ppocr INFO: epoch: [20/1500], global_step: 60, lr: 0.001000, loss: 6.482062, loss_shrink_maps: 4.793821, loss_threshold_maps: 0.876342, loss_binary_maps: 0.812436, avg_reader_cost: 3.00557 s, avg_batch_cost: 3.24359 s, avg_samples: 12.5, ips: 3.85375 samples/s, eta: 16:26:52

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:57,  8.61it/s]
eval model::   1%|          | 4/500 [00:00<00:28, 17.54it/s]
eval model::   1%|▏         | 7/500 [00:00<00:23, 20.73it/s]
eval model::   2%|▏         | 11/500 [00:00<00:21, 23.27it/s]
eval model::   3%|▎         | 14/500 [00:00<00:19, 25.07it/s]
eval model::   4%|▎         | 18/500 [00:00<00:17, 27.35it/s]
eval model::   4%|▍         | 21/500 [00:00<00:20, 23.18it/s]
eval model::   5%|▍         | 24/500 [00:01<00:22, 21.41it/s]
eval model::   5%|▌         | 27/500 [00:01<00:22, 20.87it/s]
eval model::   6%|▌         | 30/500 [00:01<00:24, 19.43it/s]
eval model::   6%|▋         | 32/500 [00:01<00:24, 19.21it/s]
eval model::   7%|▋         | 34/500 [00:01<00:25, 18.37it/s]
eval model::   7%|▋         | 36/500 [00:01<00:25, 17.86it/s]
eval model::   8%|▊         | 39/500 [00:01<00:26, 17.56it/s]
eval model::   8%|▊         | 42/500 [00:02<00:23, 19.09it/s]
eval model::   9%|▉         | 45/500 [00:02<00:21, 20.95it/s]
eval model::  10%|▉         | 48/500 [00:02<00:20, 22.10it/s]
eval model::  10%|█         | 51/500 [00:02<00:19, 22.95it/s]
eval model::  11%|█         | 54/500 [00:02<00:19, 23.23it/s]
eval model::  11%|█▏        | 57/500 [00:02<00:19, 23.04it/s]
eval model::  12%|█▏        | 60/500 [00:02<00:19, 22.97it/s]
eval model::  13%|█▎        | 63/500 [00:02<00:19, 22.81it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:19, 22.62it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:19, 21.84it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:19, 21.91it/s]
eval model::  15%|█▌        | 75/500 [00:03<00:19, 22.20it/s]
eval model::  16%|█▌        | 78/500 [00:03<00:19, 22.17it/s]
eval model::  16%|█▌        | 81/500 [00:03<00:19, 21.17it/s]
eval model::  17%|█▋        | 84/500 [00:03<00:18, 21.97it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:19, 21.19it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:19, 21.12it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:19, 21.40it/s]
eval model::  19%|█▉        | 96/500 [00:04<00:21, 19.11it/s]
eval model::  20%|█▉        | 98/500 [00:04<00:21, 19.03it/s]
eval model::  20%|██        | 100/500 [00:04<00:21, 18.23it/s]
eval model::  21%|██        | 103/500 [00:04<00:20, 19.25it/s]
eval model::  21%|██        | 106/500 [00:05<00:19, 20.32it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:19, 20.04it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:19, 19.89it/s]
eval model::  23%|██▎       | 115/500 [00:05<00:19, 20.15it/s]
eval model::  24%|██▎       | 118/500 [00:05<00:18, 20.96it/s]
eval model::  24%|██▍       | 121/500 [00:05<00:18, 20.50it/s]
eval model::  25%|██▍       | 124/500 [00:05<00:18, 20.46it/s]
eval model::  25%|██▌       | 127/500 [00:06<00:17, 20.85it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:18, 20.29it/s]
eval model::  27%|██▋       | 133/500 [00:06<00:18, 20.31it/s]
eval model::  27%|██▋       | 136/500 [00:06<00:18, 20.02it/s]
eval model::  28%|██▊       | 139/500 [00:06<00:17, 20.51it/s]
eval model::  28%|██▊       | 142/500 [00:06<00:16, 21.08it/s]
eval model::  29%|██▉       | 145/500 [00:06<00:17, 20.55it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:17, 20.16it/s]
eval model::  30%|███       | 151/500 [00:07<00:17, 20.41it/s]
eval model::  31%|███       | 154/500 [00:07<00:16, 21.06it/s]
eval model::  31%|███▏      | 157/500 [00:07<00:15, 22.19it/s]
eval model::  32%|███▏      | 160/500 [00:07<00:16, 20.17it/s]
eval model::  33%|███▎      | 163/500 [00:07<00:15, 21.46it/s]
eval model::  33%|███▎      | 166/500 [00:07<00:15, 21.51it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:15, 20.92it/s]
eval model::  34%|███▍      | 172/500 [00:08<00:15, 21.25it/s]
eval model::  35%|███▌      | 175/500 [00:08<00:16, 20.26it/s]
eval model::  36%|███▌      | 178/500 [00:08<00:15, 21.07it/s]
eval model::  36%|███▌      | 181/500 [00:08<00:15, 20.25it/s]
eval model::  37%|███▋      | 184/500 [00:08<00:14, 21.10it/s]
eval model::  37%|███▋      | 187/500 [00:08<00:15, 20.70it/s]
eval model::  38%|███▊      | 190/500 [00:09<00:14, 21.55it/s]
eval model::  39%|███▊      | 193/500 [00:09<00:14, 21.89it/s]
eval model::  39%|███▉      | 196/500 [00:09<00:13, 21.84it/s]
eval model::  40%|███▉      | 199/500 [00:09<00:13, 21.67it/s]
eval model::  40%|████      | 202/500 [00:09<00:13, 21.51it/s]
eval model::  41%|████      | 205/500 [00:09<00:17, 16.62it/s]
eval model::  42%|████▏     | 208/500 [00:10<00:16, 17.89it/s]
eval model::  42%|████▏     | 211/500 [00:10<00:14, 19.60it/s]
eval model::  43%|████▎     | 214/500 [00:10<00:13, 21.23it/s]
eval model::  43%|████▎     | 217/500 [00:10<00:14, 19.90it/s]
eval model::  44%|████▍     | 220/500 [00:10<00:14, 19.96it/s]
eval model::  45%|████▍     | 223/500 [00:10<00:13, 19.83it/s]
eval model::  45%|████▌     | 226/500 [00:10<00:14, 19.37it/s]
eval model::  46%|████▌     | 229/500 [00:11<00:13, 20.05it/s]
eval model::  46%|████▋     | 232/500 [00:11<00:13, 19.72it/s]
eval model::  47%|████▋     | 234/500 [00:11<00:13, 19.08it/s]
eval model::  47%|████▋     | 237/500 [00:11<00:12, 20.27it/s]
eval model::  48%|████▊     | 240/500 [00:11<00:13, 19.87it/s]
eval model::  48%|████▊     | 242/500 [00:11<00:13, 19.78it/s]
eval model::  49%|████▉     | 245/500 [00:11<00:12, 20.92it/s]
eval model::  50%|████▉     | 248/500 [00:12<00:12, 20.60it/s]
eval model::  50%|█████     | 251/500 [00:12<00:11, 20.76it/s]
eval model::  51%|█████     | 254/500 [00:12<00:11, 21.07it/s]
eval model::  51%|█████▏    | 257/500 [00:12<00:11, 21.05it/s]
eval model::  52%|█████▏    | 260/500 [00:12<00:11, 21.50it/s]
eval model::  53%|█████▎    | 263/500 [00:12<00:11, 21.17it/s]
eval model::  53%|█████▎    | 266/500 [00:12<00:10, 21.64it/s]
eval model::  54%|█████▍    | 269/500 [00:12<00:10, 21.28it/s]
eval model::  54%|█████▍    | 272/500 [00:13<00:10, 21.92it/s]
eval model::  55%|█████▌    | 275/500 [00:13<00:10, 21.44it/s]
eval model::  56%|█████▌    | 278/500 [00:13<00:10, 21.27it/s]
eval model::  56%|█████▌    | 281/500 [00:13<00:10, 21.60it/s]
eval model::  57%|█████▋    | 284/500 [00:13<00:10, 21.39it/s]
eval model::  57%|█████▋    | 287/500 [00:13<00:10, 19.53it/s]
eval model::  58%|█████▊    | 290/500 [00:13<00:10, 20.84it/s]
eval model::  59%|█████▊    | 293/500 [00:14<00:09, 21.02it/s]
eval model::  59%|█████▉    | 296/500 [00:14<00:09, 20.75it/s]
eval model::  60%|█████▉    | 299/500 [00:14<00:09, 21.06it/s]
eval model::  60%|██████    | 302/500 [00:14<00:09, 20.08it/s]
eval model::  61%|██████    | 305/500 [00:14<00:09, 20.05it/s]
eval model::  62%|██████▏   | 308/500 [00:14<00:09, 20.55it/s]
eval model::  62%|██████▏   | 311/500 [00:15<00:09, 20.40it/s]
eval model::  63%|██████▎   | 314/500 [00:15<00:09, 20.35it/s]
eval model::  63%|██████▎   | 317/500 [00:15<00:09, 20.27it/s]
eval model::  64%|██████▍   | 320/500 [00:15<00:08, 20.19it/s]
eval model::  65%|██████▍   | 323/500 [00:15<00:08, 20.66it/s]
eval model::  65%|██████▌   | 326/500 [00:15<00:08, 20.49it/s]
eval model::  66%|██████▌   | 329/500 [00:15<00:08, 20.58it/s]
eval model::  66%|██████▋   | 332/500 [00:16<00:08, 20.94it/s]
eval model::  67%|██████▋   | 335/500 [00:16<00:08, 20.57it/s]
eval model::  68%|██████▊   | 338/500 [00:16<00:08, 20.12it/s]
eval model::  68%|██████▊   | 341/500 [00:16<00:08, 19.78it/s]
eval model::  69%|██████▉   | 344/500 [00:16<00:07, 21.05it/s]
eval model::  69%|██████▉   | 347/500 [00:16<00:07, 20.87it/s]
eval model::  70%|███████   | 350/500 [00:16<00:07, 20.90it/s]
eval model::  71%|███████   | 353/500 [00:17<00:06, 21.77it/s]
eval model::  71%|███████   | 356/500 [00:17<00:07, 20.43it/s]
eval model::  72%|███████▏  | 359/500 [00:17<00:06, 21.09it/s]
eval model::  72%|███████▏  | 362/500 [00:17<00:06, 20.12it/s]
eval model::  73%|███████▎  | 365/500 [00:17<00:06, 20.62it/s]
eval model::  74%|███████▎  | 368/500 [00:17<00:06, 20.79it/s]
eval model::  74%|███████▍  | 371/500 [00:17<00:06, 19.69it/s]
eval model::  75%|███████▍  | 374/500 [00:18<00:06, 19.89it/s]
eval model::  75%|███████▌  | 377/500 [00:18<00:05, 20.98it/s]
eval model::  76%|███████▌  | 380/500 [00:18<00:05, 20.73it/s]
eval model::  77%|███████▋  | 383/500 [00:18<00:05, 22.31it/s]
eval model::  77%|███████▋  | 386/500 [00:18<00:05, 20.48it/s]
eval model::  78%|███████▊  | 389/500 [00:18<00:05, 21.17it/s]
eval model::  78%|███████▊  | 392/500 [00:18<00:05, 21.21it/s]
eval model::  79%|███████▉  | 395/500 [00:19<00:05, 20.74it/s]
eval model::  80%|███████▉  | 398/500 [00:19<00:04, 21.14it/s]
eval model::  80%|████████  | 401/500 [00:19<00:04, 20.39it/s]
eval model::  81%|████████  | 404/500 [00:19<00:04, 20.46it/s]
eval model::  81%|████████▏ | 407/500 [00:19<00:04, 20.62it/s]
eval model::  82%|████████▏ | 410/500 [00:19<00:04, 20.91it/s]
eval model::  83%|████████▎ | 413/500 [00:19<00:04, 20.35it/s]
eval model::  83%|████████▎ | 416/500 [00:20<00:04, 20.60it/s]
eval model::  84%|████████▍ | 419/500 [00:20<00:03, 20.38it/s]
eval model::  84%|████████▍ | 422/500 [00:20<00:03, 20.22it/s]
eval model::  85%|████████▌ | 425/500 [00:20<00:03, 19.69it/s]
eval model::  86%|████████▌ | 428/500 [00:20<00:03, 21.04it/s]
eval model::  86%|████████▌ | 431/500 [00:20<00:03, 22.18it/s]
eval model::  87%|████████▋ | 434/500 [00:20<00:03, 21.37it/s]
eval model::  87%|████████▋ | 437/500 [00:21<00:03, 19.90it/s]
eval model::  88%|████████▊ | 440/500 [00:21<00:02, 20.23it/s]
eval model::  89%|████████▊ | 443/500 [00:21<00:02, 20.73it/s]
eval model::  89%|████████▉ | 446/500 [00:21<00:02, 20.99it/s]
eval model::  90%|████████▉ | 449/500 [00:21<00:02, 20.66it/s]
eval model::  90%|█████████ | 452/500 [00:21<00:02, 21.13it/s]
eval model::  91%|█████████ | 455/500 [00:21<00:02, 20.89it/s]
eval model::  92%|█████████▏| 458/500 [00:22<00:02, 20.30it/s]
eval model::  92%|█████████▏| 461/500 [00:22<00:01, 19.97it/s]
eval model::  93%|█████████▎| 464/500 [00:22<00:01, 19.63it/s]
eval model::  93%|█████████▎| 467/500 [00:22<00:01, 20.42it/s]
eval model::  94%|█████████▍| 470/500 [00:22<00:01, 19.76it/s]
eval model::  95%|█████████▍| 473/500 [00:22<00:01, 19.48it/s]
eval model::  95%|█████████▌| 476/500 [00:23<00:01, 20.87it/s]
eval model::  96%|█████████▌| 479/500 [00:23<00:01, 20.34it/s]
eval model::  96%|█████████▋| 482/500 [00:23<00:00, 20.43it/s]
eval model::  97%|█████████▋| 485/500 [00:23<00:00, 20.18it/s]
eval model::  98%|█████████▊| 488/500 [00:23<00:00, 19.89it/s]
eval model::  98%|█████████▊| 491/500 [00:23<00:00, 20.65it/s]
eval model::  99%|█████████▉| 494/500 [00:23<00:00, 21.03it/s]
eval model::  99%|█████████▉| 497/500 [00:24<00:00, 21.68it/s]
eval model:: 100%|██████████| 500/500 [00:24<00:00, 21.00it/s]
eval model:: 100%|██████████| 500/500 [00:24<00:00, 20.67it/s]
[2024/07/27 11:24:36] ppocr INFO: cur metric, precision: 0.08085106382978724, recall: 0.0091478093403948, hmean: 0.01643598615916955, fps: 43.91955985780141
[2024/07/27 11:24:37] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/27 11:24:37] ppocr INFO: best metric, hmean: 0.01643598615916955, precision: 0.08085106382978724, recall: 0.0091478093403948, fps: 43.91955985780141, best_epoch: 20
[2024/07/27 11:24:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:24:46] ppocr INFO: epoch: [21/1500], global_step: 63, lr: 0.001000, loss: 6.339468, loss_shrink_maps: 4.782884, loss_threshold_maps: 0.868179, loss_binary_maps: 0.725933, avg_reader_cost: 2.38862 s, avg_batch_cost: 2.72327 s, avg_samples: 12.5, ips: 4.59007 samples/s, eta: 16:11:12
[2024/07/27 11:24:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:24:56] ppocr INFO: epoch: [22/1500], global_step: 66, lr: 0.001000, loss: 6.322258, loss_shrink_maps: 4.781232, loss_threshold_maps: 0.854461, loss_binary_maps: 0.665587, avg_reader_cost: 2.25163 s, avg_batch_cost: 2.48823 s, avg_samples: 12.5, ips: 5.02365 samples/s, eta: 15:54:17
[2024/07/27 11:24:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:25:05] ppocr INFO: epoch: [23/1500], global_step: 69, lr: 0.001000, loss: 6.103568, loss_shrink_maps: 4.774416, loss_threshold_maps: 0.854461, loss_binary_maps: 0.465616, avg_reader_cost: 2.15667 s, avg_batch_cost: 2.51885 s, avg_samples: 12.5, ips: 4.96259 samples/s, eta: 15:39:08
[2024/07/27 11:25:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:25:14] ppocr INFO: epoch: [24/1500], global_step: 70, lr: 0.001000, loss: 6.086606, loss_shrink_maps: 4.774416, loss_threshold_maps: 0.850591, loss_binary_maps: 0.449583, avg_reader_cost: 0.55745 s, avg_batch_cost: 0.75289 s, avg_samples: 4.8, ips: 6.37542 samples/s, eta: 15:33:27
[2024/07/27 11:25:15] ppocr INFO: epoch: [24/1500], global_step: 72, lr: 0.001000, loss: 6.018610, loss_shrink_maps: 4.764674, loss_threshold_maps: 0.848938, loss_binary_maps: 0.413616, avg_reader_cost: 1.59758 s, avg_batch_cost: 1.74478 s, avg_samples: 7.7, ips: 4.41316 samples/s, eta: 15:25:00
[2024/07/27 11:25:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:25:25] ppocr INFO: epoch: [25/1500], global_step: 75, lr: 0.001000, loss: 5.980997, loss_shrink_maps: 4.736993, loss_threshold_maps: 0.847426, loss_binary_maps: 0.408017, avg_reader_cost: 2.16603 s, avg_batch_cost: 2.54404 s, avg_samples: 12.5, ips: 4.91344 samples/s, eta: 15:12:25
[2024/07/27 11:25:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:25:34] ppocr INFO: epoch: [26/1500], global_step: 78, lr: 0.001000, loss: 5.957236, loss_shrink_maps: 4.717703, loss_threshold_maps: 0.835125, loss_binary_maps: 0.398625, avg_reader_cost: 2.33872 s, avg_batch_cost: 2.57712 s, avg_samples: 12.5, ips: 4.85037 samples/s, eta: 15:01:05
[2024/07/27 11:25:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:25:44] ppocr INFO: epoch: [27/1500], global_step: 80, lr: 0.001000, loss: 5.940472, loss_shrink_maps: 4.689912, loss_threshold_maps: 0.826278, loss_binary_maps: 0.393523, avg_reader_cost: 1.47824 s, avg_batch_cost: 1.66239 s, avg_samples: 9.6, ips: 5.77482 samples/s, eta: 14:53:28
[2024/07/27 11:25:44] ppocr INFO: epoch: [27/1500], global_step: 81, lr: 0.001000, loss: 5.924828, loss_shrink_maps: 4.678408, loss_threshold_maps: 0.815844, loss_binary_maps: 0.385656, avg_reader_cost: 0.87729 s, avg_batch_cost: 0.93274 s, avg_samples: 2.9, ips: 3.10911 samples/s, eta: 14:50:43
[2024/07/27 11:25:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:25:54] ppocr INFO: epoch: [28/1500], global_step: 84, lr: 0.001000, loss: 5.821468, loss_shrink_maps: 4.631274, loss_threshold_maps: 0.803404, loss_binary_maps: 0.380633, avg_reader_cost: 2.34277 s, avg_batch_cost: 2.58121 s, avg_samples: 12.5, ips: 4.84270 samples/s, eta: 14:40:56
[2024/07/27 11:25:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:26:04] ppocr INFO: epoch: [29/1500], global_step: 87, lr: 0.001000, loss: 5.716532, loss_shrink_maps: 4.535442, loss_threshold_maps: 0.803404, loss_binary_maps: 0.381055, avg_reader_cost: 2.31168 s, avg_batch_cost: 2.56036 s, avg_samples: 12.5, ips: 4.88212 samples/s, eta: 14:31:37
[2024/07/27 11:26:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:26:13] ppocr INFO: epoch: [30/1500], global_step: 90, lr: 0.001000, loss: 5.669962, loss_shrink_maps: 4.499154, loss_threshold_maps: 0.801467, loss_binary_maps: 0.381055, avg_reader_cost: 2.09350 s, avg_batch_cost: 2.40920 s, avg_samples: 12.5, ips: 5.18845 samples/s, eta: 14:21:40
[2024/07/27 11:26:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:26:23] ppocr INFO: epoch: [31/1500], global_step: 93, lr: 0.001000, loss: 5.602889, loss_shrink_maps: 4.437448, loss_threshold_maps: 0.805613, loss_binary_maps: 0.378343, avg_reader_cost: 2.28828 s, avg_batch_cost: 2.67552 s, avg_samples: 12.5, ips: 4.67199 samples/s, eta: 14:14:26
[2024/07/27 11:26:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:26:33] ppocr INFO: epoch: [32/1500], global_step: 96, lr: 0.001000, loss: 5.532728, loss_shrink_maps: 4.359826, loss_threshold_maps: 0.805277, loss_binary_maps: 0.377218, avg_reader_cost: 2.33420 s, avg_batch_cost: 2.57252 s, avg_samples: 12.5, ips: 4.85904 samples/s, eta: 14:06:51
[2024/07/27 11:26:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:26:42] ppocr INFO: epoch: [33/1500], global_step: 99, lr: 0.001000, loss: 5.462482, loss_shrink_maps: 4.285815, loss_threshold_maps: 0.810783, loss_binary_maps: 0.356820, avg_reader_cost: 2.27970 s, avg_batch_cost: 2.52743 s, avg_samples: 12.5, ips: 4.94573 samples/s, eta: 13:59:21
[2024/07/27 11:26:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:26:50] ppocr INFO: epoch: [34/1500], global_step: 100, lr: 0.001000, loss: 5.439956, loss_shrink_maps: 4.254110, loss_threshold_maps: 0.816136, loss_binary_maps: 0.355817, avg_reader_cost: 0.53884 s, avg_batch_cost: 0.76928 s, avg_samples: 4.8, ips: 6.23963 samples/s, eta: 13:56:24
[2024/07/27 11:26:52] ppocr INFO: epoch: [34/1500], global_step: 102, lr: 0.001000, loss: 5.418988, loss_shrink_maps: 4.193313, loss_threshold_maps: 0.818774, loss_binary_maps: 0.368025, avg_reader_cost: 1.63135 s, avg_batch_cost: 1.77902 s, avg_samples: 7.7, ips: 4.32822 samples/s, eta: 13:52:25
[2024/07/27 11:26:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:27:01] ppocr INFO: epoch: [35/1500], global_step: 105, lr: 0.001000, loss: 5.241027, loss_shrink_maps: 4.066562, loss_threshold_maps: 0.816136, loss_binary_maps: 0.368025, avg_reader_cost: 2.23341 s, avg_batch_cost: 2.56447 s, avg_samples: 12.5, ips: 4.87430 samples/s, eta: 13:45:58
[2024/07/27 11:27:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:27:11] ppocr INFO: epoch: [36/1500], global_step: 108, lr: 0.001000, loss: 5.210048, loss_shrink_maps: 4.046406, loss_threshold_maps: 0.811586, loss_binary_maps: 0.354948, avg_reader_cost: 2.22985 s, avg_batch_cost: 2.57974 s, avg_samples: 12.5, ips: 4.84545 samples/s, eta: 13:39:58
[2024/07/27 11:27:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:27:20] ppocr INFO: epoch: [37/1500], global_step: 110, lr: 0.001000, loss: 5.163123, loss_shrink_maps: 4.001716, loss_threshold_maps: 0.811586, loss_binary_maps: 0.368025, avg_reader_cost: 1.39949 s, avg_batch_cost: 1.58243 s, avg_samples: 9.6, ips: 6.06663 samples/s, eta: 13:35:13
[2024/07/27 11:27:21] ppocr INFO: epoch: [37/1500], global_step: 111, lr: 0.001000, loss: 5.110232, loss_shrink_maps: 3.939732, loss_threshold_maps: 0.807682, loss_binary_maps: 0.354948, avg_reader_cost: 0.83710 s, avg_batch_cost: 0.89318 s, avg_samples: 2.9, ips: 3.24682 samples/s, eta: 13:33:34
[2024/07/27 11:27:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:27:31] ppocr INFO: epoch: [38/1500], global_step: 114, lr: 0.001000, loss: 5.030018, loss_shrink_maps: 3.817909, loss_threshold_maps: 0.798440, loss_binary_maps: 0.355179, avg_reader_cost: 2.29891 s, avg_batch_cost: 2.53576 s, avg_samples: 12.5, ips: 4.92950 samples/s, eta: 13:27:53
[2024/07/27 11:27:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:27:41] ppocr INFO: epoch: [39/1500], global_step: 117, lr: 0.001000, loss: 4.816878, loss_shrink_maps: 3.684157, loss_threshold_maps: 0.780125, loss_binary_maps: 0.351575, avg_reader_cost: 2.44644 s, avg_batch_cost: 2.68603 s, avg_samples: 12.5, ips: 4.65371 samples/s, eta: 13:23:24
[2024/07/27 11:27:41] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:27:50] ppocr INFO: epoch: [40/1500], global_step: 120, lr: 0.001000, loss: 4.570972, loss_shrink_maps: 3.460672, loss_threshold_maps: 0.782258, loss_binary_maps: 0.350812, avg_reader_cost: 2.11952 s, avg_batch_cost: 2.45039 s, avg_samples: 12.5, ips: 5.10123 samples/s, eta: 13:17:41

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:53,  9.38it/s]
eval model::   1%|          | 4/500 [00:00<00:29, 17.00it/s]
eval model::   1%|▏         | 7/500 [00:00<00:25, 19.00it/s]
eval model::   2%|▏         | 10/500 [00:00<00:25, 19.03it/s]
eval model::   2%|▏         | 12/500 [00:00<00:26, 18.44it/s]
eval model::   3%|▎         | 14/500 [00:00<00:25, 18.81it/s]
eval model::   3%|▎         | 17/500 [00:00<00:22, 21.11it/s]
eval model::   4%|▍         | 20/500 [00:01<00:25, 18.98it/s]
eval model::   5%|▍         | 23/500 [00:01<00:23, 19.94it/s]
eval model::   5%|▌         | 26/500 [00:01<00:25, 18.84it/s]
eval model::   6%|▌         | 29/500 [00:01<00:23, 19.68it/s]
eval model::   6%|▋         | 32/500 [00:01<00:27, 17.18it/s]
eval model::   7%|▋         | 35/500 [00:01<00:24, 18.97it/s]
eval model::   8%|▊         | 38/500 [00:02<00:23, 19.62it/s]
eval model::   8%|▊         | 41/500 [00:02<00:23, 19.48it/s]
eval model::   9%|▉         | 44/500 [00:02<00:22, 20.38it/s]
eval model::   9%|▉         | 47/500 [00:02<00:22, 20.04it/s]
eval model::  10%|█         | 50/500 [00:02<00:21, 20.71it/s]
eval model::  11%|█         | 53/500 [00:02<00:20, 21.37it/s]
eval model::  11%|█         | 56/500 [00:02<00:22, 19.37it/s]
eval model::  12%|█▏        | 59/500 [00:03<00:22, 19.82it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:24, 18.13it/s]
eval model::  13%|█▎        | 65/500 [00:03<00:21, 19.80it/s]
eval model::  14%|█▎        | 68/500 [00:03<00:21, 19.80it/s]
eval model::  14%|█▍        | 71/500 [00:03<00:20, 20.76it/s]
eval model::  15%|█▍        | 74/500 [00:03<00:20, 20.46it/s]
eval model::  15%|█▌        | 77/500 [00:03<00:20, 20.83it/s]
eval model::  16%|█▌        | 80/500 [00:04<00:19, 21.66it/s]
eval model::  17%|█▋        | 83/500 [00:04<00:18, 22.87it/s]
eval model::  17%|█▋        | 86/500 [00:04<00:19, 21.60it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:19, 21.30it/s]
eval model::  18%|█▊        | 92/500 [00:04<00:18, 21.53it/s]
eval model::  19%|█▉        | 95/500 [00:04<00:20, 20.12it/s]
eval model::  20%|█▉        | 98/500 [00:04<00:18, 21.80it/s]
eval model::  20%|██        | 101/500 [00:05<00:18, 21.54it/s]
eval model::  21%|██        | 104/500 [00:05<00:17, 22.65it/s]
eval model::  21%|██▏       | 107/500 [00:05<00:18, 21.50it/s]
eval model::  22%|██▏       | 110/500 [00:05<00:18, 20.94it/s]
eval model::  23%|██▎       | 113/500 [00:05<00:18, 20.78it/s]
eval model::  23%|██▎       | 116/500 [00:05<00:18, 20.98it/s]
eval model::  24%|██▍       | 119/500 [00:05<00:18, 20.84it/s]
eval model::  24%|██▍       | 122/500 [00:06<00:19, 19.74it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:19, 19.45it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:19, 19.30it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:17, 21.38it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:18, 19.95it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:19, 18.35it/s]
eval model::  28%|██▊       | 138/500 [00:06<00:18, 19.41it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:18, 19.41it/s]
eval model::  29%|██▊       | 143/500 [00:07<00:18, 19.00it/s]
eval model::  29%|██▉       | 146/500 [00:07<00:18, 19.31it/s]
eval model::  30%|██▉       | 149/500 [00:07<00:17, 20.61it/s]
eval model::  30%|███       | 152/500 [00:07<00:18, 19.27it/s]
eval model::  31%|███       | 155/500 [00:07<00:16, 21.31it/s]
eval model::  32%|███▏      | 158/500 [00:07<00:15, 22.67it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:17, 19.42it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:16, 20.19it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:16, 20.64it/s]
eval model::  34%|███▍      | 170/500 [00:08<00:16, 20.01it/s]
eval model::  35%|███▍      | 173/500 [00:08<00:15, 21.00it/s]
eval model::  35%|███▌      | 176/500 [00:08<00:15, 20.96it/s]
eval model::  36%|███▌      | 179/500 [00:08<00:14, 21.77it/s]
eval model::  36%|███▋      | 182/500 [00:09<00:14, 21.37it/s]
eval model::  37%|███▋      | 185/500 [00:09<00:14, 21.98it/s]
eval model::  38%|███▊      | 188/500 [00:09<00:14, 22.14it/s]
eval model::  38%|███▊      | 191/500 [00:09<00:14, 21.35it/s]
eval model::  39%|███▉      | 194/500 [00:09<00:14, 21.34it/s]
eval model::  39%|███▉      | 197/500 [00:09<00:15, 19.85it/s]
eval model::  40%|████      | 200/500 [00:09<00:14, 20.54it/s]
eval model::  41%|████      | 203/500 [00:10<00:14, 20.64it/s]
eval model::  41%|████      | 206/500 [00:10<00:18, 15.82it/s]
eval model::  42%|████▏     | 209/500 [00:10<00:16, 17.30it/s]
eval model::  42%|████▏     | 211/500 [00:10<00:16, 17.50it/s]
eval model::  43%|████▎     | 214/500 [00:10<00:14, 19.79it/s]
eval model::  43%|████▎     | 217/500 [00:10<00:17, 15.98it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:15, 18.41it/s]
eval model::  45%|████▍     | 223/500 [00:11<00:15, 18.43it/s]
eval model::  45%|████▌     | 226/500 [00:11<00:13, 19.83it/s]
eval model::  46%|████▌     | 229/500 [00:11<00:12, 21.69it/s]
eval model::  46%|████▋     | 232/500 [00:11<00:11, 22.81it/s]
eval model::  47%|████▋     | 235/500 [00:11<00:11, 22.55it/s]
eval model::  48%|████▊     | 238/500 [00:11<00:11, 23.47it/s]
eval model::  48%|████▊     | 241/500 [00:11<00:11, 21.83it/s]
eval model::  49%|████▉     | 244/500 [00:12<00:12, 20.39it/s]
eval model::  49%|████▉     | 247/500 [00:12<00:11, 22.06it/s]
eval model::  50%|█████     | 250/500 [00:12<00:11, 20.98it/s]
eval model::  51%|█████     | 253/500 [00:12<00:10, 22.70it/s]
eval model::  51%|█████     | 256/500 [00:12<00:11, 22.11it/s]
eval model::  52%|█████▏    | 259/500 [00:12<00:10, 22.94it/s]
eval model::  52%|█████▏    | 262/500 [00:12<00:11, 20.90it/s]
eval model::  53%|█████▎    | 265/500 [00:13<00:12, 19.14it/s]
eval model::  53%|█████▎    | 267/500 [00:13<00:12, 18.76it/s]
eval model::  54%|█████▍    | 269/500 [00:13<00:12, 18.80it/s]
eval model::  54%|█████▍    | 272/500 [00:13<00:11, 20.13it/s]
eval model::  55%|█████▌    | 275/500 [00:13<00:10, 20.68it/s]
eval model::  56%|█████▌    | 278/500 [00:13<00:10, 21.76it/s]
eval model::  56%|█████▌    | 281/500 [00:13<00:10, 21.26it/s]
eval model::  57%|█████▋    | 284/500 [00:14<00:10, 21.31it/s]
eval model::  57%|█████▋    | 287/500 [00:14<00:12, 17.30it/s]
eval model::  58%|█████▊    | 291/500 [00:14<00:09, 21.07it/s]
eval model::  59%|█████▉    | 294/500 [00:14<00:10, 20.57it/s]
eval model::  59%|█████▉    | 297/500 [00:14<00:09, 21.43it/s]
eval model::  60%|██████    | 300/500 [00:14<00:10, 19.86it/s]
eval model::  61%|██████    | 303/500 [00:14<00:09, 21.15it/s]
eval model::  61%|██████    | 306/500 [00:15<00:09, 20.86it/s]
eval model::  62%|██████▏   | 309/500 [00:15<00:08, 21.27it/s]
eval model::  62%|██████▏   | 312/500 [00:15<00:09, 20.81it/s]
eval model::  63%|██████▎   | 315/500 [00:15<00:09, 19.97it/s]
eval model::  64%|██████▎   | 318/500 [00:15<00:08, 20.34it/s]
eval model::  64%|██████▍   | 321/500 [00:15<00:09, 19.76it/s]
eval model::  65%|██████▍   | 323/500 [00:15<00:09, 18.96it/s]
eval model::  65%|██████▌   | 326/500 [00:16<00:08, 19.44it/s]
eval model::  66%|██████▌   | 329/500 [00:16<00:08, 19.95it/s]
eval model::  66%|██████▋   | 332/500 [00:16<00:08, 20.43it/s]
eval model::  67%|██████▋   | 335/500 [00:16<00:07, 22.10it/s]
eval model::  68%|██████▊   | 338/500 [00:16<00:07, 21.34it/s]
eval model::  68%|██████▊   | 341/500 [00:16<00:08, 19.31it/s]
eval model::  69%|██████▉   | 344/500 [00:16<00:07, 20.49it/s]
eval model::  69%|██████▉   | 347/500 [00:17<00:07, 20.36it/s]
eval model::  70%|███████   | 350/500 [00:17<00:07, 19.76it/s]
eval model::  71%|███████   | 353/500 [00:17<00:06, 21.54it/s]
eval model::  71%|███████   | 356/500 [00:17<00:07, 19.63it/s]
eval model::  72%|███████▏  | 359/500 [00:17<00:06, 21.19it/s]
eval model::  72%|███████▏  | 362/500 [00:17<00:06, 21.51it/s]
eval model::  73%|███████▎  | 365/500 [00:18<00:06, 19.72it/s]
eval model::  74%|███████▎  | 368/500 [00:18<00:06, 19.49it/s]
eval model::  74%|███████▍  | 371/500 [00:18<00:06, 19.80it/s]
eval model::  75%|███████▍  | 374/500 [00:18<00:05, 21.17it/s]
eval model::  75%|███████▌  | 377/500 [00:18<00:05, 22.71it/s]
eval model::  76%|███████▌  | 380/500 [00:18<00:05, 23.63it/s]
eval model::  77%|███████▋  | 383/500 [00:18<00:05, 22.41it/s]
eval model::  77%|███████▋  | 386/500 [00:19<00:06, 18.13it/s]
eval model::  78%|███████▊  | 389/500 [00:19<00:05, 20.13it/s]
eval model::  78%|███████▊  | 392/500 [00:19<00:05, 21.06it/s]
eval model::  79%|███████▉  | 395/500 [00:19<00:04, 21.31it/s]
eval model::  80%|███████▉  | 398/500 [00:19<00:04, 21.85it/s]
eval model::  80%|████████  | 401/500 [00:19<00:04, 21.25it/s]
eval model::  81%|████████  | 404/500 [00:19<00:04, 22.95it/s]
eval model::  81%|████████▏ | 407/500 [00:19<00:04, 21.77it/s]
eval model::  82%|████████▏ | 410/500 [00:20<00:04, 20.80it/s]
eval model::  83%|████████▎ | 413/500 [00:20<00:03, 21.92it/s]
eval model::  83%|████████▎ | 416/500 [00:20<00:03, 21.53it/s]
eval model::  84%|████████▍ | 419/500 [00:20<00:03, 21.87it/s]
eval model::  84%|████████▍ | 422/500 [00:20<00:04, 19.03it/s]
eval model::  85%|████████▌ | 425/500 [00:20<00:03, 20.45it/s]
eval model::  86%|████████▌ | 428/500 [00:20<00:03, 21.91it/s]
eval model::  86%|████████▌ | 431/500 [00:21<00:03, 20.54it/s]
eval model::  87%|████████▋ | 434/500 [00:21<00:03, 19.49it/s]
eval model::  87%|████████▋ | 437/500 [00:21<00:03, 20.86it/s]
eval model::  88%|████████▊ | 440/500 [00:21<00:03, 19.93it/s]
eval model::  89%|████████▊ | 443/500 [00:21<00:02, 20.80it/s]
eval model::  89%|████████▉ | 446/500 [00:21<00:02, 20.81it/s]
eval model::  90%|████████▉ | 449/500 [00:22<00:02, 20.19it/s]
eval model::  90%|█████████ | 452/500 [00:22<00:02, 22.30it/s]
eval model::  91%|█████████ | 455/500 [00:22<00:02, 20.87it/s]
eval model::  92%|█████████▏| 458/500 [00:22<00:01, 21.80it/s]
eval model::  92%|█████████▏| 461/500 [00:22<00:01, 20.11it/s]
eval model::  93%|█████████▎| 464/500 [00:22<00:01, 19.12it/s]
eval model::  93%|█████████▎| 466/500 [00:22<00:01, 18.80it/s]
eval model::  94%|█████████▍| 469/500 [00:23<00:01, 19.85it/s]
eval model::  94%|█████████▍| 472/500 [00:23<00:01, 19.73it/s]
eval model::  95%|█████████▍| 474/500 [00:23<00:01, 19.29it/s]
eval model::  95%|█████████▌| 477/500 [00:23<00:01, 20.06it/s]
eval model::  96%|█████████▌| 480/500 [00:23<00:00, 20.17it/s]
eval model::  97%|█████████▋| 483/500 [00:23<00:00, 19.02it/s]
eval model::  97%|█████████▋| 486/500 [00:23<00:00, 18.35it/s]
eval model::  98%|█████████▊| 489/500 [00:24<00:00, 19.75it/s]
eval model::  98%|█████████▊| 492/500 [00:24<00:00, 21.47it/s]
eval model::  99%|█████████▉| 495/500 [00:24<00:00, 22.76it/s]
eval model:: 100%|█████████▉| 498/500 [00:24<00:00, 23.96it/s]
eval model:: 100%|██████████| 500/500 [00:24<00:00, 20.43it/s]
[2024/07/27 11:28:14] ppocr INFO: cur metric, precision: 0.46496815286624205, recall: 0.21088107847857487, hmean: 0.29016230539913884, fps: 44.44989400729777
[2024/07/27 11:28:15] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/27 11:28:15] ppocr INFO: best metric, hmean: 0.29016230539913884, precision: 0.46496815286624205, recall: 0.21088107847857487, fps: 44.44989400729777, best_epoch: 40
[2024/07/27 11:28:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:28:24] ppocr INFO: epoch: [41/1500], global_step: 123, lr: 0.001000, loss: 4.373784, loss_shrink_maps: 3.245492, loss_threshold_maps: 0.785686, loss_binary_maps: 0.344912, avg_reader_cost: 2.14669 s, avg_batch_cost: 2.50259 s, avg_samples: 12.5, ips: 4.99482 samples/s, eta: 13:12:32
[2024/07/27 11:28:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:28:34] ppocr INFO: epoch: [42/1500], global_step: 126, lr: 0.001000, loss: 4.145794, loss_shrink_maps: 2.993010, loss_threshold_maps: 0.785686, loss_binary_maps: 0.339903, avg_reader_cost: 2.37613 s, avg_batch_cost: 2.61000 s, avg_samples: 12.5, ips: 4.78927 samples/s, eta: 13:08:14
[2024/07/27 11:28:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:28:43] ppocr INFO: epoch: [43/1500], global_step: 129, lr: 0.001000, loss: 4.005169, loss_shrink_maps: 2.880129, loss_threshold_maps: 0.785686, loss_binary_maps: 0.339903, avg_reader_cost: 2.15037 s, avg_batch_cost: 2.43076 s, avg_samples: 12.5, ips: 5.14243 samples/s, eta: 13:03:06
[2024/07/27 11:28:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:28:51] ppocr INFO: epoch: [44/1500], global_step: 130, lr: 0.001000, loss: 4.005169, loss_shrink_maps: 2.880129, loss_threshold_maps: 0.785686, loss_binary_maps: 0.339903, avg_reader_cost: 0.57228 s, avg_batch_cost: 0.76069 s, avg_samples: 4.8, ips: 6.31005 samples/s, eta: 13:01:10
[2024/07/27 11:28:53] ppocr INFO: epoch: [44/1500], global_step: 132, lr: 0.001000, loss: 3.938630, loss_shrink_maps: 2.824890, loss_threshold_maps: 0.785686, loss_binary_maps: 0.328356, avg_reader_cost: 1.61358 s, avg_batch_cost: 1.76068 s, avg_samples: 7.7, ips: 4.37332 samples/s, eta: 12:58:41
[2024/07/27 11:28:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:29:02] ppocr INFO: epoch: [45/1500], global_step: 135, lr: 0.001000, loss: 3.862320, loss_shrink_maps: 2.732754, loss_threshold_maps: 0.790430, loss_binary_maps: 0.326136, avg_reader_cost: 2.13241 s, avg_batch_cost: 2.48675 s, avg_samples: 12.5, ips: 5.02663 samples/s, eta: 12:54:16
[2024/07/27 11:29:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:29:12] ppocr INFO: epoch: [46/1500], global_step: 138, lr: 0.001000, loss: 3.747629, loss_shrink_maps: 2.577841, loss_threshold_maps: 0.790430, loss_binary_maps: 0.319411, avg_reader_cost: 2.35472 s, avg_batch_cost: 2.60381 s, avg_samples: 12.5, ips: 4.80065 samples/s, eta: 12:50:38
[2024/07/27 11:29:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:29:21] ppocr INFO: epoch: [47/1500], global_step: 140, lr: 0.001000, loss: 3.694742, loss_shrink_maps: 2.544235, loss_threshold_maps: 0.790343, loss_binary_maps: 0.319411, avg_reader_cost: 1.42309 s, avg_batch_cost: 1.60623 s, avg_samples: 9.6, ips: 5.97672 samples/s, eta: 12:47:36
[2024/07/27 11:29:22] ppocr INFO: epoch: [47/1500], global_step: 141, lr: 0.001000, loss: 3.616952, loss_shrink_maps: 2.502080, loss_threshold_maps: 0.785709, loss_binary_maps: 0.319411, avg_reader_cost: 0.84910 s, avg_batch_cost: 0.90438 s, avg_samples: 2.9, ips: 3.20663 samples/s, eta: 12:46:39
[2024/07/27 11:29:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:29:32] ppocr INFO: epoch: [48/1500], global_step: 144, lr: 0.001000, loss: 3.504123, loss_shrink_maps: 2.434544, loss_threshold_maps: 0.778076, loss_binary_maps: 0.319411, avg_reader_cost: 2.24588 s, avg_batch_cost: 2.63490 s, avg_samples: 12.5, ips: 4.74401 samples/s, eta: 12:43:27
[2024/07/27 11:29:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:29:42] ppocr INFO: epoch: [49/1500], global_step: 147, lr: 0.001000, loss: 3.423800, loss_shrink_maps: 2.282567, loss_threshold_maps: 0.779277, loss_binary_maps: 0.319411, avg_reader_cost: 2.39339 s, avg_batch_cost: 2.63586 s, avg_samples: 12.5, ips: 4.74228 samples/s, eta: 12:40:21
[2024/07/27 11:29:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:29:52] ppocr INFO: epoch: [50/1500], global_step: 150, lr: 0.001000, loss: 3.249620, loss_shrink_maps: 2.167734, loss_threshold_maps: 0.778043, loss_binary_maps: 0.313547, avg_reader_cost: 2.26716 s, avg_batch_cost: 2.66112 s, avg_samples: 12.5, ips: 4.69727 samples/s, eta: 12:37:30
[2024/07/27 11:29:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:30:01] ppocr INFO: epoch: [51/1500], global_step: 153, lr: 0.001000, loss: 3.203667, loss_shrink_maps: 2.106681, loss_threshold_maps: 0.775603, loss_binary_maps: 0.303846, avg_reader_cost: 2.18688 s, avg_batch_cost: 2.54622 s, avg_samples: 12.5, ips: 4.90924 samples/s, eta: 12:34:11
[2024/07/27 11:30:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:30:10] ppocr INFO: epoch: [52/1500], global_step: 156, lr: 0.001000, loss: 3.046677, loss_shrink_maps: 1.983725, loss_threshold_maps: 0.770660, loss_binary_maps: 0.297511, avg_reader_cost: 1.99763 s, avg_batch_cost: 2.29117 s, avg_samples: 12.5, ips: 5.45572 samples/s, eta: 12:29:49
[2024/07/27 11:30:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:30:19] ppocr INFO: epoch: [53/1500], global_step: 159, lr: 0.001000, loss: 2.931374, loss_shrink_maps: 1.877990, loss_threshold_maps: 0.766977, loss_binary_maps: 0.295662, avg_reader_cost: 2.02069 s, avg_batch_cost: 2.31616 s, avg_samples: 12.5, ips: 5.39685 samples/s, eta: 12:25:42
[2024/07/27 11:30:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:30:28] ppocr INFO: epoch: [54/1500], global_step: 160, lr: 0.001000, loss: 2.931374, loss_shrink_maps: 1.877990, loss_threshold_maps: 0.763115, loss_binary_maps: 0.295662, avg_reader_cost: 0.70733 s, avg_batch_cost: 0.79955 s, avg_samples: 4.8, ips: 6.00336 samples/s, eta: 12:24:29
[2024/07/27 11:30:29] ppocr INFO: epoch: [54/1500], global_step: 162, lr: 0.001000, loss: 2.897375, loss_shrink_maps: 1.845251, loss_threshold_maps: 0.763115, loss_binary_maps: 0.291552, avg_reader_cost: 1.69096 s, avg_batch_cost: 1.83745 s, avg_samples: 7.7, ips: 4.19060 samples/s, eta: 12:23:09
[2024/07/27 11:30:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:30:39] ppocr INFO: epoch: [55/1500], global_step: 165, lr: 0.001000, loss: 2.883230, loss_shrink_maps: 1.797249, loss_threshold_maps: 0.763115, loss_binary_maps: 0.291552, avg_reader_cost: 2.26102 s, avg_batch_cost: 2.54722 s, avg_samples: 12.5, ips: 4.90731 samples/s, eta: 12:20:17
[2024/07/27 11:30:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:30:48] ppocr INFO: epoch: [56/1500], global_step: 168, lr: 0.001000, loss: 2.858840, loss_shrink_maps: 1.785184, loss_threshold_maps: 0.764523, loss_binary_maps: 0.291552, avg_reader_cost: 2.16678 s, avg_batch_cost: 2.50773 s, avg_samples: 12.5, ips: 4.98460 samples/s, eta: 12:17:20
[2024/07/27 11:30:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:30:58] ppocr INFO: epoch: [57/1500], global_step: 170, lr: 0.001000, loss: 2.820230, loss_shrink_maps: 1.776477, loss_threshold_maps: 0.764523, loss_binary_maps: 0.292439, avg_reader_cost: 1.50813 s, avg_batch_cost: 1.71711 s, avg_samples: 9.6, ips: 5.59080 samples/s, eta: 12:15:37
[2024/07/27 11:30:58] ppocr INFO: epoch: [57/1500], global_step: 171, lr: 0.001000, loss: 2.858840, loss_shrink_maps: 1.785184, loss_threshold_maps: 0.777358, loss_binary_maps: 0.299942, avg_reader_cost: 0.90482 s, avg_batch_cost: 0.96024 s, avg_samples: 2.9, ips: 3.02007 samples/s, eta: 12:15:12
[2024/07/27 11:30:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:31:08] ppocr INFO: epoch: [58/1500], global_step: 174, lr: 0.001000, loss: 2.879161, loss_shrink_maps: 1.790436, loss_threshold_maps: 0.777358, loss_binary_maps: 0.306894, avg_reader_cost: 2.34937 s, avg_batch_cost: 2.61980 s, avg_samples: 12.5, ips: 4.77136 samples/s, eta: 12:12:53
[2024/07/27 11:31:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:31:18] ppocr INFO: epoch: [59/1500], global_step: 177, lr: 0.001000, loss: 2.856964, loss_shrink_maps: 1.772817, loss_threshold_maps: 0.788402, loss_binary_maps: 0.299698, avg_reader_cost: 2.32294 s, avg_batch_cost: 2.56429 s, avg_samples: 12.5, ips: 4.87464 samples/s, eta: 12:10:24
[2024/07/27 11:31:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:31:27] ppocr INFO: epoch: [60/1500], global_step: 180, lr: 0.001000, loss: 2.813589, loss_shrink_maps: 1.763257, loss_threshold_maps: 0.786041, loss_binary_maps: 0.299698, avg_reader_cost: 2.21339 s, avg_batch_cost: 2.58156 s, avg_samples: 12.5, ips: 4.84203 samples/s, eta: 12:08:03

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:52,  9.57it/s]
eval model::   1%|          | 3/500 [00:00<00:32, 15.44it/s]
eval model::   1%|          | 6/500 [00:00<00:26, 18.94it/s]
eval model::   2%|▏         | 8/500 [00:00<00:27, 18.16it/s]
eval model::   2%|▏         | 11/500 [00:00<00:26, 18.36it/s]
eval model::   3%|▎         | 14/500 [00:00<00:23, 20.75it/s]
eval model::   3%|▎         | 17/500 [00:00<00:20, 23.14it/s]
eval model::   4%|▍         | 20/500 [00:01<00:23, 20.62it/s]
eval model::   5%|▍         | 23/500 [00:01<00:21, 22.68it/s]
eval model::   5%|▌         | 26/500 [00:01<00:22, 21.17it/s]
eval model::   6%|▌         | 29/500 [00:01<00:23, 20.26it/s]
eval model::   6%|▋         | 32/500 [00:01<00:23, 19.70it/s]
eval model::   7%|▋         | 35/500 [00:01<00:23, 19.95it/s]
eval model::   8%|▊         | 38/500 [00:01<00:23, 19.38it/s]
eval model::   8%|▊         | 40/500 [00:02<00:24, 19.07it/s]
eval model::   8%|▊         | 42/500 [00:02<00:23, 19.09it/s]
eval model::   9%|▉         | 45/500 [00:02<00:21, 20.78it/s]
eval model::  10%|▉         | 48/500 [00:02<00:23, 19.52it/s]
eval model::  10%|█         | 50/500 [00:02<00:23, 19.39it/s]
eval model::  10%|█         | 52/500 [00:02<00:23, 19.30it/s]
eval model::  11%|█         | 55/500 [00:02<00:22, 20.01it/s]
eval model::  12%|█▏        | 58/500 [00:02<00:21, 20.78it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:23, 18.80it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:23, 18.83it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:21, 20.53it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:20, 20.87it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:19, 22.25it/s]
eval model::  15%|█▌        | 75/500 [00:03<00:19, 21.31it/s]
eval model::  16%|█▌        | 78/500 [00:03<00:19, 21.56it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:19, 21.44it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:20, 19.97it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:21, 19.19it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:21, 19.00it/s]
eval model::  18%|█▊        | 92/500 [00:04<00:21, 19.02it/s]
eval model::  19%|█▉        | 95/500 [00:04<00:21, 19.19it/s]
eval model::  19%|█▉        | 97/500 [00:04<00:21, 19.13it/s]
eval model::  20%|█▉        | 99/500 [00:04<00:21, 18.81it/s]
eval model::  20%|██        | 101/500 [00:05<00:22, 17.75it/s]
eval model::  21%|██        | 104/500 [00:05<00:20, 19.35it/s]
eval model::  21%|██        | 106/500 [00:05<00:20, 19.41it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:19, 20.32it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:18, 20.82it/s]
eval model::  23%|██▎       | 115/500 [00:05<00:18, 20.42it/s]
eval model::  24%|██▎       | 118/500 [00:05<00:19, 19.71it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:21, 18.06it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:18, 20.34it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:19, 19.30it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:18, 20.55it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:20, 18.33it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:18, 20.06it/s]
eval model::  28%|██▊       | 138/500 [00:06<00:16, 21.75it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:18, 19.66it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:18, 19.31it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:18, 19.46it/s]
eval model::  30%|███       | 150/500 [00:07<00:17, 19.88it/s]
eval model::  31%|███       | 153/500 [00:07<00:18, 18.51it/s]
eval model::  31%|███       | 156/500 [00:07<00:17, 19.54it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:16, 21.00it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:16, 20.04it/s]
eval model::  33%|███▎      | 165/500 [00:08<00:16, 20.20it/s]
eval model::  34%|███▎      | 168/500 [00:08<00:16, 20.70it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:16, 20.50it/s]
eval model::  35%|███▍      | 174/500 [00:08<00:18, 17.35it/s]
eval model::  35%|███▌      | 177/500 [00:08<00:16, 19.17it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:17, 18.16it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:16, 19.75it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:15, 20.18it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:14, 20.97it/s]
eval model::  38%|███▊      | 192/500 [00:09<00:14, 21.68it/s]
eval model::  39%|███▉      | 195/500 [00:09<00:14, 20.61it/s]
eval model::  40%|███▉      | 198/500 [00:09<00:14, 21.18it/s]
eval model::  40%|████      | 201/500 [00:10<00:14, 20.62it/s]
eval model::  41%|████      | 204/500 [00:10<00:14, 21.06it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:21, 13.36it/s]
eval model::  42%|████▏     | 209/500 [00:10<00:20, 14.11it/s]
eval model::  42%|████▏     | 211/500 [00:10<00:19, 14.79it/s]
eval model::  43%|████▎     | 213/500 [00:10<00:18, 15.72it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:19, 14.73it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:20, 13.95it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:17, 16.15it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:16, 16.39it/s]
eval model::  45%|████▌     | 225/500 [00:11<00:14, 18.61it/s]
eval model::  46%|████▌     | 228/500 [00:11<00:13, 20.38it/s]
eval model::  46%|████▌     | 231/500 [00:11<00:12, 22.30it/s]
eval model::  47%|████▋     | 234/500 [00:12<00:12, 20.77it/s]
eval model::  47%|████▋     | 237/500 [00:12<00:11, 22.75it/s]
eval model::  48%|████▊     | 240/500 [00:12<00:11, 23.05it/s]
eval model::  49%|████▊     | 243/500 [00:12<00:11, 22.54it/s]
eval model::  49%|████▉     | 246/500 [00:12<00:10, 24.02it/s]
eval model::  50%|████▉     | 249/500 [00:12<00:11, 22.26it/s]
eval model::  50%|█████     | 252/500 [00:12<00:12, 19.43it/s]
eval model::  51%|█████     | 255/500 [00:13<00:11, 21.21it/s]
eval model::  52%|█████▏    | 258/500 [00:13<00:11, 21.89it/s]
eval model::  52%|█████▏    | 261/500 [00:13<00:11, 20.67it/s]
eval model::  53%|█████▎    | 264/500 [00:13<00:12, 18.97it/s]
eval model::  53%|█████▎    | 267/500 [00:13<00:12, 18.90it/s]
eval model::  54%|█████▍    | 269/500 [00:13<00:12, 19.07it/s]
eval model::  54%|█████▍    | 272/500 [00:13<00:11, 19.06it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:12, 18.68it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:10, 20.92it/s]
eval model::  56%|█████▌    | 281/500 [00:14<00:09, 22.08it/s]
eval model::  57%|█████▋    | 284/500 [00:14<00:09, 23.77it/s]
eval model::  57%|█████▋    | 287/500 [00:14<00:11, 17.89it/s]
eval model::  58%|█████▊    | 291/500 [00:14<00:09, 21.24it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:10, 19.11it/s]
eval model::  59%|█████▉    | 297/500 [00:15<00:10, 18.48it/s]
eval model::  60%|██████    | 300/500 [00:15<00:11, 17.64it/s]
eval model::  60%|██████    | 302/500 [00:15<00:11, 17.29it/s]
eval model::  61%|██████    | 305/500 [00:15<00:10, 18.20it/s]
eval model::  62%|██████▏   | 308/500 [00:15<00:09, 20.20it/s]
eval model::  62%|██████▏   | 311/500 [00:15<00:09, 20.27it/s]
eval model::  63%|██████▎   | 314/500 [00:16<00:08, 21.00it/s]
eval model::  63%|██████▎   | 317/500 [00:16<00:08, 21.17it/s]
eval model::  64%|██████▍   | 320/500 [00:16<00:08, 22.39it/s]
eval model::  65%|██████▍   | 323/500 [00:16<00:08, 21.69it/s]
eval model::  65%|██████▌   | 326/500 [00:16<00:08, 21.30it/s]
eval model::  66%|██████▌   | 329/500 [00:16<00:08, 20.94it/s]
eval model::  66%|██████▋   | 332/500 [00:16<00:08, 20.70it/s]
eval model::  67%|██████▋   | 335/500 [00:16<00:07, 22.80it/s]
eval model::  68%|██████▊   | 338/500 [00:17<00:07, 21.09it/s]
eval model::  68%|██████▊   | 341/500 [00:17<00:08, 18.80it/s]
eval model::  69%|██████▉   | 345/500 [00:17<00:06, 22.32it/s]
eval model::  70%|██████▉   | 348/500 [00:17<00:07, 21.33it/s]
eval model::  70%|███████   | 351/500 [00:17<00:07, 18.67it/s]
eval model::  71%|███████   | 354/500 [00:17<00:07, 20.84it/s]
eval model::  71%|███████▏  | 357/500 [00:18<00:07, 19.36it/s]
eval model::  72%|███████▏  | 360/500 [00:18<00:06, 20.23it/s]
eval model::  73%|███████▎  | 363/500 [00:18<00:06, 21.07it/s]
eval model::  73%|███████▎  | 366/500 [00:18<00:06, 19.67it/s]
eval model::  74%|███████▍  | 369/500 [00:18<00:06, 21.19it/s]
eval model::  74%|███████▍  | 372/500 [00:18<00:06, 20.40it/s]
eval model::  75%|███████▌  | 375/500 [00:19<00:06, 19.54it/s]
eval model::  76%|███████▌  | 378/500 [00:19<00:05, 20.65it/s]
eval model::  76%|███████▌  | 381/500 [00:19<00:05, 19.89it/s]
eval model::  77%|███████▋  | 384/500 [00:19<00:05, 21.29it/s]
eval model::  77%|███████▋  | 387/500 [00:19<00:07, 14.87it/s]
eval model::  78%|███████▊  | 390/500 [00:19<00:06, 16.19it/s]
eval model::  79%|███████▊  | 393/500 [00:20<00:06, 17.67it/s]
eval model::  79%|███████▉  | 396/500 [00:20<00:05, 18.63it/s]
eval model::  80%|███████▉  | 399/500 [00:20<00:05, 19.76it/s]
eval model::  80%|████████  | 402/500 [00:20<00:04, 20.85it/s]
eval model::  81%|████████  | 405/500 [00:20<00:04, 22.03it/s]
eval model::  82%|████████▏ | 408/500 [00:20<00:03, 23.14it/s]
eval model::  82%|████████▏ | 411/500 [00:20<00:03, 22.82it/s]
eval model::  83%|████████▎ | 414/500 [00:20<00:03, 22.21it/s]
eval model::  83%|████████▎ | 417/500 [00:21<00:04, 19.28it/s]
eval model::  84%|████████▍ | 420/500 [00:21<00:04, 17.30it/s]
eval model::  84%|████████▍ | 422/500 [00:21<00:04, 17.47it/s]
eval model::  85%|████████▍ | 424/500 [00:21<00:04, 18.01it/s]
eval model::  85%|████████▌ | 427/500 [00:21<00:03, 20.05it/s]
eval model::  86%|████████▌ | 430/500 [00:21<00:03, 21.41it/s]
eval model::  87%|████████▋ | 433/500 [00:21<00:02, 23.45it/s]
eval model::  87%|████████▋ | 436/500 [00:22<00:02, 24.66it/s]
eval model::  88%|████████▊ | 439/500 [00:22<00:02, 21.57it/s]
eval model::  88%|████████▊ | 442/500 [00:22<00:02, 22.31it/s]
eval model::  89%|████████▉ | 445/500 [00:22<00:02, 22.63it/s]
eval model::  90%|████████▉ | 448/500 [00:22<00:02, 21.90it/s]
eval model::  90%|█████████ | 451/500 [00:22<00:02, 20.15it/s]
eval model::  91%|█████████ | 454/500 [00:22<00:02, 21.25it/s]
eval model::  91%|█████████▏| 457/500 [00:23<00:02, 21.06it/s]
eval model::  92%|█████████▏| 460/500 [00:23<00:02, 19.81it/s]
eval model::  93%|█████████▎| 463/500 [00:23<00:02, 18.41it/s]
eval model::  93%|█████████▎| 465/500 [00:23<00:02, 16.17it/s]
eval model::  94%|█████████▎| 468/500 [00:23<00:01, 18.97it/s]
eval model::  94%|█████████▍| 471/500 [00:23<00:01, 20.70it/s]
eval model::  95%|█████████▍| 474/500 [00:23<00:01, 20.55it/s]
eval model::  95%|█████████▌| 477/500 [00:24<00:01, 21.55it/s]
eval model::  96%|█████████▌| 480/500 [00:24<00:00, 21.89it/s]
eval model::  97%|█████████▋| 483/500 [00:24<00:00, 23.16it/s]
eval model::  97%|█████████▋| 486/500 [00:24<00:00, 18.57it/s]
eval model::  98%|█████████▊| 489/500 [00:24<00:00, 20.16it/s]
eval model::  98%|█████████▊| 492/500 [00:24<00:00, 21.07it/s]
eval model::  99%|█████████▉| 495/500 [00:24<00:00, 21.45it/s]
eval model:: 100%|█████████▉| 498/500 [00:25<00:00, 21.65it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.85it/s]
[2024/07/27 11:31:53] ppocr INFO: cur metric, precision: 0.5553145336225597, recall: 0.3697640828117477, hmean: 0.4439306358381503, fps: 44.30344234556225
[2024/07/27 11:31:53] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/27 11:31:53] ppocr INFO: best metric, hmean: 0.4439306358381503, precision: 0.5553145336225597, recall: 0.3697640828117477, fps: 44.30344234556225, best_epoch: 60
[2024/07/27 11:31:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:32:02] ppocr INFO: epoch: [61/1500], global_step: 183, lr: 0.001000, loss: 2.833910, loss_shrink_maps: 1.772817, loss_threshold_maps: 0.786041, loss_binary_maps: 0.306651, avg_reader_cost: 2.22672 s, avg_batch_cost: 2.47342 s, avg_samples: 12.5, ips: 5.05374 samples/s, eta: 12:05:20
[2024/07/27 11:32:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:32:12] ppocr INFO: epoch: [62/1500], global_step: 186, lr: 0.001000, loss: 2.715508, loss_shrink_maps: 1.648546, loss_threshold_maps: 0.785004, loss_binary_maps: 0.290951, avg_reader_cost: 2.23746 s, avg_batch_cost: 2.63291 s, avg_samples: 12.5, ips: 4.74761 samples/s, eta: 12:03:19
[2024/07/27 11:32:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:32:22] ppocr INFO: epoch: [63/1500], global_step: 189, lr: 0.001000, loss: 2.715508, loss_shrink_maps: 1.648546, loss_threshold_maps: 0.785004, loss_binary_maps: 0.290951, avg_reader_cost: 2.16136 s, avg_batch_cost: 2.50038 s, avg_samples: 12.5, ips: 4.99925 samples/s, eta: 12:00:51
[2024/07/27 11:32:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:32:30] ppocr INFO: epoch: [64/1500], global_step: 190, lr: 0.001000, loss: 2.692643, loss_shrink_maps: 1.635072, loss_threshold_maps: 0.788232, loss_binary_maps: 0.288117, avg_reader_cost: 0.69200 s, avg_batch_cost: 0.78126 s, avg_samples: 4.8, ips: 6.14396 samples/s, eta: 11:59:51
[2024/07/27 11:32:31] ppocr INFO: epoch: [64/1500], global_step: 192, lr: 0.001000, loss: 2.647173, loss_shrink_maps: 1.571369, loss_threshold_maps: 0.785004, loss_binary_maps: 0.284067, avg_reader_cost: 1.65490 s, avg_batch_cost: 1.80220 s, avg_samples: 7.7, ips: 4.27256 samples/s, eta: 11:58:45
[2024/07/27 11:32:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:32:41] ppocr INFO: epoch: [65/1500], global_step: 195, lr: 0.001000, loss: 2.633209, loss_shrink_maps: 1.571186, loss_threshold_maps: 0.784080, loss_binary_maps: 0.284067, avg_reader_cost: 2.22637 s, avg_batch_cost: 2.54946 s, avg_samples: 12.5, ips: 4.90300 samples/s, eta: 11:56:35
[2024/07/27 11:32:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:32:51] ppocr INFO: epoch: [66/1500], global_step: 198, lr: 0.001000, loss: 2.633209, loss_shrink_maps: 1.571186, loss_threshold_maps: 0.778685, loss_binary_maps: 0.285134, avg_reader_cost: 2.23982 s, avg_batch_cost: 2.62840 s, avg_samples: 12.5, ips: 4.75575 samples/s, eta: 11:54:45
[2024/07/27 11:32:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:33:00] ppocr INFO: epoch: [67/1500], global_step: 200, lr: 0.001000, loss: 2.600416, loss_shrink_maps: 1.559273, loss_threshold_maps: 0.773131, loss_binary_maps: 0.284836, avg_reader_cost: 1.33639 s, avg_batch_cost: 1.63011 s, avg_samples: 9.6, ips: 5.88918 samples/s, eta: 11:53:07
[2024/07/27 11:33:00] ppocr INFO: epoch: [67/1500], global_step: 201, lr: 0.001000, loss: 2.641981, loss_shrink_maps: 1.568643, loss_threshold_maps: 0.773131, loss_binary_maps: 0.288039, avg_reader_cost: 0.86122 s, avg_batch_cost: 0.91682 s, avg_samples: 2.9, ips: 3.16311 samples/s, eta: 11:52:40
[2024/07/27 11:33:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:33:09] ppocr INFO: epoch: [68/1500], global_step: 204, lr: 0.001000, loss: 2.588184, loss_shrink_maps: 1.547040, loss_threshold_maps: 0.761373, loss_binary_maps: 0.284836, avg_reader_cost: 2.03232 s, avg_batch_cost: 2.32431 s, avg_samples: 12.5, ips: 5.37794 samples/s, eta: 11:49:52
[2024/07/27 11:33:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:33:19] ppocr INFO: epoch: [69/1500], global_step: 207, lr: 0.001000, loss: 2.574394, loss_shrink_maps: 1.540800, loss_threshold_maps: 0.757682, loss_binary_maps: 0.285174, avg_reader_cost: 2.25271 s, avg_batch_cost: 2.63818 s, avg_samples: 12.5, ips: 4.73812 samples/s, eta: 11:48:12
[2024/07/27 11:33:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:33:29] ppocr INFO: epoch: [70/1500], global_step: 210, lr: 0.001000, loss: 2.572800, loss_shrink_maps: 1.540800, loss_threshold_maps: 0.753149, loss_binary_maps: 0.285174, avg_reader_cost: 2.37517 s, avg_batch_cost: 2.61095 s, avg_samples: 12.5, ips: 4.78753 samples/s, eta: 11:46:29
[2024/07/27 11:33:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:33:39] ppocr INFO: epoch: [71/1500], global_step: 213, lr: 0.001000, loss: 2.598715, loss_shrink_maps: 1.541923, loss_threshold_maps: 0.760191, loss_binary_maps: 0.289470, avg_reader_cost: 2.15657 s, avg_batch_cost: 2.51307 s, avg_samples: 12.5, ips: 4.97400 samples/s, eta: 11:44:29
[2024/07/27 11:33:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:33:49] ppocr INFO: epoch: [72/1500], global_step: 216, lr: 0.001000, loss: 2.579174, loss_shrink_maps: 1.541480, loss_threshold_maps: 0.753149, loss_binary_maps: 0.287909, avg_reader_cost: 2.24288 s, avg_batch_cost: 2.62335 s, avg_samples: 12.5, ips: 4.76491 samples/s, eta: 11:42:53
[2024/07/27 11:33:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:33:58] ppocr INFO: epoch: [73/1500], global_step: 219, lr: 0.001000, loss: 2.558097, loss_shrink_maps: 1.540800, loss_threshold_maps: 0.750546, loss_binary_maps: 0.285174, avg_reader_cost: 2.33002 s, avg_batch_cost: 2.57026 s, avg_samples: 12.5, ips: 4.86332 samples/s, eta: 11:41:08
[2024/07/27 11:33:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:34:06] ppocr INFO: epoch: [74/1500], global_step: 220, lr: 0.001000, loss: 2.558097, loss_shrink_maps: 1.540800, loss_threshold_maps: 0.750546, loss_binary_maps: 0.283395, avg_reader_cost: 0.54912 s, avg_batch_cost: 0.73788 s, avg_samples: 4.8, ips: 6.50511 samples/s, eta: 11:40:11
[2024/07/27 11:34:08] ppocr INFO: epoch: [74/1500], global_step: 222, lr: 0.001000, loss: 2.543368, loss_shrink_maps: 1.516465, loss_threshold_maps: 0.753149, loss_binary_maps: 0.279745, avg_reader_cost: 1.56805 s, avg_batch_cost: 1.71520 s, avg_samples: 7.7, ips: 4.48928 samples/s, eta: 11:39:04
[2024/07/27 11:34:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:34:17] ppocr INFO: epoch: [75/1500], global_step: 225, lr: 0.001000, loss: 2.526839, loss_shrink_maps: 1.492198, loss_threshold_maps: 0.757052, loss_binary_maps: 0.279745, avg_reader_cost: 2.19500 s, avg_batch_cost: 2.54653 s, avg_samples: 12.5, ips: 4.90865 samples/s, eta: 11:37:19
[2024/07/27 11:34:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:34:27] ppocr INFO: epoch: [76/1500], global_step: 228, lr: 0.001000, loss: 2.515232, loss_shrink_maps: 1.486124, loss_threshold_maps: 0.755195, loss_binary_maps: 0.276147, avg_reader_cost: 2.26152 s, avg_batch_cost: 2.64088 s, avg_samples: 12.5, ips: 4.73327 samples/s, eta: 11:35:54
[2024/07/27 11:34:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:34:36] ppocr INFO: epoch: [77/1500], global_step: 230, lr: 0.001000, loss: 2.494783, loss_shrink_maps: 1.466914, loss_threshold_maps: 0.750100, loss_binary_maps: 0.278140, avg_reader_cost: 1.45854 s, avg_batch_cost: 1.64300 s, avg_samples: 9.6, ips: 5.84297 samples/s, eta: 11:34:37
[2024/07/27 11:34:37] ppocr INFO: epoch: [77/1500], global_step: 231, lr: 0.001000, loss: 2.468024, loss_shrink_maps: 1.448205, loss_threshold_maps: 0.747669, loss_binary_maps: 0.274770, avg_reader_cost: 0.86753 s, avg_batch_cost: 0.92394 s, avg_samples: 2.9, ips: 3.13873 samples/s, eta: 11:34:18
[2024/07/27 11:34:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:34:47] ppocr INFO: epoch: [78/1500], global_step: 234, lr: 0.001000, loss: 2.454058, loss_shrink_maps: 1.420336, loss_threshold_maps: 0.750100, loss_binary_maps: 0.264973, avg_reader_cost: 2.17704 s, avg_batch_cost: 2.54773 s, avg_samples: 12.5, ips: 4.90632 samples/s, eta: 11:32:39
[2024/07/27 11:34:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:34:56] ppocr INFO: epoch: [79/1500], global_step: 237, lr: 0.001000, loss: 2.405500, loss_shrink_maps: 1.377960, loss_threshold_maps: 0.750100, loss_binary_maps: 0.258588, avg_reader_cost: 2.32726 s, avg_batch_cost: 2.59591 s, avg_samples: 12.5, ips: 4.81528 samples/s, eta: 11:31:11
[2024/07/27 11:34:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:35:06] ppocr INFO: epoch: [80/1500], global_step: 240, lr: 0.001000, loss: 2.376889, loss_shrink_maps: 1.393070, loss_threshold_maps: 0.747669, loss_binary_maps: 0.263818, avg_reader_cost: 2.24747 s, avg_batch_cost: 2.52580 s, avg_samples: 12.5, ips: 4.94894 samples/s, eta: 11:29:32

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:54,  9.09it/s]
eval model::   1%|          | 4/500 [00:00<00:26, 18.55it/s]
eval model::   1%|▏         | 7/500 [00:00<00:22, 21.86it/s]
eval model::   2%|▏         | 10/500 [00:00<00:22, 21.92it/s]
eval model::   3%|▎         | 13/500 [00:00<00:24, 19.55it/s]
eval model::   3%|▎         | 16/500 [00:00<00:22, 21.30it/s]
eval model::   4%|▍         | 19/500 [00:00<00:22, 20.97it/s]
eval model::   4%|▍         | 22/500 [00:01<00:22, 21.72it/s]
eval model::   5%|▌         | 25/500 [00:01<00:22, 20.67it/s]
eval model::   6%|▌         | 28/500 [00:01<00:23, 19.71it/s]
eval model::   6%|▌         | 31/500 [00:01<00:25, 18.68it/s]
eval model::   7%|▋         | 34/500 [00:01<00:25, 18.21it/s]
eval model::   7%|▋         | 37/500 [00:01<00:23, 19.68it/s]
eval model::   8%|▊         | 40/500 [00:02<00:23, 19.50it/s]
eval model::   8%|▊         | 42/500 [00:02<00:23, 19.09it/s]
eval model::   9%|▉         | 45/500 [00:02<00:22, 20.60it/s]
eval model::  10%|▉         | 48/500 [00:02<00:22, 20.29it/s]
eval model::  10%|█         | 51/500 [00:02<00:22, 19.66it/s]
eval model::  11%|█         | 54/500 [00:02<00:22, 20.21it/s]
eval model::  11%|█▏        | 57/500 [00:02<00:22, 19.48it/s]
eval model::  12%|█▏        | 59/500 [00:03<00:24, 18.16it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:25, 17.36it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:25, 17.13it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:22, 19.59it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:19, 22.33it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:20, 20.85it/s]
eval model::  15%|█▌        | 76/500 [00:03<00:20, 21.00it/s]
eval model::  16%|█▌        | 79/500 [00:03<00:21, 19.88it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:20, 20.37it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:20, 20.66it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:20, 19.64it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:21, 19.27it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:19, 20.90it/s]
eval model::  19%|█▉        | 96/500 [00:04<00:18, 22.05it/s]
eval model::  20%|█▉        | 99/500 [00:04<00:18, 21.96it/s]
eval model::  20%|██        | 102/500 [00:05<00:18, 21.34it/s]
eval model::  21%|██        | 105/500 [00:05<00:18, 21.89it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:19, 20.36it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:20, 19.38it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:19, 20.23it/s]
eval model::  23%|██▎       | 117/500 [00:05<00:19, 20.15it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:20, 18.82it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:17, 21.04it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:17, 20.99it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:18, 20.00it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:19, 19.15it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:19, 18.95it/s]
eval model::  27%|██▋       | 137/500 [00:06<00:19, 18.97it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:19, 18.05it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:19, 18.20it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:17, 20.22it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:17, 19.76it/s]
eval model::  30%|███       | 150/500 [00:07<00:17, 20.56it/s]
eval model::  31%|███       | 153/500 [00:07<00:17, 19.85it/s]
eval model::  31%|███       | 156/500 [00:07<00:17, 20.03it/s]
eval model::  32%|███▏      | 159/500 [00:07<00:16, 20.52it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:17, 19.83it/s]
eval model::  33%|███▎      | 165/500 [00:08<00:17, 19.48it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:18, 18.49it/s]
eval model::  34%|███▍      | 170/500 [00:08<00:16, 19.60it/s]
eval model::  34%|███▍      | 172/500 [00:08<00:16, 19.50it/s]
eval model::  35%|███▍      | 174/500 [00:08<00:19, 16.86it/s]
eval model::  35%|███▌      | 177/500 [00:08<00:16, 19.10it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:17, 18.48it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:16, 19.55it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:15, 20.00it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:14, 21.26it/s]
eval model::  38%|███▊      | 192/500 [00:09<00:13, 22.11it/s]
eval model::  39%|███▉      | 195/500 [00:09<00:14, 21.47it/s]
eval model::  40%|███▉      | 198/500 [00:09<00:13, 22.32it/s]
eval model::  40%|████      | 201/500 [00:10<00:14, 21.16it/s]
eval model::  41%|████      | 204/500 [00:10<00:13, 21.91it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:17, 16.65it/s]
eval model::  42%|████▏     | 209/500 [00:10<00:17, 16.59it/s]
eval model::  42%|████▏     | 211/500 [00:10<00:16, 17.07it/s]
eval model::  43%|████▎     | 214/500 [00:10<00:15, 18.87it/s]
eval model::  43%|████▎     | 216/500 [00:10<00:16, 17.58it/s]
eval model::  44%|████▎     | 218/500 [00:11<00:16, 17.11it/s]
eval model::  44%|████▍     | 221/500 [00:11<00:14, 19.58it/s]
eval model::  45%|████▍     | 224/500 [00:11<00:13, 21.17it/s]
eval model::  45%|████▌     | 227/500 [00:11<00:12, 21.57it/s]
eval model::  46%|████▌     | 230/500 [00:11<00:11, 23.19it/s]
eval model::  47%|████▋     | 233/500 [00:11<00:11, 24.13it/s]
eval model::  47%|████▋     | 236/500 [00:11<00:11, 22.15it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:12, 20.54it/s]
eval model::  48%|████▊     | 242/500 [00:12<00:14, 17.85it/s]
eval model::  49%|████▉     | 245/500 [00:12<00:13, 19.25it/s]
eval model::  50%|████▉     | 248/500 [00:12<00:12, 20.53it/s]
eval model::  50%|█████     | 251/500 [00:12<00:12, 19.63it/s]
eval model::  51%|█████     | 254/500 [00:12<00:12, 19.45it/s]
eval model::  51%|█████     | 256/500 [00:12<00:13, 18.66it/s]
eval model::  52%|█████▏    | 259/500 [00:13<00:11, 20.49it/s]
eval model::  52%|█████▏    | 262/500 [00:13<00:11, 20.07it/s]
eval model::  53%|█████▎    | 265/500 [00:13<00:13, 17.47it/s]
eval model::  53%|█████▎    | 267/500 [00:13<00:13, 17.76it/s]
eval model::  54%|█████▍    | 270/500 [00:13<00:11, 20.50it/s]
eval model::  55%|█████▍    | 273/500 [00:13<00:11, 19.44it/s]
eval model::  55%|█████▌    | 276/500 [00:14<00:12, 17.38it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:11, 18.67it/s]
eval model::  56%|█████▋    | 282/500 [00:14<00:11, 19.58it/s]
eval model::  57%|█████▋    | 285/500 [00:14<00:13, 15.37it/s]
eval model::  58%|█████▊    | 288/500 [00:14<00:11, 18.00it/s]
eval model::  58%|█████▊    | 291/500 [00:14<00:10, 19.42it/s]
eval model::  59%|█████▉    | 294/500 [00:14<00:10, 19.27it/s]
eval model::  59%|█████▉    | 297/500 [00:15<00:11, 18.45it/s]
eval model::  60%|██████    | 300/500 [00:15<00:10, 18.79it/s]
eval model::  61%|██████    | 303/500 [00:15<00:09, 20.10it/s]
eval model::  61%|██████    | 306/500 [00:15<00:09, 21.18it/s]
eval model::  62%|██████▏   | 309/500 [00:15<00:08, 22.21it/s]
eval model::  62%|██████▏   | 312/500 [00:15<00:07, 23.50it/s]
eval model::  63%|██████▎   | 315/500 [00:15<00:08, 21.88it/s]
eval model::  64%|██████▎   | 318/500 [00:16<00:08, 22.26it/s]
eval model::  64%|██████▍   | 321/500 [00:16<00:08, 21.23it/s]
eval model::  65%|██████▍   | 324/500 [00:16<00:08, 20.80it/s]
eval model::  65%|██████▌   | 327/500 [00:16<00:08, 21.15it/s]
eval model::  66%|██████▌   | 330/500 [00:16<00:09, 18.88it/s]
eval model::  66%|██████▋   | 332/500 [00:16<00:08, 19.08it/s]
eval model::  67%|██████▋   | 335/500 [00:16<00:08, 20.60it/s]
eval model::  68%|██████▊   | 338/500 [00:17<00:07, 21.41it/s]
eval model::  68%|██████▊   | 341/500 [00:17<00:08, 18.14it/s]
eval model::  69%|██████▉   | 344/500 [00:17<00:07, 20.48it/s]
eval model::  69%|██████▉   | 347/500 [00:17<00:07, 21.85it/s]
eval model::  70%|███████   | 351/500 [00:17<00:06, 24.15it/s]
eval model::  71%|███████   | 354/500 [00:17<00:06, 22.59it/s]
eval model::  71%|███████▏  | 357/500 [00:17<00:06, 21.95it/s]
eval model::  72%|███████▏  | 360/500 [00:18<00:06, 21.10it/s]
eval model::  73%|███████▎  | 363/500 [00:18<00:06, 19.71it/s]
eval model::  73%|███████▎  | 366/500 [00:18<00:07, 16.91it/s]
eval model::  74%|███████▍  | 369/500 [00:18<00:06, 18.80it/s]
eval model::  74%|███████▍  | 372/500 [00:18<00:06, 20.52it/s]
eval model::  75%|███████▌  | 375/500 [00:18<00:05, 21.98it/s]
eval model::  76%|███████▌  | 378/500 [00:18<00:05, 22.00it/s]
eval model::  76%|███████▌  | 381/500 [00:19<00:05, 20.83it/s]
eval model::  77%|███████▋  | 384/500 [00:19<00:05, 20.56it/s]
eval model::  77%|███████▋  | 387/500 [00:19<00:07, 15.34it/s]
eval model::  78%|███████▊  | 390/500 [00:19<00:06, 17.68it/s]
eval model::  79%|███████▊  | 393/500 [00:19<00:05, 19.16it/s]
eval model::  79%|███████▉  | 396/500 [00:19<00:05, 19.17it/s]
eval model::  80%|███████▉  | 399/500 [00:20<00:04, 21.20it/s]
eval model::  80%|████████  | 402/500 [00:20<00:04, 20.68it/s]
eval model::  81%|████████  | 405/500 [00:20<00:04, 20.80it/s]
eval model::  82%|████████▏ | 408/500 [00:20<00:04, 21.24it/s]
eval model::  82%|████████▏ | 411/500 [00:20<00:04, 22.01it/s]
eval model::  83%|████████▎ | 414/500 [00:20<00:03, 22.27it/s]
eval model::  83%|████████▎ | 417/500 [00:20<00:04, 20.66it/s]
eval model::  84%|████████▍ | 420/500 [00:21<00:04, 19.07it/s]
eval model::  85%|████████▍ | 423/500 [00:21<00:03, 20.20it/s]
eval model::  85%|████████▌ | 426/500 [00:21<00:03, 19.68it/s]
eval model::  86%|████████▌ | 429/500 [00:21<00:03, 21.31it/s]
eval model::  86%|████████▋ | 432/500 [00:21<00:03, 21.43it/s]
eval model::  87%|████████▋ | 435/500 [00:21<00:03, 21.63it/s]
eval model::  88%|████████▊ | 438/500 [00:21<00:02, 21.27it/s]
eval model::  88%|████████▊ | 441/500 [00:22<00:02, 21.00it/s]
eval model::  89%|████████▉ | 444/500 [00:22<00:02, 21.30it/s]
eval model::  89%|████████▉ | 447/500 [00:22<00:02, 19.84it/s]
eval model::  90%|█████████ | 450/500 [00:22<00:02, 19.30it/s]
eval model::  91%|█████████ | 453/500 [00:22<00:02, 20.56it/s]
eval model::  91%|█████████ | 456/500 [00:22<00:02, 20.64it/s]
eval model::  92%|█████████▏| 459/500 [00:22<00:01, 21.26it/s]
eval model::  92%|█████████▏| 462/500 [00:23<00:02, 18.84it/s]
eval model::  93%|█████████▎| 464/500 [00:23<00:01, 18.85it/s]
eval model::  93%|█████████▎| 466/500 [00:23<00:02, 16.62it/s]
eval model::  94%|█████████▍| 469/500 [00:23<00:01, 18.59it/s]
eval model::  94%|█████████▍| 471/500 [00:23<00:01, 18.75it/s]
eval model::  95%|█████████▍| 474/500 [00:23<00:01, 19.05it/s]
eval model::  95%|█████████▌| 477/500 [00:23<00:01, 21.60it/s]
eval model::  96%|█████████▌| 480/500 [00:24<00:00, 22.66it/s]
eval model::  97%|█████████▋| 483/500 [00:24<00:00, 22.65it/s]
eval model::  97%|█████████▋| 486/500 [00:24<00:00, 20.37it/s]
eval model::  98%|█████████▊| 489/500 [00:24<00:00, 20.22it/s]
eval model::  98%|█████████▊| 492/500 [00:24<00:00, 20.70it/s]
eval model::  99%|█████████▉| 495/500 [00:24<00:00, 21.54it/s]
eval model:: 100%|█████████▉| 498/500 [00:24<00:00, 21.72it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.98it/s]
[2024/07/27 11:35:31] ppocr INFO: cur metric, precision: 0.6403374233128835, recall: 0.4020221473278767, hmean: 0.49393670511682924, fps: 44.83595825243171
[2024/07/27 11:35:31] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/27 11:35:31] ppocr INFO: best metric, hmean: 0.49393670511682924, precision: 0.6403374233128835, recall: 0.4020221473278767, fps: 44.83595825243171, best_epoch: 80
[2024/07/27 11:35:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:35:40] ppocr INFO: epoch: [81/1500], global_step: 243, lr: 0.001000, loss: 2.376889, loss_shrink_maps: 1.387132, loss_threshold_maps: 0.742527, loss_binary_maps: 0.262431, avg_reader_cost: 2.27215 s, avg_batch_cost: 2.58621 s, avg_samples: 12.5, ips: 4.83332 samples/s, eta: 11:28:06
[2024/07/27 11:35:41] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:35:50] ppocr INFO: epoch: [82/1500], global_step: 246, lr: 0.001000, loss: 2.417046, loss_shrink_maps: 1.393070, loss_threshold_maps: 0.747669, loss_binary_maps: 0.263818, avg_reader_cost: 2.26997 s, avg_batch_cost: 2.64045 s, avg_samples: 12.5, ips: 4.73404 samples/s, eta: 11:26:50
[2024/07/27 11:35:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:36:00] ppocr INFO: epoch: [83/1500], global_step: 249, lr: 0.001000, loss: 2.376889, loss_shrink_maps: 1.380166, loss_threshold_maps: 0.753894, loss_binary_maps: 0.262822, avg_reader_cost: 2.17113 s, avg_batch_cost: 2.53329 s, avg_samples: 12.5, ips: 4.93429 samples/s, eta: 11:25:17
[2024/07/27 11:36:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:36:09] ppocr INFO: epoch: [84/1500], global_step: 250, lr: 0.001000, loss: 2.376889, loss_shrink_maps: 1.380166, loss_threshold_maps: 0.756147, loss_binary_maps: 0.262822, avg_reader_cost: 0.69594 s, avg_batch_cost: 0.78497 s, avg_samples: 4.8, ips: 6.11487 samples/s, eta: 11:24:37
[2024/07/27 11:36:10] ppocr INFO: epoch: [84/1500], global_step: 252, lr: 0.001000, loss: 2.357498, loss_shrink_maps: 1.365048, loss_threshold_maps: 0.756147, loss_binary_maps: 0.257622, avg_reader_cost: 1.66218 s, avg_batch_cost: 1.80924 s, avg_samples: 7.7, ips: 4.25592 samples/s, eta: 11:23:57
[2024/07/27 11:36:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:36:20] ppocr INFO: epoch: [85/1500], global_step: 255, lr: 0.001000, loss: 2.389248, loss_shrink_maps: 1.380166, loss_threshold_maps: 0.754568, loss_binary_maps: 0.262822, avg_reader_cost: 2.34962 s, avg_batch_cost: 2.58734 s, avg_samples: 12.5, ips: 4.83121 samples/s, eta: 11:22:36
[2024/07/27 11:36:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:36:29] ppocr INFO: epoch: [86/1500], global_step: 258, lr: 0.001000, loss: 2.408732, loss_shrink_maps: 1.382893, loss_threshold_maps: 0.762000, loss_binary_maps: 0.264208, avg_reader_cost: 2.20188 s, avg_batch_cost: 2.52218 s, avg_samples: 12.5, ips: 4.95604 samples/s, eta: 11:21:06
[2024/07/27 11:36:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:36:39] ppocr INFO: epoch: [87/1500], global_step: 260, lr: 0.001000, loss: 2.408732, loss_shrink_maps: 1.378973, loss_threshold_maps: 0.762000, loss_binary_maps: 0.262476, avg_reader_cost: 1.42724 s, avg_batch_cost: 1.61028 s, avg_samples: 9.6, ips: 5.96170 samples/s, eta: 11:19:55
[2024/07/27 11:36:39] ppocr INFO: epoch: [87/1500], global_step: 261, lr: 0.001000, loss: 2.396126, loss_shrink_maps: 1.377553, loss_threshold_maps: 0.756130, loss_binary_maps: 0.261300, avg_reader_cost: 0.85177 s, avg_batch_cost: 0.90671 s, avg_samples: 2.9, ips: 3.19839 samples/s, eta: 11:19:36
[2024/07/27 11:36:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:36:49] ppocr INFO: epoch: [88/1500], global_step: 264, lr: 0.001000, loss: 2.376585, loss_shrink_maps: 1.374301, loss_threshold_maps: 0.756130, loss_binary_maps: 0.259235, avg_reader_cost: 2.36753 s, avg_batch_cost: 2.60539 s, avg_samples: 12.5, ips: 4.79775 samples/s, eta: 11:18:22
[2024/07/27 11:36:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:36:59] ppocr INFO: epoch: [89/1500], global_step: 267, lr: 0.001000, loss: 2.376084, loss_shrink_maps: 1.364754, loss_threshold_maps: 0.749601, loss_binary_maps: 0.258214, avg_reader_cost: 2.41103 s, avg_batch_cost: 2.65308 s, avg_samples: 12.5, ips: 4.71150 samples/s, eta: 11:17:17
[2024/07/27 11:37:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:37:09] ppocr INFO: epoch: [90/1500], global_step: 270, lr: 0.001000, loss: 2.333001, loss_shrink_maps: 1.342931, loss_threshold_maps: 0.741683, loss_binary_maps: 0.256286, avg_reader_cost: 2.32775 s, avg_batch_cost: 2.56837 s, avg_samples: 12.5, ips: 4.86689 samples/s, eta: 11:15:59
[2024/07/27 11:37:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:37:19] ppocr INFO: epoch: [91/1500], global_step: 273, lr: 0.001000, loss: 2.374354, loss_shrink_maps: 1.366639, loss_threshold_maps: 0.727506, loss_binary_maps: 0.260114, avg_reader_cost: 2.37896 s, avg_batch_cost: 2.63176 s, avg_samples: 12.5, ips: 4.74967 samples/s, eta: 11:14:53
[2024/07/27 11:37:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:37:28] ppocr INFO: epoch: [92/1500], global_step: 276, lr: 0.001000, loss: 2.331272, loss_shrink_maps: 1.342931, loss_threshold_maps: 0.723828, loss_binary_maps: 0.257165, avg_reader_cost: 2.26221 s, avg_batch_cost: 2.50520 s, avg_samples: 12.5, ips: 4.98963 samples/s, eta: 11:13:28
[2024/07/27 11:37:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:37:38] ppocr INFO: epoch: [93/1500], global_step: 279, lr: 0.001000, loss: 2.289879, loss_shrink_maps: 1.303485, loss_threshold_maps: 0.726482, loss_binary_maps: 0.249150, avg_reader_cost: 2.25816 s, avg_batch_cost: 2.64012 s, avg_samples: 12.5, ips: 4.73463 samples/s, eta: 11:12:24
[2024/07/27 11:37:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:37:47] ppocr INFO: epoch: [94/1500], global_step: 280, lr: 0.001000, loss: 2.355325, loss_shrink_maps: 1.352263, loss_threshold_maps: 0.728009, loss_binary_maps: 0.258209, avg_reader_cost: 0.58635 s, avg_batch_cost: 0.79262 s, avg_samples: 4.8, ips: 6.05588 samples/s, eta: 11:11:50
[2024/07/27 11:37:48] ppocr INFO: epoch: [94/1500], global_step: 282, lr: 0.001000, loss: 2.355325, loss_shrink_maps: 1.352263, loss_threshold_maps: 0.728009, loss_binary_maps: 0.258209, avg_reader_cost: 1.67723 s, avg_batch_cost: 1.82421 s, avg_samples: 7.7, ips: 4.22101 samples/s, eta: 11:11:18
[2024/07/27 11:37:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:37:58] ppocr INFO: epoch: [95/1500], global_step: 285, lr: 0.001000, loss: 2.355325, loss_shrink_maps: 1.353528, loss_threshold_maps: 0.728009, loss_binary_maps: 0.259363, avg_reader_cost: 2.31738 s, avg_batch_cost: 2.56822 s, avg_samples: 12.5, ips: 4.86718 samples/s, eta: 11:10:05
[2024/07/27 11:37:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:38:08] ppocr INFO: epoch: [96/1500], global_step: 288, lr: 0.001000, loss: 2.268087, loss_shrink_maps: 1.303484, loss_threshold_maps: 0.725396, loss_binary_maps: 0.249748, avg_reader_cost: 2.42311 s, avg_batch_cost: 2.65947 s, avg_samples: 12.5, ips: 4.70019 samples/s, eta: 11:09:07
[2024/07/27 11:38:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:38:17] ppocr INFO: epoch: [97/1500], global_step: 290, lr: 0.001000, loss: 2.292064, loss_shrink_maps: 1.303484, loss_threshold_maps: 0.728009, loss_binary_maps: 0.249748, avg_reader_cost: 1.28110 s, avg_batch_cost: 1.52477 s, avg_samples: 9.6, ips: 6.29604 samples/s, eta: 11:07:53
[2024/07/27 11:38:17] ppocr INFO: epoch: [97/1500], global_step: 291, lr: 0.001000, loss: 2.292064, loss_shrink_maps: 1.303484, loss_threshold_maps: 0.725396, loss_binary_maps: 0.249748, avg_reader_cost: 0.80860 s, avg_batch_cost: 0.86394 s, avg_samples: 2.9, ips: 3.35672 samples/s, eta: 11:07:31
[2024/07/27 11:38:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:38:27] ppocr INFO: epoch: [98/1500], global_step: 294, lr: 0.001000, loss: 2.229996, loss_shrink_maps: 1.251807, loss_threshold_maps: 0.729822, loss_binary_maps: 0.241512, avg_reader_cost: 2.42634 s, avg_batch_cost: 2.68641 s, avg_samples: 12.5, ips: 4.65305 samples/s, eta: 11:06:38
[2024/07/27 11:38:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:38:37] ppocr INFO: epoch: [99/1500], global_step: 297, lr: 0.001000, loss: 2.292064, loss_shrink_maps: 1.303484, loss_threshold_maps: 0.725546, loss_binary_maps: 0.249748, avg_reader_cost: 2.15274 s, avg_batch_cost: 2.51817 s, avg_samples: 12.5, ips: 4.96392 samples/s, eta: 11:05:22
[2024/07/27 11:38:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:38:47] ppocr INFO: epoch: [100/1500], global_step: 300, lr: 0.001000, loss: 2.229996, loss_shrink_maps: 1.251807, loss_threshold_maps: 0.723469, loss_binary_maps: 0.241512, avg_reader_cost: 2.21671 s, avg_batch_cost: 2.56604 s, avg_samples: 12.5, ips: 4.87132 samples/s, eta: 11:04:14

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:52,  9.49it/s]
eval model::   1%|          | 4/500 [00:00<00:25, 19.50it/s]
eval model::   1%|          | 6/500 [00:00<00:25, 19.12it/s]
eval model::   2%|▏         | 8/500 [00:00<00:26, 18.75it/s]
eval model::   2%|▏         | 11/500 [00:00<00:27, 17.71it/s]
eval model::   3%|▎         | 14/500 [00:00<00:25, 18.94it/s]
eval model::   3%|▎         | 16/500 [00:00<00:25, 19.08it/s]
eval model::   4%|▍         | 19/500 [00:01<00:24, 19.47it/s]
eval model::   4%|▍         | 22/500 [00:01<00:23, 20.72it/s]
eval model::   5%|▌         | 25/500 [00:01<00:22, 20.95it/s]
eval model::   6%|▌         | 28/500 [00:01<00:23, 20.48it/s]
eval model::   6%|▌         | 31/500 [00:01<00:26, 17.94it/s]
eval model::   7%|▋         | 33/500 [00:01<00:26, 17.78it/s]
eval model::   7%|▋         | 35/500 [00:01<00:26, 17.29it/s]
eval model::   8%|▊         | 38/500 [00:02<00:24, 18.89it/s]
eval model::   8%|▊         | 40/500 [00:02<00:24, 18.74it/s]
eval model::   8%|▊         | 42/500 [00:02<00:24, 18.92it/s]
eval model::   9%|▉         | 45/500 [00:02<00:21, 21.06it/s]
eval model::  10%|▉         | 48/500 [00:02<00:22, 20.28it/s]
eval model::  10%|█         | 51/500 [00:02<00:20, 22.00it/s]
eval model::  11%|█         | 54/500 [00:02<00:21, 21.03it/s]
eval model::  11%|█▏        | 57/500 [00:02<00:20, 21.86it/s]
eval model::  12%|█▏        | 60/500 [00:03<00:21, 20.38it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:26, 16.27it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:23, 18.37it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:21, 20.08it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:20, 21.07it/s]
eval model::  15%|█▌        | 75/500 [00:03<00:20, 20.95it/s]
eval model::  16%|█▌        | 78/500 [00:03<00:19, 21.16it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:20, 20.39it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:20, 20.12it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:21, 18.95it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:22, 18.32it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:22, 18.46it/s]
eval model::  19%|█▉        | 94/500 [00:04<00:20, 20.12it/s]
eval model::  19%|█▉        | 97/500 [00:04<00:19, 20.88it/s]
eval model::  20%|██        | 100/500 [00:05<00:20, 19.10it/s]
eval model::  21%|██        | 103/500 [00:05<00:19, 20.76it/s]
eval model::  21%|██        | 106/500 [00:05<00:17, 21.99it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:19, 20.14it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:18, 20.84it/s]
eval model::  23%|██▎       | 115/500 [00:05<00:20, 18.55it/s]
eval model::  24%|██▎       | 118/500 [00:06<00:19, 19.30it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:21, 17.45it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:18, 19.86it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:19, 18.95it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:18, 19.66it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:20, 18.31it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:18, 19.42it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:17, 21.02it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:18, 19.56it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:17, 20.40it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:17, 20.40it/s]
eval model::  30%|███       | 150/500 [00:07<00:16, 20.83it/s]
eval model::  31%|███       | 153/500 [00:07<00:16, 20.99it/s]
eval model::  31%|███       | 156/500 [00:07<00:15, 22.26it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:16, 20.91it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:18, 17.93it/s]
eval model::  33%|███▎      | 165/500 [00:08<00:17, 19.14it/s]
eval model::  34%|███▎      | 168/500 [00:08<00:16, 19.76it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:16, 19.74it/s]
eval model::  35%|███▍      | 174/500 [00:08<00:19, 16.70it/s]
eval model::  35%|███▌      | 177/500 [00:09<00:17, 18.07it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:18, 17.38it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:16, 19.13it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:14, 21.06it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:14, 21.65it/s]
eval model::  38%|███▊      | 192/500 [00:09<00:14, 21.56it/s]
eval model::  39%|███▉      | 195/500 [00:09<00:13, 22.64it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:13, 22.28it/s]
eval model::  40%|████      | 201/500 [00:10<00:12, 23.21it/s]
eval model::  41%|████      | 204/500 [00:10<00:12, 23.56it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:20, 14.15it/s]
eval model::  42%|████▏     | 209/500 [00:10<00:20, 14.49it/s]
eval model::  42%|████▏     | 211/500 [00:10<00:19, 14.89it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.88it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:20, 13.74it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:20, 13.87it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:17, 16.25it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:18, 15.34it/s]
eval model::  45%|████▌     | 225/500 [00:11<00:15, 18.05it/s]
eval model::  45%|████▌     | 227/500 [00:11<00:14, 18.37it/s]
eval model::  46%|████▌     | 230/500 [00:11<00:13, 19.73it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:12, 21.24it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:12, 21.24it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:11, 22.65it/s]
eval model::  48%|████▊     | 242/500 [00:12<00:11, 21.76it/s]
eval model::  49%|████▉     | 245/500 [00:12<00:11, 21.93it/s]
eval model::  50%|████▉     | 248/500 [00:12<00:10, 23.60it/s]
eval model::  50%|█████     | 251/500 [00:12<00:11, 21.97it/s]
eval model::  51%|█████     | 254/500 [00:13<00:11, 20.96it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:12, 19.45it/s]
eval model::  52%|█████▏    | 261/500 [00:13<00:10, 22.38it/s]
eval model::  53%|█████▎    | 264/500 [00:13<00:11, 20.49it/s]
eval model::  53%|█████▎    | 267/500 [00:13<00:11, 19.96it/s]
eval model::  54%|█████▍    | 270/500 [00:13<00:10, 21.83it/s]
eval model::  55%|█████▍    | 273/500 [00:14<00:11, 20.12it/s]
eval model::  55%|█████▌    | 276/500 [00:14<00:12, 17.92it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:11, 18.60it/s]
eval model::  56%|█████▋    | 282/500 [00:14<00:10, 20.48it/s]
eval model::  57%|█████▋    | 285/500 [00:14<00:13, 15.63it/s]
eval model::  57%|█████▋    | 287/500 [00:14<00:13, 15.95it/s]
eval model::  58%|█████▊    | 290/500 [00:15<00:11, 17.91it/s]
eval model::  58%|█████▊    | 292/500 [00:15<00:11, 18.29it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:12, 16.09it/s]
eval model::  59%|█████▉    | 296/500 [00:15<00:14, 13.90it/s]
eval model::  60%|█████▉    | 299/500 [00:15<00:12, 16.65it/s]
eval model::  60%|██████    | 301/500 [00:15<00:12, 15.91it/s]
eval model::  61%|██████    | 304/500 [00:15<00:10, 18.14it/s]
eval model::  61%|██████▏   | 307/500 [00:16<00:10, 18.70it/s]
eval model::  62%|██████▏   | 309/500 [00:16<00:10, 18.37it/s]
eval model::  62%|██████▏   | 312/500 [00:16<00:09, 19.41it/s]
eval model::  63%|██████▎   | 315/500 [00:16<00:09, 19.11it/s]
eval model::  64%|██████▎   | 318/500 [00:16<00:08, 20.69it/s]
eval model::  64%|██████▍   | 322/500 [00:16<00:08, 21.71it/s]
eval model::  65%|██████▌   | 325/500 [00:16<00:07, 22.46it/s]
eval model::  66%|██████▌   | 328/500 [00:16<00:07, 22.15it/s]
eval model::  66%|██████▌   | 331/500 [00:17<00:07, 23.18it/s]
eval model::  67%|██████▋   | 334/500 [00:17<00:07, 21.71it/s]
eval model::  67%|██████▋   | 337/500 [00:17<00:07, 21.84it/s]
eval model::  68%|██████▊   | 340/500 [00:17<00:09, 16.28it/s]
eval model::  69%|██████▉   | 344/500 [00:17<00:07, 19.63it/s]
eval model::  69%|██████▉   | 347/500 [00:17<00:07, 20.10it/s]
eval model::  70%|███████   | 350/500 [00:18<00:06, 21.90it/s]
eval model::  71%|███████   | 353/500 [00:18<00:06, 21.94it/s]
eval model::  71%|███████   | 356/500 [00:18<00:07, 19.55it/s]
eval model::  72%|███████▏  | 359/500 [00:18<00:06, 21.09it/s]
eval model::  72%|███████▏  | 362/500 [00:18<00:06, 21.46it/s]
eval model::  73%|███████▎  | 365/500 [00:18<00:06, 19.87it/s]
eval model::  74%|███████▎  | 368/500 [00:18<00:06, 19.44it/s]
eval model::  74%|███████▍  | 371/500 [00:19<00:06, 20.16it/s]
eval model::  75%|███████▍  | 374/500 [00:19<00:05, 21.92it/s]
eval model::  75%|███████▌  | 377/500 [00:19<00:05, 22.29it/s]
eval model::  76%|███████▌  | 380/500 [00:19<00:05, 21.12it/s]
eval model::  77%|███████▋  | 383/500 [00:19<00:05, 22.76it/s]
eval model::  77%|███████▋  | 386/500 [00:19<00:07, 14.73it/s]
eval model::  78%|███████▊  | 389/500 [00:20<00:06, 16.88it/s]
eval model::  78%|███████▊  | 392/500 [00:20<00:05, 18.17it/s]
eval model::  79%|███████▉  | 395/500 [00:20<00:05, 20.04it/s]
eval model::  80%|███████▉  | 398/500 [00:20<00:04, 21.50it/s]
eval model::  80%|████████  | 401/500 [00:20<00:04, 21.09it/s]
eval model::  81%|████████  | 404/500 [00:20<00:04, 21.94it/s]
eval model::  81%|████████▏ | 407/500 [00:20<00:04, 23.10it/s]
eval model::  82%|████████▏ | 410/500 [00:20<00:03, 23.83it/s]
eval model::  83%|████████▎ | 413/500 [00:21<00:03, 23.20it/s]
eval model::  83%|████████▎ | 416/500 [00:21<00:03, 22.40it/s]
eval model::  84%|████████▍ | 419/500 [00:21<00:03, 21.06it/s]
eval model::  84%|████████▍ | 422/500 [00:21<00:04, 17.88it/s]
eval model::  85%|████████▍ | 424/500 [00:21<00:04, 16.10it/s]
eval model::  85%|████████▌ | 426/500 [00:21<00:04, 16.20it/s]
eval model::  86%|████████▌ | 429/500 [00:22<00:03, 17.99it/s]
eval model::  86%|████████▌ | 431/500 [00:22<00:04, 16.83it/s]
eval model::  87%|████████▋ | 435/500 [00:22<00:03, 20.70it/s]
eval model::  88%|████████▊ | 438/500 [00:22<00:02, 22.78it/s]
eval model::  88%|████████▊ | 441/500 [00:22<00:02, 21.81it/s]
eval model::  89%|████████▉ | 444/500 [00:22<00:02, 22.91it/s]
eval model::  89%|████████▉ | 447/500 [00:22<00:02, 23.35it/s]
eval model::  90%|█████████ | 450/500 [00:22<00:02, 21.54it/s]
eval model::  91%|█████████ | 453/500 [00:23<00:02, 22.03it/s]
eval model::  91%|█████████ | 456/500 [00:23<00:01, 22.09it/s]
eval model::  92%|█████████▏| 459/500 [00:23<00:01, 21.67it/s]
eval model::  92%|█████████▏| 462/500 [00:23<00:01, 19.67it/s]
eval model::  93%|█████████▎| 465/500 [00:23<00:02, 17.10it/s]
eval model::  94%|█████████▎| 468/500 [00:23<00:01, 18.63it/s]
eval model::  94%|█████████▍| 471/500 [00:24<00:01, 20.38it/s]
eval model::  95%|█████████▍| 474/500 [00:24<00:01, 19.42it/s]
eval model::  95%|█████████▌| 477/500 [00:24<00:01, 20.63it/s]
eval model::  96%|█████████▌| 480/500 [00:24<00:00, 22.35it/s]
eval model::  97%|█████████▋| 483/500 [00:24<00:00, 23.13it/s]
eval model::  97%|█████████▋| 486/500 [00:24<00:00, 19.70it/s]
eval model::  98%|█████████▊| 489/500 [00:24<00:00, 20.76it/s]
eval model::  98%|█████████▊| 492/500 [00:25<00:00, 20.13it/s]
eval model::  99%|█████████▉| 495/500 [00:25<00:00, 20.30it/s]
eval model:: 100%|█████████▉| 498/500 [00:25<00:00, 21.87it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.66it/s]
[2024/07/27 11:39:12] ppocr INFO: cur metric, precision: 0.6155291170945523, recall: 0.4732787674530573, hmean: 0.5351115949918346, fps: 44.41464951164158
[2024/07/27 11:39:12] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/27 11:39:12] ppocr INFO: best metric, hmean: 0.5351115949918346, precision: 0.6155291170945523, recall: 0.4732787674530573, fps: 44.41464951164158, best_epoch: 100
[2024/07/27 11:39:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:39:21] ppocr INFO: epoch: [101/1500], global_step: 303, lr: 0.001000, loss: 2.217708, loss_shrink_maps: 1.244360, loss_threshold_maps: 0.723340, loss_binary_maps: 0.240204, avg_reader_cost: 2.27050 s, avg_batch_cost: 2.52753 s, avg_samples: 12.5, ips: 4.94555 samples/s, eta: 11:03:01
[2024/07/27 11:39:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:39:31] ppocr INFO: epoch: [102/1500], global_step: 306, lr: 0.001000, loss: 2.223476, loss_shrink_maps: 1.251949, loss_threshold_maps: 0.721323, loss_binary_maps: 0.241512, avg_reader_cost: 2.21046 s, avg_batch_cost: 2.58221 s, avg_samples: 12.5, ips: 4.84081 samples/s, eta: 11:01:57
[2024/07/27 11:39:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:39:41] ppocr INFO: epoch: [103/1500], global_step: 309, lr: 0.001000, loss: 2.217374, loss_shrink_maps: 1.244360, loss_threshold_maps: 0.721323, loss_binary_maps: 0.239133, avg_reader_cost: 2.39361 s, avg_batch_cost: 2.63364 s, avg_samples: 12.5, ips: 4.74628 samples/s, eta: 11:01:00
[2024/07/27 11:39:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:39:49] ppocr INFO: epoch: [104/1500], global_step: 310, lr: 0.001000, loss: 2.217374, loss_shrink_maps: 1.244360, loss_threshold_maps: 0.721323, loss_binary_maps: 0.239133, avg_reader_cost: 0.57471 s, avg_batch_cost: 0.78608 s, avg_samples: 4.8, ips: 6.10626 samples/s, eta: 11:00:29
[2024/07/27 11:39:51] ppocr INFO: epoch: [104/1500], global_step: 312, lr: 0.001000, loss: 2.217374, loss_shrink_maps: 1.244360, loss_threshold_maps: 0.725928, loss_binary_maps: 0.239133, avg_reader_cost: 1.66392 s, avg_batch_cost: 1.80993 s, avg_samples: 7.7, ips: 4.25430 samples/s, eta: 10:59:59
[2024/07/27 11:39:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:40:01] ppocr INFO: epoch: [105/1500], global_step: 315, lr: 0.001000, loss: 2.201108, loss_shrink_maps: 1.244360, loss_threshold_maps: 0.715313, loss_binary_maps: 0.239133, avg_reader_cost: 2.26961 s, avg_batch_cost: 2.52244 s, avg_samples: 12.5, ips: 4.95552 samples/s, eta: 10:58:49
[2024/07/27 11:40:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:40:10] ppocr INFO: epoch: [106/1500], global_step: 318, lr: 0.001000, loss: 2.198608, loss_shrink_maps: 1.240934, loss_threshold_maps: 0.710656, loss_binary_maps: 0.237924, avg_reader_cost: 2.33506 s, avg_batch_cost: 2.57966 s, avg_samples: 12.5, ips: 4.84561 samples/s, eta: 10:57:48
[2024/07/27 11:40:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:40:20] ppocr INFO: epoch: [107/1500], global_step: 320, lr: 0.001000, loss: 2.198608, loss_shrink_maps: 1.240934, loss_threshold_maps: 0.708843, loss_binary_maps: 0.237604, avg_reader_cost: 1.49183 s, avg_batch_cost: 1.67554 s, avg_samples: 9.6, ips: 5.72949 samples/s, eta: 10:57:01
[2024/07/27 11:40:20] ppocr INFO: epoch: [107/1500], global_step: 321, lr: 0.001000, loss: 2.185762, loss_shrink_maps: 1.226035, loss_threshold_maps: 0.708041, loss_binary_maps: 0.235691, avg_reader_cost: 0.88439 s, avg_batch_cost: 0.93985 s, avg_samples: 2.9, ips: 3.08560 samples/s, eta: 10:56:51
[2024/07/27 11:40:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:40:30] ppocr INFO: epoch: [108/1500], global_step: 324, lr: 0.001000, loss: 2.193759, loss_shrink_maps: 1.226035, loss_threshold_maps: 0.708843, loss_binary_maps: 0.235691, avg_reader_cost: 2.32133 s, avg_batch_cost: 2.59616 s, avg_samples: 12.5, ips: 4.81480 samples/s, eta: 10:55:53
[2024/07/27 11:40:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:40:39] ppocr INFO: epoch: [109/1500], global_step: 327, lr: 0.001000, loss: 2.088571, loss_shrink_maps: 1.157036, loss_threshold_maps: 0.707324, loss_binary_maps: 0.223408, avg_reader_cost: 2.08741 s, avg_batch_cost: 2.42199 s, avg_samples: 12.5, ips: 5.16104 samples/s, eta: 10:54:33
[2024/07/27 11:40:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:40:49] ppocr INFO: epoch: [110/1500], global_step: 330, lr: 0.001000, loss: 2.088571, loss_shrink_maps: 1.157036, loss_threshold_maps: 0.707324, loss_binary_maps: 0.223408, avg_reader_cost: 2.26703 s, avg_batch_cost: 2.63106 s, avg_samples: 12.5, ips: 4.75094 samples/s, eta: 10:53:40
[2024/07/27 11:40:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:41:00] ppocr INFO: epoch: [111/1500], global_step: 333, lr: 0.001000, loss: 2.088571, loss_shrink_maps: 1.157036, loss_threshold_maps: 0.708041, loss_binary_maps: 0.223408, avg_reader_cost: 2.44824 s, avg_batch_cost: 2.69437 s, avg_samples: 12.5, ips: 4.63931 samples/s, eta: 10:52:56
[2024/07/27 11:41:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:41:09] ppocr INFO: epoch: [112/1500], global_step: 336, lr: 0.001000, loss: 2.085973, loss_shrink_maps: 1.157036, loss_threshold_maps: 0.707324, loss_binary_maps: 0.223408, avg_reader_cost: 2.38538 s, avg_batch_cost: 2.63016 s, avg_samples: 12.5, ips: 4.75255 samples/s, eta: 10:52:04
[2024/07/27 11:41:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:41:19] ppocr INFO: epoch: [113/1500], global_step: 339, lr: 0.001000, loss: 2.085973, loss_shrink_maps: 1.157036, loss_threshold_maps: 0.705566, loss_binary_maps: 0.223408, avg_reader_cost: 2.28785 s, avg_batch_cost: 2.56707 s, avg_samples: 12.5, ips: 4.86937 samples/s, eta: 10:51:05
[2024/07/27 11:41:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:41:28] ppocr INFO: epoch: [114/1500], global_step: 340, lr: 0.001000, loss: 2.085973, loss_shrink_maps: 1.160859, loss_threshold_maps: 0.705566, loss_binary_maps: 0.224732, avg_reader_cost: 0.70850 s, avg_batch_cost: 0.80161 s, avg_samples: 4.8, ips: 5.98797 samples/s, eta: 10:50:39
[2024/07/27 11:41:29] ppocr INFO: epoch: [114/1500], global_step: 342, lr: 0.001000, loss: 2.110958, loss_shrink_maps: 1.168868, loss_threshold_maps: 0.717597, loss_binary_maps: 0.226381, avg_reader_cost: 1.69597 s, avg_batch_cost: 1.84290 s, avg_samples: 7.7, ips: 4.17820 samples/s, eta: 10:50:16
[2024/07/27 11:41:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:41:39] ppocr INFO: epoch: [115/1500], global_step: 345, lr: 0.001000, loss: 2.120387, loss_shrink_maps: 1.180806, loss_threshold_maps: 0.706810, loss_binary_maps: 0.228061, avg_reader_cost: 2.26697 s, avg_batch_cost: 2.65485 s, avg_samples: 12.5, ips: 4.70836 samples/s, eta: 10:49:29
[2024/07/27 11:41:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:41:49] ppocr INFO: epoch: [116/1500], global_step: 348, lr: 0.001000, loss: 2.140878, loss_shrink_maps: 1.192774, loss_threshold_maps: 0.708891, loss_binary_maps: 0.229788, avg_reader_cost: 2.38624 s, avg_batch_cost: 2.62050 s, avg_samples: 12.5, ips: 4.77008 samples/s, eta: 10:48:38
[2024/07/27 11:41:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:41:59] ppocr INFO: epoch: [117/1500], global_step: 350, lr: 0.001000, loss: 2.116744, loss_shrink_maps: 1.172983, loss_threshold_maps: 0.706543, loss_binary_maps: 0.227598, avg_reader_cost: 1.50621 s, avg_batch_cost: 1.68730 s, avg_samples: 9.6, ips: 5.68955 samples/s, eta: 10:47:57
[2024/07/27 11:41:59] ppocr INFO: epoch: [117/1500], global_step: 351, lr: 0.001000, loss: 2.095402, loss_shrink_maps: 1.168737, loss_threshold_maps: 0.704929, loss_binary_maps: 0.226381, avg_reader_cost: 0.89007 s, avg_batch_cost: 0.94507 s, avg_samples: 2.9, ips: 3.06855 samples/s, eta: 10:47:48
[2024/07/27 11:42:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:42:09] ppocr INFO: epoch: [118/1500], global_step: 354, lr: 0.001000, loss: 2.116744, loss_shrink_maps: 1.180675, loss_threshold_maps: 0.704127, loss_binary_maps: 0.229324, avg_reader_cost: 2.38103 s, avg_batch_cost: 2.61877 s, avg_samples: 12.5, ips: 4.77323 samples/s, eta: 10:46:58
[2024/07/27 11:42:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:42:19] ppocr INFO: epoch: [119/1500], global_step: 357, lr: 0.001000, loss: 2.157428, loss_shrink_maps: 1.213190, loss_threshold_maps: 0.707010, loss_binary_maps: 0.235855, avg_reader_cost: 2.26153 s, avg_batch_cost: 2.50037 s, avg_samples: 12.5, ips: 4.99926 samples/s, eta: 10:45:54
[2024/07/27 11:42:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:42:28] ppocr INFO: epoch: [120/1500], global_step: 360, lr: 0.001000, loss: 2.137235, loss_shrink_maps: 1.185725, loss_threshold_maps: 0.708891, loss_binary_maps: 0.229610, avg_reader_cost: 2.33216 s, avg_batch_cost: 2.58414 s, avg_samples: 12.5, ips: 4.83719 samples/s, eta: 10:45:00

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<01:00,  8.31it/s]
eval model::   1%|          | 4/500 [00:00<00:28, 17.48it/s]
eval model::   1%|          | 6/500 [00:00<00:27, 18.19it/s]
eval model::   2%|▏         | 9/500 [00:00<00:24, 19.85it/s]
eval model::   2%|▏         | 11/500 [00:00<00:26, 18.50it/s]
eval model::   3%|▎         | 13/500 [00:00<00:27, 18.01it/s]
eval model::   3%|▎         | 15/500 [00:00<00:26, 18.34it/s]
eval model::   4%|▎         | 18/500 [00:00<00:22, 20.98it/s]
eval model::   4%|▍         | 21/500 [00:01<00:26, 18.21it/s]
eval model::   5%|▌         | 25/500 [00:01<00:22, 20.88it/s]
eval model::   6%|▌         | 28/500 [00:01<00:21, 21.71it/s]
eval model::   6%|▌         | 31/500 [00:01<00:22, 21.10it/s]
eval model::   7%|▋         | 34/500 [00:01<00:22, 20.74it/s]
eval model::   7%|▋         | 37/500 [00:01<00:21, 21.18it/s]
eval model::   8%|▊         | 40/500 [00:02<00:25, 18.29it/s]
eval model::   9%|▊         | 43/500 [00:02<00:23, 19.20it/s]
eval model::   9%|▉         | 46/500 [00:02<00:22, 19.93it/s]
eval model::  10%|▉         | 49/500 [00:02<00:21, 21.26it/s]
eval model::  10%|█         | 52/500 [00:02<00:21, 20.74it/s]
eval model::  11%|█         | 55/500 [00:02<00:21, 21.10it/s]
eval model::  12%|█▏        | 58/500 [00:02<00:21, 20.55it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:24, 18.18it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:25, 17.37it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:21, 19.76it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:20, 21.43it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:19, 21.95it/s]
eval model::  15%|█▌        | 75/500 [00:03<00:19, 21.88it/s]
eval model::  16%|█▌        | 78/500 [00:03<00:20, 20.88it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:18, 22.61it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:19, 21.14it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:22, 18.40it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:22, 18.36it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:22, 17.81it/s]
eval model::  19%|█▉        | 94/500 [00:04<00:20, 19.55it/s]
eval model::  19%|█▉        | 97/500 [00:04<00:18, 21.73it/s]
eval model::  20%|██        | 100/500 [00:05<00:21, 18.68it/s]
eval model::  21%|██        | 103/500 [00:05<00:19, 20.22it/s]
eval model::  21%|██        | 106/500 [00:05<00:20, 19.42it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:20, 18.73it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:20, 18.89it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:19, 19.90it/s]
eval model::  23%|██▎       | 117/500 [00:05<00:18, 20.30it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:19, 19.39it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:18, 19.85it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:19, 18.92it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:19, 18.64it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:20, 17.86it/s]
eval model::  27%|██▋       | 133/500 [00:06<00:20, 18.34it/s]
eval model::  27%|██▋       | 136/500 [00:06<00:17, 20.31it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:18, 19.63it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:18, 18.86it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:18, 19.34it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:19, 18.45it/s]
eval model::  30%|███       | 150/500 [00:07<00:17, 19.98it/s]
eval model::  31%|███       | 153/500 [00:07<00:18, 18.76it/s]
eval model::  31%|███       | 156/500 [00:07<00:16, 20.25it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:17, 19.63it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:17, 18.82it/s]
eval model::  33%|███▎      | 165/500 [00:08<00:17, 19.45it/s]
eval model::  34%|███▎      | 168/500 [00:08<00:16, 20.14it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:17, 19.02it/s]
eval model::  35%|███▍      | 174/500 [00:08<00:18, 18.04it/s]
eval model::  35%|███▌      | 177/500 [00:09<00:16, 19.54it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:17, 17.79it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:16, 19.12it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:16, 19.29it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:15, 20.24it/s]
eval model::  38%|███▊      | 192/500 [00:09<00:15, 20.00it/s]
eval model::  39%|███▉      | 195/500 [00:09<00:15, 19.67it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:15, 20.09it/s]
eval model::  40%|████      | 201/500 [00:10<00:15, 19.68it/s]
eval model::  41%|████      | 204/500 [00:10<00:13, 21.88it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:17, 16.91it/s]
eval model::  42%|████▏     | 209/500 [00:10<00:17, 16.79it/s]
eval model::  42%|████▏     | 211/500 [00:10<00:17, 16.79it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:17, 16.49it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:18, 15.23it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:18, 14.93it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:16, 17.03it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:17, 15.93it/s]
eval model::  45%|████▌     | 225/500 [00:11<00:14, 18.55it/s]
eval model::  45%|████▌     | 227/500 [00:11<00:14, 18.66it/s]
eval model::  46%|████▌     | 230/500 [00:11<00:13, 20.48it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:12, 22.16it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:12, 21.45it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:11, 22.49it/s]
eval model::  48%|████▊     | 242/500 [00:12<00:12, 20.85it/s]
eval model::  49%|████▉     | 245/500 [00:12<00:11, 22.59it/s]
eval model::  50%|████▉     | 248/500 [00:12<00:11, 22.46it/s]
eval model::  50%|█████     | 251/500 [00:12<00:11, 21.99it/s]
eval model::  51%|█████     | 254/500 [00:13<00:11, 21.98it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:11, 21.85it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:10, 22.87it/s]
eval model::  53%|█████▎    | 263/500 [00:13<00:10, 22.83it/s]
eval model::  53%|█████▎    | 266/500 [00:13<00:10, 21.35it/s]
eval model::  54%|█████▍    | 269/500 [00:13<00:11, 19.83it/s]
eval model::  54%|█████▍    | 272/500 [00:13<00:11, 19.49it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:11, 19.05it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:10, 20.50it/s]
eval model::  56%|█████▌    | 281/500 [00:14<00:10, 20.66it/s]
eval model::  57%|█████▋    | 284/500 [00:14<00:10, 21.52it/s]
eval model::  57%|█████▋    | 287/500 [00:14<00:14, 14.62it/s]
eval model::  58%|█████▊    | 290/500 [00:14<00:12, 16.76it/s]
eval model::  59%|█████▊    | 293/500 [00:15<00:11, 17.90it/s]
eval model::  59%|█████▉    | 296/500 [00:15<00:11, 17.46it/s]
eval model::  60%|█████▉    | 299/500 [00:15<00:10, 18.98it/s]
eval model::  60%|██████    | 302/500 [00:15<00:11, 17.61it/s]
eval model::  61%|██████    | 304/500 [00:15<00:10, 17.98it/s]
eval model::  62%|██████▏   | 308/500 [00:15<00:08, 21.65it/s]
eval model::  62%|██████▏   | 312/500 [00:15<00:08, 22.07it/s]
eval model::  63%|██████▎   | 315/500 [00:16<00:08, 20.76it/s]
eval model::  64%|██████▎   | 318/500 [00:16<00:08, 21.54it/s]
eval model::  64%|██████▍   | 321/500 [00:16<00:07, 22.93it/s]
eval model::  65%|██████▍   | 324/500 [00:16<00:08, 21.95it/s]
eval model::  65%|██████▌   | 327/500 [00:16<00:07, 23.62it/s]
eval model::  66%|██████▌   | 330/500 [00:16<00:08, 21.07it/s]
eval model::  67%|██████▋   | 333/500 [00:16<00:07, 22.91it/s]
eval model::  67%|██████▋   | 336/500 [00:17<00:07, 22.22it/s]
eval model::  68%|██████▊   | 339/500 [00:17<00:07, 20.39it/s]
eval model::  68%|██████▊   | 342/500 [00:17<00:09, 16.22it/s]
eval model::  69%|██████▉   | 345/500 [00:17<00:08, 18.32it/s]
eval model::  70%|██████▉   | 348/500 [00:17<00:07, 20.47it/s]
eval model::  70%|███████   | 351/500 [00:17<00:07, 19.74it/s]
eval model::  71%|███████   | 354/500 [00:18<00:07, 20.01it/s]
eval model::  71%|███████▏  | 357/500 [00:18<00:07, 19.37it/s]
eval model::  72%|███████▏  | 360/500 [00:18<00:06, 20.18it/s]
eval model::  73%|███████▎  | 363/500 [00:18<00:07, 19.16it/s]
eval model::  73%|███████▎  | 365/500 [00:18<00:07, 18.32it/s]
eval model::  73%|███████▎  | 367/500 [00:18<00:07, 17.04it/s]
eval model::  74%|███████▍  | 370/500 [00:18<00:07, 17.91it/s]
eval model::  75%|███████▍  | 373/500 [00:19<00:06, 19.42it/s]
eval model::  75%|███████▌  | 376/500 [00:19<00:06, 20.37it/s]
eval model::  76%|███████▌  | 379/500 [00:19<00:05, 22.39it/s]
eval model::  76%|███████▋  | 382/500 [00:19<00:05, 23.01it/s]
eval model::  77%|███████▋  | 385/500 [00:19<00:04, 23.14it/s]
eval model::  78%|███████▊  | 388/500 [00:19<00:07, 15.75it/s]
eval model::  78%|███████▊  | 392/500 [00:20<00:05, 18.78it/s]
eval model::  79%|███████▉  | 395/500 [00:20<00:05, 18.91it/s]
eval model::  80%|███████▉  | 398/500 [00:20<00:04, 20.95it/s]
eval model::  80%|████████  | 401/500 [00:20<00:05, 19.39it/s]
eval model::  81%|████████  | 404/500 [00:20<00:04, 20.67it/s]
eval model::  81%|████████▏ | 407/500 [00:20<00:04, 22.22it/s]
eval model::  82%|████████▏ | 410/500 [00:20<00:03, 22.53it/s]
eval model::  83%|████████▎ | 413/500 [00:20<00:03, 21.77it/s]
eval model::  83%|████████▎ | 416/500 [00:21<00:04, 20.28it/s]
eval model::  84%|████████▍ | 419/500 [00:21<00:04, 19.51it/s]
eval model::  84%|████████▍ | 422/500 [00:21<00:04, 16.18it/s]
eval model::  85%|████████▍ | 424/500 [00:21<00:04, 15.96it/s]
eval model::  85%|████████▌ | 426/500 [00:21<00:04, 16.51it/s]
eval model::  86%|████████▌ | 429/500 [00:21<00:03, 18.61it/s]
eval model::  86%|████████▋ | 432/500 [00:22<00:03, 20.31it/s]
eval model::  87%|████████▋ | 435/500 [00:22<00:03, 21.37it/s]
eval model::  88%|████████▊ | 438/500 [00:22<00:02, 20.67it/s]
eval model::  88%|████████▊ | 441/500 [00:22<00:03, 18.95it/s]
eval model::  89%|████████▉ | 444/500 [00:22<00:02, 20.82it/s]
eval model::  89%|████████▉ | 447/500 [00:22<00:02, 20.65it/s]
eval model::  90%|█████████ | 450/500 [00:22<00:02, 19.38it/s]
eval model::  91%|█████████ | 453/500 [00:23<00:02, 19.79it/s]
eval model::  91%|█████████ | 456/500 [00:23<00:02, 20.97it/s]
eval model::  92%|█████████▏| 459/500 [00:23<00:02, 19.60it/s]
eval model::  92%|█████████▏| 462/500 [00:23<00:02, 18.35it/s]
eval model::  93%|█████████▎| 464/500 [00:23<00:01, 18.59it/s]
eval model::  93%|█████████▎| 466/500 [00:23<00:01, 17.18it/s]
eval model::  94%|█████████▍| 469/500 [00:23<00:01, 18.39it/s]
eval model::  94%|█████████▍| 472/500 [00:24<00:01, 19.16it/s]
eval model::  95%|█████████▍| 474/500 [00:24<00:01, 17.81it/s]
eval model::  95%|█████████▌| 477/500 [00:24<00:01, 19.59it/s]
eval model::  96%|█████████▌| 480/500 [00:24<00:00, 20.84it/s]
eval model::  97%|█████████▋| 483/500 [00:24<00:00, 21.70it/s]
eval model::  97%|█████████▋| 486/500 [00:24<00:00, 21.81it/s]
eval model::  98%|█████████▊| 489/500 [00:24<00:00, 21.41it/s]
eval model::  98%|█████████▊| 492/500 [00:25<00:00, 21.38it/s]
eval model::  99%|█████████▉| 495/500 [00:25<00:00, 22.91it/s]
eval model:: 100%|█████████▉| 498/500 [00:25<00:00, 23.74it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.70it/s]
[2024/07/27 11:42:54] ppocr INFO: cur metric, precision: 0.6751085383502171, recall: 0.4492055849783341, hmean: 0.5394622723330443, fps: 44.37247188339091
[2024/07/27 11:42:54] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/27 11:42:54] ppocr INFO: best metric, hmean: 0.5394622723330443, precision: 0.6751085383502171, recall: 0.4492055849783341, fps: 44.37247188339091, best_epoch: 120
[2024/07/27 11:42:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:43:03] ppocr INFO: epoch: [121/1500], global_step: 363, lr: 0.001000, loss: 2.130540, loss_shrink_maps: 1.202247, loss_threshold_maps: 0.704594, loss_binary_maps: 0.234727, avg_reader_cost: 2.26825 s, avg_batch_cost: 2.51180 s, avg_samples: 12.5, ips: 4.97651 samples/s, eta: 10:43:59
[2024/07/27 11:43:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:43:13] ppocr INFO: epoch: [122/1500], global_step: 366, lr: 0.001000, loss: 2.145734, loss_shrink_maps: 1.203057, loss_threshold_maps: 0.707634, loss_binary_maps: 0.234727, avg_reader_cost: 2.20465 s, avg_batch_cost: 2.56974 s, avg_samples: 12.5, ips: 4.86431 samples/s, eta: 10:43:05
[2024/07/27 11:43:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:43:23] ppocr INFO: epoch: [123/1500], global_step: 369, lr: 0.001000, loss: 2.145734, loss_shrink_maps: 1.203057, loss_threshold_maps: 0.713919, loss_binary_maps: 0.234727, avg_reader_cost: 2.40866 s, avg_batch_cost: 2.65052 s, avg_samples: 12.5, ips: 4.71606 samples/s, eta: 10:42:20
[2024/07/27 11:43:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:43:31] ppocr INFO: epoch: [124/1500], global_step: 370, lr: 0.001000, loss: 2.172360, loss_shrink_maps: 1.214000, loss_threshold_maps: 0.706020, loss_binary_maps: 0.236212, avg_reader_cost: 0.52684 s, avg_batch_cost: 0.78548 s, avg_samples: 4.8, ips: 6.11095 samples/s, eta: 10:41:54
[2024/07/27 11:43:33] ppocr INFO: epoch: [124/1500], global_step: 372, lr: 0.001000, loss: 2.197069, loss_shrink_maps: 1.224396, loss_threshold_maps: 0.713919, loss_binary_maps: 0.238614, avg_reader_cost: 1.66299 s, avg_batch_cost: 1.81034 s, avg_samples: 7.7, ips: 4.25333 samples/s, eta: 10:41:29
[2024/07/27 11:43:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:43:43] ppocr INFO: epoch: [125/1500], global_step: 375, lr: 0.001000, loss: 2.130540, loss_shrink_maps: 1.197906, loss_threshold_maps: 0.697358, loss_binary_maps: 0.233468, avg_reader_cost: 2.35317 s, avg_batch_cost: 2.59584 s, avg_samples: 12.5, ips: 4.81541 samples/s, eta: 10:40:39
[2024/07/27 11:43:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:43:52] ppocr INFO: epoch: [126/1500], global_step: 378, lr: 0.001000, loss: 2.127622, loss_shrink_maps: 1.189903, loss_threshold_maps: 0.693253, loss_binary_maps: 0.231577, avg_reader_cost: 2.31441 s, avg_batch_cost: 2.55540 s, avg_samples: 12.5, ips: 4.89160 samples/s, eta: 10:39:45
[2024/07/27 11:43:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:44:02] ppocr INFO: epoch: [127/1500], global_step: 380, lr: 0.001000, loss: 2.130540, loss_shrink_maps: 1.203057, loss_threshold_maps: 0.693253, loss_binary_maps: 0.234727, avg_reader_cost: 1.47698 s, avg_batch_cost: 1.65483 s, avg_samples: 9.6, ips: 5.80122 samples/s, eta: 10:39:04
[2024/07/27 11:44:02] ppocr INFO: epoch: [127/1500], global_step: 381, lr: 0.001000, loss: 2.129863, loss_shrink_maps: 1.203052, loss_threshold_maps: 0.692247, loss_binary_maps: 0.235848, avg_reader_cost: 0.87366 s, avg_batch_cost: 0.92911 s, avg_samples: 2.9, ips: 3.12127 samples/s, eta: 10:38:54
[2024/07/27 11:44:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:44:12] ppocr INFO: epoch: [128/1500], global_step: 384, lr: 0.001000, loss: 2.158925, loss_shrink_maps: 1.214992, loss_threshold_maps: 0.696671, loss_binary_maps: 0.238250, avg_reader_cost: 2.35634 s, avg_batch_cost: 2.59616 s, avg_samples: 12.5, ips: 4.81480 samples/s, eta: 10:38:05
[2024/07/27 11:44:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:44:22] ppocr INFO: epoch: [129/1500], global_step: 387, lr: 0.001000, loss: 2.150966, loss_shrink_maps: 1.214992, loss_threshold_maps: 0.696671, loss_binary_maps: 0.238250, avg_reader_cost: 2.21807 s, avg_batch_cost: 2.62538 s, avg_samples: 12.5, ips: 4.76121 samples/s, eta: 10:37:20
[2024/07/27 11:44:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:44:32] ppocr INFO: epoch: [130/1500], global_step: 390, lr: 0.001000, loss: 2.150966, loss_shrink_maps: 1.218902, loss_threshold_maps: 0.696758, loss_binary_maps: 0.239124, avg_reader_cost: 2.22221 s, avg_batch_cost: 2.59607 s, avg_samples: 12.5, ips: 4.81498 samples/s, eta: 10:36:32
[2024/07/27 11:44:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:44:41] ppocr INFO: epoch: [131/1500], global_step: 393, lr: 0.001000, loss: 2.177174, loss_shrink_maps: 1.217144, loss_threshold_maps: 0.704681, loss_binary_maps: 0.237301, avg_reader_cost: 2.08378 s, avg_batch_cost: 2.41214 s, avg_samples: 12.5, ips: 5.18211 samples/s, eta: 10:35:25
[2024/07/27 11:44:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:44:51] ppocr INFO: epoch: [132/1500], global_step: 396, lr: 0.001000, loss: 2.177174, loss_shrink_maps: 1.228020, loss_threshold_maps: 0.710381, loss_binary_maps: 0.238316, avg_reader_cost: 2.22014 s, avg_batch_cost: 2.58805 s, avg_samples: 12.5, ips: 4.82989 samples/s, eta: 10:34:36
[2024/07/27 11:44:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:45:01] ppocr INFO: epoch: [133/1500], global_step: 399, lr: 0.001000, loss: 2.145588, loss_shrink_maps: 1.207350, loss_threshold_maps: 0.709004, loss_binary_maps: 0.235423, avg_reader_cost: 2.38131 s, avg_batch_cost: 2.62252 s, avg_samples: 12.5, ips: 4.76640 samples/s, eta: 10:33:52
[2024/07/27 11:45:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:45:09] ppocr INFO: epoch: [134/1500], global_step: 400, lr: 0.001000, loss: 2.115786, loss_shrink_maps: 1.183076, loss_threshold_maps: 0.702173, loss_binary_maps: 0.230192, avg_reader_cost: 0.54604 s, avg_batch_cost: 0.75935 s, avg_samples: 4.8, ips: 6.32123 samples/s, eta: 10:33:25
[2024/07/27 11:45:10] ppocr INFO: epoch: [134/1500], global_step: 402, lr: 0.001000, loss: 2.075028, loss_shrink_maps: 1.151134, loss_threshold_maps: 0.702173, loss_binary_maps: 0.224395, avg_reader_cost: 1.61197 s, avg_batch_cost: 1.75964 s, avg_samples: 7.7, ips: 4.37589 samples/s, eta: 10:32:57
[2024/07/27 11:45:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:45:20] ppocr INFO: epoch: [135/1500], global_step: 405, lr: 0.001000, loss: 2.075028, loss_shrink_maps: 1.149428, loss_threshold_maps: 0.702173, loss_binary_maps: 0.224395, avg_reader_cost: 2.27282 s, avg_batch_cost: 2.66630 s, avg_samples: 12.5, ips: 4.68814 samples/s, eta: 10:32:18
[2024/07/27 11:45:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:45:30] ppocr INFO: epoch: [136/1500], global_step: 408, lr: 0.001000, loss: 2.122453, loss_shrink_maps: 1.173679, loss_threshold_maps: 0.710620, loss_binary_maps: 0.229114, avg_reader_cost: 2.19758 s, avg_batch_cost: 2.57332 s, avg_samples: 12.5, ips: 4.85754 samples/s, eta: 10:31:30
[2024/07/27 11:45:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:45:40] ppocr INFO: epoch: [137/1500], global_step: 410, lr: 0.001000, loss: 2.010427, loss_shrink_maps: 1.128413, loss_threshold_maps: 0.696383, loss_binary_maps: 0.220201, avg_reader_cost: 1.35875 s, avg_batch_cost: 1.68760 s, avg_samples: 9.6, ips: 5.68854 samples/s, eta: 10:30:55
[2024/07/27 11:45:40] ppocr INFO: epoch: [137/1500], global_step: 411, lr: 0.001000, loss: 2.010427, loss_shrink_maps: 1.128413, loss_threshold_maps: 0.696383, loss_binary_maps: 0.220201, avg_reader_cost: 0.88968 s, avg_batch_cost: 0.94516 s, avg_samples: 2.9, ips: 3.06826 samples/s, eta: 10:30:47
[2024/07/27 11:45:41] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:45:50] ppocr INFO: epoch: [138/1500], global_step: 414, lr: 0.001000, loss: 2.010427, loss_shrink_maps: 1.128413, loss_threshold_maps: 0.694914, loss_binary_maps: 0.220201, avg_reader_cost: 2.20765 s, avg_batch_cost: 2.63968 s, avg_samples: 12.5, ips: 4.73542 samples/s, eta: 10:30:06
[2024/07/27 11:45:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:46:00] ppocr INFO: epoch: [139/1500], global_step: 417, lr: 0.001000, loss: 2.005837, loss_shrink_maps: 1.108655, loss_threshold_maps: 0.697440, loss_binary_maps: 0.216090, avg_reader_cost: 2.46799 s, avg_batch_cost: 2.70859 s, avg_samples: 12.5, ips: 4.61495 samples/s, eta: 10:29:32
[2024/07/27 11:46:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:46:10] ppocr INFO: epoch: [140/1500], global_step: 420, lr: 0.001000, loss: 2.051293, loss_shrink_maps: 1.145747, loss_threshold_maps: 0.697440, loss_binary_maps: 0.223170, avg_reader_cost: 2.27425 s, avg_batch_cost: 2.51713 s, avg_samples: 12.5, ips: 4.96597 samples/s, eta: 10:28:39

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<01:01,  8.14it/s]
eval model::   1%|          | 3/500 [00:00<00:34, 14.49it/s]
eval model::   1%|          | 6/500 [00:00<00:27, 17.81it/s]
eval model::   2%|▏         | 9/500 [00:00<00:23, 21.09it/s]
eval model::   2%|▏         | 12/500 [00:00<00:28, 16.98it/s]
eval model::   3%|▎         | 14/500 [00:00<00:27, 17.43it/s]
eval model::   3%|▎         | 17/500 [00:00<00:24, 19.59it/s]
eval model::   4%|▍         | 20/500 [00:01<00:23, 20.16it/s]
eval model::   5%|▍         | 23/500 [00:01<00:21, 21.98it/s]
eval model::   5%|▌         | 26/500 [00:01<00:21, 21.77it/s]
eval model::   6%|▌         | 29/500 [00:01<00:20, 23.36it/s]
eval model::   6%|▋         | 32/500 [00:01<00:22, 20.96it/s]
eval model::   7%|▋         | 35/500 [00:01<00:23, 19.62it/s]
eval model::   8%|▊         | 38/500 [00:01<00:22, 20.43it/s]
eval model::   8%|▊         | 41/500 [00:02<00:23, 19.94it/s]
eval model::   9%|▉         | 44/500 [00:02<00:23, 19.44it/s]
eval model::   9%|▉         | 47/500 [00:02<00:21, 21.44it/s]
eval model::  10%|█         | 50/500 [00:02<00:20, 22.38it/s]
eval model::  11%|█         | 53/500 [00:02<00:19, 22.58it/s]
eval model::  11%|█         | 56/500 [00:02<00:20, 21.73it/s]
eval model::  12%|█▏        | 59/500 [00:02<00:21, 20.95it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:25, 17.05it/s]
eval model::  13%|█▎        | 64/500 [00:03<00:25, 17.29it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:22, 19.10it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:22, 19.54it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:19, 21.52it/s]
eval model::  15%|█▌        | 76/500 [00:03<00:19, 22.28it/s]
eval model::  16%|█▌        | 79/500 [00:03<00:18, 22.43it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:18, 22.63it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:18, 22.01it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:20, 20.42it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:20, 19.53it/s]
eval model::  19%|█▉        | 94/500 [00:04<00:19, 20.40it/s]
eval model::  19%|█▉        | 97/500 [00:04<00:19, 20.52it/s]
eval model::  20%|██        | 100/500 [00:04<00:20, 19.96it/s]
eval model::  21%|██        | 103/500 [00:05<00:18, 21.27it/s]
eval model::  21%|██        | 106/500 [00:05<00:18, 21.45it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:18, 21.66it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:17, 21.87it/s]
eval model::  23%|██▎       | 115/500 [00:05<00:17, 22.27it/s]
eval model::  24%|██▎       | 118/500 [00:05<00:19, 19.61it/s]
eval model::  24%|██▍       | 121/500 [00:05<00:18, 20.27it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:19, 19.30it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:19, 19.25it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:18, 19.82it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:19, 18.72it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:17, 20.74it/s]
eval model::  28%|██▊       | 138/500 [00:06<00:18, 19.73it/s]
eval model::  28%|██▊       | 141/500 [00:06<00:18, 19.35it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:17, 20.02it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:19, 18.51it/s]
eval model::  30%|███       | 150/500 [00:07<00:18, 18.95it/s]
eval model::  30%|███       | 152/500 [00:07<00:19, 18.05it/s]
eval model::  31%|███       | 155/500 [00:07<00:16, 20.43it/s]
eval model::  32%|███▏      | 158/500 [00:07<00:15, 21.41it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:18, 18.10it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:18, 18.42it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:16, 20.30it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:16, 20.20it/s]
eval model::  34%|███▍      | 172/500 [00:08<00:15, 21.51it/s]
eval model::  35%|███▌      | 175/500 [00:08<00:16, 19.88it/s]
eval model::  36%|███▌      | 178/500 [00:08<00:15, 20.22it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:16, 19.13it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:16, 19.68it/s]
eval model::  37%|███▋      | 187/500 [00:09<00:16, 19.31it/s]
eval model::  38%|███▊      | 190/500 [00:09<00:15, 19.64it/s]
eval model::  39%|███▉      | 194/500 [00:09<00:14, 21.57it/s]
eval model::  39%|███▉      | 197/500 [00:09<00:14, 21.04it/s]
eval model::  40%|████      | 200/500 [00:09<00:13, 21.94it/s]
eval model::  41%|████      | 203/500 [00:10<00:14, 20.53it/s]
eval model::  41%|████      | 206/500 [00:10<00:22, 13.01it/s]
eval model::  42%|████▏     | 208/500 [00:10<00:21, 13.58it/s]
eval model::  42%|████▏     | 210/500 [00:10<00:20, 14.20it/s]
eval model::  43%|████▎     | 213/500 [00:10<00:18, 15.83it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:19, 14.91it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:19, 14.57it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:16, 16.88it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:17, 16.15it/s]
eval model::  45%|████▌     | 225/500 [00:11<00:14, 18.36it/s]
eval model::  46%|████▌     | 228/500 [00:11<00:13, 20.00it/s]
eval model::  46%|████▋     | 232/500 [00:11<00:11, 23.54it/s]
eval model::  47%|████▋     | 235/500 [00:11<00:11, 22.97it/s]
eval model::  48%|████▊     | 238/500 [00:12<00:10, 23.96it/s]
eval model::  48%|████▊     | 241/500 [00:12<00:11, 23.37it/s]
eval model::  49%|████▉     | 244/500 [00:12<00:11, 22.75it/s]
eval model::  49%|████▉     | 247/500 [00:12<00:11, 21.87it/s]
eval model::  50%|█████     | 250/500 [00:12<00:12, 19.38it/s]
eval model::  51%|█████     | 253/500 [00:12<00:12, 20.42it/s]
eval model::  51%|█████     | 256/500 [00:12<00:11, 21.62it/s]
eval model::  52%|█████▏    | 259/500 [00:13<00:11, 21.38it/s]
eval model::  52%|█████▏    | 262/500 [00:13<00:11, 20.77it/s]
eval model::  53%|█████▎    | 265/500 [00:13<00:12, 19.07it/s]
eval model::  53%|█████▎    | 267/500 [00:13<00:12, 18.82it/s]
eval model::  54%|█████▍    | 269/500 [00:13<00:12, 18.44it/s]
eval model::  54%|█████▍    | 272/500 [00:13<00:12, 18.19it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:12, 18.12it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:10, 20.55it/s]
eval model::  56%|█████▌    | 281/500 [00:14<00:10, 20.40it/s]
eval model::  57%|█████▋    | 284/500 [00:14<00:10, 19.76it/s]
eval model::  57%|█████▋    | 287/500 [00:14<00:15, 13.81it/s]
eval model::  58%|█████▊    | 291/500 [00:14<00:12, 17.17it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:11, 17.97it/s]
eval model::  59%|█████▉    | 297/500 [00:15<00:11, 18.05it/s]
eval model::  60%|██████    | 300/500 [00:15<00:11, 17.42it/s]
eval model::  60%|██████    | 302/500 [00:15<00:12, 16.22it/s]
eval model::  61%|██████    | 305/500 [00:15<00:10, 18.02it/s]
eval model::  61%|██████▏   | 307/500 [00:15<00:10, 18.44it/s]
eval model::  62%|██████▏   | 310/500 [00:15<00:09, 20.35it/s]
eval model::  63%|██████▎   | 313/500 [00:16<00:09, 20.70it/s]
eval model::  63%|██████▎   | 316/500 [00:16<00:08, 20.54it/s]
eval model::  64%|██████▍   | 319/500 [00:16<00:08, 21.52it/s]
eval model::  64%|██████▍   | 322/500 [00:16<00:08, 20.93it/s]
eval model::  65%|██████▌   | 325/500 [00:16<00:07, 22.90it/s]
eval model::  66%|██████▌   | 328/500 [00:16<00:07, 23.92it/s]
eval model::  66%|██████▌   | 331/500 [00:16<00:07, 24.03it/s]
eval model::  67%|██████▋   | 334/500 [00:16<00:06, 24.34it/s]
eval model::  67%|██████▋   | 337/500 [00:17<00:07, 22.39it/s]
eval model::  68%|██████▊   | 340/500 [00:17<00:08, 18.44it/s]
eval model::  69%|██████▊   | 343/500 [00:17<00:07, 20.74it/s]
eval model::  69%|██████▉   | 346/500 [00:17<00:06, 22.53it/s]
eval model::  70%|██████▉   | 349/500 [00:17<00:06, 22.98it/s]
eval model::  70%|███████   | 352/500 [00:17<00:07, 21.01it/s]
eval model::  71%|███████   | 355/500 [00:17<00:06, 20.75it/s]
eval model::  72%|███████▏  | 358/500 [00:18<00:06, 21.51it/s]
eval model::  72%|███████▏  | 361/500 [00:18<00:06, 20.57it/s]
eval model::  73%|███████▎  | 364/500 [00:18<00:07, 18.25it/s]
eval model::  73%|███████▎  | 367/500 [00:18<00:07, 18.38it/s]
eval model::  74%|███████▍  | 370/500 [00:18<00:06, 19.75it/s]
eval model::  75%|███████▍  | 373/500 [00:18<00:06, 20.50it/s]
eval model::  75%|███████▌  | 376/500 [00:19<00:06, 20.48it/s]
eval model::  76%|███████▌  | 379/500 [00:19<00:05, 21.03it/s]
eval model::  76%|███████▋  | 382/500 [00:19<00:06, 19.48it/s]
eval model::  77%|███████▋  | 385/500 [00:19<00:05, 20.50it/s]
eval model::  78%|███████▊  | 388/500 [00:19<00:07, 14.75it/s]
eval model::  78%|███████▊  | 391/500 [00:19<00:06, 17.23it/s]
eval model::  79%|███████▉  | 394/500 [00:20<00:05, 18.20it/s]
eval model::  79%|███████▉  | 397/500 [00:20<00:05, 19.58it/s]
eval model::  80%|████████  | 400/500 [00:20<00:05, 19.58it/s]
eval model::  81%|████████  | 403/500 [00:20<00:04, 20.64it/s]
eval model::  81%|████████  | 406/500 [00:20<00:04, 21.79it/s]
eval model::  82%|████████▏ | 409/500 [00:20<00:03, 23.51it/s]
eval model::  82%|████████▏ | 412/500 [00:20<00:03, 24.72it/s]
eval model::  83%|████████▎ | 415/500 [00:20<00:03, 22.42it/s]
eval model::  84%|████████▎ | 418/500 [00:21<00:03, 21.22it/s]
eval model::  84%|████████▍ | 421/500 [00:21<00:04, 17.72it/s]
eval model::  85%|████████▍ | 424/500 [00:21<00:04, 18.07it/s]
eval model::  85%|████████▌ | 427/500 [00:21<00:03, 19.57it/s]
eval model::  86%|████████▌ | 430/500 [00:21<00:03, 21.33it/s]
eval model::  87%|████████▋ | 433/500 [00:21<00:02, 23.25it/s]
eval model::  87%|████████▋ | 437/500 [00:21<00:02, 25.72it/s]
eval model::  88%|████████▊ | 440/500 [00:22<00:02, 22.07it/s]
eval model::  89%|████████▊ | 443/500 [00:22<00:02, 22.65it/s]
eval model::  89%|████████▉ | 446/500 [00:22<00:02, 21.04it/s]
eval model::  90%|████████▉ | 449/500 [00:22<00:02, 20.34it/s]
eval model::  90%|█████████ | 452/500 [00:22<00:02, 21.07it/s]
eval model::  91%|█████████ | 455/500 [00:22<00:02, 19.95it/s]
eval model::  92%|█████████▏| 458/500 [00:23<00:02, 19.87it/s]
eval model::  92%|█████████▏| 461/500 [00:23<00:01, 20.59it/s]
eval model::  93%|█████████▎| 464/500 [00:23<00:01, 20.91it/s]
eval model::  93%|█████████▎| 467/500 [00:23<00:01, 19.76it/s]
eval model::  94%|█████████▍| 471/500 [00:23<00:01, 22.43it/s]
eval model::  95%|█████████▍| 474/500 [00:23<00:01, 21.19it/s]
eval model::  95%|█████████▌| 477/500 [00:23<00:01, 21.62it/s]
eval model::  96%|█████████▌| 480/500 [00:24<00:00, 23.42it/s]
eval model::  97%|█████████▋| 483/500 [00:24<00:00, 23.21it/s]
eval model::  97%|█████████▋| 486/500 [00:24<00:00, 22.16it/s]
eval model::  98%|█████████▊| 489/500 [00:24<00:00, 23.45it/s]
eval model::  98%|█████████▊| 492/500 [00:24<00:00, 21.52it/s]
eval model::  99%|█████████▉| 495/500 [00:24<00:00, 21.99it/s]
eval model:: 100%|█████████▉| 498/500 [00:24<00:00, 23.29it/s]
eval model:: 100%|██████████| 500/500 [00:24<00:00, 20.03it/s]
[2024/07/27 11:46:35] ppocr INFO: cur metric, precision: 0.7161667885881492, recall: 0.47135291285507946, hmean: 0.5685249709639955, fps: 44.87849093026925
[2024/07/27 11:46:35] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/27 11:46:35] ppocr INFO: best metric, hmean: 0.5685249709639955, precision: 0.7161667885881492, recall: 0.47135291285507946, fps: 44.87849093026925, best_epoch: 140
[2024/07/27 11:46:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:46:45] ppocr INFO: epoch: [141/1500], global_step: 423, lr: 0.001000, loss: 2.051293, loss_shrink_maps: 1.134870, loss_threshold_maps: 0.694914, loss_binary_maps: 0.221254, avg_reader_cost: 2.28277 s, avg_batch_cost: 2.69336 s, avg_samples: 12.5, ips: 4.64105 samples/s, eta: 10:28:03
[2024/07/27 11:46:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:46:55] ppocr INFO: epoch: [142/1500], global_step: 426, lr: 0.001000, loss: 1.980067, loss_shrink_maps: 1.096803, loss_threshold_maps: 0.686623, loss_binary_maps: 0.213801, avg_reader_cost: 2.18554 s, avg_batch_cost: 2.56574 s, avg_samples: 12.5, ips: 4.87188 samples/s, eta: 10:27:16
[2024/07/27 11:46:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:47:05] ppocr INFO: epoch: [143/1500], global_step: 429, lr: 0.001000, loss: 2.067499, loss_shrink_maps: 1.140371, loss_threshold_maps: 0.694914, loss_binary_maps: 0.222271, avg_reader_cost: 2.43633 s, avg_batch_cost: 2.68955 s, avg_samples: 12.5, ips: 4.64761 samples/s, eta: 10:26:40
[2024/07/27 11:47:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:47:13] ppocr INFO: epoch: [144/1500], global_step: 430, lr: 0.001000, loss: 2.092960, loss_shrink_maps: 1.161974, loss_threshold_maps: 0.695169, loss_binary_maps: 0.227078, avg_reader_cost: 0.66593 s, avg_batch_cost: 0.78640 s, avg_samples: 4.8, ips: 6.10378 samples/s, eta: 10:26:18
[2024/07/27 11:47:15] ppocr INFO: epoch: [144/1500], global_step: 432, lr: 0.001000, loss: 2.067499, loss_shrink_maps: 1.140371, loss_threshold_maps: 0.690313, loss_binary_maps: 0.222271, avg_reader_cost: 1.66673 s, avg_batch_cost: 1.81557 s, avg_samples: 7.7, ips: 4.24110 samples/s, eta: 10:25:57
[2024/07/27 11:47:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:47:25] ppocr INFO: epoch: [145/1500], global_step: 435, lr: 0.001000, loss: 2.067499, loss_shrink_maps: 1.140371, loss_threshold_maps: 0.684644, loss_binary_maps: 0.222271, avg_reader_cost: 2.31707 s, avg_batch_cost: 2.55363 s, avg_samples: 12.5, ips: 4.89499 samples/s, eta: 10:25:09
[2024/07/27 11:47:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:47:34] ppocr INFO: epoch: [146/1500], global_step: 438, lr: 0.001000, loss: 2.067499, loss_shrink_maps: 1.165013, loss_threshold_maps: 0.671613, loss_binary_maps: 0.228832, avg_reader_cost: 2.39155 s, avg_batch_cost: 2.62884 s, avg_samples: 12.5, ips: 4.75494 samples/s, eta: 10:24:28
[2024/07/27 11:47:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:47:44] ppocr INFO: epoch: [147/1500], global_step: 440, lr: 0.001000, loss: 2.067560, loss_shrink_maps: 1.167685, loss_threshold_maps: 0.667546, loss_binary_maps: 0.228832, avg_reader_cost: 1.37016 s, avg_batch_cost: 1.63946 s, avg_samples: 9.6, ips: 5.85559 samples/s, eta: 10:23:51
[2024/07/27 11:47:44] ppocr INFO: epoch: [147/1500], global_step: 441, lr: 0.001000, loss: 2.067560, loss_shrink_maps: 1.167685, loss_threshold_maps: 0.675718, loss_binary_maps: 0.228832, avg_reader_cost: 0.86585 s, avg_batch_cost: 0.92084 s, avg_samples: 2.9, ips: 3.14929 samples/s, eta: 10:23:42
[2024/07/27 11:47:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:47:54] ppocr INFO: epoch: [148/1500], global_step: 444, lr: 0.001000, loss: 2.120530, loss_shrink_maps: 1.193967, loss_threshold_maps: 0.701160, loss_binary_maps: 0.232803, avg_reader_cost: 2.36084 s, avg_batch_cost: 2.61844 s, avg_samples: 12.5, ips: 4.77383 samples/s, eta: 10:23:00
[2024/07/27 11:47:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:48:04] ppocr INFO: epoch: [149/1500], global_step: 447, lr: 0.001000, loss: 2.120530, loss_shrink_maps: 1.193967, loss_threshold_maps: 0.707010, loss_binary_maps: 0.232803, avg_reader_cost: 2.21868 s, avg_batch_cost: 2.56995 s, avg_samples: 12.5, ips: 4.86390 samples/s, eta: 10:22:15
[2024/07/27 11:48:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:48:14] ppocr INFO: epoch: [150/1500], global_step: 450, lr: 0.001000, loss: 2.030647, loss_shrink_maps: 1.136124, loss_threshold_maps: 0.694943, loss_binary_maps: 0.220390, avg_reader_cost: 2.33601 s, avg_batch_cost: 2.57956 s, avg_samples: 12.5, ips: 4.84578 samples/s, eta: 10:21:31
[2024/07/27 11:48:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:48:23] ppocr INFO: epoch: [151/1500], global_step: 453, lr: 0.001000, loss: 2.042392, loss_shrink_maps: 1.160906, loss_threshold_maps: 0.699070, loss_binary_maps: 0.226589, avg_reader_cost: 2.33637 s, avg_batch_cost: 2.59203 s, avg_samples: 12.5, ips: 4.82247 samples/s, eta: 10:20:48
[2024/07/27 11:48:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:48:33] ppocr INFO: epoch: [152/1500], global_step: 456, lr: 0.001000, loss: 2.030647, loss_shrink_maps: 1.135024, loss_threshold_maps: 0.698437, loss_binary_maps: 0.219890, avg_reader_cost: 2.32402 s, avg_batch_cost: 2.55449 s, avg_samples: 12.5, ips: 4.89334 samples/s, eta: 10:20:02
[2024/07/27 11:48:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:48:42] ppocr INFO: epoch: [153/1500], global_step: 459, lr: 0.001000, loss: 2.058670, loss_shrink_maps: 1.138599, loss_threshold_maps: 0.703284, loss_binary_maps: 0.221568, avg_reader_cost: 2.16863 s, avg_batch_cost: 2.40950 s, avg_samples: 12.5, ips: 5.18779 samples/s, eta: 10:19:04
[2024/07/27 11:48:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:48:51] ppocr INFO: epoch: [154/1500], global_step: 460, lr: 0.001000, loss: 2.019472, loss_shrink_maps: 1.108149, loss_threshold_maps: 0.699070, loss_binary_maps: 0.216027, avg_reader_cost: 0.69460 s, avg_batch_cost: 0.78609 s, avg_samples: 4.8, ips: 6.10617 samples/s, eta: 10:18:43
[2024/07/27 11:48:52] ppocr INFO: epoch: [154/1500], global_step: 462, lr: 0.001000, loss: 2.009475, loss_shrink_maps: 1.108149, loss_threshold_maps: 0.699033, loss_binary_maps: 0.215924, avg_reader_cost: 1.66496 s, avg_batch_cost: 1.81167 s, avg_samples: 7.7, ips: 4.25022 samples/s, eta: 10:18:22
[2024/07/27 11:48:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:49:02] ppocr INFO: epoch: [155/1500], global_step: 465, lr: 0.001000, loss: 2.009475, loss_shrink_maps: 1.108149, loss_threshold_maps: 0.691731, loss_binary_maps: 0.215924, avg_reader_cost: 2.15230 s, avg_batch_cost: 2.50630 s, avg_samples: 12.5, ips: 4.98744 samples/s, eta: 10:17:33
[2024/07/27 11:49:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:49:12] ppocr INFO: epoch: [156/1500], global_step: 468, lr: 0.001000, loss: 2.013740, loss_shrink_maps: 1.112015, loss_threshold_maps: 0.691519, loss_binary_maps: 0.216772, avg_reader_cost: 2.23555 s, avg_batch_cost: 2.59581 s, avg_samples: 12.5, ips: 4.81546 samples/s, eta: 10:16:52
[2024/07/27 11:49:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:49:21] ppocr INFO: epoch: [157/1500], global_step: 470, lr: 0.001000, loss: 2.051852, loss_shrink_maps: 1.137897, loss_threshold_maps: 0.691731, loss_binary_maps: 0.222314, avg_reader_cost: 1.37417 s, avg_batch_cost: 1.62886 s, avg_samples: 9.6, ips: 5.89369 samples/s, eta: 10:16:15
[2024/07/27 11:49:21] ppocr INFO: epoch: [157/1500], global_step: 471, lr: 0.001000, loss: 2.043262, loss_shrink_maps: 1.121563, loss_threshold_maps: 0.691731, loss_binary_maps: 0.220783, avg_reader_cost: 0.86057 s, avg_batch_cost: 0.91603 s, avg_samples: 2.9, ips: 3.16582 samples/s, eta: 10:16:06
[2024/07/27 11:49:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:49:31] ppocr INFO: epoch: [158/1500], global_step: 474, lr: 0.001000, loss: 2.043262, loss_shrink_maps: 1.121563, loss_threshold_maps: 0.695591, loss_binary_maps: 0.220783, avg_reader_cost: 2.35805 s, avg_batch_cost: 2.62641 s, avg_samples: 12.5, ips: 4.75936 samples/s, eta: 10:15:28
[2024/07/27 11:49:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:49:41] ppocr INFO: epoch: [159/1500], global_step: 477, lr: 0.001000, loss: 2.005841, loss_shrink_maps: 1.098203, loss_threshold_maps: 0.691731, loss_binary_maps: 0.215328, avg_reader_cost: 2.27285 s, avg_batch_cost: 2.53907 s, avg_samples: 12.5, ips: 4.92307 samples/s, eta: 10:14:42
[2024/07/27 11:49:41] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:49:51] ppocr INFO: epoch: [160/1500], global_step: 480, lr: 0.001000, loss: 2.005841, loss_shrink_maps: 1.090640, loss_threshold_maps: 0.693919, loss_binary_maps: 0.212677, avg_reader_cost: 2.35091 s, avg_batch_cost: 2.59552 s, avg_samples: 12.5, ips: 4.81600 samples/s, eta: 10:14:02

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:53,  9.29it/s]
eval model::   1%|          | 4/500 [00:00<00:26, 18.86it/s]
eval model::   1%|          | 6/500 [00:00<00:29, 16.57it/s]
eval model::   2%|▏         | 9/500 [00:00<00:25, 19.48it/s]
eval model::   2%|▏         | 11/500 [00:00<00:26, 18.17it/s]
eval model::   3%|▎         | 13/500 [00:00<00:26, 18.12it/s]
eval model::   3%|▎         | 16/500 [00:00<00:24, 20.06it/s]
eval model::   4%|▍         | 19/500 [00:01<00:25, 19.21it/s]
eval model::   4%|▍         | 21/500 [00:01<00:25, 19.12it/s]
eval model::   5%|▍         | 24/500 [00:01<00:23, 20.62it/s]
eval model::   5%|▌         | 27/500 [00:01<00:23, 19.96it/s]
eval model::   6%|▌         | 30/500 [00:01<00:23, 20.02it/s]
eval model::   7%|▋         | 33/500 [00:01<00:23, 20.19it/s]
eval model::   7%|▋         | 36/500 [00:01<00:24, 19.21it/s]
eval model::   8%|▊         | 38/500 [00:01<00:24, 18.95it/s]
eval model::   8%|▊         | 40/500 [00:02<00:26, 17.06it/s]
eval model::   8%|▊         | 42/500 [00:02<00:26, 17.03it/s]
eval model::   9%|▉         | 45/500 [00:02<00:23, 19.51it/s]
eval model::   9%|▉         | 47/500 [00:02<00:23, 18.91it/s]
eval model::  10%|█         | 50/500 [00:02<00:23, 19.11it/s]
eval model::  10%|█         | 52/500 [00:02<00:23, 19.22it/s]
eval model::  11%|█         | 55/500 [00:02<00:22, 19.37it/s]
eval model::  11%|█▏        | 57/500 [00:03<00:24, 18.30it/s]
eval model::  12%|█▏        | 60/500 [00:03<00:22, 19.66it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:29, 14.90it/s]
eval model::  13%|█▎        | 64/500 [00:03<00:29, 14.68it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:27, 15.68it/s]
eval model::  14%|█▎        | 68/500 [00:03<00:26, 16.52it/s]
eval model::  14%|█▍        | 71/500 [00:03<00:23, 18.06it/s]
eval model::  15%|█▍        | 74/500 [00:04<00:21, 20.00it/s]
eval model::  15%|█▌        | 77/500 [00:04<00:23, 17.64it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:23, 17.96it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:23, 17.78it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:23, 17.85it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:22, 18.42it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:24, 16.99it/s]
eval model::  18%|█▊        | 91/500 [00:05<00:25, 16.36it/s]
eval model::  19%|█▊        | 93/500 [00:05<00:24, 16.74it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:21, 18.79it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:19, 21.07it/s]
eval model::  20%|██        | 102/500 [00:05<00:20, 19.47it/s]
eval model::  21%|██        | 105/500 [00:05<00:18, 21.21it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:19, 20.57it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:19, 19.66it/s]
eval model::  23%|██▎       | 114/500 [00:06<00:19, 19.40it/s]
eval model::  23%|██▎       | 117/500 [00:06<00:19, 19.45it/s]
eval model::  24%|██▍       | 119/500 [00:06<00:19, 19.41it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:20, 18.34it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:19, 19.60it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:19, 19.58it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:17, 21.23it/s]
eval model::  26%|██▋       | 132/500 [00:07<00:18, 19.43it/s]
eval model::  27%|██▋       | 135/500 [00:07<00:17, 21.20it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:15, 23.14it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:18, 19.63it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:17, 20.54it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:19, 18.42it/s]
eval model::  30%|███       | 150/500 [00:07<00:18, 19.38it/s]
eval model::  31%|███       | 153/500 [00:08<00:19, 18.21it/s]
eval model::  31%|███       | 156/500 [00:08<00:17, 20.09it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:18, 18.80it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:20, 16.59it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:19, 17.21it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:17, 19.45it/s]
eval model::  34%|███▍      | 169/500 [00:09<00:17, 19.10it/s]
eval model::  34%|███▍      | 171/500 [00:09<00:18, 18.05it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:19, 16.44it/s]
eval model::  35%|███▌      | 177/500 [00:09<00:17, 18.10it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:17, 18.42it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:19, 16.33it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:16, 18.68it/s]
eval model::  37%|███▋      | 187/500 [00:10<00:17, 17.82it/s]
eval model::  38%|███▊      | 190/500 [00:10<00:16, 18.93it/s]
eval model::  39%|███▊      | 193/500 [00:10<00:14, 20.88it/s]
eval model::  39%|███▉      | 196/500 [00:10<00:13, 21.73it/s]
eval model::  40%|███▉      | 199/500 [00:10<00:12, 23.53it/s]
eval model::  40%|████      | 202/500 [00:10<00:12, 24.73it/s]
eval model::  41%|████      | 205/500 [00:11<00:21, 13.59it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:19, 15.24it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:19, 15.06it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.67it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:20, 14.00it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:21, 13.21it/s]
eval model::  44%|████▍     | 219/500 [00:12<00:19, 14.33it/s]
eval model::  44%|████▍     | 221/500 [00:12<00:19, 14.14it/s]
eval model::  45%|████▍     | 224/500 [00:12<00:16, 16.75it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:16, 16.78it/s]
eval model::  46%|████▌     | 229/500 [00:12<00:13, 19.40it/s]
eval model::  46%|████▋     | 232/500 [00:12<00:12, 21.28it/s]
eval model::  47%|████▋     | 235/500 [00:12<00:12, 20.73it/s]
eval model::  48%|████▊     | 238/500 [00:12<00:11, 22.62it/s]
eval model::  48%|████▊     | 241/500 [00:13<00:11, 22.62it/s]
eval model::  49%|████▉     | 244/500 [00:13<00:12, 20.15it/s]
eval model::  49%|████▉     | 247/500 [00:13<00:12, 21.05it/s]
eval model::  50%|█████     | 250/500 [00:13<00:12, 20.00it/s]
eval model::  51%|█████     | 253/500 [00:13<00:11, 22.21it/s]
eval model::  51%|█████     | 256/500 [00:13<00:10, 22.68it/s]
eval model::  52%|█████▏    | 259/500 [00:13<00:10, 22.31it/s]
eval model::  52%|█████▏    | 262/500 [00:14<00:11, 20.99it/s]
eval model::  53%|█████▎    | 265/500 [00:14<00:12, 18.09it/s]
eval model::  53%|█████▎    | 267/500 [00:14<00:13, 17.61it/s]
eval model::  54%|█████▍    | 270/500 [00:14<00:11, 19.48it/s]
eval model::  55%|█████▍    | 273/500 [00:14<00:10, 21.00it/s]
eval model::  55%|█████▌    | 276/500 [00:14<00:11, 19.56it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:10, 20.48it/s]
eval model::  56%|█████▋    | 282/500 [00:15<00:09, 22.22it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:14, 14.62it/s]
eval model::  58%|█████▊    | 288/500 [00:15<00:12, 17.22it/s]
eval model::  58%|█████▊    | 292/500 [00:15<00:10, 20.28it/s]
eval model::  59%|█████▉    | 295/500 [00:15<00:12, 16.68it/s]
eval model::  60%|█████▉    | 298/500 [00:16<00:10, 18.82it/s]
eval model::  60%|██████    | 301/500 [00:16<00:11, 17.78it/s]
eval model::  61%|██████    | 304/500 [00:16<00:10, 19.46it/s]
eval model::  61%|██████▏   | 307/500 [00:16<00:08, 21.46it/s]
eval model::  62%|██████▏   | 310/500 [00:16<00:08, 22.84it/s]
eval model::  63%|██████▎   | 313/500 [00:16<00:08, 22.55it/s]
eval model::  63%|██████▎   | 316/500 [00:16<00:08, 21.58it/s]
eval model::  64%|██████▍   | 319/500 [00:16<00:08, 21.92it/s]
eval model::  64%|██████▍   | 322/500 [00:17<00:08, 21.68it/s]
eval model::  65%|██████▌   | 325/500 [00:17<00:07, 23.29it/s]
eval model::  66%|██████▌   | 328/500 [00:17<00:08, 21.03it/s]
eval model::  66%|██████▌   | 331/500 [00:17<00:08, 19.18it/s]
eval model::  67%|██████▋   | 334/500 [00:17<00:08, 19.28it/s]
eval model::  67%|██████▋   | 336/500 [00:17<00:08, 19.11it/s]
eval model::  68%|██████▊   | 338/500 [00:17<00:08, 19.30it/s]
eval model::  68%|██████▊   | 340/500 [00:18<00:10, 14.58it/s]
eval model::  69%|██████▊   | 343/500 [00:18<00:09, 16.18it/s]
eval model::  69%|██████▉   | 346/500 [00:18<00:08, 18.46it/s]
eval model::  70%|███████   | 350/500 [00:18<00:06, 21.98it/s]
eval model::  71%|███████   | 353/500 [00:18<00:06, 22.44it/s]
eval model::  71%|███████   | 356/500 [00:18<00:06, 20.99it/s]
eval model::  72%|███████▏  | 359/500 [00:18<00:06, 22.04it/s]
eval model::  72%|███████▏  | 362/500 [00:19<00:06, 21.13it/s]
eval model::  73%|███████▎  | 365/500 [00:19<00:06, 20.53it/s]
eval model::  74%|███████▎  | 368/500 [00:19<00:06, 19.90it/s]
eval model::  74%|███████▍  | 371/500 [00:19<00:06, 20.16it/s]
eval model::  75%|███████▍  | 374/500 [00:19<00:06, 20.93it/s]
eval model::  75%|███████▌  | 377/500 [00:19<00:05, 20.53it/s]
eval model::  76%|███████▌  | 380/500 [00:20<00:06, 18.49it/s]
eval model::  77%|███████▋  | 383/500 [00:20<00:05, 20.08it/s]
eval model::  77%|███████▋  | 386/500 [00:20<00:09, 12.46it/s]
eval model::  78%|███████▊  | 389/500 [00:20<00:07, 14.80it/s]
eval model::  78%|███████▊  | 392/500 [00:20<00:06, 16.48it/s]
eval model::  79%|███████▉  | 395/500 [00:21<00:05, 18.41it/s]
eval model::  80%|███████▉  | 398/500 [00:21<00:04, 20.42it/s]
eval model::  80%|████████  | 401/500 [00:21<00:04, 19.89it/s]
eval model::  81%|████████  | 404/500 [00:21<00:04, 20.13it/s]
eval model::  81%|████████▏ | 407/500 [00:21<00:04, 20.94it/s]
eval model::  82%|████████▏ | 410/500 [00:21<00:04, 21.73it/s]
eval model::  83%|████████▎ | 413/500 [00:21<00:04, 21.52it/s]
eval model::  83%|████████▎ | 416/500 [00:22<00:04, 19.27it/s]
eval model::  84%|████████▍ | 419/500 [00:22<00:04, 19.06it/s]
eval model::  84%|████████▍ | 421/500 [00:22<00:04, 16.09it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:04, 17.25it/s]
eval model::  85%|████████▌ | 426/500 [00:22<00:04, 17.43it/s]
eval model::  86%|████████▌ | 429/500 [00:22<00:03, 18.67it/s]
eval model::  86%|████████▋ | 432/500 [00:22<00:03, 20.08it/s]
eval model::  87%|████████▋ | 435/500 [00:22<00:02, 21.73it/s]
eval model::  88%|████████▊ | 438/500 [00:23<00:02, 22.51it/s]
eval model::  88%|████████▊ | 441/500 [00:23<00:02, 19.73it/s]
eval model::  89%|████████▉ | 444/500 [00:23<00:02, 20.09it/s]
eval model::  89%|████████▉ | 447/500 [00:23<00:02, 21.57it/s]
eval model::  90%|█████████ | 450/500 [00:23<00:02, 19.61it/s]
eval model::  91%|█████████ | 453/500 [00:23<00:02, 21.78it/s]
eval model::  91%|█████████ | 456/500 [00:23<00:01, 23.45it/s]
eval model::  92%|█████████▏| 459/500 [00:24<00:01, 22.37it/s]
eval model::  92%|█████████▏| 462/500 [00:24<00:02, 18.66it/s]
eval model::  93%|█████████▎| 465/500 [00:24<00:02, 17.48it/s]
eval model::  94%|█████████▎| 468/500 [00:24<00:01, 18.71it/s]
eval model::  94%|█████████▍| 471/500 [00:24<00:01, 19.82it/s]
eval model::  95%|█████████▍| 474/500 [00:25<00:01, 17.87it/s]
eval model::  95%|█████████▌| 477/500 [00:25<00:01, 19.50it/s]
eval model::  96%|█████████▌| 480/500 [00:25<00:01, 19.03it/s]
eval model::  97%|█████████▋| 483/500 [00:25<00:00, 20.37it/s]
eval model::  97%|█████████▋| 486/500 [00:25<00:00, 20.63it/s]
eval model::  98%|█████████▊| 489/500 [00:25<00:00, 21.07it/s]
eval model::  98%|█████████▊| 492/500 [00:25<00:00, 21.18it/s]
eval model::  99%|█████████▉| 495/500 [00:25<00:00, 20.91it/s]
eval model:: 100%|█████████▉| 499/500 [00:26<00:00, 24.96it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 19.15it/s]
[2024/07/27 11:50:17] ppocr INFO: cur metric, precision: 0.6613520408163265, recall: 0.4992778045257583, hmean: 0.5689986282578874, fps: 43.625946665913894
[2024/07/27 11:50:17] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/27 11:50:17] ppocr INFO: best metric, hmean: 0.5689986282578874, precision: 0.6613520408163265, recall: 0.4992778045257583, fps: 43.625946665913894, best_epoch: 160
[2024/07/27 11:50:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:50:26] ppocr INFO: epoch: [161/1500], global_step: 483, lr: 0.001000, loss: 2.005841, loss_shrink_maps: 1.092295, loss_threshold_maps: 0.691731, loss_binary_maps: 0.213922, avg_reader_cost: 2.13497 s, avg_batch_cost: 2.37207 s, avg_samples: 12.5, ips: 5.26966 samples/s, eta: 10:13:03
[2024/07/27 11:50:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:50:35] ppocr INFO: epoch: [162/1500], global_step: 486, lr: 0.001000, loss: 1.999200, loss_shrink_maps: 1.081984, loss_threshold_maps: 0.682721, loss_binary_maps: 0.212677, avg_reader_cost: 2.35335 s, avg_batch_cost: 2.59265 s, avg_samples: 12.5, ips: 4.82133 samples/s, eta: 10:12:23
[2024/07/27 11:50:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:50:45] ppocr INFO: epoch: [163/1500], global_step: 489, lr: 0.001000, loss: 1.968724, loss_shrink_maps: 1.079454, loss_threshold_maps: 0.680592, loss_binary_maps: 0.211640, avg_reader_cost: 2.21793 s, avg_batch_cost: 2.56966 s, avg_samples: 12.5, ips: 4.86445 samples/s, eta: 10:11:41
[2024/07/27 11:50:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:50:53] ppocr INFO: epoch: [164/1500], global_step: 490, lr: 0.001000, loss: 1.989066, loss_shrink_maps: 1.081984, loss_threshold_maps: 0.685592, loss_binary_maps: 0.212677, avg_reader_cost: 0.68521 s, avg_batch_cost: 0.77793 s, avg_samples: 4.8, ips: 6.17022 samples/s, eta: 10:11:21
[2024/07/27 11:50:55] ppocr INFO: epoch: [164/1500], global_step: 492, lr: 0.001000, loss: 1.968724, loss_shrink_maps: 1.079454, loss_threshold_maps: 0.684200, loss_binary_maps: 0.211640, avg_reader_cost: 1.64773 s, avg_batch_cost: 1.79479 s, avg_samples: 7.7, ips: 4.29019 samples/s, eta: 10:10:59
[2024/07/27 11:50:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:51:05] ppocr INFO: epoch: [165/1500], global_step: 495, lr: 0.001000, loss: 1.957905, loss_shrink_maps: 1.069208, loss_threshold_maps: 0.680592, loss_binary_maps: 0.209621, avg_reader_cost: 2.36873 s, avg_batch_cost: 2.60409 s, avg_samples: 12.5, ips: 4.80015 samples/s, eta: 10:10:21
[2024/07/27 11:51:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:51:14] ppocr INFO: epoch: [166/1500], global_step: 498, lr: 0.001000, loss: 1.957905, loss_shrink_maps: 1.058032, loss_threshold_maps: 0.680592, loss_binary_maps: 0.208104, avg_reader_cost: 2.20529 s, avg_batch_cost: 2.55775 s, avg_samples: 12.5, ips: 4.88711 samples/s, eta: 10:09:38
[2024/07/27 11:51:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:51:24] ppocr INFO: epoch: [167/1500], global_step: 500, lr: 0.001000, loss: 1.984157, loss_shrink_maps: 1.078904, loss_threshold_maps: 0.684200, loss_binary_maps: 0.210895, avg_reader_cost: 1.44830 s, avg_batch_cost: 1.63078 s, avg_samples: 9.6, ips: 5.88676 samples/s, eta: 10:09:04
[2024/07/27 11:51:24] ppocr INFO: epoch: [167/1500], global_step: 501, lr: 0.001000, loss: 1.995076, loss_shrink_maps: 1.078904, loss_threshold_maps: 0.687688, loss_binary_maps: 0.210895, avg_reader_cost: 0.86184 s, avg_batch_cost: 0.91685 s, avg_samples: 2.9, ips: 3.16299 samples/s, eta: 10:08:55
[2024/07/27 11:51:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:51:34] ppocr INFO: epoch: [168/1500], global_step: 504, lr: 0.001000, loss: 1.984157, loss_shrink_maps: 1.069208, loss_threshold_maps: 0.687688, loss_binary_maps: 0.209621, avg_reader_cost: 2.33094 s, avg_batch_cost: 2.57111 s, avg_samples: 12.5, ips: 4.86172 samples/s, eta: 10:08:15
[2024/07/27 11:51:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:51:43] ppocr INFO: epoch: [169/1500], global_step: 507, lr: 0.001000, loss: 1.995076, loss_shrink_maps: 1.078904, loss_threshold_maps: 0.687688, loss_binary_maps: 0.210895, avg_reader_cost: 2.00215 s, avg_batch_cost: 2.27782 s, avg_samples: 12.5, ips: 5.48771 samples/s, eta: 10:07:11
[2024/07/27 11:51:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:51:52] ppocr INFO: epoch: [170/1500], global_step: 510, lr: 0.001000, loss: 1.995076, loss_shrink_maps: 1.067728, loss_threshold_maps: 0.692206, loss_binary_maps: 0.208753, avg_reader_cost: 2.19046 s, avg_batch_cost: 2.59566 s, avg_samples: 12.5, ips: 4.81572 samples/s, eta: 10:06:32
[2024/07/27 11:51:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:52:02] ppocr INFO: epoch: [171/1500], global_step: 513, lr: 0.001000, loss: 1.995076, loss_shrink_maps: 1.067728, loss_threshold_maps: 0.694174, loss_binary_maps: 0.208753, avg_reader_cost: 2.24456 s, avg_batch_cost: 2.49561 s, avg_samples: 12.5, ips: 5.00879 samples/s, eta: 10:05:46
[2024/07/27 11:52:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:52:12] ppocr INFO: epoch: [172/1500], global_step: 516, lr: 0.001000, loss: 1.958274, loss_shrink_maps: 1.053050, loss_threshold_maps: 0.692206, loss_binary_maps: 0.207149, avg_reader_cost: 2.34877 s, avg_batch_cost: 2.58664 s, avg_samples: 12.5, ips: 4.83253 samples/s, eta: 10:05:07
[2024/07/27 11:52:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:52:22] ppocr INFO: epoch: [173/1500], global_step: 519, lr: 0.001000, loss: 1.920439, loss_shrink_maps: 1.047769, loss_threshold_maps: 0.692206, loss_binary_maps: 0.206283, avg_reader_cost: 2.33910 s, avg_batch_cost: 2.57802 s, avg_samples: 12.5, ips: 4.84868 samples/s, eta: 10:04:28
[2024/07/27 11:52:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:52:30] ppocr INFO: epoch: [174/1500], global_step: 520, lr: 0.001000, loss: 1.920439, loss_shrink_maps: 1.047769, loss_threshold_maps: 0.688171, loss_binary_maps: 0.206283, avg_reader_cost: 0.56882 s, avg_batch_cost: 0.81195 s, avg_samples: 4.8, ips: 5.91172 samples/s, eta: 10:04:11
[2024/07/27 11:52:32] ppocr INFO: epoch: [174/1500], global_step: 522, lr: 0.001000, loss: 1.902882, loss_shrink_maps: 1.041378, loss_threshold_maps: 0.680896, loss_binary_maps: 0.204326, avg_reader_cost: 1.71730 s, avg_batch_cost: 1.86569 s, avg_samples: 7.7, ips: 4.12715 samples/s, eta: 10:03:57
[2024/07/27 11:52:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:52:41] ppocr INFO: epoch: [175/1500], global_step: 525, lr: 0.001000, loss: 1.920439, loss_shrink_maps: 1.041378, loss_threshold_maps: 0.685409, loss_binary_maps: 0.204326, avg_reader_cost: 2.18589 s, avg_batch_cost: 2.60624 s, avg_samples: 12.5, ips: 4.79619 samples/s, eta: 10:03:20
[2024/07/27 11:52:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:52:51] ppocr INFO: epoch: [176/1500], global_step: 528, lr: 0.001000, loss: 1.935327, loss_shrink_maps: 1.049419, loss_threshold_maps: 0.680896, loss_binary_maps: 0.206283, avg_reader_cost: 2.37013 s, avg_batch_cost: 2.60920 s, avg_samples: 12.5, ips: 4.79073 samples/s, eta: 10:02:43
[2024/07/27 11:52:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:53:01] ppocr INFO: epoch: [177/1500], global_step: 530, lr: 0.001000, loss: 1.920439, loss_shrink_maps: 1.041378, loss_threshold_maps: 0.674052, loss_binary_maps: 0.204326, avg_reader_cost: 1.48988 s, avg_batch_cost: 1.66715 s, avg_samples: 9.6, ips: 5.75831 samples/s, eta: 10:02:13
[2024/07/27 11:53:01] ppocr INFO: epoch: [177/1500], global_step: 531, lr: 0.001000, loss: 1.935327, loss_shrink_maps: 1.049419, loss_threshold_maps: 0.675748, loss_binary_maps: 0.206283, avg_reader_cost: 0.87977 s, avg_batch_cost: 0.93548 s, avg_samples: 2.9, ips: 3.10002 samples/s, eta: 10:02:06
[2024/07/27 11:53:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:53:11] ppocr INFO: epoch: [178/1500], global_step: 534, lr: 0.001000, loss: 1.964069, loss_shrink_maps: 1.100806, loss_threshold_maps: 0.674052, loss_binary_maps: 0.216608, avg_reader_cost: 2.29526 s, avg_batch_cost: 2.61057 s, avg_samples: 12.5, ips: 4.78822 samples/s, eta: 10:01:30
[2024/07/27 11:53:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:53:21] ppocr INFO: epoch: [179/1500], global_step: 537, lr: 0.001000, loss: 2.005196, loss_shrink_maps: 1.115405, loss_threshold_maps: 0.671709, loss_binary_maps: 0.219785, avg_reader_cost: 2.25048 s, avg_batch_cost: 2.66621 s, avg_samples: 12.5, ips: 4.68830 samples/s, eta: 10:00:58
[2024/07/27 11:53:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:53:31] ppocr INFO: epoch: [180/1500], global_step: 540, lr: 0.001000, loss: 1.986127, loss_shrink_maps: 1.110781, loss_threshold_maps: 0.663206, loss_binary_maps: 0.218908, avg_reader_cost: 2.16324 s, avg_batch_cost: 2.53435 s, avg_samples: 12.5, ips: 4.93223 samples/s, eta: 10:00:16

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:54,  9.10it/s]
eval model::   1%|          | 4/500 [00:00<00:26, 18.55it/s]
eval model::   1%|          | 6/500 [00:00<00:27, 17.64it/s]
eval model::   2%|▏         | 8/500 [00:00<00:27, 17.97it/s]
eval model::   2%|▏         | 11/500 [00:00<00:27, 17.48it/s]
eval model::   3%|▎         | 13/500 [00:00<00:26, 18.10it/s]
eval model::   3%|▎         | 16/500 [00:00<00:24, 20.01it/s]
eval model::   4%|▍         | 19/500 [00:01<00:24, 19.38it/s]
eval model::   4%|▍         | 22/500 [00:01<00:22, 20.90it/s]
eval model::   5%|▌         | 25/500 [00:01<00:22, 20.67it/s]
eval model::   6%|▌         | 28/500 [00:01<00:21, 21.57it/s]
eval model::   6%|▌         | 31/500 [00:01<00:23, 19.69it/s]
eval model::   7%|▋         | 34/500 [00:01<00:24, 18.84it/s]
eval model::   7%|▋         | 37/500 [00:01<00:22, 20.13it/s]
eval model::   8%|▊         | 40/500 [00:02<00:24, 18.52it/s]
eval model::   8%|▊         | 42/500 [00:02<00:25, 18.14it/s]
eval model::   9%|▉         | 45/500 [00:02<00:22, 20.09it/s]
eval model::  10%|▉         | 48/500 [00:02<00:22, 19.80it/s]
eval model::  10%|█         | 51/500 [00:02<00:22, 19.85it/s]
eval model::  11%|█         | 54/500 [00:02<00:21, 20.73it/s]
eval model::  11%|█▏        | 57/500 [00:02<00:20, 21.70it/s]
eval model::  12%|█▏        | 60/500 [00:03<00:22, 19.93it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:27, 15.83it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:24, 18.01it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:21, 19.89it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:20, 20.97it/s]
eval model::  15%|█▌        | 75/500 [00:03<00:20, 20.90it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:21, 20.06it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:19, 21.06it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:22, 18.82it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:22, 18.13it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:22, 18.15it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:21, 19.06it/s]
eval model::  19%|█▉        | 96/500 [00:04<00:19, 20.46it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:19, 21.01it/s]
eval model::  20%|██        | 102/500 [00:05<00:19, 20.68it/s]
eval model::  21%|██        | 105/500 [00:05<00:19, 20.71it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:20, 19.34it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:21, 18.43it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:19, 20.12it/s]
eval model::  23%|██▎       | 117/500 [00:05<00:18, 20.53it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:18, 21.02it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:16, 22.87it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:17, 21.38it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:17, 20.67it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:19, 18.82it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:18, 19.81it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:19, 18.82it/s]
eval model::  28%|██▊       | 140/500 [00:07<00:19, 18.10it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:19, 18.24it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:19, 18.39it/s]
eval model::  29%|██▉       | 146/500 [00:07<00:19, 18.51it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:20, 16.82it/s]
eval model::  30%|███       | 151/500 [00:07<00:21, 16.54it/s]
eval model::  31%|███       | 154/500 [00:07<00:17, 19.30it/s]
eval model::  31%|███▏      | 157/500 [00:08<00:16, 21.08it/s]
eval model::  32%|███▏      | 160/500 [00:08<00:22, 15.19it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:22, 15.34it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:20, 16.07it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:19, 17.35it/s]
eval model::  34%|███▍      | 170/500 [00:08<00:17, 19.02it/s]
eval model::  35%|███▍      | 173/500 [00:09<00:16, 20.05it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:17, 18.29it/s]
eval model::  36%|███▌      | 178/500 [00:09<00:17, 18.52it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:18, 17.10it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:16, 18.87it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:15, 19.68it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:16, 19.36it/s]
eval model::  38%|███▊      | 192/500 [00:09<00:14, 20.64it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:14, 21.03it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:14, 20.87it/s]
eval model::  40%|████      | 201/500 [00:10<00:15, 19.76it/s]
eval model::  41%|████      | 204/500 [00:10<00:13, 21.97it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:18, 16.27it/s]
eval model::  42%|████▏     | 209/500 [00:10<00:17, 16.29it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:18, 16.05it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:17, 16.59it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:18, 15.57it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:19, 14.79it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:16, 17.21it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:18, 15.19it/s]
eval model::  45%|████▌     | 226/500 [00:11<00:15, 18.11it/s]
eval model::  46%|████▌     | 228/500 [00:12<00:14, 18.35it/s]
eval model::  46%|████▌     | 231/500 [00:12<00:12, 20.72it/s]
eval model::  47%|████▋     | 234/500 [00:12<00:13, 20.01it/s]
eval model::  47%|████▋     | 237/500 [00:12<00:11, 21.92it/s]
eval model::  48%|████▊     | 240/500 [00:12<00:11, 23.27it/s]
eval model::  49%|████▊     | 243/500 [00:12<00:12, 21.23it/s]
eval model::  49%|████▉     | 246/500 [00:12<00:11, 22.87it/s]
eval model::  50%|████▉     | 249/500 [00:13<00:12, 19.70it/s]
eval model::  50%|█████     | 252/500 [00:13<00:11, 21.35it/s]
eval model::  51%|█████     | 255/500 [00:13<00:11, 21.13it/s]
eval model::  52%|█████▏    | 258/500 [00:13<00:11, 20.21it/s]
eval model::  52%|█████▏    | 261/500 [00:13<00:11, 20.21it/s]
eval model::  53%|█████▎    | 264/500 [00:13<00:12, 19.35it/s]
eval model::  53%|█████▎    | 267/500 [00:13<00:11, 19.84it/s]
eval model::  54%|█████▍    | 270/500 [00:14<00:11, 19.33it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:11, 19.31it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:12, 18.45it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:10, 20.19it/s]
eval model::  56%|█████▌    | 281/500 [00:14<00:10, 21.05it/s]
eval model::  57%|█████▋    | 284/500 [00:14<00:10, 20.78it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:17, 12.42it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:12, 16.16it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:12, 17.10it/s]
eval model::  59%|█████▉    | 297/500 [00:15<00:12, 16.67it/s]
eval model::  60%|██████    | 300/500 [00:15<00:12, 16.13it/s]
eval model::  61%|██████    | 303/500 [00:16<00:10, 18.02it/s]
eval model::  61%|██████    | 306/500 [00:16<00:10, 18.43it/s]
eval model::  62%|██████▏   | 309/500 [00:16<00:09, 19.23it/s]
eval model::  62%|██████▏   | 312/500 [00:16<00:09, 19.46it/s]
eval model::  63%|██████▎   | 315/500 [00:16<00:09, 20.04it/s]
eval model::  64%|██████▎   | 318/500 [00:16<00:08, 21.04it/s]
eval model::  64%|██████▍   | 321/500 [00:16<00:08, 22.34it/s]
eval model::  65%|██████▍   | 324/500 [00:16<00:08, 21.99it/s]
eval model::  65%|██████▌   | 327/500 [00:17<00:07, 23.50it/s]
eval model::  66%|██████▌   | 330/500 [00:17<00:08, 20.58it/s]
eval model::  67%|██████▋   | 333/500 [00:17<00:08, 19.98it/s]
eval model::  67%|██████▋   | 336/500 [00:17<00:08, 20.14it/s]
eval model::  68%|██████▊   | 339/500 [00:17<00:08, 18.54it/s]
eval model::  68%|██████▊   | 341/500 [00:17<00:10, 15.66it/s]
eval model::  69%|██████▉   | 344/500 [00:18<00:08, 17.99it/s]
eval model::  69%|██████▉   | 347/500 [00:18<00:08, 19.02it/s]
eval model::  70%|███████   | 350/500 [00:18<00:07, 20.94it/s]
eval model::  71%|███████   | 353/500 [00:18<00:06, 22.06it/s]
eval model::  71%|███████   | 356/500 [00:18<00:06, 20.92it/s]
eval model::  72%|███████▏  | 359/500 [00:18<00:06, 21.85it/s]
eval model::  72%|███████▏  | 362/500 [00:18<00:06, 21.34it/s]
eval model::  73%|███████▎  | 365/500 [00:19<00:07, 18.92it/s]
eval model::  73%|███████▎  | 367/500 [00:19<00:07, 17.63it/s]
eval model::  74%|███████▍  | 370/500 [00:19<00:06, 20.08it/s]
eval model::  75%|███████▍  | 373/500 [00:19<00:06, 19.24it/s]
eval model::  75%|███████▌  | 376/500 [00:19<00:06, 20.22it/s]
eval model::  76%|███████▌  | 379/500 [00:19<00:05, 21.60it/s]
eval model::  76%|███████▋  | 382/500 [00:19<00:05, 20.97it/s]
eval model::  77%|███████▋  | 385/500 [00:20<00:05, 21.48it/s]
eval model::  78%|███████▊  | 388/500 [00:20<00:08, 13.98it/s]
eval model::  78%|███████▊  | 391/500 [00:20<00:06, 15.93it/s]
eval model::  79%|███████▉  | 394/500 [00:20<00:06, 17.53it/s]
eval model::  79%|███████▉  | 397/500 [00:20<00:05, 19.07it/s]
eval model::  80%|████████  | 400/500 [00:20<00:04, 20.01it/s]
eval model::  81%|████████  | 404/500 [00:21<00:04, 22.64it/s]
eval model::  81%|████████▏ | 407/500 [00:21<00:04, 22.21it/s]
eval model::  82%|████████▏ | 410/500 [00:21<00:04, 21.93it/s]
eval model::  83%|████████▎ | 413/500 [00:21<00:04, 20.81it/s]
eval model::  83%|████████▎ | 416/500 [00:21<00:03, 21.29it/s]
eval model::  84%|████████▍ | 419/500 [00:21<00:03, 21.73it/s]
eval model::  84%|████████▍ | 422/500 [00:21<00:04, 18.87it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:04, 18.66it/s]
eval model::  85%|████████▌ | 427/500 [00:22<00:03, 19.54it/s]
eval model::  86%|████████▌ | 430/500 [00:22<00:03, 20.51it/s]
eval model::  87%|████████▋ | 433/500 [00:22<00:03, 19.10it/s]
eval model::  87%|████████▋ | 435/500 [00:22<00:03, 19.12it/s]
eval model::  88%|████████▊ | 438/500 [00:22<00:02, 21.61it/s]
eval model::  88%|████████▊ | 441/500 [00:22<00:02, 21.42it/s]
eval model::  89%|████████▉ | 444/500 [00:23<00:02, 22.57it/s]
eval model::  89%|████████▉ | 447/500 [00:23<00:02, 21.41it/s]
eval model::  90%|█████████ | 450/500 [00:23<00:02, 20.37it/s]
eval model::  91%|█████████ | 454/500 [00:23<00:02, 22.19it/s]
eval model::  91%|█████████▏| 457/500 [00:23<00:01, 22.69it/s]
eval model::  92%|█████████▏| 460/500 [00:23<00:01, 21.45it/s]
eval model::  93%|█████████▎| 463/500 [00:23<00:01, 18.83it/s]
eval model::  93%|█████████▎| 465/500 [00:24<00:01, 17.77it/s]
eval model::  94%|█████████▎| 468/500 [00:24<00:01, 19.29it/s]
eval model::  94%|█████████▍| 471/500 [00:24<00:01, 19.82it/s]
eval model::  95%|█████████▍| 474/500 [00:24<00:01, 18.25it/s]
eval model::  96%|█████████▌| 478/500 [00:24<00:01, 21.13it/s]
eval model::  96%|█████████▌| 481/500 [00:24<00:00, 21.63it/s]
eval model::  97%|█████████▋| 484/500 [00:24<00:00, 21.95it/s]
eval model::  97%|█████████▋| 487/500 [00:25<00:00, 19.40it/s]
eval model::  98%|█████████▊| 490/500 [00:25<00:00, 20.58it/s]
eval model::  99%|█████████▊| 493/500 [00:25<00:00, 20.38it/s]
eval model::  99%|█████████▉| 496/500 [00:25<00:00, 21.23it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 23.65it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.44it/s]
[2024/07/27 11:53:56] ppocr INFO: cur metric, precision: 0.7022251308900523, recall: 0.516610495907559, hmean: 0.5952843273231623, fps: 44.151565781685974
[2024/07/27 11:53:57] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/27 11:53:57] ppocr INFO: best metric, hmean: 0.5952843273231623, precision: 0.7022251308900523, recall: 0.516610495907559, fps: 44.151565781685974, best_epoch: 180
[2024/07/27 11:53:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:54:06] ppocr INFO: epoch: [181/1500], global_step: 543, lr: 0.001000, loss: 1.948149, loss_shrink_maps: 1.086574, loss_threshold_maps: 0.661343, loss_binary_maps: 0.213366, avg_reader_cost: 2.33282 s, avg_batch_cost: 2.59843 s, avg_samples: 12.5, ips: 4.81060 samples/s, eta: 9:59:40
[2024/07/27 11:54:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:54:16] ppocr INFO: epoch: [182/1500], global_step: 546, lr: 0.001000, loss: 1.948149, loss_shrink_maps: 1.086574, loss_threshold_maps: 0.655733, loss_binary_maps: 0.213366, avg_reader_cost: 2.27413 s, avg_batch_cost: 2.51779 s, avg_samples: 12.5, ips: 4.96467 samples/s, eta: 9:58:57
[2024/07/27 11:54:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:54:25] ppocr INFO: epoch: [183/1500], global_step: 549, lr: 0.001000, loss: 1.983855, loss_shrink_maps: 1.105288, loss_threshold_maps: 0.663206, loss_binary_maps: 0.217702, avg_reader_cost: 2.28336 s, avg_batch_cost: 2.53067 s, avg_samples: 12.5, ips: 4.93940 samples/s, eta: 9:58:16
[2024/07/27 11:54:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:54:34] ppocr INFO: epoch: [184/1500], global_step: 550, lr: 0.001000, loss: 2.010080, loss_shrink_maps: 1.115799, loss_threshold_maps: 0.666506, loss_binary_maps: 0.219873, avg_reader_cost: 0.59741 s, avg_batch_cost: 0.79668 s, avg_samples: 4.8, ips: 6.02499 samples/s, eta: 9:57:59
[2024/07/27 11:54:35] ppocr INFO: epoch: [184/1500], global_step: 552, lr: 0.001000, loss: 1.965744, loss_shrink_maps: 1.071850, loss_threshold_maps: 0.666506, loss_binary_maps: 0.210271, avg_reader_cost: 1.68595 s, avg_batch_cost: 1.83344 s, avg_samples: 7.7, ips: 4.19975 samples/s, eta: 9:57:42
[2024/07/27 11:54:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:54:45] ppocr INFO: epoch: [185/1500], global_step: 555, lr: 0.001000, loss: 1.935037, loss_shrink_maps: 1.065441, loss_threshold_maps: 0.663206, loss_binary_maps: 0.209320, avg_reader_cost: 2.22372 s, avg_batch_cost: 2.58179 s, avg_samples: 12.5, ips: 4.84161 samples/s, eta: 9:57:04
[2024/07/27 11:54:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:54:55] ppocr INFO: epoch: [186/1500], global_step: 558, lr: 0.001000, loss: 1.891047, loss_shrink_maps: 1.035544, loss_threshold_maps: 0.655750, loss_binary_maps: 0.204160, avg_reader_cost: 2.29362 s, avg_batch_cost: 2.62605 s, avg_samples: 12.5, ips: 4.76000 samples/s, eta: 9:56:30
[2024/07/27 11:54:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:55:04] ppocr INFO: epoch: [187/1500], global_step: 560, lr: 0.001000, loss: 1.889768, loss_shrink_maps: 1.048107, loss_threshold_maps: 0.649360, loss_binary_maps: 0.206208, avg_reader_cost: 1.48658 s, avg_batch_cost: 1.68291 s, avg_samples: 9.6, ips: 5.70441 samples/s, eta: 9:56:03
[2024/07/27 11:55:05] ppocr INFO: epoch: [187/1500], global_step: 561, lr: 0.001000, loss: 1.889768, loss_shrink_maps: 1.048107, loss_threshold_maps: 0.649360, loss_binary_maps: 0.206208, avg_reader_cost: 0.88760 s, avg_batch_cost: 0.94267 s, avg_samples: 2.9, ips: 3.07637 samples/s, eta: 9:55:56
[2024/07/27 11:55:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:55:15] ppocr INFO: epoch: [188/1500], global_step: 564, lr: 0.001000, loss: 1.905583, loss_shrink_maps: 1.047480, loss_threshold_maps: 0.658905, loss_binary_maps: 0.206208, avg_reader_cost: 2.35677 s, avg_batch_cost: 2.59796 s, avg_samples: 12.5, ips: 4.81147 samples/s, eta: 9:55:20
[2024/07/27 11:55:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:55:24] ppocr INFO: epoch: [189/1500], global_step: 567, lr: 0.001000, loss: 1.878333, loss_shrink_maps: 1.026002, loss_threshold_maps: 0.657198, loss_binary_maps: 0.201429, avg_reader_cost: 2.33487 s, avg_batch_cost: 2.56767 s, avg_samples: 12.5, ips: 4.86822 samples/s, eta: 9:54:42
[2024/07/27 11:55:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:55:34] ppocr INFO: epoch: [190/1500], global_step: 570, lr: 0.001000, loss: 1.899988, loss_shrink_maps: 1.038398, loss_threshold_maps: 0.649360, loss_binary_maps: 0.204826, avg_reader_cost: 2.26081 s, avg_batch_cost: 2.64085 s, avg_samples: 12.5, ips: 4.73333 samples/s, eta: 9:54:09
[2024/07/27 11:55:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:55:44] ppocr INFO: epoch: [191/1500], global_step: 573, lr: 0.001000, loss: 1.911422, loss_shrink_maps: 1.049876, loss_threshold_maps: 0.660532, loss_binary_maps: 0.207172, avg_reader_cost: 2.33772 s, avg_batch_cost: 2.59456 s, avg_samples: 12.5, ips: 4.81778 samples/s, eta: 9:53:33
[2024/07/27 11:55:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:55:54] ppocr INFO: epoch: [192/1500], global_step: 576, lr: 0.001000, loss: 1.917041, loss_shrink_maps: 1.049876, loss_threshold_maps: 0.664063, loss_binary_maps: 0.207286, avg_reader_cost: 2.32000 s, avg_batch_cost: 2.56097 s, avg_samples: 12.5, ips: 4.88097 samples/s, eta: 9:52:55
[2024/07/27 11:55:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:56:04] ppocr INFO: epoch: [193/1500], global_step: 579, lr: 0.001000, loss: 1.901996, loss_shrink_maps: 1.047112, loss_threshold_maps: 0.665716, loss_binary_maps: 0.206462, avg_reader_cost: 2.35915 s, avg_batch_cost: 2.59621 s, avg_samples: 12.5, ips: 4.81471 samples/s, eta: 9:52:20
[2024/07/27 11:56:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:56:12] ppocr INFO: epoch: [194/1500], global_step: 580, lr: 0.001000, loss: 1.901996, loss_shrink_maps: 1.047112, loss_threshold_maps: 0.665716, loss_binary_maps: 0.206462, avg_reader_cost: 0.54961 s, avg_batch_cost: 0.74410 s, avg_samples: 4.8, ips: 6.45072 samples/s, eta: 9:52:00
[2024/07/27 11:56:13] ppocr INFO: epoch: [194/1500], global_step: 582, lr: 0.001000, loss: 1.919880, loss_shrink_maps: 1.056194, loss_threshold_maps: 0.667289, loss_binary_maps: 0.207958, avg_reader_cost: 1.58023 s, avg_batch_cost: 1.72764 s, avg_samples: 7.7, ips: 4.45695 samples/s, eta: 9:51:36
[2024/07/27 11:56:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:56:23] ppocr INFO: epoch: [195/1500], global_step: 585, lr: 0.001000, loss: 1.901996, loss_shrink_maps: 1.025515, loss_threshold_maps: 0.665716, loss_binary_maps: 0.202629, avg_reader_cost: 2.26402 s, avg_batch_cost: 2.49980 s, avg_samples: 12.5, ips: 5.00039 samples/s, eta: 9:50:54
[2024/07/27 11:56:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:56:33] ppocr INFO: epoch: [196/1500], global_step: 588, lr: 0.001000, loss: 1.901996, loss_shrink_maps: 1.025515, loss_threshold_maps: 0.668108, loss_binary_maps: 0.202629, avg_reader_cost: 2.14446 s, avg_batch_cost: 2.54888 s, avg_samples: 12.5, ips: 4.90411 samples/s, eta: 9:50:16
[2024/07/27 11:56:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:56:42] ppocr INFO: epoch: [197/1500], global_step: 590, lr: 0.001000, loss: 1.904835, loss_shrink_maps: 1.025515, loss_threshold_maps: 0.669261, loss_binary_maps: 0.202629, avg_reader_cost: 1.35566 s, avg_batch_cost: 1.67744 s, avg_samples: 9.6, ips: 5.72300 samples/s, eta: 9:49:49
[2024/07/27 11:56:43] ppocr INFO: epoch: [197/1500], global_step: 591, lr: 0.001000, loss: 1.912294, loss_shrink_maps: 1.045025, loss_threshold_maps: 0.670419, loss_binary_maps: 0.206150, avg_reader_cost: 0.88486 s, avg_batch_cost: 0.94040 s, avg_samples: 2.9, ips: 3.08379 samples/s, eta: 9:49:42
[2024/07/27 11:56:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:56:51] ppocr INFO: epoch: [198/1500], global_step: 594, lr: 0.001000, loss: 1.904835, loss_shrink_maps: 1.027566, loss_threshold_maps: 0.666589, loss_binary_maps: 0.203396, avg_reader_cost: 2.07514 s, avg_batch_cost: 2.35073 s, avg_samples: 12.5, ips: 5.31751 samples/s, eta: 9:48:51
[2024/07/27 11:56:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:57:01] ppocr INFO: epoch: [199/1500], global_step: 597, lr: 0.001000, loss: 1.904835, loss_shrink_maps: 1.019337, loss_threshold_maps: 0.661857, loss_binary_maps: 0.201465, avg_reader_cost: 2.13710 s, avg_batch_cost: 2.49780 s, avg_samples: 12.5, ips: 5.00440 samples/s, eta: 9:48:10
[2024/07/27 11:57:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:57:11] ppocr INFO: epoch: [200/1500], global_step: 600, lr: 0.001000, loss: 1.916384, loss_shrink_maps: 1.028391, loss_threshold_maps: 0.670139, loss_binary_maps: 0.203396, avg_reader_cost: 2.18637 s, avg_batch_cost: 2.54160 s, avg_samples: 12.5, ips: 4.91816 samples/s, eta: 9:47:31

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<01:07,  7.43it/s]
eval model::   1%|          | 4/500 [00:00<00:28, 17.26it/s]
eval model::   1%|          | 6/500 [00:00<00:27, 18.17it/s]
eval model::   2%|▏         | 9/500 [00:00<00:23, 20.57it/s]
eval model::   2%|▏         | 12/500 [00:00<00:25, 19.40it/s]
eval model::   3%|▎         | 14/500 [00:00<00:25, 19.43it/s]
eval model::   3%|▎         | 17/500 [00:00<00:24, 19.78it/s]
eval model::   4%|▍         | 19/500 [00:01<00:25, 18.55it/s]
eval model::   4%|▍         | 22/500 [00:01<00:23, 20.29it/s]
eval model::   5%|▌         | 25/500 [00:01<00:24, 19.77it/s]
eval model::   6%|▌         | 28/500 [00:01<00:22, 20.79it/s]
eval model::   6%|▌         | 31/500 [00:01<00:23, 19.92it/s]
eval model::   7%|▋         | 34/500 [00:01<00:23, 19.51it/s]
eval model::   7%|▋         | 37/500 [00:01<00:22, 20.95it/s]
eval model::   8%|▊         | 40/500 [00:02<00:24, 18.76it/s]
eval model::   8%|▊         | 42/500 [00:02<00:24, 18.38it/s]
eval model::   9%|▉         | 46/500 [00:02<00:23, 19.37it/s]
eval model::  10%|█         | 50/500 [00:02<00:21, 20.99it/s]
eval model::  11%|█         | 53/500 [00:02<00:19, 22.38it/s]
eval model::  11%|█         | 56/500 [00:02<00:22, 19.71it/s]
eval model::  12%|█▏        | 59/500 [00:03<00:23, 18.58it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:25, 16.92it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:26, 16.63it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:23, 18.79it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:21, 20.48it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:20, 20.92it/s]
eval model::  15%|█▌        | 75/500 [00:03<00:20, 20.40it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:21, 19.28it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:20, 20.57it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:21, 19.16it/s]
eval model::  17%|█▋        | 86/500 [00:04<00:21, 18.86it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:22, 18.57it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:23, 17.79it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:21, 19.11it/s]
eval model::  19%|█▉        | 96/500 [00:04<00:19, 20.28it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:20, 19.67it/s]
eval model::  20%|██        | 101/500 [00:05<00:20, 19.32it/s]
eval model::  21%|██        | 104/500 [00:05<00:19, 20.16it/s]
eval model::  21%|██▏       | 107/500 [00:05<00:18, 21.28it/s]
eval model::  22%|██▏       | 110/500 [00:05<00:18, 20.68it/s]
eval model::  23%|██▎       | 113/500 [00:05<00:17, 21.66it/s]
eval model::  23%|██▎       | 116/500 [00:05<00:18, 21.23it/s]
eval model::  24%|██▍       | 119/500 [00:06<00:17, 22.10it/s]
eval model::  24%|██▍       | 122/500 [00:06<00:17, 21.59it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:18, 19.82it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:18, 20.56it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:18, 19.77it/s]
eval model::  27%|██▋       | 134/500 [00:06<00:17, 20.78it/s]
eval model::  27%|██▋       | 137/500 [00:06<00:18, 19.68it/s]
eval model::  28%|██▊       | 140/500 [00:07<00:18, 19.92it/s]
eval model::  29%|██▊       | 143/500 [00:07<00:16, 21.31it/s]
eval model::  29%|██▉       | 146/500 [00:07<00:17, 20.34it/s]
eval model::  30%|██▉       | 149/500 [00:07<00:19, 18.47it/s]
eval model::  30%|███       | 151/500 [00:07<00:19, 17.58it/s]
eval model::  31%|███       | 154/500 [00:07<00:17, 19.37it/s]
eval model::  31%|███▏      | 157/500 [00:07<00:16, 20.88it/s]
eval model::  32%|███▏      | 160/500 [00:08<00:20, 16.55it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:18, 17.83it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:16, 20.13it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:15, 20.72it/s]
eval model::  34%|███▍      | 172/500 [00:08<00:16, 20.11it/s]
eval model::  35%|███▌      | 175/500 [00:08<00:16, 19.50it/s]
eval model::  36%|███▌      | 178/500 [00:09<00:15, 20.88it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:16, 19.67it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:14, 21.10it/s]
eval model::  37%|███▋      | 187/500 [00:09<00:14, 21.52it/s]
eval model::  38%|███▊      | 190/500 [00:09<00:13, 22.25it/s]
eval model::  39%|███▊      | 193/500 [00:09<00:13, 22.53it/s]
eval model::  39%|███▉      | 196/500 [00:09<00:14, 21.18it/s]
eval model::  40%|███▉      | 199/500 [00:09<00:13, 22.25it/s]
eval model::  40%|████      | 202/500 [00:10<00:13, 22.63it/s]
eval model::  41%|████      | 205/500 [00:10<00:21, 13.49it/s]
eval model::  42%|████▏     | 208/500 [00:10<00:19, 15.17it/s]
eval model::  42%|████▏     | 210/500 [00:10<00:18, 15.56it/s]
eval model::  43%|████▎     | 213/500 [00:10<00:17, 16.17it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:19, 14.64it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:18, 15.20it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:15, 18.16it/s]
eval model::  45%|████▍     | 223/500 [00:11<00:15, 17.97it/s]
eval model::  45%|████▌     | 226/500 [00:11<00:14, 19.17it/s]
eval model::  46%|████▌     | 230/500 [00:11<00:12, 22.16it/s]
eval model::  47%|████▋     | 233/500 [00:11<00:11, 22.78it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:11, 22.59it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:10, 23.93it/s]
eval model::  48%|████▊     | 242/500 [00:12<00:12, 21.06it/s]
eval model::  49%|████▉     | 245/500 [00:12<00:11, 21.92it/s]
eval model::  50%|████▉     | 248/500 [00:12<00:11, 21.90it/s]
eval model::  50%|█████     | 251/500 [00:12<00:11, 21.66it/s]
eval model::  51%|█████     | 254/500 [00:12<00:10, 23.30it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:10, 23.51it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:10, 23.86it/s]
eval model::  53%|█████▎    | 263/500 [00:13<00:10, 21.96it/s]
eval model::  53%|█████▎    | 266/500 [00:13<00:11, 20.14it/s]
eval model::  54%|█████▍    | 269/500 [00:13<00:10, 21.58it/s]
eval model::  54%|█████▍    | 272/500 [00:13<00:10, 21.12it/s]
eval model::  55%|█████▌    | 275/500 [00:13<00:12, 18.40it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:11, 19.83it/s]
eval model::  56%|█████▌    | 281/500 [00:14<00:10, 20.69it/s]
eval model::  57%|█████▋    | 284/500 [00:14<00:09, 21.91it/s]
eval model::  57%|█████▋    | 287/500 [00:14<00:14, 14.60it/s]
eval model::  58%|█████▊    | 291/500 [00:14<00:11, 18.51it/s]
eval model::  59%|█████▉    | 294/500 [00:14<00:10, 19.54it/s]
eval model::  59%|█████▉    | 297/500 [00:15<00:11, 17.30it/s]
eval model::  60%|██████    | 300/500 [00:15<00:10, 18.90it/s]
eval model::  61%|██████    | 303/500 [00:15<00:09, 20.66it/s]
eval model::  61%|██████    | 306/500 [00:15<00:09, 20.52it/s]
eval model::  62%|██████▏   | 309/500 [00:15<00:08, 21.87it/s]
eval model::  62%|██████▏   | 312/500 [00:15<00:08, 21.89it/s]
eval model::  63%|██████▎   | 315/500 [00:15<00:08, 22.36it/s]
eval model::  64%|██████▎   | 318/500 [00:16<00:07, 24.00it/s]
eval model::  64%|██████▍   | 321/500 [00:16<00:07, 23.47it/s]
eval model::  65%|██████▍   | 324/500 [00:16<00:07, 22.09it/s]
eval model::  65%|██████▌   | 327/500 [00:16<00:07, 23.37it/s]
eval model::  66%|██████▌   | 330/500 [00:16<00:08, 20.53it/s]
eval model::  67%|██████▋   | 333/500 [00:16<00:07, 22.37it/s]
eval model::  67%|██████▋   | 336/500 [00:16<00:08, 20.00it/s]
eval model::  68%|██████▊   | 339/500 [00:17<00:08, 20.12it/s]
eval model::  68%|██████▊   | 342/500 [00:17<00:08, 18.38it/s]
eval model::  69%|██████▉   | 345/500 [00:17<00:07, 20.41it/s]
eval model::  70%|██████▉   | 348/500 [00:17<00:07, 21.48it/s]
eval model::  70%|███████   | 351/500 [00:17<00:07, 21.26it/s]
eval model::  71%|███████   | 354/500 [00:17<00:06, 22.48it/s]
eval model::  71%|███████▏  | 357/500 [00:17<00:07, 20.31it/s]
eval model::  72%|███████▏  | 360/500 [00:18<00:06, 21.23it/s]
eval model::  73%|███████▎  | 363/500 [00:18<00:06, 21.08it/s]
eval model::  73%|███████▎  | 366/500 [00:18<00:06, 19.20it/s]
eval model::  74%|███████▎  | 368/500 [00:18<00:06, 19.28it/s]
eval model::  74%|███████▍  | 371/500 [00:18<00:06, 20.34it/s]
eval model::  75%|███████▍  | 374/500 [00:18<00:05, 21.50it/s]
eval model::  75%|███████▌  | 377/500 [00:18<00:05, 21.83it/s]
eval model::  76%|███████▌  | 380/500 [00:19<00:06, 18.99it/s]
eval model::  77%|███████▋  | 383/500 [00:19<00:05, 20.44it/s]
eval model::  77%|███████▋  | 386/500 [00:19<00:08, 13.43it/s]
eval model::  78%|███████▊  | 389/500 [00:19<00:07, 15.72it/s]
eval model::  78%|███████▊  | 392/500 [00:19<00:06, 17.15it/s]
eval model::  79%|███████▉  | 395/500 [00:19<00:05, 18.60it/s]
eval model::  80%|███████▉  | 399/500 [00:20<00:04, 21.39it/s]
eval model::  80%|████████  | 402/500 [00:20<00:04, 21.81it/s]
eval model::  81%|████████  | 405/500 [00:20<00:04, 22.17it/s]
eval model::  82%|████████▏ | 408/500 [00:20<00:03, 23.04it/s]
eval model::  82%|████████▏ | 411/500 [00:20<00:03, 22.87it/s]
eval model::  83%|████████▎ | 414/500 [00:20<00:04, 20.43it/s]
eval model::  83%|████████▎ | 417/500 [00:21<00:04, 17.89it/s]
eval model::  84%|████████▍ | 419/500 [00:21<00:04, 18.20it/s]
eval model::  84%|████████▍ | 421/500 [00:21<00:04, 16.21it/s]
eval model::  85%|████████▍ | 424/500 [00:21<00:04, 17.31it/s]
eval model::  85%|████████▌ | 427/500 [00:21<00:03, 20.00it/s]
eval model::  86%|████████▌ | 431/500 [00:21<00:03, 21.68it/s]
eval model::  87%|████████▋ | 435/500 [00:21<00:02, 24.84it/s]
eval model::  88%|████████▊ | 438/500 [00:21<00:02, 25.09it/s]
eval model::  88%|████████▊ | 441/500 [00:22<00:02, 23.22it/s]
eval model::  89%|████████▉ | 444/500 [00:22<00:02, 22.94it/s]
eval model::  89%|████████▉ | 447/500 [00:22<00:02, 21.81it/s]
eval model::  90%|█████████ | 450/500 [00:22<00:02, 20.33it/s]
eval model::  91%|█████████ | 453/500 [00:22<00:02, 21.22it/s]
eval model::  91%|█████████ | 456/500 [00:22<00:02, 21.51it/s]
eval model::  92%|█████████▏| 459/500 [00:22<00:01, 21.60it/s]
eval model::  92%|█████████▏| 462/500 [00:23<00:02, 18.92it/s]
eval model::  93%|█████████▎| 465/500 [00:23<00:01, 18.99it/s]
eval model::  94%|█████████▎| 468/500 [00:23<00:01, 19.86it/s]
eval model::  94%|█████████▍| 471/500 [00:23<00:01, 20.80it/s]
eval model::  95%|█████████▍| 474/500 [00:23<00:01, 18.20it/s]
eval model::  95%|█████████▌| 477/500 [00:23<00:01, 20.06it/s]
eval model::  96%|█████████▌| 480/500 [00:24<00:00, 20.79it/s]
eval model::  97%|█████████▋| 483/500 [00:24<00:00, 20.47it/s]
eval model::  97%|█████████▋| 486/500 [00:24<00:00, 18.92it/s]
eval model::  98%|█████████▊| 489/500 [00:24<00:00, 21.14it/s]
eval model::  98%|█████████▊| 492/500 [00:24<00:00, 19.70it/s]
eval model::  99%|█████████▉| 495/500 [00:24<00:00, 20.34it/s]
eval model:: 100%|█████████▉| 498/500 [00:24<00:00, 20.25it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.97it/s]
[2024/07/27 11:57:36] ppocr INFO: cur metric, precision: 0.7149825783972126, recall: 0.4939817043813192, hmean: 0.5842824601366743, fps: 45.705798172114164
[2024/07/27 11:57:36] ppocr INFO: best metric, hmean: 0.5952843273231623, precision: 0.7022251308900523, recall: 0.516610495907559, fps: 44.151565781685974, best_epoch: 180
[2024/07/27 11:57:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:57:45] ppocr INFO: epoch: [201/1500], global_step: 603, lr: 0.001000, loss: 1.916384, loss_shrink_maps: 1.028391, loss_threshold_maps: 0.667546, loss_binary_maps: 0.203396, avg_reader_cost: 2.30425 s, avg_batch_cost: 2.72515 s, avg_samples: 12.5, ips: 4.58690 samples/s, eta: 9:47:05
[2024/07/27 11:57:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:57:56] ppocr INFO: epoch: [202/1500], global_step: 606, lr: 0.001000, loss: 1.943778, loss_shrink_maps: 1.057755, loss_threshold_maps: 0.661857, loss_binary_maps: 0.206831, avg_reader_cost: 2.23685 s, avg_batch_cost: 2.66917 s, avg_samples: 12.5, ips: 4.68311 samples/s, eta: 9:46:35
[2024/07/27 11:57:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:58:06] ppocr INFO: epoch: [203/1500], global_step: 609, lr: 0.001000, loss: 1.907046, loss_shrink_maps: 1.027557, loss_threshold_maps: 0.652997, loss_binary_maps: 0.202090, avg_reader_cost: 2.27344 s, avg_batch_cost: 2.65736 s, avg_samples: 12.5, ips: 4.70392 samples/s, eta: 9:46:05
[2024/07/27 11:58:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:58:14] ppocr INFO: epoch: [204/1500], global_step: 610, lr: 0.001000, loss: 1.907046, loss_shrink_maps: 1.027557, loss_threshold_maps: 0.654647, loss_binary_maps: 0.202090, avg_reader_cost: 0.68576 s, avg_batch_cost: 0.77856 s, avg_samples: 4.8, ips: 6.16524 samples/s, eta: 9:45:48
[2024/07/27 11:58:15] ppocr INFO: epoch: [204/1500], global_step: 612, lr: 0.001000, loss: 1.885425, loss_shrink_maps: 1.019337, loss_threshold_maps: 0.654647, loss_binary_maps: 0.201465, avg_reader_cost: 1.64881 s, avg_batch_cost: 1.79543 s, avg_samples: 7.7, ips: 4.28866 samples/s, eta: 9:45:29
[2024/07/27 11:58:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:58:25] ppocr INFO: epoch: [205/1500], global_step: 615, lr: 0.001000, loss: 1.885425, loss_shrink_maps: 1.017890, loss_threshold_maps: 0.658857, loss_binary_maps: 0.200657, avg_reader_cost: 2.20172 s, avg_batch_cost: 2.56082 s, avg_samples: 12.5, ips: 4.88124 samples/s, eta: 9:44:52
[2024/07/27 11:58:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:58:35] ppocr INFO: epoch: [206/1500], global_step: 618, lr: 0.001000, loss: 1.861118, loss_shrink_maps: 1.010138, loss_threshold_maps: 0.654647, loss_binary_maps: 0.199198, avg_reader_cost: 2.30299 s, avg_batch_cost: 2.54322 s, avg_samples: 12.5, ips: 4.91503 samples/s, eta: 9:44:15
[2024/07/27 11:58:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:58:44] ppocr INFO: epoch: [207/1500], global_step: 620, lr: 0.001000, loss: 1.861118, loss_shrink_maps: 1.010138, loss_threshold_maps: 0.654647, loss_binary_maps: 0.199198, avg_reader_cost: 1.43868 s, avg_batch_cost: 1.62108 s, avg_samples: 9.6, ips: 5.92199 samples/s, eta: 9:43:45
[2024/07/27 11:58:44] ppocr INFO: epoch: [207/1500], global_step: 621, lr: 0.001000, loss: 1.872712, loss_shrink_maps: 1.022141, loss_threshold_maps: 0.654647, loss_binary_maps: 0.201283, avg_reader_cost: 0.85657 s, avg_batch_cost: 0.91216 s, avg_samples: 2.9, ips: 3.17926 samples/s, eta: 9:43:37
[2024/07/27 11:58:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:58:54] ppocr INFO: epoch: [208/1500], global_step: 624, lr: 0.001000, loss: 1.857388, loss_shrink_maps: 1.010138, loss_threshold_maps: 0.654647, loss_binary_maps: 0.199198, avg_reader_cost: 2.39850 s, avg_batch_cost: 2.65130 s, avg_samples: 12.5, ips: 4.71466 samples/s, eta: 9:43:06
[2024/07/27 11:58:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:59:04] ppocr INFO: epoch: [209/1500], global_step: 627, lr: 0.001000, loss: 1.864810, loss_shrink_maps: 1.006270, loss_threshold_maps: 0.660900, loss_binary_maps: 0.197802, avg_reader_cost: 2.32080 s, avg_batch_cost: 2.55695 s, avg_samples: 12.5, ips: 4.88864 samples/s, eta: 9:42:30
[2024/07/27 11:59:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:59:14] ppocr INFO: epoch: [210/1500], global_step: 630, lr: 0.001000, loss: 1.848346, loss_shrink_maps: 0.996547, loss_threshold_maps: 0.655221, loss_binary_maps: 0.195381, avg_reader_cost: 2.19094 s, avg_batch_cost: 2.55789 s, avg_samples: 12.5, ips: 4.88683 samples/s, eta: 9:41:53
[2024/07/27 11:59:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:59:23] ppocr INFO: epoch: [211/1500], global_step: 633, lr: 0.001000, loss: 1.825054, loss_shrink_maps: 0.977095, loss_threshold_maps: 0.639175, loss_binary_maps: 0.192650, avg_reader_cost: 2.34831 s, avg_batch_cost: 2.59870 s, avg_samples: 12.5, ips: 4.81009 samples/s, eta: 9:41:20
[2024/07/27 11:59:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:59:33] ppocr INFO: epoch: [212/1500], global_step: 636, lr: 0.001000, loss: 1.843089, loss_shrink_maps: 0.989084, loss_threshold_maps: 0.642220, loss_binary_maps: 0.194542, avg_reader_cost: 2.25026 s, avg_batch_cost: 2.49065 s, avg_samples: 12.5, ips: 5.01878 samples/s, eta: 9:40:40
[2024/07/27 11:59:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:59:43] ppocr INFO: epoch: [213/1500], global_step: 639, lr: 0.001000, loss: 1.821631, loss_shrink_maps: 0.973642, loss_threshold_maps: 0.633607, loss_binary_maps: 0.191060, avg_reader_cost: 2.33269 s, avg_batch_cost: 2.58409 s, avg_samples: 12.5, ips: 4.83729 samples/s, eta: 9:40:05
[2024/07/27 11:59:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 11:59:51] ppocr INFO: epoch: [214/1500], global_step: 640, lr: 0.001000, loss: 1.833708, loss_shrink_maps: 0.985632, loss_threshold_maps: 0.633607, loss_binary_maps: 0.193275, avg_reader_cost: 0.67934 s, avg_batch_cost: 0.79126 s, avg_samples: 4.8, ips: 6.06629 samples/s, eta: 9:39:50
[2024/07/27 11:59:53] ppocr INFO: epoch: [214/1500], global_step: 642, lr: 0.001000, loss: 1.826481, loss_shrink_maps: 0.976424, loss_threshold_maps: 0.640763, loss_binary_maps: 0.192253, avg_reader_cost: 1.67536 s, avg_batch_cost: 1.82309 s, avg_samples: 7.7, ips: 4.22361 samples/s, eta: 9:39:33
[2024/07/27 11:59:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:00:02] ppocr INFO: epoch: [215/1500], global_step: 645, lr: 0.001000, loss: 1.851744, loss_shrink_maps: 1.008244, loss_threshold_maps: 0.655192, loss_binary_maps: 0.198080, avg_reader_cost: 2.24440 s, avg_batch_cost: 2.62805 s, avg_samples: 12.5, ips: 4.75638 samples/s, eta: 9:39:01
[2024/07/27 12:00:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:00:12] ppocr INFO: epoch: [216/1500], global_step: 648, lr: 0.001000, loss: 1.835624, loss_shrink_maps: 0.999037, loss_threshold_maps: 0.655192, loss_binary_maps: 0.197058, avg_reader_cost: 2.15426 s, avg_batch_cost: 2.50121 s, avg_samples: 12.5, ips: 4.99758 samples/s, eta: 9:38:22
[2024/07/27 12:00:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:00:21] ppocr INFO: epoch: [217/1500], global_step: 650, lr: 0.001000, loss: 1.823546, loss_shrink_maps: 0.976424, loss_threshold_maps: 0.660011, loss_binary_maps: 0.191930, avg_reader_cost: 1.50659 s, avg_batch_cost: 1.70916 s, avg_samples: 9.6, ips: 5.61678 samples/s, eta: 9:37:59
[2024/07/27 12:00:22] ppocr INFO: epoch: [217/1500], global_step: 651, lr: 0.001000, loss: 1.823546, loss_shrink_maps: 0.976424, loss_threshold_maps: 0.656915, loss_binary_maps: 0.191930, avg_reader_cost: 0.90072 s, avg_batch_cost: 0.95646 s, avg_samples: 2.9, ips: 3.03200 samples/s, eta: 9:37:53
[2024/07/27 12:00:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:00:32] ppocr INFO: epoch: [218/1500], global_step: 654, lr: 0.001000, loss: 1.848876, loss_shrink_maps: 1.007937, loss_threshold_maps: 0.662795, loss_binary_maps: 0.198626, avg_reader_cost: 2.24150 s, avg_batch_cost: 2.62797 s, avg_samples: 12.5, ips: 4.75652 samples/s, eta: 9:37:21
[2024/07/27 12:00:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:00:42] ppocr INFO: epoch: [219/1500], global_step: 657, lr: 0.001000, loss: 1.855414, loss_shrink_maps: 1.018047, loss_threshold_maps: 0.660011, loss_binary_maps: 0.200293, avg_reader_cost: 2.34880 s, avg_batch_cost: 2.59701 s, avg_samples: 12.5, ips: 4.81323 samples/s, eta: 9:36:48
[2024/07/27 12:00:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:00:51] ppocr INFO: epoch: [220/1500], global_step: 660, lr: 0.001000, loss: 1.922415, loss_shrink_maps: 1.036285, loss_threshold_maps: 0.668731, loss_binary_maps: 0.204062, avg_reader_cost: 2.23117 s, avg_batch_cost: 2.55338 s, avg_samples: 12.5, ips: 4.89547 samples/s, eta: 9:36:13

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:56,  8.88it/s]
eval model::   1%|          | 4/500 [00:00<00:29, 16.68it/s]
eval model::   1%|          | 6/500 [00:00<00:28, 17.09it/s]
eval model::   2%|▏         | 8/500 [00:00<00:27, 17.74it/s]
eval model::   2%|▏         | 11/500 [00:00<00:26, 18.77it/s]
eval model::   3%|▎         | 14/500 [00:00<00:24, 19.66it/s]
eval model::   3%|▎         | 17/500 [00:00<00:23, 20.13it/s]
eval model::   4%|▍         | 19/500 [00:01<00:26, 18.27it/s]
eval model::   4%|▍         | 22/500 [00:01<00:23, 20.42it/s]
eval model::   5%|▌         | 25/500 [00:01<00:24, 19.46it/s]
eval model::   6%|▌         | 28/500 [00:01<00:23, 20.32it/s]
eval model::   6%|▌         | 31/500 [00:01<00:24, 19.54it/s]
eval model::   7%|▋         | 34/500 [00:01<00:24, 19.32it/s]
eval model::   7%|▋         | 37/500 [00:01<00:22, 20.76it/s]
eval model::   8%|▊         | 40/500 [00:02<00:27, 16.82it/s]
eval model::   8%|▊         | 42/500 [00:02<00:27, 16.71it/s]
eval model::   9%|▉         | 45/500 [00:02<00:25, 18.15it/s]
eval model::   9%|▉         | 47/500 [00:02<00:25, 18.04it/s]
eval model::  10%|█         | 50/500 [00:02<00:23, 19.40it/s]
eval model::  11%|█         | 53/500 [00:02<00:21, 20.45it/s]
eval model::  11%|█         | 56/500 [00:02<00:22, 20.06it/s]
eval model::  12%|█▏        | 59/500 [00:03<00:21, 20.48it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:25, 17.26it/s]
eval model::  13%|█▎        | 64/500 [00:03<00:25, 17.13it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:22, 19.49it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:20, 20.88it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:21, 19.88it/s]
eval model::  15%|█▌        | 76/500 [00:03<00:19, 21.72it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:19, 22.07it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:18, 22.59it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:19, 21.65it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:19, 20.82it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:21, 19.03it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:22, 18.44it/s]
eval model::  19%|█▉        | 95/500 [00:04<00:22, 18.41it/s]
eval model::  19%|█▉        | 97/500 [00:05<00:21, 18.56it/s]
eval model::  20%|██        | 100/500 [00:05<00:21, 18.80it/s]
eval model::  21%|██        | 103/500 [00:05<00:20, 19.73it/s]
eval model::  21%|██        | 106/500 [00:05<00:18, 21.08it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:17, 22.53it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:17, 22.58it/s]
eval model::  23%|██▎       | 115/500 [00:05<00:16, 23.36it/s]
eval model::  24%|██▎       | 118/500 [00:05<00:15, 24.67it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:18, 20.88it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:18, 20.77it/s]
eval model::  25%|██▌       | 127/500 [00:06<00:17, 20.84it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:19, 18.99it/s]
eval model::  27%|██▋       | 133/500 [00:06<00:18, 20.38it/s]
eval model::  27%|██▋       | 136/500 [00:06<00:17, 20.68it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:18, 19.75it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:17, 20.29it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:17, 20.19it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:18, 19.03it/s]
eval model::  30%|███       | 151/500 [00:07<00:18, 18.94it/s]
eval model::  31%|███       | 154/500 [00:07<00:17, 20.32it/s]
eval model::  31%|███▏      | 157/500 [00:07<00:17, 19.82it/s]
eval model::  32%|███▏      | 160/500 [00:08<00:20, 16.34it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:19, 17.63it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:16, 20.10it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:16, 19.76it/s]
eval model::  34%|███▍      | 172/500 [00:08<00:17, 18.82it/s]
eval model::  35%|███▍      | 174/500 [00:08<00:18, 17.40it/s]
eval model::  35%|███▌      | 177/500 [00:09<00:16, 19.06it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:16, 19.95it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:14, 21.20it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:14, 22.35it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:14, 21.47it/s]
eval model::  38%|███▊      | 192/500 [00:09<00:14, 20.74it/s]
eval model::  39%|███▉      | 196/500 [00:09<00:13, 22.49it/s]
eval model::  40%|███▉      | 199/500 [00:09<00:12, 23.85it/s]
eval model::  40%|████      | 202/500 [00:10<00:12, 23.99it/s]
eval model::  41%|████      | 205/500 [00:10<00:17, 17.16it/s]
eval model::  42%|████▏     | 208/500 [00:10<00:17, 17.18it/s]
eval model::  42%|████▏     | 210/500 [00:10<00:17, 16.25it/s]
eval model::  43%|████▎     | 213/500 [00:10<00:16, 17.58it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:17, 16.22it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:17, 16.22it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:14, 18.76it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:15, 17.42it/s]
eval model::  45%|████▌     | 226/500 [00:11<00:13, 19.61it/s]
eval model::  46%|████▌     | 230/500 [00:11<00:11, 23.01it/s]
eval model::  47%|████▋     | 233/500 [00:11<00:11, 23.45it/s]
eval model::  47%|████▋     | 236/500 [00:11<00:12, 21.87it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:12, 20.91it/s]
eval model::  48%|████▊     | 242/500 [00:12<00:12, 20.13it/s]
eval model::  49%|████▉     | 245/500 [00:12<00:12, 21.12it/s]
eval model::  50%|████▉     | 248/500 [00:12<00:11, 21.96it/s]
eval model::  50%|█████     | 251/500 [00:12<00:12, 20.66it/s]
eval model::  51%|█████     | 254/500 [00:12<00:11, 22.36it/s]
eval model::  51%|█████▏    | 257/500 [00:12<00:11, 21.87it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:11, 21.71it/s]
eval model::  53%|█████▎    | 263/500 [00:13<00:10, 21.67it/s]
eval model::  53%|█████▎    | 266/500 [00:13<00:11, 21.23it/s]
eval model::  54%|█████▍    | 269/500 [00:13<00:11, 19.66it/s]
eval model::  54%|█████▍    | 272/500 [00:13<00:10, 21.34it/s]
eval model::  55%|█████▌    | 275/500 [00:13<00:11, 20.09it/s]
eval model::  56%|█████▌    | 278/500 [00:13<00:10, 21.55it/s]
eval model::  56%|█████▌    | 281/500 [00:14<00:09, 22.15it/s]
eval model::  57%|█████▋    | 284/500 [00:14<00:10, 21.43it/s]
eval model::  57%|█████▋    | 287/500 [00:14<00:14, 14.50it/s]
eval model::  58%|█████▊    | 291/500 [00:14<00:11, 17.44it/s]
eval model::  59%|█████▉    | 294/500 [00:14<00:11, 18.33it/s]
eval model::  59%|█████▉    | 297/500 [00:15<00:11, 17.21it/s]
eval model::  60%|██████    | 300/500 [00:15<00:11, 17.50it/s]
eval model::  60%|██████    | 302/500 [00:15<00:11, 17.89it/s]
eval model::  61%|██████    | 305/500 [00:15<00:09, 19.63it/s]
eval model::  62%|██████▏   | 308/500 [00:15<00:09, 21.12it/s]
eval model::  62%|██████▏   | 311/500 [00:15<00:08, 21.26it/s]
eval model::  63%|██████▎   | 314/500 [00:15<00:08, 21.78it/s]
eval model::  63%|██████▎   | 317/500 [00:15<00:08, 22.87it/s]
eval model::  64%|██████▍   | 320/500 [00:16<00:07, 23.36it/s]
eval model::  65%|██████▍   | 323/500 [00:16<00:08, 20.80it/s]
eval model::  65%|██████▌   | 326/500 [00:16<00:08, 19.98it/s]
eval model::  66%|██████▌   | 329/500 [00:16<00:08, 19.04it/s]
eval model::  66%|██████▋   | 332/500 [00:16<00:08, 20.00it/s]
eval model::  67%|██████▋   | 335/500 [00:16<00:07, 21.70it/s]
eval model::  68%|██████▊   | 338/500 [00:17<00:07, 21.51it/s]
eval model::  68%|██████▊   | 341/500 [00:17<00:09, 16.53it/s]
eval model::  69%|██████▊   | 343/500 [00:17<00:09, 16.87it/s]
eval model::  69%|██████▉   | 347/500 [00:17<00:07, 19.93it/s]
eval model::  70%|███████   | 350/500 [00:17<00:07, 21.18it/s]
eval model::  71%|███████   | 353/500 [00:17<00:06, 22.12it/s]
eval model::  71%|███████   | 356/500 [00:17<00:06, 20.88it/s]
eval model::  72%|███████▏  | 359/500 [00:18<00:06, 21.19it/s]
eval model::  72%|███████▏  | 362/500 [00:18<00:06, 20.46it/s]
eval model::  73%|███████▎  | 365/500 [00:18<00:06, 19.62it/s]
eval model::  74%|███████▎  | 368/500 [00:18<00:06, 20.86it/s]
eval model::  74%|███████▍  | 371/500 [00:18<00:06, 20.41it/s]
eval model::  75%|███████▍  | 374/500 [00:18<00:05, 21.25it/s]
eval model::  75%|███████▌  | 377/500 [00:18<00:05, 21.93it/s]
eval model::  76%|███████▌  | 380/500 [00:19<00:05, 20.38it/s]
eval model::  77%|███████▋  | 383/500 [00:19<00:05, 21.79it/s]
eval model::  77%|███████▋  | 386/500 [00:19<00:08, 13.53it/s]
eval model::  78%|███████▊  | 390/500 [00:19<00:06, 16.74it/s]
eval model::  79%|███████▊  | 393/500 [00:19<00:05, 18.46it/s]
eval model::  79%|███████▉  | 396/500 [00:20<00:05, 19.71it/s]
eval model::  80%|███████▉  | 399/500 [00:20<00:04, 21.05it/s]
eval model::  80%|████████  | 402/500 [00:20<00:04, 20.55it/s]
eval model::  81%|████████  | 405/500 [00:20<00:04, 21.76it/s]
eval model::  82%|████████▏ | 408/500 [00:20<00:04, 21.30it/s]
eval model::  82%|████████▏ | 411/500 [00:20<00:04, 21.04it/s]
eval model::  83%|████████▎ | 414/500 [00:20<00:03, 21.66it/s]
eval model::  83%|████████▎ | 417/500 [00:21<00:04, 20.05it/s]
eval model::  84%|████████▍ | 420/500 [00:21<00:05, 15.83it/s]
eval model::  85%|████████▍ | 423/500 [00:21<00:04, 17.39it/s]
eval model::  85%|████████▌ | 425/500 [00:21<00:04, 17.56it/s]
eval model::  86%|████████▌ | 428/500 [00:21<00:03, 19.48it/s]
eval model::  86%|████████▌ | 431/500 [00:21<00:03, 20.36it/s]
eval model::  87%|████████▋ | 434/500 [00:21<00:02, 22.55it/s]
eval model::  88%|████████▊ | 438/500 [00:22<00:02, 25.74it/s]
eval model::  88%|████████▊ | 441/500 [00:22<00:02, 25.01it/s]
eval model::  89%|████████▉ | 444/500 [00:22<00:02, 24.24it/s]
eval model::  89%|████████▉ | 447/500 [00:22<00:02, 22.52it/s]
eval model::  90%|█████████ | 450/500 [00:22<00:02, 20.70it/s]
eval model::  91%|█████████ | 453/500 [00:22<00:02, 22.20it/s]
eval model::  91%|█████████ | 456/500 [00:22<00:02, 21.80it/s]
eval model::  92%|█████████▏| 459/500 [00:23<00:01, 21.01it/s]
eval model::  92%|█████████▏| 462/500 [00:23<00:01, 20.75it/s]
eval model::  93%|█████████▎| 465/500 [00:23<00:01, 18.35it/s]
eval model::  94%|█████████▎| 468/500 [00:23<00:01, 19.71it/s]
eval model::  94%|█████████▍| 471/500 [00:23<00:01, 20.85it/s]
eval model::  95%|█████████▍| 474/500 [00:23<00:01, 20.65it/s]
eval model::  95%|█████████▌| 477/500 [00:23<00:01, 21.65it/s]
eval model::  96%|█████████▌| 480/500 [00:24<00:00, 21.70it/s]
eval model::  97%|█████████▋| 483/500 [00:24<00:00, 20.95it/s]
eval model::  97%|█████████▋| 486/500 [00:24<00:00, 19.91it/s]
eval model::  98%|█████████▊| 489/500 [00:24<00:00, 19.58it/s]
eval model::  98%|█████████▊| 491/500 [00:24<00:00, 19.04it/s]
eval model::  99%|█████████▉| 494/500 [00:24<00:00, 20.11it/s]
eval model::  99%|█████████▉| 497/500 [00:24<00:00, 21.41it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 22.92it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 20.00it/s]
[2024/07/27 12:01:16] ppocr INFO: cur metric, precision: 0.773972602739726, recall: 0.5440539239287434, hmean: 0.6389595702572801, fps: 43.996993903511786
[2024/07/27 12:01:16] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/27 12:01:16] ppocr INFO: best metric, hmean: 0.6389595702572801, precision: 0.773972602739726, recall: 0.5440539239287434, fps: 43.996993903511786, best_epoch: 220
[2024/07/27 12:01:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:01:26] ppocr INFO: epoch: [221/1500], global_step: 663, lr: 0.001000, loss: 1.943085, loss_shrink_maps: 1.048398, loss_threshold_maps: 0.676565, loss_binary_maps: 0.205983, avg_reader_cost: 2.32059 s, avg_batch_cost: 2.66357 s, avg_samples: 12.5, ips: 4.69295 samples/s, eta: 9:35:43
[2024/07/27 12:01:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:01:36] ppocr INFO: epoch: [222/1500], global_step: 666, lr: 0.001000, loss: 1.961616, loss_shrink_maps: 1.060085, loss_threshold_maps: 0.667851, loss_binary_maps: 0.206872, avg_reader_cost: 2.21574 s, avg_batch_cost: 2.55257 s, avg_samples: 12.5, ips: 4.89703 samples/s, eta: 9:35:08
[2024/07/27 12:01:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:01:45] ppocr INFO: epoch: [223/1500], global_step: 669, lr: 0.001000, loss: 1.961616, loss_shrink_maps: 1.060085, loss_threshold_maps: 0.667851, loss_binary_maps: 0.207116, avg_reader_cost: 2.33302 s, avg_batch_cost: 2.58174 s, avg_samples: 12.5, ips: 4.84169 samples/s, eta: 9:34:34
[2024/07/27 12:01:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:01:54] ppocr INFO: epoch: [224/1500], global_step: 670, lr: 0.001000, loss: 1.961616, loss_shrink_maps: 1.060085, loss_threshold_maps: 0.667851, loss_binary_maps: 0.207116, avg_reader_cost: 0.67238 s, avg_batch_cost: 0.78505 s, avg_samples: 4.8, ips: 6.11423 samples/s, eta: 9:34:19
[2024/07/27 12:01:55] ppocr INFO: epoch: [224/1500], global_step: 672, lr: 0.001000, loss: 1.943085, loss_shrink_maps: 1.060085, loss_threshold_maps: 0.661134, loss_binary_maps: 0.207116, avg_reader_cost: 1.66181 s, avg_batch_cost: 1.80873 s, avg_samples: 7.7, ips: 4.25714 samples/s, eta: 9:34:01
[2024/07/27 12:01:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:02:05] ppocr INFO: epoch: [225/1500], global_step: 675, lr: 0.001000, loss: 1.941370, loss_shrink_maps: 1.060085, loss_threshold_maps: 0.662683, loss_binary_maps: 0.207116, avg_reader_cost: 2.35634 s, avg_batch_cost: 2.59214 s, avg_samples: 12.5, ips: 4.82227 samples/s, eta: 9:33:28
[2024/07/27 12:02:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:02:15] ppocr INFO: epoch: [226/1500], global_step: 678, lr: 0.001000, loss: 1.941370, loss_shrink_maps: 1.060085, loss_threshold_maps: 0.670456, loss_binary_maps: 0.207116, avg_reader_cost: 2.17683 s, avg_batch_cost: 2.55100 s, avg_samples: 12.5, ips: 4.90005 samples/s, eta: 9:32:53
[2024/07/27 12:02:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:02:23] ppocr INFO: epoch: [227/1500], global_step: 680, lr: 0.001000, loss: 1.961616, loss_shrink_maps: 1.086130, loss_threshold_maps: 0.667237, loss_binary_maps: 0.214765, avg_reader_cost: 1.32345 s, avg_batch_cost: 1.57193 s, avg_samples: 9.6, ips: 6.10714 samples/s, eta: 9:32:22
[2024/07/27 12:02:24] ppocr INFO: epoch: [227/1500], global_step: 681, lr: 0.001000, loss: 1.959901, loss_shrink_maps: 1.086130, loss_threshold_maps: 0.664678, loss_binary_maps: 0.214765, avg_reader_cost: 0.83215 s, avg_batch_cost: 0.88760 s, avg_samples: 2.9, ips: 3.26725 samples/s, eta: 9:32:12
[2024/07/27 12:02:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:02:34] ppocr INFO: epoch: [228/1500], global_step: 684, lr: 0.001000, loss: 1.959901, loss_shrink_maps: 1.086130, loss_threshold_maps: 0.667237, loss_binary_maps: 0.214765, avg_reader_cost: 2.36116 s, avg_batch_cost: 2.59986 s, avg_samples: 12.5, ips: 4.80796 samples/s, eta: 9:31:40
[2024/07/27 12:02:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:02:44] ppocr INFO: epoch: [229/1500], global_step: 687, lr: 0.001000, loss: 1.926779, loss_shrink_maps: 1.059666, loss_threshold_maps: 0.667237, loss_binary_maps: 0.209152, avg_reader_cost: 2.20691 s, avg_batch_cost: 2.57623 s, avg_samples: 12.5, ips: 4.85205 samples/s, eta: 9:31:06
[2024/07/27 12:02:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:02:54] ppocr INFO: epoch: [230/1500], global_step: 690, lr: 0.001000, loss: 1.944013, loss_shrink_maps: 1.041716, loss_threshold_maps: 0.669544, loss_binary_maps: 0.205767, avg_reader_cost: 2.27510 s, avg_batch_cost: 2.66283 s, avg_samples: 12.5, ips: 4.69425 samples/s, eta: 9:30:38
[2024/07/27 12:02:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:03:03] ppocr INFO: epoch: [231/1500], global_step: 693, lr: 0.001000, loss: 1.921157, loss_shrink_maps: 1.041788, loss_threshold_maps: 0.679168, loss_binary_maps: 0.206593, avg_reader_cost: 2.25644 s, avg_batch_cost: 2.64057 s, avg_samples: 12.5, ips: 4.73382 samples/s, eta: 9:30:08
[2024/07/27 12:03:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:03:13] ppocr INFO: epoch: [232/1500], global_step: 696, lr: 0.001000, loss: 1.921157, loss_shrink_maps: 1.041788, loss_threshold_maps: 0.679168, loss_binary_maps: 0.206593, avg_reader_cost: 2.31393 s, avg_batch_cost: 2.63276 s, avg_samples: 12.5, ips: 4.74787 samples/s, eta: 9:29:37
[2024/07/27 12:03:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:03:23] ppocr INFO: epoch: [233/1500], global_step: 699, lr: 0.001000, loss: 1.882493, loss_shrink_maps: 1.011518, loss_threshold_maps: 0.662172, loss_binary_maps: 0.199459, avg_reader_cost: 2.20288 s, avg_batch_cost: 2.51884 s, avg_samples: 12.5, ips: 4.96259 samples/s, eta: 9:29:01
[2024/07/27 12:03:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:03:32] ppocr INFO: epoch: [234/1500], global_step: 700, lr: 0.001000, loss: 1.882493, loss_shrink_maps: 1.011518, loss_threshold_maps: 0.660060, loss_binary_maps: 0.199459, avg_reader_cost: 0.70687 s, avg_batch_cost: 0.79980 s, avg_samples: 4.8, ips: 6.00149 samples/s, eta: 9:28:46
[2024/07/27 12:03:33] ppocr INFO: epoch: [234/1500], global_step: 702, lr: 0.001000, loss: 1.884361, loss_shrink_maps: 1.015422, loss_threshold_maps: 0.659994, loss_binary_maps: 0.199582, avg_reader_cost: 1.69119 s, avg_batch_cost: 1.83829 s, avg_samples: 7.7, ips: 4.18868 samples/s, eta: 9:28:31
[2024/07/27 12:03:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:03:43] ppocr INFO: epoch: [235/1500], global_step: 705, lr: 0.001000, loss: 1.849108, loss_shrink_maps: 0.997606, loss_threshold_maps: 0.649739, loss_binary_maps: 0.196628, avg_reader_cost: 2.26110 s, avg_batch_cost: 2.62233 s, avg_samples: 12.5, ips: 4.76675 samples/s, eta: 9:28:00
[2024/07/27 12:03:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:03:53] ppocr INFO: epoch: [236/1500], global_step: 708, lr: 0.001000, loss: 1.880954, loss_shrink_maps: 1.015422, loss_threshold_maps: 0.666453, loss_binary_maps: 0.199582, avg_reader_cost: 2.25461 s, avg_batch_cost: 2.62530 s, avg_samples: 12.5, ips: 4.76136 samples/s, eta: 9:27:29
[2024/07/27 12:03:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:04:02] ppocr INFO: epoch: [237/1500], global_step: 710, lr: 0.001000, loss: 1.866230, loss_shrink_maps: 1.000652, loss_threshold_maps: 0.656466, loss_binary_maps: 0.196742, avg_reader_cost: 1.37272 s, avg_batch_cost: 1.72080 s, avg_samples: 9.6, ips: 5.57881 samples/s, eta: 9:27:07
[2024/07/27 12:04:03] ppocr INFO: epoch: [237/1500], global_step: 711, lr: 0.001000, loss: 1.868099, loss_shrink_maps: 1.000652, loss_threshold_maps: 0.662910, loss_binary_maps: 0.196742, avg_reader_cost: 0.90650 s, avg_batch_cost: 0.96204 s, avg_samples: 2.9, ips: 3.01444 samples/s, eta: 9:27:02
[2024/07/27 12:04:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:04:13] ppocr INFO: epoch: [238/1500], global_step: 714, lr: 0.001000, loss: 1.820244, loss_shrink_maps: 0.982837, loss_threshold_maps: 0.656466, loss_binary_maps: 0.194052, avg_reader_cost: 2.20654 s, avg_batch_cost: 2.57215 s, avg_samples: 12.5, ips: 4.85975 samples/s, eta: 9:26:28
[2024/07/27 12:04:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:04:22] ppocr INFO: epoch: [239/1500], global_step: 717, lr: 0.001000, loss: 1.837367, loss_shrink_maps: 0.987077, loss_threshold_maps: 0.662910, loss_binary_maps: 0.194460, avg_reader_cost: 2.22230 s, avg_batch_cost: 2.59524 s, avg_samples: 12.5, ips: 4.81651 samples/s, eta: 9:25:56
[2024/07/27 12:04:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:04:32] ppocr INFO: epoch: [240/1500], global_step: 720, lr: 0.001000, loss: 1.818947, loss_shrink_maps: 0.987077, loss_threshold_maps: 0.641976, loss_binary_maps: 0.194460, avg_reader_cost: 2.24003 s, avg_batch_cost: 2.61803 s, avg_samples: 12.5, ips: 4.77458 samples/s, eta: 9:25:25

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 2/500 [00:00<00:33, 14.92it/s]
eval model::   1%|          | 5/500 [00:00<00:23, 21.25it/s]
eval model::   2%|▏         | 8/500 [00:00<00:28, 17.41it/s]
eval model::   2%|▏         | 11/500 [00:00<00:27, 17.85it/s]
eval model::   3%|▎         | 14/500 [00:00<00:25, 19.40it/s]
eval model::   3%|▎         | 17/500 [00:00<00:23, 20.29it/s]
eval model::   4%|▍         | 20/500 [00:01<00:27, 17.25it/s]
eval model::   5%|▍         | 23/500 [00:01<00:25, 18.98it/s]
eval model::   5%|▌         | 26/500 [00:01<00:24, 19.11it/s]
eval model::   6%|▌         | 29/500 [00:01<00:23, 20.05it/s]
eval model::   6%|▋         | 32/500 [00:01<00:22, 20.76it/s]
eval model::   7%|▋         | 35/500 [00:01<00:22, 20.50it/s]
eval model::   8%|▊         | 38/500 [00:01<00:22, 20.61it/s]
eval model::   8%|▊         | 41/500 [00:02<00:24, 18.58it/s]
eval model::   9%|▊         | 43/500 [00:02<00:26, 17.31it/s]
eval model::   9%|▉         | 46/500 [00:02<00:26, 17.45it/s]
eval model::  10%|▉         | 49/500 [00:02<00:23, 19.14it/s]
eval model::  10%|█         | 51/500 [00:02<00:23, 19.05it/s]
eval model::  11%|█         | 54/500 [00:02<00:21, 20.75it/s]
eval model::  11%|█▏        | 57/500 [00:02<00:22, 19.74it/s]
eval model::  12%|█▏        | 60/500 [00:03<00:23, 18.35it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:31, 14.09it/s]
eval model::  13%|█▎        | 64/500 [00:03<00:29, 14.80it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:24, 17.37it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:22, 19.07it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:21, 19.85it/s]
eval model::  15%|█▌        | 76/500 [00:04<00:19, 21.68it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:20, 20.49it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:19, 21.25it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:20, 20.54it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:21, 19.25it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:24, 16.73it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:23, 17.28it/s]
eval model::  19%|█▉        | 95/500 [00:05<00:22, 17.79it/s]
eval model::  20%|█▉        | 98/500 [00:05<00:20, 19.32it/s]
eval model::  20%|██        | 101/500 [00:05<00:19, 20.71it/s]
eval model::  21%|██        | 104/500 [00:05<00:18, 21.88it/s]
eval model::  21%|██▏       | 107/500 [00:05<00:17, 21.96it/s]
eval model::  22%|██▏       | 110/500 [00:05<00:17, 21.87it/s]
eval model::  23%|██▎       | 113/500 [00:05<00:17, 22.03it/s]
eval model::  23%|██▎       | 116/500 [00:06<00:19, 19.34it/s]
eval model::  24%|██▍       | 119/500 [00:06<00:19, 19.71it/s]
eval model::  24%|██▍       | 122/500 [00:06<00:18, 19.90it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:19, 18.93it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:19, 19.20it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:20, 18.12it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:20, 18.32it/s]
eval model::  27%|██▋       | 135/500 [00:07<00:17, 20.95it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:18, 19.73it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:18, 19.68it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:16, 21.88it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:17, 19.73it/s]
eval model::  30%|███       | 150/500 [00:07<00:16, 20.71it/s]
eval model::  31%|███       | 153/500 [00:07<00:17, 20.17it/s]
eval model::  31%|███       | 156/500 [00:08<00:16, 21.37it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:16, 21.21it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:17, 19.54it/s]
eval model::  33%|███▎      | 165/500 [00:08<00:16, 20.11it/s]
eval model::  34%|███▎      | 168/500 [00:08<00:16, 19.79it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:16, 20.38it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:17, 18.25it/s]
eval model::  36%|███▌      | 178/500 [00:09<00:14, 21.47it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:15, 20.28it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:15, 20.47it/s]
eval model::  37%|███▋      | 187/500 [00:09<00:14, 21.46it/s]
eval model::  38%|███▊      | 190/500 [00:09<00:14, 21.56it/s]
eval model::  39%|███▊      | 193/500 [00:09<00:13, 23.27it/s]
eval model::  39%|███▉      | 196/500 [00:09<00:12, 23.44it/s]
eval model::  40%|███▉      | 199/500 [00:10<00:12, 24.64it/s]
eval model::  40%|████      | 202/500 [00:10<00:12, 24.58it/s]
eval model::  41%|████      | 205/500 [00:10<00:18, 15.55it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:18, 16.21it/s]
eval model::  42%|████▏     | 210/500 [00:10<00:17, 16.25it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.82it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:20, 14.10it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:19, 14.30it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:16, 17.25it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:16, 16.95it/s]
eval model::  45%|████▌     | 225/500 [00:11<00:14, 19.51it/s]
eval model::  46%|████▌     | 228/500 [00:11<00:13, 20.25it/s]
eval model::  46%|████▌     | 231/500 [00:11<00:12, 22.11it/s]
eval model::  47%|████▋     | 234/500 [00:12<00:12, 21.27it/s]
eval model::  47%|████▋     | 237/500 [00:12<00:11, 22.71it/s]
eval model::  48%|████▊     | 240/500 [00:12<00:10, 24.15it/s]
eval model::  49%|████▊     | 243/500 [00:12<00:11, 22.85it/s]
eval model::  49%|████▉     | 246/500 [00:12<00:10, 23.13it/s]
eval model::  50%|████▉     | 249/500 [00:12<00:11, 21.82it/s]
eval model::  50%|█████     | 252/500 [00:12<00:10, 23.49it/s]
eval model::  51%|█████     | 255/500 [00:12<00:11, 22.04it/s]
eval model::  52%|█████▏    | 258/500 [00:13<00:10, 22.78it/s]
eval model::  52%|█████▏    | 261/500 [00:13<00:10, 21.84it/s]
eval model::  53%|█████▎    | 264/500 [00:13<00:13, 17.56it/s]
eval model::  53%|█████▎    | 267/500 [00:13<00:12, 18.50it/s]
eval model::  54%|█████▍    | 269/500 [00:13<00:12, 18.25it/s]
eval model::  54%|█████▍    | 272/500 [00:13<00:11, 19.82it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:11, 19.70it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:10, 21.04it/s]
eval model::  56%|█████▌    | 281/500 [00:14<00:09, 22.93it/s]
eval model::  57%|█████▋    | 285/500 [00:14<00:14, 14.37it/s]
eval model::  58%|█████▊    | 288/500 [00:14<00:12, 16.41it/s]
eval model::  58%|█████▊    | 292/500 [00:14<00:10, 19.66it/s]
eval model::  59%|█████▉    | 295/500 [00:15<00:12, 15.97it/s]
eval model::  60%|█████▉    | 299/500 [00:15<00:10, 19.12it/s]
eval model::  60%|██████    | 302/500 [00:15<00:11, 18.00it/s]
eval model::  61%|██████    | 305/500 [00:15<00:10, 19.47it/s]
eval model::  62%|██████▏   | 309/500 [00:15<00:08, 22.43it/s]
eval model::  62%|██████▏   | 312/500 [00:15<00:08, 22.33it/s]
eval model::  63%|██████▎   | 315/500 [00:16<00:08, 21.60it/s]
eval model::  64%|██████▎   | 318/500 [00:16<00:08, 22.00it/s]
eval model::  64%|██████▍   | 321/500 [00:16<00:08, 20.97it/s]
eval model::  65%|██████▍   | 324/500 [00:16<00:08, 20.55it/s]
eval model::  65%|██████▌   | 327/500 [00:16<00:08, 20.53it/s]
eval model::  66%|██████▌   | 330/500 [00:16<00:08, 20.67it/s]
eval model::  67%|██████▋   | 333/500 [00:16<00:07, 21.21it/s]
eval model::  67%|██████▋   | 336/500 [00:17<00:07, 20.64it/s]
eval model::  68%|██████▊   | 339/500 [00:17<00:07, 20.18it/s]
eval model::  68%|██████▊   | 342/500 [00:17<00:11, 14.20it/s]
eval model::  69%|██████▉   | 345/500 [00:17<00:09, 16.07it/s]
eval model::  69%|██████▉   | 347/500 [00:17<00:09, 16.51it/s]
eval model::  70%|███████   | 350/500 [00:17<00:07, 19.05it/s]
eval model::  71%|███████   | 353/500 [00:18<00:06, 21.48it/s]
eval model::  71%|███████   | 356/500 [00:18<00:07, 19.47it/s]
eval model::  72%|███████▏  | 359/500 [00:18<00:07, 19.49it/s]
eval model::  72%|███████▏  | 362/500 [00:18<00:07, 19.19it/s]
eval model::  73%|███████▎  | 365/500 [00:18<00:06, 19.35it/s]
eval model::  74%|███████▎  | 368/500 [00:18<00:06, 20.00it/s]
eval model::  74%|███████▍  | 371/500 [00:19<00:06, 21.09it/s]
eval model::  75%|███████▍  | 374/500 [00:19<00:05, 22.12it/s]
eval model::  75%|███████▌  | 377/500 [00:19<00:05, 22.38it/s]
eval model::  76%|███████▌  | 380/500 [00:19<00:05, 20.98it/s]
eval model::  77%|███████▋  | 383/500 [00:19<00:05, 21.13it/s]
eval model::  77%|███████▋  | 386/500 [00:19<00:08, 13.09it/s]
eval model::  78%|███████▊  | 389/500 [00:20<00:07, 15.23it/s]
eval model::  78%|███████▊  | 391/500 [00:20<00:07, 15.48it/s]
eval model::  79%|███████▉  | 394/500 [00:20<00:05, 17.81it/s]
eval model::  79%|███████▉  | 397/500 [00:20<00:05, 19.88it/s]
eval model::  80%|████████  | 400/500 [00:20<00:04, 21.29it/s]
eval model::  81%|████████  | 403/500 [00:20<00:04, 21.21it/s]
eval model::  81%|████████  | 406/500 [00:20<00:04, 21.07it/s]
eval model::  82%|████████▏ | 409/500 [00:21<00:04, 21.32it/s]
eval model::  82%|████████▏ | 412/500 [00:21<00:03, 22.78it/s]
eval model::  83%|████████▎ | 415/500 [00:21<00:03, 21.41it/s]
eval model::  84%|████████▎ | 418/500 [00:21<00:03, 20.57it/s]
eval model::  84%|████████▍ | 421/500 [00:21<00:04, 16.33it/s]
eval model::  85%|████████▍ | 424/500 [00:21<00:04, 17.08it/s]
eval model::  85%|████████▌ | 426/500 [00:21<00:04, 17.09it/s]
eval model::  86%|████████▌ | 429/500 [00:22<00:03, 19.31it/s]
eval model::  86%|████████▋ | 432/500 [00:22<00:03, 19.56it/s]
eval model::  87%|████████▋ | 435/500 [00:22<00:03, 20.66it/s]
eval model::  88%|████████▊ | 438/500 [00:22<00:02, 21.15it/s]
eval model::  88%|████████▊ | 441/500 [00:22<00:03, 18.75it/s]
eval model::  89%|████████▉ | 444/500 [00:22<00:02, 20.12it/s]
eval model::  89%|████████▉ | 447/500 [00:22<00:02, 21.19it/s]
eval model::  90%|█████████ | 450/500 [00:23<00:02, 20.22it/s]
eval model::  91%|█████████ | 453/500 [00:23<00:02, 22.32it/s]
eval model::  91%|█████████ | 456/500 [00:23<00:02, 22.00it/s]
eval model::  92%|█████████▏| 459/500 [00:23<00:01, 21.81it/s]
eval model::  92%|█████████▏| 462/500 [00:23<00:02, 17.02it/s]
eval model::  93%|█████████▎| 465/500 [00:23<00:01, 17.86it/s]
eval model::  94%|█████████▎| 468/500 [00:24<00:01, 19.53it/s]
eval model::  94%|█████████▍| 471/500 [00:24<00:01, 21.81it/s]
eval model::  95%|█████████▍| 474/500 [00:24<00:01, 19.60it/s]
eval model::  95%|█████████▌| 477/500 [00:24<00:01, 21.47it/s]
eval model::  96%|█████████▌| 480/500 [00:24<00:00, 21.52it/s]
eval model::  97%|█████████▋| 483/500 [00:24<00:00, 20.82it/s]
eval model::  97%|█████████▋| 486/500 [00:24<00:00, 20.47it/s]
eval model::  98%|█████████▊| 489/500 [00:25<00:00, 21.90it/s]
eval model::  98%|█████████▊| 492/500 [00:25<00:00, 20.70it/s]
eval model::  99%|█████████▉| 495/500 [00:25<00:00, 21.97it/s]
eval model:: 100%|█████████▉| 498/500 [00:25<00:00, 23.06it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.59it/s]
[2024/07/27 12:04:58] ppocr INFO: cur metric, precision: 0.7413680781758958, recall: 0.5479056331246991, hmean: 0.6301218161683277, fps: 43.91681079425031
[2024/07/27 12:04:58] ppocr INFO: best metric, hmean: 0.6389595702572801, precision: 0.773972602739726, recall: 0.5440539239287434, fps: 43.996993903511786, best_epoch: 220
[2024/07/27 12:04:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:05:07] ppocr INFO: epoch: [241/1500], global_step: 723, lr: 0.001000, loss: 1.837367, loss_shrink_maps: 0.987077, loss_threshold_maps: 0.634158, loss_binary_maps: 0.194460, avg_reader_cost: 2.24073 s, avg_batch_cost: 2.61084 s, avg_samples: 12.5, ips: 4.78772 samples/s, eta: 9:24:54
[2024/07/27 12:05:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:05:17] ppocr INFO: epoch: [242/1500], global_step: 726, lr: 0.001000, loss: 1.837367, loss_shrink_maps: 0.987077, loss_threshold_maps: 0.641976, loss_binary_maps: 0.194460, avg_reader_cost: 2.35172 s, avg_batch_cost: 2.58795 s, avg_samples: 12.5, ips: 4.83008 samples/s, eta: 9:24:22
[2024/07/27 12:05:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:05:27] ppocr INFO: epoch: [243/1500], global_step: 729, lr: 0.001000, loss: 1.818947, loss_shrink_maps: 0.986541, loss_threshold_maps: 0.634158, loss_binary_maps: 0.193698, avg_reader_cost: 2.27674 s, avg_batch_cost: 2.67090 s, avg_samples: 12.5, ips: 4.68008 samples/s, eta: 9:23:54
[2024/07/27 12:05:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:05:36] ppocr INFO: epoch: [244/1500], global_step: 730, lr: 0.001000, loss: 1.818947, loss_shrink_maps: 0.986541, loss_threshold_maps: 0.631281, loss_binary_maps: 0.193698, avg_reader_cost: 0.68309 s, avg_batch_cost: 0.77421 s, avg_samples: 4.8, ips: 6.19990 samples/s, eta: 9:23:38
[2024/07/27 12:05:37] ppocr INFO: epoch: [244/1500], global_step: 732, lr: 0.001000, loss: 1.790500, loss_shrink_maps: 0.969882, loss_threshold_maps: 0.626932, loss_binary_maps: 0.191418, avg_reader_cost: 1.64047 s, avg_batch_cost: 1.78766 s, avg_samples: 7.7, ips: 4.30731 samples/s, eta: 9:23:20
[2024/07/27 12:05:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:05:47] ppocr INFO: epoch: [245/1500], global_step: 735, lr: 0.001000, loss: 1.787203, loss_shrink_maps: 0.965328, loss_threshold_maps: 0.626932, loss_binary_maps: 0.190341, avg_reader_cost: 2.18232 s, avg_batch_cost: 2.55018 s, avg_samples: 12.5, ips: 4.90162 samples/s, eta: 9:22:46
[2024/07/27 12:05:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:05:57] ppocr INFO: epoch: [246/1500], global_step: 738, lr: 0.001000, loss: 1.824008, loss_shrink_maps: 0.972182, loss_threshold_maps: 0.641343, loss_binary_maps: 0.191418, avg_reader_cost: 2.30971 s, avg_batch_cost: 2.54836 s, avg_samples: 12.5, ips: 4.90511 samples/s, eta: 9:22:12
[2024/07/27 12:05:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:06:06] ppocr INFO: epoch: [247/1500], global_step: 740, lr: 0.001000, loss: 1.846309, loss_shrink_maps: 0.979950, loss_threshold_maps: 0.649575, loss_binary_maps: 0.192556, avg_reader_cost: 1.35614 s, avg_batch_cost: 1.68379 s, avg_samples: 9.6, ips: 5.70143 samples/s, eta: 9:21:48
[2024/07/27 12:06:06] ppocr INFO: epoch: [247/1500], global_step: 741, lr: 0.001000, loss: 1.846309, loss_shrink_maps: 0.979950, loss_threshold_maps: 0.652529, loss_binary_maps: 0.192556, avg_reader_cost: 0.88780 s, avg_batch_cost: 0.94329 s, avg_samples: 2.9, ips: 3.07436 samples/s, eta: 9:21:42
[2024/07/27 12:06:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:06:16] ppocr INFO: epoch: [248/1500], global_step: 744, lr: 0.001000, loss: 1.855557, loss_shrink_maps: 1.012670, loss_threshold_maps: 0.655117, loss_binary_maps: 0.200038, avg_reader_cost: 2.25413 s, avg_batch_cost: 2.62843 s, avg_samples: 12.5, ips: 4.75569 samples/s, eta: 9:21:12
[2024/07/27 12:06:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:06:26] ppocr INFO: epoch: [249/1500], global_step: 747, lr: 0.001000, loss: 1.855557, loss_shrink_maps: 1.012670, loss_threshold_maps: 0.652529, loss_binary_maps: 0.200038, avg_reader_cost: 2.33006 s, avg_batch_cost: 2.56320 s, avg_samples: 12.5, ips: 4.87671 samples/s, eta: 9:20:39
[2024/07/27 12:06:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:06:36] ppocr INFO: epoch: [250/1500], global_step: 750, lr: 0.001000, loss: 1.847323, loss_shrink_maps: 0.996109, loss_threshold_maps: 0.652529, loss_binary_maps: 0.197436, avg_reader_cost: 2.33726 s, avg_batch_cost: 2.58372 s, avg_samples: 12.5, ips: 4.83799 samples/s, eta: 9:20:06
[2024/07/27 12:06:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:06:46] ppocr INFO: epoch: [251/1500], global_step: 753, lr: 0.001000, loss: 1.842210, loss_shrink_maps: 1.008389, loss_threshold_maps: 0.649575, loss_binary_maps: 0.199158, avg_reader_cost: 2.42851 s, avg_batch_cost: 2.66907 s, avg_samples: 12.5, ips: 4.68328 samples/s, eta: 9:19:39
[2024/07/27 12:06:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:06:55] ppocr INFO: epoch: [252/1500], global_step: 756, lr: 0.001000, loss: 1.828677, loss_shrink_maps: 0.997099, loss_threshold_maps: 0.640707, loss_binary_maps: 0.197436, avg_reader_cost: 2.11432 s, avg_batch_cost: 2.44995 s, avg_samples: 12.5, ips: 5.10214 samples/s, eta: 9:19:00
[2024/07/27 12:06:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:07:05] ppocr INFO: epoch: [253/1500], global_step: 759, lr: 0.001000, loss: 1.828677, loss_shrink_maps: 0.987664, loss_threshold_maps: 0.643807, loss_binary_maps: 0.195198, avg_reader_cost: 2.36099 s, avg_batch_cost: 2.61054 s, avg_samples: 12.5, ips: 4.78828 samples/s, eta: 9:18:29
[2024/07/27 12:07:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:07:13] ppocr INFO: epoch: [254/1500], global_step: 760, lr: 0.001000, loss: 1.822904, loss_shrink_maps: 0.985432, loss_threshold_maps: 0.643807, loss_binary_maps: 0.194680, avg_reader_cost: 0.56243 s, avg_batch_cost: 0.76686 s, avg_samples: 4.8, ips: 6.25929 samples/s, eta: 9:18:14
[2024/07/27 12:07:15] ppocr INFO: epoch: [254/1500], global_step: 762, lr: 0.001000, loss: 1.822904, loss_shrink_maps: 0.985432, loss_threshold_maps: 0.643807, loss_binary_maps: 0.194680, avg_reader_cost: 1.62643 s, avg_batch_cost: 1.77401 s, avg_samples: 7.7, ips: 4.34045 samples/s, eta: 9:17:55
[2024/07/27 12:07:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:07:25] ppocr INFO: epoch: [255/1500], global_step: 765, lr: 0.001000, loss: 1.822904, loss_shrink_maps: 0.985432, loss_threshold_maps: 0.643807, loss_binary_maps: 0.194680, avg_reader_cost: 2.16585 s, avg_batch_cost: 2.54468 s, avg_samples: 12.5, ips: 4.91222 samples/s, eta: 9:17:21
[2024/07/27 12:07:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:07:35] ppocr INFO: epoch: [256/1500], global_step: 768, lr: 0.001000, loss: 1.828677, loss_shrink_maps: 0.987664, loss_threshold_maps: 0.647595, loss_binary_maps: 0.195198, avg_reader_cost: 2.42281 s, avg_batch_cost: 2.65974 s, avg_samples: 12.5, ips: 4.69970 samples/s, eta: 9:16:53
[2024/07/27 12:07:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:07:44] ppocr INFO: epoch: [257/1500], global_step: 770, lr: 0.001000, loss: 1.828677, loss_shrink_maps: 0.986422, loss_threshold_maps: 0.647595, loss_binary_maps: 0.194680, avg_reader_cost: 1.31307 s, avg_batch_cost: 1.66461 s, avg_samples: 9.6, ips: 5.76712 samples/s, eta: 9:16:29
[2024/07/27 12:07:44] ppocr INFO: epoch: [257/1500], global_step: 771, lr: 0.001000, loss: 1.828677, loss_shrink_maps: 0.986422, loss_threshold_maps: 0.647595, loss_binary_maps: 0.194680, avg_reader_cost: 0.87896 s, avg_batch_cost: 0.93457 s, avg_samples: 2.9, ips: 3.10304 samples/s, eta: 9:16:22
[2024/07/27 12:07:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:07:54] ppocr INFO: epoch: [258/1500], global_step: 774, lr: 0.001000, loss: 1.859625, loss_shrink_maps: 0.989751, loss_threshold_maps: 0.655056, loss_binary_maps: 0.195198, avg_reader_cost: 2.17629 s, avg_batch_cost: 2.54977 s, avg_samples: 12.5, ips: 4.90240 samples/s, eta: 9:15:49
[2024/07/27 12:07:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:08:04] ppocr INFO: epoch: [259/1500], global_step: 777, lr: 0.001000, loss: 1.859625, loss_shrink_maps: 0.987520, loss_threshold_maps: 0.655056, loss_binary_maps: 0.194694, avg_reader_cost: 2.33622 s, avg_batch_cost: 2.59811 s, avg_samples: 12.5, ips: 4.81119 samples/s, eta: 9:15:18
[2024/07/27 12:08:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:08:14] ppocr INFO: epoch: [260/1500], global_step: 780, lr: 0.001000, loss: 1.862653, loss_shrink_maps: 0.994471, loss_threshold_maps: 0.647595, loss_binary_maps: 0.196191, avg_reader_cost: 2.42391 s, avg_batch_cost: 2.67976 s, avg_samples: 12.5, ips: 4.66460 samples/s, eta: 9:14:51

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 2/500 [00:00<00:39, 12.71it/s]
eval model::   1%|          | 5/500 [00:00<00:27, 17.89it/s]
eval model::   2%|▏         | 8/500 [00:00<00:27, 18.11it/s]
eval model::   2%|▏         | 11/500 [00:00<00:29, 16.39it/s]
eval model::   3%|▎         | 14/500 [00:00<00:28, 17.26it/s]
eval model::   3%|▎         | 17/500 [00:00<00:24, 20.03it/s]
eval model::   4%|▍         | 20/500 [00:01<00:22, 20.88it/s]
eval model::   5%|▍         | 23/500 [00:01<00:21, 22.18it/s]
eval model::   5%|▌         | 26/500 [00:01<00:22, 21.40it/s]
eval model::   6%|▌         | 29/500 [00:01<00:20, 22.58it/s]
eval model::   6%|▋         | 32/500 [00:01<00:23, 20.29it/s]
eval model::   7%|▋         | 35/500 [00:01<00:23, 19.79it/s]
eval model::   8%|▊         | 38/500 [00:01<00:22, 20.66it/s]
eval model::   8%|▊         | 41/500 [00:02<00:21, 20.88it/s]
eval model::   9%|▉         | 44/500 [00:02<00:23, 19.72it/s]
eval model::   9%|▉         | 47/500 [00:02<00:27, 16.43it/s]
eval model::  10%|█         | 50/500 [00:02<00:25, 17.94it/s]
eval model::  11%|█         | 53/500 [00:02<00:23, 19.43it/s]
eval model::  11%|█         | 56/500 [00:02<00:23, 18.90it/s]
eval model::  12%|█▏        | 59/500 [00:03<00:22, 19.36it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:26, 16.38it/s]
eval model::  13%|█▎        | 64/500 [00:03<00:26, 16.59it/s]
eval model::  14%|█▎        | 68/500 [00:03<00:20, 20.90it/s]
eval model::  14%|█▍        | 71/500 [00:03<00:19, 22.31it/s]
eval model::  15%|█▍        | 74/500 [00:03<00:19, 21.37it/s]
eval model::  15%|█▌        | 77/500 [00:03<00:20, 20.35it/s]
eval model::  16%|█▌        | 80/500 [00:04<00:19, 22.00it/s]
eval model::  17%|█▋        | 83/500 [00:04<00:17, 23.62it/s]
eval model::  17%|█▋        | 86/500 [00:04<00:18, 22.55it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:22, 18.38it/s]
eval model::  18%|█▊        | 92/500 [00:04<00:21, 19.40it/s]
eval model::  19%|█▉        | 95/500 [00:04<00:20, 19.75it/s]
eval model::  20%|█▉        | 98/500 [00:04<00:19, 20.22it/s]
eval model::  20%|██        | 101/500 [00:05<00:20, 19.08it/s]
eval model::  21%|██        | 104/500 [00:05<00:18, 21.02it/s]
eval model::  21%|██▏       | 107/500 [00:05<00:17, 22.25it/s]
eval model::  22%|██▏       | 110/500 [00:05<00:19, 20.24it/s]
eval model::  23%|██▎       | 113/500 [00:05<00:20, 18.77it/s]
eval model::  23%|██▎       | 116/500 [00:05<00:19, 20.04it/s]
eval model::  24%|██▍       | 119/500 [00:06<00:18, 20.65it/s]
eval model::  24%|██▍       | 122/500 [00:06<00:20, 18.66it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:20, 17.91it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:20, 17.85it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:19, 19.20it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:19, 18.50it/s]
eval model::  27%|██▋       | 133/500 [00:06<00:19, 18.41it/s]
eval model::  27%|██▋       | 136/500 [00:06<00:19, 18.79it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:20, 18.01it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:19, 17.99it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:18, 19.45it/s]
eval model::  29%|██▉       | 146/500 [00:07<00:18, 19.31it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:19, 18.07it/s]
eval model::  30%|███       | 151/500 [00:07<00:19, 17.52it/s]
eval model::  31%|███       | 155/500 [00:07<00:16, 20.95it/s]
eval model::  32%|███▏      | 158/500 [00:08<00:15, 21.63it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:20, 16.38it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:20, 16.66it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:17, 18.89it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:17, 18.94it/s]
eval model::  34%|███▍      | 172/500 [00:08<00:18, 17.36it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:20, 15.55it/s]
eval model::  35%|███▌      | 177/500 [00:09<00:18, 17.44it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:18, 16.91it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:20, 15.95it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:19, 16.56it/s]
eval model::  37%|███▋      | 185/500 [00:09<00:19, 15.98it/s]
eval model::  37%|███▋      | 187/500 [00:09<00:21, 14.62it/s]
eval model::  38%|███▊      | 189/500 [00:10<00:20, 15.35it/s]
eval model::  38%|███▊      | 192/500 [00:10<00:17, 17.38it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:16, 18.64it/s]
eval model::  39%|███▉      | 197/500 [00:10<00:16, 18.20it/s]
eval model::  40%|████      | 200/500 [00:10<00:14, 20.07it/s]
eval model::  41%|████      | 203/500 [00:10<00:13, 22.27it/s]
eval model::  41%|████      | 206/500 [00:11<00:20, 14.29it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:20, 14.17it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:20, 14.43it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.94it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:19, 14.69it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:20, 14.12it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:17, 16.45it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:17, 16.03it/s]
eval model::  45%|████▌     | 225/500 [00:12<00:14, 18.52it/s]
eval model::  46%|████▌     | 228/500 [00:12<00:13, 19.52it/s]
eval model::  46%|████▌     | 231/500 [00:12<00:12, 21.49it/s]
eval model::  47%|████▋     | 234/500 [00:12<00:12, 21.69it/s]
eval model::  47%|████▋     | 237/500 [00:12<00:12, 21.88it/s]
eval model::  48%|████▊     | 240/500 [00:12<00:11, 23.06it/s]
eval model::  49%|████▊     | 243/500 [00:13<00:13, 19.53it/s]
eval model::  49%|████▉     | 246/500 [00:13<00:12, 20.19it/s]
eval model::  50%|████▉     | 249/500 [00:13<00:12, 19.99it/s]
eval model::  50%|█████     | 252/500 [00:13<00:12, 19.95it/s]
eval model::  51%|█████     | 255/500 [00:13<00:12, 20.33it/s]
eval model::  52%|█████▏    | 258/500 [00:13<00:11, 21.18it/s]
eval model::  52%|█████▏    | 261/500 [00:13<00:10, 22.18it/s]
eval model::  53%|█████▎    | 264/500 [00:14<00:12, 18.91it/s]
eval model::  53%|█████▎    | 267/500 [00:14<00:12, 18.67it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:12, 18.90it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:12, 18.52it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:12, 18.11it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:11, 20.00it/s]
eval model::  56%|█████▌    | 281/500 [00:14<00:09, 22.12it/s]
eval model::  57%|█████▋    | 284/500 [00:14<00:09, 23.04it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:15, 13.65it/s]
eval model::  58%|█████▊    | 290/500 [00:15<00:12, 16.22it/s]
eval model::  59%|█████▊    | 293/500 [00:15<00:11, 18.00it/s]
eval model::  59%|█████▉    | 296/500 [00:15<00:12, 15.77it/s]
eval model::  60%|█████▉    | 299/500 [00:16<00:11, 17.82it/s]
eval model::  60%|██████    | 302/500 [00:16<00:11, 16.67it/s]
eval model::  61%|██████    | 304/500 [00:16<00:11, 16.85it/s]
eval model::  61%|██████▏   | 307/500 [00:16<00:10, 18.66it/s]
eval model::  62%|██████▏   | 310/500 [00:16<00:09, 19.82it/s]
eval model::  63%|██████▎   | 313/500 [00:16<00:08, 20.86it/s]
eval model::  63%|██████▎   | 316/500 [00:16<00:08, 20.72it/s]
eval model::  64%|██████▍   | 319/500 [00:17<00:09, 19.87it/s]
eval model::  64%|██████▍   | 322/500 [00:17<00:09, 19.15it/s]
eval model::  65%|██████▍   | 324/500 [00:17<00:09, 18.94it/s]
eval model::  65%|██████▌   | 327/500 [00:17<00:08, 20.11it/s]
eval model::  66%|██████▌   | 330/500 [00:17<00:08, 19.06it/s]
eval model::  67%|██████▋   | 333/500 [00:17<00:08, 19.32it/s]
eval model::  67%|██████▋   | 336/500 [00:17<00:07, 20.72it/s]
eval model::  68%|██████▊   | 339/500 [00:18<00:07, 20.43it/s]
eval model::  68%|██████▊   | 342/500 [00:18<00:09, 16.27it/s]
eval model::  69%|██████▉   | 345/500 [00:18<00:08, 18.65it/s]
eval model::  70%|██████▉   | 348/500 [00:18<00:07, 19.95it/s]
eval model::  70%|███████   | 351/500 [00:18<00:07, 20.46it/s]
eval model::  71%|███████   | 354/500 [00:18<00:06, 21.10it/s]
eval model::  71%|███████▏  | 357/500 [00:18<00:07, 20.26it/s]
eval model::  72%|███████▏  | 360/500 [00:19<00:06, 20.96it/s]
eval model::  73%|███████▎  | 363/500 [00:19<00:06, 20.90it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:07, 18.00it/s]
eval model::  74%|███████▍  | 369/500 [00:19<00:06, 19.54it/s]
eval model::  74%|███████▍  | 372/500 [00:19<00:07, 18.26it/s]
eval model::  75%|███████▌  | 375/500 [00:19<00:06, 19.84it/s]
eval model::  76%|███████▌  | 378/500 [00:20<00:05, 20.95it/s]
eval model::  76%|███████▌  | 381/500 [00:20<00:05, 20.43it/s]
eval model::  77%|███████▋  | 385/500 [00:20<00:04, 23.63it/s]
eval model::  78%|███████▊  | 388/500 [00:20<00:07, 14.45it/s]
eval model::  78%|███████▊  | 390/500 [00:20<00:07, 14.99it/s]
eval model::  78%|███████▊  | 392/500 [00:20<00:06, 15.48it/s]
eval model::  79%|███████▉  | 394/500 [00:21<00:06, 16.34it/s]
eval model::  79%|███████▉  | 397/500 [00:21<00:05, 18.04it/s]
eval model::  80%|███████▉  | 399/500 [00:21<00:05, 18.29it/s]
eval model::  80%|████████  | 401/500 [00:21<00:05, 17.34it/s]
eval model::  81%|████████  | 404/500 [00:21<00:05, 19.09it/s]
eval model::  81%|████████▏ | 407/500 [00:21<00:04, 20.98it/s]
eval model::  82%|████████▏ | 410/500 [00:21<00:04, 22.27it/s]
eval model::  83%|████████▎ | 413/500 [00:21<00:04, 21.58it/s]
eval model::  83%|████████▎ | 416/500 [00:22<00:04, 20.11it/s]
eval model::  84%|████████▍ | 419/500 [00:22<00:04, 19.11it/s]
eval model::  84%|████████▍ | 421/500 [00:22<00:04, 17.29it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:04, 17.49it/s]
eval model::  85%|████████▌ | 426/500 [00:22<00:04, 17.70it/s]
eval model::  86%|████████▌ | 429/500 [00:22<00:03, 19.50it/s]
eval model::  86%|████████▌ | 431/500 [00:22<00:03, 18.50it/s]
eval model::  87%|████████▋ | 434/500 [00:23<00:03, 20.94it/s]
eval model::  87%|████████▋ | 437/500 [00:23<00:03, 18.90it/s]
eval model::  88%|████████▊ | 440/500 [00:23<00:03, 17.80it/s]
eval model::  89%|████████▊ | 443/500 [00:23<00:02, 20.17it/s]
eval model::  89%|████████▉ | 446/500 [00:23<00:02, 21.33it/s]
eval model::  90%|████████▉ | 449/500 [00:23<00:02, 20.78it/s]
eval model::  90%|█████████ | 452/500 [00:23<00:02, 20.56it/s]
eval model::  91%|█████████ | 455/500 [00:24<00:02, 20.65it/s]
eval model::  92%|█████████▏| 458/500 [00:24<00:01, 21.40it/s]
eval model::  92%|█████████▏| 461/500 [00:24<00:01, 22.12it/s]
eval model::  93%|█████████▎| 464/500 [00:24<00:01, 19.75it/s]
eval model::  93%|█████████▎| 467/500 [00:24<00:01, 18.26it/s]
eval model::  94%|█████████▍| 470/500 [00:24<00:01, 20.38it/s]
eval model::  95%|█████████▍| 473/500 [00:24<00:01, 21.47it/s]
eval model::  95%|█████████▌| 476/500 [00:25<00:01, 20.71it/s]
eval model::  96%|█████████▌| 479/500 [00:25<00:00, 21.68it/s]
eval model::  96%|█████████▋| 482/500 [00:25<00:00, 22.23it/s]
eval model::  97%|█████████▋| 485/500 [00:25<00:00, 24.07it/s]
eval model::  98%|█████████▊| 488/500 [00:25<00:00, 19.43it/s]
eval model::  98%|█████████▊| 491/500 [00:25<00:00, 19.27it/s]
eval model::  99%|█████████▉| 494/500 [00:25<00:00, 20.51it/s]
eval model::  99%|█████████▉| 497/500 [00:26<00:00, 22.29it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 19.09it/s]
[2024/07/27 12:08:40] ppocr INFO: cur metric, precision: 0.5780141843971631, recall: 0.5493500240731825, hmean: 0.563317699333498, fps: 44.6490035775801
[2024/07/27 12:08:40] ppocr INFO: best metric, hmean: 0.6389595702572801, precision: 0.773972602739726, recall: 0.5440539239287434, fps: 43.996993903511786, best_epoch: 220
[2024/07/27 12:08:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:08:49] ppocr INFO: epoch: [261/1500], global_step: 783, lr: 0.001000, loss: 1.829927, loss_shrink_maps: 0.994471, loss_threshold_maps: 0.618463, loss_binary_maps: 0.196191, avg_reader_cost: 2.12975 s, avg_batch_cost: 2.36818 s, avg_samples: 12.5, ips: 5.27833 samples/s, eta: 9:14:09
[2024/07/27 12:08:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:08:59] ppocr INFO: epoch: [262/1500], global_step: 786, lr: 0.001000, loss: 1.668969, loss_shrink_maps: 0.908879, loss_threshold_maps: 0.604319, loss_binary_maps: 0.178661, avg_reader_cost: 2.22133 s, avg_batch_cost: 2.57411 s, avg_samples: 12.5, ips: 4.85604 samples/s, eta: 9:13:37
[2024/07/27 12:08:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:09:08] ppocr INFO: epoch: [263/1500], global_step: 789, lr: 0.001000, loss: 1.670591, loss_shrink_maps: 0.908879, loss_threshold_maps: 0.604319, loss_binary_maps: 0.178661, avg_reader_cost: 2.31287 s, avg_batch_cost: 2.60078 s, avg_samples: 12.5, ips: 4.80625 samples/s, eta: 9:13:06
[2024/07/27 12:09:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:09:17] ppocr INFO: epoch: [264/1500], global_step: 790, lr: 0.001000, loss: 1.670591, loss_shrink_maps: 0.908879, loss_threshold_maps: 0.604319, loss_binary_maps: 0.178661, avg_reader_cost: 0.56944 s, avg_batch_cost: 0.77836 s, avg_samples: 4.8, ips: 6.16680 samples/s, eta: 9:12:52
[2024/07/27 12:09:18] ppocr INFO: epoch: [264/1500], global_step: 792, lr: 0.001000, loss: 1.754801, loss_shrink_maps: 0.946499, loss_threshold_maps: 0.612585, loss_binary_maps: 0.187003, avg_reader_cost: 1.64831 s, avg_batch_cost: 1.79550 s, avg_samples: 7.7, ips: 4.28850 samples/s, eta: 9:12:34
[2024/07/27 12:09:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:09:28] ppocr INFO: epoch: [265/1500], global_step: 795, lr: 0.001000, loss: 1.748010, loss_shrink_maps: 0.922417, loss_threshold_maps: 0.612585, loss_binary_maps: 0.182465, avg_reader_cost: 2.20357 s, avg_batch_cost: 2.57067 s, avg_samples: 12.5, ips: 4.86254 samples/s, eta: 9:12:02
[2024/07/27 12:09:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:09:38] ppocr INFO: epoch: [266/1500], global_step: 798, lr: 0.001000, loss: 1.695194, loss_shrink_maps: 0.909895, loss_threshold_maps: 0.612585, loss_binary_maps: 0.179420, avg_reader_cost: 2.23218 s, avg_batch_cost: 2.60816 s, avg_samples: 12.5, ips: 4.79266 samples/s, eta: 9:11:32
[2024/07/27 12:09:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:09:47] ppocr INFO: epoch: [267/1500], global_step: 800, lr: 0.001000, loss: 1.695194, loss_shrink_maps: 0.904606, loss_threshold_maps: 0.612585, loss_binary_maps: 0.179149, avg_reader_cost: 1.34442 s, avg_batch_cost: 1.63424 s, avg_samples: 9.6, ips: 5.87429 samples/s, eta: 9:11:07
[2024/07/27 12:09:48] ppocr INFO: epoch: [267/1500], global_step: 801, lr: 0.001000, loss: 1.695194, loss_shrink_maps: 0.904606, loss_threshold_maps: 0.612585, loss_binary_maps: 0.179149, avg_reader_cost: 0.86357 s, avg_batch_cost: 0.91878 s, avg_samples: 2.9, ips: 3.15636 samples/s, eta: 9:10:59
[2024/07/27 12:09:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:09:58] ppocr INFO: epoch: [268/1500], global_step: 804, lr: 0.001000, loss: 1.675009, loss_shrink_maps: 0.885282, loss_threshold_maps: 0.620346, loss_binary_maps: 0.175322, avg_reader_cost: 2.40037 s, avg_batch_cost: 2.63855 s, avg_samples: 12.5, ips: 4.73745 samples/s, eta: 9:10:30
[2024/07/27 12:09:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:10:08] ppocr INFO: epoch: [269/1500], global_step: 807, lr: 0.001000, loss: 1.708247, loss_shrink_maps: 0.899755, loss_threshold_maps: 0.625133, loss_binary_maps: 0.177653, avg_reader_cost: 2.37092 s, avg_batch_cost: 2.62099 s, avg_samples: 12.5, ips: 4.76920 samples/s, eta: 9:10:01
[2024/07/27 12:10:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:10:17] ppocr INFO: epoch: [270/1500], global_step: 810, lr: 0.001000, loss: 1.713915, loss_shrink_maps: 0.901702, loss_threshold_maps: 0.626439, loss_binary_maps: 0.178835, avg_reader_cost: 2.16707 s, avg_batch_cost: 2.51129 s, avg_samples: 12.5, ips: 4.97751 samples/s, eta: 9:09:26
[2024/07/27 12:10:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:10:27] ppocr INFO: epoch: [271/1500], global_step: 813, lr: 0.001000, loss: 1.713915, loss_shrink_maps: 0.909133, loss_threshold_maps: 0.626439, loss_binary_maps: 0.179548, avg_reader_cost: 2.48103 s, avg_batch_cost: 2.73245 s, avg_samples: 12.5, ips: 4.57465 samples/s, eta: 9:09:02
[2024/07/27 12:10:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:10:37] ppocr INFO: epoch: [272/1500], global_step: 816, lr: 0.001000, loss: 1.713915, loss_shrink_maps: 0.909133, loss_threshold_maps: 0.625133, loss_binary_maps: 0.179548, avg_reader_cost: 2.34064 s, avg_batch_cost: 2.57761 s, avg_samples: 12.5, ips: 4.84945 samples/s, eta: 9:08:30
[2024/07/27 12:10:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:10:47] ppocr INFO: epoch: [273/1500], global_step: 819, lr: 0.001000, loss: 1.730526, loss_shrink_maps: 0.914910, loss_threshold_maps: 0.625133, loss_binary_maps: 0.181202, avg_reader_cost: 2.32703 s, avg_batch_cost: 2.58031 s, avg_samples: 12.5, ips: 4.84438 samples/s, eta: 9:07:59
[2024/07/27 12:10:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:10:55] ppocr INFO: epoch: [274/1500], global_step: 820, lr: 0.001000, loss: 1.732335, loss_shrink_maps: 0.917430, loss_threshold_maps: 0.625133, loss_binary_maps: 0.181786, avg_reader_cost: 0.56631 s, avg_batch_cost: 0.72382 s, avg_samples: 4.8, ips: 6.63150 samples/s, eta: 9:07:43
[2024/07/27 12:10:56] ppocr INFO: epoch: [274/1500], global_step: 822, lr: 0.001000, loss: 1.760055, loss_shrink_maps: 0.921710, loss_threshold_maps: 0.626439, loss_binary_maps: 0.182987, avg_reader_cost: 1.54001 s, avg_batch_cost: 1.68784 s, avg_samples: 7.7, ips: 4.56203 samples/s, eta: 9:07:20
[2024/07/27 12:10:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:11:06] ppocr INFO: epoch: [275/1500], global_step: 825, lr: 0.001000, loss: 1.793020, loss_shrink_maps: 0.955269, loss_threshold_maps: 0.637476, loss_binary_maps: 0.188451, avg_reader_cost: 2.33985 s, avg_batch_cost: 2.59423 s, avg_samples: 12.5, ips: 4.81839 samples/s, eta: 9:06:50
[2024/07/27 12:11:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:11:16] ppocr INFO: epoch: [276/1500], global_step: 828, lr: 0.001000, loss: 1.762410, loss_shrink_maps: 0.928557, loss_threshold_maps: 0.628832, loss_binary_maps: 0.184089, avg_reader_cost: 2.20706 s, avg_batch_cost: 2.56152 s, avg_samples: 12.5, ips: 4.87992 samples/s, eta: 9:06:18
[2024/07/27 12:11:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:11:25] ppocr INFO: epoch: [277/1500], global_step: 830, lr: 0.001000, loss: 1.762410, loss_shrink_maps: 0.928557, loss_threshold_maps: 0.637476, loss_binary_maps: 0.184089, avg_reader_cost: 1.45880 s, avg_batch_cost: 1.64862 s, avg_samples: 9.6, ips: 5.82304 samples/s, eta: 9:05:54
[2024/07/27 12:11:26] ppocr INFO: epoch: [277/1500], global_step: 831, lr: 0.001000, loss: 1.762410, loss_shrink_maps: 0.928059, loss_threshold_maps: 0.637476, loss_binary_maps: 0.184089, avg_reader_cost: 0.87060 s, avg_batch_cost: 0.92576 s, avg_samples: 2.9, ips: 3.13257 samples/s, eta: 9:05:46
[2024/07/27 12:11:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:11:36] ppocr INFO: epoch: [278/1500], global_step: 834, lr: 0.001000, loss: 1.717741, loss_shrink_maps: 0.906606, loss_threshold_maps: 0.617359, loss_binary_maps: 0.179959, avg_reader_cost: 2.27315 s, avg_batch_cost: 2.64267 s, avg_samples: 12.5, ips: 4.73007 samples/s, eta: 9:05:18
[2024/07/27 12:11:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:11:45] ppocr INFO: epoch: [279/1500], global_step: 837, lr: 0.001000, loss: 1.717741, loss_shrink_maps: 0.906606, loss_threshold_maps: 0.620130, loss_binary_maps: 0.179959, avg_reader_cost: 2.31596 s, avg_batch_cost: 2.56535 s, avg_samples: 12.5, ips: 4.87264 samples/s, eta: 9:04:46
[2024/07/27 12:11:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:11:55] ppocr INFO: epoch: [280/1500], global_step: 840, lr: 0.001000, loss: 1.717741, loss_shrink_maps: 0.913453, loss_threshold_maps: 0.609931, loss_binary_maps: 0.180693, avg_reader_cost: 2.39986 s, avg_batch_cost: 2.63724 s, avg_samples: 12.5, ips: 4.73980 samples/s, eta: 9:04:18

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:59,  8.39it/s]
eval model::   1%|          | 4/500 [00:00<00:29, 16.90it/s]
eval model::   1%|▏         | 7/500 [00:00<00:25, 19.10it/s]
eval model::   2%|▏         | 9/500 [00:00<00:30, 16.34it/s]
eval model::   2%|▏         | 11/500 [00:00<00:33, 14.64it/s]
eval model::   3%|▎         | 13/500 [00:00<00:31, 15.37it/s]
eval model::   3%|▎         | 16/500 [00:00<00:28, 16.97it/s]
eval model::   4%|▍         | 19/500 [00:01<00:25, 18.65it/s]
eval model::   4%|▍         | 21/500 [00:01<00:26, 18.10it/s]
eval model::   5%|▍         | 24/500 [00:01<00:24, 19.74it/s]
eval model::   5%|▌         | 26/500 [00:01<00:25, 18.73it/s]
eval model::   6%|▌         | 29/500 [00:01<00:22, 20.48it/s]
eval model::   6%|▋         | 32/500 [00:01<00:26, 17.70it/s]
eval model::   7%|▋         | 34/500 [00:01<00:26, 17.35it/s]
eval model::   7%|▋         | 37/500 [00:02<00:23, 20.04it/s]
eval model::   8%|▊         | 40/500 [00:02<00:27, 16.81it/s]
eval model::   8%|▊         | 42/500 [00:02<00:28, 16.02it/s]
eval model::   9%|▉         | 44/500 [00:02<00:28, 16.21it/s]
eval model::   9%|▉         | 46/500 [00:02<00:29, 15.63it/s]
eval model::  10%|▉         | 49/500 [00:02<00:24, 18.54it/s]
eval model::  10%|█         | 52/500 [00:02<00:22, 19.65it/s]
eval model::  11%|█         | 55/500 [00:03<00:21, 20.75it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:21, 20.25it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:25, 17.24it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:26, 16.39it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:23, 18.46it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:20, 20.80it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:20, 21.36it/s]
eval model::  15%|█▌        | 75/500 [00:04<00:19, 21.68it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:19, 21.84it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:18, 23.19it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:19, 21.75it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:21, 19.37it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:24, 16.91it/s]
eval model::  19%|█▊        | 93/500 [00:05<00:22, 17.81it/s]
eval model::  19%|█▉        | 95/500 [00:05<00:22, 18.15it/s]
eval model::  19%|█▉        | 97/500 [00:05<00:23, 17.51it/s]
eval model::  20%|██        | 100/500 [00:05<00:22, 17.97it/s]
eval model::  20%|██        | 102/500 [00:05<00:21, 18.24it/s]
eval model::  21%|██        | 105/500 [00:05<00:19, 20.52it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:18, 20.83it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:18, 21.41it/s]
eval model::  23%|██▎       | 115/500 [00:06<00:17, 22.25it/s]
eval model::  24%|██▍       | 119/500 [00:06<00:15, 24.45it/s]
eval model::  24%|██▍       | 122/500 [00:06<00:17, 21.90it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:19, 19.41it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:19, 19.53it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:19, 18.49it/s]
eval model::  27%|██▋       | 133/500 [00:07<00:20, 18.23it/s]
eval model::  27%|██▋       | 136/500 [00:07<00:19, 18.42it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:19, 18.85it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:18, 19.00it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:18, 19.47it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:19, 18.02it/s]
eval model::  30%|███       | 150/500 [00:07<00:18, 19.24it/s]
eval model::  30%|███       | 152/500 [00:08<00:19, 18.14it/s]
eval model::  31%|███       | 156/500 [00:08<00:15, 21.85it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:15, 21.90it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:17, 19.28it/s]
eval model::  33%|███▎      | 165/500 [00:08<00:16, 19.84it/s]
eval model::  34%|███▎      | 168/500 [00:08<00:16, 19.63it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:17, 19.23it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:19, 17.00it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:19, 16.72it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:17, 18.15it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:21, 14.64it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:20, 15.32it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:19, 16.42it/s]
eval model::  38%|███▊      | 188/500 [00:10<00:18, 16.68it/s]
eval model::  38%|███▊      | 190/500 [00:10<00:18, 16.90it/s]
eval model::  39%|███▉      | 194/500 [00:10<00:14, 21.82it/s]
eval model::  39%|███▉      | 197/500 [00:10<00:15, 19.93it/s]
eval model::  40%|████      | 200/500 [00:10<00:13, 21.49it/s]
eval model::  41%|████      | 203/500 [00:10<00:13, 22.27it/s]
eval model::  41%|████      | 206/500 [00:11<00:20, 14.14it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:20, 14.34it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:20, 14.24it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.93it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:19, 14.45it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:20, 14.03it/s]
eval model::  44%|████▍     | 219/500 [00:11<00:18, 15.18it/s]
eval model::  44%|████▍     | 221/500 [00:12<00:18, 14.90it/s]
eval model::  45%|████▍     | 224/500 [00:12<00:16, 17.14it/s]
eval model::  45%|████▌     | 227/500 [00:12<00:14, 19.26it/s]
eval model::  46%|████▌     | 231/500 [00:12<00:11, 22.89it/s]
eval model::  47%|████▋     | 234/500 [00:12<00:12, 21.66it/s]
eval model::  47%|████▋     | 237/500 [00:12<00:11, 22.29it/s]
eval model::  48%|████▊     | 240/500 [00:12<00:12, 21.10it/s]
eval model::  49%|████▊     | 243/500 [00:13<00:15, 16.82it/s]
eval model::  49%|████▉     | 246/500 [00:13<00:14, 18.03it/s]
eval model::  50%|████▉     | 248/500 [00:13<00:14, 16.84it/s]
eval model::  50%|█████     | 250/500 [00:13<00:15, 15.69it/s]
eval model::  51%|█████     | 253/500 [00:13<00:14, 16.78it/s]
eval model::  51%|█████     | 256/500 [00:13<00:13, 17.98it/s]
eval model::  52%|█████▏    | 259/500 [00:14<00:12, 19.74it/s]
eval model::  52%|█████▏    | 262/500 [00:14<00:12, 19.42it/s]
eval model::  53%|█████▎    | 264/500 [00:14<00:13, 17.36it/s]
eval model::  53%|█████▎    | 267/500 [00:14<00:13, 17.66it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:12, 18.15it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:11, 20.60it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:12, 18.29it/s]
eval model::  56%|█████▌    | 278/500 [00:15<00:10, 20.30it/s]
eval model::  56%|█████▌    | 281/500 [00:15<00:10, 21.43it/s]
eval model::  57%|█████▋    | 284/500 [00:15<00:09, 22.40it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:16, 12.89it/s]
eval model::  58%|█████▊    | 290/500 [00:15<00:13, 15.18it/s]
eval model::  59%|█████▊    | 293/500 [00:16<00:12, 16.83it/s]
eval model::  59%|█████▉    | 296/500 [00:16<00:16, 12.60it/s]
eval model::  60%|█████▉    | 299/500 [00:16<00:13, 14.41it/s]
eval model::  60%|██████    | 301/500 [00:16<00:14, 13.49it/s]
eval model::  61%|██████    | 304/500 [00:16<00:12, 15.32it/s]
eval model::  61%|██████▏   | 307/500 [00:16<00:11, 17.11it/s]
eval model::  62%|██████▏   | 310/500 [00:17<00:10, 18.14it/s]
eval model::  62%|██████▏   | 312/500 [00:17<00:10, 18.46it/s]
eval model::  63%|██████▎   | 315/500 [00:17<00:09, 19.51it/s]
eval model::  64%|██████▎   | 318/500 [00:17<00:08, 21.39it/s]
eval model::  64%|██████▍   | 321/500 [00:17<00:08, 21.41it/s]
eval model::  65%|██████▍   | 324/500 [00:17<00:08, 21.21it/s]
eval model::  65%|██████▌   | 327/500 [00:17<00:07, 23.10it/s]
eval model::  66%|██████▌   | 330/500 [00:18<00:08, 19.68it/s]
eval model::  67%|██████▋   | 333/500 [00:18<00:08, 20.65it/s]
eval model::  67%|██████▋   | 336/500 [00:18<00:07, 22.05it/s]
eval model::  68%|██████▊   | 339/500 [00:18<00:07, 20.58it/s]
eval model::  68%|██████▊   | 342/500 [00:18<00:10, 14.43it/s]
eval model::  69%|██████▉   | 344/500 [00:18<00:10, 15.37it/s]
eval model::  69%|██████▉   | 346/500 [00:19<00:09, 16.06it/s]
eval model::  70%|██████▉   | 349/500 [00:19<00:08, 17.87it/s]
eval model::  70%|███████   | 351/500 [00:19<00:08, 17.25it/s]
eval model::  71%|███████   | 354/500 [00:19<00:07, 19.61it/s]
eval model::  71%|███████▏  | 357/500 [00:19<00:07, 18.86it/s]
eval model::  72%|███████▏  | 359/500 [00:19<00:08, 17.52it/s]
eval model::  72%|███████▏  | 361/500 [00:19<00:07, 17.74it/s]
eval model::  73%|███████▎  | 363/500 [00:19<00:07, 17.86it/s]
eval model::  73%|███████▎  | 365/500 [00:20<00:08, 16.49it/s]
eval model::  73%|███████▎  | 367/500 [00:20<00:08, 14.98it/s]
eval model::  74%|███████▍  | 370/500 [00:20<00:07, 16.98it/s]
eval model::  74%|███████▍  | 372/500 [00:20<00:07, 16.87it/s]
eval model::  75%|███████▌  | 375/500 [00:20<00:06, 18.03it/s]
eval model::  76%|███████▌  | 378/500 [00:20<00:05, 20.72it/s]
eval model::  76%|███████▌  | 381/500 [00:20<00:06, 19.64it/s]
eval model::  77%|███████▋  | 385/500 [00:21<00:05, 22.88it/s]
eval model::  78%|███████▊  | 388/500 [00:21<00:08, 12.79it/s]
eval model::  78%|███████▊  | 391/500 [00:21<00:07, 14.37it/s]
eval model::  79%|███████▉  | 394/500 [00:21<00:06, 15.72it/s]
eval model::  79%|███████▉  | 397/500 [00:21<00:05, 18.20it/s]
eval model::  80%|████████  | 400/500 [00:22<00:05, 16.80it/s]
eval model::  80%|████████  | 402/500 [00:22<00:05, 16.90it/s]
eval model::  81%|████████  | 404/500 [00:22<00:05, 17.44it/s]
eval model::  81%|████████▏ | 407/500 [00:22<00:05, 18.57it/s]
eval model::  82%|████████▏ | 410/500 [00:22<00:04, 19.64it/s]
eval model::  83%|████████▎ | 413/500 [00:22<00:04, 19.67it/s]
eval model::  83%|████████▎ | 416/500 [00:22<00:04, 19.36it/s]
eval model::  84%|████████▎ | 418/500 [00:23<00:04, 19.18it/s]
eval model::  84%|████████▍ | 420/500 [00:23<00:04, 16.07it/s]
eval model::  84%|████████▍ | 422/500 [00:23<00:04, 16.11it/s]
eval model::  85%|████████▍ | 424/500 [00:23<00:04, 16.47it/s]
eval model::  85%|████████▌ | 426/500 [00:23<00:04, 17.11it/s]
eval model::  86%|████████▌ | 429/500 [00:23<00:03, 20.02it/s]
eval model::  86%|████████▋ | 432/500 [00:23<00:03, 18.82it/s]
eval model::  87%|████████▋ | 435/500 [00:23<00:03, 20.64it/s]
eval model::  88%|████████▊ | 438/500 [00:24<00:02, 22.42it/s]
eval model::  88%|████████▊ | 441/500 [00:24<00:02, 20.37it/s]
eval model::  89%|████████▉ | 444/500 [00:24<00:02, 22.01it/s]
eval model::  89%|████████▉ | 447/500 [00:24<00:02, 20.29it/s]
eval model::  90%|█████████ | 450/500 [00:24<00:02, 18.20it/s]
eval model::  91%|█████████ | 453/500 [00:24<00:02, 19.55it/s]
eval model::  91%|█████████ | 456/500 [00:25<00:02, 19.09it/s]
eval model::  92%|█████████▏| 459/500 [00:25<00:01, 20.72it/s]
eval model::  92%|█████████▏| 462/500 [00:25<00:02, 18.10it/s]
eval model::  93%|█████████▎| 465/500 [00:25<00:01, 17.78it/s]
eval model::  93%|█████████▎| 467/500 [00:25<00:01, 17.76it/s]
eval model::  94%|█████████▍| 470/500 [00:25<00:01, 19.38it/s]
eval model::  95%|█████████▍| 473/500 [00:25<00:01, 19.32it/s]
eval model::  95%|█████████▌| 475/500 [00:26<00:01, 17.38it/s]
eval model::  96%|█████████▌| 478/500 [00:26<00:01, 18.60it/s]
eval model::  96%|█████████▌| 481/500 [00:26<00:00, 20.80it/s]
eval model::  97%|█████████▋| 484/500 [00:26<00:00, 22.40it/s]
eval model::  97%|█████████▋| 487/500 [00:26<00:00, 22.06it/s]
eval model::  98%|█████████▊| 490/500 [00:26<00:00, 22.11it/s]
eval model::  99%|█████████▊| 493/500 [00:26<00:00, 19.89it/s]
eval model::  99%|█████████▉| 496/500 [00:27<00:00, 21.09it/s]
eval model:: 100%|██████████| 500/500 [00:27<00:00, 25.14it/s]
eval model:: 100%|██████████| 500/500 [00:27<00:00, 18.40it/s]
[2024/07/27 12:12:22] ppocr INFO: cur metric, precision: 0.6631165919282511, recall: 0.5695714973519499, hmean: 0.6127946127946128, fps: 42.61087426686213
[2024/07/27 12:12:22] ppocr INFO: best metric, hmean: 0.6389595702572801, precision: 0.773972602739726, recall: 0.5440539239287434, fps: 43.996993903511786, best_epoch: 220
[2024/07/27 12:12:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:12:31] ppocr INFO: epoch: [281/1500], global_step: 843, lr: 0.001000, loss: 1.796375, loss_shrink_maps: 0.977703, loss_threshold_maps: 0.620130, loss_binary_maps: 0.193575, avg_reader_cost: 2.03107 s, avg_batch_cost: 2.30864 s, avg_samples: 12.5, ips: 5.41444 samples/s, eta: 9:03:35
[2024/07/27 12:12:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:12:40] ppocr INFO: epoch: [282/1500], global_step: 846, lr: 0.001000, loss: 1.764000, loss_shrink_maps: 0.956250, loss_threshold_maps: 0.613103, loss_binary_maps: 0.189446, avg_reader_cost: 2.30342 s, avg_batch_cost: 2.54345 s, avg_samples: 12.5, ips: 4.91458 samples/s, eta: 9:03:03
[2024/07/27 12:12:41] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:12:50] ppocr INFO: epoch: [283/1500], global_step: 849, lr: 0.001000, loss: 1.801460, loss_shrink_maps: 0.976074, loss_threshold_maps: 0.617863, loss_binary_maps: 0.193561, avg_reader_cost: 2.21300 s, avg_batch_cost: 2.56203 s, avg_samples: 12.5, ips: 4.87895 samples/s, eta: 9:02:31
[2024/07/27 12:12:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:12:58] ppocr INFO: epoch: [284/1500], global_step: 850, lr: 0.001000, loss: 1.724984, loss_shrink_maps: 0.917714, loss_threshold_maps: 0.610836, loss_binary_maps: 0.182268, avg_reader_cost: 0.65347 s, avg_batch_cost: 0.74594 s, avg_samples: 4.8, ips: 6.43485 samples/s, eta: 9:02:16
[2024/07/27 12:13:00] ppocr INFO: epoch: [284/1500], global_step: 852, lr: 0.001000, loss: 1.724984, loss_shrink_maps: 0.917714, loss_threshold_maps: 0.610836, loss_binary_maps: 0.182268, avg_reader_cost: 1.58382 s, avg_batch_cost: 1.73090 s, avg_samples: 7.7, ips: 4.44855 samples/s, eta: 9:01:56
[2024/07/27 12:13:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:13:09] ppocr INFO: epoch: [285/1500], global_step: 855, lr: 0.001000, loss: 1.756800, loss_shrink_maps: 0.933284, loss_threshold_maps: 0.613874, loss_binary_maps: 0.184886, avg_reader_cost: 2.30560 s, avg_batch_cost: 2.54490 s, avg_samples: 12.5, ips: 4.91179 samples/s, eta: 9:01:24
[2024/07/27 12:13:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:13:19] ppocr INFO: epoch: [286/1500], global_step: 858, lr: 0.001000, loss: 1.768348, loss_shrink_maps: 0.952688, loss_threshold_maps: 0.630513, loss_binary_maps: 0.189053, avg_reader_cost: 2.37069 s, avg_batch_cost: 2.61940 s, avg_samples: 12.5, ips: 4.77208 samples/s, eta: 9:00:55
[2024/07/27 12:13:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:13:28] ppocr INFO: epoch: [287/1500], global_step: 860, lr: 0.001000, loss: 1.756800, loss_shrink_maps: 0.933284, loss_threshold_maps: 0.630748, loss_binary_maps: 0.184886, avg_reader_cost: 1.48888 s, avg_batch_cost: 1.67195 s, avg_samples: 9.6, ips: 5.74180 samples/s, eta: 9:00:32
[2024/07/27 12:13:29] ppocr INFO: epoch: [287/1500], global_step: 861, lr: 0.001000, loss: 1.756800, loss_shrink_maps: 0.933284, loss_threshold_maps: 0.630748, loss_binary_maps: 0.184886, avg_reader_cost: 0.88208 s, avg_batch_cost: 0.93718 s, avg_samples: 2.9, ips: 3.09439 samples/s, eta: 9:00:25
[2024/07/27 12:13:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:13:39] ppocr INFO: epoch: [288/1500], global_step: 864, lr: 0.001000, loss: 1.721497, loss_shrink_maps: 0.914389, loss_threshold_maps: 0.627400, loss_binary_maps: 0.181212, avg_reader_cost: 2.21131 s, avg_batch_cost: 2.57519 s, avg_samples: 12.5, ips: 4.85400 samples/s, eta: 8:59:54
[2024/07/27 12:13:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:13:48] ppocr INFO: epoch: [289/1500], global_step: 867, lr: 0.001000, loss: 1.721497, loss_shrink_maps: 0.914389, loss_threshold_maps: 0.627400, loss_binary_maps: 0.181212, avg_reader_cost: 2.26214 s, avg_batch_cost: 2.50826 s, avg_samples: 12.5, ips: 4.98354 samples/s, eta: 8:59:21
[2024/07/27 12:13:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:13:58] ppocr INFO: epoch: [290/1500], global_step: 870, lr: 0.001000, loss: 1.764862, loss_shrink_maps: 0.949363, loss_threshold_maps: 0.636692, loss_binary_maps: 0.187997, avg_reader_cost: 2.28537 s, avg_batch_cost: 2.54475 s, avg_samples: 12.5, ips: 4.91208 samples/s, eta: 8:58:49
[2024/07/27 12:13:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:14:08] ppocr INFO: epoch: [291/1500], global_step: 873, lr: 0.001000, loss: 1.770162, loss_shrink_maps: 0.967576, loss_threshold_maps: 0.638321, loss_binary_maps: 0.191480, avg_reader_cost: 2.21866 s, avg_batch_cost: 2.67106 s, avg_samples: 12.5, ips: 4.67980 samples/s, eta: 8:58:22
[2024/07/27 12:14:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:14:17] ppocr INFO: epoch: [292/1500], global_step: 876, lr: 0.001000, loss: 1.740368, loss_shrink_maps: 0.958484, loss_threshold_maps: 0.638321, loss_binary_maps: 0.189636, avg_reader_cost: 2.26468 s, avg_batch_cost: 2.51249 s, avg_samples: 12.5, ips: 4.97515 samples/s, eta: 8:57:49
[2024/07/27 12:14:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:14:27] ppocr INFO: epoch: [293/1500], global_step: 879, lr: 0.001000, loss: 1.719001, loss_shrink_maps: 0.943727, loss_threshold_maps: 0.606457, loss_binary_maps: 0.186980, avg_reader_cost: 2.28936 s, avg_batch_cost: 2.65773 s, avg_samples: 12.5, ips: 4.70327 samples/s, eta: 8:57:21
[2024/07/27 12:14:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:14:36] ppocr INFO: epoch: [294/1500], global_step: 880, lr: 0.001000, loss: 1.719001, loss_shrink_maps: 0.943727, loss_threshold_maps: 0.604997, loss_binary_maps: 0.186980, avg_reader_cost: 0.71426 s, avg_batch_cost: 0.80716 s, avg_samples: 4.8, ips: 5.94678 samples/s, eta: 8:57:09
[2024/07/27 12:14:37] ppocr INFO: epoch: [294/1500], global_step: 882, lr: 0.001000, loss: 1.739159, loss_shrink_maps: 0.958484, loss_threshold_maps: 0.605273, loss_binary_maps: 0.189371, avg_reader_cost: 1.70694 s, avg_batch_cost: 1.85341 s, avg_samples: 7.7, ips: 4.15451 samples/s, eta: 8:56:54
[2024/07/27 12:14:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:14:47] ppocr INFO: epoch: [295/1500], global_step: 885, lr: 0.001000, loss: 1.719001, loss_shrink_maps: 0.943727, loss_threshold_maps: 0.605849, loss_binary_maps: 0.186980, avg_reader_cost: 2.41467 s, avg_batch_cost: 2.66229 s, avg_samples: 12.5, ips: 4.69520 samples/s, eta: 8:56:27
[2024/07/27 12:14:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:14:57] ppocr INFO: epoch: [296/1500], global_step: 888, lr: 0.001000, loss: 1.719001, loss_shrink_maps: 0.934930, loss_threshold_maps: 0.605849, loss_binary_maps: 0.185231, avg_reader_cost: 2.36782 s, avg_batch_cost: 2.60340 s, avg_samples: 12.5, ips: 4.80141 samples/s, eta: 8:55:58
[2024/07/27 12:14:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:15:07] ppocr INFO: epoch: [297/1500], global_step: 890, lr: 0.001000, loss: 1.719001, loss_shrink_maps: 0.934930, loss_threshold_maps: 0.605849, loss_binary_maps: 0.185231, avg_reader_cost: 1.50994 s, avg_batch_cost: 1.70272 s, avg_samples: 9.6, ips: 5.63805 samples/s, eta: 8:55:37
[2024/07/27 12:15:07] ppocr INFO: epoch: [297/1500], global_step: 891, lr: 0.001000, loss: 1.715063, loss_shrink_maps: 0.930822, loss_threshold_maps: 0.602713, loss_binary_maps: 0.184782, avg_reader_cost: 0.89735 s, avg_batch_cost: 0.95276 s, avg_samples: 2.9, ips: 3.04379 samples/s, eta: 8:55:30
[2024/07/27 12:15:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:15:17] ppocr INFO: epoch: [298/1500], global_step: 894, lr: 0.001000, loss: 1.715063, loss_shrink_maps: 0.930822, loss_threshold_maps: 0.607560, loss_binary_maps: 0.184782, avg_reader_cost: 2.20293 s, avg_batch_cost: 2.57632 s, avg_samples: 12.5, ips: 4.85187 samples/s, eta: 8:55:00
[2024/07/27 12:15:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:15:27] ppocr INFO: epoch: [299/1500], global_step: 897, lr: 0.001000, loss: 1.720989, loss_shrink_maps: 0.930822, loss_threshold_maps: 0.612727, loss_binary_maps: 0.184782, avg_reader_cost: 2.33153 s, avg_batch_cost: 2.66524 s, avg_samples: 12.5, ips: 4.69001 samples/s, eta: 8:54:33
[2024/07/27 12:15:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:15:37] ppocr INFO: epoch: [300/1500], global_step: 900, lr: 0.001000, loss: 1.742830, loss_shrink_maps: 0.935354, loss_threshold_maps: 0.627909, loss_binary_maps: 0.185707, avg_reader_cost: 2.21800 s, avg_batch_cost: 2.45859 s, avg_samples: 12.5, ips: 5.08421 samples/s, eta: 8:53:58

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:53,  9.39it/s]
eval model::   1%|          | 4/500 [00:00<00:27, 18.33it/s]
eval model::   1%|          | 6/500 [00:00<00:27, 18.06it/s]
eval model::   2%|▏         | 8/500 [00:00<00:27, 17.87it/s]
eval model::   2%|▏         | 11/500 [00:00<00:26, 18.17it/s]
eval model::   3%|▎         | 14/500 [00:00<00:25, 19.23it/s]
eval model::   3%|▎         | 17/500 [00:00<00:23, 20.91it/s]
eval model::   4%|▍         | 20/500 [00:01<00:23, 20.75it/s]
eval model::   5%|▍         | 23/500 [00:01<00:21, 22.21it/s]
eval model::   5%|▌         | 26/500 [00:01<00:22, 20.87it/s]
eval model::   6%|▌         | 29/500 [00:01<00:21, 21.48it/s]
eval model::   6%|▋         | 32/500 [00:01<00:22, 21.04it/s]
eval model::   7%|▋         | 35/500 [00:01<00:22, 20.47it/s]
eval model::   8%|▊         | 38/500 [00:01<00:21, 21.29it/s]
eval model::   8%|▊         | 41/500 [00:02<00:23, 19.88it/s]
eval model::   9%|▉         | 44/500 [00:02<00:22, 19.93it/s]
eval model::   9%|▉         | 47/500 [00:02<00:22, 20.36it/s]
eval model::  10%|█         | 50/500 [00:02<00:22, 19.77it/s]
eval model::  11%|█         | 53/500 [00:02<00:21, 20.65it/s]
eval model::  11%|█         | 56/500 [00:02<00:22, 19.45it/s]
eval model::  12%|█▏        | 59/500 [00:02<00:22, 19.93it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:24, 17.87it/s]
eval model::  13%|█▎        | 64/500 [00:03<00:25, 16.91it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:22, 19.40it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:19, 21.66it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:19, 22.35it/s]
eval model::  15%|█▌        | 76/500 [00:03<00:18, 22.90it/s]
eval model::  16%|█▌        | 79/500 [00:03<00:19, 21.26it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:20, 19.92it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:20, 20.40it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:20, 19.94it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:22, 18.13it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:22, 18.24it/s]
eval model::  19%|█▉        | 96/500 [00:04<00:20, 19.91it/s]
eval model::  20%|█▉        | 99/500 [00:04<00:18, 21.21it/s]
eval model::  20%|██        | 102/500 [00:05<00:18, 21.99it/s]
eval model::  21%|██        | 105/500 [00:05<00:18, 21.57it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:20, 18.73it/s]
eval model::  22%|██▏       | 110/500 [00:05<00:21, 18.08it/s]
eval model::  23%|██▎       | 113/500 [00:05<00:19, 19.47it/s]
eval model::  23%|██▎       | 115/500 [00:05<00:20, 18.91it/s]
eval model::  24%|██▎       | 118/500 [00:05<00:19, 19.36it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:19, 19.23it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:18, 19.95it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:21, 17.72it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:19, 18.76it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:21, 17.29it/s]
eval model::  27%|██▋       | 133/500 [00:06<00:18, 19.81it/s]
eval model::  27%|██▋       | 136/500 [00:06<00:17, 20.60it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:17, 20.56it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:17, 20.81it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:17, 19.78it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:19, 17.90it/s]
eval model::  30%|███       | 151/500 [00:07<00:18, 19.22it/s]
eval model::  31%|███       | 154/500 [00:07<00:16, 20.37it/s]
eval model::  31%|███▏      | 157/500 [00:07<00:16, 21.39it/s]
eval model::  32%|███▏      | 160/500 [00:08<00:19, 17.16it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:18, 18.01it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:16, 19.78it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:16, 19.86it/s]
eval model::  34%|███▍      | 172/500 [00:08<00:17, 19.29it/s]
eval model::  35%|███▌      | 175/500 [00:08<00:18, 17.45it/s]
eval model::  36%|███▌      | 178/500 [00:09<00:16, 19.23it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:17, 18.09it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:15, 19.88it/s]
eval model::  37%|███▋      | 187/500 [00:09<00:16, 19.53it/s]
eval model::  38%|███▊      | 190/500 [00:09<00:15, 19.94it/s]
eval model::  39%|███▊      | 193/500 [00:09<00:14, 21.64it/s]
eval model::  39%|███▉      | 196/500 [00:09<00:15, 20.15it/s]
eval model::  40%|███▉      | 199/500 [00:10<00:14, 21.18it/s]
eval model::  40%|████      | 202/500 [00:10<00:14, 21.18it/s]
eval model::  41%|████      | 205/500 [00:10<00:20, 14.35it/s]
eval model::  42%|████▏     | 208/500 [00:10<00:19, 15.33it/s]
eval model::  42%|████▏     | 210/500 [00:10<00:19, 15.22it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:17, 16.38it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:19, 14.59it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:20, 14.10it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:17, 16.44it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:17, 15.48it/s]
eval model::  45%|████▌     | 226/500 [00:11<00:14, 18.52it/s]
eval model::  46%|████▌     | 229/500 [00:11<00:13, 20.46it/s]
eval model::  46%|████▋     | 232/500 [00:12<00:11, 22.52it/s]
eval model::  47%|████▋     | 235/500 [00:12<00:12, 21.41it/s]
eval model::  48%|████▊     | 238/500 [00:12<00:12, 21.22it/s]
eval model::  48%|████▊     | 241/500 [00:12<00:11, 22.03it/s]
eval model::  49%|████▉     | 244/500 [00:12<00:12, 20.53it/s]
eval model::  49%|████▉     | 247/500 [00:12<00:11, 21.39it/s]
eval model::  50%|█████     | 250/500 [00:12<00:12, 20.37it/s]
eval model::  51%|█████     | 253/500 [00:13<00:11, 22.41it/s]
eval model::  51%|█████     | 256/500 [00:13<00:11, 21.46it/s]
eval model::  52%|█████▏    | 259/500 [00:13<00:11, 21.74it/s]
eval model::  52%|█████▏    | 262/500 [00:13<00:11, 20.03it/s]
eval model::  53%|█████▎    | 265/500 [00:13<00:13, 17.49it/s]
eval model::  54%|█████▎    | 268/500 [00:13<00:12, 19.01it/s]
eval model::  54%|█████▍    | 271/500 [00:13<00:11, 19.78it/s]
eval model::  55%|█████▍    | 274/500 [00:14<00:11, 20.42it/s]
eval model::  55%|█████▌    | 277/500 [00:14<00:11, 18.62it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:12, 17.81it/s]
eval model::  56%|█████▋    | 282/500 [00:14<00:11, 19.10it/s]
eval model::  57%|█████▋    | 285/500 [00:14<00:17, 12.37it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:15, 13.33it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:12, 16.98it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:12, 16.34it/s]
eval model::  59%|█████▉    | 296/500 [00:15<00:14, 14.56it/s]
eval model::  60%|█████▉    | 299/500 [00:15<00:12, 16.70it/s]
eval model::  60%|██████    | 301/500 [00:15<00:12, 15.83it/s]
eval model::  61%|██████    | 304/500 [00:16<00:11, 17.76it/s]
eval model::  61%|██████▏   | 307/500 [00:16<00:09, 19.52it/s]
eval model::  62%|██████▏   | 310/500 [00:16<00:08, 21.45it/s]
eval model::  63%|██████▎   | 313/500 [00:16<00:08, 22.76it/s]
eval model::  63%|██████▎   | 316/500 [00:16<00:08, 22.46it/s]
eval model::  64%|██████▍   | 319/500 [00:16<00:07, 23.35it/s]
eval model::  64%|██████▍   | 322/500 [00:16<00:08, 21.54it/s]
eval model::  65%|██████▌   | 325/500 [00:16<00:07, 22.54it/s]
eval model::  66%|██████▌   | 328/500 [00:17<00:08, 21.33it/s]
eval model::  66%|██████▌   | 331/500 [00:17<00:07, 21.23it/s]
eval model::  67%|██████▋   | 334/500 [00:17<00:07, 21.73it/s]
eval model::  67%|██████▋   | 337/500 [00:17<00:09, 17.40it/s]
eval model::  68%|██████▊   | 339/500 [00:17<00:09, 17.30it/s]
eval model::  68%|██████▊   | 341/500 [00:17<00:11, 13.72it/s]
eval model::  69%|██████▉   | 344/500 [00:18<00:09, 16.03it/s]
eval model::  69%|██████▉   | 347/500 [00:18<00:08, 18.29it/s]
eval model::  70%|███████   | 351/500 [00:18<00:07, 20.43it/s]
eval model::  71%|███████   | 355/500 [00:18<00:06, 21.84it/s]
eval model::  72%|███████▏  | 358/500 [00:18<00:06, 22.33it/s]
eval model::  72%|███████▏  | 361/500 [00:18<00:06, 20.92it/s]
eval model::  73%|███████▎  | 364/500 [00:18<00:06, 19.67it/s]
eval model::  73%|███████▎  | 367/500 [00:19<00:06, 20.70it/s]
eval model::  74%|███████▍  | 370/500 [00:19<00:06, 20.88it/s]
eval model::  75%|███████▍  | 373/500 [00:19<00:06, 20.03it/s]
eval model::  75%|███████▌  | 376/500 [00:19<00:05, 20.83it/s]
eval model::  76%|███████▌  | 379/500 [00:19<00:05, 21.80it/s]
eval model::  76%|███████▋  | 382/500 [00:19<00:05, 21.64it/s]
eval model::  77%|███████▋  | 385/500 [00:19<00:05, 21.78it/s]
eval model::  78%|███████▊  | 388/500 [00:20<00:08, 12.90it/s]
eval model::  78%|███████▊  | 391/500 [00:20<00:07, 14.70it/s]
eval model::  79%|███████▉  | 394/500 [00:20<00:06, 16.62it/s]
eval model::  79%|███████▉  | 397/500 [00:20<00:05, 18.62it/s]
eval model::  80%|████████  | 400/500 [00:20<00:05, 19.21it/s]
eval model::  81%|████████  | 403/500 [00:21<00:04, 20.31it/s]
eval model::  81%|████████  | 406/500 [00:21<00:04, 21.63it/s]
eval model::  82%|████████▏ | 409/500 [00:21<00:03, 22.90it/s]
eval model::  82%|████████▏ | 412/500 [00:21<00:03, 22.28it/s]
eval model::  83%|████████▎ | 415/500 [00:21<00:04, 20.43it/s]
eval model::  84%|████████▎ | 418/500 [00:21<00:04, 18.69it/s]
eval model::  84%|████████▍ | 420/500 [00:22<00:05, 14.70it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:05, 13.48it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:05, 14.46it/s]
eval model::  85%|████████▌ | 426/500 [00:22<00:04, 15.41it/s]
eval model::  86%|████████▌ | 429/500 [00:22<00:03, 18.58it/s]
eval model::  86%|████████▋ | 432/500 [00:22<00:03, 18.85it/s]
eval model::  87%|████████▋ | 435/500 [00:22<00:03, 20.73it/s]
eval model::  88%|████████▊ | 438/500 [00:22<00:02, 22.83it/s]
eval model::  88%|████████▊ | 441/500 [00:23<00:02, 21.45it/s]
eval model::  89%|████████▉ | 444/500 [00:23<00:02, 21.70it/s]
eval model::  89%|████████▉ | 447/500 [00:23<00:02, 21.65it/s]
eval model::  90%|█████████ | 450/500 [00:23<00:02, 20.34it/s]
eval model::  91%|█████████ | 453/500 [00:23<00:02, 22.20it/s]
eval model::  91%|█████████ | 456/500 [00:23<00:02, 20.72it/s]
eval model::  92%|█████████▏| 459/500 [00:23<00:01, 20.50it/s]
eval model::  92%|█████████▏| 462/500 [00:24<00:02, 16.98it/s]
eval model::  93%|█████████▎| 465/500 [00:24<00:02, 16.95it/s]
eval model::  93%|█████████▎| 467/500 [00:24<00:01, 16.97it/s]
eval model::  94%|█████████▍| 470/500 [00:24<00:01, 19.50it/s]
eval model::  95%|█████████▍| 473/500 [00:24<00:01, 19.84it/s]
eval model::  95%|█████████▌| 476/500 [00:24<00:01, 20.29it/s]
eval model::  96%|█████████▌| 479/500 [00:25<00:01, 20.16it/s]
eval model::  96%|█████████▋| 482/500 [00:25<00:00, 18.49it/s]
eval model::  97%|█████████▋| 486/500 [00:25<00:00, 20.49it/s]
eval model::  98%|█████████▊| 489/500 [00:25<00:00, 21.50it/s]
eval model::  98%|█████████▊| 492/500 [00:25<00:00, 20.27it/s]
eval model::  99%|█████████▉| 495/500 [00:25<00:00, 21.03it/s]
eval model:: 100%|█████████▉| 498/500 [00:25<00:00, 22.94it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.26it/s]
[2024/07/27 12:16:02] ppocr INFO: cur metric, precision: 0.6918671248568156, recall: 0.5816080885893115, hmean: 0.6319644258435784, fps: 45.484915826905066
[2024/07/27 12:16:02] ppocr INFO: best metric, hmean: 0.6389595702572801, precision: 0.773972602739726, recall: 0.5440539239287434, fps: 43.996993903511786, best_epoch: 220
[2024/07/27 12:16:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:16:12] ppocr INFO: epoch: [301/1500], global_step: 903, lr: 0.001000, loss: 1.742830, loss_shrink_maps: 0.935354, loss_threshold_maps: 0.621018, loss_binary_maps: 0.185707, avg_reader_cost: 2.06392 s, avg_batch_cost: 2.46932 s, avg_samples: 12.5, ips: 5.06213 samples/s, eta: 8:53:23
[2024/07/27 12:16:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:16:21] ppocr INFO: epoch: [302/1500], global_step: 906, lr: 0.001000, loss: 1.775544, loss_shrink_maps: 0.970886, loss_threshold_maps: 0.627909, loss_binary_maps: 0.192592, avg_reader_cost: 2.34966 s, avg_batch_cost: 2.58840 s, avg_samples: 12.5, ips: 4.82923 samples/s, eta: 8:52:53
[2024/07/27 12:16:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:16:31] ppocr INFO: epoch: [303/1500], global_step: 909, lr: 0.001000, loss: 1.766799, loss_shrink_maps: 0.956956, loss_threshold_maps: 0.627909, loss_binary_maps: 0.189021, avg_reader_cost: 2.28132 s, avg_batch_cost: 2.51866 s, avg_samples: 12.5, ips: 4.96295 samples/s, eta: 8:52:20
[2024/07/27 12:16:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:16:40] ppocr INFO: epoch: [304/1500], global_step: 910, lr: 0.001000, loss: 1.760615, loss_shrink_maps: 0.937556, loss_threshold_maps: 0.614421, loss_binary_maps: 0.185753, avg_reader_cost: 0.65233 s, avg_batch_cost: 0.79525 s, avg_samples: 4.8, ips: 6.03587 samples/s, eta: 8:52:08
[2024/07/27 12:16:41] ppocr INFO: epoch: [304/1500], global_step: 912, lr: 0.001000, loss: 1.760615, loss_shrink_maps: 0.937556, loss_threshold_maps: 0.615041, loss_binary_maps: 0.185753, avg_reader_cost: 1.68267 s, avg_batch_cost: 1.82928 s, avg_samples: 7.7, ips: 4.20930 samples/s, eta: 8:51:52
[2024/07/27 12:16:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:16:50] ppocr INFO: epoch: [305/1500], global_step: 915, lr: 0.001000, loss: 1.781728, loss_shrink_maps: 0.990123, loss_threshold_maps: 0.630681, loss_binary_maps: 0.195179, avg_reader_cost: 2.11439 s, avg_batch_cost: 2.42906 s, avg_samples: 12.5, ips: 5.14603 samples/s, eta: 8:51:16
[2024/07/27 12:16:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:17:00] ppocr INFO: epoch: [306/1500], global_step: 918, lr: 0.001000, loss: 1.781728, loss_shrink_maps: 0.964565, loss_threshold_maps: 0.615041, loss_binary_maps: 0.189171, avg_reader_cost: 2.29524 s, avg_batch_cost: 2.58432 s, avg_samples: 12.5, ips: 4.83687 samples/s, eta: 8:50:46
[2024/07/27 12:17:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:17:09] ppocr INFO: epoch: [307/1500], global_step: 920, lr: 0.001000, loss: 1.797531, loss_shrink_maps: 0.981234, loss_threshold_maps: 0.634993, loss_binary_maps: 0.193456, avg_reader_cost: 1.33214 s, avg_batch_cost: 1.62688 s, avg_samples: 9.6, ips: 5.90088 samples/s, eta: 8:50:22
[2024/07/27 12:17:10] ppocr INFO: epoch: [307/1500], global_step: 921, lr: 0.001000, loss: 1.808585, loss_shrink_maps: 0.981234, loss_threshold_maps: 0.634993, loss_binary_maps: 0.193456, avg_reader_cost: 0.85966 s, avg_batch_cost: 0.91483 s, avg_samples: 2.9, ips: 3.16999 samples/s, eta: 8:50:14
[2024/07/27 12:17:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:17:20] ppocr INFO: epoch: [308/1500], global_step: 924, lr: 0.001000, loss: 1.785156, loss_shrink_maps: 0.964565, loss_threshold_maps: 0.633606, loss_binary_maps: 0.189171, avg_reader_cost: 2.32555 s, avg_batch_cost: 2.56552 s, avg_samples: 12.5, ips: 4.87230 samples/s, eta: 8:49:44
[2024/07/27 12:17:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:17:29] ppocr INFO: epoch: [309/1500], global_step: 927, lr: 0.001000, loss: 1.748738, loss_shrink_maps: 0.942489, loss_threshold_maps: 0.632793, loss_binary_maps: 0.185906, avg_reader_cost: 2.21119 s, avg_batch_cost: 2.59395 s, avg_samples: 12.5, ips: 4.81891 samples/s, eta: 8:49:14
[2024/07/27 12:17:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:17:39] ppocr INFO: epoch: [310/1500], global_step: 930, lr: 0.001000, loss: 1.733932, loss_shrink_maps: 0.940688, loss_threshold_maps: 0.630353, loss_binary_maps: 0.186184, avg_reader_cost: 2.19270 s, avg_batch_cost: 2.50032 s, avg_samples: 12.5, ips: 4.99937 samples/s, eta: 8:48:41
[2024/07/27 12:17:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:17:49] ppocr INFO: epoch: [311/1500], global_step: 933, lr: 0.001000, loss: 1.713462, loss_shrink_maps: 0.931023, loss_threshold_maps: 0.622187, loss_binary_maps: 0.184349, avg_reader_cost: 2.35236 s, avg_batch_cost: 2.59357 s, avg_samples: 12.5, ips: 4.81962 samples/s, eta: 8:48:12
[2024/07/27 12:17:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:17:59] ppocr INFO: epoch: [312/1500], global_step: 936, lr: 0.001000, loss: 1.690365, loss_shrink_maps: 0.900221, loss_threshold_maps: 0.608183, loss_binary_maps: 0.177512, avg_reader_cost: 2.29340 s, avg_batch_cost: 2.66901 s, avg_samples: 12.5, ips: 4.68339 samples/s, eta: 8:47:45
[2024/07/27 12:17:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:18:08] ppocr INFO: epoch: [313/1500], global_step: 939, lr: 0.001000, loss: 1.675180, loss_shrink_maps: 0.895244, loss_threshold_maps: 0.596020, loss_binary_maps: 0.176605, avg_reader_cost: 2.31921 s, avg_batch_cost: 2.57932 s, avg_samples: 12.5, ips: 4.84624 samples/s, eta: 8:47:16
[2024/07/27 12:18:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:18:17] ppocr INFO: epoch: [314/1500], global_step: 940, lr: 0.001000, loss: 1.675180, loss_shrink_maps: 0.895244, loss_threshold_maps: 0.596020, loss_binary_maps: 0.176605, avg_reader_cost: 0.69182 s, avg_batch_cost: 0.77719 s, avg_samples: 4.8, ips: 6.17610 samples/s, eta: 8:47:02
[2024/07/27 12:18:18] ppocr INFO: epoch: [314/1500], global_step: 942, lr: 0.001000, loss: 1.675180, loss_shrink_maps: 0.895244, loss_threshold_maps: 0.596020, loss_binary_maps: 0.176605, avg_reader_cost: 1.64675 s, avg_batch_cost: 1.79418 s, avg_samples: 7.7, ips: 4.29165 samples/s, eta: 8:46:45
[2024/07/27 12:18:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:18:28] ppocr INFO: epoch: [315/1500], global_step: 945, lr: 0.001000, loss: 1.676326, loss_shrink_maps: 0.903594, loss_threshold_maps: 0.596020, loss_binary_maps: 0.178208, avg_reader_cost: 2.29559 s, avg_batch_cost: 2.68859 s, avg_samples: 12.5, ips: 4.64928 samples/s, eta: 8:46:20
[2024/07/27 12:18:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:18:38] ppocr INFO: epoch: [316/1500], global_step: 948, lr: 0.001000, loss: 1.676326, loss_shrink_maps: 0.895244, loss_threshold_maps: 0.596998, loss_binary_maps: 0.176605, avg_reader_cost: 2.43988 s, avg_batch_cost: 2.69627 s, avg_samples: 12.5, ips: 4.63603 samples/s, eta: 8:45:54
[2024/07/27 12:18:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:18:48] ppocr INFO: epoch: [317/1500], global_step: 950, lr: 0.001000, loss: 1.676326, loss_shrink_maps: 0.903594, loss_threshold_maps: 0.593229, loss_binary_maps: 0.178208, avg_reader_cost: 1.37970 s, avg_batch_cost: 1.68992 s, avg_samples: 9.6, ips: 5.68074 samples/s, eta: 8:45:33
[2024/07/27 12:18:48] ppocr INFO: epoch: [317/1500], global_step: 951, lr: 0.001000, loss: 1.676326, loss_shrink_maps: 0.903594, loss_threshold_maps: 0.592332, loss_binary_maps: 0.178208, avg_reader_cost: 0.89136 s, avg_batch_cost: 0.94739 s, avg_samples: 2.9, ips: 3.06105 samples/s, eta: 8:45:26
[2024/07/27 12:18:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:18:58] ppocr INFO: epoch: [318/1500], global_step: 954, lr: 0.001000, loss: 1.675328, loss_shrink_maps: 0.905309, loss_threshold_maps: 0.593229, loss_binary_maps: 0.179030, avg_reader_cost: 2.16814 s, avg_batch_cost: 2.52504 s, avg_samples: 12.5, ips: 4.95042 samples/s, eta: 8:44:55
[2024/07/27 12:18:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:19:08] ppocr INFO: epoch: [319/1500], global_step: 957, lr: 0.001000, loss: 1.683143, loss_shrink_maps: 0.910743, loss_threshold_maps: 0.611379, loss_binary_maps: 0.179887, avg_reader_cost: 2.23308 s, avg_batch_cost: 2.60223 s, avg_samples: 12.5, ips: 4.80357 samples/s, eta: 8:44:26
[2024/07/27 12:19:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:19:18] ppocr INFO: epoch: [320/1500], global_step: 960, lr: 0.001000, loss: 1.683143, loss_shrink_maps: 0.905309, loss_threshold_maps: 0.614008, loss_binary_maps: 0.179030, avg_reader_cost: 2.25638 s, avg_batch_cost: 2.51696 s, avg_samples: 12.5, ips: 4.96632 samples/s, eta: 8:43:54

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:55,  8.93it/s]
eval model::   1%|          | 4/500 [00:00<00:28, 17.59it/s]
eval model::   1%|          | 6/500 [00:00<00:26, 18.45it/s]
eval model::   2%|▏         | 8/500 [00:00<00:26, 18.81it/s]
eval model::   2%|▏         | 11/500 [00:00<00:25, 18.88it/s]
eval model::   3%|▎         | 14/500 [00:00<00:24, 20.11it/s]
eval model::   4%|▎         | 18/500 [00:00<00:20, 23.33it/s]
eval model::   4%|▍         | 21/500 [00:01<00:23, 20.60it/s]
eval model::   5%|▍         | 24/500 [00:01<00:23, 20.57it/s]
eval model::   5%|▌         | 27/500 [00:01<00:22, 20.70it/s]
eval model::   6%|▌         | 30/500 [00:01<00:20, 22.48it/s]
eval model::   7%|▋         | 33/500 [00:01<00:21, 22.04it/s]
eval model::   7%|▋         | 36/500 [00:01<00:22, 21.05it/s]
eval model::   8%|▊         | 39/500 [00:01<00:23, 19.50it/s]
eval model::   8%|▊         | 42/500 [00:02<00:24, 18.82it/s]
eval model::   9%|▉         | 45/500 [00:02<00:22, 19.96it/s]
eval model::  10%|▉         | 48/500 [00:02<00:24, 18.72it/s]
eval model::  10%|█         | 51/500 [00:02<00:22, 19.64it/s]
eval model::  11%|█         | 54/500 [00:02<00:20, 21.56it/s]
eval model::  11%|█▏        | 57/500 [00:02<00:19, 22.56it/s]
eval model::  12%|█▏        | 60/500 [00:02<00:22, 19.88it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:29, 14.84it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:23, 18.72it/s]
eval model::  14%|█▍        | 71/500 [00:03<00:20, 20.69it/s]
eval model::  15%|█▍        | 74/500 [00:03<00:20, 20.32it/s]
eval model::  15%|█▌        | 77/500 [00:03<00:21, 20.09it/s]
eval model::  16%|█▌        | 80/500 [00:03<00:19, 22.10it/s]
eval model::  17%|█▋        | 83/500 [00:04<00:18, 22.93it/s]
eval model::  17%|█▋        | 86/500 [00:04<00:19, 21.08it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:21, 19.14it/s]
eval model::  18%|█▊        | 92/500 [00:04<00:20, 19.57it/s]
eval model::  19%|█▉        | 95/500 [00:04<00:20, 19.64it/s]
eval model::  20%|█▉        | 98/500 [00:04<00:18, 21.59it/s]
eval model::  20%|██        | 101/500 [00:05<00:18, 21.03it/s]
eval model::  21%|██        | 104/500 [00:05<00:18, 21.12it/s]
eval model::  21%|██▏       | 107/500 [00:05<00:18, 21.02it/s]
eval model::  22%|██▏       | 110/500 [00:05<00:18, 21.02it/s]
eval model::  23%|██▎       | 113/500 [00:05<00:18, 21.39it/s]
eval model::  23%|██▎       | 116/500 [00:05<00:18, 20.72it/s]
eval model::  24%|██▍       | 119/500 [00:05<00:18, 20.97it/s]
eval model::  24%|██▍       | 122/500 [00:06<00:19, 19.23it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:20, 18.50it/s]
eval model::  25%|██▌       | 127/500 [00:06<00:18, 19.96it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:18, 19.72it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:20, 18.14it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:18, 20.09it/s]
eval model::  28%|██▊       | 138/500 [00:06<00:17, 20.25it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:17, 20.15it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:16, 21.26it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:18, 19.34it/s]
eval model::  30%|███       | 150/500 [00:07<00:16, 20.83it/s]
eval model::  31%|███       | 153/500 [00:07<00:17, 19.28it/s]
eval model::  31%|███▏      | 157/500 [00:07<00:15, 22.76it/s]
eval model::  32%|███▏      | 160/500 [00:07<00:18, 18.59it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:17, 19.16it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:16, 20.19it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:18, 18.22it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:19, 17.00it/s]
eval model::  35%|███▍      | 174/500 [00:08<00:21, 15.49it/s]
eval model::  35%|███▌      | 176/500 [00:08<00:19, 16.33it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:17, 17.99it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:19, 16.43it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:17, 18.41it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:16, 18.61it/s]
eval model::  38%|███▊      | 188/500 [00:09<00:16, 18.54it/s]
eval model::  38%|███▊      | 191/500 [00:09<00:16, 18.89it/s]
eval model::  39%|███▉      | 194/500 [00:09<00:14, 20.66it/s]
eval model::  39%|███▉      | 197/500 [00:10<00:16, 18.41it/s]
eval model::  40%|████      | 200/500 [00:10<00:14, 20.56it/s]
eval model::  41%|████      | 203/500 [00:10<00:13, 21.89it/s]
eval model::  41%|████      | 206/500 [00:10<00:21, 13.64it/s]
eval model::  42%|████▏     | 208/500 [00:10<00:21, 13.89it/s]
eval model::  42%|████▏     | 210/500 [00:10<00:20, 14.00it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.42it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:20, 13.67it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:21, 13.43it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:17, 15.98it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:18, 14.88it/s]
eval model::  45%|████▌     | 225/500 [00:11<00:15, 17.80it/s]
eval model::  46%|████▌     | 228/500 [00:11<00:13, 20.36it/s]
eval model::  46%|████▌     | 231/500 [00:12<00:12, 22.20it/s]
eval model::  47%|████▋     | 234/500 [00:12<00:11, 22.54it/s]
eval model::  47%|████▋     | 237/500 [00:12<00:11, 23.83it/s]
eval model::  48%|████▊     | 240/500 [00:12<00:10, 24.34it/s]
eval model::  49%|████▊     | 243/500 [00:12<00:12, 21.01it/s]
eval model::  49%|████▉     | 246/500 [00:12<00:11, 22.84it/s]
eval model::  50%|████▉     | 249/500 [00:12<00:11, 20.96it/s]
eval model::  50%|█████     | 252/500 [00:13<00:12, 20.35it/s]
eval model::  51%|█████     | 255/500 [00:13<00:11, 20.90it/s]
eval model::  52%|█████▏    | 258/500 [00:13<00:11, 21.06it/s]
eval model::  52%|█████▏    | 261/500 [00:13<00:11, 19.94it/s]
eval model::  53%|█████▎    | 264/500 [00:13<00:12, 19.56it/s]
eval model::  53%|█████▎    | 267/500 [00:13<00:11, 20.39it/s]
eval model::  54%|█████▍    | 270/500 [00:13<00:11, 20.38it/s]
eval model::  55%|█████▍    | 273/500 [00:14<00:11, 19.51it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:12, 18.16it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:11, 19.64it/s]
eval model::  56%|█████▌    | 281/500 [00:14<00:10, 20.50it/s]
eval model::  57%|█████▋    | 284/500 [00:14<00:10, 20.40it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:16, 13.18it/s]
eval model::  58%|█████▊    | 290/500 [00:15<00:13, 15.53it/s]
eval model::  59%|█████▊    | 293/500 [00:15<00:11, 17.26it/s]
eval model::  59%|█████▉    | 296/500 [00:15<00:14, 13.76it/s]
eval model::  60%|█████▉    | 299/500 [00:15<00:12, 16.42it/s]
eval model::  60%|██████    | 302/500 [00:15<00:12, 15.64it/s]
eval model::  61%|██████    | 304/500 [00:16<00:12, 16.18it/s]
eval model::  61%|██████▏   | 307/500 [00:16<00:10, 17.85it/s]
eval model::  62%|██████▏   | 309/500 [00:16<00:10, 17.67it/s]
eval model::  62%|██████▏   | 312/500 [00:16<00:09, 19.41it/s]
eval model::  63%|██████▎   | 315/500 [00:16<00:09, 19.91it/s]
eval model::  64%|██████▎   | 318/500 [00:16<00:08, 20.91it/s]
eval model::  64%|██████▍   | 321/500 [00:16<00:08, 21.49it/s]
eval model::  65%|██████▍   | 324/500 [00:16<00:08, 20.47it/s]
eval model::  65%|██████▌   | 327/500 [00:17<00:08, 21.51it/s]
eval model::  66%|██████▌   | 330/500 [00:17<00:08, 19.75it/s]
eval model::  67%|██████▋   | 333/500 [00:17<00:08, 19.55it/s]
eval model::  67%|██████▋   | 336/500 [00:17<00:07, 21.25it/s]
eval model::  68%|██████▊   | 339/500 [00:17<00:07, 20.93it/s]
eval model::  68%|██████▊   | 342/500 [00:17<00:10, 15.75it/s]
eval model::  69%|██████▉   | 345/500 [00:18<00:09, 17.09it/s]
eval model::  69%|██████▉   | 347/500 [00:18<00:08, 17.53it/s]
eval model::  70%|███████   | 350/500 [00:18<00:07, 19.82it/s]
eval model::  71%|███████   | 353/500 [00:18<00:06, 21.53it/s]
eval model::  71%|███████   | 356/500 [00:18<00:06, 22.10it/s]
eval model::  72%|███████▏  | 359/500 [00:18<00:06, 21.50it/s]
eval model::  72%|███████▏  | 362/500 [00:18<00:06, 21.36it/s]
eval model::  73%|███████▎  | 365/500 [00:19<00:07, 18.87it/s]
eval model::  73%|███████▎  | 367/500 [00:19<00:07, 17.40it/s]
eval model::  74%|███████▍  | 370/500 [00:19<00:06, 18.72it/s]
eval model::  75%|███████▍  | 373/500 [00:19<00:06, 20.75it/s]
eval model::  75%|███████▌  | 376/500 [00:19<00:05, 22.15it/s]
eval model::  76%|███████▌  | 380/500 [00:19<00:05, 23.36it/s]
eval model::  77%|███████▋  | 384/500 [00:19<00:04, 24.64it/s]
eval model::  77%|███████▋  | 387/500 [00:20<00:07, 15.14it/s]
eval model::  78%|███████▊  | 390/500 [00:20<00:06, 17.52it/s]
eval model::  79%|███████▊  | 393/500 [00:20<00:05, 18.41it/s]
eval model::  79%|███████▉  | 396/500 [00:20<00:05, 19.55it/s]
eval model::  80%|███████▉  | 399/500 [00:20<00:04, 21.44it/s]
eval model::  80%|████████  | 402/500 [00:20<00:05, 19.02it/s]
eval model::  81%|████████  | 405/500 [00:21<00:04, 19.25it/s]
eval model::  82%|████████▏ | 408/500 [00:21<00:04, 20.88it/s]
eval model::  82%|████████▏ | 411/500 [00:21<00:04, 21.24it/s]
eval model::  83%|████████▎ | 414/500 [00:21<00:03, 22.14it/s]
eval model::  83%|████████▎ | 417/500 [00:21<00:03, 21.03it/s]
eval model::  84%|████████▍ | 420/500 [00:21<00:04, 17.57it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:04, 16.53it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:04, 15.25it/s]
eval model::  85%|████████▌ | 426/500 [00:22<00:04, 15.78it/s]
eval model::  86%|████████▌ | 429/500 [00:22<00:03, 18.81it/s]
eval model::  86%|████████▋ | 432/500 [00:22<00:03, 17.49it/s]
eval model::  87%|████████▋ | 435/500 [00:22<00:03, 19.48it/s]
eval model::  88%|████████▊ | 438/500 [00:22<00:02, 21.84it/s]
eval model::  88%|████████▊ | 441/500 [00:23<00:02, 19.84it/s]
eval model::  89%|████████▉ | 444/500 [00:23<00:02, 22.09it/s]
eval model::  89%|████████▉ | 447/500 [00:23<00:02, 22.69it/s]
eval model::  90%|█████████ | 450/500 [00:23<00:02, 19.80it/s]
eval model::  91%|█████████ | 453/500 [00:23<00:02, 21.11it/s]
eval model::  91%|█████████ | 456/500 [00:23<00:02, 21.09it/s]
eval model::  92%|█████████▏| 459/500 [00:23<00:01, 21.97it/s]
eval model::  92%|█████████▏| 462/500 [00:23<00:01, 19.84it/s]
eval model::  93%|█████████▎| 465/500 [00:24<00:01, 18.75it/s]
eval model::  94%|█████████▎| 468/500 [00:24<00:01, 19.95it/s]
eval model::  94%|█████████▍| 471/500 [00:24<00:01, 21.58it/s]
eval model::  95%|█████████▍| 474/500 [00:24<00:01, 19.27it/s]
eval model::  96%|█████████▌| 478/500 [00:24<00:01, 21.91it/s]
eval model::  96%|█████████▌| 481/500 [00:24<00:00, 23.12it/s]
eval model::  97%|█████████▋| 484/500 [00:24<00:00, 23.91it/s]
eval model::  97%|█████████▋| 487/500 [00:25<00:00, 23.29it/s]
eval model::  98%|█████████▊| 490/500 [00:25<00:00, 23.13it/s]
eval model::  99%|█████████▊| 493/500 [00:25<00:00, 22.59it/s]
eval model::  99%|█████████▉| 496/500 [00:25<00:00, 21.85it/s]
eval model:: 100%|█████████▉| 499/500 [00:25<00:00, 21.98it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.45it/s]
[2024/07/27 12:19:43] ppocr INFO: cur metric, precision: 0.6529284164859002, recall: 0.5796822339913337, hmean: 0.6141290487120632, fps: 45.44940131851358
[2024/07/27 12:19:43] ppocr INFO: best metric, hmean: 0.6389595702572801, precision: 0.773972602739726, recall: 0.5440539239287434, fps: 43.996993903511786, best_epoch: 220
[2024/07/27 12:19:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:19:52] ppocr INFO: epoch: [321/1500], global_step: 963, lr: 0.001000, loss: 1.683143, loss_shrink_maps: 0.905309, loss_threshold_maps: 0.614008, loss_binary_maps: 0.179030, avg_reader_cost: 2.15365 s, avg_batch_cost: 2.51023 s, avg_samples: 12.5, ips: 4.97962 samples/s, eta: 8:43:21
[2024/07/27 12:19:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:20:02] ppocr INFO: epoch: [322/1500], global_step: 966, lr: 0.001000, loss: 1.682145, loss_shrink_maps: 0.906196, loss_threshold_maps: 0.610335, loss_binary_maps: 0.179246, avg_reader_cost: 2.25392 s, avg_batch_cost: 2.62094 s, avg_samples: 12.5, ips: 4.76928 samples/s, eta: 8:42:53
[2024/07/27 12:20:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:20:12] ppocr INFO: epoch: [323/1500], global_step: 969, lr: 0.001000, loss: 1.724637, loss_shrink_maps: 0.921360, loss_threshold_maps: 0.631828, loss_binary_maps: 0.181999, avg_reader_cost: 2.18885 s, avg_batch_cost: 2.58431 s, avg_samples: 12.5, ips: 4.83688 samples/s, eta: 8:42:24
[2024/07/27 12:20:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:20:20] ppocr INFO: epoch: [324/1500], global_step: 970, lr: 0.001000, loss: 1.724637, loss_shrink_maps: 0.914472, loss_threshold_maps: 0.631828, loss_binary_maps: 0.180971, avg_reader_cost: 0.69640 s, avg_batch_cost: 0.78903 s, avg_samples: 4.8, ips: 6.08338 samples/s, eta: 8:42:11
[2024/07/27 12:20:22] ppocr INFO: epoch: [324/1500], global_step: 972, lr: 0.001000, loss: 1.731234, loss_shrink_maps: 0.916989, loss_threshold_maps: 0.638951, loss_binary_maps: 0.181424, avg_reader_cost: 1.67081 s, avg_batch_cost: 1.81830 s, avg_samples: 7.7, ips: 4.23472 samples/s, eta: 8:41:55
[2024/07/27 12:20:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:20:32] ppocr INFO: epoch: [325/1500], global_step: 975, lr: 0.001000, loss: 1.723701, loss_shrink_maps: 0.897391, loss_threshold_maps: 0.630230, loss_binary_maps: 0.177677, avg_reader_cost: 2.19727 s, avg_batch_cost: 2.56722 s, avg_samples: 12.5, ips: 4.86907 samples/s, eta: 8:41:25
[2024/07/27 12:20:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:20:42] ppocr INFO: epoch: [326/1500], global_step: 978, lr: 0.001000, loss: 1.722454, loss_shrink_maps: 0.916989, loss_threshold_maps: 0.622297, loss_binary_maps: 0.181424, avg_reader_cost: 2.24976 s, avg_batch_cost: 2.60502 s, avg_samples: 12.5, ips: 4.79844 samples/s, eta: 8:40:56
[2024/07/27 12:20:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:20:51] ppocr INFO: epoch: [327/1500], global_step: 980, lr: 0.001000, loss: 1.737364, loss_shrink_maps: 0.929029, loss_threshold_maps: 0.629260, loss_binary_maps: 0.183629, avg_reader_cost: 1.50305 s, avg_batch_cost: 1.70926 s, avg_samples: 9.6, ips: 5.61645 samples/s, eta: 8:40:36
[2024/07/27 12:20:52] ppocr INFO: epoch: [327/1500], global_step: 981, lr: 0.001000, loss: 1.737364, loss_shrink_maps: 0.929029, loss_threshold_maps: 0.629260, loss_binary_maps: 0.183629, avg_reader_cost: 0.90109 s, avg_batch_cost: 0.95632 s, avg_samples: 2.9, ips: 3.03246 samples/s, eta: 8:40:30
[2024/07/27 12:20:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:21:02] ppocr INFO: epoch: [328/1500], global_step: 984, lr: 0.001000, loss: 1.643622, loss_shrink_maps: 0.873408, loss_threshold_maps: 0.607167, loss_binary_maps: 0.173130, avg_reader_cost: 2.23894 s, avg_batch_cost: 2.63039 s, avg_samples: 12.5, ips: 4.75214 samples/s, eta: 8:40:02
[2024/07/27 12:21:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:21:11] ppocr INFO: epoch: [329/1500], global_step: 987, lr: 0.001000, loss: 1.623988, loss_shrink_maps: 0.867907, loss_threshold_maps: 0.587261, loss_binary_maps: 0.171727, avg_reader_cost: 2.18255 s, avg_batch_cost: 2.54663 s, avg_samples: 12.5, ips: 4.90845 samples/s, eta: 8:39:31
[2024/07/27 12:21:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:21:21] ppocr INFO: epoch: [330/1500], global_step: 990, lr: 0.001000, loss: 1.605482, loss_shrink_maps: 0.867147, loss_threshold_maps: 0.589623, loss_binary_maps: 0.171454, avg_reader_cost: 2.23193 s, avg_batch_cost: 2.59840 s, avg_samples: 12.5, ips: 4.81066 samples/s, eta: 8:39:02
[2024/07/27 12:21:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:21:31] ppocr INFO: epoch: [331/1500], global_step: 993, lr: 0.001000, loss: 1.647953, loss_shrink_maps: 0.888259, loss_threshold_maps: 0.589623, loss_binary_maps: 0.175924, avg_reader_cost: 2.14988 s, avg_batch_cost: 2.49753 s, avg_samples: 12.5, ips: 5.00494 samples/s, eta: 8:38:30
[2024/07/27 12:21:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:21:40] ppocr INFO: epoch: [332/1500], global_step: 996, lr: 0.001000, loss: 1.647953, loss_shrink_maps: 0.888259, loss_threshold_maps: 0.598223, loss_binary_maps: 0.175924, avg_reader_cost: 2.33611 s, avg_batch_cost: 2.57490 s, avg_samples: 12.5, ips: 4.85455 samples/s, eta: 8:38:00
[2024/07/27 12:21:41] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:21:50] ppocr INFO: epoch: [333/1500], global_step: 999, lr: 0.001000, loss: 1.565772, loss_shrink_maps: 0.813649, loss_threshold_maps: 0.592691, loss_binary_maps: 0.161470, avg_reader_cost: 2.29144 s, avg_batch_cost: 2.54441 s, avg_samples: 12.5, ips: 4.91273 samples/s, eta: 8:37:29
[2024/07/27 12:21:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:21:58] ppocr INFO: epoch: [334/1500], global_step: 1000, lr: 0.001000, loss: 1.565772, loss_shrink_maps: 0.813649, loss_threshold_maps: 0.592691, loss_binary_maps: 0.161470, avg_reader_cost: 0.68411 s, avg_batch_cost: 0.77596 s, avg_samples: 4.8, ips: 6.18586 samples/s, eta: 8:37:17
[2024/07/27 12:22:00] ppocr INFO: epoch: [334/1500], global_step: 1002, lr: 0.001000, loss: 1.630585, loss_shrink_maps: 0.859619, loss_threshold_maps: 0.599652, loss_binary_maps: 0.170580, avg_reader_cost: 1.64470 s, avg_batch_cost: 1.79301 s, avg_samples: 7.7, ips: 4.29446 samples/s, eta: 8:37:00
[2024/07/27 12:22:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:22:10] ppocr INFO: epoch: [335/1500], global_step: 1005, lr: 0.001000, loss: 1.719001, loss_shrink_maps: 0.927460, loss_threshold_maps: 0.608854, loss_binary_maps: 0.184001, avg_reader_cost: 2.35418 s, avg_batch_cost: 2.61029 s, avg_samples: 12.5, ips: 4.78875 samples/s, eta: 8:36:31
[2024/07/27 12:22:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:22:20] ppocr INFO: epoch: [336/1500], global_step: 1008, lr: 0.001000, loss: 1.736602, loss_shrink_maps: 0.933544, loss_threshold_maps: 0.612797, loss_binary_maps: 0.185048, avg_reader_cost: 2.21016 s, avg_batch_cost: 2.57945 s, avg_samples: 12.5, ips: 4.84599 samples/s, eta: 8:36:02
[2024/07/27 12:22:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:22:29] ppocr INFO: epoch: [337/1500], global_step: 1010, lr: 0.001000, loss: 1.718738, loss_shrink_maps: 0.927460, loss_threshold_maps: 0.612797, loss_binary_maps: 0.184001, avg_reader_cost: 1.47154 s, avg_batch_cost: 1.66735 s, avg_samples: 9.6, ips: 5.75765 samples/s, eta: 8:35:40
[2024/07/27 12:22:29] ppocr INFO: epoch: [337/1500], global_step: 1011, lr: 0.001000, loss: 1.718738, loss_shrink_maps: 0.927460, loss_threshold_maps: 0.612797, loss_binary_maps: 0.184001, avg_reader_cost: 0.87982 s, avg_batch_cost: 0.93497 s, avg_samples: 2.9, ips: 3.10172 samples/s, eta: 8:35:33
[2024/07/27 12:22:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:22:39] ppocr INFO: epoch: [338/1500], global_step: 1014, lr: 0.001000, loss: 1.688377, loss_shrink_maps: 0.894452, loss_threshold_maps: 0.610152, loss_binary_maps: 0.177183, avg_reader_cost: 2.29693 s, avg_batch_cost: 2.67632 s, avg_samples: 12.5, ips: 4.67059 samples/s, eta: 8:35:07
[2024/07/27 12:22:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:22:49] ppocr INFO: epoch: [339/1500], global_step: 1017, lr: 0.001000, loss: 1.732676, loss_shrink_maps: 0.927916, loss_threshold_maps: 0.615392, loss_binary_maps: 0.184265, avg_reader_cost: 2.23272 s, avg_batch_cost: 2.57819 s, avg_samples: 12.5, ips: 4.84836 samples/s, eta: 8:34:38
[2024/07/27 12:22:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:22:59] ppocr INFO: epoch: [340/1500], global_step: 1020, lr: 0.001000, loss: 1.735215, loss_shrink_maps: 0.933544, loss_threshold_maps: 0.617018, loss_binary_maps: 0.185048, avg_reader_cost: 2.39332 s, avg_batch_cost: 2.63502 s, avg_samples: 12.5, ips: 4.74380 samples/s, eta: 8:34:10

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:51,  9.76it/s]
eval model::   1%|          | 4/500 [00:00<00:28, 17.53it/s]
eval model::   1%|          | 6/500 [00:00<00:27, 17.71it/s]
eval model::   2%|▏         | 8/500 [00:00<00:27, 18.20it/s]
eval model::   2%|▏         | 11/500 [00:00<00:26, 18.55it/s]
eval model::   3%|▎         | 14/500 [00:00<00:25, 18.89it/s]
eval model::   3%|▎         | 17/500 [00:00<00:23, 20.36it/s]
eval model::   4%|▍         | 20/500 [00:01<00:25, 19.12it/s]
eval model::   5%|▍         | 23/500 [00:01<00:22, 21.17it/s]
eval model::   5%|▌         | 26/500 [00:01<00:23, 20.04it/s]
eval model::   6%|▌         | 29/500 [00:01<00:22, 20.53it/s]
eval model::   6%|▋         | 32/500 [00:01<00:23, 19.66it/s]
eval model::   7%|▋         | 35/500 [00:01<00:23, 19.50it/s]
eval model::   8%|▊         | 38/500 [00:01<00:23, 20.07it/s]
eval model::   8%|▊         | 41/500 [00:02<00:23, 19.52it/s]
eval model::   9%|▊         | 43/500 [00:02<00:25, 17.67it/s]
eval model::   9%|▉         | 46/500 [00:02<00:25, 17.59it/s]
eval model::  10%|▉         | 49/500 [00:02<00:23, 19.59it/s]
eval model::  10%|█         | 52/500 [00:02<00:21, 21.08it/s]
eval model::  11%|█         | 55/500 [00:02<00:19, 22.36it/s]
eval model::  12%|█▏        | 58/500 [00:02<00:21, 20.86it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:26, 16.48it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:26, 16.58it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:21, 19.91it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:20, 20.94it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:21, 19.82it/s]
eval model::  15%|█▌        | 76/500 [00:03<00:20, 21.05it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:18, 22.43it/s]
eval model::  17%|█▋        | 83/500 [00:04<00:16, 24.96it/s]
eval model::  17%|█▋        | 86/500 [00:04<00:18, 22.83it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:21, 19.44it/s]
eval model::  18%|█▊        | 92/500 [00:04<00:21, 18.72it/s]
eval model::  19%|█▉        | 94/500 [00:04<00:21, 18.59it/s]
eval model::  19%|█▉        | 97/500 [00:04<00:20, 19.99it/s]
eval model::  20%|██        | 100/500 [00:05<00:20, 19.52it/s]
eval model::  21%|██        | 103/500 [00:05<00:18, 21.39it/s]
eval model::  21%|██        | 106/500 [00:05<00:18, 21.58it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:17, 22.35it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:18, 20.74it/s]
eval model::  23%|██▎       | 115/500 [00:05<00:18, 20.61it/s]
eval model::  24%|██▎       | 118/500 [00:05<00:17, 22.40it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:19, 19.55it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:19, 19.25it/s]
eval model::  25%|██▌       | 127/500 [00:06<00:18, 20.38it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:19, 19.37it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:19, 19.29it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:18, 20.26it/s]
eval model::  28%|██▊       | 138/500 [00:06<00:17, 20.19it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:18, 19.25it/s]
eval model::  29%|██▊       | 143/500 [00:07<00:18, 18.98it/s]
eval model::  29%|██▉       | 146/500 [00:07<00:16, 21.03it/s]
eval model::  30%|██▉       | 149/500 [00:07<00:18, 19.39it/s]
eval model::  30%|███       | 152/500 [00:07<00:18, 18.47it/s]
eval model::  31%|███       | 155/500 [00:07<00:17, 20.03it/s]
eval model::  32%|███▏      | 158/500 [00:07<00:16, 20.76it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:18, 18.26it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:18, 18.53it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:15, 21.13it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:14, 22.26it/s]
eval model::  34%|███▍      | 172/500 [00:08<00:16, 19.60it/s]
eval model::  35%|███▌      | 175/500 [00:08<00:18, 17.14it/s]
eval model::  36%|███▌      | 178/500 [00:08<00:16, 19.07it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:16, 19.66it/s]
eval model::  37%|███▋      | 185/500 [00:09<00:13, 22.66it/s]
eval model::  38%|███▊      | 188/500 [00:09<00:14, 21.42it/s]
eval model::  38%|███▊      | 191/500 [00:09<00:13, 22.27it/s]
eval model::  39%|███▉      | 194/500 [00:09<00:13, 22.36it/s]
eval model::  39%|███▉      | 197/500 [00:09<00:14, 20.55it/s]
eval model::  40%|████      | 200/500 [00:09<00:14, 21.22it/s]
eval model::  41%|████      | 203/500 [00:10<00:14, 19.83it/s]
eval model::  41%|████      | 206/500 [00:10<00:19, 15.01it/s]
eval model::  42%|████▏     | 208/500 [00:10<00:18, 15.48it/s]
eval model::  42%|████▏     | 210/500 [00:10<00:19, 15.18it/s]
eval model::  43%|████▎     | 213/500 [00:10<00:17, 16.43it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:19, 14.64it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:18, 14.99it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:15, 18.02it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:15, 17.42it/s]
eval model::  45%|████▌     | 226/500 [00:11<00:13, 20.94it/s]
eval model::  46%|████▌     | 229/500 [00:11<00:11, 23.10it/s]
eval model::  46%|████▋     | 232/500 [00:11<00:10, 24.77it/s]
eval model::  47%|████▋     | 235/500 [00:11<00:10, 24.42it/s]
eval model::  48%|████▊     | 238/500 [00:11<00:10, 25.37it/s]
eval model::  48%|████▊     | 241/500 [00:12<00:09, 26.23it/s]
eval model::  49%|████▉     | 244/500 [00:12<00:11, 22.77it/s]
eval model::  49%|████▉     | 247/500 [00:12<00:11, 22.02it/s]
eval model::  50%|█████     | 250/500 [00:12<00:12, 20.56it/s]
eval model::  51%|█████     | 253/500 [00:12<00:11, 21.79it/s]
eval model::  51%|█████     | 256/500 [00:12<00:11, 21.84it/s]
eval model::  52%|█████▏    | 259/500 [00:12<00:10, 22.75it/s]
eval model::  52%|█████▏    | 262/500 [00:13<00:11, 21.18it/s]
eval model::  53%|█████▎    | 265/500 [00:13<00:11, 19.65it/s]
eval model::  54%|█████▎    | 268/500 [00:13<00:12, 19.31it/s]
eval model::  54%|█████▍    | 270/500 [00:13<00:11, 19.29it/s]
eval model::  55%|█████▍    | 273/500 [00:13<00:11, 19.92it/s]
eval model::  55%|█████▌    | 276/500 [00:13<00:12, 18.27it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:11, 19.20it/s]
eval model::  56%|█████▋    | 282/500 [00:14<00:10, 21.06it/s]
eval model::  57%|█████▋    | 285/500 [00:14<00:15, 13.97it/s]
eval model::  57%|█████▋    | 287/500 [00:14<00:14, 14.51it/s]
eval model::  58%|█████▊    | 290/500 [00:14<00:12, 17.32it/s]
eval model::  59%|█████▊    | 293/500 [00:14<00:10, 19.24it/s]
eval model::  59%|█████▉    | 296/500 [00:15<00:12, 15.76it/s]
eval model::  60%|██████    | 300/500 [00:15<00:11, 18.00it/s]
eval model::  61%|██████    | 303/500 [00:15<00:10, 19.26it/s]
eval model::  61%|██████    | 306/500 [00:15<00:09, 20.51it/s]
eval model::  62%|██████▏   | 309/500 [00:15<00:08, 21.62it/s]
eval model::  62%|██████▏   | 312/500 [00:15<00:08, 21.85it/s]
eval model::  63%|██████▎   | 315/500 [00:15<00:08, 20.82it/s]
eval model::  64%|██████▎   | 318/500 [00:16<00:08, 21.63it/s]
eval model::  64%|██████▍   | 321/500 [00:16<00:08, 20.70it/s]
eval model::  65%|██████▍   | 324/500 [00:16<00:08, 20.79it/s]
eval model::  65%|██████▌   | 327/500 [00:16<00:07, 21.81it/s]
eval model::  66%|██████▌   | 330/500 [00:16<00:07, 21.40it/s]
eval model::  67%|██████▋   | 334/500 [00:16<00:06, 24.67it/s]
eval model::  67%|██████▋   | 337/500 [00:16<00:07, 22.36it/s]
eval model::  68%|██████▊   | 340/500 [00:17<00:10, 15.59it/s]
eval model::  69%|██████▊   | 343/500 [00:17<00:09, 17.16it/s]
eval model::  69%|██████▉   | 346/500 [00:17<00:08, 17.95it/s]
eval model::  70%|██████▉   | 349/500 [00:17<00:07, 19.51it/s]
eval model::  70%|███████   | 352/500 [00:17<00:07, 20.37it/s]
eval model::  71%|███████   | 355/500 [00:17<00:06, 21.09it/s]
eval model::  72%|███████▏  | 358/500 [00:18<00:07, 20.02it/s]
eval model::  72%|███████▏  | 361/500 [00:18<00:06, 19.95it/s]
eval model::  73%|███████▎  | 364/500 [00:18<00:07, 18.46it/s]
eval model::  73%|███████▎  | 367/500 [00:18<00:06, 19.22it/s]
eval model::  74%|███████▍  | 370/500 [00:18<00:06, 20.83it/s]
eval model::  75%|███████▍  | 373/500 [00:18<00:06, 19.82it/s]
eval model::  75%|███████▌  | 376/500 [00:19<00:05, 20.90it/s]
eval model::  76%|███████▌  | 379/500 [00:19<00:05, 21.58it/s]
eval model::  76%|███████▋  | 382/500 [00:19<00:05, 20.69it/s]
eval model::  77%|███████▋  | 385/500 [00:19<00:05, 21.93it/s]
eval model::  78%|███████▊  | 388/500 [00:19<00:07, 14.69it/s]
eval model::  78%|███████▊  | 391/500 [00:19<00:06, 16.72it/s]
eval model::  79%|███████▉  | 394/500 [00:20<00:06, 17.53it/s]
eval model::  79%|███████▉  | 397/500 [00:20<00:05, 19.94it/s]
eval model::  80%|████████  | 400/500 [00:20<00:05, 19.64it/s]
eval model::  81%|████████  | 403/500 [00:20<00:04, 19.44it/s]
eval model::  81%|████████  | 406/500 [00:20<00:04, 21.58it/s]
eval model::  82%|████████▏ | 410/500 [00:20<00:03, 23.60it/s]
eval model::  83%|████████▎ | 413/500 [00:20<00:04, 21.53it/s]
eval model::  83%|████████▎ | 416/500 [00:21<00:04, 20.34it/s]
eval model::  84%|████████▍ | 419/500 [00:21<00:04, 20.01it/s]
eval model::  84%|████████▍ | 422/500 [00:21<00:04, 15.77it/s]
eval model::  85%|████████▍ | 424/500 [00:21<00:04, 15.61it/s]
eval model::  85%|████████▌ | 426/500 [00:21<00:04, 15.47it/s]
eval model::  86%|████████▌ | 429/500 [00:21<00:03, 17.85it/s]
eval model::  86%|████████▌ | 431/500 [00:22<00:04, 16.89it/s]
eval model::  87%|████████▋ | 435/500 [00:22<00:03, 20.22it/s]
eval model::  88%|████████▊ | 439/500 [00:22<00:02, 20.69it/s]
eval model::  88%|████████▊ | 442/500 [00:22<00:02, 20.22it/s]
eval model::  89%|████████▉ | 445/500 [00:22<00:02, 21.53it/s]
eval model::  90%|████████▉ | 448/500 [00:22<00:02, 22.36it/s]
eval model::  90%|█████████ | 451/500 [00:22<00:02, 21.71it/s]
eval model::  91%|█████████ | 454/500 [00:23<00:02, 22.31it/s]
eval model::  91%|█████████▏| 457/500 [00:23<00:01, 22.61it/s]
eval model::  92%|█████████▏| 460/500 [00:23<00:01, 20.83it/s]
eval model::  93%|█████████▎| 463/500 [00:23<00:01, 19.32it/s]
eval model::  93%|█████████▎| 465/500 [00:23<00:01, 19.30it/s]
eval model::  94%|█████████▎| 468/500 [00:23<00:01, 20.02it/s]
eval model::  94%|█████████▍| 471/500 [00:23<00:01, 19.68it/s]
eval model::  95%|█████████▍| 474/500 [00:24<00:01, 19.55it/s]
eval model::  95%|█████████▌| 477/500 [00:24<00:01, 20.84it/s]
eval model::  96%|█████████▌| 480/500 [00:24<00:00, 21.02it/s]
eval model::  97%|█████████▋| 483/500 [00:24<00:00, 21.63it/s]
eval model::  97%|█████████▋| 486/500 [00:24<00:00, 18.87it/s]
eval model::  98%|█████████▊| 489/500 [00:24<00:00, 20.23it/s]
eval model::  98%|█████████▊| 492/500 [00:24<00:00, 19.54it/s]
eval model::  99%|█████████▉| 495/500 [00:25<00:00, 20.96it/s]
eval model:: 100%|█████████▉| 498/500 [00:25<00:00, 22.37it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.77it/s]
[2024/07/27 12:23:24] ppocr INFO: cur metric, precision: 0.7545857052498419, recall: 0.5743861338468945, hmean: 0.6522689994532532, fps: 44.608739620472015
[2024/07/27 12:23:25] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/27 12:23:25] ppocr INFO: best metric, hmean: 0.6522689994532532, precision: 0.7545857052498419, recall: 0.5743861338468945, fps: 44.608739620472015, best_epoch: 340
[2024/07/27 12:23:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:23:34] ppocr INFO: epoch: [341/1500], global_step: 1023, lr: 0.001000, loss: 1.728294, loss_shrink_maps: 0.922572, loss_threshold_maps: 0.609758, loss_binary_maps: 0.183101, avg_reader_cost: 2.34382 s, avg_batch_cost: 2.62152 s, avg_samples: 12.5, ips: 4.76822 samples/s, eta: 8:33:43
[2024/07/27 12:23:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:23:44] ppocr INFO: epoch: [342/1500], global_step: 1026, lr: 0.001000, loss: 1.657974, loss_shrink_maps: 0.869796, loss_threshold_maps: 0.605337, loss_binary_maps: 0.172275, avg_reader_cost: 2.14580 s, avg_batch_cost: 2.49849 s, avg_samples: 12.5, ips: 5.00302 samples/s, eta: 8:33:10
[2024/07/27 12:23:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:23:54] ppocr INFO: epoch: [343/1500], global_step: 1029, lr: 0.001000, loss: 1.630020, loss_shrink_maps: 0.869796, loss_threshold_maps: 0.594932, loss_binary_maps: 0.172275, avg_reader_cost: 2.27951 s, avg_batch_cost: 2.64670 s, avg_samples: 12.5, ips: 4.72285 samples/s, eta: 8:32:43
[2024/07/27 12:23:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:24:02] ppocr INFO: epoch: [344/1500], global_step: 1030, lr: 0.001000, loss: 1.630020, loss_shrink_maps: 0.869796, loss_threshold_maps: 0.594932, loss_binary_maps: 0.172275, avg_reader_cost: 0.71970 s, avg_batch_cost: 0.81555 s, avg_samples: 4.8, ips: 5.88563 samples/s, eta: 8:32:32
[2024/07/27 12:24:04] ppocr INFO: epoch: [344/1500], global_step: 1032, lr: 0.001000, loss: 1.618798, loss_shrink_maps: 0.861421, loss_threshold_maps: 0.589819, loss_binary_maps: 0.170711, avg_reader_cost: 1.72340 s, avg_batch_cost: 1.87128 s, avg_samples: 7.7, ips: 4.11482 samples/s, eta: 8:32:18
[2024/07/27 12:24:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:24:14] ppocr INFO: epoch: [345/1500], global_step: 1035, lr: 0.001000, loss: 1.618890, loss_shrink_maps: 0.869044, loss_threshold_maps: 0.590391, loss_binary_maps: 0.172027, avg_reader_cost: 2.36466 s, avg_batch_cost: 2.60600 s, avg_samples: 12.5, ips: 4.79662 samples/s, eta: 8:31:49
[2024/07/27 12:24:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:24:23] ppocr INFO: epoch: [346/1500], global_step: 1038, lr: 0.001000, loss: 1.618890, loss_shrink_maps: 0.869044, loss_threshold_maps: 0.590391, loss_binary_maps: 0.172027, avg_reader_cost: 2.09731 s, avg_batch_cost: 2.41226 s, avg_samples: 12.5, ips: 5.18187 samples/s, eta: 8:31:15
[2024/07/27 12:24:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:24:32] ppocr INFO: epoch: [347/1500], global_step: 1040, lr: 0.001000, loss: 1.618890, loss_shrink_maps: 0.869044, loss_threshold_maps: 0.590391, loss_binary_maps: 0.172027, avg_reader_cost: 1.43156 s, avg_batch_cost: 1.64865 s, avg_samples: 9.6, ips: 5.82295 samples/s, eta: 8:30:53
[2024/07/27 12:24:33] ppocr INFO: epoch: [347/1500], global_step: 1041, lr: 0.001000, loss: 1.628310, loss_shrink_maps: 0.869564, loss_threshold_maps: 0.590391, loss_binary_maps: 0.172755, avg_reader_cost: 0.87079 s, avg_batch_cost: 0.92575 s, avg_samples: 2.9, ips: 3.13260 samples/s, eta: 8:30:45
[2024/07/27 12:24:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:24:43] ppocr INFO: epoch: [348/1500], global_step: 1044, lr: 0.001000, loss: 1.631128, loss_shrink_maps: 0.864365, loss_threshold_maps: 0.601950, loss_binary_maps: 0.171697, avg_reader_cost: 2.20862 s, avg_batch_cost: 2.53534 s, avg_samples: 12.5, ips: 4.93030 samples/s, eta: 8:30:15
[2024/07/27 12:24:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:24:52] ppocr INFO: epoch: [349/1500], global_step: 1047, lr: 0.001000, loss: 1.670306, loss_shrink_maps: 0.887214, loss_threshold_maps: 0.604722, loss_binary_maps: 0.176279, avg_reader_cost: 2.24591 s, avg_batch_cost: 2.47927 s, avg_samples: 12.5, ips: 5.04180 samples/s, eta: 8:29:42
[2024/07/27 12:24:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:25:02] ppocr INFO: epoch: [350/1500], global_step: 1050, lr: 0.001000, loss: 1.671012, loss_shrink_maps: 0.883489, loss_threshold_maps: 0.608379, loss_binary_maps: 0.175662, avg_reader_cost: 2.33151 s, avg_batch_cost: 2.57543 s, avg_samples: 12.5, ips: 4.85356 samples/s, eta: 8:29:13
[2024/07/27 12:25:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:25:12] ppocr INFO: epoch: [351/1500], global_step: 1053, lr: 0.001000, loss: 1.685991, loss_shrink_maps: 0.896762, loss_threshold_maps: 0.615299, loss_binary_maps: 0.177859, avg_reader_cost: 2.28325 s, avg_batch_cost: 2.52500 s, avg_samples: 12.5, ips: 4.95049 samples/s, eta: 8:28:42
[2024/07/27 12:25:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:25:21] ppocr INFO: epoch: [352/1500], global_step: 1056, lr: 0.001000, loss: 1.677038, loss_shrink_maps: 0.883489, loss_threshold_maps: 0.612287, loss_binary_maps: 0.175662, avg_reader_cost: 2.23202 s, avg_batch_cost: 2.57493 s, avg_samples: 12.5, ips: 4.85450 samples/s, eta: 8:28:13
[2024/07/27 12:25:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:25:31] ppocr INFO: epoch: [353/1500], global_step: 1059, lr: 0.001000, loss: 1.677038, loss_shrink_maps: 0.883489, loss_threshold_maps: 0.612287, loss_binary_maps: 0.175662, avg_reader_cost: 2.27362 s, avg_batch_cost: 2.51149 s, avg_samples: 12.5, ips: 4.97712 samples/s, eta: 8:27:42
[2024/07/27 12:25:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:25:39] ppocr INFO: epoch: [354/1500], global_step: 1060, lr: 0.001000, loss: 1.683215, loss_shrink_maps: 0.883489, loss_threshold_maps: 0.615299, loss_binary_maps: 0.175662, avg_reader_cost: 0.67754 s, avg_batch_cost: 0.76911 s, avg_samples: 4.8, ips: 6.24098 samples/s, eta: 8:27:29
[2024/07/27 12:25:40] ppocr INFO: epoch: [354/1500], global_step: 1062, lr: 0.001000, loss: 1.683215, loss_shrink_maps: 0.883489, loss_threshold_maps: 0.609564, loss_binary_maps: 0.175662, avg_reader_cost: 1.63007 s, avg_batch_cost: 1.77706 s, avg_samples: 7.7, ips: 4.33299 samples/s, eta: 8:27:11
[2024/07/27 12:25:41] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:25:50] ppocr INFO: epoch: [355/1500], global_step: 1065, lr: 0.001000, loss: 1.683215, loss_shrink_maps: 0.883489, loss_threshold_maps: 0.609564, loss_binary_maps: 0.175662, avg_reader_cost: 2.42777 s, avg_batch_cost: 2.67942 s, avg_samples: 12.5, ips: 4.66520 samples/s, eta: 8:26:46
[2024/07/27 12:25:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:26:00] ppocr INFO: epoch: [356/1500], global_step: 1068, lr: 0.001000, loss: 1.646456, loss_shrink_maps: 0.872939, loss_threshold_maps: 0.596045, loss_binary_maps: 0.173083, avg_reader_cost: 2.21861 s, avg_batch_cost: 2.52637 s, avg_samples: 12.5, ips: 4.94781 samples/s, eta: 8:26:15
[2024/07/27 12:26:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:26:09] ppocr INFO: epoch: [357/1500], global_step: 1070, lr: 0.001000, loss: 1.636692, loss_shrink_maps: 0.869790, loss_threshold_maps: 0.596045, loss_binary_maps: 0.172319, avg_reader_cost: 1.43354 s, avg_batch_cost: 1.61840 s, avg_samples: 9.6, ips: 5.93179 samples/s, eta: 8:25:52
[2024/07/27 12:26:09] ppocr INFO: epoch: [357/1500], global_step: 1071, lr: 0.001000, loss: 1.636692, loss_shrink_maps: 0.869790, loss_threshold_maps: 0.596045, loss_binary_maps: 0.172319, avg_reader_cost: 0.85571 s, avg_batch_cost: 0.91152 s, avg_samples: 2.9, ips: 3.18149 samples/s, eta: 8:25:44
[2024/07/27 12:26:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:26:19] ppocr INFO: epoch: [358/1500], global_step: 1074, lr: 0.001000, loss: 1.610624, loss_shrink_maps: 0.851299, loss_threshold_maps: 0.593802, loss_binary_maps: 0.168560, avg_reader_cost: 2.30096 s, avg_batch_cost: 2.53990 s, avg_samples: 12.5, ips: 4.92146 samples/s, eta: 8:25:14
[2024/07/27 12:26:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:26:29] ppocr INFO: epoch: [359/1500], global_step: 1077, lr: 0.001000, loss: 1.610624, loss_shrink_maps: 0.851299, loss_threshold_maps: 0.593308, loss_binary_maps: 0.168560, avg_reader_cost: 2.30421 s, avg_batch_cost: 2.54474 s, avg_samples: 12.5, ips: 4.91209 samples/s, eta: 8:24:44
[2024/07/27 12:26:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:26:38] ppocr INFO: epoch: [360/1500], global_step: 1080, lr: 0.001000, loss: 1.589877, loss_shrink_maps: 0.824195, loss_threshold_maps: 0.590613, loss_binary_maps: 0.162611, avg_reader_cost: 2.32417 s, avg_batch_cost: 2.58264 s, avg_samples: 12.5, ips: 4.84000 samples/s, eta: 8:24:15

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:53,  9.27it/s]
eval model::   1%|          | 4/500 [00:00<00:29, 16.60it/s]
eval model::   1%|          | 6/500 [00:00<00:28, 17.24it/s]
eval model::   2%|▏         | 8/500 [00:00<00:28, 17.37it/s]
eval model::   2%|▏         | 11/500 [00:00<00:32, 14.86it/s]
eval model::   3%|▎         | 14/500 [00:00<00:30, 15.98it/s]
eval model::   3%|▎         | 17/500 [00:01<00:26, 18.17it/s]
eval model::   4%|▍         | 20/500 [00:01<00:25, 19.03it/s]
eval model::   5%|▍         | 23/500 [00:01<00:22, 20.81it/s]
eval model::   5%|▌         | 26/500 [00:01<00:22, 21.40it/s]
eval model::   6%|▌         | 29/500 [00:01<00:21, 22.22it/s]
eval model::   6%|▋         | 32/500 [00:01<00:21, 21.30it/s]
eval model::   7%|▋         | 35/500 [00:01<00:21, 21.21it/s]
eval model::   8%|▊         | 38/500 [00:01<00:21, 21.36it/s]
eval model::   8%|▊         | 41/500 [00:02<00:23, 19.42it/s]
eval model::   9%|▊         | 43/500 [00:02<00:26, 17.01it/s]
eval model::   9%|▉         | 45/500 [00:02<00:25, 17.53it/s]
eval model::   9%|▉         | 47/500 [00:02<00:28, 15.99it/s]
eval model::  10%|█         | 50/500 [00:02<00:24, 18.18it/s]
eval model::  11%|█         | 53/500 [00:02<00:22, 19.63it/s]
eval model::  11%|█         | 56/500 [00:02<00:20, 21.50it/s]
eval model::  12%|█▏        | 59/500 [00:03<00:22, 19.63it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:25, 16.94it/s]
eval model::  13%|█▎        | 64/500 [00:03<00:25, 16.86it/s]
eval model::  14%|█▎        | 68/500 [00:03<00:20, 20.85it/s]
eval model::  14%|█▍        | 71/500 [00:03<00:20, 20.98it/s]
eval model::  15%|█▍        | 74/500 [00:03<00:20, 20.77it/s]
eval model::  15%|█▌        | 77/500 [00:04<00:20, 20.53it/s]
eval model::  16%|█▌        | 80/500 [00:04<00:19, 21.94it/s]
eval model::  17%|█▋        | 83/500 [00:04<00:18, 22.66it/s]
eval model::  17%|█▋        | 86/500 [00:04<00:19, 21.61it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:22, 18.08it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:24, 16.99it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:24, 16.62it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:21, 18.55it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:19, 20.90it/s]
eval model::  20%|██        | 102/500 [00:05<00:19, 20.74it/s]
eval model::  21%|██        | 105/500 [00:05<00:17, 22.95it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:18, 21.67it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:17, 21.64it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:17, 22.56it/s]
eval model::  23%|██▎       | 117/500 [00:05<00:17, 21.36it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:18, 20.55it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:18, 20.79it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:21, 17.37it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:21, 17.40it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:22, 16.72it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:21, 16.74it/s]
eval model::  27%|██▋       | 135/500 [00:07<00:21, 17.37it/s]
eval model::  27%|██▋       | 137/500 [00:07<00:20, 17.62it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:20, 17.69it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:20, 17.55it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:19, 18.26it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:19, 18.43it/s]
eval model::  30%|███       | 150/500 [00:07<00:17, 19.82it/s]
eval model::  30%|███       | 152/500 [00:07<00:19, 17.70it/s]
eval model::  31%|███       | 155/500 [00:08<00:17, 19.81it/s]
eval model::  32%|███▏      | 158/500 [00:08<00:16, 20.34it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:20, 16.43it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:19, 17.07it/s]
eval model::  33%|███▎      | 165/500 [00:08<00:18, 17.69it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:18, 17.64it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:18, 18.07it/s]
eval model::  34%|███▍      | 171/500 [00:09<00:19, 17.04it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:21, 14.94it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:20, 15.68it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:18, 17.45it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:19, 16.20it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:18, 17.02it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:18, 17.37it/s]
eval model::  38%|███▊      | 188/500 [00:10<00:18, 17.21it/s]
eval model::  38%|███▊      | 191/500 [00:10<00:16, 19.03it/s]
eval model::  39%|███▉      | 194/500 [00:10<00:14, 21.60it/s]
eval model::  39%|███▉      | 197/500 [00:10<00:14, 21.01it/s]
eval model::  40%|████      | 200/500 [00:10<00:13, 22.89it/s]
eval model::  41%|████      | 203/500 [00:10<00:12, 24.20it/s]
eval model::  41%|████      | 206/500 [00:11<00:22, 12.88it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:22, 12.95it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:21, 13.43it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:19, 14.91it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:21, 13.42it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:21, 13.39it/s]
eval model::  44%|████▍     | 220/500 [00:12<00:18, 15.48it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:20, 13.84it/s]
eval model::  45%|████▌     | 225/500 [00:12<00:16, 16.36it/s]
eval model::  45%|████▌     | 227/500 [00:12<00:16, 16.36it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:14, 18.96it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:13, 19.89it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:13, 20.18it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:11, 22.06it/s]
eval model::  48%|████▊     | 242/500 [00:13<00:13, 19.19it/s]
eval model::  49%|████▉     | 245/500 [00:13<00:12, 20.91it/s]
eval model::  50%|████▉     | 248/500 [00:13<00:11, 22.28it/s]
eval model::  50%|█████     | 251/500 [00:13<00:10, 22.89it/s]
eval model::  51%|█████     | 254/500 [00:13<00:10, 24.24it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:10, 24.14it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:10, 22.75it/s]
eval model::  53%|█████▎    | 263/500 [00:14<00:11, 20.15it/s]
eval model::  53%|█████▎    | 266/500 [00:14<00:12, 18.02it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:12, 18.43it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:13, 17.18it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:12, 17.33it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:10, 20.33it/s]
eval model::  56%|█████▋    | 282/500 [00:15<00:10, 21.66it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:18, 11.90it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:16, 12.66it/s]
eval model::  58%|█████▊    | 290/500 [00:15<00:13, 15.02it/s]
eval model::  58%|█████▊    | 292/500 [00:16<00:13, 15.33it/s]
eval model::  59%|█████▉    | 294/500 [00:16<00:12, 15.89it/s]
eval model::  59%|█████▉    | 296/500 [00:16<00:14, 13.66it/s]
eval model::  60%|█████▉    | 299/500 [00:16<00:12, 16.07it/s]
eval model::  60%|██████    | 301/500 [00:16<00:13, 15.21it/s]
eval model::  61%|██████    | 304/500 [00:16<00:11, 16.75it/s]
eval model::  61%|██████▏   | 307/500 [00:16<00:10, 18.85it/s]
eval model::  62%|██████▏   | 310/500 [00:16<00:09, 20.08it/s]
eval model::  63%|██████▎   | 313/500 [00:17<00:08, 20.87it/s]
eval model::  63%|██████▎   | 316/500 [00:17<00:08, 20.66it/s]
eval model::  64%|██████▍   | 319/500 [00:17<00:08, 22.01it/s]
eval model::  64%|██████▍   | 322/500 [00:17<00:08, 20.75it/s]
eval model::  65%|██████▌   | 325/500 [00:17<00:08, 21.12it/s]
eval model::  66%|██████▌   | 328/500 [00:17<00:07, 22.76it/s]
eval model::  66%|██████▌   | 331/500 [00:17<00:07, 23.03it/s]
eval model::  67%|██████▋   | 334/500 [00:18<00:07, 22.65it/s]
eval model::  67%|██████▋   | 337/500 [00:18<00:08, 18.74it/s]
eval model::  68%|██████▊   | 340/500 [00:18<00:10, 14.77it/s]
eval model::  69%|██████▊   | 343/500 [00:18<00:09, 16.71it/s]
eval model::  69%|██████▉   | 346/500 [00:18<00:08, 19.07it/s]
eval model::  70%|██████▉   | 349/500 [00:18<00:07, 20.54it/s]
eval model::  70%|███████   | 352/500 [00:19<00:06, 21.37it/s]
eval model::  71%|███████   | 355/500 [00:19<00:06, 21.56it/s]
eval model::  72%|███████▏  | 358/500 [00:19<00:06, 22.23it/s]
eval model::  72%|███████▏  | 361/500 [00:19<00:07, 17.92it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:07, 17.54it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:07, 17.53it/s]
eval model::  74%|███████▍  | 369/500 [00:19<00:06, 19.96it/s]
eval model::  74%|███████▍  | 372/500 [00:20<00:06, 20.50it/s]
eval model::  75%|███████▌  | 375/500 [00:20<00:05, 21.49it/s]
eval model::  76%|███████▌  | 379/500 [00:20<00:04, 24.66it/s]
eval model::  76%|███████▋  | 382/500 [00:20<00:05, 22.68it/s]
eval model::  77%|███████▋  | 385/500 [00:20<00:04, 23.93it/s]
eval model::  78%|███████▊  | 388/500 [00:20<00:07, 15.27it/s]
eval model::  78%|███████▊  | 391/500 [00:21<00:06, 16.83it/s]
eval model::  79%|███████▉  | 394/500 [00:21<00:05, 18.52it/s]
eval model::  79%|███████▉  | 397/500 [00:21<00:05, 20.36it/s]
eval model::  80%|████████  | 400/500 [00:21<00:05, 19.54it/s]
eval model::  81%|████████  | 403/500 [00:21<00:05, 19.32it/s]
eval model::  81%|████████  | 406/500 [00:21<00:04, 19.73it/s]
eval model::  82%|████████▏ | 409/500 [00:21<00:04, 19.98it/s]
eval model::  82%|████████▏ | 412/500 [00:22<00:04, 21.84it/s]
eval model::  83%|████████▎ | 415/500 [00:22<00:03, 21.52it/s]
eval model::  84%|████████▎ | 418/500 [00:22<00:04, 17.69it/s]
eval model::  84%|████████▍ | 420/500 [00:22<00:05, 14.38it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:05, 14.22it/s]
eval model::  85%|████████▍ | 424/500 [00:23<00:05, 13.69it/s]
eval model::  85%|████████▌ | 426/500 [00:23<00:05, 14.55it/s]
eval model::  86%|████████▌ | 430/500 [00:23<00:03, 18.80it/s]
eval model::  86%|████████▋ | 432/500 [00:23<00:03, 18.51it/s]
eval model::  87%|████████▋ | 435/500 [00:23<00:03, 19.46it/s]
eval model::  88%|████████▊ | 438/500 [00:23<00:02, 21.59it/s]
eval model::  88%|████████▊ | 441/500 [00:23<00:02, 20.79it/s]
eval model::  89%|████████▉ | 444/500 [00:23<00:02, 21.01it/s]
eval model::  89%|████████▉ | 447/500 [00:24<00:02, 19.93it/s]
eval model::  90%|█████████ | 450/500 [00:24<00:02, 19.18it/s]
eval model::  91%|█████████ | 453/500 [00:24<00:02, 20.51it/s]
eval model::  91%|█████████ | 456/500 [00:24<00:02, 20.41it/s]
eval model::  92%|█████████▏| 459/500 [00:24<00:02, 20.06it/s]
eval model::  92%|█████████▏| 462/500 [00:24<00:02, 16.63it/s]
eval model::  93%|█████████▎| 464/500 [00:25<00:02, 16.16it/s]
eval model::  93%|█████████▎| 466/500 [00:25<00:02, 15.58it/s]
eval model::  94%|█████████▍| 469/500 [00:25<00:01, 17.35it/s]
eval model::  94%|█████████▍| 472/500 [00:25<00:01, 18.54it/s]
eval model::  95%|█████████▍| 474/500 [00:25<00:01, 17.92it/s]
eval model::  95%|█████████▌| 477/500 [00:25<00:01, 19.82it/s]
eval model::  96%|█████████▌| 480/500 [00:25<00:00, 20.13it/s]
eval model::  97%|█████████▋| 483/500 [00:25<00:00, 21.47it/s]
eval model::  97%|█████████▋| 486/500 [00:26<00:00, 18.76it/s]
eval model::  98%|█████████▊| 489/500 [00:26<00:00, 20.59it/s]
eval model::  98%|█████████▊| 492/500 [00:26<00:00, 19.89it/s]
eval model::  99%|█████████▉| 495/500 [00:26<00:00, 21.66it/s]
eval model:: 100%|█████████▉| 499/500 [00:26<00:00, 23.67it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.68it/s]
[2024/07/27 12:27:05] ppocr INFO: cur metric, precision: 0.6566523605150214, recall: 0.5893115069812229, hmean: 0.6211621415884293, fps: 45.232768599544
[2024/07/27 12:27:05] ppocr INFO: best metric, hmean: 0.6522689994532532, precision: 0.7545857052498419, recall: 0.5743861338468945, fps: 44.608739620472015, best_epoch: 340
[2024/07/27 12:27:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:27:14] ppocr INFO: epoch: [361/1500], global_step: 1083, lr: 0.001000, loss: 1.627146, loss_shrink_maps: 0.870661, loss_threshold_maps: 0.591430, loss_binary_maps: 0.172955, avg_reader_cost: 2.04921 s, avg_batch_cost: 2.35534 s, avg_samples: 12.5, ips: 5.30709 samples/s, eta: 8:23:39
[2024/07/27 12:27:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:27:23] ppocr INFO: epoch: [362/1500], global_step: 1086, lr: 0.001000, loss: 1.639126, loss_shrink_maps: 0.870661, loss_threshold_maps: 0.593308, loss_binary_maps: 0.172955, avg_reader_cost: 2.19651 s, avg_batch_cost: 2.56076 s, avg_samples: 12.5, ips: 4.88137 samples/s, eta: 8:23:10
[2024/07/27 12:27:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:27:34] ppocr INFO: epoch: [363/1500], global_step: 1089, lr: 0.001000, loss: 1.627146, loss_shrink_maps: 0.858169, loss_threshold_maps: 0.593532, loss_binary_maps: 0.170930, avg_reader_cost: 2.42886 s, avg_batch_cost: 2.66820 s, avg_samples: 12.5, ips: 4.68481 samples/s, eta: 8:22:44
[2024/07/27 12:27:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:27:42] ppocr INFO: epoch: [364/1500], global_step: 1090, lr: 0.001000, loss: 1.610336, loss_shrink_maps: 0.832298, loss_threshold_maps: 0.592124, loss_binary_maps: 0.165384, avg_reader_cost: 0.69288 s, avg_batch_cost: 0.78654 s, avg_samples: 4.8, ips: 6.10268 samples/s, eta: 8:22:32
[2024/07/27 12:27:43] ppocr INFO: epoch: [364/1500], global_step: 1092, lr: 0.001000, loss: 1.577479, loss_shrink_maps: 0.808791, loss_threshold_maps: 0.588450, loss_binary_maps: 0.160515, avg_reader_cost: 1.66604 s, avg_batch_cost: 1.81389 s, avg_samples: 7.7, ips: 4.24502 samples/s, eta: 8:22:16
[2024/07/27 12:27:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:27:53] ppocr INFO: epoch: [365/1500], global_step: 1095, lr: 0.001000, loss: 1.542491, loss_shrink_maps: 0.808791, loss_threshold_maps: 0.577127, loss_binary_maps: 0.160515, avg_reader_cost: 2.22672 s, avg_batch_cost: 2.58095 s, avg_samples: 12.5, ips: 4.84318 samples/s, eta: 8:21:47
[2024/07/27 12:27:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:28:03] ppocr INFO: epoch: [366/1500], global_step: 1098, lr: 0.001000, loss: 1.555213, loss_shrink_maps: 0.814050, loss_threshold_maps: 0.582250, loss_binary_maps: 0.161545, avg_reader_cost: 2.27913 s, avg_batch_cost: 2.63226 s, avg_samples: 12.5, ips: 4.74878 samples/s, eta: 8:21:20
[2024/07/27 12:28:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:28:13] ppocr INFO: epoch: [367/1500], global_step: 1100, lr: 0.001000, loss: 1.566954, loss_shrink_maps: 0.825996, loss_threshold_maps: 0.584319, loss_binary_maps: 0.163663, avg_reader_cost: 1.42491 s, avg_batch_cost: 1.74463 s, avg_samples: 9.6, ips: 5.50260 samples/s, eta: 8:21:01
[2024/07/27 12:28:13] ppocr INFO: epoch: [367/1500], global_step: 1101, lr: 0.001000, loss: 1.555213, loss_shrink_maps: 0.814050, loss_threshold_maps: 0.584319, loss_binary_maps: 0.161545, avg_reader_cost: 0.91841 s, avg_batch_cost: 0.97370 s, avg_samples: 2.9, ips: 2.97833 samples/s, eta: 8:20:55
[2024/07/27 12:28:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:28:23] ppocr INFO: epoch: [368/1500], global_step: 1104, lr: 0.001000, loss: 1.555213, loss_shrink_maps: 0.814050, loss_threshold_maps: 0.584319, loss_binary_maps: 0.161545, avg_reader_cost: 2.33381 s, avg_batch_cost: 2.57130 s, avg_samples: 12.5, ips: 4.86135 samples/s, eta: 8:20:26
[2024/07/27 12:28:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:28:33] ppocr INFO: epoch: [369/1500], global_step: 1107, lr: 0.001000, loss: 1.542491, loss_shrink_maps: 0.814050, loss_threshold_maps: 0.583304, loss_binary_maps: 0.161512, avg_reader_cost: 2.36138 s, avg_batch_cost: 2.62078 s, avg_samples: 12.5, ips: 4.76958 samples/s, eta: 8:19:59
[2024/07/27 12:28:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:28:43] ppocr INFO: epoch: [370/1500], global_step: 1110, lr: 0.001000, loss: 1.592217, loss_shrink_maps: 0.834901, loss_threshold_maps: 0.598775, loss_binary_maps: 0.164971, avg_reader_cost: 2.39581 s, avg_batch_cost: 2.63176 s, avg_samples: 12.5, ips: 4.74967 samples/s, eta: 8:19:32
[2024/07/27 12:28:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:28:52] ppocr INFO: epoch: [371/1500], global_step: 1113, lr: 0.001000, loss: 1.550358, loss_shrink_maps: 0.809861, loss_threshold_maps: 0.604167, loss_binary_maps: 0.160477, avg_reader_cost: 2.11614 s, avg_batch_cost: 2.44385 s, avg_samples: 12.5, ips: 5.11489 samples/s, eta: 8:18:59
[2024/07/27 12:28:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:29:02] ppocr INFO: epoch: [372/1500], global_step: 1116, lr: 0.001000, loss: 1.524041, loss_shrink_maps: 0.779264, loss_threshold_maps: 0.600784, loss_binary_maps: 0.154351, avg_reader_cost: 2.24749 s, avg_batch_cost: 2.61412 s, avg_samples: 12.5, ips: 4.78172 samples/s, eta: 8:18:31
[2024/07/27 12:29:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:29:11] ppocr INFO: epoch: [373/1500], global_step: 1119, lr: 0.001000, loss: 1.569808, loss_shrink_maps: 0.811535, loss_threshold_maps: 0.604560, loss_binary_maps: 0.160662, avg_reader_cost: 2.06699 s, avg_batch_cost: 2.31759 s, avg_samples: 12.5, ips: 5.39353 samples/s, eta: 8:17:54
[2024/07/27 12:29:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:29:19] ppocr INFO: epoch: [374/1500], global_step: 1120, lr: 0.001000, loss: 1.569808, loss_shrink_maps: 0.811535, loss_threshold_maps: 0.600784, loss_binary_maps: 0.160662, avg_reader_cost: 0.54848 s, avg_batch_cost: 0.78420 s, avg_samples: 4.8, ips: 6.12089 samples/s, eta: 8:17:43
[2024/07/27 12:29:20] ppocr INFO: epoch: [374/1500], global_step: 1122, lr: 0.001000, loss: 1.529591, loss_shrink_maps: 0.794969, loss_threshold_maps: 0.597782, loss_binary_maps: 0.157741, avg_reader_cost: 1.66097 s, avg_batch_cost: 1.80722 s, avg_samples: 7.7, ips: 4.26068 samples/s, eta: 8:17:26
[2024/07/27 12:29:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:29:30] ppocr INFO: epoch: [375/1500], global_step: 1125, lr: 0.001000, loss: 1.529591, loss_shrink_maps: 0.787738, loss_threshold_maps: 0.582820, loss_binary_maps: 0.155925, avg_reader_cost: 2.28082 s, avg_batch_cost: 2.52337 s, avg_samples: 12.5, ips: 4.95370 samples/s, eta: 8:16:56
[2024/07/27 12:29:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:29:40] ppocr INFO: epoch: [376/1500], global_step: 1128, lr: 0.001000, loss: 1.529591, loss_shrink_maps: 0.787738, loss_threshold_maps: 0.564117, loss_binary_maps: 0.155925, avg_reader_cost: 2.36121 s, avg_batch_cost: 2.61231 s, avg_samples: 12.5, ips: 4.78504 samples/s, eta: 8:16:28
[2024/07/27 12:29:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:29:49] ppocr INFO: epoch: [377/1500], global_step: 1130, lr: 0.001000, loss: 1.536876, loss_shrink_maps: 0.805329, loss_threshold_maps: 0.571490, loss_binary_maps: 0.159504, avg_reader_cost: 1.38755 s, avg_batch_cost: 1.69750 s, avg_samples: 9.6, ips: 5.65539 samples/s, eta: 8:16:08
[2024/07/27 12:29:50] ppocr INFO: epoch: [377/1500], global_step: 1131, lr: 0.001000, loss: 1.545118, loss_shrink_maps: 0.807510, loss_threshold_maps: 0.571490, loss_binary_maps: 0.160246, avg_reader_cost: 0.89514 s, avg_batch_cost: 0.95027 s, avg_samples: 2.9, ips: 3.05177 samples/s, eta: 8:16:02
[2024/07/27 12:29:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:30:00] ppocr INFO: epoch: [378/1500], global_step: 1134, lr: 0.001000, loss: 1.554641, loss_shrink_maps: 0.822002, loss_threshold_maps: 0.577362, loss_binary_maps: 0.163203, avg_reader_cost: 2.25878 s, avg_batch_cost: 2.64372 s, avg_samples: 12.5, ips: 4.72819 samples/s, eta: 8:15:35
[2024/07/27 12:30:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:30:10] ppocr INFO: epoch: [379/1500], global_step: 1137, lr: 0.001000, loss: 1.554641, loss_shrink_maps: 0.822002, loss_threshold_maps: 0.588564, loss_binary_maps: 0.163203, avg_reader_cost: 2.34817 s, avg_batch_cost: 2.59773 s, avg_samples: 12.5, ips: 4.81189 samples/s, eta: 8:15:07
[2024/07/27 12:30:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:30:20] ppocr INFO: epoch: [380/1500], global_step: 1140, lr: 0.001000, loss: 1.546909, loss_shrink_maps: 0.807510, loss_threshold_maps: 0.580543, loss_binary_maps: 0.160246, avg_reader_cost: 2.26841 s, avg_batch_cost: 2.64482 s, avg_samples: 12.5, ips: 4.72622 samples/s, eta: 8:14:40

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:56,  8.76it/s]
eval model::   1%|          | 4/500 [00:00<00:32, 15.48it/s]
eval model::   1%|          | 6/500 [00:00<00:32, 15.30it/s]
eval model::   2%|▏         | 8/500 [00:00<00:30, 16.10it/s]
eval model::   2%|▏         | 10/500 [00:00<00:28, 17.03it/s]
eval model::   2%|▏         | 12/500 [00:00<00:33, 14.52it/s]
eval model::   3%|▎         | 14/500 [00:00<00:31, 15.57it/s]
eval model::   3%|▎         | 17/500 [00:01<00:25, 18.95it/s]
eval model::   4%|▍         | 20/500 [00:01<00:25, 18.56it/s]
eval model::   5%|▍         | 23/500 [00:01<00:23, 20.62it/s]
eval model::   5%|▌         | 26/500 [00:01<00:22, 20.68it/s]
eval model::   6%|▌         | 30/500 [00:01<00:20, 22.78it/s]
eval model::   7%|▋         | 33/500 [00:01<00:21, 21.77it/s]
eval model::   7%|▋         | 36/500 [00:01<00:23, 19.95it/s]
eval model::   8%|▊         | 39/500 [00:02<00:25, 18.26it/s]
eval model::   8%|▊         | 42/500 [00:02<00:25, 17.84it/s]
eval model::   9%|▉         | 45/500 [00:02<00:24, 18.34it/s]
eval model::   9%|▉         | 47/500 [00:02<00:25, 17.64it/s]
eval model::  10%|█         | 50/500 [00:02<00:24, 18.50it/s]
eval model::  10%|█         | 52/500 [00:02<00:24, 18.58it/s]
eval model::  11%|█         | 55/500 [00:02<00:21, 20.31it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:24, 17.90it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:28, 15.22it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:30, 14.54it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:23, 18.42it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:20, 20.56it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:19, 21.38it/s]
eval model::  15%|█▌        | 76/500 [00:04<00:18, 22.77it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:19, 21.17it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:19, 21.62it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:18, 22.00it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:19, 20.98it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:25, 15.89it/s]
eval model::  19%|█▉        | 94/500 [00:05<00:23, 17.54it/s]
eval model::  19%|█▉        | 97/500 [00:05<00:21, 18.82it/s]
eval model::  20%|██        | 100/500 [00:05<00:21, 18.18it/s]
eval model::  21%|██        | 103/500 [00:05<00:19, 19.87it/s]
eval model::  21%|██        | 106/500 [00:05<00:19, 19.79it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:19, 20.35it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:18, 21.08it/s]
eval model::  23%|██▎       | 115/500 [00:06<00:17, 21.60it/s]
eval model::  24%|██▎       | 118/500 [00:06<00:19, 19.19it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:20, 18.50it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:19, 19.16it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:23, 16.30it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:20, 18.57it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:21, 17.49it/s]
eval model::  26%|██▋       | 132/500 [00:07<00:21, 16.81it/s]
eval model::  27%|██▋       | 135/500 [00:07<00:20, 18.19it/s]
eval model::  27%|██▋       | 137/500 [00:07<00:20, 17.73it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:20, 17.32it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:17, 20.07it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:16, 21.11it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:17, 20.07it/s]
eval model::  30%|███       | 151/500 [00:08<00:19, 17.60it/s]
eval model::  31%|███       | 154/500 [00:08<00:18, 19.13it/s]
eval model::  31%|███▏      | 157/500 [00:08<00:16, 20.32it/s]
eval model::  32%|███▏      | 160/500 [00:08<00:22, 15.34it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:20, 16.54it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:18, 18.16it/s]
eval model::  34%|███▎      | 168/500 [00:09<00:18, 17.88it/s]
eval model::  34%|███▍      | 170/500 [00:09<00:18, 18.21it/s]
eval model::  34%|███▍      | 172/500 [00:09<00:18, 18.10it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:21, 15.31it/s]
eval model::  35%|███▌      | 177/500 [00:09<00:18, 17.89it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:19, 16.66it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:16, 19.26it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:15, 20.87it/s]
eval model::  38%|███▊      | 189/500 [00:10<00:15, 20.53it/s]
eval model::  38%|███▊      | 192/500 [00:10<00:15, 20.29it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:14, 20.64it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:15, 19.91it/s]
eval model::  40%|████      | 201/500 [00:10<00:14, 20.59it/s]
eval model::  41%|████      | 204/500 [00:10<00:13, 22.29it/s]
eval model::  41%|████▏     | 207/500 [00:11<00:22, 12.92it/s]
eval model::  42%|████▏     | 209/500 [00:11<00:21, 13.44it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:21, 13.51it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:20, 14.31it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:21, 13.30it/s]
eval model::  43%|████▎     | 217/500 [00:12<00:21, 13.22it/s]
eval model::  44%|████▍     | 220/500 [00:12<00:17, 15.65it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:18, 15.04it/s]
eval model::  45%|████▌     | 225/500 [00:12<00:15, 18.03it/s]
eval model::  46%|████▌     | 228/500 [00:12<00:13, 19.70it/s]
eval model::  46%|████▋     | 232/500 [00:12<00:11, 23.14it/s]
eval model::  47%|████▋     | 235/500 [00:12<00:11, 22.46it/s]
eval model::  48%|████▊     | 238/500 [00:12<00:11, 23.71it/s]
eval model::  48%|████▊     | 241/500 [00:13<00:11, 23.05it/s]
eval model::  49%|████▉     | 244/500 [00:13<00:13, 19.45it/s]
eval model::  49%|████▉     | 247/500 [00:13<00:11, 21.42it/s]
eval model::  50%|█████     | 250/500 [00:13<00:12, 20.14it/s]
eval model::  51%|█████     | 253/500 [00:13<00:11, 22.09it/s]
eval model::  51%|█████     | 256/500 [00:13<00:10, 22.81it/s]
eval model::  52%|█████▏    | 259/500 [00:13<00:10, 23.79it/s]
eval model::  52%|█████▏    | 262/500 [00:14<00:11, 20.32it/s]
eval model::  53%|█████▎    | 265/500 [00:14<00:12, 18.38it/s]
eval model::  53%|█████▎    | 267/500 [00:14<00:12, 18.42it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:12, 18.37it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:11, 20.25it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:11, 20.01it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:10, 21.73it/s]
eval model::  56%|█████▌    | 281/500 [00:14<00:09, 22.41it/s]
eval model::  57%|█████▋    | 284/500 [00:15<00:09, 22.61it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:15, 13.35it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:12, 16.79it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:11, 17.61it/s]
eval model::  59%|█████▉    | 297/500 [00:16<00:13, 15.29it/s]
eval model::  60%|██████    | 300/500 [00:16<00:12, 16.08it/s]
eval model::  61%|██████    | 303/500 [00:16<00:11, 17.56it/s]
eval model::  61%|██████    | 305/500 [00:16<00:10, 17.86it/s]
eval model::  62%|██████▏   | 308/500 [00:16<00:09, 19.44it/s]
eval model::  62%|██████▏   | 311/500 [00:16<00:08, 21.24it/s]
eval model::  63%|██████▎   | 314/500 [00:16<00:09, 20.64it/s]
eval model::  63%|██████▎   | 317/500 [00:17<00:08, 20.73it/s]
eval model::  64%|██████▍   | 320/500 [00:17<00:08, 21.50it/s]
eval model::  65%|██████▍   | 323/500 [00:17<00:08, 20.18it/s]
eval model::  65%|██████▌   | 326/500 [00:17<00:08, 20.66it/s]
eval model::  66%|██████▌   | 329/500 [00:17<00:08, 20.87it/s]
eval model::  66%|██████▋   | 332/500 [00:17<00:07, 21.09it/s]
eval model::  67%|██████▋   | 335/500 [00:17<00:07, 22.85it/s]
eval model::  68%|██████▊   | 338/500 [00:18<00:08, 19.74it/s]
eval model::  68%|██████▊   | 341/500 [00:18<00:10, 15.89it/s]
eval model::  69%|██████▉   | 344/500 [00:18<00:08, 17.84it/s]
eval model::  69%|██████▉   | 347/500 [00:18<00:08, 18.41it/s]
eval model::  70%|███████   | 350/500 [00:18<00:07, 20.48it/s]
eval model::  71%|███████   | 353/500 [00:18<00:07, 20.91it/s]
eval model::  71%|███████   | 356/500 [00:19<00:07, 19.35it/s]
eval model::  72%|███████▏  | 359/500 [00:19<00:06, 20.15it/s]
eval model::  72%|███████▏  | 362/500 [00:19<00:07, 19.62it/s]
eval model::  73%|███████▎  | 365/500 [00:19<00:07, 18.57it/s]
eval model::  73%|███████▎  | 367/500 [00:19<00:07, 18.67it/s]
eval model::  74%|███████▍  | 371/500 [00:19<00:05, 21.65it/s]
eval model::  75%|███████▍  | 374/500 [00:19<00:05, 23.08it/s]
eval model::  75%|███████▌  | 377/500 [00:19<00:05, 24.48it/s]
eval model::  76%|███████▌  | 380/500 [00:20<00:05, 23.40it/s]
eval model::  77%|███████▋  | 383/500 [00:20<00:04, 24.67it/s]
eval model::  77%|███████▋  | 386/500 [00:20<00:07, 15.25it/s]
eval model::  78%|███████▊  | 390/500 [00:20<00:05, 18.49it/s]
eval model::  79%|███████▊  | 393/500 [00:20<00:05, 19.97it/s]
eval model::  79%|███████▉  | 396/500 [00:20<00:04, 21.46it/s]
eval model::  80%|███████▉  | 399/500 [00:21<00:04, 22.62it/s]
eval model::  80%|████████  | 402/500 [00:21<00:04, 20.96it/s]
eval model::  81%|████████  | 405/500 [00:21<00:04, 20.10it/s]
eval model::  82%|████████▏ | 408/500 [00:21<00:04, 21.43it/s]
eval model::  82%|████████▏ | 411/500 [00:21<00:03, 23.41it/s]
eval model::  83%|████████▎ | 414/500 [00:21<00:03, 23.12it/s]
eval model::  83%|████████▎ | 417/500 [00:21<00:03, 22.13it/s]
eval model::  84%|████████▍ | 420/500 [00:22<00:05, 15.18it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:05, 15.54it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:04, 16.02it/s]
eval model::  85%|████████▌ | 426/500 [00:22<00:04, 15.32it/s]
eval model::  86%|████████▌ | 429/500 [00:22<00:03, 18.29it/s]
eval model::  86%|████████▋ | 432/500 [00:22<00:03, 19.05it/s]
eval model::  87%|████████▋ | 435/500 [00:22<00:03, 20.47it/s]
eval model::  88%|████████▊ | 439/500 [00:23<00:02, 23.25it/s]
eval model::  88%|████████▊ | 442/500 [00:23<00:02, 21.77it/s]
eval model::  89%|████████▉ | 445/500 [00:23<00:02, 22.54it/s]
eval model::  90%|████████▉ | 448/500 [00:23<00:02, 22.65it/s]
eval model::  90%|█████████ | 451/500 [00:23<00:02, 21.87it/s]
eval model::  91%|█████████ | 454/500 [00:23<00:02, 22.78it/s]
eval model::  91%|█████████▏| 457/500 [00:23<00:02, 20.57it/s]
eval model::  92%|█████████▏| 460/500 [00:24<00:02, 18.97it/s]
eval model::  92%|█████████▏| 462/500 [00:24<00:02, 15.50it/s]
eval model::  93%|█████████▎| 465/500 [00:24<00:02, 15.51it/s]
eval model::  93%|█████████▎| 467/500 [00:24<00:02, 16.16it/s]
eval model::  94%|█████████▍| 470/500 [00:24<00:01, 18.19it/s]
eval model::  94%|█████████▍| 472/500 [00:24<00:01, 18.21it/s]
eval model::  95%|█████████▍| 474/500 [00:25<00:01, 18.03it/s]
eval model::  96%|█████████▌| 478/500 [00:25<00:01, 21.61it/s]
eval model::  96%|█████████▌| 481/500 [00:25<00:00, 22.65it/s]
eval model::  97%|█████████▋| 484/500 [00:25<00:00, 21.77it/s]
eval model::  97%|█████████▋| 487/500 [00:25<00:00, 20.32it/s]
eval model::  98%|█████████▊| 490/500 [00:25<00:00, 18.52it/s]
eval model::  98%|█████████▊| 492/500 [00:25<00:00, 15.81it/s]
eval model::  99%|█████████▉| 495/500 [00:26<00:00, 16.58it/s]
eval model:: 100%|█████████▉| 498/500 [00:26<00:00, 18.77it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.99it/s]
[2024/07/27 12:30:46] ppocr INFO: cur metric, precision: 0.7187857961053837, recall: 0.6042368801155513, hmean: 0.6565524457232539, fps: 45.296458194658534
[2024/07/27 12:30:46] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/27 12:30:46] ppocr INFO: best metric, hmean: 0.6565524457232539, precision: 0.7187857961053837, recall: 0.6042368801155513, fps: 45.296458194658534, best_epoch: 380
[2024/07/27 12:30:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:30:55] ppocr INFO: epoch: [381/1500], global_step: 1143, lr: 0.001000, loss: 1.592096, loss_shrink_maps: 0.855868, loss_threshold_maps: 0.585414, loss_binary_maps: 0.168762, avg_reader_cost: 2.11430 s, avg_batch_cost: 2.50845 s, avg_samples: 12.5, ips: 4.98316 samples/s, eta: 8:14:10
[2024/07/27 12:30:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:31:05] ppocr INFO: epoch: [382/1500], global_step: 1146, lr: 0.001000, loss: 1.674035, loss_shrink_maps: 0.881887, loss_threshold_maps: 0.597282, loss_binary_maps: 0.175039, avg_reader_cost: 2.16976 s, avg_batch_cost: 2.51161 s, avg_samples: 12.5, ips: 4.97690 samples/s, eta: 8:13:39
[2024/07/27 12:31:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:31:15] ppocr INFO: epoch: [383/1500], global_step: 1149, lr: 0.001000, loss: 1.626851, loss_shrink_maps: 0.869450, loss_threshold_maps: 0.593112, loss_binary_maps: 0.171953, avg_reader_cost: 2.33104 s, avg_batch_cost: 2.60550 s, avg_samples: 12.5, ips: 4.79754 samples/s, eta: 8:13:11
[2024/07/27 12:31:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:31:23] ppocr INFO: epoch: [384/1500], global_step: 1150, lr: 0.001000, loss: 1.674035, loss_shrink_maps: 0.881887, loss_threshold_maps: 0.597282, loss_binary_maps: 0.175039, avg_reader_cost: 0.73096 s, avg_batch_cost: 0.81790 s, avg_samples: 4.8, ips: 5.86871 samples/s, eta: 8:13:01
[2024/07/27 12:31:25] ppocr INFO: epoch: [384/1500], global_step: 1152, lr: 0.001000, loss: 1.668110, loss_shrink_maps: 0.890897, loss_threshold_maps: 0.594563, loss_binary_maps: 0.176684, avg_reader_cost: 1.72817 s, avg_batch_cost: 1.87579 s, avg_samples: 7.7, ips: 4.10494 samples/s, eta: 8:12:46
[2024/07/27 12:31:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:31:35] ppocr INFO: epoch: [385/1500], global_step: 1155, lr: 0.001000, loss: 1.676580, loss_shrink_maps: 0.890897, loss_threshold_maps: 0.595018, loss_binary_maps: 0.176684, avg_reader_cost: 2.32088 s, avg_batch_cost: 2.55769 s, avg_samples: 12.5, ips: 4.88722 samples/s, eta: 8:12:17
[2024/07/27 12:31:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:31:45] ppocr INFO: epoch: [386/1500], global_step: 1158, lr: 0.001000, loss: 1.662027, loss_shrink_maps: 0.879427, loss_threshold_maps: 0.591414, loss_binary_maps: 0.174724, avg_reader_cost: 2.41780 s, avg_batch_cost: 2.65870 s, avg_samples: 12.5, ips: 4.70154 samples/s, eta: 8:11:51
[2024/07/27 12:31:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:31:54] ppocr INFO: epoch: [387/1500], global_step: 1160, lr: 0.001000, loss: 1.662027, loss_shrink_maps: 0.879427, loss_threshold_maps: 0.595018, loss_binary_maps: 0.174724, avg_reader_cost: 1.44517 s, avg_batch_cost: 1.62307 s, avg_samples: 9.6, ips: 5.91470 samples/s, eta: 8:11:29
[2024/07/27 12:31:54] ppocr INFO: epoch: [387/1500], global_step: 1161, lr: 0.001000, loss: 1.662027, loss_shrink_maps: 0.879427, loss_threshold_maps: 0.595018, loss_binary_maps: 0.174724, avg_reader_cost: 0.85760 s, avg_batch_cost: 0.91315 s, avg_samples: 2.9, ips: 3.17580 samples/s, eta: 8:11:21
[2024/07/27 12:31:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:32:04] ppocr INFO: epoch: [388/1500], global_step: 1164, lr: 0.001000, loss: 1.662027, loss_shrink_maps: 0.879427, loss_threshold_maps: 0.597736, loss_binary_maps: 0.174724, avg_reader_cost: 2.26605 s, avg_batch_cost: 2.62957 s, avg_samples: 12.5, ips: 4.75362 samples/s, eta: 8:10:54
[2024/07/27 12:32:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:32:14] ppocr INFO: epoch: [389/1500], global_step: 1167, lr: 0.001000, loss: 1.591082, loss_shrink_maps: 0.830461, loss_threshold_maps: 0.595018, loss_binary_maps: 0.164571, avg_reader_cost: 2.33310 s, avg_batch_cost: 2.57371 s, avg_samples: 12.5, ips: 4.85681 samples/s, eta: 8:10:25
[2024/07/27 12:32:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:32:24] ppocr INFO: epoch: [390/1500], global_step: 1170, lr: 0.001000, loss: 1.591082, loss_shrink_maps: 0.830461, loss_threshold_maps: 0.595018, loss_binary_maps: 0.164571, avg_reader_cost: 2.39806 s, avg_batch_cost: 2.63556 s, avg_samples: 12.5, ips: 4.74282 samples/s, eta: 8:09:58
[2024/07/27 12:32:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:32:34] ppocr INFO: epoch: [391/1500], global_step: 1173, lr: 0.001000, loss: 1.591082, loss_shrink_maps: 0.830461, loss_threshold_maps: 0.603691, loss_binary_maps: 0.164571, avg_reader_cost: 2.30377 s, avg_batch_cost: 2.59459 s, avg_samples: 12.5, ips: 4.81771 samples/s, eta: 8:09:30
[2024/07/27 12:32:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:32:44] ppocr INFO: epoch: [392/1500], global_step: 1176, lr: 0.001000, loss: 1.591082, loss_shrink_maps: 0.830461, loss_threshold_maps: 0.600280, loss_binary_maps: 0.164571, avg_reader_cost: 2.27145 s, avg_batch_cost: 2.71360 s, avg_samples: 12.5, ips: 4.60642 samples/s, eta: 8:09:06
[2024/07/27 12:32:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:32:54] ppocr INFO: epoch: [393/1500], global_step: 1179, lr: 0.001000, loss: 1.591082, loss_shrink_maps: 0.830461, loss_threshold_maps: 0.592374, loss_binary_maps: 0.164571, avg_reader_cost: 2.21797 s, avg_batch_cost: 2.59694 s, avg_samples: 12.5, ips: 4.81335 samples/s, eta: 8:08:38
[2024/07/27 12:32:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:33:02] ppocr INFO: epoch: [394/1500], global_step: 1180, lr: 0.001000, loss: 1.615077, loss_shrink_maps: 0.853106, loss_threshold_maps: 0.592374, loss_binary_maps: 0.168995, avg_reader_cost: 0.56925 s, avg_batch_cost: 0.76110 s, avg_samples: 4.8, ips: 6.30669 samples/s, eta: 8:08:26
[2024/07/27 12:33:03] ppocr INFO: epoch: [394/1500], global_step: 1182, lr: 0.001000, loss: 1.634840, loss_shrink_maps: 0.870392, loss_threshold_maps: 0.601841, loss_binary_maps: 0.172074, avg_reader_cost: 1.61484 s, avg_batch_cost: 1.76243 s, avg_samples: 7.7, ips: 4.36896 samples/s, eta: 8:08:08
[2024/07/27 12:33:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:33:13] ppocr INFO: epoch: [395/1500], global_step: 1185, lr: 0.001000, loss: 1.615077, loss_shrink_maps: 0.855516, loss_threshold_maps: 0.592374, loss_binary_maps: 0.169868, avg_reader_cost: 2.39495 s, avg_batch_cost: 2.64425 s, avg_samples: 12.5, ips: 4.72724 samples/s, eta: 8:07:41
[2024/07/27 12:33:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:33:23] ppocr INFO: epoch: [396/1500], global_step: 1188, lr: 0.001000, loss: 1.617032, loss_shrink_maps: 0.855516, loss_threshold_maps: 0.585168, loss_binary_maps: 0.169868, avg_reader_cost: 2.14127 s, avg_batch_cost: 2.56111 s, avg_samples: 12.5, ips: 4.88070 samples/s, eta: 8:07:12
[2024/07/27 12:33:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:33:32] ppocr INFO: epoch: [397/1500], global_step: 1190, lr: 0.001000, loss: 1.617032, loss_shrink_maps: 0.858837, loss_threshold_maps: 0.585168, loss_binary_maps: 0.169901, avg_reader_cost: 1.31527 s, avg_batch_cost: 1.65691 s, avg_samples: 9.6, ips: 5.79392 samples/s, eta: 8:06:52
[2024/07/27 12:33:32] ppocr INFO: epoch: [397/1500], global_step: 1191, lr: 0.001000, loss: 1.617032, loss_shrink_maps: 0.858837, loss_threshold_maps: 0.585168, loss_binary_maps: 0.169901, avg_reader_cost: 0.87512 s, avg_batch_cost: 0.93010 s, avg_samples: 2.9, ips: 3.11794 samples/s, eta: 8:06:44
[2024/07/27 12:33:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:33:43] ppocr INFO: epoch: [398/1500], global_step: 1194, lr: 0.001000, loss: 1.617032, loss_shrink_maps: 0.858837, loss_threshold_maps: 0.585168, loss_binary_maps: 0.169901, avg_reader_cost: 2.27532 s, avg_batch_cost: 2.66473 s, avg_samples: 12.5, ips: 4.69090 samples/s, eta: 8:06:18
[2024/07/27 12:33:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:33:52] ppocr INFO: epoch: [399/1500], global_step: 1197, lr: 0.001000, loss: 1.622668, loss_shrink_maps: 0.873018, loss_threshold_maps: 0.585168, loss_binary_maps: 0.172601, avg_reader_cost: 2.10748 s, avg_batch_cost: 2.46514 s, avg_samples: 12.5, ips: 5.07070 samples/s, eta: 8:05:47
[2024/07/27 12:33:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:34:02] ppocr INFO: epoch: [400/1500], global_step: 1200, lr: 0.001000, loss: 1.641140, loss_shrink_maps: 0.898587, loss_threshold_maps: 0.586921, loss_binary_maps: 0.178214, avg_reader_cost: 2.26257 s, avg_batch_cost: 2.50273 s, avg_samples: 12.5, ips: 4.99455 samples/s, eta: 8:05:16

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:57,  8.72it/s]
eval model::   1%|          | 4/500 [00:00<00:27, 18.17it/s]
eval model::   1%|▏         | 7/500 [00:00<00:23, 20.98it/s]
eval model::   2%|▏         | 10/500 [00:00<00:26, 18.77it/s]
eval model::   2%|▏         | 12/500 [00:00<00:32, 15.24it/s]
eval model::   3%|▎         | 14/500 [00:00<00:30, 15.82it/s]
eval model::   4%|▎         | 18/500 [00:00<00:23, 20.95it/s]
eval model::   4%|▍         | 21/500 [00:01<00:24, 19.93it/s]
eval model::   5%|▍         | 24/500 [00:01<00:22, 21.08it/s]
eval model::   5%|▌         | 27/500 [00:01<00:22, 20.90it/s]
eval model::   6%|▌         | 30/500 [00:01<00:21, 21.81it/s]
eval model::   7%|▋         | 33/500 [00:01<00:22, 20.43it/s]
eval model::   7%|▋         | 36/500 [00:01<00:23, 19.98it/s]
eval model::   8%|▊         | 39/500 [00:02<00:24, 18.65it/s]
eval model::   8%|▊         | 42/500 [00:02<00:25, 17.77it/s]
eval model::   9%|▉         | 45/500 [00:02<00:23, 18.98it/s]
eval model::   9%|▉         | 47/500 [00:02<00:29, 15.18it/s]
eval model::  10%|█         | 50/500 [00:02<00:27, 16.62it/s]
eval model::  10%|█         | 52/500 [00:02<00:25, 17.25it/s]
eval model::  11%|█         | 55/500 [00:02<00:23, 18.60it/s]
eval model::  11%|█▏        | 57/500 [00:03<00:24, 18.15it/s]
eval model::  12%|█▏        | 59/500 [00:03<00:26, 16.73it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:28, 15.18it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:28, 15.35it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:23, 18.60it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:20, 21.22it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:18, 23.17it/s]
eval model::  15%|█▌        | 75/500 [00:03<00:19, 22.07it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:19, 21.81it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:17, 23.42it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:18, 22.14it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:21, 19.03it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:23, 17.23it/s]
eval model::  18%|█▊        | 92/500 [00:04<00:23, 17.73it/s]
eval model::  19%|█▉        | 94/500 [00:05<00:22, 17.88it/s]
eval model::  19%|█▉        | 97/500 [00:05<00:20, 19.51it/s]
eval model::  20%|██        | 100/500 [00:05<00:20, 19.61it/s]
eval model::  21%|██        | 103/500 [00:05<00:18, 21.44it/s]
eval model::  21%|██        | 106/500 [00:05<00:17, 22.60it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:16, 23.68it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:16, 23.92it/s]
eval model::  23%|██▎       | 115/500 [00:05<00:17, 22.15it/s]
eval model::  24%|██▎       | 118/500 [00:06<00:17, 21.68it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:20, 18.29it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:19, 19.02it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:19, 19.18it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:18, 19.90it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:19, 18.54it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:18, 19.81it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:17, 20.26it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:19, 18.07it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:18, 19.21it/s]
eval model::  29%|██▉       | 146/500 [00:07<00:18, 19.07it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:19, 18.04it/s]
eval model::  30%|███       | 151/500 [00:07<00:20, 16.86it/s]
eval model::  31%|███       | 155/500 [00:08<00:16, 20.63it/s]
eval model::  32%|███▏      | 158/500 [00:08<00:15, 22.03it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:19, 17.39it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:19, 17.57it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:17, 19.31it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:16, 19.59it/s]
eval model::  34%|███▍      | 172/500 [00:08<00:16, 19.75it/s]
eval model::  35%|███▌      | 175/500 [00:09<00:18, 17.29it/s]
eval model::  36%|███▌      | 178/500 [00:09<00:16, 19.00it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:17, 18.21it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:15, 20.31it/s]
eval model::  37%|███▋      | 187/500 [00:09<00:15, 20.03it/s]
eval model::  38%|███▊      | 190/500 [00:09<00:15, 20.10it/s]
eval model::  39%|███▊      | 193/500 [00:09<00:14, 21.50it/s]
eval model::  39%|███▉      | 196/500 [00:10<00:13, 21.87it/s]
eval model::  40%|███▉      | 199/500 [00:10<00:14, 21.39it/s]
eval model::  40%|████      | 202/500 [00:10<00:14, 21.18it/s]
eval model::  41%|████      | 205/500 [00:10<00:23, 12.30it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:22, 13.30it/s]
eval model::  42%|████▏     | 209/500 [00:11<00:20, 13.91it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:20, 14.12it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:19, 14.57it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:22, 12.61it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:22, 12.77it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:18, 15.46it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:17, 15.48it/s]
eval model::  45%|████▌     | 225/500 [00:12<00:14, 18.48it/s]
eval model::  45%|████▌     | 227/500 [00:12<00:14, 18.39it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:12, 21.15it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:12, 21.13it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:13, 19.84it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:12, 20.87it/s]
eval model::  48%|████▊     | 242/500 [00:12<00:14, 17.90it/s]
eval model::  49%|████▉     | 245/500 [00:13<00:12, 19.94it/s]
eval model::  50%|████▉     | 248/500 [00:13<00:12, 20.70it/s]
eval model::  50%|█████     | 251/500 [00:13<00:12, 19.87it/s]
eval model::  51%|█████     | 254/500 [00:13<00:11, 21.10it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:11, 21.85it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:11, 20.90it/s]
eval model::  53%|█████▎    | 263/500 [00:13<00:11, 21.10it/s]
eval model::  53%|█████▎    | 266/500 [00:14<00:12, 18.58it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:12, 19.21it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:11, 19.88it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:12, 17.76it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:11, 19.46it/s]
eval model::  56%|█████▌    | 281/500 [00:14<00:10, 20.52it/s]
eval model::  57%|█████▋    | 284/500 [00:15<00:09, 21.70it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:16, 12.84it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:12, 16.14it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:12, 16.40it/s]
eval model::  59%|█████▉    | 296/500 [00:15<00:14, 14.06it/s]
eval model::  60%|██████    | 300/500 [00:16<00:12, 15.84it/s]
eval model::  61%|██████    | 303/500 [00:16<00:11, 17.07it/s]
eval model::  61%|██████    | 305/500 [00:16<00:11, 17.05it/s]
eval model::  62%|██████▏   | 308/500 [00:16<00:10, 18.62it/s]
eval model::  62%|██████▏   | 311/500 [00:16<00:09, 20.64it/s]
eval model::  63%|██████▎   | 314/500 [00:16<00:09, 20.59it/s]
eval model::  63%|██████▎   | 317/500 [00:16<00:08, 20.94it/s]
eval model::  64%|██████▍   | 320/500 [00:17<00:08, 21.43it/s]
eval model::  65%|██████▍   | 323/500 [00:17<00:08, 20.21it/s]
eval model::  65%|██████▌   | 326/500 [00:17<00:08, 20.32it/s]
eval model::  66%|██████▌   | 329/500 [00:17<00:08, 19.87it/s]
eval model::  66%|██████▋   | 332/500 [00:17<00:08, 20.82it/s]
eval model::  67%|██████▋   | 335/500 [00:17<00:07, 21.92it/s]
eval model::  68%|██████▊   | 338/500 [00:18<00:08, 19.14it/s]
eval model::  68%|██████▊   | 341/500 [00:18<00:09, 16.44it/s]
eval model::  69%|██████▉   | 344/500 [00:18<00:08, 18.23it/s]
eval model::  69%|██████▉   | 347/500 [00:18<00:07, 19.66it/s]
eval model::  70%|███████   | 350/500 [00:18<00:06, 21.64it/s]
eval model::  71%|███████   | 353/500 [00:18<00:06, 21.77it/s]
eval model::  71%|███████   | 356/500 [00:18<00:07, 19.98it/s]
eval model::  72%|███████▏  | 359/500 [00:19<00:06, 20.71it/s]
eval model::  72%|███████▏  | 362/500 [00:19<00:07, 19.30it/s]
eval model::  73%|███████▎  | 365/500 [00:19<00:07, 18.22it/s]
eval model::  74%|███████▎  | 368/500 [00:19<00:06, 19.24it/s]
eval model::  74%|███████▍  | 371/500 [00:19<00:06, 19.66it/s]
eval model::  75%|███████▍  | 374/500 [00:19<00:06, 20.77it/s]
eval model::  75%|███████▌  | 377/500 [00:19<00:05, 21.50it/s]
eval model::  76%|███████▌  | 380/500 [00:20<00:05, 21.17it/s]
eval model::  77%|███████▋  | 384/500 [00:20<00:04, 23.70it/s]
eval model::  77%|███████▋  | 387/500 [00:20<00:07, 14.98it/s]
eval model::  78%|███████▊  | 390/500 [00:20<00:06, 17.23it/s]
eval model::  79%|███████▊  | 393/500 [00:20<00:06, 17.45it/s]
eval model::  79%|███████▉  | 396/500 [00:21<00:05, 18.58it/s]
eval model::  80%|███████▉  | 399/500 [00:21<00:05, 19.40it/s]
eval model::  80%|████████  | 402/500 [00:21<00:05, 18.46it/s]
eval model::  81%|████████  | 405/500 [00:21<00:04, 19.81it/s]
eval model::  82%|████████▏ | 408/500 [00:21<00:04, 21.24it/s]
eval model::  82%|████████▏ | 411/500 [00:21<00:04, 21.92it/s]
eval model::  83%|████████▎ | 414/500 [00:21<00:03, 22.39it/s]
eval model::  83%|████████▎ | 417/500 [00:22<00:04, 20.65it/s]
eval model::  84%|████████▍ | 420/500 [00:22<00:05, 15.69it/s]
eval model::  85%|████████▍ | 423/500 [00:22<00:04, 17.29it/s]
eval model::  85%|████████▌ | 425/500 [00:22<00:04, 16.91it/s]
eval model::  86%|████████▌ | 429/500 [00:22<00:03, 20.58it/s]
eval model::  86%|████████▋ | 432/500 [00:22<00:03, 21.02it/s]
eval model::  87%|████████▋ | 435/500 [00:22<00:02, 22.35it/s]
eval model::  88%|████████▊ | 439/500 [00:23<00:02, 23.95it/s]
eval model::  88%|████████▊ | 442/500 [00:23<00:02, 23.02it/s]
eval model::  89%|████████▉ | 445/500 [00:23<00:02, 23.59it/s]
eval model::  90%|████████▉ | 448/500 [00:23<00:02, 21.71it/s]
eval model::  90%|█████████ | 451/500 [00:23<00:02, 20.99it/s]
eval model::  91%|█████████ | 454/500 [00:23<00:02, 22.83it/s]
eval model::  92%|█████████▏| 458/500 [00:23<00:01, 22.78it/s]
eval model::  92%|█████████▏| 461/500 [00:24<00:01, 22.73it/s]
eval model::  93%|█████████▎| 464/500 [00:24<00:01, 18.47it/s]
eval model::  93%|█████████▎| 466/500 [00:24<00:01, 18.19it/s]
eval model::  94%|█████████▎| 468/500 [00:24<00:01, 18.26it/s]
eval model::  94%|█████████▍| 471/500 [00:24<00:01, 20.06it/s]
eval model::  95%|█████████▍| 474/500 [00:24<00:01, 18.42it/s]
eval model::  95%|█████████▌| 477/500 [00:25<00:01, 20.32it/s]
eval model::  96%|█████████▌| 480/500 [00:25<00:01, 19.68it/s]
eval model::  97%|█████████▋| 483/500 [00:25<00:00, 20.35it/s]
eval model::  97%|█████████▋| 486/500 [00:25<00:00, 20.43it/s]
eval model::  98%|█████████▊| 489/500 [00:25<00:00, 22.13it/s]
eval model::  98%|█████████▊| 492/500 [00:25<00:00, 20.99it/s]
eval model::  99%|█████████▉| 495/500 [00:25<00:00, 20.08it/s]
eval model:: 100%|█████████▉| 498/500 [00:26<00:00, 20.19it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 19.15it/s]
[2024/07/27 12:34:28] ppocr INFO: cur metric, precision: 0.6933701657458563, recall: 0.6042368801155513, hmean: 0.6457422176485721, fps: 43.84275627479317
[2024/07/27 12:34:28] ppocr INFO: best metric, hmean: 0.6565524457232539, precision: 0.7187857961053837, recall: 0.6042368801155513, fps: 45.296458194658534, best_epoch: 380
[2024/07/27 12:34:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:34:38] ppocr INFO: epoch: [401/1500], global_step: 1203, lr: 0.001000, loss: 1.641140, loss_shrink_maps: 0.898587, loss_threshold_maps: 0.591718, loss_binary_maps: 0.178214, avg_reader_cost: 2.41312 s, avg_batch_cost: 2.73851 s, avg_samples: 12.5, ips: 4.56453 samples/s, eta: 8:04:52
[2024/07/27 12:34:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:34:48] ppocr INFO: epoch: [402/1500], global_step: 1206, lr: 0.001000, loss: 1.641140, loss_shrink_maps: 0.898587, loss_threshold_maps: 0.597815, loss_binary_maps: 0.178214, avg_reader_cost: 2.26844 s, avg_batch_cost: 2.66696 s, avg_samples: 12.5, ips: 4.68698 samples/s, eta: 8:04:26
[2024/07/27 12:34:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:34:58] ppocr INFO: epoch: [403/1500], global_step: 1209, lr: 0.001000, loss: 1.678286, loss_shrink_maps: 0.900732, loss_threshold_maps: 0.599061, loss_binary_maps: 0.178577, avg_reader_cost: 2.21465 s, avg_batch_cost: 2.57555 s, avg_samples: 12.5, ips: 4.85333 samples/s, eta: 8:03:58
[2024/07/27 12:34:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:35:05] ppocr INFO: epoch: [404/1500], global_step: 1210, lr: 0.001000, loss: 1.641140, loss_shrink_maps: 0.898587, loss_threshold_maps: 0.596144, loss_binary_maps: 0.178214, avg_reader_cost: 0.54731 s, avg_batch_cost: 0.72036 s, avg_samples: 4.8, ips: 6.66330 samples/s, eta: 8:03:45
[2024/07/27 12:35:07] ppocr INFO: epoch: [404/1500], global_step: 1212, lr: 0.001000, loss: 1.611546, loss_shrink_maps: 0.870738, loss_threshold_maps: 0.596144, loss_binary_maps: 0.173034, avg_reader_cost: 1.53277 s, avg_batch_cost: 1.67968 s, avg_samples: 7.7, ips: 4.58422 samples/s, eta: 8:03:25
[2024/07/27 12:35:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:35:16] ppocr INFO: epoch: [405/1500], global_step: 1215, lr: 0.001000, loss: 1.627452, loss_shrink_maps: 0.870738, loss_threshold_maps: 0.596144, loss_binary_maps: 0.173034, avg_reader_cost: 2.28793 s, avg_batch_cost: 2.52826 s, avg_samples: 12.5, ips: 4.94410 samples/s, eta: 8:02:55
[2024/07/27 12:35:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:35:26] ppocr INFO: epoch: [406/1500], global_step: 1218, lr: 0.001000, loss: 1.671737, loss_shrink_maps: 0.917296, loss_threshold_maps: 0.596144, loss_binary_maps: 0.181329, avg_reader_cost: 2.32618 s, avg_batch_cost: 2.57825 s, avg_samples: 12.5, ips: 4.84825 samples/s, eta: 8:02:27
[2024/07/27 12:35:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:35:36] ppocr INFO: epoch: [407/1500], global_step: 1220, lr: 0.001000, loss: 1.586820, loss_shrink_maps: 0.841276, loss_threshold_maps: 0.583286, loss_binary_maps: 0.166733, avg_reader_cost: 1.51201 s, avg_batch_cost: 1.69836 s, avg_samples: 9.6, ips: 5.65251 samples/s, eta: 8:02:07
[2024/07/27 12:35:36] ppocr INFO: epoch: [407/1500], global_step: 1221, lr: 0.001000, loss: 1.567882, loss_shrink_maps: 0.824456, loss_threshold_maps: 0.569807, loss_binary_maps: 0.162808, avg_reader_cost: 0.89609 s, avg_batch_cost: 0.95092 s, avg_samples: 2.9, ips: 3.04967 samples/s, eta: 8:02:00
[2024/07/27 12:35:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:35:46] ppocr INFO: epoch: [408/1500], global_step: 1224, lr: 0.001000, loss: 1.601179, loss_shrink_maps: 0.840415, loss_threshold_maps: 0.583854, loss_binary_maps: 0.166012, avg_reader_cost: 2.39513 s, avg_batch_cost: 2.63308 s, avg_samples: 12.5, ips: 4.74729 samples/s, eta: 8:01:34
[2024/07/27 12:35:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:35:56] ppocr INFO: epoch: [409/1500], global_step: 1227, lr: 0.001000, loss: 1.582242, loss_shrink_maps: 0.824121, loss_threshold_maps: 0.583854, loss_binary_maps: 0.163081, avg_reader_cost: 2.30298 s, avg_batch_cost: 2.66904 s, avg_samples: 12.5, ips: 4.68334 samples/s, eta: 8:01:08
[2024/07/27 12:35:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:36:06] ppocr INFO: epoch: [410/1500], global_step: 1230, lr: 0.001000, loss: 1.604825, loss_shrink_maps: 0.824121, loss_threshold_maps: 0.590801, loss_binary_maps: 0.163081, avg_reader_cost: 2.32339 s, avg_batch_cost: 2.57243 s, avg_samples: 12.5, ips: 4.85921 samples/s, eta: 8:00:39
[2024/07/27 12:36:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:36:15] ppocr INFO: epoch: [411/1500], global_step: 1233, lr: 0.001000, loss: 1.604825, loss_shrink_maps: 0.824121, loss_threshold_maps: 0.590801, loss_binary_maps: 0.163081, avg_reader_cost: 2.31095 s, avg_batch_cost: 2.55288 s, avg_samples: 12.5, ips: 4.89643 samples/s, eta: 8:00:10
[2024/07/27 12:36:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:36:25] ppocr INFO: epoch: [412/1500], global_step: 1236, lr: 0.001000, loss: 1.579718, loss_shrink_maps: 0.809413, loss_threshold_maps: 0.592933, loss_binary_maps: 0.160510, avg_reader_cost: 2.32819 s, avg_batch_cost: 2.57127 s, avg_samples: 12.5, ips: 4.86141 samples/s, eta: 7:59:42
[2024/07/27 12:36:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:36:35] ppocr INFO: epoch: [413/1500], global_step: 1239, lr: 0.001000, loss: 1.559668, loss_shrink_maps: 0.809413, loss_threshold_maps: 0.587700, loss_binary_maps: 0.160510, avg_reader_cost: 2.29551 s, avg_batch_cost: 2.69176 s, avg_samples: 12.5, ips: 4.64380 samples/s, eta: 7:59:17
[2024/07/27 12:36:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:36:43] ppocr INFO: epoch: [414/1500], global_step: 1240, lr: 0.001000, loss: 1.542926, loss_shrink_maps: 0.806733, loss_threshold_maps: 0.581229, loss_binary_maps: 0.160154, avg_reader_cost: 0.45747 s, avg_batch_cost: 0.77126 s, avg_samples: 4.8, ips: 6.22355 samples/s, eta: 7:59:05
[2024/07/27 12:36:45] ppocr INFO: epoch: [414/1500], global_step: 1242, lr: 0.001000, loss: 1.572853, loss_shrink_maps: 0.824053, loss_threshold_maps: 0.587700, loss_binary_maps: 0.163528, avg_reader_cost: 1.63509 s, avg_batch_cost: 1.78304 s, avg_samples: 7.7, ips: 4.31848 samples/s, eta: 7:58:48
[2024/07/27 12:36:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:36:55] ppocr INFO: epoch: [415/1500], global_step: 1245, lr: 0.001000, loss: 1.572853, loss_shrink_maps: 0.819639, loss_threshold_maps: 0.587700, loss_binary_maps: 0.162343, avg_reader_cost: 2.19878 s, avg_batch_cost: 2.55254 s, avg_samples: 12.5, ips: 4.89709 samples/s, eta: 7:58:19
[2024/07/27 12:36:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:37:05] ppocr INFO: epoch: [416/1500], global_step: 1248, lr: 0.001000, loss: 1.602302, loss_shrink_maps: 0.837178, loss_threshold_maps: 0.576955, loss_binary_maps: 0.165915, avg_reader_cost: 2.43473 s, avg_batch_cost: 2.67516 s, avg_samples: 12.5, ips: 4.67263 samples/s, eta: 7:57:53
[2024/07/27 12:37:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:37:14] ppocr INFO: epoch: [417/1500], global_step: 1250, lr: 0.001000, loss: 1.581780, loss_shrink_maps: 0.837178, loss_threshold_maps: 0.579086, loss_binary_maps: 0.165915, avg_reader_cost: 1.44613 s, avg_batch_cost: 1.62452 s, avg_samples: 9.6, ips: 5.90942 samples/s, eta: 7:57:32
[2024/07/27 12:37:14] ppocr INFO: epoch: [417/1500], global_step: 1251, lr: 0.001000, loss: 1.581780, loss_shrink_maps: 0.836803, loss_threshold_maps: 0.579086, loss_binary_maps: 0.165693, avg_reader_cost: 0.85863 s, avg_batch_cost: 0.91386 s, avg_samples: 2.9, ips: 3.17335 samples/s, eta: 7:57:24
[2024/07/27 12:37:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:37:24] ppocr INFO: epoch: [418/1500], global_step: 1254, lr: 0.001000, loss: 1.591474, loss_shrink_maps: 0.837022, loss_threshold_maps: 0.591340, loss_binary_maps: 0.165693, avg_reader_cost: 2.26443 s, avg_batch_cost: 2.64460 s, avg_samples: 12.5, ips: 4.72661 samples/s, eta: 7:56:58
[2024/07/27 12:37:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:37:34] ppocr INFO: epoch: [419/1500], global_step: 1257, lr: 0.001000, loss: 1.569614, loss_shrink_maps: 0.821557, loss_threshold_maps: 0.577117, loss_binary_maps: 0.162877, avg_reader_cost: 2.34239 s, avg_batch_cost: 2.58679 s, avg_samples: 12.5, ips: 4.83225 samples/s, eta: 7:56:30
[2024/07/27 12:37:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:37:43] ppocr INFO: epoch: [420/1500], global_step: 1260, lr: 0.001000, loss: 1.611645, loss_shrink_maps: 0.839465, loss_threshold_maps: 0.592966, loss_binary_maps: 0.166044, avg_reader_cost: 2.23238 s, avg_batch_cost: 2.47159 s, avg_samples: 12.5, ips: 5.05748 samples/s, eta: 7:55:59

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<01:01,  8.10it/s]
eval model::   1%|          | 4/500 [00:00<00:31, 15.85it/s]
eval model::   1%|▏         | 7/500 [00:00<00:26, 18.30it/s]
eval model::   2%|▏         | 9/500 [00:00<00:27, 18.14it/s]
eval model::   2%|▏         | 11/500 [00:00<00:31, 15.70it/s]
eval model::   3%|▎         | 14/500 [00:00<00:29, 16.69it/s]
eval model::   3%|▎         | 17/500 [00:00<00:24, 19.79it/s]
eval model::   4%|▍         | 20/500 [00:01<00:23, 20.61it/s]
eval model::   5%|▍         | 23/500 [00:01<00:22, 21.42it/s]
eval model::   5%|▌         | 26/500 [00:01<00:23, 20.45it/s]
eval model::   6%|▌         | 29/500 [00:01<00:22, 21.16it/s]
eval model::   6%|▋         | 32/500 [00:01<00:22, 20.96it/s]
eval model::   7%|▋         | 35/500 [00:01<00:23, 20.06it/s]
eval model::   8%|▊         | 38/500 [00:01<00:23, 19.98it/s]
eval model::   8%|▊         | 41/500 [00:02<00:25, 18.07it/s]
eval model::   9%|▊         | 43/500 [00:02<00:28, 15.96it/s]
eval model::   9%|▉         | 46/500 [00:02<00:28, 16.16it/s]
eval model::  10%|▉         | 49/500 [00:02<00:26, 17.27it/s]
eval model::  10%|█         | 51/500 [00:02<00:25, 17.80it/s]
eval model::  11%|█         | 54/500 [00:02<00:23, 19.03it/s]
eval model::  11%|█         | 56/500 [00:03<00:23, 19.20it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:23, 18.54it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:29, 15.01it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:29, 14.63it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:24, 17.73it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:21, 20.52it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:19, 22.25it/s]
eval model::  15%|█▌        | 75/500 [00:04<00:19, 21.74it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:19, 21.12it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:18, 22.75it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:19, 21.68it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:20, 20.04it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:22, 18.12it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:22, 18.11it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:20, 19.43it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:19, 20.60it/s]
eval model::  20%|██        | 102/500 [00:05<00:18, 21.32it/s]
eval model::  21%|██        | 105/500 [00:05<00:18, 20.89it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:18, 21.67it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:18, 20.50it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:18, 20.54it/s]
eval model::  23%|██▎       | 117/500 [00:06<00:18, 20.26it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:18, 20.01it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:17, 21.25it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:20, 18.31it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:19, 19.14it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:22, 16.77it/s]
eval model::  27%|██▋       | 133/500 [00:07<00:23, 15.90it/s]
eval model::  27%|██▋       | 135/500 [00:07<00:22, 16.26it/s]
eval model::  27%|██▋       | 137/500 [00:07<00:21, 16.62it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:21, 17.05it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:19, 18.71it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:18, 19.25it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:18, 18.76it/s]
eval model::  30%|███       | 150/500 [00:07<00:16, 21.20it/s]
eval model::  31%|███       | 153/500 [00:08<00:16, 20.96it/s]
eval model::  31%|███       | 156/500 [00:08<00:15, 22.86it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:15, 22.26it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:20, 16.79it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:20, 16.71it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:19, 17.15it/s]
eval model::  34%|███▍      | 171/500 [00:09<00:18, 18.27it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:20, 15.88it/s]
eval model::  35%|███▌      | 177/500 [00:09<00:18, 17.68it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:19, 16.61it/s]
eval model::  36%|███▋      | 182/500 [00:09<00:18, 17.23it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:15, 20.37it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:14, 21.34it/s]
eval model::  38%|███▊      | 192/500 [00:10<00:14, 21.69it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:14, 20.90it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:13, 21.93it/s]
eval model::  40%|████      | 201/500 [00:10<00:13, 22.69it/s]
eval model::  41%|████      | 205/500 [00:10<00:20, 14.13it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:19, 15.08it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:18, 15.37it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:17, 16.33it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:19, 14.81it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:20, 13.96it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:17, 16.04it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:18, 15.37it/s]
eval model::  45%|████▌     | 225/500 [00:12<00:16, 16.87it/s]
eval model::  45%|████▌     | 227/500 [00:12<00:16, 16.75it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:14, 19.23it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:13, 20.16it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:13, 20.13it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:12, 21.05it/s]
eval model::  48%|████▊     | 242/500 [00:13<00:13, 18.49it/s]
eval model::  49%|████▉     | 245/500 [00:13<00:12, 20.92it/s]
eval model::  50%|████▉     | 248/500 [00:13<00:11, 21.80it/s]
eval model::  50%|█████     | 251/500 [00:13<00:11, 21.12it/s]
eval model::  51%|█████     | 254/500 [00:13<00:10, 22.94it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:09, 24.58it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:10, 21.89it/s]
eval model::  53%|█████▎    | 263/500 [00:13<00:11, 21.20it/s]
eval model::  53%|█████▎    | 266/500 [00:14<00:12, 18.29it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:13, 17.71it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:12, 18.99it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:12, 18.37it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:11, 19.89it/s]
eval model::  56%|█████▌    | 281/500 [00:14<00:10, 20.27it/s]
eval model::  57%|█████▋    | 284/500 [00:15<00:10, 19.97it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:16, 12.83it/s]
eval model::  58%|█████▊    | 290/500 [00:15<00:13, 15.45it/s]
eval model::  59%|█████▊    | 293/500 [00:15<00:12, 16.77it/s]
eval model::  59%|█████▉    | 296/500 [00:16<00:14, 14.50it/s]
eval model::  60%|█████▉    | 299/500 [00:16<00:12, 16.00it/s]
eval model::  60%|██████    | 301/500 [00:16<00:13, 14.93it/s]
eval model::  61%|██████    | 304/500 [00:16<00:12, 16.24it/s]
eval model::  61%|██████    | 306/500 [00:16<00:11, 16.92it/s]
eval model::  62%|██████▏   | 309/500 [00:16<00:10, 18.59it/s]
eval model::  62%|██████▏   | 312/500 [00:16<00:10, 18.66it/s]
eval model::  63%|██████▎   | 315/500 [00:17<00:10, 18.14it/s]
eval model::  64%|██████▎   | 318/500 [00:17<00:09, 19.44it/s]
eval model::  64%|██████▍   | 321/500 [00:17<00:09, 19.10it/s]
eval model::  65%|██████▍   | 323/500 [00:17<00:10, 17.22it/s]
eval model::  65%|██████▌   | 326/500 [00:17<00:09, 18.64it/s]
eval model::  66%|██████▌   | 329/500 [00:17<00:08, 19.86it/s]
eval model::  66%|██████▋   | 332/500 [00:17<00:07, 21.14it/s]
eval model::  67%|██████▋   | 336/500 [00:18<00:07, 23.04it/s]
eval model::  68%|██████▊   | 339/500 [00:18<00:07, 21.21it/s]
eval model::  68%|██████▊   | 342/500 [00:18<00:09, 17.54it/s]
eval model::  69%|██████▉   | 345/500 [00:18<00:08, 18.77it/s]
eval model::  69%|██████▉   | 347/500 [00:18<00:08, 18.25it/s]
eval model::  70%|███████   | 350/500 [00:18<00:07, 19.35it/s]
eval model::  71%|███████   | 353/500 [00:18<00:07, 19.81it/s]
eval model::  71%|███████   | 356/500 [00:19<00:07, 18.44it/s]
eval model::  72%|███████▏  | 359/500 [00:19<00:06, 20.16it/s]
eval model::  72%|███████▏  | 362/500 [00:19<00:07, 18.44it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:08, 16.31it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:08, 15.91it/s]
eval model::  74%|███████▍  | 369/500 [00:19<00:07, 17.74it/s]
eval model::  74%|███████▍  | 372/500 [00:20<00:07, 17.12it/s]
eval model::  75%|███████▌  | 375/500 [00:20<00:06, 19.14it/s]
eval model::  76%|███████▌  | 378/500 [00:20<00:05, 20.37it/s]
eval model::  76%|███████▌  | 381/500 [00:20<00:06, 18.93it/s]
eval model::  77%|███████▋  | 384/500 [00:20<00:05, 21.02it/s]
eval model::  77%|███████▋  | 387/500 [00:21<00:08, 13.48it/s]
eval model::  78%|███████▊  | 389/500 [00:21<00:07, 14.26it/s]
eval model::  78%|███████▊  | 391/500 [00:21<00:07, 14.40it/s]
eval model::  79%|███████▉  | 394/500 [00:21<00:06, 16.40it/s]
eval model::  80%|███████▉  | 398/500 [00:21<00:05, 20.04it/s]
eval model::  80%|████████  | 401/500 [00:21<00:05, 17.76it/s]
eval model::  81%|████████  | 403/500 [00:21<00:05, 17.50it/s]
eval model::  81%|████████  | 405/500 [00:21<00:05, 17.81it/s]
eval model::  82%|████████▏ | 408/500 [00:22<00:04, 19.11it/s]
eval model::  82%|████████▏ | 411/500 [00:22<00:04, 20.72it/s]
eval model::  83%|████████▎ | 414/500 [00:22<00:04, 20.05it/s]
eval model::  83%|████████▎ | 417/500 [00:22<00:04, 18.28it/s]
eval model::  84%|████████▍ | 419/500 [00:22<00:04, 17.85it/s]
eval model::  84%|████████▍ | 421/500 [00:23<00:06, 11.44it/s]
eval model::  85%|████████▍ | 424/500 [00:23<00:05, 13.34it/s]
eval model::  85%|████████▌ | 426/500 [00:23<00:05, 14.11it/s]
eval model::  86%|████████▌ | 429/500 [00:23<00:04, 15.79it/s]
eval model::  86%|████████▌ | 431/500 [00:23<00:04, 15.24it/s]
eval model::  87%|████████▋ | 434/500 [00:23<00:03, 16.93it/s]
eval model::  87%|████████▋ | 436/500 [00:23<00:03, 17.48it/s]
eval model::  88%|████████▊ | 439/500 [00:24<00:03, 18.48it/s]
eval model::  88%|████████▊ | 442/500 [00:24<00:02, 20.50it/s]
eval model::  89%|████████▉ | 446/500 [00:24<00:02, 23.70it/s]
eval model::  90%|████████▉ | 449/500 [00:24<00:02, 22.11it/s]
eval model::  91%|█████████ | 453/500 [00:24<00:01, 23.59it/s]
eval model::  91%|█████████ | 456/500 [00:24<00:01, 23.80it/s]
eval model::  92%|█████████▏| 459/500 [00:24<00:01, 22.92it/s]
eval model::  92%|█████████▏| 462/500 [00:25<00:02, 17.52it/s]
eval model::  93%|█████████▎| 464/500 [00:25<00:02, 17.84it/s]
eval model::  93%|█████████▎| 466/500 [00:25<00:01, 17.57it/s]
eval model::  94%|█████████▍| 469/500 [00:25<00:01, 19.68it/s]
eval model::  94%|█████████▍| 472/500 [00:25<00:01, 21.63it/s]
eval model::  95%|█████████▌| 475/500 [00:25<00:01, 20.63it/s]
eval model::  96%|█████████▌| 478/500 [00:25<00:00, 22.46it/s]
eval model::  96%|█████████▌| 481/500 [00:25<00:00, 24.13it/s]
eval model::  97%|█████████▋| 484/500 [00:26<00:00, 25.65it/s]
eval model::  97%|█████████▋| 487/500 [00:26<00:00, 23.72it/s]
eval model::  98%|█████████▊| 490/500 [00:26<00:00, 24.38it/s]
eval model::  99%|█████████▊| 493/500 [00:26<00:00, 22.08it/s]
eval model::  99%|█████████▉| 496/500 [00:26<00:00, 21.47it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 24.44it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.69it/s]
[2024/07/27 12:38:10] ppocr INFO: cur metric, precision: 0.730185497470489, recall: 0.6254212806933076, hmean: 0.6737551867219916, fps: 43.42892415983237
[2024/07/27 12:38:10] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/27 12:38:10] ppocr INFO: best metric, hmean: 0.6737551867219916, precision: 0.730185497470489, recall: 0.6254212806933076, fps: 43.42892415983237, best_epoch: 420
[2024/07/27 12:38:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:38:19] ppocr INFO: epoch: [421/1500], global_step: 1263, lr: 0.001000, loss: 1.569614, loss_shrink_maps: 0.817048, loss_threshold_maps: 0.567414, loss_binary_maps: 0.161843, avg_reader_cost: 2.00087 s, avg_batch_cost: 2.32028 s, avg_samples: 12.5, ips: 5.38729 samples/s, eta: 7:55:24
[2024/07/27 12:38:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:38:28] ppocr INFO: epoch: [422/1500], global_step: 1266, lr: 0.001000, loss: 1.589784, loss_shrink_maps: 0.817048, loss_threshold_maps: 0.576190, loss_binary_maps: 0.161843, avg_reader_cost: 2.31348 s, avg_batch_cost: 2.55419 s, avg_samples: 12.5, ips: 4.89391 samples/s, eta: 7:54:55
[2024/07/27 12:38:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:38:38] ppocr INFO: epoch: [423/1500], global_step: 1269, lr: 0.001000, loss: 1.589784, loss_shrink_maps: 0.817048, loss_threshold_maps: 0.601029, loss_binary_maps: 0.161843, avg_reader_cost: 2.25126 s, avg_batch_cost: 2.63735 s, avg_samples: 12.5, ips: 4.73961 samples/s, eta: 7:54:29
[2024/07/27 12:38:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:38:46] ppocr INFO: epoch: [424/1500], global_step: 1270, lr: 0.001000, loss: 1.611645, loss_shrink_maps: 0.850140, loss_threshold_maps: 0.593405, loss_binary_maps: 0.168686, avg_reader_cost: 0.69076 s, avg_batch_cost: 0.78026 s, avg_samples: 4.8, ips: 6.15182 samples/s, eta: 7:54:17
[2024/07/27 12:38:48] ppocr INFO: epoch: [424/1500], global_step: 1272, lr: 0.001000, loss: 1.568171, loss_shrink_maps: 0.829532, loss_threshold_maps: 0.586332, loss_binary_maps: 0.164053, avg_reader_cost: 1.65239 s, avg_batch_cost: 1.79845 s, avg_samples: 7.7, ips: 4.28147 samples/s, eta: 7:54:01
[2024/07/27 12:38:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:38:57] ppocr INFO: epoch: [425/1500], global_step: 1275, lr: 0.001000, loss: 1.597786, loss_shrink_maps: 0.838932, loss_threshold_maps: 0.587703, loss_binary_maps: 0.165190, avg_reader_cost: 2.23498 s, avg_batch_cost: 2.56255 s, avg_samples: 12.5, ips: 4.87795 samples/s, eta: 7:53:32
[2024/07/27 12:38:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:39:08] ppocr INFO: epoch: [426/1500], global_step: 1278, lr: 0.001000, loss: 1.604107, loss_shrink_maps: 0.847658, loss_threshold_maps: 0.591930, loss_binary_maps: 0.167673, avg_reader_cost: 2.25758 s, avg_batch_cost: 2.63521 s, avg_samples: 12.5, ips: 4.74345 samples/s, eta: 7:53:06
[2024/07/27 12:39:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:39:17] ppocr INFO: epoch: [427/1500], global_step: 1280, lr: 0.001000, loss: 1.590894, loss_shrink_maps: 0.838974, loss_threshold_maps: 0.591930, loss_binary_maps: 0.165458, avg_reader_cost: 1.32081 s, avg_batch_cost: 1.62851 s, avg_samples: 9.6, ips: 5.89497 samples/s, eta: 7:52:45
[2024/07/27 12:39:17] ppocr INFO: epoch: [427/1500], global_step: 1281, lr: 0.001000, loss: 1.590894, loss_shrink_maps: 0.838974, loss_threshold_maps: 0.591930, loss_binary_maps: 0.165458, avg_reader_cost: 0.86021 s, avg_batch_cost: 0.91598 s, avg_samples: 2.9, ips: 3.16601 samples/s, eta: 7:52:37
[2024/07/27 12:39:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:39:27] ppocr INFO: epoch: [428/1500], global_step: 1284, lr: 0.001000, loss: 1.606357, loss_shrink_maps: 0.847658, loss_threshold_maps: 0.598621, loss_binary_maps: 0.167673, avg_reader_cost: 2.14779 s, avg_batch_cost: 2.51462 s, avg_samples: 12.5, ips: 4.97094 samples/s, eta: 7:52:07
[2024/07/27 12:39:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:39:36] ppocr INFO: epoch: [429/1500], global_step: 1287, lr: 0.001000, loss: 1.590894, loss_shrink_maps: 0.838974, loss_threshold_maps: 0.598159, loss_binary_maps: 0.165458, avg_reader_cost: 2.27441 s, avg_batch_cost: 2.51275 s, avg_samples: 12.5, ips: 4.97464 samples/s, eta: 7:51:37
[2024/07/27 12:39:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:39:46] ppocr INFO: epoch: [430/1500], global_step: 1290, lr: 0.001000, loss: 1.590894, loss_shrink_maps: 0.838974, loss_threshold_maps: 0.592791, loss_binary_maps: 0.165458, avg_reader_cost: 2.29252 s, avg_batch_cost: 2.52544 s, avg_samples: 12.5, ips: 4.94963 samples/s, eta: 7:51:08
[2024/07/27 12:39:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:39:56] ppocr INFO: epoch: [431/1500], global_step: 1293, lr: 0.001000, loss: 1.606357, loss_shrink_maps: 0.847658, loss_threshold_maps: 0.601747, loss_binary_maps: 0.167672, avg_reader_cost: 2.29232 s, avg_batch_cost: 2.69010 s, avg_samples: 12.5, ips: 4.64667 samples/s, eta: 7:50:43
[2024/07/27 12:39:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:40:06] ppocr INFO: epoch: [432/1500], global_step: 1296, lr: 0.001000, loss: 1.574859, loss_shrink_maps: 0.827072, loss_threshold_maps: 0.595726, loss_binary_maps: 0.163808, avg_reader_cost: 2.37005 s, avg_batch_cost: 2.60981 s, avg_samples: 12.5, ips: 4.78961 samples/s, eta: 7:50:16
[2024/07/27 12:40:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:40:16] ppocr INFO: epoch: [433/1500], global_step: 1299, lr: 0.001000, loss: 1.562148, loss_shrink_maps: 0.821343, loss_threshold_maps: 0.596172, loss_binary_maps: 0.162063, avg_reader_cost: 2.21670 s, avg_batch_cost: 2.58495 s, avg_samples: 12.5, ips: 4.83569 samples/s, eta: 7:49:48
[2024/07/27 12:40:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:40:24] ppocr INFO: epoch: [434/1500], global_step: 1300, lr: 0.001000, loss: 1.548687, loss_shrink_maps: 0.809905, loss_threshold_maps: 0.590805, loss_binary_maps: 0.159993, avg_reader_cost: 0.70324 s, avg_batch_cost: 0.81226 s, avg_samples: 4.8, ips: 5.90941 samples/s, eta: 7:49:37
[2024/07/27 12:40:26] ppocr INFO: epoch: [434/1500], global_step: 1302, lr: 0.001000, loss: 1.538627, loss_shrink_maps: 0.796229, loss_threshold_maps: 0.589803, loss_binary_maps: 0.157371, avg_reader_cost: 1.71673 s, avg_batch_cost: 1.86390 s, avg_samples: 7.7, ips: 4.13112 samples/s, eta: 7:49:22
[2024/07/27 12:40:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:40:36] ppocr INFO: epoch: [435/1500], global_step: 1305, lr: 0.001000, loss: 1.535734, loss_shrink_maps: 0.795294, loss_threshold_maps: 0.582806, loss_binary_maps: 0.157088, avg_reader_cost: 2.25837 s, avg_batch_cost: 2.64358 s, avg_samples: 12.5, ips: 4.72844 samples/s, eta: 7:48:56
[2024/07/27 12:40:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:40:46] ppocr INFO: epoch: [436/1500], global_step: 1308, lr: 0.001000, loss: 1.527606, loss_shrink_maps: 0.789917, loss_threshold_maps: 0.572915, loss_binary_maps: 0.156180, avg_reader_cost: 2.29815 s, avg_batch_cost: 2.67203 s, avg_samples: 12.5, ips: 4.67808 samples/s, eta: 7:48:30
[2024/07/27 12:40:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:40:55] ppocr INFO: epoch: [437/1500], global_step: 1310, lr: 0.001000, loss: 1.518457, loss_shrink_maps: 0.786223, loss_threshold_maps: 0.565922, loss_binary_maps: 0.155441, avg_reader_cost: 1.32561 s, avg_batch_cost: 1.60887 s, avg_samples: 9.6, ips: 5.96693 samples/s, eta: 7:48:09
[2024/07/27 12:40:55] ppocr INFO: epoch: [437/1500], global_step: 1311, lr: 0.001000, loss: 1.527606, loss_shrink_maps: 0.789917, loss_threshold_maps: 0.571540, loss_binary_maps: 0.156180, avg_reader_cost: 0.85027 s, avg_batch_cost: 0.90592 s, avg_samples: 2.9, ips: 3.20118 samples/s, eta: 7:48:01
[2024/07/27 12:40:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:41:05] ppocr INFO: epoch: [438/1500], global_step: 1314, lr: 0.001000, loss: 1.518457, loss_shrink_maps: 0.786223, loss_threshold_maps: 0.565922, loss_binary_maps: 0.155441, avg_reader_cost: 2.30244 s, avg_batch_cost: 2.60110 s, avg_samples: 12.5, ips: 4.80566 samples/s, eta: 7:47:33
[2024/07/27 12:41:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:41:14] ppocr INFO: epoch: [439/1500], global_step: 1317, lr: 0.001000, loss: 1.537310, loss_shrink_maps: 0.795294, loss_threshold_maps: 0.571540, loss_binary_maps: 0.157088, avg_reader_cost: 2.15069 s, avg_batch_cost: 2.51548 s, avg_samples: 12.5, ips: 4.96923 samples/s, eta: 7:47:04
[2024/07/27 12:41:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:41:25] ppocr INFO: epoch: [440/1500], global_step: 1320, lr: 0.001000, loss: 1.544006, loss_shrink_maps: 0.814079, loss_threshold_maps: 0.571540, loss_binary_maps: 0.161029, avg_reader_cost: 2.40378 s, avg_batch_cost: 2.64960 s, avg_samples: 12.5, ips: 4.71770 samples/s, eta: 7:46:38

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 2/500 [00:00<00:31, 15.85it/s]
eval model::   1%|          | 5/500 [00:00<00:25, 19.14it/s]
eval model::   1%|▏         | 7/500 [00:00<00:26, 18.31it/s]
eval model::   2%|▏         | 9/500 [00:00<00:27, 18.15it/s]
eval model::   2%|▏         | 11/500 [00:00<00:30, 15.89it/s]
eval model::   3%|▎         | 14/500 [00:00<00:27, 17.74it/s]
eval model::   3%|▎         | 17/500 [00:00<00:23, 20.40it/s]
eval model::   4%|▍         | 20/500 [00:01<00:24, 19.95it/s]
eval model::   5%|▍         | 23/500 [00:01<00:22, 21.01it/s]
eval model::   5%|▌         | 26/500 [00:01<00:24, 19.58it/s]
eval model::   6%|▌         | 29/500 [00:01<00:23, 19.99it/s]
eval model::   6%|▋         | 32/500 [00:01<00:23, 20.26it/s]
eval model::   7%|▋         | 35/500 [00:01<00:24, 18.87it/s]
eval model::   8%|▊         | 38/500 [00:01<00:23, 19.95it/s]
eval model::   8%|▊         | 41/500 [00:02<00:24, 18.80it/s]
eval model::   9%|▊         | 43/500 [00:02<00:25, 17.81it/s]
eval model::   9%|▉         | 46/500 [00:02<00:29, 15.42it/s]
eval model::  10%|▉         | 49/500 [00:02<00:27, 16.52it/s]
eval model::  10%|█         | 52/500 [00:02<00:24, 18.44it/s]
eval model::  11%|█         | 54/500 [00:02<00:23, 18.62it/s]
eval model::  11%|█         | 56/500 [00:03<00:24, 18.50it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:25, 17.10it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:28, 15.50it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:29, 15.01it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:22, 19.18it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:20, 20.62it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:19, 21.41it/s]
eval model::  15%|█▌        | 76/500 [00:04<00:18, 22.43it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:20, 20.83it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:20, 20.03it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:21, 19.19it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:22, 18.12it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:22, 18.23it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:22, 18.10it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:21, 18.53it/s]
eval model::  19%|█▉        | 95/500 [00:05<00:21, 18.70it/s]
eval model::  20%|█▉        | 98/500 [00:05<00:20, 20.03it/s]
eval model::  20%|██        | 101/500 [00:05<00:20, 19.69it/s]
eval model::  21%|██        | 104/500 [00:05<00:19, 20.54it/s]
eval model::  21%|██▏       | 107/500 [00:05<00:18, 21.75it/s]
eval model::  22%|██▏       | 110/500 [00:05<00:18, 21.29it/s]
eval model::  23%|██▎       | 113/500 [00:05<00:18, 21.47it/s]
eval model::  23%|██▎       | 116/500 [00:06<00:19, 19.51it/s]
eval model::  24%|██▍       | 119/500 [00:06<00:18, 20.30it/s]
eval model::  24%|██▍       | 122/500 [00:06<00:20, 18.84it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:21, 17.31it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:22, 16.92it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:18, 19.61it/s]
eval model::  26%|██▋       | 132/500 [00:07<00:21, 17.01it/s]
eval model::  27%|██▋       | 135/500 [00:07<00:19, 18.31it/s]
eval model::  27%|██▋       | 137/500 [00:07<00:20, 18.08it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:19, 18.16it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:19, 17.99it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:19, 17.81it/s]
eval model::  29%|██▉       | 146/500 [00:07<00:19, 17.85it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:20, 16.94it/s]
eval model::  30%|███       | 151/500 [00:08<00:21, 16.43it/s]
eval model::  31%|███       | 155/500 [00:08<00:16, 20.56it/s]
eval model::  32%|███▏      | 158/500 [00:08<00:15, 22.54it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:20, 16.33it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:22, 15.31it/s]
eval model::  33%|███▎      | 165/500 [00:08<00:21, 15.82it/s]
eval model::  33%|███▎      | 167/500 [00:09<00:20, 16.46it/s]
eval model::  34%|███▍      | 170/500 [00:09<00:17, 18.52it/s]
eval model::  34%|███▍      | 172/500 [00:09<00:19, 17.23it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:21, 14.85it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:21, 15.22it/s]
eval model::  36%|███▌      | 178/500 [00:09<00:19, 16.19it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:21, 15.01it/s]
eval model::  36%|███▋      | 182/500 [00:09<00:19, 16.03it/s]
eval model::  37%|███▋      | 186/500 [00:10<00:16, 19.10it/s]
eval model::  38%|███▊      | 188/500 [00:10<00:16, 18.61it/s]
eval model::  38%|███▊      | 190/500 [00:10<00:16, 18.66it/s]
eval model::  39%|███▊      | 193/500 [00:10<00:14, 20.66it/s]
eval model::  39%|███▉      | 196/500 [00:10<00:16, 18.91it/s]
eval model::  40%|███▉      | 199/500 [00:10<00:14, 20.36it/s]
eval model::  40%|████      | 202/500 [00:10<00:13, 21.53it/s]
eval model::  41%|████      | 205/500 [00:11<00:23, 12.31it/s]
eval model::  41%|████▏     | 207/500 [00:11<00:22, 13.11it/s]
eval model::  42%|████▏     | 209/500 [00:11<00:21, 13.48it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:21, 13.47it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:20, 14.26it/s]
eval model::  43%|████▎     | 215/500 [00:12<00:22, 12.94it/s]
eval model::  43%|████▎     | 217/500 [00:12<00:25, 11.19it/s]
eval model::  44%|████▍     | 219/500 [00:12<00:23, 12.10it/s]
eval model::  44%|████▍     | 221/500 [00:12<00:22, 12.58it/s]
eval model::  45%|████▍     | 224/500 [00:12<00:18, 14.90it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:17, 15.23it/s]
eval model::  46%|████▌     | 229/500 [00:12<00:15, 17.97it/s]
eval model::  46%|████▋     | 232/500 [00:13<00:13, 19.53it/s]
eval model::  47%|████▋     | 235/500 [00:13<00:14, 17.82it/s]
eval model::  48%|████▊     | 238/500 [00:13<00:13, 19.24it/s]
eval model::  48%|████▊     | 241/500 [00:13<00:13, 19.13it/s]
eval model::  49%|████▊     | 243/500 [00:13<00:16, 15.58it/s]
eval model::  49%|████▉     | 246/500 [00:13<00:13, 18.49it/s]
eval model::  50%|████▉     | 249/500 [00:14<00:13, 18.22it/s]
eval model::  50%|█████     | 252/500 [00:14<00:12, 19.29it/s]
eval model::  51%|█████     | 255/500 [00:14<00:11, 21.49it/s]
eval model::  52%|█████▏    | 259/500 [00:14<00:09, 24.96it/s]
eval model::  52%|█████▏    | 262/500 [00:14<00:09, 26.20it/s]
eval model::  53%|█████▎    | 265/500 [00:14<00:10, 21.90it/s]
eval model::  54%|█████▎    | 268/500 [00:14<00:10, 21.38it/s]
eval model::  54%|█████▍    | 271/500 [00:14<00:10, 21.65it/s]
eval model::  55%|█████▍    | 274/500 [00:15<00:10, 22.13it/s]
eval model::  55%|█████▌    | 277/500 [00:15<00:10, 21.24it/s]
eval model::  56%|█████▌    | 280/500 [00:15<00:09, 22.35it/s]
eval model::  57%|█████▋    | 283/500 [00:15<00:09, 23.20it/s]
eval model::  57%|█████▋    | 286/500 [00:15<00:16, 12.73it/s]
eval model::  58%|█████▊    | 289/500 [00:16<00:14, 14.48it/s]
eval model::  58%|█████▊    | 292/500 [00:16<00:13, 15.73it/s]
eval model::  59%|█████▉    | 294/500 [00:16<00:13, 15.16it/s]
eval model::  59%|█████▉    | 296/500 [00:16<00:16, 12.33it/s]
eval model::  60%|█████▉    | 298/500 [00:16<00:15, 13.41it/s]
eval model::  60%|██████    | 300/500 [00:16<00:15, 13.09it/s]
eval model::  60%|██████    | 302/500 [00:17<00:14, 13.31it/s]
eval model::  61%|██████    | 304/500 [00:17<00:14, 13.90it/s]
eval model::  61%|██████▏   | 307/500 [00:17<00:11, 16.61it/s]
eval model::  62%|██████▏   | 309/500 [00:17<00:11, 16.65it/s]
eval model::  62%|██████▏   | 312/500 [00:17<00:10, 17.45it/s]
eval model::  63%|██████▎   | 315/500 [00:17<00:09, 18.87it/s]
eval model::  64%|██████▎   | 318/500 [00:17<00:09, 19.93it/s]
eval model::  64%|██████▍   | 321/500 [00:18<00:09, 19.59it/s]
eval model::  65%|██████▍   | 323/500 [00:18<00:09, 17.95it/s]
eval model::  65%|██████▌   | 326/500 [00:18<00:09, 19.31it/s]
eval model::  66%|██████▌   | 328/500 [00:18<00:09, 18.25it/s]
eval model::  66%|██████▌   | 331/500 [00:18<00:09, 18.70it/s]
eval model::  67%|██████▋   | 334/500 [00:18<00:08, 20.02it/s]
eval model::  67%|██████▋   | 337/500 [00:18<00:08, 18.48it/s]
eval model::  68%|██████▊   | 339/500 [00:19<00:08, 18.30it/s]
eval model::  68%|██████▊   | 341/500 [00:19<00:10, 14.49it/s]
eval model::  69%|██████▊   | 343/500 [00:19<00:10, 14.73it/s]
eval model::  69%|██████▉   | 346/500 [00:19<00:09, 16.55it/s]
eval model::  70%|██████▉   | 348/500 [00:19<00:08, 17.16it/s]
eval model::  70%|███████   | 350/500 [00:19<00:08, 17.60it/s]
eval model::  70%|███████   | 352/500 [00:19<00:08, 18.14it/s]
eval model::  71%|███████   | 355/500 [00:20<00:07, 18.92it/s]
eval model::  71%|███████▏  | 357/500 [00:20<00:07, 18.66it/s]
eval model::  72%|███████▏  | 359/500 [00:20<00:07, 17.87it/s]
eval model::  72%|███████▏  | 361/500 [00:20<00:08, 16.02it/s]
eval model::  73%|███████▎  | 364/500 [00:20<00:08, 16.26it/s]
eval model::  73%|███████▎  | 367/500 [00:20<00:07, 18.22it/s]
eval model::  74%|███████▍  | 370/500 [00:20<00:06, 19.56it/s]
eval model::  75%|███████▍  | 373/500 [00:20<00:06, 20.63it/s]
eval model::  75%|███████▌  | 376/500 [00:21<00:05, 20.72it/s]
eval model::  76%|███████▌  | 379/500 [00:21<00:05, 21.85it/s]
eval model::  76%|███████▋  | 382/500 [00:21<00:05, 20.30it/s]
eval model::  77%|███████▋  | 385/500 [00:21<00:05, 22.01it/s]
eval model::  78%|███████▊  | 388/500 [00:21<00:07, 14.25it/s]
eval model::  78%|███████▊  | 391/500 [00:22<00:06, 15.78it/s]
eval model::  79%|███████▊  | 393/500 [00:22<00:06, 16.52it/s]
eval model::  79%|███████▉  | 395/500 [00:22<00:06, 17.04it/s]
eval model::  80%|███████▉  | 399/500 [00:22<00:04, 20.37it/s]
eval model::  80%|████████  | 402/500 [00:22<00:05, 19.33it/s]
eval model::  81%|████████  | 405/500 [00:22<00:04, 20.10it/s]
eval model::  82%|████████▏ | 408/500 [00:22<00:04, 19.88it/s]
eval model::  82%|████████▏ | 411/500 [00:23<00:04, 19.77it/s]
eval model::  83%|████████▎ | 414/500 [00:23<00:04, 20.44it/s]
eval model::  83%|████████▎ | 417/500 [00:23<00:04, 17.67it/s]
eval model::  84%|████████▍ | 419/500 [00:23<00:04, 16.68it/s]
eval model::  84%|████████▍ | 421/500 [00:23<00:06, 11.33it/s]
eval model::  85%|████████▍ | 424/500 [00:24<00:06, 12.58it/s]
eval model::  85%|████████▌ | 426/500 [00:24<00:05, 13.20it/s]
eval model::  86%|████████▌ | 429/500 [00:24<00:04, 16.20it/s]
eval model::  86%|████████▌ | 431/500 [00:24<00:04, 14.65it/s]
eval model::  87%|████████▋ | 434/500 [00:24<00:03, 16.95it/s]
eval model::  87%|████████▋ | 437/500 [00:24<00:03, 19.17it/s]
eval model::  88%|████████▊ | 440/500 [00:24<00:03, 18.58it/s]
eval model::  89%|████████▉ | 444/500 [00:24<00:02, 22.52it/s]
eval model::  89%|████████▉ | 447/500 [00:25<00:02, 22.23it/s]
eval model::  90%|█████████ | 450/500 [00:25<00:02, 17.27it/s]
eval model::  91%|█████████ | 453/500 [00:25<00:02, 19.17it/s]
eval model::  91%|█████████ | 456/500 [00:25<00:02, 19.92it/s]
eval model::  92%|█████████▏| 459/500 [00:25<00:02, 19.86it/s]
eval model::  92%|█████████▏| 462/500 [00:26<00:02, 17.21it/s]
eval model::  93%|█████████▎| 464/500 [00:26<00:02, 17.31it/s]
eval model::  93%|█████████▎| 466/500 [00:26<00:02, 15.95it/s]
eval model::  94%|█████████▎| 468/500 [00:26<00:01, 16.36it/s]
eval model::  94%|█████████▍| 471/500 [00:26<00:01, 19.16it/s]
eval model::  95%|█████████▍| 474/500 [00:26<00:01, 18.20it/s]
eval model::  95%|█████████▌| 477/500 [00:26<00:01, 20.21it/s]
eval model::  96%|█████████▌| 480/500 [00:26<00:00, 21.12it/s]
eval model::  97%|█████████▋| 483/500 [00:27<00:00, 22.79it/s]
eval model::  97%|█████████▋| 486/500 [00:27<00:00, 22.89it/s]
eval model::  98%|█████████▊| 489/500 [00:27<00:00, 24.34it/s]
eval model::  98%|█████████▊| 492/500 [00:27<00:00, 22.47it/s]
eval model::  99%|█████████▉| 495/500 [00:27<00:00, 24.23it/s]
eval model:: 100%|█████████▉| 499/500 [00:27<00:00, 27.17it/s]
eval model:: 100%|██████████| 500/500 [00:27<00:00, 18.06it/s]
[2024/07/27 12:41:52] ppocr INFO: cur metric, precision: 0.689058524173028, recall: 0.6519017814155031, hmean: 0.6699653636813458, fps: 43.26346339996799
[2024/07/27 12:41:52] ppocr INFO: best metric, hmean: 0.6737551867219916, precision: 0.730185497470489, recall: 0.6254212806933076, fps: 43.42892415983237, best_epoch: 420
[2024/07/27 12:41:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:42:00] ppocr INFO: epoch: [441/1500], global_step: 1323, lr: 0.001000, loss: 1.528162, loss_shrink_maps: 0.810593, loss_threshold_maps: 0.568908, loss_binary_maps: 0.160340, avg_reader_cost: 1.91593 s, avg_batch_cost: 2.17844 s, avg_samples: 12.5, ips: 5.73805 samples/s, eta: 7:46:00
[2024/07/27 12:42:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:42:10] ppocr INFO: epoch: [442/1500], global_step: 1326, lr: 0.001000, loss: 1.564077, loss_shrink_maps: 0.815076, loss_threshold_maps: 0.572097, loss_binary_maps: 0.161449, avg_reader_cost: 2.27556 s, avg_batch_cost: 2.52050 s, avg_samples: 12.5, ips: 4.95933 samples/s, eta: 7:45:31
[2024/07/27 12:42:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:42:20] ppocr INFO: epoch: [443/1500], global_step: 1329, lr: 0.001000, loss: 1.564077, loss_shrink_maps: 0.815076, loss_threshold_maps: 0.576110, loss_binary_maps: 0.161449, avg_reader_cost: 2.30334 s, avg_batch_cost: 2.55261 s, avg_samples: 12.5, ips: 4.89695 samples/s, eta: 7:45:02
[2024/07/27 12:42:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:42:28] ppocr INFO: epoch: [444/1500], global_step: 1330, lr: 0.001000, loss: 1.537274, loss_shrink_maps: 0.794104, loss_threshold_maps: 0.572097, loss_binary_maps: 0.158032, avg_reader_cost: 0.59395 s, avg_batch_cost: 0.82093 s, avg_samples: 4.8, ips: 5.84701 samples/s, eta: 7:44:52
[2024/07/27 12:42:30] ppocr INFO: epoch: [444/1500], global_step: 1332, lr: 0.001000, loss: 1.545995, loss_shrink_maps: 0.794104, loss_threshold_maps: 0.572866, loss_binary_maps: 0.158032, avg_reader_cost: 1.73412 s, avg_batch_cost: 1.88141 s, avg_samples: 7.7, ips: 4.09267 samples/s, eta: 7:44:37
[2024/07/27 12:42:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:42:39] ppocr INFO: epoch: [445/1500], global_step: 1335, lr: 0.001000, loss: 1.545995, loss_shrink_maps: 0.794104, loss_threshold_maps: 0.572866, loss_binary_maps: 0.158032, avg_reader_cost: 2.25099 s, avg_batch_cost: 2.49883 s, avg_samples: 12.5, ips: 5.00234 samples/s, eta: 7:44:08
[2024/07/27 12:42:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:42:49] ppocr INFO: epoch: [446/1500], global_step: 1338, lr: 0.001000, loss: 1.472114, loss_shrink_maps: 0.761715, loss_threshold_maps: 0.569631, loss_binary_maps: 0.150443, avg_reader_cost: 2.34817 s, avg_batch_cost: 2.58758 s, avg_samples: 12.5, ips: 4.83077 samples/s, eta: 7:43:40
[2024/07/27 12:42:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:42:58] ppocr INFO: epoch: [447/1500], global_step: 1340, lr: 0.001000, loss: 1.444325, loss_shrink_maps: 0.733880, loss_threshold_maps: 0.557376, loss_binary_maps: 0.145375, avg_reader_cost: 1.31267 s, avg_batch_cost: 1.63552 s, avg_samples: 9.6, ips: 5.86969 samples/s, eta: 7:43:19
[2024/07/27 12:42:59] ppocr INFO: epoch: [447/1500], global_step: 1341, lr: 0.001000, loss: 1.444325, loss_shrink_maps: 0.733880, loss_threshold_maps: 0.557376, loss_binary_maps: 0.145375, avg_reader_cost: 0.86374 s, avg_batch_cost: 0.91929 s, avg_samples: 2.9, ips: 3.15462 samples/s, eta: 7:43:12
[2024/07/27 12:43:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:43:09] ppocr INFO: epoch: [448/1500], global_step: 1344, lr: 0.001000, loss: 1.444339, loss_shrink_maps: 0.733880, loss_threshold_maps: 0.561275, loss_binary_maps: 0.145385, avg_reader_cost: 2.18877 s, avg_batch_cost: 2.54451 s, avg_samples: 12.5, ips: 4.91254 samples/s, eta: 7:42:43
[2024/07/27 12:43:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:43:18] ppocr INFO: epoch: [449/1500], global_step: 1347, lr: 0.001000, loss: 1.486248, loss_shrink_maps: 0.760240, loss_threshold_maps: 0.561275, loss_binary_maps: 0.151081, avg_reader_cost: 2.23204 s, avg_batch_cost: 2.59305 s, avg_samples: 12.5, ips: 4.82058 samples/s, eta: 7:42:16
[2024/07/27 12:43:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:43:28] ppocr INFO: epoch: [450/1500], global_step: 1350, lr: 0.001000, loss: 1.483073, loss_shrink_maps: 0.776700, loss_threshold_maps: 0.561275, loss_binary_maps: 0.154520, avg_reader_cost: 2.09195 s, avg_batch_cost: 2.49307 s, avg_samples: 12.5, ips: 5.01389 samples/s, eta: 7:41:46
[2024/07/27 12:43:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:43:38] ppocr INFO: epoch: [451/1500], global_step: 1353, lr: 0.001000, loss: 1.503118, loss_shrink_maps: 0.781058, loss_threshold_maps: 0.554999, loss_binary_maps: 0.155178, avg_reader_cost: 2.18204 s, avg_batch_cost: 2.54703 s, avg_samples: 12.5, ips: 4.90767 samples/s, eta: 7:41:17
[2024/07/27 12:43:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:43:47] ppocr INFO: epoch: [452/1500], global_step: 1356, lr: 0.001000, loss: 1.503118, loss_shrink_maps: 0.781058, loss_threshold_maps: 0.561481, loss_binary_maps: 0.155178, avg_reader_cost: 2.33672 s, avg_batch_cost: 2.57824 s, avg_samples: 12.5, ips: 4.84826 samples/s, eta: 7:40:49
[2024/07/27 12:43:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:43:57] ppocr INFO: epoch: [453/1500], global_step: 1359, lr: 0.001000, loss: 1.515872, loss_shrink_maps: 0.791162, loss_threshold_maps: 0.570046, loss_binary_maps: 0.157594, avg_reader_cost: 2.38108 s, avg_batch_cost: 2.63741 s, avg_samples: 12.5, ips: 4.73950 samples/s, eta: 7:40:23
[2024/07/27 12:43:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:44:06] ppocr INFO: epoch: [454/1500], global_step: 1360, lr: 0.001000, loss: 1.515872, loss_shrink_maps: 0.791162, loss_threshold_maps: 0.572086, loss_binary_maps: 0.157594, avg_reader_cost: 0.56875 s, avg_batch_cost: 0.78262 s, avg_samples: 4.8, ips: 6.13324 samples/s, eta: 7:40:12
[2024/07/27 12:44:07] ppocr INFO: epoch: [454/1500], global_step: 1362, lr: 0.001000, loss: 1.512648, loss_shrink_maps: 0.791162, loss_threshold_maps: 0.569392, loss_binary_maps: 0.157594, avg_reader_cost: 1.65876 s, avg_batch_cost: 1.80396 s, avg_samples: 7.7, ips: 4.26840 samples/s, eta: 7:39:55
[2024/07/27 12:44:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:44:17] ppocr INFO: epoch: [455/1500], global_step: 1365, lr: 0.001000, loss: 1.502616, loss_shrink_maps: 0.781144, loss_threshold_maps: 0.569392, loss_binary_maps: 0.155176, avg_reader_cost: 2.33698 s, avg_batch_cost: 2.58560 s, avg_samples: 12.5, ips: 4.83448 samples/s, eta: 7:39:28
[2024/07/27 12:44:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:44:27] ppocr INFO: epoch: [456/1500], global_step: 1368, lr: 0.001000, loss: 1.496083, loss_shrink_maps: 0.781144, loss_threshold_maps: 0.563060, loss_binary_maps: 0.155168, avg_reader_cost: 2.30074 s, avg_batch_cost: 2.54023 s, avg_samples: 12.5, ips: 4.92081 samples/s, eta: 7:38:59
[2024/07/27 12:44:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:44:36] ppocr INFO: epoch: [457/1500], global_step: 1370, lr: 0.001000, loss: 1.496083, loss_shrink_maps: 0.776759, loss_threshold_maps: 0.563060, loss_binary_maps: 0.153701, avg_reader_cost: 1.35683 s, avg_batch_cost: 1.63880 s, avg_samples: 9.6, ips: 5.85794 samples/s, eta: 7:38:39
[2024/07/27 12:44:36] ppocr INFO: epoch: [457/1500], global_step: 1371, lr: 0.001000, loss: 1.496083, loss_shrink_maps: 0.776759, loss_threshold_maps: 0.563060, loss_binary_maps: 0.153701, avg_reader_cost: 0.86607 s, avg_batch_cost: 0.92137 s, avg_samples: 2.9, ips: 3.14750 samples/s, eta: 7:38:31
[2024/07/27 12:44:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:44:46] ppocr INFO: epoch: [458/1500], global_step: 1374, lr: 0.001000, loss: 1.503782, loss_shrink_maps: 0.776759, loss_threshold_maps: 0.569040, loss_binary_maps: 0.153615, avg_reader_cost: 2.37472 s, avg_batch_cost: 2.60864 s, avg_samples: 12.5, ips: 4.79176 samples/s, eta: 7:38:04
[2024/07/27 12:44:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:44:56] ppocr INFO: epoch: [459/1500], global_step: 1377, lr: 0.001000, loss: 1.489758, loss_shrink_maps: 0.771064, loss_threshold_maps: 0.563060, loss_binary_maps: 0.152344, avg_reader_cost: 2.30613 s, avg_batch_cost: 2.64476 s, avg_samples: 12.5, ips: 4.72632 samples/s, eta: 7:37:38
[2024/07/27 12:44:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:45:05] ppocr INFO: epoch: [460/1500], global_step: 1380, lr: 0.001000, loss: 1.484211, loss_shrink_maps: 0.771064, loss_threshold_maps: 0.551365, loss_binary_maps: 0.152344, avg_reader_cost: 2.09896 s, avg_batch_cost: 2.39042 s, avg_samples: 12.5, ips: 5.22920 samples/s, eta: 7:37:06

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 2/500 [00:00<00:39, 12.52it/s]
eval model::   1%|          | 5/500 [00:00<00:27, 17.95it/s]
eval model::   1%|▏         | 7/500 [00:00<00:28, 17.26it/s]
eval model::   2%|▏         | 9/500 [00:00<00:27, 17.76it/s]
eval model::   2%|▏         | 11/500 [00:00<00:33, 14.76it/s]
eval model::   3%|▎         | 13/500 [00:00<00:32, 14.90it/s]
eval model::   3%|▎         | 15/500 [00:00<00:30, 15.76it/s]
eval model::   4%|▎         | 18/500 [00:01<00:26, 18.40it/s]
eval model::   4%|▍         | 20/500 [00:01<00:27, 17.37it/s]
eval model::   5%|▍         | 23/500 [00:01<00:24, 19.11it/s]
eval model::   5%|▌         | 25/500 [00:01<00:26, 18.19it/s]
eval model::   5%|▌         | 27/500 [00:01<00:25, 18.24it/s]
eval model::   6%|▌         | 30/500 [00:01<00:23, 20.25it/s]
eval model::   7%|▋         | 33/500 [00:01<00:24, 19.16it/s]
eval model::   7%|▋         | 35/500 [00:02<00:26, 17.41it/s]
eval model::   8%|▊         | 38/500 [00:02<00:23, 19.26it/s]
eval model::   8%|▊         | 40/500 [00:02<00:27, 16.47it/s]
eval model::   8%|▊         | 42/500 [00:02<00:30, 15.08it/s]
eval model::   9%|▉         | 45/500 [00:02<00:26, 17.44it/s]
eval model::   9%|▉         | 47/500 [00:02<00:26, 16.78it/s]
eval model::  10%|█         | 50/500 [00:02<00:23, 19.19it/s]
eval model::  10%|█         | 52/500 [00:02<00:23, 19.33it/s]
eval model::  11%|█         | 55/500 [00:03<00:21, 20.88it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:22, 19.88it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:26, 16.45it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:28, 15.60it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:23, 18.34it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:20, 20.68it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:19, 21.77it/s]
eval model::  15%|█▌        | 75/500 [00:04<00:20, 21.23it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:19, 21.71it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:18, 23.08it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:18, 22.94it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:18, 21.95it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:21, 18.97it/s]
eval model::  19%|█▊        | 93/500 [00:05<00:23, 17.49it/s]
eval model::  19%|█▉        | 95/500 [00:05<00:23, 17.53it/s]
eval model::  20%|█▉        | 98/500 [00:05<00:21, 18.80it/s]
eval model::  20%|██        | 100/500 [00:05<00:21, 18.57it/s]
eval model::  21%|██        | 103/500 [00:05<00:19, 20.40it/s]
eval model::  21%|██        | 106/500 [00:05<00:17, 22.15it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:17, 22.44it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:18, 21.47it/s]
eval model::  23%|██▎       | 115/500 [00:06<00:17, 22.06it/s]
eval model::  24%|██▎       | 118/500 [00:06<00:16, 23.30it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:18, 20.11it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:18, 19.93it/s]
eval model::  25%|██▌       | 127/500 [00:06<00:18, 19.86it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:20, 17.76it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:20, 17.72it/s]
eval model::  27%|██▋       | 135/500 [00:07<00:19, 19.10it/s]
eval model::  27%|██▋       | 137/500 [00:07<00:19, 19.07it/s]
eval model::  28%|██▊       | 140/500 [00:07<00:19, 18.89it/s]
eval model::  29%|██▊       | 143/500 [00:07<00:17, 20.18it/s]
eval model::  29%|██▉       | 146/500 [00:07<00:16, 21.76it/s]
eval model::  30%|██▉       | 149/500 [00:07<00:15, 22.10it/s]
eval model::  30%|███       | 152/500 [00:07<00:17, 20.06it/s]
eval model::  31%|███       | 155/500 [00:08<00:16, 21.33it/s]
eval model::  32%|███▏      | 158/500 [00:08<00:15, 22.65it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:18, 17.88it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:18, 18.18it/s]
eval model::  33%|███▎      | 165/500 [00:08<00:18, 18.55it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:18, 18.16it/s]
eval model::  34%|███▍      | 170/500 [00:08<00:16, 20.41it/s]
eval model::  35%|███▍      | 173/500 [00:09<00:17, 19.05it/s]
eval model::  35%|███▌      | 175/500 [00:09<00:21, 14.84it/s]
eval model::  36%|███▌      | 178/500 [00:09<00:19, 16.86it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:20, 15.34it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:17, 17.82it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:15, 19.90it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:15, 20.36it/s]
eval model::  38%|███▊      | 192/500 [00:10<00:15, 19.34it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:18, 16.69it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:16, 18.24it/s]
eval model::  40%|████      | 201/500 [00:10<00:15, 19.76it/s]
eval model::  41%|████      | 205/500 [00:10<00:19, 14.82it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:18, 15.56it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:19, 15.18it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.71it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:19, 14.26it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:21, 13.32it/s]
eval model::  44%|████▍     | 219/500 [00:11<00:19, 14.18it/s]
eval model::  44%|████▍     | 221/500 [00:12<00:19, 14.20it/s]
eval model::  45%|████▍     | 224/500 [00:12<00:16, 16.37it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:16, 16.55it/s]
eval model::  46%|████▌     | 229/500 [00:12<00:14, 19.13it/s]
eval model::  46%|████▋     | 232/500 [00:12<00:12, 21.46it/s]
eval model::  47%|████▋     | 235/500 [00:12<00:12, 20.52it/s]
eval model::  48%|████▊     | 238/500 [00:12<00:12, 21.42it/s]
eval model::  48%|████▊     | 241/500 [00:12<00:11, 21.80it/s]
eval model::  49%|████▉     | 244/500 [00:13<00:14, 17.56it/s]
eval model::  49%|████▉     | 247/500 [00:13<00:13, 18.63it/s]
eval model::  50%|████▉     | 249/500 [00:13<00:14, 17.87it/s]
eval model::  50%|█████     | 252/500 [00:13<00:12, 19.15it/s]
eval model::  51%|█████     | 255/500 [00:13<00:11, 21.01it/s]
eval model::  52%|█████▏    | 258/500 [00:13<00:11, 21.88it/s]
eval model::  52%|█████▏    | 261/500 [00:13<00:10, 22.22it/s]
eval model::  53%|█████▎    | 264/500 [00:14<00:11, 19.87it/s]
eval model::  53%|█████▎    | 267/500 [00:14<00:11, 19.82it/s]
eval model::  54%|█████▍    | 270/500 [00:14<00:11, 20.46it/s]
eval model::  55%|█████▍    | 273/500 [00:14<00:11, 19.78it/s]
eval model::  55%|█████▌    | 276/500 [00:14<00:11, 19.10it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:11, 19.60it/s]
eval model::  56%|█████▋    | 282/500 [00:15<00:10, 20.66it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:16, 12.82it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:15, 13.64it/s]
eval model::  58%|█████▊    | 290/500 [00:15<00:12, 16.25it/s]
eval model::  59%|█████▊    | 293/500 [00:15<00:12, 17.20it/s]
eval model::  59%|█████▉    | 295/500 [00:16<00:15, 12.96it/s]
eval model::  60%|█████▉    | 298/500 [00:16<00:12, 15.71it/s]
eval model::  60%|██████    | 300/500 [00:16<00:13, 15.29it/s]
eval model::  61%|██████    | 303/500 [00:16<00:11, 17.24it/s]
eval model::  61%|██████    | 305/500 [00:16<00:11, 16.70it/s]
eval model::  61%|██████▏   | 307/500 [00:16<00:11, 17.28it/s]
eval model::  62%|██████▏   | 309/500 [00:16<00:10, 17.80it/s]
eval model::  62%|██████▏   | 312/500 [00:17<00:09, 19.23it/s]
eval model::  63%|██████▎   | 315/500 [00:17<00:09, 19.47it/s]
eval model::  64%|██████▎   | 318/500 [00:17<00:08, 20.60it/s]
eval model::  64%|██████▍   | 321/500 [00:17<00:08, 20.79it/s]
eval model::  65%|██████▍   | 324/500 [00:17<00:09, 19.43it/s]
eval model::  65%|██████▌   | 327/500 [00:17<00:08, 20.74it/s]
eval model::  66%|██████▌   | 330/500 [00:17<00:08, 19.65it/s]
eval model::  67%|██████▋   | 333/500 [00:18<00:08, 19.40it/s]
eval model::  67%|██████▋   | 336/500 [00:18<00:07, 20.58it/s]
eval model::  68%|██████▊   | 339/500 [00:18<00:08, 18.46it/s]
eval model::  68%|██████▊   | 341/500 [00:18<00:10, 14.98it/s]
eval model::  69%|██████▉   | 344/500 [00:18<00:09, 17.11it/s]
eval model::  69%|██████▉   | 347/500 [00:18<00:08, 18.99it/s]
eval model::  70%|███████   | 350/500 [00:18<00:07, 20.63it/s]
eval model::  71%|███████   | 353/500 [00:19<00:06, 21.88it/s]
eval model::  71%|███████   | 356/500 [00:19<00:06, 20.74it/s]
eval model::  72%|███████▏  | 359/500 [00:19<00:06, 21.33it/s]
eval model::  72%|███████▏  | 362/500 [00:19<00:06, 20.01it/s]
eval model::  73%|███████▎  | 365/500 [00:19<00:07, 19.09it/s]
eval model::  73%|███████▎  | 367/500 [00:19<00:08, 16.47it/s]
eval model::  74%|███████▍  | 370/500 [00:20<00:07, 18.25it/s]
eval model::  74%|███████▍  | 372/500 [00:20<00:07, 18.16it/s]
eval model::  75%|███████▌  | 375/500 [00:20<00:06, 20.38it/s]
eval model::  76%|███████▌  | 379/500 [00:20<00:04, 24.42it/s]
eval model::  76%|███████▋  | 382/500 [00:20<00:05, 22.06it/s]
eval model::  77%|███████▋  | 385/500 [00:20<00:04, 23.74it/s]
eval model::  78%|███████▊  | 388/500 [00:21<00:07, 15.18it/s]
eval model::  78%|███████▊  | 391/500 [00:21<00:06, 16.85it/s]
eval model::  79%|███████▉  | 394/500 [00:21<00:05, 18.60it/s]
eval model::  79%|███████▉  | 397/500 [00:21<00:05, 19.92it/s]
eval model::  80%|████████  | 400/500 [00:21<00:05, 18.30it/s]
eval model::  81%|████████  | 403/500 [00:21<00:05, 18.48it/s]
eval model::  81%|████████  | 405/500 [00:21<00:05, 18.57it/s]
eval model::  82%|████████▏ | 408/500 [00:21<00:04, 19.91it/s]
eval model::  82%|████████▏ | 411/500 [00:22<00:04, 21.61it/s]
eval model::  83%|████████▎ | 414/500 [00:22<00:04, 21.16it/s]
eval model::  83%|████████▎ | 417/500 [00:22<00:04, 20.19it/s]
eval model::  84%|████████▍ | 420/500 [00:22<00:05, 15.16it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:04, 15.81it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:04, 15.30it/s]
eval model::  85%|████████▌ | 426/500 [00:23<00:04, 15.60it/s]
eval model::  86%|████████▌ | 429/500 [00:23<00:04, 17.22it/s]
eval model::  86%|████████▋ | 432/500 [00:23<00:03, 19.14it/s]
eval model::  87%|████████▋ | 435/500 [00:23<00:03, 20.53it/s]
eval model::  88%|████████▊ | 438/500 [00:23<00:02, 21.70it/s]
eval model::  88%|████████▊ | 441/500 [00:23<00:02, 20.07it/s]
eval model::  89%|████████▉ | 444/500 [00:23<00:02, 21.69it/s]
eval model::  89%|████████▉ | 447/500 [00:24<00:02, 21.90it/s]
eval model::  90%|█████████ | 450/500 [00:24<00:02, 18.95it/s]
eval model::  91%|█████████ | 453/500 [00:24<00:02, 20.76it/s]
eval model::  91%|█████████ | 456/500 [00:24<00:01, 22.67it/s]
eval model::  92%|█████████▏| 459/500 [00:24<00:01, 22.56it/s]
eval model::  92%|█████████▏| 462/500 [00:24<00:02, 18.36it/s]
eval model::  93%|█████████▎| 465/500 [00:25<00:02, 17.42it/s]
eval model::  93%|█████████▎| 467/500 [00:25<00:01, 17.64it/s]
eval model::  94%|█████████▍| 471/500 [00:25<00:01, 21.12it/s]
eval model::  95%|█████████▍| 474/500 [00:25<00:01, 18.93it/s]
eval model::  95%|█████████▌| 477/500 [00:25<00:01, 19.65it/s]
eval model::  96%|█████████▌| 480/500 [00:25<00:01, 19.98it/s]
eval model::  97%|█████████▋| 483/500 [00:25<00:00, 19.41it/s]
eval model::  97%|█████████▋| 486/500 [00:26<00:00, 19.56it/s]
eval model::  98%|█████████▊| 489/500 [00:26<00:00, 21.83it/s]
eval model::  98%|█████████▊| 492/500 [00:26<00:00, 20.28it/s]
eval model::  99%|█████████▉| 495/500 [00:26<00:00, 21.60it/s]
eval model:: 100%|█████████▉| 498/500 [00:26<00:00, 21.83it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.75it/s]
[2024/07/27 12:45:32] ppocr INFO: cur metric, precision: 0.6865121180189674, recall: 0.6273471352912855, hmean: 0.6555974842767296, fps: 44.366496892317244
[2024/07/27 12:45:32] ppocr INFO: best metric, hmean: 0.6737551867219916, precision: 0.730185497470489, recall: 0.6254212806933076, fps: 43.42892415983237, best_epoch: 420
[2024/07/27 12:45:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:45:41] ppocr INFO: epoch: [461/1500], global_step: 1383, lr: 0.001000, loss: 1.503782, loss_shrink_maps: 0.776759, loss_threshold_maps: 0.555536, loss_binary_maps: 0.153615, avg_reader_cost: 2.25704 s, avg_batch_cost: 2.49584 s, avg_samples: 12.5, ips: 5.00834 samples/s, eta: 7:36:36
[2024/07/27 12:45:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:45:51] ppocr INFO: epoch: [462/1500], global_step: 1386, lr: 0.001000, loss: 1.503786, loss_shrink_maps: 0.778486, loss_threshold_maps: 0.555536, loss_binary_maps: 0.153855, avg_reader_cost: 2.35760 s, avg_batch_cost: 2.59628 s, avg_samples: 12.5, ips: 4.81458 samples/s, eta: 7:36:09
[2024/07/27 12:45:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:46:01] ppocr INFO: epoch: [463/1500], global_step: 1389, lr: 0.001000, loss: 1.542582, loss_shrink_maps: 0.791448, loss_threshold_maps: 0.564428, loss_binary_maps: 0.156938, avg_reader_cost: 2.11554 s, avg_batch_cost: 2.46604 s, avg_samples: 12.5, ips: 5.06886 samples/s, eta: 7:35:39
[2024/07/27 12:46:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:46:09] ppocr INFO: epoch: [464/1500], global_step: 1390, lr: 0.001000, loss: 1.542582, loss_shrink_maps: 0.793781, loss_threshold_maps: 0.569767, loss_binary_maps: 0.157024, avg_reader_cost: 0.57096 s, avg_batch_cost: 0.79350 s, avg_samples: 4.8, ips: 6.04918 samples/s, eta: 7:35:28
[2024/07/27 12:46:11] ppocr INFO: epoch: [464/1500], global_step: 1392, lr: 0.001000, loss: 1.546976, loss_shrink_maps: 0.809021, loss_threshold_maps: 0.564428, loss_binary_maps: 0.160525, avg_reader_cost: 1.67886 s, avg_batch_cost: 1.82564 s, avg_samples: 7.7, ips: 4.21771 samples/s, eta: 7:35:12
[2024/07/27 12:46:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:46:20] ppocr INFO: epoch: [465/1500], global_step: 1395, lr: 0.001000, loss: 1.497557, loss_shrink_maps: 0.774640, loss_threshold_maps: 0.556111, loss_binary_maps: 0.153390, avg_reader_cost: 2.25638 s, avg_batch_cost: 2.49557 s, avg_samples: 12.5, ips: 5.00888 samples/s, eta: 7:34:43
[2024/07/27 12:46:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:46:30] ppocr INFO: epoch: [466/1500], global_step: 1398, lr: 0.001000, loss: 1.534269, loss_shrink_maps: 0.793781, loss_threshold_maps: 0.561439, loss_binary_maps: 0.157024, avg_reader_cost: 2.37187 s, avg_batch_cost: 2.61422 s, avg_samples: 12.5, ips: 4.78154 samples/s, eta: 7:34:16
[2024/07/27 12:46:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:46:39] ppocr INFO: epoch: [467/1500], global_step: 1400, lr: 0.001000, loss: 1.515092, loss_shrink_maps: 0.792435, loss_threshold_maps: 0.561439, loss_binary_maps: 0.156746, avg_reader_cost: 1.37312 s, avg_batch_cost: 1.67484 s, avg_samples: 9.6, ips: 5.73189 samples/s, eta: 7:33:56
[2024/07/27 12:46:40] ppocr INFO: epoch: [467/1500], global_step: 1401, lr: 0.001000, loss: 1.470594, loss_shrink_maps: 0.772372, loss_threshold_maps: 0.552495, loss_binary_maps: 0.153263, avg_reader_cost: 0.88391 s, avg_batch_cost: 0.93923 s, avg_samples: 2.9, ips: 3.08763 samples/s, eta: 7:33:49
[2024/07/27 12:46:41] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:46:49] ppocr INFO: epoch: [468/1500], global_step: 1404, lr: 0.001000, loss: 1.489565, loss_shrink_maps: 0.775135, loss_threshold_maps: 0.553091, loss_binary_maps: 0.153263, avg_reader_cost: 2.10634 s, avg_batch_cost: 2.41899 s, avg_samples: 12.5, ips: 5.16744 samples/s, eta: 7:33:18
[2024/07/27 12:46:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:46:59] ppocr INFO: epoch: [469/1500], global_step: 1407, lr: 0.001000, loss: 1.515092, loss_shrink_maps: 0.792435, loss_threshold_maps: 0.553091, loss_binary_maps: 0.156746, avg_reader_cost: 2.36420 s, avg_batch_cost: 2.62956 s, avg_samples: 12.5, ips: 4.75366 samples/s, eta: 7:32:51
[2024/07/27 12:47:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:47:09] ppocr INFO: epoch: [470/1500], global_step: 1410, lr: 0.001000, loss: 1.524834, loss_shrink_maps: 0.811455, loss_threshold_maps: 0.553091, loss_binary_maps: 0.160884, avg_reader_cost: 2.15238 s, avg_batch_cost: 2.48121 s, avg_samples: 12.5, ips: 5.03786 samples/s, eta: 7:32:22
[2024/07/27 12:47:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:47:18] ppocr INFO: epoch: [471/1500], global_step: 1413, lr: 0.001000, loss: 1.496320, loss_shrink_maps: 0.788907, loss_threshold_maps: 0.559487, loss_binary_maps: 0.157049, avg_reader_cost: 2.19622 s, avg_batch_cost: 2.46196 s, avg_samples: 12.5, ips: 5.07725 samples/s, eta: 7:31:51
[2024/07/27 12:47:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:47:28] ppocr INFO: epoch: [472/1500], global_step: 1416, lr: 0.001000, loss: 1.550617, loss_shrink_maps: 0.805152, loss_threshold_maps: 0.570568, loss_binary_maps: 0.159518, avg_reader_cost: 2.24716 s, avg_batch_cost: 2.48495 s, avg_samples: 12.5, ips: 5.03028 samples/s, eta: 7:31:22
[2024/07/27 12:47:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:47:38] ppocr INFO: epoch: [473/1500], global_step: 1419, lr: 0.001000, loss: 1.577475, loss_shrink_maps: 0.818738, loss_threshold_maps: 0.573817, loss_binary_maps: 0.162209, avg_reader_cost: 2.20433 s, avg_batch_cost: 2.50535 s, avg_samples: 12.5, ips: 4.98933 samples/s, eta: 7:30:53
[2024/07/27 12:47:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:47:46] ppocr INFO: epoch: [474/1500], global_step: 1420, lr: 0.001000, loss: 1.577475, loss_shrink_maps: 0.818738, loss_threshold_maps: 0.573817, loss_binary_maps: 0.162209, avg_reader_cost: 0.67368 s, avg_batch_cost: 0.78117 s, avg_samples: 4.8, ips: 6.14465 samples/s, eta: 7:30:42
[2024/07/27 12:47:47] ppocr INFO: epoch: [474/1500], global_step: 1422, lr: 0.001000, loss: 1.577475, loss_shrink_maps: 0.818738, loss_threshold_maps: 0.576614, loss_binary_maps: 0.162209, avg_reader_cost: 1.65442 s, avg_batch_cost: 1.80215 s, avg_samples: 7.7, ips: 4.27268 samples/s, eta: 7:30:25
[2024/07/27 12:47:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:47:57] ppocr INFO: epoch: [475/1500], global_step: 1425, lr: 0.001000, loss: 1.541735, loss_shrink_maps: 0.802324, loss_threshold_maps: 0.573817, loss_binary_maps: 0.158867, avg_reader_cost: 2.19212 s, avg_batch_cost: 2.55547 s, avg_samples: 12.5, ips: 4.89147 samples/s, eta: 7:29:57
[2024/07/27 12:47:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:48:06] ppocr INFO: epoch: [476/1500], global_step: 1428, lr: 0.001000, loss: 1.507667, loss_shrink_maps: 0.786809, loss_threshold_maps: 0.570568, loss_binary_maps: 0.155919, avg_reader_cost: 1.96355 s, avg_batch_cost: 2.24718 s, avg_samples: 12.5, ips: 5.56252 samples/s, eta: 7:29:22
[2024/07/27 12:48:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:48:15] ppocr INFO: epoch: [477/1500], global_step: 1430, lr: 0.001000, loss: 1.507667, loss_shrink_maps: 0.786809, loss_threshold_maps: 0.573817, loss_binary_maps: 0.155919, avg_reader_cost: 1.47643 s, avg_batch_cost: 1.66061 s, avg_samples: 9.6, ips: 5.78101 samples/s, eta: 7:29:03
[2024/07/27 12:48:16] ppocr INFO: epoch: [477/1500], global_step: 1431, lr: 0.001000, loss: 1.507667, loss_shrink_maps: 0.786809, loss_threshold_maps: 0.573817, loss_binary_maps: 0.155641, avg_reader_cost: 0.87640 s, avg_batch_cost: 0.93179 s, avg_samples: 2.9, ips: 3.11228 samples/s, eta: 7:28:55
[2024/07/27 12:48:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:48:26] ppocr INFO: epoch: [478/1500], global_step: 1434, lr: 0.001000, loss: 1.487547, loss_shrink_maps: 0.779164, loss_threshold_maps: 0.550533, loss_binary_maps: 0.154695, avg_reader_cost: 2.24370 s, avg_batch_cost: 2.62901 s, avg_samples: 12.5, ips: 4.75464 samples/s, eta: 7:28:29
[2024/07/27 12:48:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:48:35] ppocr INFO: epoch: [479/1500], global_step: 1437, lr: 0.001000, loss: 1.451421, loss_shrink_maps: 0.752466, loss_threshold_maps: 0.544329, loss_binary_maps: 0.149056, avg_reader_cost: 2.19117 s, avg_batch_cost: 2.53629 s, avg_samples: 12.5, ips: 4.92847 samples/s, eta: 7:28:00
[2024/07/27 12:48:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:48:45] ppocr INFO: epoch: [480/1500], global_step: 1440, lr: 0.001000, loss: 1.401566, loss_shrink_maps: 0.731362, loss_threshold_maps: 0.542727, loss_binary_maps: 0.145341, avg_reader_cost: 2.31389 s, avg_batch_cost: 2.58507 s, avg_samples: 12.5, ips: 4.83545 samples/s, eta: 7:27:33

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<01:05,  7.60it/s]
eval model::   1%|          | 3/500 [00:00<00:36, 13.51it/s]
eval model::   1%|          | 6/500 [00:00<00:29, 16.67it/s]
eval model::   2%|▏         | 8/500 [00:00<00:30, 15.93it/s]
eval model::   2%|▏         | 11/500 [00:00<00:32, 14.94it/s]
eval model::   3%|▎         | 13/500 [00:00<00:31, 15.67it/s]
eval model::   3%|▎         | 15/500 [00:00<00:29, 16.63it/s]
eval model::   4%|▍         | 19/500 [00:01<00:23, 20.63it/s]
eval model::   4%|▍         | 22/500 [00:01<00:23, 20.36it/s]
eval model::   5%|▌         | 25/500 [00:01<00:24, 19.24it/s]
eval model::   6%|▌         | 28/500 [00:01<00:23, 19.97it/s]
eval model::   6%|▌         | 31/500 [00:01<00:24, 19.30it/s]
eval model::   7%|▋         | 34/500 [00:01<00:25, 18.61it/s]
eval model::   7%|▋         | 37/500 [00:02<00:23, 19.44it/s]
eval model::   8%|▊         | 39/500 [00:02<00:26, 17.45it/s]
eval model::   8%|▊         | 42/500 [00:02<00:27, 16.82it/s]
eval model::   9%|▉         | 45/500 [00:02<00:25, 17.94it/s]
eval model::   9%|▉         | 47/500 [00:02<00:25, 17.65it/s]
eval model::  10%|█         | 50/500 [00:02<00:23, 19.36it/s]
eval model::  10%|█         | 52/500 [00:02<00:23, 19.38it/s]
eval model::  11%|█         | 55/500 [00:03<00:21, 20.36it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:21, 20.12it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:26, 16.66it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:26, 16.28it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:22, 19.13it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:19, 22.07it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:19, 22.33it/s]
eval model::  15%|█▌        | 76/500 [00:04<00:19, 22.29it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:18, 22.71it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:18, 22.31it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:20, 20.68it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:21, 18.93it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:24, 16.90it/s]
eval model::  19%|█▊        | 93/500 [00:05<00:23, 17.09it/s]
eval model::  19%|█▉        | 95/500 [00:05<00:23, 17.42it/s]
eval model::  20%|█▉        | 98/500 [00:05<00:19, 20.18it/s]
eval model::  20%|██        | 101/500 [00:05<00:19, 20.41it/s]
eval model::  21%|██        | 104/500 [00:05<00:18, 21.64it/s]
eval model::  21%|██▏       | 107/500 [00:05<00:17, 22.85it/s]
eval model::  22%|██▏       | 110/500 [00:05<00:18, 20.99it/s]
eval model::  23%|██▎       | 113/500 [00:05<00:18, 21.08it/s]
eval model::  23%|██▎       | 116/500 [00:06<00:19, 19.84it/s]
eval model::  24%|██▍       | 119/500 [00:06<00:17, 21.35it/s]
eval model::  24%|██▍       | 122/500 [00:06<00:18, 20.64it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:21, 17.67it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:19, 19.03it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:21, 17.11it/s]
eval model::  27%|██▋       | 133/500 [00:07<00:21, 16.88it/s]
eval model::  27%|██▋       | 136/500 [00:07<00:19, 18.39it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:20, 18.09it/s]
eval model::  28%|██▊       | 140/500 [00:07<00:19, 18.32it/s]
eval model::  29%|██▊       | 143/500 [00:07<00:17, 20.28it/s]
eval model::  29%|██▉       | 146/500 [00:07<00:18, 19.38it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:19, 18.08it/s]
eval model::  30%|███       | 151/500 [00:08<00:20, 16.84it/s]
eval model::  31%|███       | 155/500 [00:08<00:16, 20.33it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:16, 21.19it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:19, 16.92it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:20, 16.63it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:18, 17.58it/s]
eval model::  34%|███▍      | 170/500 [00:09<00:17, 19.27it/s]
eval model::  35%|███▍      | 173/500 [00:09<00:17, 18.33it/s]
eval model::  35%|███▌      | 175/500 [00:09<00:21, 15.44it/s]
eval model::  36%|███▌      | 178/500 [00:09<00:18, 17.08it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:20, 15.56it/s]
eval model::  36%|███▋      | 182/500 [00:09<00:19, 16.40it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:16, 19.28it/s]
eval model::  38%|███▊      | 188/500 [00:10<00:16, 19.27it/s]
eval model::  38%|███▊      | 191/500 [00:10<00:15, 20.07it/s]
eval model::  39%|███▉      | 194/500 [00:10<00:14, 21.82it/s]
eval model::  39%|███▉      | 197/500 [00:10<00:14, 20.44it/s]
eval model::  40%|████      | 201/500 [00:10<00:13, 22.51it/s]
eval model::  41%|████      | 205/500 [00:11<00:20, 14.29it/s]
eval model::  41%|████▏     | 207/500 [00:11<00:19, 15.02it/s]
eval model::  42%|████▏     | 209/500 [00:11<00:19, 15.21it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:20, 14.33it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:19, 14.81it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:21, 13.40it/s]
eval model::  43%|████▎     | 217/500 [00:12<00:24, 11.69it/s]
eval model::  44%|████▍     | 220/500 [00:12<00:19, 14.21it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:19, 14.41it/s]
eval model::  45%|████▌     | 225/500 [00:12<00:16, 16.66it/s]
eval model::  46%|████▌     | 228/500 [00:12<00:14, 19.24it/s]
eval model::  46%|████▋     | 232/500 [00:12<00:11, 22.61it/s]
eval model::  47%|████▋     | 235/500 [00:12<00:12, 21.47it/s]
eval model::  48%|████▊     | 238/500 [00:12<00:11, 22.28it/s]
eval model::  48%|████▊     | 241/500 [00:13<00:10, 23.75it/s]
eval model::  49%|████▉     | 244/500 [00:13<00:12, 20.57it/s]
eval model::  49%|████▉     | 247/500 [00:13<00:11, 21.80it/s]
eval model::  50%|█████     | 250/500 [00:13<00:11, 21.32it/s]
eval model::  51%|█████     | 253/500 [00:13<00:11, 21.65it/s]
eval model::  51%|█████     | 256/500 [00:13<00:12, 20.28it/s]
eval model::  52%|█████▏    | 259/500 [00:13<00:11, 21.13it/s]
eval model::  52%|█████▏    | 262/500 [00:14<00:11, 20.84it/s]
eval model::  53%|█████▎    | 265/500 [00:14<00:13, 16.80it/s]
eval model::  54%|█████▎    | 268/500 [00:14<00:12, 18.32it/s]
eval model::  54%|█████▍    | 270/500 [00:14<00:12, 18.04it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:12, 18.40it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:12, 17.57it/s]
eval model::  55%|█████▌    | 277/500 [00:14<00:12, 17.90it/s]
eval model::  56%|█████▌    | 280/500 [00:15<00:11, 19.02it/s]
eval model::  57%|█████▋    | 283/500 [00:15<00:11, 19.47it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:17, 12.05it/s]
eval model::  58%|█████▊    | 288/500 [00:15<00:14, 15.01it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:12, 17.40it/s]
eval model::  59%|█████▉    | 294/500 [00:16<00:11, 17.88it/s]
eval model::  59%|█████▉    | 297/500 [00:16<00:13, 15.26it/s]
eval model::  60%|██████    | 300/500 [00:16<00:13, 14.99it/s]
eval model::  61%|██████    | 303/500 [00:16<00:11, 16.80it/s]
eval model::  61%|██████    | 305/500 [00:16<00:11, 16.71it/s]
eval model::  62%|██████▏   | 308/500 [00:16<00:10, 18.73it/s]
eval model::  62%|██████▏   | 311/500 [00:16<00:09, 20.35it/s]
eval model::  63%|██████▎   | 314/500 [00:17<00:09, 20.08it/s]
eval model::  63%|██████▎   | 317/500 [00:17<00:09, 19.31it/s]
eval model::  64%|██████▍   | 320/500 [00:17<00:09, 19.73it/s]
eval model::  65%|██████▍   | 323/500 [00:17<00:09, 17.93it/s]
eval model::  65%|██████▌   | 326/500 [00:17<00:09, 19.27it/s]
eval model::  66%|██████▌   | 329/500 [00:17<00:08, 19.63it/s]
eval model::  66%|██████▋   | 332/500 [00:18<00:08, 20.45it/s]
eval model::  67%|██████▋   | 335/500 [00:18<00:08, 20.58it/s]
eval model::  68%|██████▊   | 338/500 [00:18<00:08, 18.54it/s]
eval model::  68%|██████▊   | 340/500 [00:18<00:10, 14.77it/s]
eval model::  69%|██████▊   | 343/500 [00:18<00:09, 16.77it/s]
eval model::  69%|██████▉   | 346/500 [00:18<00:08, 18.24it/s]
eval model::  70%|██████▉   | 349/500 [00:18<00:07, 19.90it/s]
eval model::  70%|███████   | 352/500 [00:19<00:07, 20.65it/s]
eval model::  71%|███████   | 355/500 [00:19<00:07, 19.94it/s]
eval model::  72%|███████▏  | 358/500 [00:19<00:07, 19.96it/s]
eval model::  72%|███████▏  | 361/500 [00:19<00:07, 18.25it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:07, 18.03it/s]
eval model::  73%|███████▎  | 367/500 [00:19<00:07, 18.86it/s]
eval model::  74%|███████▍  | 370/500 [00:20<00:06, 20.77it/s]
eval model::  75%|███████▍  | 373/500 [00:20<00:05, 21.21it/s]
eval model::  75%|███████▌  | 376/500 [00:20<00:05, 22.63it/s]
eval model::  76%|███████▌  | 380/500 [00:20<00:05, 22.78it/s]
eval model::  77%|███████▋  | 383/500 [00:20<00:04, 24.39it/s]
eval model::  77%|███████▋  | 386/500 [00:21<00:07, 14.52it/s]
eval model::  78%|███████▊  | 389/500 [00:21<00:06, 16.18it/s]
eval model::  78%|███████▊  | 392/500 [00:21<00:06, 16.89it/s]
eval model::  79%|███████▉  | 395/500 [00:21<00:05, 18.35it/s]
eval model::  80%|███████▉  | 398/500 [00:21<00:05, 19.92it/s]
eval model::  80%|████████  | 401/500 [00:21<00:05, 18.71it/s]
eval model::  81%|████████  | 404/500 [00:21<00:04, 20.94it/s]
eval model::  81%|████████▏ | 407/500 [00:21<00:04, 22.07it/s]
eval model::  82%|████████▏ | 411/500 [00:22<00:03, 24.53it/s]
eval model::  83%|████████▎ | 414/500 [00:22<00:03, 23.42it/s]
eval model::  83%|████████▎ | 417/500 [00:22<00:03, 21.85it/s]
eval model::  84%|████████▍ | 420/500 [00:22<00:04, 16.12it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:04, 16.54it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:04, 17.12it/s]
eval model::  85%|████████▌ | 427/500 [00:23<00:03, 18.64it/s]
eval model::  86%|████████▌ | 430/500 [00:23<00:03, 19.91it/s]
eval model::  87%|████████▋ | 433/500 [00:23<00:03, 19.77it/s]
eval model::  87%|████████▋ | 436/500 [00:23<00:03, 20.79it/s]
eval model::  88%|████████▊ | 439/500 [00:23<00:02, 21.94it/s]
eval model::  88%|████████▊ | 442/500 [00:23<00:02, 22.04it/s]
eval model::  89%|████████▉ | 445/500 [00:23<00:02, 22.54it/s]
eval model::  90%|████████▉ | 448/500 [00:23<00:02, 20.78it/s]
eval model::  90%|█████████ | 451/500 [00:24<00:02, 20.49it/s]
eval model::  91%|█████████ | 454/500 [00:24<00:02, 21.20it/s]
eval model::  91%|█████████▏| 457/500 [00:24<00:02, 20.30it/s]
eval model::  92%|█████████▏| 460/500 [00:24<00:02, 19.83it/s]
eval model::  93%|█████████▎| 463/500 [00:24<00:02, 14.95it/s]
eval model::  93%|█████████▎| 465/500 [00:25<00:02, 14.17it/s]
eval model::  93%|█████████▎| 467/500 [00:25<00:02, 14.67it/s]
eval model::  94%|█████████▍| 470/500 [00:25<00:01, 17.06it/s]
eval model::  94%|█████████▍| 472/500 [00:25<00:01, 17.46it/s]
eval model::  95%|█████████▍| 474/500 [00:25<00:01, 17.43it/s]
eval model::  95%|█████████▌| 477/500 [00:25<00:01, 20.17it/s]
eval model::  96%|█████████▌| 480/500 [00:25<00:00, 21.76it/s]
eval model::  97%|█████████▋| 483/500 [00:25<00:00, 22.97it/s]
eval model::  97%|█████████▋| 486/500 [00:26<00:00, 22.06it/s]
eval model::  98%|█████████▊| 489/500 [00:26<00:00, 23.03it/s]
eval model::  98%|█████████▊| 492/500 [00:26<00:00, 21.34it/s]
eval model::  99%|█████████▉| 495/500 [00:26<00:00, 22.93it/s]
eval model:: 100%|█████████▉| 498/500 [00:26<00:00, 24.60it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.80it/s]
[2024/07/27 12:49:12] ppocr INFO: cur metric, precision: 0.7108369098712446, recall: 0.6379393355801637, hmean: 0.6724181679776706, fps: 45.567165250916844
[2024/07/27 12:49:12] ppocr INFO: best metric, hmean: 0.6737551867219916, precision: 0.730185497470489, recall: 0.6254212806933076, fps: 43.42892415983237, best_epoch: 420
[2024/07/27 12:49:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:49:21] ppocr INFO: epoch: [481/1500], global_step: 1443, lr: 0.001000, loss: 1.401566, loss_shrink_maps: 0.731362, loss_threshold_maps: 0.542630, loss_binary_maps: 0.145341, avg_reader_cost: 2.20205 s, avg_batch_cost: 2.49481 s, avg_samples: 12.5, ips: 5.01040 samples/s, eta: 7:27:04
[2024/07/27 12:49:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:49:30] ppocr INFO: epoch: [482/1500], global_step: 1446, lr: 0.001000, loss: 1.438306, loss_shrink_maps: 0.752466, loss_threshold_maps: 0.545931, loss_binary_maps: 0.149056, avg_reader_cost: 2.20681 s, avg_batch_cost: 2.53814 s, avg_samples: 12.5, ips: 4.92487 samples/s, eta: 7:26:36
[2024/07/27 12:49:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:49:40] ppocr INFO: epoch: [483/1500], global_step: 1449, lr: 0.001000, loss: 1.427514, loss_shrink_maps: 0.721652, loss_threshold_maps: 0.544656, loss_binary_maps: 0.143186, avg_reader_cost: 2.16941 s, avg_batch_cost: 2.49614 s, avg_samples: 12.5, ips: 5.00773 samples/s, eta: 7:26:06
[2024/07/27 12:49:41] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:49:48] ppocr INFO: epoch: [484/1500], global_step: 1450, lr: 0.001000, loss: 1.427514, loss_shrink_maps: 0.721652, loss_threshold_maps: 0.545833, loss_binary_maps: 0.143186, avg_reader_cost: 0.66857 s, avg_batch_cost: 0.76339 s, avg_samples: 4.8, ips: 6.28771 samples/s, eta: 7:25:55
[2024/07/27 12:49:49] ppocr INFO: epoch: [484/1500], global_step: 1452, lr: 0.001000, loss: 1.438306, loss_shrink_maps: 0.741000, loss_threshold_maps: 0.564573, loss_binary_maps: 0.146978, avg_reader_cost: 1.61909 s, avg_batch_cost: 1.76647 s, avg_samples: 7.7, ips: 4.35897 samples/s, eta: 7:25:38
[2024/07/27 12:49:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:49:59] ppocr INFO: epoch: [485/1500], global_step: 1455, lr: 0.001000, loss: 1.438306, loss_shrink_maps: 0.732544, loss_threshold_maps: 0.556540, loss_binary_maps: 0.145179, avg_reader_cost: 2.19441 s, avg_batch_cost: 2.55001 s, avg_samples: 12.5, ips: 4.90195 samples/s, eta: 7:25:10
[2024/07/27 12:50:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:50:09] ppocr INFO: epoch: [486/1500], global_step: 1458, lr: 0.001000, loss: 1.438306, loss_shrink_maps: 0.732544, loss_threshold_maps: 0.556540, loss_binary_maps: 0.145179, avg_reader_cost: 2.30433 s, avg_batch_cost: 2.58647 s, avg_samples: 12.5, ips: 4.83285 samples/s, eta: 7:24:43
[2024/07/27 12:50:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:50:18] ppocr INFO: epoch: [487/1500], global_step: 1460, lr: 0.001000, loss: 1.438306, loss_shrink_maps: 0.732544, loss_threshold_maps: 0.556540, loss_binary_maps: 0.145179, avg_reader_cost: 1.51827 s, avg_batch_cost: 1.69990 s, avg_samples: 9.6, ips: 5.64738 samples/s, eta: 7:24:24
[2024/07/27 12:50:19] ppocr INFO: epoch: [487/1500], global_step: 1461, lr: 0.001000, loss: 1.444771, loss_shrink_maps: 0.732544, loss_threshold_maps: 0.564573, loss_binary_maps: 0.145179, avg_reader_cost: 0.89603 s, avg_batch_cost: 0.95166 s, avg_samples: 2.9, ips: 3.04730 samples/s, eta: 7:24:17
[2024/07/27 12:50:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:50:29] ppocr INFO: epoch: [488/1500], global_step: 1464, lr: 0.001000, loss: 1.478381, loss_shrink_maps: 0.760547, loss_threshold_maps: 0.564573, loss_binary_maps: 0.150475, avg_reader_cost: 2.40539 s, avg_batch_cost: 2.64494 s, avg_samples: 12.5, ips: 4.72601 samples/s, eta: 7:23:51
[2024/07/27 12:50:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:50:39] ppocr INFO: epoch: [489/1500], global_step: 1467, lr: 0.001000, loss: 1.478381, loss_shrink_maps: 0.760547, loss_threshold_maps: 0.556923, loss_binary_maps: 0.150475, avg_reader_cost: 2.27319 s, avg_batch_cost: 2.66740 s, avg_samples: 12.5, ips: 4.68621 samples/s, eta: 7:23:25
[2024/07/27 12:50:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:50:48] ppocr INFO: epoch: [490/1500], global_step: 1470, lr: 0.001000, loss: 1.445618, loss_shrink_maps: 0.734106, loss_threshold_maps: 0.553966, loss_binary_maps: 0.145644, avg_reader_cost: 2.18820 s, avg_batch_cost: 2.53373 s, avg_samples: 12.5, ips: 4.93343 samples/s, eta: 7:22:57
[2024/07/27 12:50:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:50:58] ppocr INFO: epoch: [491/1500], global_step: 1473, lr: 0.001000, loss: 1.465705, loss_shrink_maps: 0.757064, loss_threshold_maps: 0.553966, loss_binary_maps: 0.150025, avg_reader_cost: 2.36440 s, avg_batch_cost: 2.61665 s, avg_samples: 12.5, ips: 4.77710 samples/s, eta: 7:22:30
[2024/07/27 12:50:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:51:08] ppocr INFO: epoch: [492/1500], global_step: 1476, lr: 0.001000, loss: 1.504862, loss_shrink_maps: 0.794522, loss_threshold_maps: 0.554348, loss_binary_maps: 0.157207, avg_reader_cost: 2.16289 s, avg_batch_cost: 2.52197 s, avg_samples: 12.5, ips: 4.95644 samples/s, eta: 7:22:02
[2024/07/27 12:51:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:51:17] ppocr INFO: epoch: [493/1500], global_step: 1479, lr: 0.001000, loss: 1.428700, loss_shrink_maps: 0.733640, loss_threshold_maps: 0.546869, loss_binary_maps: 0.145413, avg_reader_cost: 2.09430 s, avg_batch_cost: 2.41907 s, avg_samples: 12.5, ips: 5.16727 samples/s, eta: 7:21:31
[2024/07/27 12:51:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:51:26] ppocr INFO: epoch: [494/1500], global_step: 1480, lr: 0.001000, loss: 1.461458, loss_shrink_maps: 0.760081, loss_threshold_maps: 0.553465, loss_binary_maps: 0.150244, avg_reader_cost: 0.58033 s, avg_batch_cost: 0.76701 s, avg_samples: 4.8, ips: 6.25806 samples/s, eta: 7:21:20
[2024/07/27 12:51:27] ppocr INFO: epoch: [494/1500], global_step: 1482, lr: 0.001000, loss: 1.483674, loss_shrink_maps: 0.790458, loss_threshold_maps: 0.553465, loss_binary_maps: 0.156789, avg_reader_cost: 1.62720 s, avg_batch_cost: 1.77471 s, avg_samples: 7.7, ips: 4.33874 samples/s, eta: 7:21:03
[2024/07/27 12:51:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:51:37] ppocr INFO: epoch: [495/1500], global_step: 1485, lr: 0.001000, loss: 1.475090, loss_shrink_maps: 0.748819, loss_threshold_maps: 0.549197, loss_binary_maps: 0.148955, avg_reader_cost: 2.18074 s, avg_batch_cost: 2.54441 s, avg_samples: 12.5, ips: 4.91274 samples/s, eta: 7:20:35
[2024/07/27 12:51:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:51:47] ppocr INFO: epoch: [496/1500], global_step: 1488, lr: 0.001000, loss: 1.477000, loss_shrink_maps: 0.767412, loss_threshold_maps: 0.561329, loss_binary_maps: 0.152526, avg_reader_cost: 2.27235 s, avg_batch_cost: 2.64051 s, avg_samples: 12.5, ips: 4.73394 samples/s, eta: 7:20:09
[2024/07/27 12:51:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:51:56] ppocr INFO: epoch: [497/1500], global_step: 1490, lr: 0.001000, loss: 1.477956, loss_shrink_maps: 0.783290, loss_threshold_maps: 0.561329, loss_binary_maps: 0.155526, avg_reader_cost: 1.29555 s, avg_batch_cost: 1.60715 s, avg_samples: 9.6, ips: 5.97332 samples/s, eta: 7:19:48
[2024/07/27 12:51:56] ppocr INFO: epoch: [497/1500], global_step: 1491, lr: 0.001000, loss: 1.477956, loss_shrink_maps: 0.783290, loss_threshold_maps: 0.552084, loss_binary_maps: 0.155526, avg_reader_cost: 0.84951 s, avg_batch_cost: 0.90528 s, avg_samples: 2.9, ips: 3.20341 samples/s, eta: 7:19:40
[2024/07/27 12:51:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:52:06] ppocr INFO: epoch: [498/1500], global_step: 1494, lr: 0.001000, loss: 1.477956, loss_shrink_maps: 0.783290, loss_threshold_maps: 0.549219, loss_binary_maps: 0.155526, avg_reader_cost: 2.39316 s, avg_batch_cost: 2.63162 s, avg_samples: 12.5, ips: 4.74993 samples/s, eta: 7:19:14
[2024/07/27 12:52:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:52:16] ppocr INFO: epoch: [499/1500], global_step: 1497, lr: 0.001000, loss: 1.529144, loss_shrink_maps: 0.804843, loss_threshold_maps: 0.570338, loss_binary_maps: 0.159908, avg_reader_cost: 2.30824 s, avg_batch_cost: 2.68638 s, avg_samples: 12.5, ips: 4.65310 samples/s, eta: 7:18:49
[2024/07/27 12:52:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:52:25] ppocr INFO: epoch: [500/1500], global_step: 1500, lr: 0.001000, loss: 1.536467, loss_shrink_maps: 0.807353, loss_threshold_maps: 0.570338, loss_binary_maps: 0.159908, avg_reader_cost: 2.07486 s, avg_batch_cost: 2.34844 s, avg_samples: 12.5, ips: 5.32269 samples/s, eta: 7:18:17

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:53,  9.31it/s]
eval model::   1%|          | 4/500 [00:00<00:27, 17.88it/s]
eval model::   1%|▏         | 7/500 [00:00<00:24, 20.33it/s]
eval model::   2%|▏         | 10/500 [00:00<00:23, 21.21it/s]
eval model::   3%|▎         | 13/500 [00:00<00:26, 18.67it/s]
eval model::   3%|▎         | 16/500 [00:00<00:24, 20.01it/s]
eval model::   4%|▍         | 19/500 [00:00<00:24, 19.81it/s]
eval model::   4%|▍         | 22/500 [00:01<00:23, 20.22it/s]
eval model::   5%|▌         | 25/500 [00:01<00:24, 19.47it/s]
eval model::   6%|▌         | 28/500 [00:01<00:23, 20.05it/s]
eval model::   6%|▌         | 31/500 [00:01<00:24, 18.85it/s]
eval model::   7%|▋         | 34/500 [00:01<00:23, 19.94it/s]
eval model::   7%|▋         | 37/500 [00:01<00:21, 21.25it/s]
eval model::   8%|▊         | 40/500 [00:02<00:24, 19.16it/s]
eval model::   8%|▊         | 42/500 [00:02<00:24, 18.73it/s]
eval model::   9%|▉         | 44/500 [00:02<00:24, 18.47it/s]
eval model::   9%|▉         | 46/500 [00:02<00:26, 17.05it/s]
eval model::  10%|▉         | 49/500 [00:02<00:23, 19.52it/s]
eval model::  10%|█         | 52/500 [00:02<00:21, 21.01it/s]
eval model::  11%|█         | 55/500 [00:02<00:20, 21.57it/s]
eval model::  12%|█▏        | 58/500 [00:02<00:22, 19.96it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:24, 17.77it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:25, 17.32it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:22, 19.65it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:19, 21.66it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:19, 22.14it/s]
eval model::  15%|█▌        | 75/500 [00:03<00:19, 21.56it/s]
eval model::  16%|█▌        | 78/500 [00:03<00:19, 21.48it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:17, 23.41it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:19, 21.88it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:20, 20.33it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:23, 17.79it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:22, 18.08it/s]
eval model::  19%|█▉        | 96/500 [00:04<00:19, 20.35it/s]
eval model::  20%|█▉        | 99/500 [00:04<00:18, 21.89it/s]
eval model::  20%|██        | 102/500 [00:05<00:18, 21.87it/s]
eval model::  21%|██        | 105/500 [00:05<00:17, 23.18it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:16, 23.69it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:16, 23.64it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:16, 23.89it/s]
eval model::  23%|██▎       | 117/500 [00:05<00:17, 21.91it/s]
eval model::  24%|██▍       | 120/500 [00:05<00:19, 19.47it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:17, 20.96it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:19, 18.89it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:17, 21.11it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:18, 20.03it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:16, 21.96it/s]
eval model::  28%|██▊       | 138/500 [00:06<00:16, 21.68it/s]
eval model::  28%|██▊       | 141/500 [00:06<00:17, 20.82it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:17, 20.91it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:18, 18.98it/s]
eval model::  30%|███       | 150/500 [00:07<00:18, 19.31it/s]
eval model::  30%|███       | 152/500 [00:07<00:18, 18.66it/s]
eval model::  31%|███       | 155/500 [00:07<00:18, 19.05it/s]
eval model::  32%|███▏      | 158/500 [00:07<00:17, 19.51it/s]
eval model::  32%|███▏      | 160/500 [00:08<00:23, 14.65it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:20, 16.14it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:18, 18.14it/s]
eval model::  34%|███▎      | 168/500 [00:08<00:18, 17.78it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:18, 17.33it/s]
eval model::  35%|███▍      | 174/500 [00:08<00:20, 16.08it/s]
eval model::  35%|███▌      | 176/500 [00:08<00:19, 16.57it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:17, 18.32it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:18, 17.27it/s]
eval model::  37%|███▋      | 185/500 [00:09<00:14, 21.68it/s]
eval model::  38%|███▊      | 188/500 [00:09<00:14, 21.11it/s]
eval model::  38%|███▊      | 191/500 [00:09<00:14, 21.44it/s]
eval model::  39%|███▉      | 194/500 [00:09<00:13, 23.25it/s]
eval model::  39%|███▉      | 197/500 [00:09<00:14, 20.62it/s]
eval model::  40%|████      | 200/500 [00:10<00:13, 21.54it/s]
eval model::  41%|████      | 203/500 [00:10<00:13, 22.02it/s]
eval model::  41%|████      | 206/500 [00:10<00:24, 11.95it/s]
eval model::  42%|████▏     | 208/500 [00:10<00:23, 12.47it/s]
eval model::  42%|████▏     | 210/500 [00:10<00:22, 12.95it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:19, 14.75it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:20, 13.68it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:20, 14.02it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:16, 16.95it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:18, 15.37it/s]
eval model::  45%|████▌     | 225/500 [00:11<00:14, 18.54it/s]
eval model::  46%|████▌     | 228/500 [00:11<00:13, 20.14it/s]
eval model::  46%|████▋     | 232/500 [00:12<00:10, 24.46it/s]
eval model::  47%|████▋     | 235/500 [00:12<00:11, 23.30it/s]
eval model::  48%|████▊     | 238/500 [00:12<00:10, 24.72it/s]
eval model::  48%|████▊     | 241/500 [00:12<00:10, 23.70it/s]
eval model::  49%|████▉     | 244/500 [00:12<00:12, 20.51it/s]
eval model::  49%|████▉     | 247/500 [00:12<00:12, 19.95it/s]
eval model::  50%|█████     | 250/500 [00:12<00:12, 19.41it/s]
eval model::  51%|█████     | 253/500 [00:13<00:11, 21.62it/s]
eval model::  51%|█████     | 256/500 [00:13<00:11, 21.30it/s]
eval model::  52%|█████▏    | 259/500 [00:13<00:10, 22.42it/s]
eval model::  52%|█████▏    | 262/500 [00:13<00:10, 22.42it/s]
eval model::  53%|█████▎    | 265/500 [00:13<00:11, 20.28it/s]
eval model::  54%|█████▎    | 268/500 [00:13<00:11, 20.32it/s]
eval model::  54%|█████▍    | 271/500 [00:13<00:11, 20.32it/s]
eval model::  55%|█████▍    | 274/500 [00:14<00:10, 21.80it/s]
eval model::  55%|█████▌    | 277/500 [00:14<00:11, 20.18it/s]
eval model::  56%|█████▌    | 280/500 [00:14<00:11, 19.09it/s]
eval model::  57%|█████▋    | 283/500 [00:14<00:11, 19.66it/s]
eval model::  57%|█████▋    | 286/500 [00:14<00:16, 12.62it/s]
eval model::  58%|█████▊    | 289/500 [00:15<00:14, 15.00it/s]
eval model::  58%|█████▊    | 292/500 [00:15<00:12, 17.01it/s]
eval model::  59%|█████▉    | 295/500 [00:15<00:14, 14.53it/s]
eval model::  60%|█████▉    | 298/500 [00:15<00:11, 17.12it/s]
eval model::  60%|██████    | 301/500 [00:15<00:11, 16.97it/s]
eval model::  61%|██████    | 304/500 [00:15<00:10, 18.77it/s]
eval model::  61%|██████▏   | 307/500 [00:15<00:09, 20.63it/s]
eval model::  62%|██████▏   | 310/500 [00:16<00:09, 20.00it/s]
eval model::  63%|██████▎   | 313/500 [00:16<00:08, 21.23it/s]
eval model::  63%|██████▎   | 316/500 [00:16<00:08, 21.80it/s]
eval model::  64%|██████▍   | 319/500 [00:16<00:08, 21.86it/s]
eval model::  64%|██████▍   | 322/500 [00:16<00:08, 20.83it/s]
eval model::  65%|██████▌   | 325/500 [00:16<00:07, 22.27it/s]
eval model::  66%|██████▌   | 328/500 [00:16<00:07, 21.83it/s]
eval model::  66%|██████▌   | 331/500 [00:17<00:07, 21.20it/s]
eval model::  67%|██████▋   | 334/500 [00:17<00:07, 22.41it/s]
eval model::  67%|██████▋   | 337/500 [00:17<00:07, 20.57it/s]
eval model::  68%|██████▊   | 340/500 [00:17<00:09, 16.21it/s]
eval model::  69%|██████▊   | 343/500 [00:17<00:08, 18.13it/s]
eval model::  69%|██████▉   | 346/500 [00:17<00:07, 20.14it/s]
eval model::  70%|██████▉   | 349/500 [00:17<00:06, 22.14it/s]
eval model::  70%|███████   | 352/500 [00:18<00:06, 23.14it/s]
eval model::  71%|███████   | 355/500 [00:18<00:06, 22.12it/s]
eval model::  72%|███████▏  | 358/500 [00:18<00:06, 21.10it/s]
eval model::  72%|███████▏  | 361/500 [00:18<00:07, 19.76it/s]
eval model::  73%|███████▎  | 364/500 [00:18<00:07, 17.94it/s]
eval model::  73%|███████▎  | 367/500 [00:18<00:07, 17.73it/s]
eval model::  74%|███████▍  | 370/500 [00:19<00:06, 19.15it/s]
eval model::  74%|███████▍  | 372/500 [00:19<00:06, 19.02it/s]
eval model::  75%|███████▌  | 375/500 [00:19<00:06, 18.90it/s]
eval model::  76%|███████▌  | 378/500 [00:19<00:05, 20.96it/s]
eval model::  76%|███████▌  | 381/500 [00:19<00:06, 18.92it/s]
eval model::  77%|███████▋  | 384/500 [00:19<00:05, 20.52it/s]
eval model::  77%|███████▋  | 387/500 [00:20<00:08, 12.93it/s]
eval model::  78%|███████▊  | 390/500 [00:20<00:07, 15.07it/s]
eval model::  78%|███████▊  | 392/500 [00:20<00:06, 15.67it/s]
eval model::  79%|███████▉  | 395/500 [00:20<00:05, 17.72it/s]
eval model::  80%|███████▉  | 399/500 [00:20<00:04, 20.52it/s]
eval model::  80%|████████  | 402/500 [00:20<00:04, 19.91it/s]
eval model::  81%|████████  | 405/500 [00:20<00:04, 21.61it/s]
eval model::  82%|████████▏ | 408/500 [00:21<00:04, 21.56it/s]
eval model::  82%|████████▏ | 411/500 [00:21<00:03, 22.74it/s]
eval model::  83%|████████▎ | 414/500 [00:21<00:03, 22.92it/s]
eval model::  83%|████████▎ | 417/500 [00:21<00:03, 21.36it/s]
eval model::  84%|████████▍ | 420/500 [00:21<00:05, 15.46it/s]
eval model::  85%|████████▍ | 423/500 [00:21<00:04, 17.21it/s]
eval model::  85%|████████▌ | 425/500 [00:22<00:04, 16.11it/s]
eval model::  86%|████████▌ | 428/500 [00:22<00:03, 18.00it/s]
eval model::  86%|████████▌ | 431/500 [00:22<00:03, 18.94it/s]
eval model::  87%|████████▋ | 435/500 [00:22<00:02, 22.23it/s]
eval model::  88%|████████▊ | 439/500 [00:22<00:02, 24.40it/s]
eval model::  88%|████████▊ | 442/500 [00:22<00:02, 23.85it/s]
eval model::  89%|████████▉ | 445/500 [00:22<00:02, 23.27it/s]
eval model::  90%|████████▉ | 448/500 [00:23<00:02, 22.42it/s]
eval model::  90%|█████████ | 451/500 [00:23<00:02, 20.93it/s]
eval model::  91%|█████████ | 454/500 [00:23<00:02, 20.87it/s]
eval model::  91%|█████████▏| 457/500 [00:23<00:01, 22.11it/s]
eval model::  92%|█████████▏| 460/500 [00:23<00:01, 20.26it/s]
eval model::  93%|█████████▎| 463/500 [00:23<00:02, 18.11it/s]
eval model::  93%|█████████▎| 465/500 [00:24<00:02, 17.40it/s]
eval model::  94%|█████████▎| 468/500 [00:24<00:01, 19.69it/s]
eval model::  94%|█████████▍| 471/500 [00:24<00:01, 21.40it/s]
eval model::  95%|█████████▍| 474/500 [00:24<00:01, 20.63it/s]
eval model::  95%|█████████▌| 477/500 [00:24<00:01, 22.62it/s]
eval model::  96%|█████████▌| 480/500 [00:24<00:00, 22.58it/s]
eval model::  97%|█████████▋| 483/500 [00:24<00:00, 22.36it/s]
eval model::  97%|█████████▋| 486/500 [00:24<00:00, 21.31it/s]
eval model::  98%|█████████▊| 489/500 [00:25<00:00, 20.86it/s]
eval model::  98%|█████████▊| 492/500 [00:25<00:00, 18.48it/s]
eval model::  99%|█████████▉| 495/500 [00:25<00:00, 18.91it/s]
eval model:: 100%|█████████▉| 498/500 [00:25<00:00, 19.66it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.47it/s]
[2024/07/27 12:52:51] ppocr INFO: cur metric, precision: 0.7079953650057937, recall: 0.588348579682234, hmean: 0.64265053904812, fps: 45.22652360392477
[2024/07/27 12:52:51] ppocr INFO: best metric, hmean: 0.6737551867219916, precision: 0.730185497470489, recall: 0.6254212806933076, fps: 43.42892415983237, best_epoch: 420
[2024/07/27 12:52:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:53:01] ppocr INFO: epoch: [501/1500], global_step: 1503, lr: 0.001000, loss: 1.536467, loss_shrink_maps: 0.807353, loss_threshold_maps: 0.570338, loss_binary_maps: 0.159908, avg_reader_cost: 2.21045 s, avg_batch_cost: 2.65404 s, avg_samples: 12.5, ips: 4.70980 samples/s, eta: 7:17:51
[2024/07/27 12:53:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:53:11] ppocr INFO: epoch: [502/1500], global_step: 1506, lr: 0.001000, loss: 1.556230, loss_shrink_maps: 0.810570, loss_threshold_maps: 0.571051, loss_binary_maps: 0.160799, avg_reader_cost: 2.38743 s, avg_batch_cost: 2.63002 s, avg_samples: 12.5, ips: 4.75282 samples/s, eta: 7:17:25
[2024/07/27 12:53:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:53:20] ppocr INFO: epoch: [503/1500], global_step: 1509, lr: 0.001000, loss: 1.572172, loss_shrink_maps: 0.826539, loss_threshold_maps: 0.563837, loss_binary_maps: 0.164170, avg_reader_cost: 2.28556 s, avg_batch_cost: 2.54719 s, avg_samples: 12.5, ips: 4.90737 samples/s, eta: 7:16:57
[2024/07/27 12:53:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:53:29] ppocr INFO: epoch: [504/1500], global_step: 1510, lr: 0.001000, loss: 1.572172, loss_shrink_maps: 0.826539, loss_threshold_maps: 0.563837, loss_binary_maps: 0.164170, avg_reader_cost: 0.67070 s, avg_batch_cost: 0.76678 s, avg_samples: 4.8, ips: 6.25997 samples/s, eta: 7:16:46
[2024/07/27 12:53:30] ppocr INFO: epoch: [504/1500], global_step: 1512, lr: 0.001000, loss: 1.572172, loss_shrink_maps: 0.826539, loss_threshold_maps: 0.563837, loss_binary_maps: 0.164170, avg_reader_cost: 1.62621 s, avg_batch_cost: 1.77432 s, avg_samples: 7.7, ips: 4.33970 samples/s, eta: 7:16:29
[2024/07/27 12:53:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:53:39] ppocr INFO: epoch: [505/1500], global_step: 1515, lr: 0.001000, loss: 1.550279, loss_shrink_maps: 0.825484, loss_threshold_maps: 0.567934, loss_binary_maps: 0.163489, avg_reader_cost: 2.03518 s, avg_batch_cost: 2.30407 s, avg_samples: 12.5, ips: 5.42517 samples/s, eta: 7:15:56
[2024/07/27 12:53:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:53:48] ppocr INFO: epoch: [506/1500], global_step: 1518, lr: 0.001000, loss: 1.567124, loss_shrink_maps: 0.838984, loss_threshold_maps: 0.568447, loss_binary_maps: 0.166383, avg_reader_cost: 2.11056 s, avg_batch_cost: 2.43972 s, avg_samples: 12.5, ips: 5.12355 samples/s, eta: 7:15:26
[2024/07/27 12:53:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:53:57] ppocr INFO: epoch: [507/1500], global_step: 1520, lr: 0.001000, loss: 1.567124, loss_shrink_maps: 0.838984, loss_threshold_maps: 0.568447, loss_binary_maps: 0.166383, avg_reader_cost: 1.28937 s, avg_batch_cost: 1.55624 s, avg_samples: 9.6, ips: 6.16873 samples/s, eta: 7:15:04
[2024/07/27 12:53:58] ppocr INFO: epoch: [507/1500], global_step: 1521, lr: 0.001000, loss: 1.585711, loss_shrink_maps: 0.847526, loss_threshold_maps: 0.571614, loss_binary_maps: 0.167828, avg_reader_cost: 0.82437 s, avg_batch_cost: 0.88003 s, avg_samples: 2.9, ips: 3.29534 samples/s, eta: 7:14:56
[2024/07/27 12:53:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:54:07] ppocr INFO: epoch: [508/1500], global_step: 1524, lr: 0.001000, loss: 1.550279, loss_shrink_maps: 0.833117, loss_threshold_maps: 0.568447, loss_binary_maps: 0.164873, avg_reader_cost: 2.26525 s, avg_batch_cost: 2.63946 s, avg_samples: 12.5, ips: 4.73582 samples/s, eta: 7:14:30
[2024/07/27 12:54:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:54:17] ppocr INFO: epoch: [509/1500], global_step: 1527, lr: 0.001000, loss: 1.550279, loss_shrink_maps: 0.833117, loss_threshold_maps: 0.567033, loss_binary_maps: 0.164873, avg_reader_cost: 2.27792 s, avg_batch_cost: 2.58294 s, avg_samples: 12.5, ips: 4.83945 samples/s, eta: 7:14:03
[2024/07/27 12:54:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:54:26] ppocr INFO: epoch: [510/1500], global_step: 1530, lr: 0.001000, loss: 1.545284, loss_shrink_maps: 0.817250, loss_threshold_maps: 0.567033, loss_binary_maps: 0.161928, avg_reader_cost: 2.09225 s, avg_batch_cost: 2.43443 s, avg_samples: 12.5, ips: 5.13467 samples/s, eta: 7:13:33
[2024/07/27 12:54:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:54:37] ppocr INFO: epoch: [511/1500], global_step: 1533, lr: 0.001000, loss: 1.540698, loss_shrink_maps: 0.821951, loss_threshold_maps: 0.565431, loss_binary_maps: 0.162711, avg_reader_cost: 2.27035 s, avg_batch_cost: 2.65729 s, avg_samples: 12.5, ips: 4.70405 samples/s, eta: 7:13:07
[2024/07/27 12:54:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:54:46] ppocr INFO: epoch: [512/1500], global_step: 1536, lr: 0.001000, loss: 1.491914, loss_shrink_maps: 0.790039, loss_threshold_maps: 0.558882, loss_binary_maps: 0.156317, avg_reader_cost: 2.16632 s, avg_batch_cost: 2.53858 s, avg_samples: 12.5, ips: 4.92402 samples/s, eta: 7:12:39
[2024/07/27 12:54:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:54:56] ppocr INFO: epoch: [513/1500], global_step: 1539, lr: 0.001000, loss: 1.467707, loss_shrink_maps: 0.755934, loss_threshold_maps: 0.556587, loss_binary_maps: 0.150015, avg_reader_cost: 2.38017 s, avg_batch_cost: 2.61419 s, avg_samples: 12.5, ips: 4.78160 samples/s, eta: 7:12:12
[2024/07/27 12:54:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:55:05] ppocr INFO: epoch: [514/1500], global_step: 1540, lr: 0.001000, loss: 1.467707, loss_shrink_maps: 0.755934, loss_threshold_maps: 0.557724, loss_binary_maps: 0.150015, avg_reader_cost: 0.68541 s, avg_batch_cost: 0.78272 s, avg_samples: 4.8, ips: 6.13243 samples/s, eta: 7:12:02
[2024/07/27 12:55:06] ppocr INFO: epoch: [514/1500], global_step: 1542, lr: 0.001000, loss: 1.448835, loss_shrink_maps: 0.748693, loss_threshold_maps: 0.556587, loss_binary_maps: 0.148245, avg_reader_cost: 1.65761 s, avg_batch_cost: 1.80460 s, avg_samples: 7.7, ips: 4.26688 samples/s, eta: 7:11:45
[2024/07/27 12:55:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:55:16] ppocr INFO: epoch: [515/1500], global_step: 1545, lr: 0.001000, loss: 1.441646, loss_shrink_maps: 0.739361, loss_threshold_maps: 0.554897, loss_binary_maps: 0.146251, avg_reader_cost: 2.25630 s, avg_batch_cost: 2.62423 s, avg_samples: 12.5, ips: 4.76330 samples/s, eta: 7:11:19
[2024/07/27 12:55:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:55:26] ppocr INFO: epoch: [516/1500], global_step: 1548, lr: 0.001000, loss: 1.448835, loss_shrink_maps: 0.750840, loss_threshold_maps: 0.554897, loss_binary_maps: 0.148722, avg_reader_cost: 2.23294 s, avg_batch_cost: 2.60146 s, avg_samples: 12.5, ips: 4.80499 samples/s, eta: 7:10:52
[2024/07/27 12:55:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:55:35] ppocr INFO: epoch: [517/1500], global_step: 1550, lr: 0.001000, loss: 1.462454, loss_shrink_maps: 0.772061, loss_threshold_maps: 0.556587, loss_binary_maps: 0.153473, avg_reader_cost: 1.44267 s, avg_batch_cost: 1.67077 s, avg_samples: 9.6, ips: 5.74585 samples/s, eta: 7:10:33
[2024/07/27 12:55:36] ppocr INFO: epoch: [517/1500], global_step: 1551, lr: 0.001000, loss: 1.472510, loss_shrink_maps: 0.790671, loss_threshold_maps: 0.562344, loss_binary_maps: 0.157136, avg_reader_cost: 0.88161 s, avg_batch_cost: 0.93718 s, avg_samples: 2.9, ips: 3.09438 samples/s, eta: 7:10:26
[2024/07/27 12:55:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:55:45] ppocr INFO: epoch: [518/1500], global_step: 1554, lr: 0.001000, loss: 1.456824, loss_shrink_maps: 0.758107, loss_threshold_maps: 0.562344, loss_binary_maps: 0.150417, avg_reader_cost: 2.24633 s, avg_batch_cost: 2.61788 s, avg_samples: 12.5, ips: 4.77486 samples/s, eta: 7:09:59
[2024/07/27 12:55:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:55:55] ppocr INFO: epoch: [519/1500], global_step: 1557, lr: 0.001000, loss: 1.444570, loss_shrink_maps: 0.744048, loss_threshold_maps: 0.557615, loss_binary_maps: 0.147460, avg_reader_cost: 2.22542 s, avg_batch_cost: 2.55669 s, avg_samples: 12.5, ips: 4.88913 samples/s, eta: 7:09:31
[2024/07/27 12:55:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:56:04] ppocr INFO: epoch: [520/1500], global_step: 1560, lr: 0.001000, loss: 1.459498, loss_shrink_maps: 0.767240, loss_threshold_maps: 0.557615, loss_binary_maps: 0.152313, avg_reader_cost: 2.15185 s, avg_batch_cost: 2.39404 s, avg_samples: 12.5, ips: 5.22131 samples/s, eta: 7:09:01

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:56,  8.83it/s]
eval model::   1%|          | 3/500 [00:00<00:33, 14.92it/s]
eval model::   1%|          | 6/500 [00:00<00:29, 16.65it/s]
eval model::   2%|▏         | 9/500 [00:00<00:25, 18.98it/s]
eval model::   2%|▏         | 11/500 [00:00<00:29, 16.48it/s]
eval model::   3%|▎         | 14/500 [00:00<00:28, 17.34it/s]
eval model::   3%|▎         | 17/500 [00:00<00:25, 19.22it/s]
eval model::   4%|▍         | 20/500 [00:01<00:24, 19.20it/s]
eval model::   5%|▍         | 23/500 [00:01<00:22, 20.88it/s]
eval model::   5%|▌         | 26/500 [00:01<00:25, 18.56it/s]
eval model::   6%|▌         | 29/500 [00:01<00:24, 19.59it/s]
eval model::   6%|▋         | 32/500 [00:01<00:25, 18.11it/s]
eval model::   7%|▋         | 34/500 [00:01<00:25, 18.23it/s]
eval model::   7%|▋         | 36/500 [00:01<00:25, 18.53it/s]
eval model::   8%|▊         | 38/500 [00:02<00:25, 18.17it/s]
eval model::   8%|▊         | 40/500 [00:02<00:28, 16.37it/s]
eval model::   8%|▊         | 42/500 [00:02<00:29, 15.43it/s]
eval model::   9%|▉         | 44/500 [00:02<00:27, 16.31it/s]
eval model::   9%|▉         | 46/500 [00:02<00:30, 14.75it/s]
eval model::  10%|▉         | 49/500 [00:02<00:26, 16.79it/s]
eval model::  10%|█         | 51/500 [00:02<00:25, 17.27it/s]
eval model::  11%|█         | 53/500 [00:03<00:25, 17.70it/s]
eval model::  11%|█         | 56/500 [00:03<00:25, 17.22it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:24, 17.83it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:27, 15.90it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:29, 14.99it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:24, 17.39it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:21, 19.74it/s]
eval model::  14%|█▍        | 72/500 [00:04<00:19, 22.03it/s]
eval model::  15%|█▌        | 75/500 [00:04<00:19, 21.41it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:18, 22.79it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:17, 24.05it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:20, 20.12it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:21, 19.20it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:24, 16.59it/s]
eval model::  19%|█▊        | 93/500 [00:05<00:23, 17.11it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:22, 18.30it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:20, 19.64it/s]
eval model::  20%|██        | 102/500 [00:05<00:19, 20.37it/s]
eval model::  21%|██        | 105/500 [00:05<00:19, 19.98it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:20, 19.04it/s]
eval model::  22%|██▏       | 110/500 [00:06<00:21, 18.39it/s]
eval model::  22%|██▏       | 112/500 [00:06<00:21, 18.35it/s]
eval model::  23%|██▎       | 115/500 [00:06<00:20, 18.55it/s]
eval model::  24%|██▎       | 118/500 [00:06<00:18, 20.50it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:22, 16.75it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:22, 16.99it/s]
eval model::  25%|██▌       | 127/500 [00:06<00:20, 18.57it/s]
eval model::  26%|██▌       | 129/500 [00:07<00:20, 18.30it/s]
eval model::  26%|██▌       | 131/500 [00:07<00:21, 17.02it/s]
eval model::  27%|██▋       | 133/500 [00:07<00:22, 16.12it/s]
eval model::  27%|██▋       | 136/500 [00:07<00:19, 18.55it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:19, 18.27it/s]
eval model::  28%|██▊       | 140/500 [00:07<00:21, 16.85it/s]
eval model::  29%|██▊       | 143/500 [00:07<00:19, 18.46it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:19, 18.56it/s]
eval model::  29%|██▉       | 147/500 [00:08<00:20, 17.16it/s]
eval model::  30%|███       | 150/500 [00:08<00:17, 20.16it/s]
eval model::  31%|███       | 153/500 [00:08<00:18, 19.15it/s]
eval model::  31%|███       | 156/500 [00:08<00:15, 21.71it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:16, 21.07it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:21, 16.00it/s]
eval model::  33%|███▎      | 164/500 [00:09<00:20, 16.28it/s]
eval model::  33%|███▎      | 167/500 [00:09<00:20, 16.63it/s]
eval model::  34%|███▍      | 170/500 [00:09<00:17, 18.46it/s]
eval model::  34%|███▍      | 172/500 [00:09<00:18, 17.39it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:21, 14.86it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:21, 15.24it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:18, 17.65it/s]
eval model::  36%|███▌      | 181/500 [00:10<00:20, 15.28it/s]
eval model::  37%|███▋      | 184/500 [00:10<00:18, 17.47it/s]
eval model::  37%|███▋      | 187/500 [00:10<00:16, 18.69it/s]
eval model::  38%|███▊      | 189/500 [00:10<00:17, 17.30it/s]
eval model::  38%|███▊      | 191/500 [00:10<00:17, 17.71it/s]
eval model::  39%|███▉      | 194/500 [00:10<00:15, 19.17it/s]
eval model::  39%|███▉      | 196/500 [00:10<00:17, 17.69it/s]
eval model::  40%|███▉      | 199/500 [00:10<00:15, 20.04it/s]
eval model::  40%|████      | 202/500 [00:11<00:13, 21.75it/s]
eval model::  41%|████      | 205/500 [00:11<00:22, 13.40it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:20, 14.52it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:20, 14.35it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.69it/s]
eval model::  43%|████▎     | 215/500 [00:12<00:21, 13.57it/s]
eval model::  43%|████▎     | 217/500 [00:12<00:22, 12.41it/s]
eval model::  44%|████▍     | 219/500 [00:12<00:20, 13.56it/s]
eval model::  44%|████▍     | 221/500 [00:12<00:21, 12.94it/s]
eval model::  45%|████▍     | 224/500 [00:12<00:17, 15.45it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:17, 15.78it/s]
eval model::  46%|████▌     | 229/500 [00:13<00:14, 18.40it/s]
eval model::  46%|████▋     | 232/500 [00:13<00:13, 19.38it/s]
eval model::  47%|████▋     | 235/500 [00:13<00:14, 17.80it/s]
eval model::  48%|████▊     | 238/500 [00:13<00:13, 19.08it/s]
eval model::  48%|████▊     | 242/500 [00:13<00:13, 18.88it/s]
eval model::  49%|████▉     | 245/500 [00:13<00:12, 20.56it/s]
eval model::  50%|████▉     | 248/500 [00:13<00:11, 21.40it/s]
eval model::  50%|█████     | 251/500 [00:14<00:12, 20.48it/s]
eval model::  51%|█████     | 254/500 [00:14<00:12, 20.09it/s]
eval model::  51%|█████▏    | 257/500 [00:14<00:11, 20.56it/s]
eval model::  52%|█████▏    | 260/500 [00:14<00:10, 22.01it/s]
eval model::  53%|█████▎    | 263/500 [00:14<00:11, 20.49it/s]
eval model::  53%|█████▎    | 266/500 [00:14<00:12, 18.39it/s]
eval model::  54%|█████▍    | 269/500 [00:15<00:12, 18.42it/s]
eval model::  54%|█████▍    | 272/500 [00:15<00:11, 19.47it/s]
eval model::  55%|█████▌    | 275/500 [00:15<00:12, 18.69it/s]
eval model::  55%|█████▌    | 277/500 [00:15<00:11, 18.87it/s]
eval model::  56%|█████▌    | 280/500 [00:15<00:10, 20.14it/s]
eval model::  57%|█████▋    | 283/500 [00:15<00:10, 20.35it/s]
eval model::  57%|█████▋    | 286/500 [00:16<00:17, 12.10it/s]
eval model::  58%|█████▊    | 289/500 [00:16<00:14, 14.14it/s]
eval model::  58%|█████▊    | 292/500 [00:16<00:12, 16.12it/s]
eval model::  59%|█████▉    | 294/500 [00:16<00:14, 14.43it/s]
eval model::  59%|█████▉    | 296/500 [00:16<00:17, 11.73it/s]
eval model::  60%|█████▉    | 299/500 [00:17<00:13, 14.51it/s]
eval model::  60%|██████    | 301/500 [00:17<00:15, 13.19it/s]
eval model::  61%|██████    | 304/500 [00:17<00:13, 14.97it/s]
eval model::  61%|██████▏   | 307/500 [00:17<00:11, 16.89it/s]
eval model::  62%|██████▏   | 309/500 [00:17<00:11, 17.00it/s]
eval model::  62%|██████▏   | 312/500 [00:17<00:10, 17.47it/s]
eval model::  63%|██████▎   | 315/500 [00:17<00:10, 18.48it/s]
eval model::  64%|██████▎   | 318/500 [00:18<00:08, 20.51it/s]
eval model::  64%|██████▍   | 321/500 [00:18<00:08, 21.12it/s]
eval model::  65%|██████▍   | 324/500 [00:18<00:09, 19.38it/s]
eval model::  65%|██████▌   | 327/500 [00:18<00:07, 21.66it/s]
eval model::  66%|██████▌   | 330/500 [00:18<00:07, 21.84it/s]
eval model::  67%|██████▋   | 333/500 [00:18<00:07, 21.49it/s]
eval model::  67%|██████▋   | 337/500 [00:18<00:07, 23.08it/s]
eval model::  68%|██████▊   | 340/500 [00:19<00:10, 15.28it/s]
eval model::  69%|██████▊   | 343/500 [00:19<00:09, 16.54it/s]
eval model::  69%|██████▉   | 346/500 [00:19<00:08, 18.36it/s]
eval model::  70%|██████▉   | 349/500 [00:19<00:07, 19.59it/s]
eval model::  70%|███████   | 352/500 [00:19<00:07, 21.13it/s]
eval model::  71%|███████   | 355/500 [00:19<00:07, 19.93it/s]
eval model::  72%|███████▏  | 358/500 [00:20<00:06, 21.33it/s]
eval model::  72%|███████▏  | 361/500 [00:20<00:07, 19.04it/s]
eval model::  73%|███████▎  | 364/500 [00:20<00:07, 18.47it/s]
eval model::  73%|███████▎  | 366/500 [00:20<00:07, 18.41it/s]
eval model::  74%|███████▍  | 369/500 [00:20<00:06, 20.60it/s]
eval model::  74%|███████▍  | 372/500 [00:20<00:06, 19.57it/s]
eval model::  75%|███████▌  | 375/500 [00:20<00:06, 20.44it/s]
eval model::  76%|███████▌  | 379/500 [00:21<00:05, 22.98it/s]
eval model::  76%|███████▋  | 382/500 [00:21<00:05, 21.44it/s]
eval model::  77%|███████▋  | 385/500 [00:21<00:04, 23.35it/s]
eval model::  78%|███████▊  | 388/500 [00:21<00:08, 13.69it/s]
eval model::  78%|███████▊  | 390/500 [00:21<00:07, 14.59it/s]
eval model::  78%|███████▊  | 392/500 [00:22<00:07, 14.65it/s]
eval model::  79%|███████▉  | 395/500 [00:22<00:06, 16.81it/s]
eval model::  80%|███████▉  | 399/500 [00:22<00:05, 19.49it/s]
eval model::  80%|████████  | 402/500 [00:22<00:05, 18.33it/s]
eval model::  81%|████████  | 405/500 [00:22<00:04, 19.73it/s]
eval model::  82%|████████▏ | 408/500 [00:22<00:04, 20.51it/s]
eval model::  82%|████████▏ | 411/500 [00:22<00:04, 21.51it/s]
eval model::  83%|████████▎ | 414/500 [00:22<00:03, 22.49it/s]
eval model::  83%|████████▎ | 417/500 [00:23<00:03, 21.48it/s]
eval model::  84%|████████▍ | 420/500 [00:23<00:05, 14.70it/s]
eval model::  85%|████████▍ | 423/500 [00:23<00:04, 16.19it/s]
eval model::  85%|████████▌ | 425/500 [00:23<00:05, 14.34it/s]
eval model::  86%|████████▌ | 428/500 [00:23<00:04, 17.11it/s]
eval model::  86%|████████▌ | 431/500 [00:24<00:03, 17.30it/s]
eval model::  87%|████████▋ | 435/500 [00:24<00:03, 20.63it/s]
eval model::  88%|████████▊ | 438/500 [00:24<00:02, 21.23it/s]
eval model::  88%|████████▊ | 441/500 [00:24<00:02, 20.10it/s]
eval model::  89%|████████▉ | 444/500 [00:24<00:02, 21.47it/s]
eval model::  89%|████████▉ | 447/500 [00:24<00:02, 22.33it/s]
eval model::  90%|█████████ | 450/500 [00:24<00:02, 19.27it/s]
eval model::  91%|█████████ | 453/500 [00:25<00:02, 20.06it/s]
eval model::  91%|█████████ | 456/500 [00:25<00:02, 21.29it/s]
eval model::  92%|█████████▏| 459/500 [00:25<00:02, 20.10it/s]
eval model::  92%|█████████▏| 462/500 [00:25<00:02, 17.32it/s]
eval model::  93%|█████████▎| 464/500 [00:25<00:02, 17.80it/s]
eval model::  93%|█████████▎| 466/500 [00:25<00:02, 16.60it/s]
eval model::  94%|█████████▎| 468/500 [00:26<00:01, 16.46it/s]
eval model::  94%|█████████▍| 471/500 [00:26<00:01, 18.35it/s]
eval model::  95%|█████████▍| 474/500 [00:26<00:01, 17.89it/s]
eval model::  95%|█████████▌| 477/500 [00:26<00:01, 19.22it/s]
eval model::  96%|█████████▌| 480/500 [00:26<00:00, 20.65it/s]
eval model::  97%|█████████▋| 483/500 [00:26<00:00, 21.78it/s]
eval model::  97%|█████████▋| 486/500 [00:26<00:00, 21.62it/s]
eval model::  98%|█████████▊| 489/500 [00:26<00:00, 22.67it/s]
eval model::  98%|█████████▊| 492/500 [00:27<00:00, 21.44it/s]
eval model::  99%|█████████▉| 495/500 [00:27<00:00, 22.63it/s]
eval model:: 100%|█████████▉| 499/500 [00:27<00:00, 26.21it/s]
eval model:: 100%|██████████| 500/500 [00:27<00:00, 18.26it/s]
[2024/07/27 12:56:32] ppocr INFO: cur metric, precision: 0.6823122529644269, recall: 0.6649012999518537, hmean: 0.6734942696903194, fps: 44.911414105672
[2024/07/27 12:56:32] ppocr INFO: best metric, hmean: 0.6737551867219916, precision: 0.730185497470489, recall: 0.6254212806933076, fps: 43.42892415983237, best_epoch: 420
[2024/07/27 12:56:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:56:40] ppocr INFO: epoch: [521/1500], global_step: 1563, lr: 0.001000, loss: 1.486342, loss_shrink_maps: 0.782774, loss_threshold_maps: 0.571567, loss_binary_maps: 0.155834, avg_reader_cost: 2.03437 s, avg_batch_cost: 2.27316 s, avg_samples: 12.5, ips: 5.49895 samples/s, eta: 7:08:28
[2024/07/27 12:56:41] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:56:50] ppocr INFO: epoch: [522/1500], global_step: 1566, lr: 0.001000, loss: 1.461908, loss_shrink_maps: 0.767240, loss_threshold_maps: 0.557615, loss_binary_maps: 0.152313, avg_reader_cost: 2.27870 s, avg_batch_cost: 2.54975 s, avg_samples: 12.5, ips: 4.90244 samples/s, eta: 7:08:00
[2024/07/27 12:56:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:57:00] ppocr INFO: epoch: [523/1500], global_step: 1569, lr: 0.001000, loss: 1.444570, loss_shrink_maps: 0.741400, loss_threshold_maps: 0.542769, loss_binary_maps: 0.147081, avg_reader_cost: 2.37551 s, avg_batch_cost: 2.61495 s, avg_samples: 12.5, ips: 4.78020 samples/s, eta: 7:07:34
[2024/07/27 12:57:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:57:08] ppocr INFO: epoch: [524/1500], global_step: 1570, lr: 0.001000, loss: 1.442619, loss_shrink_maps: 0.732769, loss_threshold_maps: 0.542095, loss_binary_maps: 0.145428, avg_reader_cost: 0.55670 s, avg_batch_cost: 0.77178 s, avg_samples: 4.8, ips: 6.21937 samples/s, eta: 7:07:23
[2024/07/27 12:57:09] ppocr INFO: epoch: [524/1500], global_step: 1572, lr: 0.001000, loss: 1.448897, loss_shrink_maps: 0.755805, loss_threshold_maps: 0.546648, loss_binary_maps: 0.150197, avg_reader_cost: 1.63576 s, avg_batch_cost: 1.78340 s, avg_samples: 7.7, ips: 4.31760 samples/s, eta: 7:07:06
[2024/07/27 12:57:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:57:19] ppocr INFO: epoch: [525/1500], global_step: 1575, lr: 0.001000, loss: 1.515327, loss_shrink_maps: 0.782774, loss_threshold_maps: 0.558297, loss_binary_maps: 0.155834, avg_reader_cost: 2.20827 s, avg_batch_cost: 2.58046 s, avg_samples: 12.5, ips: 4.84411 samples/s, eta: 7:06:39
[2024/07/27 12:57:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:57:29] ppocr INFO: epoch: [526/1500], global_step: 1578, lr: 0.001000, loss: 1.531930, loss_shrink_maps: 0.796522, loss_threshold_maps: 0.564106, loss_binary_maps: 0.157696, avg_reader_cost: 2.40304 s, avg_batch_cost: 2.64485 s, avg_samples: 12.5, ips: 4.72617 samples/s, eta: 7:06:13
[2024/07/27 12:57:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:57:38] ppocr INFO: epoch: [527/1500], global_step: 1580, lr: 0.001000, loss: 1.505363, loss_shrink_maps: 0.776600, loss_threshold_maps: 0.558297, loss_binary_maps: 0.154812, avg_reader_cost: 1.33986 s, avg_batch_cost: 1.70364 s, avg_samples: 9.6, ips: 5.63501 samples/s, eta: 7:05:55
[2024/07/27 12:57:39] ppocr INFO: epoch: [527/1500], global_step: 1581, lr: 0.001000, loss: 1.531930, loss_shrink_maps: 0.789607, loss_threshold_maps: 0.561338, loss_binary_maps: 0.157170, avg_reader_cost: 0.89796 s, avg_batch_cost: 0.95421 s, avg_samples: 2.9, ips: 3.03917 samples/s, eta: 7:05:48
[2024/07/27 12:57:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:57:49] ppocr INFO: epoch: [528/1500], global_step: 1584, lr: 0.001000, loss: 1.444272, loss_shrink_maps: 0.749462, loss_threshold_maps: 0.551847, loss_binary_maps: 0.148801, avg_reader_cost: 2.30259 s, avg_batch_cost: 2.54286 s, avg_samples: 12.5, ips: 4.91573 samples/s, eta: 7:05:20
[2024/07/27 12:57:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:57:59] ppocr INFO: epoch: [529/1500], global_step: 1587, lr: 0.001000, loss: 1.426334, loss_shrink_maps: 0.749462, loss_threshold_maps: 0.540496, loss_binary_maps: 0.148801, avg_reader_cost: 2.26496 s, avg_batch_cost: 2.64689 s, avg_samples: 12.5, ips: 4.72253 samples/s, eta: 7:04:54
[2024/07/27 12:57:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:58:08] ppocr INFO: epoch: [530/1500], global_step: 1590, lr: 0.001000, loss: 1.491797, loss_shrink_maps: 0.778699, loss_threshold_maps: 0.557189, loss_binary_maps: 0.154607, avg_reader_cost: 2.16575 s, avg_batch_cost: 2.57437 s, avg_samples: 12.5, ips: 4.85556 samples/s, eta: 7:04:27
[2024/07/27 12:58:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:58:18] ppocr INFO: epoch: [531/1500], global_step: 1593, lr: 0.001000, loss: 1.462812, loss_shrink_maps: 0.767716, loss_threshold_maps: 0.525737, loss_binary_maps: 0.152636, avg_reader_cost: 2.23645 s, avg_batch_cost: 2.60289 s, avg_samples: 12.5, ips: 4.80235 samples/s, eta: 7:04:00
[2024/07/27 12:58:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:58:28] ppocr INFO: epoch: [532/1500], global_step: 1596, lr: 0.001000, loss: 1.462812, loss_shrink_maps: 0.763360, loss_threshold_maps: 0.528078, loss_binary_maps: 0.152292, avg_reader_cost: 2.27411 s, avg_batch_cost: 2.65006 s, avg_samples: 12.5, ips: 4.71688 samples/s, eta: 7:03:34
[2024/07/27 12:58:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:58:38] ppocr INFO: epoch: [533/1500], global_step: 1599, lr: 0.001000, loss: 1.450152, loss_shrink_maps: 0.754404, loss_threshold_maps: 0.537857, loss_binary_maps: 0.149895, avg_reader_cost: 2.35762 s, avg_batch_cost: 2.58848 s, avg_samples: 12.5, ips: 4.82909 samples/s, eta: 7:03:07
[2024/07/27 12:58:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:58:46] ppocr INFO: epoch: [534/1500], global_step: 1600, lr: 0.001000, loss: 1.435720, loss_shrink_maps: 0.745054, loss_threshold_maps: 0.535112, loss_binary_maps: 0.147769, avg_reader_cost: 0.67647 s, avg_batch_cost: 0.76868 s, avg_samples: 4.8, ips: 6.24443 samples/s, eta: 7:02:57
[2024/07/27 12:58:48] ppocr INFO: epoch: [534/1500], global_step: 1602, lr: 0.001000, loss: 1.417957, loss_shrink_maps: 0.729451, loss_threshold_maps: 0.535112, loss_binary_maps: 0.144542, avg_reader_cost: 1.62962 s, avg_batch_cost: 1.77731 s, avg_samples: 7.7, ips: 4.33239 samples/s, eta: 7:02:40
[2024/07/27 12:58:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:58:57] ppocr INFO: epoch: [535/1500], global_step: 1605, lr: 0.001000, loss: 1.450152, loss_shrink_maps: 0.753691, loss_threshold_maps: 0.546710, loss_binary_maps: 0.150166, avg_reader_cost: 2.16066 s, avg_batch_cost: 2.49813 s, avg_samples: 12.5, ips: 5.00374 samples/s, eta: 7:02:11
[2024/07/27 12:58:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:59:07] ppocr INFO: epoch: [536/1500], global_step: 1608, lr: 0.001000, loss: 1.435720, loss_shrink_maps: 0.742083, loss_threshold_maps: 0.546710, loss_binary_maps: 0.146869, avg_reader_cost: 2.17548 s, avg_batch_cost: 2.53879 s, avg_samples: 12.5, ips: 4.92360 samples/s, eta: 7:01:43
[2024/07/27 12:59:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:59:16] ppocr INFO: epoch: [537/1500], global_step: 1610, lr: 0.001000, loss: 1.417957, loss_shrink_maps: 0.729451, loss_threshold_maps: 0.543028, loss_binary_maps: 0.144542, avg_reader_cost: 1.33210 s, avg_batch_cost: 1.68342 s, avg_samples: 9.6, ips: 5.70269 samples/s, eta: 7:01:25
[2024/07/27 12:59:17] ppocr INFO: epoch: [537/1500], global_step: 1611, lr: 0.001000, loss: 1.401452, loss_shrink_maps: 0.718029, loss_threshold_maps: 0.543028, loss_binary_maps: 0.143100, avg_reader_cost: 0.88776 s, avg_batch_cost: 0.94328 s, avg_samples: 2.9, ips: 3.07437 samples/s, eta: 7:01:17
[2024/07/27 12:59:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:59:26] ppocr INFO: epoch: [538/1500], global_step: 1614, lr: 0.001000, loss: 1.435720, loss_shrink_maps: 0.742083, loss_threshold_maps: 0.551614, loss_binary_maps: 0.146869, avg_reader_cost: 2.16662 s, avg_batch_cost: 2.48872 s, avg_samples: 12.5, ips: 5.02267 samples/s, eta: 7:00:48
[2024/07/27 12:59:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:59:36] ppocr INFO: epoch: [539/1500], global_step: 1617, lr: 0.001000, loss: 1.417957, loss_shrink_maps: 0.730736, loss_threshold_maps: 0.550178, loss_binary_maps: 0.144762, avg_reader_cost: 2.26834 s, avg_batch_cost: 2.50148 s, avg_samples: 12.5, ips: 4.99704 samples/s, eta: 7:00:20
[2024/07/27 12:59:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 12:59:45] ppocr INFO: epoch: [540/1500], global_step: 1620, lr: 0.001000, loss: 1.463501, loss_shrink_maps: 0.747738, loss_threshold_maps: 0.550178, loss_binary_maps: 0.148676, avg_reader_cost: 2.30442 s, avg_batch_cost: 2.54263 s, avg_samples: 12.5, ips: 4.91617 samples/s, eta: 6:59:52

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:54,  9.22it/s]
eval model::   1%|          | 4/500 [00:00<00:27, 18.07it/s]
eval model::   1%|          | 6/500 [00:00<00:29, 17.02it/s]
eval model::   2%|▏         | 8/500 [00:00<00:27, 17.82it/s]
eval model::   2%|▏         | 11/500 [00:00<00:28, 17.04it/s]
eval model::   3%|▎         | 14/500 [00:00<00:27, 17.58it/s]
eval model::   3%|▎         | 17/500 [00:00<00:24, 19.37it/s]
eval model::   4%|▍         | 20/500 [00:01<00:24, 19.71it/s]
eval model::   5%|▍         | 23/500 [00:01<00:22, 20.92it/s]
eval model::   5%|▌         | 26/500 [00:01<00:23, 20.49it/s]
eval model::   6%|▌         | 29/500 [00:01<00:23, 20.21it/s]
eval model::   6%|▋         | 32/500 [00:01<00:24, 19.40it/s]
eval model::   7%|▋         | 34/500 [00:01<00:25, 18.62it/s]
eval model::   7%|▋         | 37/500 [00:01<00:22, 20.35it/s]
eval model::   8%|▊         | 40/500 [00:02<00:25, 17.75it/s]
eval model::   8%|▊         | 42/500 [00:02<00:27, 16.82it/s]
eval model::   9%|▉         | 45/500 [00:02<00:24, 18.36it/s]
eval model::   9%|▉         | 47/500 [00:02<00:27, 16.64it/s]
eval model::  10%|▉         | 49/500 [00:02<00:25, 17.35it/s]
eval model::  10%|█         | 52/500 [00:02<00:24, 18.55it/s]
eval model::  11%|█         | 55/500 [00:02<00:23, 18.95it/s]
eval model::  11%|█▏        | 57/500 [00:03<00:23, 18.90it/s]
eval model::  12%|█▏        | 59/500 [00:03<00:25, 17.43it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:30, 14.58it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:31, 14.06it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:25, 17.22it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:20, 21.17it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:19, 22.18it/s]
eval model::  15%|█▌        | 76/500 [00:04<00:18, 23.18it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:18, 23.25it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:19, 21.10it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:20, 20.73it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:23, 17.77it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:26, 15.69it/s]
eval model::  19%|█▊        | 93/500 [00:05<00:24, 16.92it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:21, 18.68it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:19, 20.68it/s]
eval model::  20%|██        | 102/500 [00:05<00:19, 20.33it/s]
eval model::  21%|██        | 106/500 [00:05<00:16, 23.29it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:16, 24.18it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:17, 21.93it/s]
eval model::  23%|██▎       | 115/500 [00:06<00:18, 20.45it/s]
eval model::  24%|██▎       | 118/500 [00:06<00:18, 21.15it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:19, 19.66it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:20, 18.49it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:20, 18.20it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:19, 19.49it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:20, 17.87it/s]
eval model::  27%|██▋       | 133/500 [00:07<00:21, 17.37it/s]
eval model::  27%|██▋       | 135/500 [00:07<00:20, 17.74it/s]
eval model::  27%|██▋       | 137/500 [00:07<00:20, 18.12it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:19, 18.11it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:17, 19.92it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:16, 20.93it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:17, 19.87it/s]
eval model::  30%|███       | 151/500 [00:07<00:18, 19.09it/s]
eval model::  31%|███       | 155/500 [00:08<00:15, 22.12it/s]
eval model::  32%|███▏      | 158/500 [00:08<00:14, 23.32it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:22, 15.21it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:21, 15.59it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:18, 17.68it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:17, 18.92it/s]
eval model::  34%|███▍      | 172/500 [00:09<00:17, 18.57it/s]
eval model::  35%|███▌      | 175/500 [00:09<00:19, 16.29it/s]
eval model::  36%|███▌      | 178/500 [00:09<00:18, 17.48it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:21, 15.19it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:18, 17.09it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:16, 19.25it/s]
eval model::  38%|███▊      | 189/500 [00:10<00:15, 20.57it/s]
eval model::  38%|███▊      | 192/500 [00:10<00:14, 21.26it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:15, 19.66it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:15, 19.51it/s]
eval model::  40%|████      | 201/500 [00:10<00:14, 20.07it/s]
eval model::  41%|████      | 205/500 [00:10<00:18, 15.64it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:17, 16.68it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:18, 15.51it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.71it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:20, 13.60it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:21, 12.87it/s]
eval model::  44%|████▍     | 220/500 [00:12<00:18, 14.83it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:21, 12.72it/s]
eval model::  45%|████▌     | 225/500 [00:12<00:18, 15.23it/s]
eval model::  45%|████▌     | 227/500 [00:12<00:17, 15.59it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:14, 18.71it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:12, 20.78it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:14, 18.61it/s]
eval model::  48%|████▊     | 239/500 [00:13<00:12, 20.22it/s]
eval model::  48%|████▊     | 242/500 [00:13<00:13, 18.53it/s]
eval model::  49%|████▉     | 245/500 [00:13<00:12, 19.88it/s]
eval model::  50%|████▉     | 248/500 [00:13<00:11, 21.00it/s]
eval model::  50%|█████     | 251/500 [00:13<00:11, 20.84it/s]
eval model::  51%|█████     | 254/500 [00:13<00:11, 21.93it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:11, 21.33it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:10, 22.09it/s]
eval model::  53%|█████▎    | 263/500 [00:14<00:10, 21.82it/s]
eval model::  53%|█████▎    | 266/500 [00:14<00:11, 20.42it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:11, 20.50it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:11, 19.43it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:12, 18.27it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:11, 20.03it/s]
eval model::  56%|█████▌    | 281/500 [00:15<00:11, 19.70it/s]
eval model::  57%|█████▋    | 284/500 [00:15<00:10, 21.21it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:16, 12.68it/s]
eval model::  58%|█████▊    | 290/500 [00:15<00:13, 15.29it/s]
eval model::  59%|█████▊    | 293/500 [00:15<00:12, 16.61it/s]
eval model::  59%|█████▉    | 296/500 [00:16<00:15, 13.48it/s]
eval model::  60%|█████▉    | 299/500 [00:16<00:12, 16.07it/s]
eval model::  60%|██████    | 302/500 [00:16<00:13, 15.01it/s]
eval model::  61%|██████    | 304/500 [00:16<00:12, 15.42it/s]
eval model::  61%|██████▏   | 307/500 [00:16<00:10, 17.94it/s]
eval model::  62%|██████▏   | 310/500 [00:16<00:09, 19.66it/s]
eval model::  63%|██████▎   | 313/500 [00:17<00:09, 19.61it/s]
eval model::  63%|██████▎   | 316/500 [00:17<00:09, 19.59it/s]
eval model::  64%|██████▍   | 319/500 [00:17<00:08, 20.39it/s]
eval model::  64%|██████▍   | 322/500 [00:17<00:09, 18.50it/s]
eval model::  65%|██████▌   | 325/500 [00:17<00:08, 20.37it/s]
eval model::  66%|██████▌   | 328/500 [00:17<00:08, 21.20it/s]
eval model::  66%|██████▌   | 331/500 [00:17<00:07, 21.32it/s]
eval model::  67%|██████▋   | 334/500 [00:18<00:07, 22.18it/s]
eval model::  67%|██████▋   | 337/500 [00:18<00:07, 22.87it/s]
eval model::  68%|██████▊   | 340/500 [00:18<00:09, 16.70it/s]
eval model::  69%|██████▊   | 343/500 [00:18<00:08, 17.83it/s]
eval model::  69%|██████▉   | 346/500 [00:18<00:07, 20.05it/s]
eval model::  70%|██████▉   | 349/500 [00:18<00:06, 21.63it/s]
eval model::  70%|███████   | 352/500 [00:18<00:06, 22.03it/s]
eval model::  71%|███████   | 355/500 [00:19<00:06, 21.34it/s]
eval model::  72%|███████▏  | 358/500 [00:19<00:06, 21.19it/s]
eval model::  72%|███████▏  | 361/500 [00:19<00:07, 19.11it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:07, 17.88it/s]
eval model::  73%|███████▎  | 367/500 [00:19<00:07, 18.30it/s]
eval model::  74%|███████▍  | 370/500 [00:19<00:06, 19.88it/s]
eval model::  75%|███████▍  | 373/500 [00:20<00:06, 20.09it/s]
eval model::  75%|███████▌  | 376/500 [00:20<00:06, 19.95it/s]
eval model::  76%|███████▌  | 379/500 [00:20<00:05, 20.93it/s]
eval model::  76%|███████▋  | 382/500 [00:20<00:05, 20.24it/s]
eval model::  77%|███████▋  | 385/500 [00:20<00:05, 21.98it/s]
eval model::  78%|███████▊  | 388/500 [00:20<00:07, 14.48it/s]
eval model::  78%|███████▊  | 391/500 [00:21<00:06, 16.66it/s]
eval model::  79%|███████▉  | 394/500 [00:21<00:05, 18.88it/s]
eval model::  80%|███████▉  | 398/500 [00:21<00:04, 22.22it/s]
eval model::  80%|████████  | 401/500 [00:21<00:05, 19.69it/s]
eval model::  81%|████████  | 404/500 [00:21<00:04, 20.40it/s]
eval model::  81%|████████▏ | 407/500 [00:21<00:04, 21.80it/s]
eval model::  82%|████████▏ | 410/500 [00:21<00:03, 22.79it/s]
eval model::  83%|████████▎ | 413/500 [00:22<00:04, 21.56it/s]
eval model::  83%|████████▎ | 416/500 [00:22<00:04, 19.89it/s]
eval model::  84%|████████▍ | 419/500 [00:22<00:04, 19.13it/s]
eval model::  84%|████████▍ | 421/500 [00:22<00:05, 14.12it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:04, 15.33it/s]
eval model::  85%|████████▌ | 427/500 [00:22<00:04, 17.29it/s]
eval model::  86%|████████▌ | 430/500 [00:23<00:03, 18.88it/s]
eval model::  87%|████████▋ | 433/500 [00:23<00:03, 18.54it/s]
eval model::  87%|████████▋ | 436/500 [00:23<00:03, 19.64it/s]
eval model::  88%|████████▊ | 439/500 [00:23<00:02, 21.21it/s]
eval model::  88%|████████▊ | 442/500 [00:23<00:02, 21.16it/s]
eval model::  89%|████████▉ | 445/500 [00:23<00:02, 21.72it/s]
eval model::  90%|████████▉ | 448/500 [00:23<00:02, 21.81it/s]
eval model::  90%|█████████ | 451/500 [00:24<00:02, 21.01it/s]
eval model::  91%|█████████ | 454/500 [00:24<00:02, 22.58it/s]
eval model::  91%|█████████▏| 457/500 [00:24<00:01, 23.63it/s]
eval model::  92%|█████████▏| 460/500 [00:24<00:01, 24.11it/s]
eval model::  93%|█████████▎| 463/500 [00:24<00:01, 18.73it/s]
eval model::  93%|█████████▎| 466/500 [00:24<00:01, 18.11it/s]
eval model::  94%|█████████▍| 469/500 [00:24<00:01, 19.19it/s]
eval model::  94%|█████████▍| 472/500 [00:25<00:01, 20.40it/s]
eval model::  95%|█████████▌| 475/500 [00:25<00:01, 19.50it/s]
eval model::  96%|█████████▌| 478/500 [00:25<00:01, 19.94it/s]
eval model::  96%|█████████▌| 481/500 [00:25<00:00, 20.25it/s]
eval model::  97%|█████████▋| 484/500 [00:25<00:00, 21.26it/s]
eval model::  97%|█████████▋| 487/500 [00:25<00:00, 22.26it/s]
eval model::  98%|█████████▊| 490/500 [00:25<00:00, 22.02it/s]
eval model::  99%|█████████▊| 493/500 [00:26<00:00, 19.29it/s]
eval model::  99%|█████████▉| 496/500 [00:26<00:00, 19.05it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 22.42it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.93it/s]
[2024/07/27 13:00:12] ppocr INFO: cur metric, precision: 0.7268266085059978, recall: 0.6417910447761194, hmean: 0.6816670928151367, fps: 44.83859351120756
[2024/07/27 13:00:12] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/27 13:00:12] ppocr INFO: best metric, hmean: 0.6816670928151367, precision: 0.7268266085059978, recall: 0.6417910447761194, fps: 44.83859351120756, best_epoch: 540
[2024/07/27 13:00:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:00:21] ppocr INFO: epoch: [541/1500], global_step: 1623, lr: 0.001000, loss: 1.476462, loss_shrink_maps: 0.761303, loss_threshold_maps: 0.554721, loss_binary_maps: 0.151194, avg_reader_cost: 2.13111 s, avg_batch_cost: 2.47455 s, avg_samples: 12.5, ips: 5.05143 samples/s, eta: 6:59:23
[2024/07/27 13:00:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:00:31] ppocr INFO: epoch: [542/1500], global_step: 1626, lr: 0.001000, loss: 1.472922, loss_shrink_maps: 0.747826, loss_threshold_maps: 0.554721, loss_binary_maps: 0.148676, avg_reader_cost: 2.22615 s, avg_batch_cost: 2.58073 s, avg_samples: 12.5, ips: 4.84358 samples/s, eta: 6:58:56
[2024/07/27 13:00:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:00:41] ppocr INFO: epoch: [543/1500], global_step: 1629, lr: 0.001000, loss: 1.490400, loss_shrink_maps: 0.783288, loss_threshold_maps: 0.554721, loss_binary_maps: 0.156092, avg_reader_cost: 2.26804 s, avg_batch_cost: 2.65711 s, avg_samples: 12.5, ips: 4.70435 samples/s, eta: 6:58:31
[2024/07/27 13:00:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:00:49] ppocr INFO: epoch: [544/1500], global_step: 1630, lr: 0.001000, loss: 1.490400, loss_shrink_maps: 0.783288, loss_threshold_maps: 0.554721, loss_binary_maps: 0.156092, avg_reader_cost: 0.69624 s, avg_batch_cost: 0.80698 s, avg_samples: 4.8, ips: 5.94813 samples/s, eta: 6:58:21
[2024/07/27 13:00:51] ppocr INFO: epoch: [544/1500], global_step: 1632, lr: 0.001000, loss: 1.482812, loss_shrink_maps: 0.783288, loss_threshold_maps: 0.547701, loss_binary_maps: 0.156092, avg_reader_cost: 1.70581 s, avg_batch_cost: 1.85365 s, avg_samples: 7.7, ips: 4.15397 samples/s, eta: 6:58:05
[2024/07/27 13:00:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:01:01] ppocr INFO: epoch: [545/1500], global_step: 1635, lr: 0.001000, loss: 1.474979, loss_shrink_maps: 0.761015, loss_threshold_maps: 0.542542, loss_binary_maps: 0.151733, avg_reader_cost: 2.21012 s, avg_batch_cost: 2.61404 s, avg_samples: 12.5, ips: 4.78187 samples/s, eta: 6:57:39
[2024/07/27 13:01:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:01:10] ppocr INFO: epoch: [546/1500], global_step: 1638, lr: 0.001000, loss: 1.500864, loss_shrink_maps: 0.804123, loss_threshold_maps: 0.561789, loss_binary_maps: 0.160130, avg_reader_cost: 2.37331 s, avg_batch_cost: 2.61231 s, avg_samples: 12.5, ips: 4.78504 samples/s, eta: 6:57:12
[2024/07/27 13:01:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:01:20] ppocr INFO: epoch: [547/1500], global_step: 1640, lr: 0.001000, loss: 1.509818, loss_shrink_maps: 0.806588, loss_threshold_maps: 0.561789, loss_binary_maps: 0.160821, avg_reader_cost: 1.49623 s, avg_batch_cost: 1.68627 s, avg_samples: 9.6, ips: 5.69305 samples/s, eta: 6:56:54
[2024/07/27 13:01:20] ppocr INFO: epoch: [547/1500], global_step: 1641, lr: 0.001000, loss: 1.525020, loss_shrink_maps: 0.821781, loss_threshold_maps: 0.562815, loss_binary_maps: 0.163534, avg_reader_cost: 0.88919 s, avg_batch_cost: 0.94455 s, avg_samples: 2.9, ips: 3.07025 samples/s, eta: 6:56:46
[2024/07/27 13:01:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:01:31] ppocr INFO: epoch: [548/1500], global_step: 1644, lr: 0.001000, loss: 1.509818, loss_shrink_maps: 0.806588, loss_threshold_maps: 0.546128, loss_binary_maps: 0.160821, avg_reader_cost: 2.39571 s, avg_batch_cost: 2.64118 s, avg_samples: 12.5, ips: 4.73274 samples/s, eta: 6:56:20
[2024/07/27 13:01:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:01:40] ppocr INFO: epoch: [549/1500], global_step: 1647, lr: 0.001000, loss: 1.470290, loss_shrink_maps: 0.770895, loss_threshold_maps: 0.546128, loss_binary_maps: 0.153267, avg_reader_cost: 2.08223 s, avg_batch_cost: 2.35755 s, avg_samples: 12.5, ips: 5.30211 samples/s, eta: 6:55:49
[2024/07/27 13:01:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:01:49] ppocr INFO: epoch: [550/1500], global_step: 1650, lr: 0.001000, loss: 1.430115, loss_shrink_maps: 0.737003, loss_threshold_maps: 0.547300, loss_binary_maps: 0.146088, avg_reader_cost: 2.28227 s, avg_batch_cost: 2.52741 s, avg_samples: 12.5, ips: 4.94578 samples/s, eta: 6:55:21
[2024/07/27 13:01:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:01:59] ppocr INFO: epoch: [551/1500], global_step: 1653, lr: 0.001000, loss: 1.530949, loss_shrink_maps: 0.803503, loss_threshold_maps: 0.562815, loss_binary_maps: 0.159582, avg_reader_cost: 2.40477 s, avg_batch_cost: 2.64313 s, avg_samples: 12.5, ips: 4.72925 samples/s, eta: 6:54:55
[2024/07/27 13:02:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:02:08] ppocr INFO: epoch: [552/1500], global_step: 1656, lr: 0.001000, loss: 1.450402, loss_shrink_maps: 0.752312, loss_threshold_maps: 0.548962, loss_binary_maps: 0.149426, avg_reader_cost: 2.01929 s, avg_batch_cost: 2.28115 s, avg_samples: 12.5, ips: 5.47969 samples/s, eta: 6:54:23
[2024/07/27 13:02:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:02:18] ppocr INFO: epoch: [553/1500], global_step: 1659, lr: 0.001000, loss: 1.470910, loss_shrink_maps: 0.761690, loss_threshold_maps: 0.544544, loss_binary_maps: 0.151485, avg_reader_cost: 2.13623 s, avg_batch_cost: 2.49777 s, avg_samples: 12.5, ips: 5.00447 samples/s, eta: 6:53:55
[2024/07/27 13:02:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:02:26] ppocr INFO: epoch: [554/1500], global_step: 1660, lr: 0.001000, loss: 1.470910, loss_shrink_maps: 0.761690, loss_threshold_maps: 0.544544, loss_binary_maps: 0.151485, avg_reader_cost: 0.67900 s, avg_batch_cost: 0.77294 s, avg_samples: 4.8, ips: 6.21002 samples/s, eta: 6:53:45
[2024/07/27 13:02:27] ppocr INFO: epoch: [554/1500], global_step: 1662, lr: 0.001000, loss: 1.495374, loss_shrink_maps: 0.784561, loss_threshold_maps: 0.546863, loss_binary_maps: 0.156052, avg_reader_cost: 1.63824 s, avg_batch_cost: 1.78548 s, avg_samples: 7.7, ips: 4.31257 samples/s, eta: 6:53:28
[2024/07/27 13:02:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:02:37] ppocr INFO: epoch: [555/1500], global_step: 1665, lr: 0.001000, loss: 1.539991, loss_shrink_maps: 0.811635, loss_threshold_maps: 0.555729, loss_binary_maps: 0.161438, avg_reader_cost: 2.32172 s, avg_batch_cost: 2.57808 s, avg_samples: 12.5, ips: 4.84857 samples/s, eta: 6:53:01
[2024/07/27 13:02:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:02:47] ppocr INFO: epoch: [556/1500], global_step: 1668, lr: 0.001000, loss: 1.539991, loss_shrink_maps: 0.811635, loss_threshold_maps: 0.555729, loss_binary_maps: 0.161438, avg_reader_cost: 2.23444 s, avg_batch_cost: 2.60432 s, avg_samples: 12.5, ips: 4.79972 samples/s, eta: 6:52:34
[2024/07/27 13:02:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:02:56] ppocr INFO: epoch: [557/1500], global_step: 1670, lr: 0.001000, loss: 1.552270, loss_shrink_maps: 0.816448, loss_threshold_maps: 0.558992, loss_binary_maps: 0.162670, avg_reader_cost: 1.46898 s, avg_batch_cost: 1.65482 s, avg_samples: 9.6, ips: 5.80124 samples/s, eta: 6:52:15
[2024/07/27 13:02:57] ppocr INFO: epoch: [557/1500], global_step: 1671, lr: 0.001000, loss: 1.552270, loss_shrink_maps: 0.816448, loss_threshold_maps: 0.558992, loss_binary_maps: 0.162670, avg_reader_cost: 0.87345 s, avg_batch_cost: 0.92904 s, avg_samples: 2.9, ips: 3.12150 samples/s, eta: 6:52:07
[2024/07/27 13:02:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:03:07] ppocr INFO: epoch: [558/1500], global_step: 1674, lr: 0.001000, loss: 1.562842, loss_shrink_maps: 0.826067, loss_threshold_maps: 0.563000, loss_binary_maps: 0.163879, avg_reader_cost: 2.37118 s, avg_batch_cost: 2.61212 s, avg_samples: 12.5, ips: 4.78539 samples/s, eta: 6:51:41
[2024/07/27 13:03:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:03:17] ppocr INFO: epoch: [559/1500], global_step: 1677, lr: 0.001000, loss: 1.601385, loss_shrink_maps: 0.851912, loss_threshold_maps: 0.574832, loss_binary_maps: 0.168831, avg_reader_cost: 2.36414 s, avg_batch_cost: 2.60654 s, avg_samples: 12.5, ips: 4.79563 samples/s, eta: 6:51:14
[2024/07/27 13:03:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:03:27] ppocr INFO: epoch: [560/1500], global_step: 1680, lr: 0.001000, loss: 1.613096, loss_shrink_maps: 0.873236, loss_threshold_maps: 0.575182, loss_binary_maps: 0.173326, avg_reader_cost: 2.40303 s, avg_batch_cost: 2.64174 s, avg_samples: 12.5, ips: 4.73173 samples/s, eta: 6:50:49

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:56,  8.78it/s]
eval model::   1%|          | 4/500 [00:00<00:29, 16.80it/s]
eval model::   1%|▏         | 7/500 [00:00<00:25, 19.38it/s]
eval model::   2%|▏         | 9/500 [00:00<00:26, 18.43it/s]
eval model::   2%|▏         | 11/500 [00:00<00:29, 16.37it/s]
eval model::   3%|▎         | 14/500 [00:00<00:28, 17.34it/s]
eval model::   3%|▎         | 17/500 [00:00<00:23, 20.26it/s]
eval model::   4%|▍         | 20/500 [00:01<00:24, 19.34it/s]
eval model::   5%|▍         | 23/500 [00:01<00:23, 20.70it/s]
eval model::   5%|▌         | 26/500 [00:01<00:23, 20.39it/s]
eval model::   6%|▌         | 29/500 [00:01<00:23, 20.32it/s]
eval model::   6%|▋         | 32/500 [00:01<00:23, 19.56it/s]
eval model::   7%|▋         | 34/500 [00:01<00:25, 18.45it/s]
eval model::   7%|▋         | 36/500 [00:01<00:24, 18.65it/s]
eval model::   8%|▊         | 39/500 [00:02<00:25, 18.04it/s]
eval model::   8%|▊         | 42/500 [00:02<00:25, 18.08it/s]
eval model::   9%|▉         | 45/500 [00:02<00:23, 19.65it/s]
eval model::   9%|▉         | 47/500 [00:02<00:25, 17.69it/s]
eval model::  10%|█         | 50/500 [00:02<00:24, 18.37it/s]
eval model::  11%|█         | 53/500 [00:02<00:22, 20.12it/s]
eval model::  11%|█         | 56/500 [00:02<00:22, 19.87it/s]
eval model::  12%|█▏        | 59/500 [00:03<00:23, 18.47it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:27, 15.68it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:27, 15.76it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:21, 20.06it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:20, 20.68it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:21, 20.12it/s]
eval model::  15%|█▌        | 76/500 [00:04<00:20, 20.93it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:19, 21.69it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:18, 22.72it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:18, 22.88it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:22, 18.45it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:28, 14.52it/s]
eval model::  19%|█▊        | 93/500 [00:05<00:27, 14.62it/s]
eval model::  19%|█▉        | 95/500 [00:05<00:26, 15.37it/s]
eval model::  20%|█▉        | 98/500 [00:05<00:22, 17.90it/s]
eval model::  20%|██        | 100/500 [00:05<00:23, 17.39it/s]
eval model::  21%|██        | 103/500 [00:05<00:20, 19.08it/s]
eval model::  21%|██▏       | 107/500 [00:05<00:17, 22.13it/s]
eval model::  22%|██▏       | 110/500 [00:05<00:18, 20.83it/s]
eval model::  23%|██▎       | 113/500 [00:05<00:18, 21.13it/s]
eval model::  23%|██▎       | 116/500 [00:06<00:19, 19.73it/s]
eval model::  24%|██▍       | 119/500 [00:06<00:17, 21.41it/s]
eval model::  24%|██▍       | 122/500 [00:06<00:18, 20.23it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:19, 18.78it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:18, 20.06it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:20, 17.83it/s]
eval model::  27%|██▋       | 133/500 [00:07<00:20, 17.95it/s]
eval model::  27%|██▋       | 136/500 [00:07<00:18, 19.85it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:17, 20.67it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:16, 21.75it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:15, 22.37it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:16, 20.73it/s]
eval model::  30%|███       | 151/500 [00:07<00:18, 18.58it/s]
eval model::  31%|███       | 155/500 [00:08<00:15, 21.79it/s]
eval model::  32%|███▏      | 158/500 [00:08<00:15, 22.26it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:20, 16.83it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:19, 17.22it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:17, 19.14it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:16, 19.59it/s]
eval model::  34%|███▍      | 172/500 [00:08<00:16, 19.35it/s]
eval model::  35%|███▌      | 175/500 [00:09<00:18, 17.28it/s]
eval model::  35%|███▌      | 177/500 [00:09<00:18, 17.75it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:17, 17.88it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:19, 16.41it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:17, 18.05it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:17, 18.38it/s]
eval model::  38%|███▊      | 188/500 [00:09<00:16, 18.77it/s]
eval model::  38%|███▊      | 191/500 [00:10<00:16, 19.16it/s]
eval model::  39%|███▉      | 194/500 [00:10<00:14, 21.35it/s]
eval model::  39%|███▉      | 197/500 [00:10<00:15, 19.33it/s]
eval model::  40%|████      | 200/500 [00:10<00:14, 21.33it/s]
eval model::  41%|████      | 203/500 [00:10<00:13, 21.99it/s]
eval model::  41%|████      | 206/500 [00:10<00:20, 14.33it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:19, 14.79it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:20, 14.39it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.80it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:20, 14.18it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:21, 12.94it/s]
eval model::  44%|████▍     | 219/500 [00:11<00:19, 14.28it/s]
eval model::  44%|████▍     | 221/500 [00:12<00:20, 13.59it/s]
eval model::  45%|████▍     | 223/500 [00:12<00:18, 14.81it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:15, 17.31it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:12, 21.11it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:11, 22.31it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:11, 22.01it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:11, 22.72it/s]
eval model::  48%|████▊     | 242/500 [00:12<00:13, 19.03it/s]
eval model::  49%|████▉     | 245/500 [00:13<00:12, 20.39it/s]
eval model::  50%|████▉     | 248/500 [00:13<00:11, 22.25it/s]
eval model::  50%|█████     | 251/500 [00:13<00:11, 21.57it/s]
eval model::  51%|█████     | 254/500 [00:13<00:11, 21.80it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:11, 20.78it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:11, 20.85it/s]
eval model::  53%|█████▎    | 263/500 [00:13<00:10, 21.58it/s]
eval model::  53%|█████▎    | 266/500 [00:14<00:12, 19.23it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:11, 19.29it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:11, 20.36it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:11, 19.71it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:11, 20.16it/s]
eval model::  56%|█████▌    | 281/500 [00:14<00:10, 21.64it/s]
eval model::  57%|█████▋    | 284/500 [00:14<00:09, 21.73it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:16, 13.00it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:12, 16.94it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:12, 16.52it/s]
eval model::  59%|█████▉    | 297/500 [00:16<00:15, 13.10it/s]
eval model::  60%|██████    | 300/500 [00:16<00:14, 13.57it/s]
eval model::  60%|██████    | 302/500 [00:16<00:14, 13.85it/s]
eval model::  61%|██████    | 304/500 [00:16<00:13, 14.59it/s]
eval model::  61%|██████▏   | 307/500 [00:16<00:11, 17.07it/s]
eval model::  62%|██████▏   | 310/500 [00:16<00:10, 18.37it/s]
eval model::  63%|██████▎   | 313/500 [00:16<00:09, 19.82it/s]
eval model::  63%|██████▎   | 316/500 [00:17<00:09, 20.08it/s]
eval model::  64%|██████▍   | 319/500 [00:17<00:08, 21.62it/s]
eval model::  64%|██████▍   | 322/500 [00:17<00:08, 21.42it/s]
eval model::  65%|██████▌   | 325/500 [00:17<00:07, 22.39it/s]
eval model::  66%|██████▌   | 328/500 [00:17<00:08, 20.89it/s]
eval model::  66%|██████▌   | 331/500 [00:17<00:08, 19.79it/s]
eval model::  67%|██████▋   | 334/500 [00:17<00:07, 21.23it/s]
eval model::  67%|██████▋   | 337/500 [00:18<00:07, 21.30it/s]
eval model::  68%|██████▊   | 340/500 [00:18<00:09, 16.15it/s]
eval model::  69%|██████▊   | 343/500 [00:18<00:08, 17.81it/s]
eval model::  69%|██████▉   | 346/500 [00:18<00:07, 20.16it/s]
eval model::  70%|██████▉   | 349/500 [00:18<00:06, 21.88it/s]
eval model::  70%|███████   | 352/500 [00:18<00:06, 23.42it/s]
eval model::  71%|███████   | 355/500 [00:18<00:06, 22.88it/s]
eval model::  72%|███████▏  | 358/500 [00:19<00:06, 22.61it/s]
eval model::  72%|███████▏  | 361/500 [00:19<00:06, 20.82it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:06, 20.22it/s]
eval model::  73%|███████▎  | 367/500 [00:19<00:06, 20.34it/s]
eval model::  74%|███████▍  | 370/500 [00:19<00:06, 20.41it/s]
eval model::  75%|███████▍  | 373/500 [00:19<00:06, 20.71it/s]
eval model::  75%|███████▌  | 376/500 [00:19<00:05, 21.61it/s]
eval model::  76%|███████▌  | 380/500 [00:20<00:05, 21.61it/s]
eval model::  77%|███████▋  | 383/500 [00:20<00:05, 23.30it/s]
eval model::  77%|███████▋  | 386/500 [00:20<00:07, 14.28it/s]
eval model::  78%|███████▊  | 389/500 [00:20<00:06, 16.23it/s]
eval model::  78%|███████▊  | 392/500 [00:20<00:06, 17.37it/s]
eval model::  79%|███████▉  | 395/500 [00:21<00:05, 18.49it/s]
eval model::  80%|███████▉  | 398/500 [00:21<00:05, 19.37it/s]
eval model::  80%|████████  | 401/500 [00:21<00:05, 17.66it/s]
eval model::  81%|████████  | 404/500 [00:21<00:05, 18.65it/s]
eval model::  81%|████████▏ | 407/500 [00:21<00:04, 20.57it/s]
eval model::  82%|████████▏ | 410/500 [00:21<00:04, 22.29it/s]
eval model::  83%|████████▎ | 413/500 [00:21<00:04, 20.86it/s]
eval model::  83%|████████▎ | 416/500 [00:22<00:04, 20.29it/s]
eval model::  84%|████████▍ | 419/500 [00:22<00:04, 18.73it/s]
eval model::  84%|████████▍ | 421/500 [00:22<00:05, 14.20it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:04, 15.37it/s]
eval model::  85%|████████▌ | 426/500 [00:22<00:04, 15.17it/s]
eval model::  86%|████████▌ | 429/500 [00:22<00:04, 17.18it/s]
eval model::  86%|████████▌ | 431/500 [00:23<00:04, 17.15it/s]
eval model::  87%|████████▋ | 434/500 [00:23<00:03, 19.95it/s]
eval model::  87%|████████▋ | 437/500 [00:23<00:03, 20.76it/s]
eval model::  88%|████████▊ | 440/500 [00:23<00:02, 20.78it/s]
eval model::  89%|████████▊ | 443/500 [00:23<00:02, 22.79it/s]
eval model::  89%|████████▉ | 446/500 [00:23<00:02, 22.80it/s]
eval model::  90%|████████▉ | 449/500 [00:23<00:02, 21.06it/s]
eval model::  90%|█████████ | 452/500 [00:23<00:02, 22.23it/s]
eval model::  91%|█████████ | 455/500 [00:24<00:02, 21.79it/s]
eval model::  92%|█████████▏| 458/500 [00:24<00:01, 22.10it/s]
eval model::  92%|█████████▏| 461/500 [00:24<00:01, 22.72it/s]
eval model::  93%|█████████▎| 464/500 [00:24<00:01, 20.53it/s]
eval model::  93%|█████████▎| 467/500 [00:24<00:01, 19.11it/s]
eval model::  94%|█████████▍| 470/500 [00:24<00:01, 21.18it/s]
eval model::  95%|█████████▍| 473/500 [00:24<00:01, 20.80it/s]
eval model::  95%|█████████▌| 476/500 [00:25<00:01, 21.10it/s]
eval model::  96%|█████████▌| 479/500 [00:25<00:00, 21.95it/s]
eval model::  96%|█████████▋| 482/500 [00:25<00:00, 22.41it/s]
eval model::  97%|█████████▋| 485/500 [00:25<00:00, 23.39it/s]
eval model::  98%|█████████▊| 488/500 [00:25<00:00, 21.42it/s]
eval model::  98%|█████████▊| 491/500 [00:25<00:00, 20.73it/s]
eval model::  99%|█████████▉| 494/500 [00:25<00:00, 21.14it/s]
eval model::  99%|█████████▉| 497/500 [00:26<00:00, 22.74it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 19.14it/s]
[2024/07/27 13:03:53] ppocr INFO: cur metric, precision: 0.7518539646320593, recall: 0.6345690900337024, hmean: 0.6882506527415143, fps: 43.15300095228087
[2024/07/27 13:03:53] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/27 13:03:53] ppocr INFO: best metric, hmean: 0.6882506527415143, precision: 0.7518539646320593, recall: 0.6345690900337024, fps: 43.15300095228087, best_epoch: 560
[2024/07/27 13:03:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:04:02] ppocr INFO: epoch: [561/1500], global_step: 1683, lr: 0.001000, loss: 1.612444, loss_shrink_maps: 0.859930, loss_threshold_maps: 0.571502, loss_binary_maps: 0.170339, avg_reader_cost: 2.17119 s, avg_batch_cost: 2.40959 s, avg_samples: 12.5, ips: 5.18760 samples/s, eta: 6:50:19
[2024/07/27 13:04:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:04:12] ppocr INFO: epoch: [562/1500], global_step: 1686, lr: 0.001000, loss: 1.591481, loss_shrink_maps: 0.830983, loss_threshold_maps: 0.571502, loss_binary_maps: 0.164242, avg_reader_cost: 2.35258 s, avg_batch_cost: 2.60217 s, avg_samples: 12.5, ips: 4.80369 samples/s, eta: 6:49:52
[2024/07/27 13:04:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:04:22] ppocr INFO: epoch: [563/1500], global_step: 1689, lr: 0.001000, loss: 1.570407, loss_shrink_maps: 0.830983, loss_threshold_maps: 0.565437, loss_binary_maps: 0.164242, avg_reader_cost: 2.29906 s, avg_batch_cost: 2.69205 s, avg_samples: 12.5, ips: 4.64329 samples/s, eta: 6:49:27
[2024/07/27 13:04:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:04:30] ppocr INFO: epoch: [564/1500], global_step: 1690, lr: 0.001000, loss: 1.570407, loss_shrink_maps: 0.830983, loss_threshold_maps: 0.565437, loss_binary_maps: 0.164242, avg_reader_cost: 0.69067 s, avg_batch_cost: 0.79770 s, avg_samples: 4.8, ips: 6.01733 samples/s, eta: 6:49:17
[2024/07/27 13:04:32] ppocr INFO: epoch: [564/1500], global_step: 1692, lr: 0.001000, loss: 1.536950, loss_shrink_maps: 0.811144, loss_threshold_maps: 0.559358, loss_binary_maps: 0.161109, avg_reader_cost: 1.68757 s, avg_batch_cost: 1.83407 s, avg_samples: 7.7, ips: 4.19830 samples/s, eta: 6:49:01
[2024/07/27 13:04:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:04:42] ppocr INFO: epoch: [565/1500], global_step: 1695, lr: 0.001000, loss: 1.497245, loss_shrink_maps: 0.796851, loss_threshold_maps: 0.544197, loss_binary_maps: 0.158071, avg_reader_cost: 2.25013 s, avg_batch_cost: 2.65124 s, avg_samples: 12.5, ips: 4.71477 samples/s, eta: 6:48:35
[2024/07/27 13:04:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:04:51] ppocr INFO: epoch: [566/1500], global_step: 1698, lr: 0.001000, loss: 1.497245, loss_shrink_maps: 0.793811, loss_threshold_maps: 0.541731, loss_binary_maps: 0.157680, avg_reader_cost: 2.21902 s, avg_batch_cost: 2.56581 s, avg_samples: 12.5, ips: 4.87175 samples/s, eta: 6:48:08
[2024/07/27 13:04:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:05:01] ppocr INFO: epoch: [567/1500], global_step: 1700, lr: 0.001000, loss: 1.497245, loss_shrink_maps: 0.793811, loss_threshold_maps: 0.550290, loss_binary_maps: 0.157680, avg_reader_cost: 1.47055 s, avg_batch_cost: 1.65304 s, avg_samples: 9.6, ips: 5.80748 samples/s, eta: 6:47:49
[2024/07/27 13:05:01] ppocr INFO: epoch: [567/1500], global_step: 1701, lr: 0.001000, loss: 1.514227, loss_shrink_maps: 0.796851, loss_threshold_maps: 0.556494, loss_binary_maps: 0.157680, avg_reader_cost: 0.87251 s, avg_batch_cost: 0.92833 s, avg_samples: 2.9, ips: 3.12388 samples/s, eta: 6:47:41
[2024/07/27 13:05:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:05:11] ppocr INFO: epoch: [568/1500], global_step: 1704, lr: 0.001000, loss: 1.490224, loss_shrink_maps: 0.790185, loss_threshold_maps: 0.550290, loss_binary_maps: 0.156839, avg_reader_cost: 2.44631 s, avg_batch_cost: 2.70472 s, avg_samples: 12.5, ips: 4.62156 samples/s, eta: 6:47:16
[2024/07/27 13:05:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:05:21] ppocr INFO: epoch: [569/1500], global_step: 1707, lr: 0.001000, loss: 1.479343, loss_shrink_maps: 0.767636, loss_threshold_maps: 0.547066, loss_binary_maps: 0.152135, avg_reader_cost: 2.27027 s, avg_batch_cost: 2.50393 s, avg_samples: 12.5, ips: 4.99215 samples/s, eta: 6:46:48
[2024/07/27 13:05:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:05:30] ppocr INFO: epoch: [570/1500], global_step: 1710, lr: 0.001000, loss: 1.440588, loss_shrink_maps: 0.751882, loss_threshold_maps: 0.536310, loss_binary_maps: 0.149079, avg_reader_cost: 2.15453 s, avg_batch_cost: 2.46958 s, avg_samples: 12.5, ips: 5.06159 samples/s, eta: 6:46:20
[2024/07/27 13:05:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:05:39] ppocr INFO: epoch: [571/1500], global_step: 1713, lr: 0.001000, loss: 1.463827, loss_shrink_maps: 0.755625, loss_threshold_maps: 0.542165, loss_binary_maps: 0.149632, avg_reader_cost: 2.02058 s, avg_batch_cost: 2.27111 s, avg_samples: 12.5, ips: 5.50392 samples/s, eta: 6:45:48
[2024/07/27 13:05:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:05:49] ppocr INFO: epoch: [572/1500], global_step: 1716, lr: 0.001000, loss: 1.479343, loss_shrink_maps: 0.767636, loss_threshold_maps: 0.547066, loss_binary_maps: 0.152135, avg_reader_cost: 2.25577 s, avg_batch_cost: 2.49757 s, avg_samples: 12.5, ips: 5.00486 samples/s, eta: 6:45:19
[2024/07/27 13:05:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:05:59] ppocr INFO: epoch: [573/1500], global_step: 1719, lr: 0.001000, loss: 1.424040, loss_shrink_maps: 0.749160, loss_threshold_maps: 0.532437, loss_binary_maps: 0.149021, avg_reader_cost: 2.30703 s, avg_batch_cost: 2.55132 s, avg_samples: 12.5, ips: 4.89943 samples/s, eta: 6:44:52
[2024/07/27 13:05:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:06:07] ppocr INFO: epoch: [574/1500], global_step: 1720, lr: 0.001000, loss: 1.424040, loss_shrink_maps: 0.749160, loss_threshold_maps: 0.532437, loss_binary_maps: 0.149021, avg_reader_cost: 0.56461 s, avg_batch_cost: 0.83413 s, avg_samples: 4.8, ips: 5.75452 samples/s, eta: 6:44:43
[2024/07/27 13:06:09] ppocr INFO: epoch: [574/1500], global_step: 1722, lr: 0.001000, loss: 1.424040, loss_shrink_maps: 0.749160, loss_threshold_maps: 0.532437, loss_binary_maps: 0.149021, avg_reader_cost: 1.76043 s, avg_batch_cost: 1.90799 s, avg_samples: 7.7, ips: 4.03567 samples/s, eta: 6:44:28
[2024/07/27 13:06:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:06:18] ppocr INFO: epoch: [575/1500], global_step: 1725, lr: 0.001000, loss: 1.388718, loss_shrink_maps: 0.725460, loss_threshold_maps: 0.532437, loss_binary_maps: 0.144174, avg_reader_cost: 2.18579 s, avg_batch_cost: 2.51790 s, avg_samples: 12.5, ips: 4.96445 samples/s, eta: 6:44:00
[2024/07/27 13:06:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:06:28] ppocr INFO: epoch: [576/1500], global_step: 1728, lr: 0.001000, loss: 1.377297, loss_shrink_maps: 0.709069, loss_threshold_maps: 0.529236, loss_binary_maps: 0.140527, avg_reader_cost: 2.25466 s, avg_batch_cost: 2.48894 s, avg_samples: 12.5, ips: 5.02221 samples/s, eta: 6:43:32
[2024/07/27 13:06:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:06:37] ppocr INFO: epoch: [577/1500], global_step: 1730, lr: 0.001000, loss: 1.404280, loss_shrink_maps: 0.728842, loss_threshold_maps: 0.534116, loss_binary_maps: 0.144428, avg_reader_cost: 1.49449 s, avg_batch_cost: 1.69113 s, avg_samples: 9.6, ips: 5.67669 samples/s, eta: 6:43:13
[2024/07/27 13:06:38] ppocr INFO: epoch: [577/1500], global_step: 1731, lr: 0.001000, loss: 1.377297, loss_shrink_maps: 0.709069, loss_threshold_maps: 0.527940, loss_binary_maps: 0.140527, avg_reader_cost: 0.89211 s, avg_batch_cost: 0.94719 s, avg_samples: 2.9, ips: 3.06169 samples/s, eta: 6:43:06
[2024/07/27 13:06:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:06:48] ppocr INFO: epoch: [578/1500], global_step: 1734, lr: 0.001000, loss: 1.418510, loss_shrink_maps: 0.730555, loss_threshold_maps: 0.537727, loss_binary_maps: 0.144842, avg_reader_cost: 2.35411 s, avg_batch_cost: 2.61493 s, avg_samples: 12.5, ips: 4.78024 samples/s, eta: 6:42:40
[2024/07/27 13:06:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:06:58] ppocr INFO: epoch: [579/1500], global_step: 1737, lr: 0.001000, loss: 1.404280, loss_shrink_maps: 0.717441, loss_threshold_maps: 0.534116, loss_binary_maps: 0.142135, avg_reader_cost: 2.30791 s, avg_batch_cost: 2.72408 s, avg_samples: 12.5, ips: 4.58870 samples/s, eta: 6:42:15
[2024/07/27 13:06:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:07:07] ppocr INFO: epoch: [580/1500], global_step: 1740, lr: 0.001000, loss: 1.347242, loss_shrink_maps: 0.675901, loss_threshold_maps: 0.527940, loss_binary_maps: 0.134000, avg_reader_cost: 2.18603 s, avg_batch_cost: 2.55106 s, avg_samples: 12.5, ips: 4.89992 samples/s, eta: 6:41:48

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:50,  9.84it/s]
eval model::   1%|          | 4/500 [00:00<00:29, 16.64it/s]
eval model::   1%|          | 6/500 [00:00<00:28, 17.32it/s]
eval model::   2%|▏         | 8/500 [00:00<00:27, 18.14it/s]
eval model::   2%|▏         | 11/500 [00:00<00:28, 17.32it/s]
eval model::   3%|▎         | 13/500 [00:00<00:27, 17.72it/s]
eval model::   3%|▎         | 15/500 [00:00<00:27, 17.50it/s]
eval model::   4%|▍         | 19/500 [00:01<00:24, 19.75it/s]
eval model::   4%|▍         | 21/500 [00:01<00:24, 19.36it/s]
eval model::   5%|▍         | 24/500 [00:01<00:22, 21.14it/s]
eval model::   5%|▌         | 27/500 [00:01<00:21, 21.57it/s]
eval model::   6%|▌         | 30/500 [00:01<00:21, 21.47it/s]
eval model::   7%|▋         | 33/500 [00:01<00:23, 19.61it/s]
eval model::   7%|▋         | 35/500 [00:01<00:24, 18.81it/s]
eval model::   8%|▊         | 38/500 [00:01<00:23, 19.79it/s]
eval model::   8%|▊         | 40/500 [00:02<00:24, 18.58it/s]
eval model::   8%|▊         | 42/500 [00:02<00:24, 18.32it/s]
eval model::   9%|▉         | 45/500 [00:02<00:22, 20.02it/s]
eval model::  10%|▉         | 48/500 [00:02<00:27, 16.65it/s]
eval model::  10%|█         | 51/500 [00:02<00:25, 17.36it/s]
eval model::  11%|█         | 54/500 [00:02<00:24, 18.19it/s]
eval model::  11%|█         | 56/500 [00:03<00:24, 17.89it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:25, 17.22it/s]
eval model::  12%|█▏        | 60/500 [00:03<00:24, 17.64it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:30, 14.16it/s]
eval model::  13%|█▎        | 64/500 [00:03<00:28, 15.19it/s]
eval model::  14%|█▎        | 68/500 [00:03<00:21, 20.06it/s]
eval model::  14%|█▍        | 71/500 [00:03<00:20, 21.23it/s]
eval model::  15%|█▍        | 74/500 [00:03<00:21, 19.97it/s]
eval model::  15%|█▌        | 77/500 [00:04<00:21, 20.09it/s]
eval model::  16%|█▌        | 80/500 [00:04<00:18, 22.20it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:17, 23.51it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:18, 22.14it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:21, 19.15it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:20, 19.52it/s]
eval model::  19%|█▉        | 97/500 [00:05<00:18, 22.15it/s]
eval model::  20%|██        | 100/500 [00:05<00:18, 21.69it/s]
eval model::  21%|██        | 103/500 [00:05<00:18, 20.97it/s]
eval model::  21%|██        | 106/500 [00:05<00:17, 22.79it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:17, 22.22it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:18, 21.31it/s]
eval model::  23%|██▎       | 115/500 [00:05<00:17, 21.96it/s]
eval model::  24%|██▎       | 118/500 [00:05<00:16, 23.00it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:18, 20.57it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:17, 20.97it/s]
eval model::  25%|██▌       | 127/500 [00:06<00:17, 21.74it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:19, 19.39it/s]
eval model::  27%|██▋       | 133/500 [00:06<00:18, 19.75it/s]
eval model::  27%|██▋       | 136/500 [00:06<00:17, 21.06it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:18, 20.03it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:16, 21.32it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:16, 20.97it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:18, 19.19it/s]
eval model::  30%|███       | 151/500 [00:07<00:21, 16.58it/s]
eval model::  31%|███       | 155/500 [00:07<00:16, 20.48it/s]
eval model::  32%|███▏      | 158/500 [00:07<00:15, 21.83it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:21, 16.07it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:20, 16.33it/s]
eval model::  33%|███▎      | 165/500 [00:08<00:19, 17.02it/s]
eval model::  34%|███▎      | 168/500 [00:08<00:18, 18.39it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:18, 17.82it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:20, 16.12it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:19, 16.58it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:18, 17.41it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:19, 16.40it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:18, 16.94it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:16, 18.88it/s]
eval model::  38%|███▊      | 188/500 [00:09<00:17, 17.91it/s]
eval model::  38%|███▊      | 190/500 [00:09<00:17, 18.14it/s]
eval model::  39%|███▊      | 193/500 [00:10<00:14, 20.57it/s]
eval model::  39%|███▉      | 196/500 [00:10<00:16, 18.96it/s]
eval model::  40%|███▉      | 199/500 [00:10<00:14, 20.23it/s]
eval model::  40%|████      | 202/500 [00:10<00:13, 21.82it/s]
eval model::  41%|████      | 205/500 [00:10<00:20, 14.13it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:20, 14.59it/s]
eval model::  42%|████▏     | 209/500 [00:11<00:20, 14.45it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:20, 14.05it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:19, 14.61it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:22, 12.75it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:22, 12.45it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:18, 15.00it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:18, 14.77it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:15, 17.61it/s]
eval model::  46%|████▌     | 229/500 [00:12<00:13, 19.64it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:11, 22.48it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:12, 21.33it/s]
eval model::  48%|████▊     | 240/500 [00:12<00:10, 23.92it/s]
eval model::  49%|████▊     | 243/500 [00:12<00:12, 20.29it/s]
eval model::  49%|████▉     | 246/500 [00:13<00:11, 21.24it/s]
eval model::  50%|████▉     | 249/500 [00:13<00:12, 20.80it/s]
eval model::  50%|█████     | 252/500 [00:13<00:11, 22.20it/s]
eval model::  51%|█████     | 255/500 [00:13<00:10, 23.11it/s]
eval model::  52%|█████▏    | 258/500 [00:13<00:10, 22.51it/s]
eval model::  52%|█████▏    | 261/500 [00:13<00:09, 24.03it/s]
eval model::  53%|█████▎    | 264/500 [00:13<00:10, 22.80it/s]
eval model::  53%|█████▎    | 267/500 [00:13<00:10, 21.45it/s]
eval model::  54%|█████▍    | 270/500 [00:14<00:11, 19.83it/s]
eval model::  55%|█████▍    | 273/500 [00:14<00:10, 20.68it/s]
eval model::  55%|█████▌    | 276/500 [00:14<00:11, 18.83it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:11, 19.06it/s]
eval model::  56%|█████▋    | 282/500 [00:14<00:11, 19.43it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:17, 12.24it/s]
eval model::  58%|█████▊    | 288/500 [00:15<00:14, 14.75it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:12, 17.08it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:12, 16.45it/s]
eval model::  59%|█████▉    | 296/500 [00:15<00:14, 14.47it/s]
eval model::  60%|█████▉    | 299/500 [00:15<00:11, 16.75it/s]
eval model::  60%|██████    | 301/500 [00:16<00:13, 15.09it/s]
eval model::  61%|██████    | 304/500 [00:16<00:12, 16.06it/s]
eval model::  61%|██████▏   | 307/500 [00:16<00:10, 18.66it/s]
eval model::  62%|██████▏   | 310/500 [00:16<00:09, 20.76it/s]
eval model::  63%|██████▎   | 313/500 [00:16<00:08, 22.28it/s]
eval model::  63%|██████▎   | 316/500 [00:16<00:08, 22.64it/s]
eval model::  64%|██████▍   | 319/500 [00:16<00:08, 21.41it/s]
eval model::  64%|██████▍   | 322/500 [00:17<00:09, 19.64it/s]
eval model::  65%|██████▌   | 325/500 [00:17<00:08, 19.50it/s]
eval model::  66%|██████▌   | 328/500 [00:17<00:09, 18.60it/s]
eval model::  66%|██████▌   | 331/500 [00:17<00:08, 19.12it/s]
eval model::  67%|██████▋   | 334/500 [00:17<00:07, 20.80it/s]
eval model::  67%|██████▋   | 337/500 [00:17<00:08, 19.32it/s]
eval model::  68%|██████▊   | 340/500 [00:18<00:10, 15.37it/s]
eval model::  69%|██████▊   | 343/500 [00:18<00:09, 17.07it/s]
eval model::  69%|██████▉   | 346/500 [00:18<00:08, 18.67it/s]
eval model::  70%|██████▉   | 349/500 [00:18<00:07, 20.14it/s]
eval model::  70%|███████   | 352/500 [00:18<00:06, 21.47it/s]
eval model::  71%|███████   | 355/500 [00:18<00:06, 21.31it/s]
eval model::  72%|███████▏  | 358/500 [00:18<00:06, 20.57it/s]
eval model::  72%|███████▏  | 361/500 [00:19<00:07, 17.87it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:07, 17.60it/s]
eval model::  73%|███████▎  | 367/500 [00:19<00:07, 18.42it/s]
eval model::  74%|███████▍  | 370/500 [00:19<00:06, 19.40it/s]
eval model::  74%|███████▍  | 372/500 [00:19<00:07, 17.19it/s]
eval model::  75%|███████▌  | 375/500 [00:19<00:06, 18.48it/s]
eval model::  76%|███████▌  | 378/500 [00:20<00:06, 20.28it/s]
eval model::  76%|███████▌  | 381/500 [00:20<00:06, 18.76it/s]
eval model::  77%|███████▋  | 384/500 [00:20<00:05, 19.86it/s]
eval model::  77%|███████▋  | 387/500 [00:20<00:08, 13.22it/s]
eval model::  78%|███████▊  | 390/500 [00:20<00:07, 15.39it/s]
eval model::  78%|███████▊  | 392/500 [00:21<00:06, 16.13it/s]
eval model::  79%|███████▉  | 394/500 [00:21<00:06, 16.86it/s]
eval model::  79%|███████▉  | 397/500 [00:21<00:05, 19.24it/s]
eval model::  80%|████████  | 400/500 [00:21<00:05, 19.74it/s]
eval model::  81%|████████  | 403/500 [00:21<00:04, 20.65it/s]
eval model::  81%|████████  | 406/500 [00:21<00:04, 21.33it/s]
eval model::  82%|████████▏ | 409/500 [00:21<00:04, 22.40it/s]
eval model::  82%|████████▏ | 412/500 [00:21<00:03, 24.07it/s]
eval model::  83%|████████▎ | 415/500 [00:22<00:03, 22.86it/s]
eval model::  84%|████████▎ | 418/500 [00:22<00:03, 20.66it/s]
eval model::  84%|████████▍ | 421/500 [00:22<00:04, 16.19it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:04, 15.78it/s]
eval model::  85%|████████▌ | 426/500 [00:22<00:04, 15.19it/s]
eval model::  86%|████████▌ | 429/500 [00:22<00:03, 17.84it/s]
eval model::  86%|████████▌ | 431/500 [00:23<00:03, 18.09it/s]
eval model::  87%|████████▋ | 435/500 [00:23<00:03, 21.12it/s]
eval model::  88%|████████▊ | 439/500 [00:23<00:02, 23.69it/s]
eval model::  88%|████████▊ | 442/500 [00:23<00:02, 23.40it/s]
eval model::  89%|████████▉ | 445/500 [00:23<00:02, 23.29it/s]
eval model::  90%|████████▉ | 448/500 [00:23<00:02, 21.54it/s]
eval model::  90%|█████████ | 451/500 [00:23<00:02, 20.58it/s]
eval model::  91%|█████████ | 454/500 [00:24<00:02, 21.67it/s]
eval model::  91%|█████████▏| 457/500 [00:24<00:01, 22.51it/s]
eval model::  92%|█████████▏| 460/500 [00:24<00:01, 22.26it/s]
eval model::  93%|█████████▎| 463/500 [00:24<00:02, 17.53it/s]
eval model::  93%|█████████▎| 465/500 [00:24<00:01, 17.76it/s]
eval model::  94%|█████████▎| 468/500 [00:24<00:01, 19.86it/s]
eval model::  94%|█████████▍| 471/500 [00:24<00:01, 21.00it/s]
eval model::  95%|█████████▍| 474/500 [00:25<00:01, 20.21it/s]
eval model::  95%|█████████▌| 477/500 [00:25<00:01, 20.59it/s]
eval model::  96%|█████████▌| 480/500 [00:25<00:00, 21.66it/s]
eval model::  97%|█████████▋| 483/500 [00:25<00:00, 22.14it/s]
eval model::  97%|█████████▋| 486/500 [00:25<00:00, 21.30it/s]
eval model::  98%|█████████▊| 489/500 [00:25<00:00, 22.15it/s]
eval model::  98%|█████████▊| 492/500 [00:25<00:00, 19.98it/s]
eval model::  99%|█████████▉| 495/500 [00:26<00:00, 21.35it/s]
eval model:: 100%|█████████▉| 498/500 [00:26<00:00, 22.83it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 19.09it/s]
[2024/07/27 13:07:33] ppocr INFO: cur metric, precision: 0.7427792915531335, recall: 0.6562349542609534, hmean: 0.6968302658486708, fps: 44.61269678926526
[2024/07/27 13:07:33] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/27 13:07:33] ppocr INFO: best metric, hmean: 0.6968302658486708, precision: 0.7427792915531335, recall: 0.6562349542609534, fps: 44.61269678926526, best_epoch: 580
[2024/07/27 13:07:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:07:43] ppocr INFO: epoch: [581/1500], global_step: 1743, lr: 0.001000, loss: 1.326809, loss_shrink_maps: 0.660677, loss_threshold_maps: 0.522900, loss_binary_maps: 0.131300, avg_reader_cost: 2.33847 s, avg_batch_cost: 2.61705 s, avg_samples: 12.5, ips: 4.77638 samples/s, eta: 6:41:21
[2024/07/27 13:07:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:07:53] ppocr INFO: epoch: [582/1500], global_step: 1746, lr: 0.001000, loss: 1.327924, loss_shrink_maps: 0.685105, loss_threshold_maps: 0.519720, loss_binary_maps: 0.135724, avg_reader_cost: 2.18888 s, avg_batch_cost: 2.54672 s, avg_samples: 12.5, ips: 4.90828 samples/s, eta: 6:40:54
[2024/07/27 13:07:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:08:03] ppocr INFO: epoch: [583/1500], global_step: 1749, lr: 0.001000, loss: 1.327924, loss_shrink_maps: 0.685105, loss_threshold_maps: 0.519720, loss_binary_maps: 0.135724, avg_reader_cost: 2.45767 s, avg_batch_cost: 2.72721 s, avg_samples: 12.5, ips: 4.58343 samples/s, eta: 6:40:30
[2024/07/27 13:08:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:08:12] ppocr INFO: epoch: [584/1500], global_step: 1750, lr: 0.001000, loss: 1.379115, loss_shrink_maps: 0.712935, loss_threshold_maps: 0.522900, loss_binary_maps: 0.141432, avg_reader_cost: 0.69669 s, avg_batch_cost: 0.81037 s, avg_samples: 4.8, ips: 5.92325 samples/s, eta: 6:40:20
[2024/07/27 13:08:13] ppocr INFO: epoch: [584/1500], global_step: 1752, lr: 0.001000, loss: 1.363547, loss_shrink_maps: 0.712935, loss_threshold_maps: 0.522900, loss_binary_maps: 0.141432, avg_reader_cost: 1.71329 s, avg_batch_cost: 1.86066 s, avg_samples: 7.7, ips: 4.13831 samples/s, eta: 6:40:04
[2024/07/27 13:08:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:08:23] ppocr INFO: epoch: [585/1500], global_step: 1755, lr: 0.001000, loss: 1.363547, loss_shrink_maps: 0.713862, loss_threshold_maps: 0.522900, loss_binary_maps: 0.141953, avg_reader_cost: 2.23822 s, avg_batch_cost: 2.63711 s, avg_samples: 12.5, ips: 4.74004 samples/s, eta: 6:39:38
[2024/07/27 13:08:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:08:33] ppocr INFO: epoch: [586/1500], global_step: 1758, lr: 0.001000, loss: 1.397437, loss_shrink_maps: 0.736987, loss_threshold_maps: 0.524929, loss_binary_maps: 0.146009, avg_reader_cost: 2.18790 s, avg_batch_cost: 2.51296 s, avg_samples: 12.5, ips: 4.97421 samples/s, eta: 6:39:10
[2024/07/27 13:08:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:08:42] ppocr INFO: epoch: [587/1500], global_step: 1760, lr: 0.001000, loss: 1.440918, loss_shrink_maps: 0.756047, loss_threshold_maps: 0.530698, loss_binary_maps: 0.149763, avg_reader_cost: 1.37322 s, avg_batch_cost: 1.71398 s, avg_samples: 9.6, ips: 5.60101 samples/s, eta: 6:38:52
[2024/07/27 13:08:43] ppocr INFO: epoch: [587/1500], global_step: 1761, lr: 0.001000, loss: 1.440918, loss_shrink_maps: 0.756047, loss_threshold_maps: 0.530698, loss_binary_maps: 0.149763, avg_reader_cost: 0.90335 s, avg_batch_cost: 0.95846 s, avg_samples: 2.9, ips: 3.02570 samples/s, eta: 6:38:45
[2024/07/27 13:08:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:08:53] ppocr INFO: epoch: [588/1500], global_step: 1764, lr: 0.001000, loss: 1.431991, loss_shrink_maps: 0.749636, loss_threshold_maps: 0.530698, loss_binary_maps: 0.148609, avg_reader_cost: 2.42041 s, avg_batch_cost: 2.67389 s, avg_samples: 12.5, ips: 4.67484 samples/s, eta: 6:38:19
[2024/07/27 13:08:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:09:03] ppocr INFO: epoch: [589/1500], global_step: 1767, lr: 0.001000, loss: 1.440918, loss_shrink_maps: 0.751332, loss_threshold_maps: 0.532041, loss_binary_maps: 0.149182, avg_reader_cost: 2.21028 s, avg_batch_cost: 2.57059 s, avg_samples: 12.5, ips: 4.86269 samples/s, eta: 6:37:53
[2024/07/27 13:09:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:09:12] ppocr INFO: epoch: [590/1500], global_step: 1770, lr: 0.001000, loss: 1.410450, loss_shrink_maps: 0.728241, loss_threshold_maps: 0.529051, loss_binary_maps: 0.144316, avg_reader_cost: 2.09878 s, avg_batch_cost: 2.40937 s, avg_samples: 12.5, ips: 5.18807 samples/s, eta: 6:37:23
[2024/07/27 13:09:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:09:22] ppocr INFO: epoch: [591/1500], global_step: 1773, lr: 0.001000, loss: 1.437944, loss_shrink_maps: 0.742586, loss_threshold_maps: 0.532041, loss_binary_maps: 0.147489, avg_reader_cost: 2.25165 s, avg_batch_cost: 2.61324 s, avg_samples: 12.5, ips: 4.78333 samples/s, eta: 6:36:57
[2024/07/27 13:09:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:09:32] ppocr INFO: epoch: [592/1500], global_step: 1776, lr: 0.001000, loss: 1.428588, loss_shrink_maps: 0.731674, loss_threshold_maps: 0.532041, loss_binary_maps: 0.145356, avg_reader_cost: 2.36235 s, avg_batch_cost: 2.60027 s, avg_samples: 12.5, ips: 4.80720 samples/s, eta: 6:36:30
[2024/07/27 13:09:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:09:41] ppocr INFO: epoch: [593/1500], global_step: 1779, lr: 0.001000, loss: 1.393822, loss_shrink_maps: 0.699207, loss_threshold_maps: 0.530395, loss_binary_maps: 0.139020, avg_reader_cost: 2.15576 s, avg_batch_cost: 2.48163 s, avg_samples: 12.5, ips: 5.03702 samples/s, eta: 6:36:02
[2024/07/27 13:09:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:09:49] ppocr INFO: epoch: [594/1500], global_step: 1780, lr: 0.001000, loss: 1.393822, loss_shrink_maps: 0.699207, loss_threshold_maps: 0.537447, loss_binary_maps: 0.139020, avg_reader_cost: 0.66666 s, avg_batch_cost: 0.75864 s, avg_samples: 4.8, ips: 6.32710 samples/s, eta: 6:35:51
[2024/07/27 13:09:51] ppocr INFO: epoch: [594/1500], global_step: 1782, lr: 0.001000, loss: 1.393822, loss_shrink_maps: 0.722590, loss_threshold_maps: 0.537447, loss_binary_maps: 0.142905, avg_reader_cost: 1.60952 s, avg_batch_cost: 1.75637 s, avg_samples: 7.7, ips: 4.38404 samples/s, eta: 6:35:34
[2024/07/27 13:09:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:10:01] ppocr INFO: epoch: [595/1500], global_step: 1785, lr: 0.001000, loss: 1.393822, loss_shrink_maps: 0.727918, loss_threshold_maps: 0.537447, loss_binary_maps: 0.144089, avg_reader_cost: 2.40136 s, avg_batch_cost: 2.63872 s, avg_samples: 12.5, ips: 4.73714 samples/s, eta: 6:35:08
[2024/07/27 13:10:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:10:10] ppocr INFO: epoch: [596/1500], global_step: 1788, lr: 0.001000, loss: 1.421108, loss_shrink_maps: 0.731836, loss_threshold_maps: 0.538692, loss_binary_maps: 0.145171, avg_reader_cost: 2.26871 s, avg_batch_cost: 2.62866 s, avg_samples: 12.5, ips: 4.75528 samples/s, eta: 6:34:42
[2024/07/27 13:10:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:10:20] ppocr INFO: epoch: [597/1500], global_step: 1790, lr: 0.001000, loss: 1.424402, loss_shrink_maps: 0.734455, loss_threshold_maps: 0.544080, loss_binary_maps: 0.145867, avg_reader_cost: 1.34853 s, avg_batch_cost: 1.66128 s, avg_samples: 9.6, ips: 5.77867 samples/s, eta: 6:34:23
[2024/07/27 13:10:20] ppocr INFO: epoch: [597/1500], global_step: 1791, lr: 0.001000, loss: 1.429998, loss_shrink_maps: 0.738912, loss_threshold_maps: 0.544080, loss_binary_maps: 0.146355, avg_reader_cost: 0.87677 s, avg_batch_cost: 0.93249 s, avg_samples: 2.9, ips: 3.10994 samples/s, eta: 6:34:16
[2024/07/27 13:10:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:10:29] ppocr INFO: epoch: [598/1500], global_step: 1794, lr: 0.001000, loss: 1.426240, loss_shrink_maps: 0.731405, loss_threshold_maps: 0.535687, loss_binary_maps: 0.145205, avg_reader_cost: 2.21032 s, avg_batch_cost: 2.44971 s, avg_samples: 12.5, ips: 5.10264 samples/s, eta: 6:33:47
[2024/07/27 13:10:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:10:39] ppocr INFO: epoch: [599/1500], global_step: 1797, lr: 0.001000, loss: 1.433617, loss_shrink_maps: 0.738277, loss_threshold_maps: 0.551411, loss_binary_maps: 0.146237, avg_reader_cost: 2.25779 s, avg_batch_cost: 2.62779 s, avg_samples: 12.5, ips: 4.75685 samples/s, eta: 6:33:21
[2024/07/27 13:10:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:10:49] ppocr INFO: epoch: [600/1500], global_step: 1800, lr: 0.001000, loss: 1.433617, loss_shrink_maps: 0.737884, loss_threshold_maps: 0.535687, loss_binary_maps: 0.146237, avg_reader_cost: 2.16061 s, avg_batch_cost: 2.47498 s, avg_samples: 12.5, ips: 5.05055 samples/s, eta: 6:32:52

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:58,  8.50it/s]
eval model::   1%|          | 3/500 [00:00<00:34, 14.22it/s]
eval model::   1%|          | 6/500 [00:00<00:25, 19.17it/s]
eval model::   2%|▏         | 9/500 [00:00<00:24, 20.44it/s]
eval model::   2%|▏         | 12/500 [00:00<00:24, 20.09it/s]
eval model::   3%|▎         | 15/500 [00:00<00:24, 19.65it/s]
eval model::   4%|▎         | 18/500 [00:00<00:22, 21.38it/s]
eval model::   4%|▍         | 21/500 [00:01<00:23, 20.56it/s]
eval model::   5%|▍         | 24/500 [00:01<00:21, 22.41it/s]
eval model::   5%|▌         | 27/500 [00:01<00:23, 20.31it/s]
eval model::   6%|▌         | 30/500 [00:01<00:23, 20.21it/s]
eval model::   7%|▋         | 33/500 [00:01<00:24, 19.43it/s]
eval model::   7%|▋         | 35/500 [00:01<00:24, 19.16it/s]
eval model::   8%|▊         | 38/500 [00:01<00:22, 20.46it/s]
eval model::   8%|▊         | 41/500 [00:02<00:23, 19.83it/s]
eval model::   9%|▉         | 44/500 [00:02<00:24, 18.60it/s]
eval model::   9%|▉         | 46/500 [00:02<00:29, 15.14it/s]
eval model::  10%|▉         | 49/500 [00:02<00:26, 17.31it/s]
eval model::  10%|█         | 52/500 [00:02<00:23, 19.32it/s]
eval model::  11%|█         | 55/500 [00:02<00:22, 20.00it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:25, 17.42it/s]
eval model::  12%|█▏        | 60/500 [00:03<00:24, 17.73it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:28, 15.44it/s]
eval model::  13%|█▎        | 64/500 [00:03<00:26, 16.34it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:22, 18.95it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:21, 20.27it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:20, 20.72it/s]
eval model::  15%|█▌        | 76/500 [00:03<00:19, 21.97it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:19, 21.64it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:18, 22.31it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:18, 21.94it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:21, 19.55it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:22, 18.04it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:22, 18.22it/s]
eval model::  19%|█▉        | 96/500 [00:04<00:19, 20.73it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:19, 20.79it/s]
eval model::  20%|██        | 102/500 [00:05<00:19, 20.63it/s]
eval model::  21%|██        | 105/500 [00:05<00:18, 21.89it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:20, 19.38it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:19, 19.65it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:18, 20.56it/s]
eval model::  23%|██▎       | 117/500 [00:06<00:19, 20.06it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:19, 19.57it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:17, 21.09it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:21, 17.05it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:19, 18.87it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:22, 16.50it/s]
eval model::  27%|██▋       | 135/500 [00:07<00:19, 18.61it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:18, 19.34it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:18, 19.72it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:17, 19.84it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:19, 18.44it/s]
eval model::  30%|███       | 150/500 [00:07<00:17, 20.37it/s]
eval model::  31%|███       | 153/500 [00:07<00:18, 19.17it/s]
eval model::  31%|███       | 156/500 [00:08<00:16, 20.97it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:16, 21.23it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:20, 16.54it/s]
eval model::  33%|███▎      | 165/500 [00:08<00:19, 17.55it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:19, 17.44it/s]
eval model::  34%|███▍      | 170/500 [00:08<00:16, 19.50it/s]
eval model::  35%|███▍      | 173/500 [00:08<00:17, 18.93it/s]
eval model::  35%|███▌      | 175/500 [00:09<00:20, 16.22it/s]
eval model::  36%|███▌      | 178/500 [00:09<00:17, 18.32it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:20, 15.34it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:17, 17.90it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:16, 19.53it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:16, 18.58it/s]
eval model::  38%|███▊      | 191/500 [00:10<00:16, 18.58it/s]
eval model::  39%|███▉      | 194/500 [00:10<00:14, 21.18it/s]
eval model::  39%|███▉      | 197/500 [00:10<00:15, 19.24it/s]
eval model::  40%|████      | 200/500 [00:10<00:14, 20.72it/s]
eval model::  41%|████      | 203/500 [00:10<00:14, 19.99it/s]
eval model::  41%|████      | 206/500 [00:11<00:23, 12.46it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:22, 13.11it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:22, 12.72it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:20, 13.81it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:21, 13.43it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:21, 13.30it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:17, 15.79it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:19, 14.09it/s]
eval model::  45%|████▌     | 225/500 [00:12<00:16, 16.19it/s]
eval model::  46%|████▌     | 228/500 [00:12<00:15, 17.94it/s]
eval model::  46%|████▌     | 231/500 [00:12<00:13, 20.33it/s]
eval model::  47%|████▋     | 234/500 [00:12<00:13, 19.75it/s]
eval model::  47%|████▋     | 237/500 [00:12<00:12, 21.09it/s]
eval model::  48%|████▊     | 240/500 [00:12<00:12, 21.53it/s]
eval model::  49%|████▊     | 243/500 [00:13<00:13, 18.77it/s]
eval model::  49%|████▉     | 246/500 [00:13<00:12, 21.16it/s]
eval model::  50%|████▉     | 249/500 [00:13<00:12, 20.10it/s]
eval model::  51%|█████     | 253/500 [00:13<00:10, 23.05it/s]
eval model::  51%|█████     | 256/500 [00:13<00:11, 21.84it/s]
eval model::  52%|█████▏    | 259/500 [00:13<00:11, 21.05it/s]
eval model::  52%|█████▏    | 262/500 [00:13<00:11, 20.38it/s]
eval model::  53%|█████▎    | 265/500 [00:14<00:12, 18.41it/s]
eval model::  54%|█████▎    | 268/500 [00:14<00:11, 19.67it/s]
eval model::  54%|█████▍    | 271/500 [00:14<00:11, 19.38it/s]
eval model::  55%|█████▍    | 274/500 [00:14<00:11, 19.94it/s]
eval model::  55%|█████▌    | 277/500 [00:14<00:12, 18.24it/s]
eval model::  56%|█████▌    | 280/500 [00:14<00:11, 19.75it/s]
eval model::  57%|█████▋    | 283/500 [00:15<00:10, 20.40it/s]
eval model::  57%|█████▋    | 286/500 [00:15<00:17, 12.36it/s]
eval model::  58%|█████▊    | 289/500 [00:15<00:14, 14.73it/s]
eval model::  58%|█████▊    | 292/500 [00:15<00:12, 16.58it/s]
eval model::  59%|█████▉    | 295/500 [00:16<00:14, 14.15it/s]
eval model::  60%|█████▉    | 299/500 [00:16<00:11, 17.82it/s]
eval model::  60%|██████    | 302/500 [00:16<00:11, 17.84it/s]
eval model::  61%|██████    | 305/500 [00:16<00:10, 18.76it/s]
eval model::  62%|██████▏   | 308/500 [00:16<00:09, 19.93it/s]
eval model::  62%|██████▏   | 311/500 [00:16<00:09, 20.58it/s]
eval model::  63%|██████▎   | 314/500 [00:16<00:09, 19.88it/s]
eval model::  63%|██████▎   | 317/500 [00:17<00:08, 20.57it/s]
eval model::  64%|██████▍   | 320/500 [00:17<00:08, 20.84it/s]
eval model::  65%|██████▍   | 323/500 [00:17<00:09, 18.76it/s]
eval model::  65%|██████▌   | 326/500 [00:17<00:08, 19.66it/s]
eval model::  66%|██████▌   | 329/500 [00:17<00:08, 19.10it/s]
eval model::  66%|██████▌   | 331/500 [00:17<00:09, 18.74it/s]
eval model::  67%|██████▋   | 334/500 [00:17<00:08, 20.28it/s]
eval model::  67%|██████▋   | 337/500 [00:18<00:08, 19.51it/s]
eval model::  68%|██████▊   | 339/500 [00:18<00:08, 19.39it/s]
eval model::  68%|██████▊   | 341/500 [00:18<00:10, 15.38it/s]
eval model::  69%|██████▉   | 344/500 [00:18<00:08, 17.81it/s]
eval model::  69%|██████▉   | 347/500 [00:18<00:08, 18.86it/s]
eval model::  70%|███████   | 350/500 [00:18<00:07, 20.20it/s]
eval model::  71%|███████   | 353/500 [00:18<00:06, 22.21it/s]
eval model::  71%|███████   | 356/500 [00:19<00:06, 21.57it/s]
eval model::  72%|███████▏  | 359/500 [00:19<00:06, 23.39it/s]
eval model::  72%|███████▏  | 362/500 [00:19<00:06, 20.88it/s]
eval model::  73%|███████▎  | 365/500 [00:19<00:06, 19.60it/s]
eval model::  74%|███████▎  | 368/500 [00:19<00:06, 20.50it/s]
eval model::  74%|███████▍  | 371/500 [00:19<00:06, 21.09it/s]
eval model::  75%|███████▍  | 374/500 [00:19<00:06, 20.64it/s]
eval model::  75%|███████▌  | 377/500 [00:20<00:06, 20.23it/s]
eval model::  76%|███████▌  | 380/500 [00:20<00:06, 19.17it/s]
eval model::  77%|███████▋  | 384/500 [00:20<00:05, 22.43it/s]
eval model::  77%|███████▋  | 387/500 [00:20<00:08, 13.99it/s]
eval model::  78%|███████▊  | 391/500 [00:20<00:06, 16.99it/s]
eval model::  79%|███████▉  | 394/500 [00:21<00:05, 18.27it/s]
eval model::  79%|███████▉  | 397/500 [00:21<00:05, 20.51it/s]
eval model::  80%|████████  | 400/500 [00:21<00:05, 19.54it/s]
eval model::  81%|████████  | 403/500 [00:21<00:04, 19.99it/s]
eval model::  81%|████████  | 406/500 [00:21<00:04, 19.76it/s]
eval model::  82%|████████▏ | 409/500 [00:21<00:04, 21.15it/s]
eval model::  82%|████████▏ | 412/500 [00:21<00:04, 21.20it/s]
eval model::  83%|████████▎ | 415/500 [00:22<00:04, 19.96it/s]
eval model::  84%|████████▎ | 418/500 [00:22<00:04, 19.95it/s]
eval model::  84%|████████▍ | 421/500 [00:22<00:05, 14.16it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:04, 16.19it/s]
eval model::  85%|████████▌ | 426/500 [00:22<00:04, 16.32it/s]
eval model::  86%|████████▌ | 430/500 [00:22<00:03, 19.99it/s]
eval model::  87%|████████▋ | 433/500 [00:23<00:03, 20.38it/s]
eval model::  87%|████████▋ | 436/500 [00:23<00:03, 21.31it/s]
eval model::  88%|████████▊ | 439/500 [00:23<00:02, 22.69it/s]
eval model::  88%|████████▊ | 442/500 [00:23<00:02, 23.57it/s]
eval model::  89%|████████▉ | 445/500 [00:23<00:02, 23.24it/s]
eval model::  90%|████████▉ | 448/500 [00:23<00:02, 22.21it/s]
eval model::  90%|█████████ | 451/500 [00:23<00:02, 21.69it/s]
eval model::  91%|█████████ | 454/500 [00:23<00:01, 23.35it/s]
eval model::  91%|█████████▏| 457/500 [00:24<00:01, 22.37it/s]
eval model::  92%|█████████▏| 460/500 [00:24<00:01, 20.30it/s]
eval model::  93%|█████████▎| 463/500 [00:24<00:02, 16.86it/s]
eval model::  93%|█████████▎| 465/500 [00:24<00:02, 16.08it/s]
eval model::  93%|█████████▎| 467/500 [00:24<00:01, 16.81it/s]
eval model::  94%|█████████▍| 471/500 [00:24<00:01, 20.29it/s]
eval model::  95%|█████████▍| 474/500 [00:25<00:01, 18.96it/s]
eval model::  95%|█████████▌| 477/500 [00:25<00:01, 19.54it/s]
eval model::  96%|█████████▌| 480/500 [00:25<00:00, 20.34it/s]
eval model::  97%|█████████▋| 483/500 [00:25<00:00, 20.73it/s]
eval model::  97%|█████████▋| 486/500 [00:25<00:00, 19.15it/s]
eval model::  98%|█████████▊| 489/500 [00:25<00:00, 19.87it/s]
eval model::  98%|█████████▊| 492/500 [00:26<00:00, 19.57it/s]
eval model::  99%|█████████▉| 495/500 [00:26<00:00, 20.31it/s]
eval model:: 100%|█████████▉| 498/500 [00:26<00:00, 22.14it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.98it/s]
[2024/07/27 13:11:15] ppocr INFO: cur metric, precision: 0.7212220403709766, recall: 0.6364949446316803, hmean: 0.6762148337595908, fps: 44.76344214159595
[2024/07/27 13:11:15] ppocr INFO: best metric, hmean: 0.6968302658486708, precision: 0.7427792915531335, recall: 0.6562349542609534, fps: 44.61269678926526, best_epoch: 580
[2024/07/27 13:11:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:11:25] ppocr INFO: epoch: [601/1500], global_step: 1803, lr: 0.001000, loss: 1.426240, loss_shrink_maps: 0.737884, loss_threshold_maps: 0.535687, loss_binary_maps: 0.146237, avg_reader_cost: 2.38584 s, avg_batch_cost: 2.67071 s, avg_samples: 12.5, ips: 4.68041 samples/s, eta: 6:32:27
[2024/07/27 13:11:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:11:35] ppocr INFO: epoch: [602/1500], global_step: 1806, lr: 0.001000, loss: 1.394702, loss_shrink_maps: 0.723318, loss_threshold_maps: 0.527407, loss_binary_maps: 0.143910, avg_reader_cost: 2.22800 s, avg_batch_cost: 2.61162 s, avg_samples: 12.5, ips: 4.78631 samples/s, eta: 6:32:01
[2024/07/27 13:11:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:11:45] ppocr INFO: epoch: [603/1500], global_step: 1809, lr: 0.001000, loss: 1.420798, loss_shrink_maps: 0.728066, loss_threshold_maps: 0.544744, loss_binary_maps: 0.145020, avg_reader_cost: 2.29982 s, avg_batch_cost: 2.71194 s, avg_samples: 12.5, ips: 4.60924 samples/s, eta: 6:31:36
[2024/07/27 13:11:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:11:53] ppocr INFO: epoch: [604/1500], global_step: 1810, lr: 0.001000, loss: 1.398098, loss_shrink_maps: 0.725625, loss_threshold_maps: 0.536464, loss_binary_maps: 0.143767, avg_reader_cost: 0.65408 s, avg_batch_cost: 0.76752 s, avg_samples: 4.8, ips: 6.25387 samples/s, eta: 6:31:26
[2024/07/27 13:11:55] ppocr INFO: epoch: [604/1500], global_step: 1812, lr: 0.001000, loss: 1.398098, loss_shrink_maps: 0.725625, loss_threshold_maps: 0.548421, loss_binary_maps: 0.143767, avg_reader_cost: 1.62726 s, avg_batch_cost: 1.77490 s, avg_samples: 7.7, ips: 4.33828 samples/s, eta: 6:31:08
[2024/07/27 13:11:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:12:05] ppocr INFO: epoch: [605/1500], global_step: 1815, lr: 0.001000, loss: 1.365296, loss_shrink_maps: 0.699338, loss_threshold_maps: 0.530216, loss_binary_maps: 0.139095, avg_reader_cost: 2.27962 s, avg_batch_cost: 2.66391 s, avg_samples: 12.5, ips: 4.69235 samples/s, eta: 6:30:43
[2024/07/27 13:12:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:12:15] ppocr INFO: epoch: [606/1500], global_step: 1818, lr: 0.001000, loss: 1.365296, loss_shrink_maps: 0.699338, loss_threshold_maps: 0.538375, loss_binary_maps: 0.139095, avg_reader_cost: 2.23890 s, avg_batch_cost: 2.62893 s, avg_samples: 12.5, ips: 4.75479 samples/s, eta: 6:30:17
[2024/07/27 13:12:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:12:24] ppocr INFO: epoch: [607/1500], global_step: 1820, lr: 0.001000, loss: 1.376554, loss_shrink_maps: 0.710763, loss_threshold_maps: 0.538375, loss_binary_maps: 0.141653, avg_reader_cost: 1.38100 s, avg_batch_cost: 1.71928 s, avg_samples: 9.6, ips: 5.58373 samples/s, eta: 6:29:59
[2024/07/27 13:12:24] ppocr INFO: epoch: [607/1500], global_step: 1821, lr: 0.001000, loss: 1.376554, loss_shrink_maps: 0.710763, loss_threshold_maps: 0.538375, loss_binary_maps: 0.141653, avg_reader_cost: 0.90560 s, avg_batch_cost: 0.96164 s, avg_samples: 2.9, ips: 3.01568 samples/s, eta: 6:29:52
[2024/07/27 13:12:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:12:34] ppocr INFO: epoch: [608/1500], global_step: 1824, lr: 0.001000, loss: 1.385684, loss_shrink_maps: 0.718488, loss_threshold_maps: 0.542167, loss_binary_maps: 0.142415, avg_reader_cost: 2.36739 s, avg_batch_cost: 2.61648 s, avg_samples: 12.5, ips: 4.77741 samples/s, eta: 6:29:25
[2024/07/27 13:12:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:12:44] ppocr INFO: epoch: [609/1500], global_step: 1827, lr: 0.001000, loss: 1.407227, loss_shrink_maps: 0.723759, loss_threshold_maps: 0.546996, loss_binary_maps: 0.143301, avg_reader_cost: 2.33466 s, avg_batch_cost: 2.57818 s, avg_samples: 12.5, ips: 4.84838 samples/s, eta: 6:28:59
[2024/07/27 13:12:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:12:53] ppocr INFO: epoch: [610/1500], global_step: 1830, lr: 0.001000, loss: 1.450992, loss_shrink_maps: 0.721734, loss_threshold_maps: 0.550359, loss_binary_maps: 0.143459, avg_reader_cost: 2.33090 s, avg_batch_cost: 2.57255 s, avg_samples: 12.5, ips: 4.85900 samples/s, eta: 6:28:32
[2024/07/27 13:12:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:13:03] ppocr INFO: epoch: [611/1500], global_step: 1833, lr: 0.001000, loss: 1.450992, loss_shrink_maps: 0.721734, loss_threshold_maps: 0.550359, loss_binary_maps: 0.143459, avg_reader_cost: 2.12913 s, avg_batch_cost: 2.39853 s, avg_samples: 12.5, ips: 5.21153 samples/s, eta: 6:28:02
[2024/07/27 13:13:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:13:12] ppocr INFO: epoch: [612/1500], global_step: 1836, lr: 0.001000, loss: 1.459077, loss_shrink_maps: 0.733456, loss_threshold_maps: 0.550359, loss_binary_maps: 0.145407, avg_reader_cost: 2.33507 s, avg_batch_cost: 2.56939 s, avg_samples: 12.5, ips: 4.86496 samples/s, eta: 6:27:35
[2024/07/27 13:13:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:13:22] ppocr INFO: epoch: [613/1500], global_step: 1839, lr: 0.001000, loss: 1.450992, loss_shrink_maps: 0.734416, loss_threshold_maps: 0.538064, loss_binary_maps: 0.146168, avg_reader_cost: 2.19438 s, avg_batch_cost: 2.57007 s, avg_samples: 12.5, ips: 4.86368 samples/s, eta: 6:27:08
[2024/07/27 13:13:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:13:30] ppocr INFO: epoch: [614/1500], global_step: 1840, lr: 0.001000, loss: 1.459077, loss_shrink_maps: 0.745096, loss_threshold_maps: 0.550359, loss_binary_maps: 0.147825, avg_reader_cost: 0.57170 s, avg_batch_cost: 0.74166 s, avg_samples: 4.8, ips: 6.47196 samples/s, eta: 6:26:58
[2024/07/27 13:13:32] ppocr INFO: epoch: [614/1500], global_step: 1842, lr: 0.001000, loss: 1.451200, loss_shrink_maps: 0.769741, loss_threshold_maps: 0.529269, loss_binary_maps: 0.152301, avg_reader_cost: 1.57509 s, avg_batch_cost: 1.72191 s, avg_samples: 7.7, ips: 4.47177 samples/s, eta: 6:26:40
[2024/07/27 13:13:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:13:42] ppocr INFO: epoch: [615/1500], global_step: 1845, lr: 0.001000, loss: 1.446757, loss_shrink_maps: 0.740479, loss_threshold_maps: 0.527399, loss_binary_maps: 0.147462, avg_reader_cost: 2.45635 s, avg_batch_cost: 2.70602 s, avg_samples: 12.5, ips: 4.61934 samples/s, eta: 6:26:15
[2024/07/27 13:13:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:13:51] ppocr INFO: epoch: [616/1500], global_step: 1848, lr: 0.001000, loss: 1.446757, loss_shrink_maps: 0.759061, loss_threshold_maps: 0.527399, loss_binary_maps: 0.150644, avg_reader_cost: 2.15780 s, avg_batch_cost: 2.44664 s, avg_samples: 12.5, ips: 5.10906 samples/s, eta: 6:25:46
[2024/07/27 13:13:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:14:01] ppocr INFO: epoch: [617/1500], global_step: 1850, lr: 0.001000, loss: 1.403153, loss_shrink_maps: 0.728839, loss_threshold_maps: 0.526822, loss_binary_maps: 0.145045, avg_reader_cost: 1.45340 s, avg_batch_cost: 1.65404 s, avg_samples: 9.6, ips: 5.80396 samples/s, eta: 6:25:28
[2024/07/27 13:14:01] ppocr INFO: epoch: [617/1500], global_step: 1851, lr: 0.001000, loss: 1.403153, loss_shrink_maps: 0.728839, loss_threshold_maps: 0.526822, loss_binary_maps: 0.145045, avg_reader_cost: 0.87349 s, avg_batch_cost: 0.92958 s, avg_samples: 2.9, ips: 3.11968 samples/s, eta: 6:25:20
[2024/07/27 13:14:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:14:11] ppocr INFO: epoch: [618/1500], global_step: 1854, lr: 0.001000, loss: 1.426568, loss_shrink_maps: 0.742414, loss_threshold_maps: 0.529269, loss_binary_maps: 0.148264, avg_reader_cost: 2.42620 s, avg_batch_cost: 2.68164 s, avg_samples: 12.5, ips: 4.66133 samples/s, eta: 6:24:55
[2024/07/27 13:14:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:14:21] ppocr INFO: epoch: [619/1500], global_step: 1857, lr: 0.001000, loss: 1.424347, loss_shrink_maps: 0.740196, loss_threshold_maps: 0.528692, loss_binary_maps: 0.147236, avg_reader_cost: 2.14947 s, avg_batch_cost: 2.48887 s, avg_samples: 12.5, ips: 5.02236 samples/s, eta: 6:24:26
[2024/07/27 13:14:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:14:31] ppocr INFO: epoch: [620/1500], global_step: 1860, lr: 0.001000, loss: 1.444744, loss_shrink_maps: 0.752811, loss_threshold_maps: 0.533575, loss_binary_maps: 0.149694, avg_reader_cost: 2.36603 s, avg_batch_cost: 2.68851 s, avg_samples: 12.5, ips: 4.64942 samples/s, eta: 6:24:01

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:50,  9.90it/s]
eval model::   1%|          | 4/500 [00:00<00:30, 16.20it/s]
eval model::   1%|          | 6/500 [00:00<00:28, 17.49it/s]
eval model::   2%|▏         | 8/500 [00:00<00:28, 17.31it/s]
eval model::   2%|▏         | 11/500 [00:00<00:29, 16.86it/s]
eval model::   3%|▎         | 13/500 [00:00<00:27, 17.66it/s]
eval model::   3%|▎         | 15/500 [00:00<00:26, 18.09it/s]
eval model::   4%|▎         | 18/500 [00:00<00:23, 20.93it/s]
eval model::   4%|▍         | 21/500 [00:01<00:23, 19.97it/s]
eval model::   5%|▌         | 25/500 [00:01<00:22, 21.39it/s]
eval model::   6%|▌         | 28/500 [00:01<00:21, 21.60it/s]
eval model::   6%|▌         | 31/500 [00:01<00:21, 21.67it/s]
eval model::   7%|▋         | 34/500 [00:01<00:23, 20.16it/s]
eval model::   7%|▋         | 37/500 [00:01<00:21, 21.71it/s]
eval model::   8%|▊         | 40/500 [00:02<00:23, 19.35it/s]
eval model::   9%|▊         | 43/500 [00:02<00:24, 18.89it/s]
eval model::   9%|▉         | 46/500 [00:02<00:25, 17.77it/s]
eval model::  10%|▉         | 49/500 [00:02<00:22, 19.94it/s]
eval model::  10%|█         | 52/500 [00:02<00:21, 21.17it/s]
eval model::  11%|█         | 55/500 [00:02<00:20, 22.04it/s]
eval model::  12%|█▏        | 58/500 [00:02<00:21, 20.99it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:28, 15.39it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:28, 15.40it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:22, 19.30it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:20, 21.39it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:20, 20.82it/s]
eval model::  15%|█▌        | 76/500 [00:03<00:19, 21.81it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:19, 21.90it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:18, 22.23it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:19, 21.57it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:21, 18.91it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:22, 17.86it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:21, 19.24it/s]
eval model::  19%|█▉        | 96/500 [00:04<00:19, 20.55it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:18, 21.66it/s]
eval model::  20%|██        | 102/500 [00:05<00:19, 20.16it/s]
eval model::  21%|██        | 105/500 [00:05<00:18, 21.83it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:18, 21.27it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:19, 19.99it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:19, 20.03it/s]
eval model::  23%|██▎       | 117/500 [00:05<00:18, 20.98it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:19, 19.24it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:18, 19.97it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:20, 18.32it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:18, 19.69it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:20, 17.61it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:18, 19.33it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:18, 19.38it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:18, 19.33it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:17, 20.88it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:18, 18.72it/s]
eval model::  30%|███       | 150/500 [00:07<00:17, 20.09it/s]
eval model::  31%|███       | 153/500 [00:07<00:18, 19.23it/s]
eval model::  31%|███▏      | 157/500 [00:07<00:16, 21.37it/s]
eval model::  32%|███▏      | 160/500 [00:08<00:19, 17.46it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:18, 18.29it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:17, 19.39it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:18, 18.38it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:17, 18.53it/s]
eval model::  35%|███▍      | 174/500 [00:08<00:20, 16.13it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:19, 16.40it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:17, 18.44it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:19, 16.75it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:16, 19.32it/s]
eval model::  37%|███▋      | 187/500 [00:09<00:15, 20.53it/s]
eval model::  38%|███▊      | 190/500 [00:09<00:16, 18.66it/s]
eval model::  39%|███▊      | 193/500 [00:09<00:14, 20.65it/s]
eval model::  39%|███▉      | 196/500 [00:10<00:15, 19.27it/s]
eval model::  40%|███▉      | 199/500 [00:10<00:14, 20.57it/s]
eval model::  40%|████      | 202/500 [00:10<00:14, 21.21it/s]
eval model::  41%|████      | 205/500 [00:10<00:20, 14.60it/s]
eval model::  42%|████▏     | 208/500 [00:10<00:19, 15.13it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:19, 15.07it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.58it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:22, 12.82it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:21, 12.96it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:18, 15.31it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:19, 14.02it/s]
eval model::  45%|████▌     | 225/500 [00:12<00:16, 16.82it/s]
eval model::  45%|████▌     | 227/500 [00:12<00:15, 17.27it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:13, 20.27it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:13, 19.85it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:14, 18.55it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:12, 20.52it/s]
eval model::  48%|████▊     | 242/500 [00:12<00:15, 17.14it/s]
eval model::  49%|████▉     | 245/500 [00:13<00:13, 18.73it/s]
eval model::  50%|████▉     | 248/500 [00:13<00:13, 18.63it/s]
eval model::  50%|█████     | 250/500 [00:13<00:13, 18.17it/s]
eval model::  51%|█████     | 253/500 [00:13<00:13, 18.95it/s]
eval model::  51%|█████     | 256/500 [00:13<00:12, 19.02it/s]
eval model::  52%|█████▏    | 258/500 [00:13<00:12, 19.02it/s]
eval model::  52%|█████▏    | 261/500 [00:13<00:11, 20.71it/s]
eval model::  53%|█████▎    | 264/500 [00:14<00:12, 19.63it/s]
eval model::  53%|█████▎    | 267/500 [00:14<00:11, 20.32it/s]
eval model::  54%|█████▍    | 270/500 [00:14<00:11, 20.35it/s]
eval model::  55%|█████▍    | 273/500 [00:14<00:11, 20.55it/s]
eval model::  55%|█████▌    | 276/500 [00:14<00:12, 18.53it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:11, 19.08it/s]
eval model::  56%|█████▋    | 282/500 [00:14<00:11, 19.07it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:17, 12.44it/s]
eval model::  58%|█████▊    | 288/500 [00:15<00:14, 14.67it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:12, 17.04it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:11, 17.63it/s]
eval model::  59%|█████▉    | 297/500 [00:16<00:12, 16.00it/s]
eval model::  60%|██████    | 300/500 [00:16<00:12, 16.21it/s]
eval model::  60%|██████    | 302/500 [00:16<00:11, 16.65it/s]
eval model::  61%|██████    | 304/500 [00:16<00:11, 16.56it/s]
eval model::  61%|██████▏   | 307/500 [00:16<00:10, 19.08it/s]
eval model::  62%|██████▏   | 310/500 [00:16<00:09, 20.57it/s]
eval model::  63%|██████▎   | 313/500 [00:16<00:08, 21.50it/s]
eval model::  63%|██████▎   | 316/500 [00:16<00:08, 20.75it/s]
eval model::  64%|██████▍   | 319/500 [00:17<00:08, 21.84it/s]
eval model::  64%|██████▍   | 322/500 [00:17<00:08, 20.18it/s]
eval model::  65%|██████▌   | 325/500 [00:17<00:08, 21.27it/s]
eval model::  66%|██████▌   | 328/500 [00:17<00:08, 21.07it/s]
eval model::  66%|██████▌   | 331/500 [00:17<00:08, 20.35it/s]
eval model::  67%|██████▋   | 334/500 [00:17<00:07, 21.17it/s]
eval model::  67%|██████▋   | 337/500 [00:17<00:08, 18.59it/s]
eval model::  68%|██████▊   | 339/500 [00:18<00:08, 18.25it/s]
eval model::  68%|██████▊   | 341/500 [00:18<00:11, 14.29it/s]
eval model::  69%|██████▉   | 344/500 [00:18<00:09, 17.08it/s]
eval model::  69%|██████▉   | 347/500 [00:18<00:08, 18.94it/s]
eval model::  70%|███████   | 351/500 [00:18<00:07, 21.21it/s]
eval model::  71%|███████   | 354/500 [00:18<00:06, 22.13it/s]
eval model::  71%|███████▏  | 357/500 [00:19<00:07, 20.23it/s]
eval model::  72%|███████▏  | 360/500 [00:19<00:06, 21.33it/s]
eval model::  73%|███████▎  | 363/500 [00:19<00:07, 18.83it/s]
eval model::  73%|███████▎  | 365/500 [00:19<00:07, 17.66it/s]
eval model::  73%|███████▎  | 367/500 [00:19<00:07, 17.26it/s]
eval model::  74%|███████▍  | 370/500 [00:19<00:06, 19.17it/s]
eval model::  74%|███████▍  | 372/500 [00:19<00:07, 17.06it/s]
eval model::  75%|███████▌  | 375/500 [00:20<00:06, 18.34it/s]
eval model::  76%|███████▌  | 378/500 [00:20<00:05, 20.34it/s]
eval model::  76%|███████▌  | 381/500 [00:20<00:06, 19.52it/s]
eval model::  77%|███████▋  | 384/500 [00:20<00:05, 21.50it/s]
eval model::  77%|███████▋  | 387/500 [00:20<00:08, 13.55it/s]
eval model::  78%|███████▊  | 390/500 [00:20<00:06, 15.81it/s]
eval model::  79%|███████▊  | 393/500 [00:21<00:06, 17.72it/s]
eval model::  79%|███████▉  | 396/500 [00:21<00:05, 17.89it/s]
eval model::  80%|███████▉  | 399/500 [00:21<00:05, 19.71it/s]
eval model::  80%|████████  | 402/500 [00:21<00:05, 17.84it/s]
eval model::  81%|████████  | 405/500 [00:21<00:04, 19.06it/s]
eval model::  82%|████████▏ | 408/500 [00:21<00:04, 20.44it/s]
eval model::  82%|████████▏ | 411/500 [00:21<00:04, 21.67it/s]
eval model::  83%|████████▎ | 414/500 [00:22<00:04, 20.48it/s]
eval model::  83%|████████▎ | 417/500 [00:22<00:04, 18.68it/s]
eval model::  84%|████████▍ | 419/500 [00:22<00:04, 18.02it/s]
eval model::  84%|████████▍ | 421/500 [00:22<00:05, 13.20it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:05, 14.21it/s]
eval model::  85%|████████▌ | 427/500 [00:23<00:04, 16.14it/s]
eval model::  86%|████████▌ | 430/500 [00:23<00:03, 17.57it/s]
eval model::  86%|████████▋ | 432/500 [00:23<00:04, 16.91it/s]
eval model::  87%|████████▋ | 435/500 [00:23<00:03, 18.17it/s]
eval model::  88%|████████▊ | 438/500 [00:23<00:03, 20.11it/s]
eval model::  88%|████████▊ | 441/500 [00:23<00:03, 19.25it/s]
eval model::  89%|████████▉ | 444/500 [00:23<00:02, 21.15it/s]
eval model::  89%|████████▉ | 447/500 [00:23<00:02, 22.14it/s]
eval model::  90%|█████████ | 450/500 [00:24<00:02, 21.53it/s]
eval model::  91%|█████████ | 454/500 [00:24<00:01, 24.10it/s]
eval model::  91%|█████████▏| 457/500 [00:24<00:01, 23.33it/s]
eval model::  92%|█████████▏| 460/500 [00:24<00:01, 21.95it/s]
eval model::  93%|█████████▎| 463/500 [00:24<00:02, 16.59it/s]
eval model::  93%|█████████▎| 465/500 [00:24<00:02, 16.19it/s]
eval model::  94%|█████████▎| 468/500 [00:25<00:01, 17.65it/s]
eval model::  94%|█████████▍| 471/500 [00:25<00:01, 19.70it/s]
eval model::  95%|█████████▍| 474/500 [00:25<00:01, 18.98it/s]
eval model::  95%|█████████▌| 477/500 [00:25<00:01, 20.53it/s]
eval model::  96%|█████████▌| 480/500 [00:25<00:00, 20.37it/s]
eval model::  97%|█████████▋| 483/500 [00:25<00:00, 21.00it/s]
eval model::  97%|█████████▋| 486/500 [00:25<00:00, 21.06it/s]
eval model::  98%|█████████▊| 489/500 [00:26<00:00, 22.72it/s]
eval model::  98%|█████████▊| 492/500 [00:26<00:00, 20.00it/s]
eval model::  99%|█████████▉| 495/500 [00:26<00:00, 20.24it/s]
eval model:: 100%|█████████▉| 499/500 [00:26<00:00, 23.93it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.88it/s]
[2024/07/27 13:14:57] ppocr INFO: cur metric, precision: 0.7152524726704841, recall: 0.6615310544053924, hmean: 0.687343671835918, fps: 45.94529313415217
[2024/07/27 13:14:57] ppocr INFO: best metric, hmean: 0.6968302658486708, precision: 0.7427792915531335, recall: 0.6562349542609534, fps: 44.61269678926526, best_epoch: 580
[2024/07/27 13:14:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:15:07] ppocr INFO: epoch: [621/1500], global_step: 1863, lr: 0.001000, loss: 1.506233, loss_shrink_maps: 0.799052, loss_threshold_maps: 0.541797, loss_binary_maps: 0.158114, avg_reader_cost: 2.31387 s, avg_batch_cost: 2.57455 s, avg_samples: 12.5, ips: 4.85522 samples/s, eta: 6:23:34
[2024/07/27 13:15:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:15:17] ppocr INFO: epoch: [622/1500], global_step: 1866, lr: 0.001000, loss: 1.506233, loss_shrink_maps: 0.799052, loss_threshold_maps: 0.543641, loss_binary_maps: 0.158114, avg_reader_cost: 2.20011 s, avg_batch_cost: 2.55750 s, avg_samples: 12.5, ips: 4.88759 samples/s, eta: 6:23:07
[2024/07/27 13:15:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:15:26] ppocr INFO: epoch: [623/1500], global_step: 1869, lr: 0.001000, loss: 1.476543, loss_shrink_maps: 0.766233, loss_threshold_maps: 0.540295, loss_binary_maps: 0.153070, avg_reader_cost: 2.24532 s, avg_batch_cost: 2.66187 s, avg_samples: 12.5, ips: 4.69595 samples/s, eta: 6:22:42
[2024/07/27 13:15:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:15:35] ppocr INFO: epoch: [624/1500], global_step: 1870, lr: 0.001000, loss: 1.476543, loss_shrink_maps: 0.766233, loss_threshold_maps: 0.540295, loss_binary_maps: 0.153070, avg_reader_cost: 0.52938 s, avg_batch_cost: 0.78181 s, avg_samples: 4.8, ips: 6.13956 samples/s, eta: 6:22:32
[2024/07/27 13:15:36] ppocr INFO: epoch: [624/1500], global_step: 1872, lr: 0.001000, loss: 1.476543, loss_shrink_maps: 0.766233, loss_threshold_maps: 0.541882, loss_binary_maps: 0.153070, avg_reader_cost: 1.65564 s, avg_batch_cost: 1.80270 s, avg_samples: 7.7, ips: 4.27137 samples/s, eta: 6:22:15
[2024/07/27 13:15:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:15:46] ppocr INFO: epoch: [625/1500], global_step: 1875, lr: 0.001000, loss: 1.450146, loss_shrink_maps: 0.752164, loss_threshold_maps: 0.525396, loss_binary_maps: 0.150248, avg_reader_cost: 2.18286 s, avg_batch_cost: 2.54334 s, avg_samples: 12.5, ips: 4.91480 samples/s, eta: 6:21:48
[2024/07/27 13:15:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:15:56] ppocr INFO: epoch: [626/1500], global_step: 1878, lr: 0.001000, loss: 1.384349, loss_shrink_maps: 0.713366, loss_threshold_maps: 0.512942, loss_binary_maps: 0.142088, avg_reader_cost: 2.23789 s, avg_batch_cost: 2.60899 s, avg_samples: 12.5, ips: 4.79112 samples/s, eta: 6:21:22
[2024/07/27 13:15:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:16:05] ppocr INFO: epoch: [627/1500], global_step: 1880, lr: 0.001000, loss: 1.384349, loss_shrink_maps: 0.713366, loss_threshold_maps: 0.524990, loss_binary_maps: 0.142088, avg_reader_cost: 1.54767 s, avg_batch_cost: 1.72950 s, avg_samples: 9.6, ips: 5.55074 samples/s, eta: 6:21:04
[2024/07/27 13:16:06] ppocr INFO: epoch: [627/1500], global_step: 1881, lr: 0.001000, loss: 1.384349, loss_shrink_maps: 0.713366, loss_threshold_maps: 0.512942, loss_binary_maps: 0.142088, avg_reader_cost: 0.91087 s, avg_batch_cost: 0.96644 s, avg_samples: 2.9, ips: 3.00070 samples/s, eta: 6:20:57
[2024/07/27 13:16:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:16:15] ppocr INFO: epoch: [628/1500], global_step: 1884, lr: 0.001000, loss: 1.352347, loss_shrink_maps: 0.699930, loss_threshold_maps: 0.515044, loss_binary_maps: 0.139332, avg_reader_cost: 2.07969 s, avg_batch_cost: 2.39474 s, avg_samples: 12.5, ips: 5.21978 samples/s, eta: 6:20:27
[2024/07/27 13:16:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:16:25] ppocr INFO: epoch: [629/1500], global_step: 1887, lr: 0.001000, loss: 1.352347, loss_shrink_maps: 0.698048, loss_threshold_maps: 0.519733, loss_binary_maps: 0.139255, avg_reader_cost: 2.24743 s, avg_batch_cost: 2.62052 s, avg_samples: 12.5, ips: 4.77004 samples/s, eta: 6:20:01
[2024/07/27 13:16:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:16:35] ppocr INFO: epoch: [630/1500], global_step: 1890, lr: 0.001000, loss: 1.390712, loss_shrink_maps: 0.710940, loss_threshold_maps: 0.534718, loss_binary_maps: 0.141114, avg_reader_cost: 2.25592 s, avg_batch_cost: 2.62275 s, avg_samples: 12.5, ips: 4.76599 samples/s, eta: 6:19:35
[2024/07/27 13:16:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:16:45] ppocr INFO: epoch: [631/1500], global_step: 1893, lr: 0.001000, loss: 1.343571, loss_shrink_maps: 0.690230, loss_threshold_maps: 0.523975, loss_binary_maps: 0.136673, avg_reader_cost: 2.26662 s, avg_batch_cost: 2.51617 s, avg_samples: 12.5, ips: 4.96787 samples/s, eta: 6:19:07
[2024/07/27 13:16:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:16:54] ppocr INFO: epoch: [632/1500], global_step: 1896, lr: 0.001000, loss: 1.386787, loss_shrink_maps: 0.716364, loss_threshold_maps: 0.529695, loss_binary_maps: 0.142196, avg_reader_cost: 2.16071 s, avg_batch_cost: 2.52209 s, avg_samples: 12.5, ips: 4.95620 samples/s, eta: 6:18:40
[2024/07/27 13:16:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:17:04] ppocr INFO: epoch: [633/1500], global_step: 1899, lr: 0.001000, loss: 1.381226, loss_shrink_maps: 0.723137, loss_threshold_maps: 0.523975, loss_binary_maps: 0.143786, avg_reader_cost: 2.26615 s, avg_batch_cost: 2.52333 s, avg_samples: 12.5, ips: 4.95376 samples/s, eta: 6:18:13
[2024/07/27 13:17:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:17:12] ppocr INFO: epoch: [634/1500], global_step: 1900, lr: 0.001000, loss: 1.381226, loss_shrink_maps: 0.723137, loss_threshold_maps: 0.523975, loss_binary_maps: 0.143786, avg_reader_cost: 0.56123 s, avg_batch_cost: 0.77806 s, avg_samples: 4.8, ips: 6.16923 samples/s, eta: 6:18:02
[2024/07/27 13:17:13] ppocr INFO: epoch: [634/1500], global_step: 1902, lr: 0.001000, loss: 1.360161, loss_shrink_maps: 0.697260, loss_threshold_maps: 0.528947, loss_binary_maps: 0.138281, avg_reader_cost: 1.64886 s, avg_batch_cost: 1.79642 s, avg_samples: 7.7, ips: 4.28630 samples/s, eta: 6:17:46
[2024/07/27 13:17:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:17:23] ppocr INFO: epoch: [635/1500], global_step: 1905, lr: 0.001000, loss: 1.375054, loss_shrink_maps: 0.703373, loss_threshold_maps: 0.531320, loss_binary_maps: 0.139997, avg_reader_cost: 2.38823 s, avg_batch_cost: 2.64161 s, avg_samples: 12.5, ips: 4.73196 samples/s, eta: 6:17:20
[2024/07/27 13:17:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:17:33] ppocr INFO: epoch: [636/1500], global_step: 1908, lr: 0.001000, loss: 1.381866, loss_shrink_maps: 0.723857, loss_threshold_maps: 0.532069, loss_binary_maps: 0.144454, avg_reader_cost: 2.21268 s, avg_batch_cost: 2.61771 s, avg_samples: 12.5, ips: 4.77517 samples/s, eta: 6:16:54
[2024/07/27 13:17:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:17:42] ppocr INFO: epoch: [637/1500], global_step: 1910, lr: 0.001000, loss: 1.381866, loss_shrink_maps: 0.723857, loss_threshold_maps: 0.534239, loss_binary_maps: 0.144454, avg_reader_cost: 1.43063 s, avg_batch_cost: 1.61010 s, avg_samples: 9.6, ips: 5.96237 samples/s, eta: 6:16:34
[2024/07/27 13:17:43] ppocr INFO: epoch: [637/1500], global_step: 1911, lr: 0.001000, loss: 1.381866, loss_shrink_maps: 0.723857, loss_threshold_maps: 0.531320, loss_binary_maps: 0.144454, avg_reader_cost: 0.85112 s, avg_batch_cost: 0.90723 s, avg_samples: 2.9, ips: 3.19653 samples/s, eta: 6:16:26
[2024/07/27 13:17:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:17:53] ppocr INFO: epoch: [638/1500], global_step: 1914, lr: 0.001000, loss: 1.393293, loss_shrink_maps: 0.735295, loss_threshold_maps: 0.534239, loss_binary_maps: 0.146557, avg_reader_cost: 2.21559 s, avg_batch_cost: 2.57612 s, avg_samples: 12.5, ips: 4.85226 samples/s, eta: 6:15:59
[2024/07/27 13:17:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:18:02] ppocr INFO: epoch: [639/1500], global_step: 1917, lr: 0.001000, loss: 1.387933, loss_shrink_maps: 0.710875, loss_threshold_maps: 0.534239, loss_binary_maps: 0.141294, avg_reader_cost: 2.22371 s, avg_batch_cost: 2.59830 s, avg_samples: 12.5, ips: 4.81084 samples/s, eta: 6:15:33
[2024/07/27 13:18:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:18:12] ppocr INFO: epoch: [640/1500], global_step: 1920, lr: 0.001000, loss: 1.391231, loss_shrink_maps: 0.710875, loss_threshold_maps: 0.536555, loss_binary_maps: 0.141294, avg_reader_cost: 2.36369 s, avg_batch_cost: 2.60621 s, avg_samples: 12.5, ips: 4.79624 samples/s, eta: 6:15:07

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<01:02,  7.98it/s]
eval model::   1%|          | 3/500 [00:00<00:36, 13.81it/s]
eval model::   1%|          | 6/500 [00:00<00:30, 16.18it/s]
eval model::   2%|▏         | 8/500 [00:00<00:29, 16.95it/s]
eval model::   2%|▏         | 11/500 [00:00<00:27, 17.68it/s]
eval model::   3%|▎         | 14/500 [00:00<00:25, 19.05it/s]
eval model::   3%|▎         | 17/500 [00:00<00:24, 19.85it/s]
eval model::   4%|▍         | 20/500 [00:01<00:24, 19.87it/s]
eval model::   5%|▍         | 24/500 [00:01<00:22, 21.38it/s]
eval model::   5%|▌         | 27/500 [00:01<00:21, 21.71it/s]
eval model::   6%|▌         | 31/500 [00:01<00:21, 22.00it/s]
eval model::   7%|▋         | 34/500 [00:01<00:20, 22.38it/s]
eval model::   7%|▋         | 37/500 [00:01<00:20, 22.64it/s]
eval model::   8%|▊         | 40/500 [00:02<00:23, 19.34it/s]
eval model::   9%|▊         | 43/500 [00:02<00:26, 17.35it/s]
eval model::   9%|▉         | 46/500 [00:02<00:29, 15.48it/s]
eval model::  10%|▉         | 49/500 [00:02<00:25, 17.76it/s]
eval model::  10%|█         | 52/500 [00:02<00:23, 19.05it/s]
eval model::  11%|█         | 55/500 [00:02<00:22, 19.60it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:23, 18.59it/s]
eval model::  12%|█▏        | 60/500 [00:03<00:23, 18.52it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:29, 14.78it/s]
eval model::  13%|█▎        | 64/500 [00:03<00:30, 14.39it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:28, 15.32it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:24, 17.56it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:22, 19.11it/s]
eval model::  15%|█▍        | 74/500 [00:04<00:22, 18.60it/s]
eval model::  15%|█▌        | 77/500 [00:04<00:21, 19.76it/s]
eval model::  16%|█▌        | 80/500 [00:04<00:20, 20.86it/s]
eval model::  17%|█▋        | 83/500 [00:04<00:19, 21.06it/s]
eval model::  17%|█▋        | 86/500 [00:04<00:22, 18.76it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:22, 18.31it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:23, 17.15it/s]
eval model::  19%|█▊        | 93/500 [00:05<00:22, 18.27it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:20, 19.91it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:19, 20.97it/s]
eval model::  20%|██        | 102/500 [00:05<00:19, 20.21it/s]
eval model::  21%|██        | 105/500 [00:05<00:18, 21.22it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:19, 19.86it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:19, 19.47it/s]
eval model::  23%|██▎       | 114/500 [00:06<00:19, 19.32it/s]
eval model::  23%|██▎       | 116/500 [00:06<00:21, 18.12it/s]
eval model::  24%|██▍       | 119/500 [00:06<00:19, 19.84it/s]
eval model::  24%|██▍       | 122/500 [00:06<00:18, 19.90it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:20, 17.90it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:18, 20.05it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:18, 19.66it/s]
eval model::  27%|██▋       | 134/500 [00:07<00:18, 20.28it/s]
eval model::  27%|██▋       | 137/500 [00:07<00:17, 20.40it/s]
eval model::  28%|██▊       | 140/500 [00:07<00:17, 20.43it/s]
eval model::  29%|██▊       | 143/500 [00:07<00:16, 22.31it/s]
eval model::  29%|██▉       | 146/500 [00:07<00:15, 22.17it/s]
eval model::  30%|██▉       | 149/500 [00:07<00:16, 20.84it/s]
eval model::  30%|███       | 152/500 [00:07<00:18, 19.29it/s]
eval model::  31%|███       | 154/500 [00:08<00:18, 18.81it/s]
eval model::  31%|███▏      | 157/500 [00:08<00:17, 19.92it/s]
eval model::  32%|███▏      | 160/500 [00:08<00:24, 13.94it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:23, 14.56it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:21, 15.44it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:20, 16.27it/s]
eval model::  34%|███▍      | 170/500 [00:09<00:17, 18.80it/s]
eval model::  35%|███▍      | 173/500 [00:09<00:17, 18.50it/s]
eval model::  35%|███▌      | 175/500 [00:09<00:20, 16.24it/s]
eval model::  35%|███▌      | 177/500 [00:09<00:19, 16.52it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:18, 17.18it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:19, 16.01it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:19, 16.61it/s]
eval model::  37%|███▋      | 186/500 [00:10<00:17, 17.71it/s]
eval model::  38%|███▊      | 189/500 [00:10<00:16, 18.99it/s]
eval model::  38%|███▊      | 191/500 [00:10<00:16, 19.02it/s]
eval model::  39%|███▉      | 194/500 [00:10<00:14, 21.06it/s]
eval model::  39%|███▉      | 197/500 [00:10<00:16, 18.86it/s]
eval model::  40%|████      | 201/500 [00:10<00:13, 21.42it/s]
eval model::  41%|████      | 205/500 [00:11<00:19, 15.21it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:18, 15.88it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:19, 15.25it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.62it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:19, 14.40it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:20, 13.78it/s]
eval model::  44%|████▍     | 219/500 [00:12<00:18, 14.82it/s]
eval model::  44%|████▍     | 221/500 [00:12<00:19, 13.96it/s]
eval model::  45%|████▍     | 223/500 [00:12<00:18, 15.04it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:16, 16.81it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:13, 20.58it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:12, 21.53it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:12, 21.17it/s]
eval model::  48%|████▊     | 239/500 [00:13<00:12, 21.69it/s]
eval model::  48%|████▊     | 242/500 [00:13<00:14, 17.79it/s]
eval model::  49%|████▉     | 245/500 [00:13<00:12, 19.71it/s]
eval model::  50%|████▉     | 248/500 [00:13<00:12, 20.40it/s]
eval model::  50%|█████     | 251/500 [00:13<00:13, 18.83it/s]
eval model::  51%|█████     | 254/500 [00:13<00:12, 20.09it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:11, 21.03it/s]
eval model::  52%|█████▏    | 260/500 [00:14<00:10, 22.60it/s]
eval model::  53%|█████▎    | 263/500 [00:14<00:09, 24.00it/s]
eval model::  53%|█████▎    | 266/500 [00:14<00:09, 23.80it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:11, 19.60it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:10, 20.77it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:11, 19.62it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:10, 22.01it/s]
eval model::  56%|█████▋    | 282/500 [00:15<00:09, 23.21it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:16, 12.71it/s]
eval model::  58%|█████▊    | 288/500 [00:15<00:13, 15.16it/s]
eval model::  58%|█████▊    | 292/500 [00:15<00:11, 17.81it/s]
eval model::  59%|█████▉    | 295/500 [00:16<00:14, 14.59it/s]
eval model::  60%|█████▉    | 298/500 [00:16<00:11, 16.84it/s]
eval model::  60%|██████    | 301/500 [00:16<00:12, 15.41it/s]
eval model::  61%|██████    | 304/500 [00:16<00:11, 16.55it/s]
eval model::  61%|██████▏   | 307/500 [00:16<00:10, 18.19it/s]
eval model::  62%|██████▏   | 310/500 [00:16<00:10, 18.89it/s]
eval model::  63%|██████▎   | 313/500 [00:17<00:09, 19.48it/s]
eval model::  63%|██████▎   | 316/500 [00:17<00:09, 19.73it/s]
eval model::  64%|██████▍   | 319/500 [00:17<00:08, 21.66it/s]
eval model::  64%|██████▍   | 322/500 [00:17<00:08, 20.79it/s]
eval model::  65%|██████▌   | 325/500 [00:17<00:07, 22.27it/s]
eval model::  66%|██████▌   | 328/500 [00:17<00:08, 21.36it/s]
eval model::  66%|██████▌   | 331/500 [00:17<00:07, 22.20it/s]
eval model::  67%|██████▋   | 334/500 [00:17<00:06, 23.89it/s]
eval model::  67%|██████▋   | 337/500 [00:18<00:07, 22.29it/s]
eval model::  68%|██████▊   | 340/500 [00:18<00:10, 15.84it/s]
eval model::  69%|██████▊   | 343/500 [00:18<00:08, 17.59it/s]
eval model::  69%|██████▉   | 346/500 [00:18<00:07, 20.05it/s]
eval model::  70%|██████▉   | 349/500 [00:18<00:06, 21.97it/s]
eval model::  70%|███████   | 352/500 [00:18<00:06, 22.22it/s]
eval model::  71%|███████   | 355/500 [00:19<00:06, 21.34it/s]
eval model::  72%|███████▏  | 358/500 [00:19<00:06, 21.40it/s]
eval model::  72%|███████▏  | 361/500 [00:19<00:07, 19.82it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:07, 18.87it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:07, 17.95it/s]
eval model::  74%|███████▍  | 369/500 [00:19<00:07, 18.70it/s]
eval model::  74%|███████▍  | 371/500 [00:19<00:06, 18.71it/s]
eval model::  75%|███████▍  | 373/500 [00:20<00:07, 17.71it/s]
eval model::  75%|███████▌  | 376/500 [00:20<00:06, 19.56it/s]
eval model::  76%|███████▌  | 380/500 [00:20<00:05, 20.91it/s]
eval model::  77%|███████▋  | 383/500 [00:20<00:05, 22.63it/s]
eval model::  77%|███████▋  | 386/500 [00:20<00:08, 13.73it/s]
eval model::  78%|███████▊  | 389/500 [00:20<00:06, 16.31it/s]
eval model::  78%|███████▊  | 392/500 [00:21<00:06, 17.01it/s]
eval model::  79%|███████▉  | 395/500 [00:21<00:05, 18.36it/s]
eval model::  80%|███████▉  | 398/500 [00:21<00:05, 20.13it/s]
eval model::  80%|████████  | 401/500 [00:21<00:05, 19.05it/s]
eval model::  81%|████████  | 404/500 [00:21<00:05, 19.04it/s]
eval model::  81%|████████▏ | 407/500 [00:21<00:04, 20.17it/s]
eval model::  82%|████████▏ | 410/500 [00:21<00:04, 22.11it/s]
eval model::  83%|████████▎ | 413/500 [00:22<00:03, 22.22it/s]
eval model::  83%|████████▎ | 416/500 [00:22<00:03, 21.06it/s]
eval model::  84%|████████▍ | 419/500 [00:22<00:04, 19.87it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:04, 16.36it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:04, 16.63it/s]
eval model::  85%|████████▌ | 427/500 [00:22<00:04, 18.03it/s]
eval model::  86%|████████▌ | 430/500 [00:23<00:03, 19.99it/s]
eval model::  87%|████████▋ | 433/500 [00:23<00:03, 20.38it/s]
eval model::  87%|████████▋ | 436/500 [00:23<00:03, 20.82it/s]
eval model::  88%|████████▊ | 439/500 [00:23<00:02, 20.86it/s]
eval model::  88%|████████▊ | 442/500 [00:23<00:02, 21.06it/s]
eval model::  89%|████████▉ | 445/500 [00:23<00:02, 21.71it/s]
eval model::  90%|████████▉ | 448/500 [00:23<00:02, 22.37it/s]
eval model::  90%|█████████ | 451/500 [00:23<00:02, 22.07it/s]
eval model::  91%|█████████ | 454/500 [00:24<00:02, 22.80it/s]
eval model::  92%|█████████▏| 458/500 [00:24<00:01, 24.85it/s]
eval model::  92%|█████████▏| 461/500 [00:24<00:01, 23.73it/s]
eval model::  93%|█████████▎| 464/500 [00:24<00:01, 21.50it/s]
eval model::  93%|█████████▎| 467/500 [00:24<00:01, 18.31it/s]
eval model::  94%|█████████▍| 470/500 [00:24<00:01, 20.43it/s]
eval model::  95%|█████████▍| 473/500 [00:25<00:01, 19.93it/s]
eval model::  95%|█████████▌| 476/500 [00:25<00:01, 20.01it/s]
eval model::  96%|█████████▌| 479/500 [00:25<00:01, 20.58it/s]
eval model::  96%|█████████▋| 482/500 [00:25<00:00, 20.32it/s]
eval model::  97%|█████████▋| 485/500 [00:25<00:00, 21.93it/s]
eval model::  98%|█████████▊| 488/500 [00:25<00:00, 21.64it/s]
eval model::  98%|█████████▊| 491/500 [00:25<00:00, 18.91it/s]
eval model::  99%|█████████▉| 494/500 [00:26<00:00, 19.41it/s]
eval model::  99%|█████████▉| 497/500 [00:26<00:00, 20.38it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 22.18it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 19.01it/s]
[2024/07/27 13:18:39] ppocr INFO: cur metric, precision: 0.7743055555555556, recall: 0.6441983630235917, hmean: 0.7032851511169513, fps: 43.729055311097895
[2024/07/27 13:18:39] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/27 13:18:39] ppocr INFO: best metric, hmean: 0.7032851511169513, precision: 0.7743055555555556, recall: 0.6441983630235917, fps: 43.729055311097895, best_epoch: 640
[2024/07/27 13:18:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:18:47] ppocr INFO: epoch: [641/1500], global_step: 1923, lr: 0.001000, loss: 1.396592, loss_shrink_maps: 0.720808, loss_threshold_maps: 0.538031, loss_binary_maps: 0.143396, avg_reader_cost: 2.13800 s, avg_batch_cost: 2.37584 s, avg_samples: 12.5, ips: 5.26131 samples/s, eta: 6:14:37
[2024/07/27 13:18:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:18:57] ppocr INFO: epoch: [642/1500], global_step: 1926, lr: 0.001000, loss: 1.396592, loss_shrink_maps: 0.720808, loss_threshold_maps: 0.536555, loss_binary_maps: 0.143396, avg_reader_cost: 2.38017 s, avg_batch_cost: 2.61841 s, avg_samples: 12.5, ips: 4.77388 samples/s, eta: 6:14:11
[2024/07/27 13:18:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:19:07] ppocr INFO: epoch: [643/1500], global_step: 1929, lr: 0.001000, loss: 1.391231, loss_shrink_maps: 0.710875, loss_threshold_maps: 0.534816, loss_binary_maps: 0.141156, avg_reader_cost: 2.33451 s, avg_batch_cost: 2.57448 s, avg_samples: 12.5, ips: 4.85536 samples/s, eta: 6:13:44
[2024/07/27 13:19:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:19:16] ppocr INFO: epoch: [644/1500], global_step: 1930, lr: 0.001000, loss: 1.396592, loss_shrink_maps: 0.720808, loss_threshold_maps: 0.534322, loss_binary_maps: 0.143396, avg_reader_cost: 0.69581 s, avg_batch_cost: 0.79271 s, avg_samples: 4.8, ips: 6.05519 samples/s, eta: 6:13:35
[2024/07/27 13:19:17] ppocr INFO: epoch: [644/1500], global_step: 1932, lr: 0.001000, loss: 1.377522, loss_shrink_maps: 0.701274, loss_threshold_maps: 0.534322, loss_binary_maps: 0.139432, avg_reader_cost: 1.67769 s, avg_batch_cost: 1.82532 s, avg_samples: 7.7, ips: 4.21845 samples/s, eta: 6:13:18
[2024/07/27 13:19:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:19:27] ppocr INFO: epoch: [645/1500], global_step: 1935, lr: 0.001000, loss: 1.380925, loss_shrink_maps: 0.705047, loss_threshold_maps: 0.535842, loss_binary_maps: 0.140199, avg_reader_cost: 2.29684 s, avg_batch_cost: 2.54410 s, avg_samples: 12.5, ips: 4.91332 samples/s, eta: 6:12:51
[2024/07/27 13:19:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:19:37] ppocr INFO: epoch: [646/1500], global_step: 1938, lr: 0.001000, loss: 1.437252, loss_shrink_maps: 0.746548, loss_threshold_maps: 0.539214, loss_binary_maps: 0.147522, avg_reader_cost: 2.23782 s, avg_batch_cost: 2.59887 s, avg_samples: 12.5, ips: 4.80978 samples/s, eta: 6:12:25
[2024/07/27 13:19:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:19:46] ppocr INFO: epoch: [647/1500], global_step: 1940, lr: 0.001000, loss: 1.448045, loss_shrink_maps: 0.758821, loss_threshold_maps: 0.546513, loss_binary_maps: 0.150477, avg_reader_cost: 1.36310 s, avg_batch_cost: 1.67803 s, avg_samples: 9.6, ips: 5.72098 samples/s, eta: 6:12:06
[2024/07/27 13:19:47] ppocr INFO: epoch: [647/1500], global_step: 1941, lr: 0.001000, loss: 1.483537, loss_shrink_maps: 0.775841, loss_threshold_maps: 0.551715, loss_binary_maps: 0.153797, avg_reader_cost: 0.88465 s, avg_batch_cost: 0.94047 s, avg_samples: 2.9, ips: 3.08357 samples/s, eta: 6:11:59
[2024/07/27 13:19:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:19:56] ppocr INFO: epoch: [648/1500], global_step: 1944, lr: 0.001000, loss: 1.445180, loss_shrink_maps: 0.758821, loss_threshold_maps: 0.539214, loss_binary_maps: 0.150477, avg_reader_cost: 2.17589 s, avg_batch_cost: 2.52978 s, avg_samples: 12.5, ips: 4.94113 samples/s, eta: 6:11:31
[2024/07/27 13:19:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:20:06] ppocr INFO: epoch: [649/1500], global_step: 1947, lr: 0.001000, loss: 1.445180, loss_shrink_maps: 0.758821, loss_threshold_maps: 0.539214, loss_binary_maps: 0.150477, avg_reader_cost: 2.25898 s, avg_batch_cost: 2.62547 s, avg_samples: 12.5, ips: 4.76105 samples/s, eta: 6:11:05
[2024/07/27 13:20:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:20:16] ppocr INFO: epoch: [650/1500], global_step: 1950, lr: 0.001000, loss: 1.408027, loss_shrink_maps: 0.729562, loss_threshold_maps: 0.539214, loss_binary_maps: 0.145065, avg_reader_cost: 2.22735 s, avg_batch_cost: 2.59073 s, avg_samples: 12.5, ips: 4.82490 samples/s, eta: 6:10:39
[2024/07/27 13:20:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:20:25] ppocr INFO: epoch: [651/1500], global_step: 1953, lr: 0.001000, loss: 1.459089, loss_shrink_maps: 0.758424, loss_threshold_maps: 0.550204, loss_binary_maps: 0.150461, avg_reader_cost: 2.38329 s, avg_batch_cost: 2.62353 s, avg_samples: 12.5, ips: 4.76457 samples/s, eta: 6:10:13
[2024/07/27 13:20:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:20:35] ppocr INFO: epoch: [652/1500], global_step: 1956, lr: 0.001000, loss: 1.411142, loss_shrink_maps: 0.723831, loss_threshold_maps: 0.548837, loss_binary_maps: 0.143165, avg_reader_cost: 2.32408 s, avg_batch_cost: 2.55651 s, avg_samples: 12.5, ips: 4.88948 samples/s, eta: 6:09:46
[2024/07/27 13:20:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:20:45] ppocr INFO: epoch: [653/1500], global_step: 1959, lr: 0.001000, loss: 1.330190, loss_shrink_maps: 0.689116, loss_threshold_maps: 0.528702, loss_binary_maps: 0.136795, avg_reader_cost: 2.20812 s, avg_batch_cost: 2.58101 s, avg_samples: 12.5, ips: 4.84307 samples/s, eta: 6:09:19
[2024/07/27 13:20:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:20:53] ppocr INFO: epoch: [654/1500], global_step: 1960, lr: 0.001000, loss: 1.348426, loss_shrink_maps: 0.694969, loss_threshold_maps: 0.532033, loss_binary_maps: 0.137573, avg_reader_cost: 0.70422 s, avg_batch_cost: 0.79969 s, avg_samples: 4.8, ips: 6.00231 samples/s, eta: 6:09:09
[2024/07/27 13:20:55] ppocr INFO: epoch: [654/1500], global_step: 1962, lr: 0.001000, loss: 1.330190, loss_shrink_maps: 0.689116, loss_threshold_maps: 0.528702, loss_binary_maps: 0.136795, avg_reader_cost: 1.69134 s, avg_batch_cost: 1.83887 s, avg_samples: 7.7, ips: 4.18735 samples/s, eta: 6:08:53
[2024/07/27 13:20:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:21:04] ppocr INFO: epoch: [655/1500], global_step: 1965, lr: 0.001000, loss: 1.381233, loss_shrink_maps: 0.716966, loss_threshold_maps: 0.532033, loss_binary_maps: 0.142051, avg_reader_cost: 2.17892 s, avg_batch_cost: 2.53361 s, avg_samples: 12.5, ips: 4.93368 samples/s, eta: 6:08:26
[2024/07/27 13:21:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:21:14] ppocr INFO: epoch: [656/1500], global_step: 1968, lr: 0.001000, loss: 1.348426, loss_shrink_maps: 0.694969, loss_threshold_maps: 0.520199, loss_binary_maps: 0.137573, avg_reader_cost: 2.31428 s, avg_batch_cost: 2.70432 s, avg_samples: 12.5, ips: 4.62224 samples/s, eta: 6:08:01
[2024/07/27 13:21:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:21:24] ppocr INFO: epoch: [657/1500], global_step: 1970, lr: 0.001000, loss: 1.397353, loss_shrink_maps: 0.734018, loss_threshold_maps: 0.523510, loss_binary_maps: 0.145821, avg_reader_cost: 1.36948 s, avg_batch_cost: 1.70534 s, avg_samples: 9.6, ips: 5.62937 samples/s, eta: 6:07:43
[2024/07/27 13:21:24] ppocr INFO: epoch: [657/1500], global_step: 1971, lr: 0.001000, loss: 1.397353, loss_shrink_maps: 0.734018, loss_threshold_maps: 0.523443, loss_binary_maps: 0.145821, avg_reader_cost: 0.89874 s, avg_batch_cost: 0.95389 s, avg_samples: 2.9, ips: 3.04017 samples/s, eta: 6:07:35
[2024/07/27 13:21:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:21:34] ppocr INFO: epoch: [658/1500], global_step: 1974, lr: 0.001000, loss: 1.397353, loss_shrink_maps: 0.732257, loss_threshold_maps: 0.523443, loss_binary_maps: 0.145193, avg_reader_cost: 2.21356 s, avg_batch_cost: 2.60040 s, avg_samples: 12.5, ips: 4.80695 samples/s, eta: 6:07:09
[2024/07/27 13:21:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:21:45] ppocr INFO: epoch: [659/1500], global_step: 1977, lr: 0.001000, loss: 1.382502, loss_shrink_maps: 0.715264, loss_threshold_maps: 0.517513, loss_binary_maps: 0.141542, avg_reader_cost: 2.28878 s, avg_batch_cost: 2.67011 s, avg_samples: 12.5, ips: 4.68146 samples/s, eta: 6:06:44
[2024/07/27 13:21:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:21:54] ppocr INFO: epoch: [660/1500], global_step: 1980, lr: 0.001000, loss: 1.382571, loss_shrink_maps: 0.716760, loss_threshold_maps: 0.517513, loss_binary_maps: 0.142745, avg_reader_cost: 2.29388 s, avg_batch_cost: 2.53333 s, avg_samples: 12.5, ips: 4.93422 samples/s, eta: 6:06:16

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 2/500 [00:00<00:35, 14.01it/s]
eval model::   1%|          | 5/500 [00:00<00:23, 20.96it/s]
eval model::   2%|▏         | 8/500 [00:00<00:23, 20.58it/s]
eval model::   2%|▏         | 11/500 [00:00<00:27, 17.92it/s]
eval model::   3%|▎         | 13/500 [00:00<00:27, 17.41it/s]
eval model::   3%|▎         | 15/500 [00:00<00:27, 17.53it/s]
eval model::   4%|▎         | 18/500 [00:00<00:23, 20.15it/s]
eval model::   4%|▍         | 21/500 [00:01<00:24, 19.56it/s]
eval model::   5%|▍         | 24/500 [00:01<00:24, 19.05it/s]
eval model::   5%|▌         | 27/500 [00:01<00:22, 20.68it/s]
eval model::   6%|▌         | 31/500 [00:01<00:21, 21.96it/s]
eval model::   7%|▋         | 34/500 [00:01<00:21, 22.17it/s]
eval model::   7%|▋         | 37/500 [00:01<00:20, 22.29it/s]
eval model::   8%|▊         | 40/500 [00:02<00:23, 19.69it/s]
eval model::   9%|▊         | 43/500 [00:02<00:24, 18.66it/s]
eval model::   9%|▉         | 46/500 [00:02<00:24, 18.26it/s]
eval model::  10%|▉         | 49/500 [00:02<00:21, 20.58it/s]
eval model::  10%|█         | 52/500 [00:02<00:20, 21.74it/s]
eval model::  11%|█         | 55/500 [00:02<00:20, 21.81it/s]
eval model::  12%|█▏        | 58/500 [00:02<00:20, 21.06it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:25, 17.07it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:26, 16.48it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:22, 19.16it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:19, 22.41it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:18, 23.34it/s]
eval model::  15%|█▌        | 76/500 [00:03<00:17, 24.32it/s]
eval model::  16%|█▌        | 79/500 [00:03<00:17, 23.82it/s]
eval model::  17%|█▋        | 83/500 [00:04<00:17, 24.47it/s]
eval model::  17%|█▋        | 86/500 [00:04<00:19, 21.77it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:22, 18.32it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:23, 17.53it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:23, 17.15it/s]
eval model::  19%|█▉        | 97/500 [00:04<00:19, 20.59it/s]
eval model::  20%|██        | 100/500 [00:04<00:19, 20.14it/s]
eval model::  21%|██        | 103/500 [00:05<00:18, 21.70it/s]
eval model::  21%|██        | 106/500 [00:05<00:19, 20.49it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:19, 20.47it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:22, 17.44it/s]
eval model::  23%|██▎       | 115/500 [00:05<00:21, 17.59it/s]
eval model::  24%|██▎       | 118/500 [00:05<00:19, 19.63it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:21, 17.47it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:22, 16.94it/s]
eval model::  25%|██▌       | 127/500 [00:06<00:20, 18.46it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:21, 17.20it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:21, 17.30it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:18, 19.58it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:19, 18.18it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:18, 19.31it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:17, 20.71it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:18, 18.96it/s]
eval model::  30%|███       | 150/500 [00:07<00:16, 20.67it/s]
eval model::  31%|███       | 153/500 [00:07<00:17, 19.48it/s]
eval model::  31%|███       | 156/500 [00:07<00:15, 21.52it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:16, 20.68it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:17, 19.09it/s]
eval model::  33%|███▎      | 165/500 [00:08<00:16, 19.91it/s]
eval model::  34%|███▎      | 168/500 [00:08<00:16, 20.75it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:16, 20.17it/s]
eval model::  35%|███▍      | 174/500 [00:08<00:18, 17.30it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:18, 17.10it/s]
eval model::  36%|███▌      | 178/500 [00:09<00:18, 17.65it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:20, 15.53it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:17, 18.20it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:16, 19.41it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:15, 20.37it/s]
eval model::  38%|███▊      | 192/500 [00:09<00:14, 21.30it/s]
eval model::  39%|███▉      | 195/500 [00:09<00:14, 21.25it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:14, 21.18it/s]
eval model::  40%|████      | 201/500 [00:10<00:14, 20.14it/s]
eval model::  41%|████      | 204/500 [00:10<00:13, 21.65it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:25, 11.46it/s]
eval model::  42%|████▏     | 209/500 [00:11<00:23, 12.28it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:22, 12.92it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:20, 13.86it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:22, 12.43it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:22, 12.41it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:19, 14.74it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:19, 14.56it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:15, 18.19it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:12, 21.42it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:12, 21.93it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:12, 21.99it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:11, 22.92it/s]
eval model::  48%|████▊     | 242/500 [00:12<00:13, 19.79it/s]
eval model::  49%|████▉     | 245/500 [00:12<00:12, 21.19it/s]
eval model::  50%|████▉     | 248/500 [00:13<00:11, 21.43it/s]
eval model::  50%|█████     | 251/500 [00:13<00:13, 18.93it/s]
eval model::  51%|█████     | 254/500 [00:13<00:11, 20.77it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:11, 21.56it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:10, 23.48it/s]
eval model::  53%|█████▎    | 263/500 [00:13<00:09, 24.47it/s]
eval model::  53%|█████▎    | 266/500 [00:13<00:11, 19.68it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:12, 18.93it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:11, 20.38it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:11, 20.38it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:09, 22.21it/s]
eval model::  56%|█████▌    | 281/500 [00:14<00:09, 22.51it/s]
eval model::  57%|█████▋    | 284/500 [00:14<00:10, 21.20it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:18, 11.75it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:14, 14.90it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:13, 15.59it/s]
eval model::  59%|█████▉    | 296/500 [00:15<00:14, 14.20it/s]
eval model::  60%|██████    | 300/500 [00:15<00:12, 16.23it/s]
eval model::  61%|██████    | 303/500 [00:16<00:11, 17.85it/s]
eval model::  61%|██████    | 305/500 [00:16<00:10, 18.24it/s]
eval model::  62%|██████▏   | 308/500 [00:16<00:09, 20.24it/s]
eval model::  62%|██████▏   | 311/500 [00:16<00:08, 21.99it/s]
eval model::  63%|██████▎   | 314/500 [00:16<00:08, 22.16it/s]
eval model::  63%|██████▎   | 317/500 [00:16<00:07, 23.59it/s]
eval model::  64%|██████▍   | 320/500 [00:16<00:07, 24.57it/s]
eval model::  65%|██████▍   | 323/500 [00:16<00:08, 21.12it/s]
eval model::  65%|██████▌   | 326/500 [00:17<00:07, 22.65it/s]
eval model::  66%|██████▌   | 329/500 [00:17<00:07, 22.15it/s]
eval model::  66%|██████▋   | 332/500 [00:17<00:07, 21.79it/s]
eval model::  67%|██████▋   | 335/500 [00:17<00:07, 22.65it/s]
eval model::  68%|██████▊   | 338/500 [00:17<00:08, 19.58it/s]
eval model::  68%|██████▊   | 341/500 [00:17<00:09, 15.96it/s]
eval model::  69%|██████▊   | 343/500 [00:18<00:09, 16.67it/s]
eval model::  69%|██████▉   | 346/500 [00:18<00:07, 19.32it/s]
eval model::  70%|██████▉   | 349/500 [00:18<00:07, 20.72it/s]
eval model::  70%|███████   | 352/500 [00:18<00:07, 20.36it/s]
eval model::  71%|███████   | 355/500 [00:18<00:07, 19.93it/s]
eval model::  72%|███████▏  | 358/500 [00:18<00:06, 20.29it/s]
eval model::  72%|███████▏  | 361/500 [00:18<00:07, 18.75it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:07, 17.28it/s]
eval model::  73%|███████▎  | 367/500 [00:19<00:07, 18.72it/s]
eval model::  74%|███████▍  | 370/500 [00:19<00:06, 19.44it/s]
eval model::  75%|███████▍  | 373/500 [00:19<00:06, 19.58it/s]
eval model::  75%|███████▌  | 376/500 [00:19<00:05, 21.28it/s]
eval model::  76%|███████▌  | 379/500 [00:19<00:05, 22.93it/s]
eval model::  76%|███████▋  | 382/500 [00:19<00:05, 21.45it/s]
eval model::  77%|███████▋  | 386/500 [00:20<00:08, 13.58it/s]
eval model::  78%|███████▊  | 389/500 [00:20<00:07, 15.78it/s]
eval model::  78%|███████▊  | 392/500 [00:20<00:06, 17.42it/s]
eval model::  79%|███████▉  | 395/500 [00:20<00:05, 19.06it/s]
eval model::  80%|███████▉  | 399/500 [00:20<00:04, 21.94it/s]
eval model::  80%|████████  | 402/500 [00:21<00:05, 18.89it/s]
eval model::  81%|████████  | 405/500 [00:21<00:04, 19.98it/s]
eval model::  82%|████████▏ | 408/500 [00:21<00:04, 20.45it/s]
eval model::  82%|████████▏ | 411/500 [00:21<00:04, 20.49it/s]
eval model::  83%|████████▎ | 414/500 [00:21<00:04, 21.25it/s]
eval model::  83%|████████▎ | 417/500 [00:21<00:04, 18.22it/s]
eval model::  84%|████████▍ | 419/500 [00:22<00:04, 16.75it/s]
eval model::  84%|████████▍ | 421/500 [00:22<00:06, 11.99it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:05, 14.13it/s]
eval model::  85%|████████▌ | 427/500 [00:22<00:04, 16.35it/s]
eval model::  86%|████████▌ | 430/500 [00:22<00:03, 18.86it/s]
eval model::  87%|████████▋ | 433/500 [00:22<00:03, 20.15it/s]
eval model::  87%|████████▋ | 436/500 [00:22<00:02, 22.14it/s]
eval model::  88%|████████▊ | 439/500 [00:23<00:02, 23.63it/s]
eval model::  88%|████████▊ | 442/500 [00:23<00:02, 23.78it/s]
eval model::  89%|████████▉ | 445/500 [00:23<00:02, 25.18it/s]
eval model::  90%|████████▉ | 448/500 [00:23<00:02, 24.42it/s]
eval model::  90%|█████████ | 451/500 [00:23<00:01, 25.47it/s]
eval model::  91%|█████████ | 454/500 [00:23<00:01, 23.06it/s]
eval model::  91%|█████████▏| 457/500 [00:23<00:01, 22.54it/s]
eval model::  92%|█████████▏| 460/500 [00:23<00:01, 21.52it/s]
eval model::  93%|█████████▎| 463/500 [00:24<00:02, 17.66it/s]
eval model::  93%|█████████▎| 465/500 [00:24<00:02, 17.06it/s]
eval model::  94%|█████████▎| 468/500 [00:24<00:01, 19.29it/s]
eval model::  94%|█████████▍| 471/500 [00:24<00:01, 20.91it/s]
eval model::  95%|█████████▍| 474/500 [00:24<00:01, 19.38it/s]
eval model::  95%|█████████▌| 477/500 [00:24<00:01, 19.10it/s]
eval model::  96%|█████████▌| 480/500 [00:25<00:00, 20.76it/s]
eval model::  97%|█████████▋| 483/500 [00:25<00:00, 20.79it/s]
eval model::  97%|█████████▋| 486/500 [00:25<00:00, 18.78it/s]
eval model::  98%|█████████▊| 489/500 [00:25<00:00, 20.10it/s]
eval model::  98%|█████████▊| 492/500 [00:25<00:00, 18.19it/s]
eval model::  99%|█████████▉| 495/500 [00:25<00:00, 18.56it/s]
eval model:: 100%|█████████▉| 498/500 [00:25<00:00, 19.93it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 19.20it/s]
[2024/07/27 13:22:20] ppocr INFO: cur metric, precision: 0.7255520504731862, recall: 0.6644198363023591, hmean: 0.6936416184971098, fps: 46.657166232662625
[2024/07/27 13:22:20] ppocr INFO: best metric, hmean: 0.7032851511169513, precision: 0.7743055555555556, recall: 0.6441983630235917, fps: 43.729055311097895, best_epoch: 640
[2024/07/27 13:22:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:22:30] ppocr INFO: epoch: [661/1500], global_step: 1983, lr: 0.001000, loss: 1.382571, loss_shrink_maps: 0.716760, loss_threshold_maps: 0.519541, loss_binary_maps: 0.142745, avg_reader_cost: 2.34071 s, avg_batch_cost: 2.61835 s, avg_samples: 12.5, ips: 4.77400 samples/s, eta: 6:05:50
[2024/07/27 13:22:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:22:39] ppocr INFO: epoch: [662/1500], global_step: 1986, lr: 0.001000, loss: 1.372753, loss_shrink_maps: 0.701704, loss_threshold_maps: 0.523581, loss_binary_maps: 0.139443, avg_reader_cost: 2.31339 s, avg_batch_cost: 2.55788 s, avg_samples: 12.5, ips: 4.88686 samples/s, eta: 6:05:23
[2024/07/27 13:22:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:22:49] ppocr INFO: epoch: [663/1500], global_step: 1989, lr: 0.001000, loss: 1.377507, loss_shrink_maps: 0.705232, loss_threshold_maps: 0.527444, loss_binary_maps: 0.140614, avg_reader_cost: 2.27290 s, avg_batch_cost: 2.68100 s, avg_samples: 12.5, ips: 4.66244 samples/s, eta: 6:04:58
[2024/07/27 13:22:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:22:58] ppocr INFO: epoch: [664/1500], global_step: 1990, lr: 0.001000, loss: 1.377507, loss_shrink_maps: 0.705232, loss_threshold_maps: 0.528012, loss_binary_maps: 0.140614, avg_reader_cost: 0.73758 s, avg_batch_cost: 0.82947 s, avg_samples: 4.8, ips: 5.78680 samples/s, eta: 6:04:49
[2024/07/27 13:23:00] ppocr INFO: epoch: [664/1500], global_step: 1992, lr: 0.001000, loss: 1.377507, loss_shrink_maps: 0.701704, loss_threshold_maps: 0.528012, loss_binary_maps: 0.139443, avg_reader_cost: 1.75124 s, avg_batch_cost: 1.89859 s, avg_samples: 7.7, ips: 4.05563 samples/s, eta: 6:04:33
[2024/07/27 13:23:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:23:09] ppocr INFO: epoch: [665/1500], global_step: 1995, lr: 0.001000, loss: 1.395266, loss_shrink_maps: 0.716760, loss_threshold_maps: 0.530938, loss_binary_maps: 0.142745, avg_reader_cost: 2.35474 s, avg_batch_cost: 2.59745 s, avg_samples: 12.5, ips: 4.81241 samples/s, eta: 6:04:07
[2024/07/27 13:23:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:23:19] ppocr INFO: epoch: [666/1500], global_step: 1998, lr: 0.001000, loss: 1.455084, loss_shrink_maps: 0.753396, loss_threshold_maps: 0.531045, loss_binary_maps: 0.149503, avg_reader_cost: 2.18440 s, avg_batch_cost: 2.55101 s, avg_samples: 12.5, ips: 4.90003 samples/s, eta: 6:03:40
[2024/07/27 13:23:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:23:28] ppocr INFO: epoch: [667/1500], global_step: 2000, lr: 0.001000, loss: 1.462554, loss_shrink_maps: 0.761945, loss_threshold_maps: 0.533770, loss_binary_maps: 0.151647, avg_reader_cost: 1.31147 s, avg_batch_cost: 1.63112 s, avg_samples: 9.6, ips: 5.88552 samples/s, eta: 6:03:21
[2024/07/27 13:23:29] ppocr INFO: epoch: [667/1500], global_step: 2001, lr: 0.001000, loss: 1.462554, loss_shrink_maps: 0.755972, loss_threshold_maps: 0.537155, loss_binary_maps: 0.150917, avg_reader_cost: 0.86159 s, avg_batch_cost: 0.91688 s, avg_samples: 2.9, ips: 3.16291 samples/s, eta: 6:03:13
[2024/07/27 13:23:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:23:39] ppocr INFO: epoch: [668/1500], global_step: 2004, lr: 0.001000, loss: 1.462971, loss_shrink_maps: 0.761945, loss_threshold_maps: 0.537155, loss_binary_maps: 0.151647, avg_reader_cost: 2.42354 s, avg_batch_cost: 2.74227 s, avg_samples: 12.5, ips: 4.55827 samples/s, eta: 6:02:48
[2024/07/27 13:23:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:23:49] ppocr INFO: epoch: [669/1500], global_step: 2007, lr: 0.001000, loss: 1.462554, loss_shrink_maps: 0.761945, loss_threshold_maps: 0.533770, loss_binary_maps: 0.151647, avg_reader_cost: 2.25772 s, avg_batch_cost: 2.49659 s, avg_samples: 12.5, ips: 5.00684 samples/s, eta: 6:02:21
[2024/07/27 13:23:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:23:59] ppocr INFO: epoch: [670/1500], global_step: 2010, lr: 0.001000, loss: 1.431854, loss_shrink_maps: 0.739124, loss_threshold_maps: 0.531045, loss_binary_maps: 0.147390, avg_reader_cost: 2.35282 s, avg_batch_cost: 2.60436 s, avg_samples: 12.5, ips: 4.79965 samples/s, eta: 6:01:54
[2024/07/27 13:23:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:24:09] ppocr INFO: epoch: [671/1500], global_step: 2013, lr: 0.001000, loss: 1.416751, loss_shrink_maps: 0.723686, loss_threshold_maps: 0.533763, loss_binary_maps: 0.144335, avg_reader_cost: 2.24844 s, avg_batch_cost: 2.63935 s, avg_samples: 12.5, ips: 4.73601 samples/s, eta: 6:01:28
[2024/07/27 13:24:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:24:19] ppocr INFO: epoch: [672/1500], global_step: 2016, lr: 0.001000, loss: 1.397024, loss_shrink_maps: 0.720054, loss_threshold_maps: 0.536189, loss_binary_maps: 0.143508, avg_reader_cost: 2.32204 s, avg_batch_cost: 2.69631 s, avg_samples: 12.5, ips: 4.63596 samples/s, eta: 6:01:03
[2024/07/27 13:24:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:24:29] ppocr INFO: epoch: [673/1500], global_step: 2019, lr: 0.001000, loss: 1.378199, loss_shrink_maps: 0.716684, loss_threshold_maps: 0.530706, loss_binary_maps: 0.142398, avg_reader_cost: 2.31608 s, avg_batch_cost: 2.56139 s, avg_samples: 12.5, ips: 4.88017 samples/s, eta: 6:00:36
[2024/07/27 13:24:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:24:37] ppocr INFO: epoch: [674/1500], global_step: 2020, lr: 0.001000, loss: 1.378199, loss_shrink_maps: 0.709173, loss_threshold_maps: 0.530706, loss_binary_maps: 0.141057, avg_reader_cost: 0.56453 s, avg_batch_cost: 0.78077 s, avg_samples: 4.8, ips: 6.14779 samples/s, eta: 6:00:27
[2024/07/27 13:24:38] ppocr INFO: epoch: [674/1500], global_step: 2022, lr: 0.001000, loss: 1.378199, loss_shrink_maps: 0.709173, loss_threshold_maps: 0.538161, loss_binary_maps: 0.141057, avg_reader_cost: 1.65324 s, avg_batch_cost: 1.80067 s, avg_samples: 7.7, ips: 4.27619 samples/s, eta: 6:00:10
[2024/07/27 13:24:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:24:48] ppocr INFO: epoch: [675/1500], global_step: 2025, lr: 0.001000, loss: 1.387238, loss_shrink_maps: 0.711182, loss_threshold_maps: 0.543584, loss_binary_maps: 0.141411, avg_reader_cost: 2.26054 s, avg_batch_cost: 2.62348 s, avg_samples: 12.5, ips: 4.76467 samples/s, eta: 5:59:44
[2024/07/27 13:24:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:24:58] ppocr INFO: epoch: [676/1500], global_step: 2028, lr: 0.001000, loss: 1.383086, loss_shrink_maps: 0.701283, loss_threshold_maps: 0.546695, loss_binary_maps: 0.139718, avg_reader_cost: 2.25932 s, avg_batch_cost: 2.61694 s, avg_samples: 12.5, ips: 4.77657 samples/s, eta: 5:59:18
[2024/07/27 13:24:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:25:07] ppocr INFO: epoch: [677/1500], global_step: 2030, lr: 0.001000, loss: 1.387982, loss_shrink_maps: 0.701283, loss_threshold_maps: 0.550718, loss_binary_maps: 0.139718, avg_reader_cost: 1.46641 s, avg_batch_cost: 1.65101 s, avg_samples: 9.6, ips: 5.81461 samples/s, eta: 5:58:59
[2024/07/27 13:25:08] ppocr INFO: epoch: [677/1500], global_step: 2031, lr: 0.001000, loss: 1.387982, loss_shrink_maps: 0.701283, loss_threshold_maps: 0.546695, loss_binary_maps: 0.139718, avg_reader_cost: 0.87192 s, avg_batch_cost: 0.92713 s, avg_samples: 2.9, ips: 3.12792 samples/s, eta: 5:58:51
[2024/07/27 13:25:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:25:18] ppocr INFO: epoch: [678/1500], global_step: 2034, lr: 0.001000, loss: 1.387982, loss_shrink_maps: 0.701283, loss_threshold_maps: 0.546695, loss_binary_maps: 0.139718, avg_reader_cost: 2.36577 s, avg_batch_cost: 2.65534 s, avg_samples: 12.5, ips: 4.70750 samples/s, eta: 5:58:25
[2024/07/27 13:25:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:25:28] ppocr INFO: epoch: [679/1500], global_step: 2037, lr: 0.001000, loss: 1.372066, loss_shrink_maps: 0.697220, loss_threshold_maps: 0.540817, loss_binary_maps: 0.138413, avg_reader_cost: 2.27911 s, avg_batch_cost: 2.62663 s, avg_samples: 12.5, ips: 4.75894 samples/s, eta: 5:57:59
[2024/07/27 13:25:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:25:37] ppocr INFO: epoch: [680/1500], global_step: 2040, lr: 0.001000, loss: 1.367347, loss_shrink_maps: 0.694543, loss_threshold_maps: 0.541276, loss_binary_maps: 0.137778, avg_reader_cost: 2.16287 s, avg_batch_cost: 2.50192 s, avg_samples: 12.5, ips: 4.99615 samples/s, eta: 5:57:32

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:57,  8.68it/s]
eval model::   1%|          | 4/500 [00:00<00:30, 16.17it/s]
eval model::   1%|          | 6/500 [00:00<00:32, 14.97it/s]
eval model::   2%|▏         | 8/500 [00:00<00:31, 15.39it/s]
eval model::   2%|▏         | 10/500 [00:00<00:30, 15.99it/s]
eval model::   2%|▏         | 12/500 [00:00<00:32, 14.79it/s]
eval model::   3%|▎         | 14/500 [00:00<00:31, 15.67it/s]
eval model::   3%|▎         | 17/500 [00:01<00:27, 17.59it/s]
eval model::   4%|▍         | 20/500 [00:01<00:25, 18.81it/s]
eval model::   5%|▍         | 24/500 [00:01<00:21, 22.52it/s]
eval model::   5%|▌         | 27/500 [00:01<00:21, 22.43it/s]
eval model::   6%|▌         | 30/500 [00:01<00:20, 23.41it/s]
eval model::   7%|▋         | 33/500 [00:01<00:21, 21.47it/s]
eval model::   7%|▋         | 36/500 [00:01<00:22, 20.77it/s]
eval model::   8%|▊         | 39/500 [00:02<00:22, 20.23it/s]
eval model::   8%|▊         | 42/500 [00:02<00:25, 18.27it/s]
eval model::   9%|▉         | 45/500 [00:02<00:22, 19.85it/s]
eval model::  10%|▉         | 48/500 [00:02<00:25, 17.77it/s]
eval model::  10%|█         | 51/500 [00:02<00:23, 19.17it/s]
eval model::  11%|█         | 54/500 [00:02<00:22, 19.52it/s]
eval model::  11%|█▏        | 57/500 [00:02<00:21, 20.69it/s]
eval model::  12%|█▏        | 60/500 [00:03<00:22, 19.29it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:27, 16.00it/s]
eval model::  13%|█▎        | 64/500 [00:03<00:27, 15.70it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:23, 18.61it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:20, 20.94it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:20, 21.20it/s]
eval model::  15%|█▌        | 76/500 [00:03<00:19, 21.66it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:19, 21.53it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:18, 22.81it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:18, 21.99it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:20, 19.70it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:22, 18.49it/s]
eval model::  19%|█▉        | 94/500 [00:04<00:20, 19.79it/s]
eval model::  19%|█▉        | 97/500 [00:05<00:20, 19.28it/s]
eval model::  20%|██        | 100/500 [00:05<00:21, 18.77it/s]
eval model::  21%|██        | 103/500 [00:05<00:19, 19.86it/s]
eval model::  21%|██        | 106/500 [00:05<00:20, 19.68it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:19, 20.28it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:20, 19.20it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:20, 19.03it/s]
eval model::  23%|██▎       | 116/500 [00:06<00:22, 17.42it/s]
eval model::  24%|██▍       | 119/500 [00:06<00:20, 18.94it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:20, 18.86it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:19, 19.18it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:19, 19.20it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:17, 21.02it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:20, 17.77it/s]
eval model::  27%|██▋       | 135/500 [00:07<00:18, 19.77it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:18, 20.10it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:18, 19.50it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:17, 20.68it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:18, 18.70it/s]
eval model::  30%|███       | 150/500 [00:07<00:17, 20.38it/s]
eval model::  31%|███       | 153/500 [00:07<00:17, 20.26it/s]
eval model::  31%|███▏      | 157/500 [00:08<00:14, 23.50it/s]
eval model::  32%|███▏      | 160/500 [00:08<00:19, 17.89it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:18, 18.42it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:17, 19.40it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:16, 19.53it/s]
eval model::  34%|███▍      | 172/500 [00:08<00:17, 19.25it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:19, 16.58it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:19, 16.24it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:17, 18.31it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:19, 16.63it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:17, 18.38it/s]
eval model::  37%|███▋      | 187/500 [00:09<00:15, 20.11it/s]
eval model::  38%|███▊      | 190/500 [00:09<00:14, 21.29it/s]
eval model::  39%|███▊      | 193/500 [00:09<00:13, 22.66it/s]
eval model::  39%|███▉      | 196/500 [00:10<00:14, 21.47it/s]
eval model::  40%|███▉      | 199/500 [00:10<00:13, 22.32it/s]
eval model::  40%|████      | 202/500 [00:10<00:13, 21.47it/s]
eval model::  41%|████      | 205/500 [00:10<00:25, 11.36it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:22, 12.98it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:21, 13.41it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:19, 14.77it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:20, 13.58it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:21, 13.41it/s]
eval model::  44%|████▍     | 219/500 [00:11<00:19, 14.56it/s]
eval model::  44%|████▍     | 221/500 [00:11<00:18, 14.74it/s]
eval model::  45%|████▍     | 224/500 [00:12<00:16, 17.25it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:15, 17.87it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:12, 22.02it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:11, 22.97it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:11, 22.36it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:11, 22.74it/s]
eval model::  48%|████▊     | 242/500 [00:12<00:14, 18.01it/s]
eval model::  49%|████▉     | 245/500 [00:13<00:13, 18.91it/s]
eval model::  50%|████▉     | 248/500 [00:13<00:12, 20.01it/s]
eval model::  50%|█████     | 251/500 [00:13<00:12, 20.05it/s]
eval model::  51%|█████     | 254/500 [00:13<00:11, 21.79it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:10, 22.69it/s]
eval model::  52%|█████▏    | 261/500 [00:13<00:10, 22.28it/s]
eval model::  53%|█████▎    | 264/500 [00:14<00:12, 19.57it/s]
eval model::  53%|█████▎    | 267/500 [00:14<00:12, 18.88it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:12, 18.58it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:11, 20.57it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:11, 19.69it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:10, 20.38it/s]
eval model::  56%|█████▌    | 281/500 [00:14<00:10, 21.47it/s]
eval model::  57%|█████▋    | 284/500 [00:14<00:10, 21.50it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:19, 11.15it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:14, 14.88it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:13, 15.48it/s]
eval model::  59%|█████▉    | 297/500 [00:16<00:14, 13.94it/s]
eval model::  60%|██████    | 300/500 [00:16<00:13, 14.78it/s]
eval model::  61%|██████    | 303/500 [00:16<00:11, 16.58it/s]
eval model::  61%|██████    | 305/500 [00:16<00:11, 17.17it/s]
eval model::  62%|██████▏   | 308/500 [00:16<00:10, 18.43it/s]
eval model::  62%|██████▏   | 311/500 [00:16<00:09, 19.39it/s]
eval model::  63%|██████▎   | 314/500 [00:16<00:09, 19.82it/s]
eval model::  63%|██████▎   | 317/500 [00:17<00:08, 20.36it/s]
eval model::  64%|██████▍   | 320/500 [00:17<00:08, 21.15it/s]
eval model::  65%|██████▍   | 323/500 [00:17<00:08, 20.64it/s]
eval model::  65%|██████▌   | 326/500 [00:17<00:07, 22.14it/s]
eval model::  66%|██████▌   | 329/500 [00:17<00:07, 21.42it/s]
eval model::  66%|██████▋   | 332/500 [00:17<00:07, 22.09it/s]
eval model::  67%|██████▋   | 335/500 [00:17<00:07, 23.42it/s]
eval model::  68%|██████▊   | 338/500 [00:18<00:07, 20.49it/s]
eval model::  68%|██████▊   | 341/500 [00:18<00:09, 17.44it/s]
eval model::  69%|██████▉   | 344/500 [00:18<00:08, 19.02it/s]
eval model::  69%|██████▉   | 347/500 [00:18<00:07, 19.94it/s]
eval model::  70%|███████   | 350/500 [00:18<00:06, 21.71it/s]
eval model::  71%|███████   | 353/500 [00:18<00:06, 22.32it/s]
eval model::  71%|███████   | 356/500 [00:18<00:07, 20.50it/s]
eval model::  72%|███████▏  | 359/500 [00:19<00:06, 21.63it/s]
eval model::  72%|███████▏  | 362/500 [00:19<00:07, 19.02it/s]
eval model::  73%|███████▎  | 365/500 [00:19<00:07, 18.06it/s]
eval model::  73%|███████▎  | 367/500 [00:19<00:07, 17.43it/s]
eval model::  74%|███████▍  | 370/500 [00:19<00:06, 19.45it/s]
eval model::  75%|███████▍  | 373/500 [00:19<00:06, 18.70it/s]
eval model::  75%|███████▌  | 376/500 [00:19<00:06, 20.55it/s]
eval model::  76%|███████▌  | 379/500 [00:20<00:05, 22.63it/s]
eval model::  76%|███████▋  | 382/500 [00:20<00:05, 21.20it/s]
eval model::  77%|███████▋  | 385/500 [00:20<00:05, 22.29it/s]
eval model::  78%|███████▊  | 388/500 [00:20<00:08, 13.96it/s]
eval model::  78%|███████▊  | 391/500 [00:20<00:06, 15.69it/s]
eval model::  79%|███████▉  | 394/500 [00:21<00:06, 17.37it/s]
eval model::  79%|███████▉  | 397/500 [00:21<00:05, 19.78it/s]
eval model::  80%|████████  | 400/500 [00:21<00:05, 19.05it/s]
eval model::  81%|████████  | 403/500 [00:21<00:04, 19.98it/s]
eval model::  81%|████████  | 406/500 [00:21<00:04, 20.95it/s]
eval model::  82%|████████▏ | 409/500 [00:21<00:04, 22.54it/s]
eval model::  82%|████████▏ | 412/500 [00:21<00:03, 23.73it/s]
eval model::  83%|████████▎ | 415/500 [00:21<00:03, 21.50it/s]
eval model::  84%|████████▎ | 418/500 [00:22<00:04, 19.53it/s]
eval model::  84%|████████▍ | 421/500 [00:22<00:05, 13.64it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:05, 14.55it/s]
eval model::  85%|████████▌ | 427/500 [00:22<00:04, 16.76it/s]
eval model::  86%|████████▌ | 430/500 [00:22<00:03, 18.34it/s]
eval model::  87%|████████▋ | 433/500 [00:23<00:03, 19.15it/s]
eval model::  87%|████████▋ | 436/500 [00:23<00:03, 19.25it/s]
eval model::  88%|████████▊ | 439/500 [00:23<00:02, 20.70it/s]
eval model::  88%|████████▊ | 442/500 [00:23<00:02, 20.98it/s]
eval model::  89%|████████▉ | 445/500 [00:23<00:02, 22.07it/s]
eval model::  90%|████████▉ | 448/500 [00:23<00:02, 20.51it/s]
eval model::  90%|█████████ | 451/500 [00:23<00:02, 20.78it/s]
eval model::  91%|█████████ | 454/500 [00:24<00:02, 22.07it/s]
eval model::  91%|█████████▏| 457/500 [00:24<00:01, 22.79it/s]
eval model::  92%|█████████▏| 460/500 [00:24<00:01, 23.20it/s]
eval model::  93%|█████████▎| 463/500 [00:24<00:01, 20.78it/s]
eval model::  93%|█████████▎| 466/500 [00:24<00:01, 20.63it/s]
eval model::  94%|█████████▍| 469/500 [00:24<00:01, 20.28it/s]
eval model::  94%|█████████▍| 472/500 [00:24<00:01, 21.36it/s]
eval model::  95%|█████████▌| 475/500 [00:25<00:01, 20.95it/s]
eval model::  96%|█████████▌| 478/500 [00:25<00:01, 20.94it/s]
eval model::  96%|█████████▌| 481/500 [00:25<00:00, 22.37it/s]
eval model::  97%|█████████▋| 484/500 [00:25<00:00, 22.33it/s]
eval model::  97%|█████████▋| 487/500 [00:25<00:00, 20.56it/s]
eval model::  98%|█████████▊| 490/500 [00:25<00:00, 21.75it/s]
eval model::  99%|█████████▊| 493/500 [00:25<00:00, 18.59it/s]
eval model::  99%|█████████▉| 495/500 [00:26<00:00, 18.40it/s]
eval model:: 100%|█████████▉| 499/500 [00:26<00:00, 21.82it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 19.09it/s]
[2024/07/27 13:26:04] ppocr INFO: cur metric, precision: 0.7449481157837248, recall: 0.6567164179104478, hmean: 0.6980552712384851, fps: 45.44814353672277
[2024/07/27 13:26:04] ppocr INFO: best metric, hmean: 0.7032851511169513, precision: 0.7743055555555556, recall: 0.6441983630235917, fps: 43.729055311097895, best_epoch: 640
[2024/07/27 13:26:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:26:13] ppocr INFO: epoch: [681/1500], global_step: 2043, lr: 0.001000, loss: 1.370521, loss_shrink_maps: 0.695754, loss_threshold_maps: 0.541276, loss_binary_maps: 0.138344, avg_reader_cost: 2.18508 s, avg_batch_cost: 2.56347 s, avg_samples: 12.5, ips: 4.87619 samples/s, eta: 5:57:05
[2024/07/27 13:26:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:26:22] ppocr INFO: epoch: [682/1500], global_step: 2046, lr: 0.001000, loss: 1.354039, loss_shrink_maps: 0.694251, loss_threshold_maps: 0.523273, loss_binary_maps: 0.137778, avg_reader_cost: 2.11769 s, avg_batch_cost: 2.45097 s, avg_samples: 12.5, ips: 5.10003 samples/s, eta: 5:56:37
[2024/07/27 13:26:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:26:32] ppocr INFO: epoch: [683/1500], global_step: 2049, lr: 0.001000, loss: 1.347845, loss_shrink_maps: 0.688795, loss_threshold_maps: 0.523273, loss_binary_maps: 0.137220, avg_reader_cost: 2.28219 s, avg_batch_cost: 2.54821 s, avg_samples: 12.5, ips: 4.90541 samples/s, eta: 5:56:10
[2024/07/27 13:26:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:26:40] ppocr INFO: epoch: [684/1500], global_step: 2050, lr: 0.001000, loss: 1.370778, loss_shrink_maps: 0.695754, loss_threshold_maps: 0.525212, loss_binary_maps: 0.138883, avg_reader_cost: 0.66598 s, avg_batch_cost: 0.75767 s, avg_samples: 4.8, ips: 6.33521 samples/s, eta: 5:56:00
[2024/07/27 13:26:42] ppocr INFO: epoch: [684/1500], global_step: 2052, lr: 0.001000, loss: 1.403164, loss_shrink_maps: 0.710916, loss_threshold_maps: 0.531769, loss_binary_maps: 0.141339, avg_reader_cost: 1.60768 s, avg_batch_cost: 1.75519 s, avg_samples: 7.7, ips: 4.38700 samples/s, eta: 5:55:42
[2024/07/27 13:26:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:26:52] ppocr INFO: epoch: [685/1500], global_step: 2055, lr: 0.001000, loss: 1.440399, loss_shrink_maps: 0.745571, loss_threshold_maps: 0.541874, loss_binary_maps: 0.148516, avg_reader_cost: 2.42849 s, avg_batch_cost: 2.67075 s, avg_samples: 12.5, ips: 4.68034 samples/s, eta: 5:55:17
[2024/07/27 13:26:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:27:02] ppocr INFO: epoch: [686/1500], global_step: 2058, lr: 0.001000, loss: 1.459922, loss_shrink_maps: 0.751143, loss_threshold_maps: 0.548161, loss_binary_maps: 0.149512, avg_reader_cost: 2.34230 s, avg_batch_cost: 2.58280 s, avg_samples: 12.5, ips: 4.83971 samples/s, eta: 5:54:50
[2024/07/27 13:27:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:27:11] ppocr INFO: epoch: [687/1500], global_step: 2060, lr: 0.001000, loss: 1.459922, loss_shrink_maps: 0.751143, loss_threshold_maps: 0.548161, loss_binary_maps: 0.149512, avg_reader_cost: 1.33909 s, avg_batch_cost: 1.63654 s, avg_samples: 9.6, ips: 5.86605 samples/s, eta: 5:54:32
[2024/07/27 13:27:11] ppocr INFO: epoch: [687/1500], global_step: 2061, lr: 0.001000, loss: 1.440399, loss_shrink_maps: 0.745571, loss_threshold_maps: 0.538790, loss_binary_maps: 0.148516, avg_reader_cost: 0.86457 s, avg_batch_cost: 0.91993 s, avg_samples: 2.9, ips: 3.15241 samples/s, eta: 5:54:23
[2024/07/27 13:27:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:27:21] ppocr INFO: epoch: [688/1500], global_step: 2064, lr: 0.001000, loss: 1.430732, loss_shrink_maps: 0.745571, loss_threshold_maps: 0.531400, loss_binary_maps: 0.148516, avg_reader_cost: 2.21862 s, avg_batch_cost: 2.56954 s, avg_samples: 12.5, ips: 4.86469 samples/s, eta: 5:53:57
[2024/07/27 13:27:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:27:31] ppocr INFO: epoch: [689/1500], global_step: 2067, lr: 0.001000, loss: 1.392482, loss_shrink_maps: 0.721674, loss_threshold_maps: 0.523768, loss_binary_maps: 0.143453, avg_reader_cost: 2.37389 s, avg_batch_cost: 2.61249 s, avg_samples: 12.5, ips: 4.78471 samples/s, eta: 5:53:31
[2024/07/27 13:27:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:27:41] ppocr INFO: epoch: [690/1500], global_step: 2070, lr: 0.001000, loss: 1.353974, loss_shrink_maps: 0.702736, loss_threshold_maps: 0.519514, loss_binary_maps: 0.140103, avg_reader_cost: 2.30523 s, avg_batch_cost: 2.54254 s, avg_samples: 12.5, ips: 4.91635 samples/s, eta: 5:53:04
[2024/07/27 13:27:41] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:27:50] ppocr INFO: epoch: [691/1500], global_step: 2073, lr: 0.001000, loss: 1.342308, loss_shrink_maps: 0.687191, loss_threshold_maps: 0.519514, loss_binary_maps: 0.136824, avg_reader_cost: 2.20998 s, avg_batch_cost: 2.55233 s, avg_samples: 12.5, ips: 4.89749 samples/s, eta: 5:52:37
[2024/07/27 13:27:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:28:00] ppocr INFO: epoch: [692/1500], global_step: 2076, lr: 0.001000, loss: 1.333815, loss_shrink_maps: 0.687191, loss_threshold_maps: 0.520880, loss_binary_maps: 0.136824, avg_reader_cost: 2.32026 s, avg_batch_cost: 2.55351 s, avg_samples: 12.5, ips: 4.89521 samples/s, eta: 5:52:10
[2024/07/27 13:28:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:28:10] ppocr INFO: epoch: [693/1500], global_step: 2079, lr: 0.001000, loss: 1.333815, loss_shrink_maps: 0.687191, loss_threshold_maps: 0.520880, loss_binary_maps: 0.136824, avg_reader_cost: 2.19457 s, avg_batch_cost: 2.53892 s, avg_samples: 12.5, ips: 4.92336 samples/s, eta: 5:51:43
[2024/07/27 13:28:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:28:18] ppocr INFO: epoch: [694/1500], global_step: 2080, lr: 0.001000, loss: 1.316568, loss_shrink_maps: 0.677197, loss_threshold_maps: 0.520880, loss_binary_maps: 0.134540, avg_reader_cost: 0.56786 s, avg_batch_cost: 0.79980 s, avg_samples: 4.8, ips: 6.00151 samples/s, eta: 5:51:33
[2024/07/27 13:28:20] ppocr INFO: epoch: [694/1500], global_step: 2082, lr: 0.001000, loss: 1.354608, loss_shrink_maps: 0.699911, loss_threshold_maps: 0.521801, loss_binary_maps: 0.139403, avg_reader_cost: 1.69194 s, avg_batch_cost: 1.83969 s, avg_samples: 7.7, ips: 4.18548 samples/s, eta: 5:51:17
[2024/07/27 13:28:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:28:30] ppocr INFO: epoch: [695/1500], global_step: 2085, lr: 0.001000, loss: 1.359453, loss_shrink_maps: 0.699911, loss_threshold_maps: 0.521801, loss_binary_maps: 0.139403, avg_reader_cost: 2.27850 s, avg_batch_cost: 2.62985 s, avg_samples: 12.5, ips: 4.75312 samples/s, eta: 5:50:51
[2024/07/27 13:28:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:28:39] ppocr INFO: epoch: [696/1500], global_step: 2088, lr: 0.001000, loss: 1.359453, loss_shrink_maps: 0.689918, loss_threshold_maps: 0.522634, loss_binary_maps: 0.137221, avg_reader_cost: 2.24536 s, avg_batch_cost: 2.60315 s, avg_samples: 12.5, ips: 4.80188 samples/s, eta: 5:50:25
[2024/07/27 13:28:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:28:49] ppocr INFO: epoch: [697/1500], global_step: 2090, lr: 0.001000, loss: 1.369631, loss_shrink_maps: 0.715955, loss_threshold_maps: 0.522634, loss_binary_maps: 0.142664, avg_reader_cost: 1.52392 s, avg_batch_cost: 1.70454 s, avg_samples: 9.6, ips: 5.63201 samples/s, eta: 5:50:07
[2024/07/27 13:28:49] ppocr INFO: epoch: [697/1500], global_step: 2091, lr: 0.001000, loss: 1.359453, loss_shrink_maps: 0.693959, loss_threshold_maps: 0.522634, loss_binary_maps: 0.138103, avg_reader_cost: 0.89864 s, avg_batch_cost: 0.95389 s, avg_samples: 2.9, ips: 3.04019 samples/s, eta: 5:49:59
[2024/07/27 13:28:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:28:59] ppocr INFO: epoch: [698/1500], global_step: 2094, lr: 0.001000, loss: 1.373971, loss_shrink_maps: 0.729468, loss_threshold_maps: 0.515913, loss_binary_maps: 0.145284, avg_reader_cost: 2.34221 s, avg_batch_cost: 2.58216 s, avg_samples: 12.5, ips: 4.84091 samples/s, eta: 5:49:32
[2024/07/27 13:29:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:29:09] ppocr INFO: epoch: [699/1500], global_step: 2097, lr: 0.001000, loss: 1.359453, loss_shrink_maps: 0.697497, loss_threshold_maps: 0.525134, loss_binary_maps: 0.139118, avg_reader_cost: 2.14851 s, avg_batch_cost: 2.47995 s, avg_samples: 12.5, ips: 5.04041 samples/s, eta: 5:49:05
[2024/07/27 13:29:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:29:19] ppocr INFO: epoch: [700/1500], global_step: 2100, lr: 0.001000, loss: 1.348890, loss_shrink_maps: 0.671811, loss_threshold_maps: 0.509365, loss_binary_maps: 0.134216, avg_reader_cost: 2.19174 s, avg_batch_cost: 2.64763 s, avg_samples: 12.5, ips: 4.72120 samples/s, eta: 5:48:39

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:53,  9.40it/s]
eval model::   1%|          | 4/500 [00:00<00:27, 17.99it/s]
eval model::   1%|          | 6/500 [00:00<00:30, 16.12it/s]
eval model::   2%|▏         | 8/500 [00:00<00:30, 16.16it/s]
eval model::   2%|▏         | 10/500 [00:00<00:28, 17.32it/s]
eval model::   2%|▏         | 12/500 [00:00<00:29, 16.70it/s]
eval model::   3%|▎         | 14/500 [00:00<00:30, 15.87it/s]
eval model::   3%|▎         | 17/500 [00:00<00:26, 18.19it/s]
eval model::   4%|▍         | 19/500 [00:01<00:26, 17.96it/s]
eval model::   4%|▍         | 21/500 [00:01<00:29, 16.50it/s]
eval model::   5%|▍         | 24/500 [00:01<00:25, 18.40it/s]
eval model::   5%|▌         | 26/500 [00:01<00:25, 18.57it/s]
eval model::   6%|▌         | 29/500 [00:01<00:23, 20.26it/s]
eval model::   6%|▋         | 32/500 [00:01<00:24, 19.05it/s]
eval model::   7%|▋         | 34/500 [00:01<00:26, 17.79it/s]
eval model::   7%|▋         | 37/500 [00:02<00:23, 19.45it/s]
eval model::   8%|▊         | 39/500 [00:02<00:27, 16.70it/s]
eval model::   8%|▊         | 42/500 [00:02<00:27, 16.42it/s]
eval model::   9%|▉         | 45/500 [00:02<00:24, 18.47it/s]
eval model::   9%|▉         | 47/500 [00:02<00:26, 16.81it/s]
eval model::  10%|█         | 50/500 [00:02<00:24, 18.02it/s]
eval model::  11%|█         | 53/500 [00:02<00:22, 19.85it/s]
eval model::  11%|█         | 56/500 [00:03<00:20, 21.16it/s]
eval model::  12%|█▏        | 59/500 [00:03<00:20, 21.08it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:25, 16.98it/s]
eval model::  13%|█▎        | 64/500 [00:03<00:24, 17.51it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:22, 19.39it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:19, 21.56it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:19, 21.56it/s]
eval model::  15%|█▌        | 76/500 [00:04<00:17, 23.61it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:18, 22.83it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:20, 20.56it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:20, 20.25it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:22, 18.25it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:23, 17.32it/s]
eval model::  19%|█▊        | 93/500 [00:05<00:22, 18.09it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:20, 19.71it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:19, 20.10it/s]
eval model::  20%|██        | 102/500 [00:05<00:20, 19.17it/s]
eval model::  21%|██        | 105/500 [00:05<00:19, 20.32it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:19, 20.51it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:18, 20.55it/s]
eval model::  23%|██▎       | 115/500 [00:06<00:18, 21.09it/s]
eval model::  24%|██▎       | 118/500 [00:06<00:16, 22.76it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:18, 20.37it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:18, 20.59it/s]
eval model::  25%|██▌       | 127/500 [00:06<00:18, 20.63it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:19, 18.60it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:20, 17.66it/s]
eval model::  27%|██▋       | 135/500 [00:07<00:18, 19.74it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:17, 20.20it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:19, 18.47it/s]
eval model::  29%|██▊       | 143/500 [00:07<00:20, 17.09it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:20, 17.03it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:20, 17.21it/s]
eval model::  30%|███       | 150/500 [00:07<00:17, 20.23it/s]
eval model::  31%|███       | 153/500 [00:08<00:17, 20.12it/s]
eval model::  31%|███       | 156/500 [00:08<00:15, 21.54it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:16, 20.90it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:20, 16.16it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:19, 16.90it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:18, 18.18it/s]
eval model::  34%|███▍      | 170/500 [00:08<00:15, 20.80it/s]
eval model::  35%|███▍      | 173/500 [00:09<00:15, 21.21it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:17, 18.22it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:16, 19.68it/s]
eval model::  36%|███▋      | 182/500 [00:09<00:17, 18.24it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:14, 21.09it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:15, 19.74it/s]
eval model::  38%|███▊      | 192/500 [00:10<00:16, 19.07it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:15, 19.18it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:14, 21.20it/s]
eval model::  40%|████      | 201/500 [00:10<00:14, 21.13it/s]
eval model::  41%|████      | 204/500 [00:10<00:14, 20.61it/s]
eval model::  41%|████▏     | 207/500 [00:11<00:21, 13.90it/s]
eval model::  42%|████▏     | 209/500 [00:11<00:20, 14.43it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:20, 14.07it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:19, 14.47it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:21, 13.07it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:21, 12.95it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:18, 15.33it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:19, 14.23it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:15, 17.31it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:12, 21.12it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:12, 21.82it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:12, 20.89it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:12, 21.37it/s]
eval model::  48%|████▊     | 242/500 [00:12<00:13, 19.55it/s]
eval model::  49%|████▉     | 245/500 [00:13<00:12, 20.80it/s]
eval model::  50%|████▉     | 248/500 [00:13<00:11, 21.24it/s]
eval model::  50%|█████     | 251/500 [00:13<00:11, 21.65it/s]
eval model::  51%|█████     | 255/500 [00:13<00:10, 24.49it/s]
eval model::  52%|█████▏    | 258/500 [00:13<00:10, 24.03it/s]
eval model::  52%|█████▏    | 261/500 [00:13<00:10, 23.20it/s]
eval model::  53%|█████▎    | 264/500 [00:13<00:12, 19.62it/s]
eval model::  53%|█████▎    | 267/500 [00:14<00:11, 19.89it/s]
eval model::  54%|█████▍    | 270/500 [00:14<00:12, 17.97it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:12, 18.21it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:12, 17.39it/s]
eval model::  55%|█████▌    | 277/500 [00:14<00:13, 17.05it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:12, 17.62it/s]
eval model::  56%|█████▋    | 282/500 [00:14<00:11, 19.18it/s]
eval model::  57%|█████▋    | 284/500 [00:15<00:11, 19.13it/s]
eval model::  57%|█████▋    | 286/500 [00:15<00:21, 10.14it/s]
eval model::  58%|█████▊    | 289/500 [00:15<00:15, 13.31it/s]
eval model::  58%|█████▊    | 292/500 [00:15<00:12, 16.33it/s]
eval model::  59%|█████▉    | 295/500 [00:16<00:14, 13.73it/s]
eval model::  60%|█████▉    | 299/500 [00:16<00:11, 17.61it/s]
eval model::  60%|██████    | 302/500 [00:16<00:11, 17.75it/s]
eval model::  61%|██████    | 305/500 [00:16<00:10, 18.56it/s]
eval model::  62%|██████▏   | 308/500 [00:16<00:09, 19.50it/s]
eval model::  62%|██████▏   | 311/500 [00:16<00:09, 20.98it/s]
eval model::  63%|██████▎   | 314/500 [00:16<00:09, 20.19it/s]
eval model::  63%|██████▎   | 317/500 [00:17<00:08, 20.33it/s]
eval model::  64%|██████▍   | 320/500 [00:17<00:08, 21.56it/s]
eval model::  65%|██████▍   | 323/500 [00:17<00:08, 19.78it/s]
eval model::  65%|██████▌   | 326/500 [00:17<00:08, 20.34it/s]
eval model::  66%|██████▌   | 329/500 [00:17<00:09, 17.57it/s]
eval model::  66%|██████▌   | 331/500 [00:17<00:09, 17.36it/s]
eval model::  67%|██████▋   | 334/500 [00:17<00:09, 18.02it/s]
eval model::  67%|██████▋   | 337/500 [00:18<00:08, 18.60it/s]
eval model::  68%|██████▊   | 340/500 [00:18<00:10, 14.94it/s]
eval model::  69%|██████▊   | 343/500 [00:18<00:08, 17.45it/s]
eval model::  69%|██████▉   | 346/500 [00:18<00:08, 19.21it/s]
eval model::  70%|███████   | 350/500 [00:18<00:06, 22.06it/s]
eval model::  71%|███████   | 353/500 [00:18<00:06, 22.45it/s]
eval model::  71%|███████   | 356/500 [00:19<00:07, 20.57it/s]
eval model::  72%|███████▏  | 359/500 [00:19<00:06, 20.35it/s]
eval model::  72%|███████▏  | 362/500 [00:19<00:07, 18.33it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:07, 17.33it/s]
eval model::  73%|███████▎  | 367/500 [00:19<00:07, 18.48it/s]
eval model::  74%|███████▍  | 370/500 [00:19<00:06, 20.56it/s]
eval model::  75%|███████▍  | 373/500 [00:19<00:06, 21.10it/s]
eval model::  75%|███████▌  | 376/500 [00:20<00:05, 21.66it/s]
eval model::  76%|███████▌  | 379/500 [00:20<00:05, 23.56it/s]
eval model::  76%|███████▋  | 382/500 [00:20<00:05, 22.43it/s]
eval model::  77%|███████▋  | 385/500 [00:20<00:04, 23.53it/s]
eval model::  78%|███████▊  | 388/500 [00:20<00:08, 13.00it/s]
eval model::  78%|███████▊  | 391/500 [00:21<00:07, 15.20it/s]
eval model::  79%|███████▉  | 394/500 [00:21<00:06, 16.50it/s]
eval model::  79%|███████▉  | 397/500 [00:21<00:05, 18.59it/s]
eval model::  80%|████████  | 400/500 [00:21<00:05, 17.67it/s]
eval model::  81%|████████  | 403/500 [00:21<00:05, 18.11it/s]
eval model::  81%|████████  | 406/500 [00:21<00:04, 18.80it/s]
eval model::  82%|████████▏ | 409/500 [00:21<00:04, 20.43it/s]
eval model::  82%|████████▏ | 412/500 [00:21<00:03, 22.07it/s]
eval model::  83%|████████▎ | 415/500 [00:22<00:04, 19.36it/s]
eval model::  84%|████████▎ | 418/500 [00:22<00:05, 16.26it/s]
eval model::  84%|████████▍ | 420/500 [00:22<00:06, 12.68it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:05, 13.74it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:05, 14.84it/s]
eval model::  85%|████████▌ | 426/500 [00:23<00:04, 15.42it/s]
eval model::  86%|████████▌ | 429/500 [00:23<00:03, 17.83it/s]
eval model::  86%|████████▌ | 431/500 [00:23<00:04, 16.82it/s]
eval model::  87%|████████▋ | 434/500 [00:23<00:03, 19.81it/s]
eval model::  87%|████████▋ | 437/500 [00:23<00:03, 20.81it/s]
eval model::  88%|████████▊ | 440/500 [00:23<00:02, 21.24it/s]
eval model::  89%|████████▊ | 443/500 [00:23<00:02, 21.71it/s]
eval model::  89%|████████▉ | 446/500 [00:23<00:02, 20.62it/s]
eval model::  90%|████████▉ | 449/500 [00:24<00:02, 19.46it/s]
eval model::  90%|█████████ | 452/500 [00:24<00:02, 21.63it/s]
eval model::  91%|█████████ | 455/500 [00:24<00:02, 21.22it/s]
eval model::  92%|█████████▏| 458/500 [00:24<00:01, 22.38it/s]
eval model::  92%|█████████▏| 461/500 [00:24<00:01, 20.66it/s]
eval model::  93%|█████████▎| 464/500 [00:24<00:02, 17.05it/s]
eval model::  93%|█████████▎| 466/500 [00:25<00:02, 16.10it/s]
eval model::  94%|█████████▎| 468/500 [00:25<00:01, 16.79it/s]
eval model::  94%|█████████▍| 472/500 [00:25<00:01, 19.42it/s]
eval model::  95%|█████████▍| 474/500 [00:25<00:01, 18.86it/s]
eval model::  96%|█████████▌| 478/500 [00:25<00:01, 21.45it/s]
eval model::  96%|█████████▌| 481/500 [00:25<00:00, 19.52it/s]
eval model::  97%|█████████▋| 484/500 [00:25<00:00, 20.11it/s]
eval model::  97%|█████████▋| 487/500 [00:26<00:00, 17.71it/s]
eval model::  98%|█████████▊| 489/500 [00:26<00:00, 17.69it/s]
eval model::  98%|█████████▊| 491/500 [00:26<00:00, 17.12it/s]
eval model::  99%|█████████▊| 493/500 [00:26<00:00, 17.07it/s]
eval model::  99%|█████████▉| 496/500 [00:26<00:00, 18.76it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 23.11it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.70it/s]
[2024/07/27 13:29:46] ppocr INFO: cur metric, precision: 0.7651083238312428, recall: 0.6461242176215696, hmean: 0.700600365439833, fps: 44.512996991016394
[2024/07/27 13:29:46] ppocr INFO: best metric, hmean: 0.7032851511169513, precision: 0.7743055555555556, recall: 0.6441983630235917, fps: 43.729055311097895, best_epoch: 640
[2024/07/27 13:29:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:29:55] ppocr INFO: epoch: [701/1500], global_step: 2103, lr: 0.001000, loss: 1.330779, loss_shrink_maps: 0.666978, loss_threshold_maps: 0.515645, loss_binary_maps: 0.132875, avg_reader_cost: 2.13095 s, avg_batch_cost: 2.46654 s, avg_samples: 12.5, ips: 5.06782 samples/s, eta: 5:48:11
[2024/07/27 13:29:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:30:05] ppocr INFO: epoch: [702/1500], global_step: 2106, lr: 0.001000, loss: 1.330779, loss_shrink_maps: 0.671811, loss_threshold_maps: 0.515645, loss_binary_maps: 0.134216, avg_reader_cost: 2.23476 s, avg_batch_cost: 2.58589 s, avg_samples: 12.5, ips: 4.83393 samples/s, eta: 5:47:45
[2024/07/27 13:30:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:30:14] ppocr INFO: epoch: [703/1500], global_step: 2109, lr: 0.001000, loss: 1.365547, loss_shrink_maps: 0.696005, loss_threshold_maps: 0.524340, loss_binary_maps: 0.138514, avg_reader_cost: 2.20249 s, avg_batch_cost: 2.56007 s, avg_samples: 12.5, ips: 4.88269 samples/s, eta: 5:47:18
[2024/07/27 13:30:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:30:22] ppocr INFO: epoch: [704/1500], global_step: 2110, lr: 0.001000, loss: 1.365547, loss_shrink_maps: 0.696005, loss_threshold_maps: 0.524340, loss_binary_maps: 0.138514, avg_reader_cost: 0.67331 s, avg_batch_cost: 0.76359 s, avg_samples: 4.8, ips: 6.28607 samples/s, eta: 5:47:08
[2024/07/27 13:30:24] ppocr INFO: epoch: [704/1500], global_step: 2112, lr: 0.001000, loss: 1.365547, loss_shrink_maps: 0.696005, loss_threshold_maps: 0.528805, loss_binary_maps: 0.138514, avg_reader_cost: 1.61966 s, avg_batch_cost: 1.76674 s, avg_samples: 7.7, ips: 4.35832 samples/s, eta: 5:46:51
[2024/07/27 13:30:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:30:33] ppocr INFO: epoch: [705/1500], global_step: 2115, lr: 0.001000, loss: 1.399205, loss_shrink_maps: 0.722781, loss_threshold_maps: 0.528805, loss_binary_maps: 0.143241, avg_reader_cost: 2.15391 s, avg_batch_cost: 2.49059 s, avg_samples: 12.5, ips: 5.01888 samples/s, eta: 5:46:23
[2024/07/27 13:30:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:30:43] ppocr INFO: epoch: [706/1500], global_step: 2118, lr: 0.001000, loss: 1.412003, loss_shrink_maps: 0.729649, loss_threshold_maps: 0.526197, loss_binary_maps: 0.144845, avg_reader_cost: 2.37298 s, avg_batch_cost: 2.61342 s, avg_samples: 12.5, ips: 4.78301 samples/s, eta: 5:45:57
[2024/07/27 13:30:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:30:52] ppocr INFO: epoch: [707/1500], global_step: 2120, lr: 0.001000, loss: 1.412003, loss_shrink_maps: 0.729649, loss_threshold_maps: 0.526197, loss_binary_maps: 0.144845, avg_reader_cost: 1.43441 s, avg_batch_cost: 1.62381 s, avg_samples: 9.6, ips: 5.91203 samples/s, eta: 5:45:38
[2024/07/27 13:30:53] ppocr INFO: epoch: [707/1500], global_step: 2121, lr: 0.001000, loss: 1.399205, loss_shrink_maps: 0.722781, loss_threshold_maps: 0.519891, loss_binary_maps: 0.143241, avg_reader_cost: 0.85807 s, avg_batch_cost: 0.91357 s, avg_samples: 2.9, ips: 3.17435 samples/s, eta: 5:45:30
[2024/07/27 13:30:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:31:03] ppocr INFO: epoch: [708/1500], global_step: 2124, lr: 0.001000, loss: 1.367401, loss_shrink_maps: 0.711943, loss_threshold_maps: 0.518947, loss_binary_maps: 0.141625, avg_reader_cost: 2.25152 s, avg_batch_cost: 2.60504 s, avg_samples: 12.5, ips: 4.79840 samples/s, eta: 5:45:04
[2024/07/27 13:31:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:31:13] ppocr INFO: epoch: [709/1500], global_step: 2127, lr: 0.001000, loss: 1.367401, loss_shrink_maps: 0.711943, loss_threshold_maps: 0.515565, loss_binary_maps: 0.141625, avg_reader_cost: 2.26521 s, avg_batch_cost: 2.63345 s, avg_samples: 12.5, ips: 4.74663 samples/s, eta: 5:44:38
[2024/07/27 13:31:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:31:23] ppocr INFO: epoch: [710/1500], global_step: 2130, lr: 0.001000, loss: 1.325262, loss_shrink_maps: 0.684530, loss_threshold_maps: 0.505516, loss_binary_maps: 0.136388, avg_reader_cost: 2.24910 s, avg_batch_cost: 2.61678 s, avg_samples: 12.5, ips: 4.77687 samples/s, eta: 5:44:12
[2024/07/27 13:31:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:31:33] ppocr INFO: epoch: [711/1500], global_step: 2133, lr: 0.001000, loss: 1.301446, loss_shrink_maps: 0.653191, loss_threshold_maps: 0.506558, loss_binary_maps: 0.129653, avg_reader_cost: 2.42135 s, avg_batch_cost: 2.68156 s, avg_samples: 12.5, ips: 4.66146 samples/s, eta: 5:43:46
[2024/07/27 13:31:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:31:43] ppocr INFO: epoch: [712/1500], global_step: 2136, lr: 0.001000, loss: 1.286010, loss_shrink_maps: 0.635164, loss_threshold_maps: 0.506558, loss_binary_maps: 0.126000, avg_reader_cost: 2.38421 s, avg_batch_cost: 2.61772 s, avg_samples: 12.5, ips: 4.77516 samples/s, eta: 5:43:20
[2024/07/27 13:31:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:31:51] ppocr INFO: epoch: [713/1500], global_step: 2139, lr: 0.001000, loss: 1.273334, loss_shrink_maps: 0.632104, loss_threshold_maps: 0.503404, loss_binary_maps: 0.125822, avg_reader_cost: 2.02465 s, avg_batch_cost: 2.26760 s, avg_samples: 12.5, ips: 5.51243 samples/s, eta: 5:42:50
[2024/07/27 13:31:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:32:00] ppocr INFO: epoch: [714/1500], global_step: 2140, lr: 0.001000, loss: 1.273334, loss_shrink_maps: 0.627630, loss_threshold_maps: 0.503404, loss_binary_maps: 0.125222, avg_reader_cost: 0.70123 s, avg_batch_cost: 0.79452 s, avg_samples: 4.8, ips: 6.04138 samples/s, eta: 5:42:41
[2024/07/27 13:32:01] ppocr INFO: epoch: [714/1500], global_step: 2142, lr: 0.001000, loss: 1.287464, loss_shrink_maps: 0.639733, loss_threshold_maps: 0.505384, loss_binary_maps: 0.126729, avg_reader_cost: 1.68148 s, avg_batch_cost: 1.82967 s, avg_samples: 7.7, ips: 4.20841 samples/s, eta: 5:42:24
[2024/07/27 13:32:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:32:11] ppocr INFO: epoch: [715/1500], global_step: 2145, lr: 0.001000, loss: 1.303690, loss_shrink_maps: 0.658618, loss_threshold_maps: 0.507399, loss_binary_maps: 0.131144, avg_reader_cost: 2.31508 s, avg_batch_cost: 2.56048 s, avg_samples: 12.5, ips: 4.88189 samples/s, eta: 5:41:58
[2024/07/27 13:32:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:32:21] ppocr INFO: epoch: [716/1500], global_step: 2148, lr: 0.001000, loss: 1.298238, loss_shrink_maps: 0.645932, loss_threshold_maps: 0.507399, loss_binary_maps: 0.128510, avg_reader_cost: 2.30273 s, avg_batch_cost: 2.54287 s, avg_samples: 12.5, ips: 4.91572 samples/s, eta: 5:41:31
[2024/07/27 13:32:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:32:30] ppocr INFO: epoch: [717/1500], global_step: 2150, lr: 0.001000, loss: 1.296364, loss_shrink_maps: 0.643551, loss_threshold_maps: 0.507399, loss_binary_maps: 0.127766, avg_reader_cost: 1.32624 s, avg_batch_cost: 1.68417 s, avg_samples: 9.6, ips: 5.70013 samples/s, eta: 5:41:13
[2024/07/27 13:32:31] ppocr INFO: epoch: [717/1500], global_step: 2151, lr: 0.001000, loss: 1.298238, loss_shrink_maps: 0.645288, loss_threshold_maps: 0.507399, loss_binary_maps: 0.128510, avg_reader_cost: 0.88819 s, avg_batch_cost: 0.94318 s, avg_samples: 2.9, ips: 3.07472 samples/s, eta: 5:41:05
[2024/07/27 13:32:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:32:41] ppocr INFO: epoch: [718/1500], global_step: 2154, lr: 0.001000, loss: 1.302089, loss_shrink_maps: 0.658618, loss_threshold_maps: 0.506224, loss_binary_maps: 0.131144, avg_reader_cost: 2.51601 s, avg_batch_cost: 2.76704 s, avg_samples: 12.5, ips: 4.51746 samples/s, eta: 5:40:40
[2024/07/27 13:32:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:32:51] ppocr INFO: epoch: [719/1500], global_step: 2157, lr: 0.001000, loss: 1.347502, loss_shrink_maps: 0.701214, loss_threshold_maps: 0.514373, loss_binary_maps: 0.139089, avg_reader_cost: 2.25758 s, avg_batch_cost: 2.50278 s, avg_samples: 12.5, ips: 4.99445 samples/s, eta: 5:40:13
[2024/07/27 13:32:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:33:00] ppocr INFO: epoch: [720/1500], global_step: 2160, lr: 0.001000, loss: 1.378038, loss_shrink_maps: 0.712009, loss_threshold_maps: 0.517521, loss_binary_maps: 0.141373, avg_reader_cost: 2.22214 s, avg_batch_cost: 2.57284 s, avg_samples: 12.5, ips: 4.85845 samples/s, eta: 5:39:46

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:55,  9.04it/s]
eval model::   1%|          | 4/500 [00:00<00:29, 17.10it/s]
eval model::   1%|▏         | 7/500 [00:00<00:25, 19.24it/s]
eval model::   2%|▏         | 9/500 [00:00<00:26, 18.79it/s]
eval model::   2%|▏         | 11/500 [00:00<00:31, 15.61it/s]
eval model::   3%|▎         | 13/500 [00:00<00:29, 16.67it/s]
eval model::   3%|▎         | 15/500 [00:00<00:28, 17.18it/s]
eval model::   4%|▎         | 18/500 [00:00<00:23, 20.21it/s]
eval model::   4%|▍         | 21/500 [00:01<00:24, 19.88it/s]
eval model::   5%|▌         | 25/500 [00:01<00:21, 22.37it/s]
eval model::   6%|▌         | 28/500 [00:01<00:19, 23.88it/s]
eval model::   6%|▌         | 31/500 [00:01<00:22, 20.65it/s]
eval model::   7%|▋         | 34/500 [00:01<00:21, 21.38it/s]
eval model::   7%|▋         | 37/500 [00:01<00:21, 22.02it/s]
eval model::   8%|▊         | 40/500 [00:02<00:26, 17.10it/s]
eval model::   8%|▊         | 42/500 [00:02<00:29, 15.39it/s]
eval model::   9%|▉         | 45/500 [00:02<00:26, 17.10it/s]
eval model::   9%|▉         | 47/500 [00:02<00:28, 16.00it/s]
eval model::  10%|█         | 50/500 [00:02<00:25, 17.88it/s]
eval model::  11%|█         | 53/500 [00:02<00:23, 19.19it/s]
eval model::  11%|█         | 56/500 [00:03<00:23, 18.85it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:24, 18.33it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:28, 15.60it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:28, 15.58it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:24, 17.98it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:22, 19.06it/s]
eval model::  14%|█▍        | 71/500 [00:03<00:22, 19.02it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:22, 18.64it/s]
eval model::  15%|█▌        | 76/500 [00:04<00:21, 20.08it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:20, 20.99it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:18, 22.31it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:18, 22.75it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:20, 19.99it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:23, 17.33it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:22, 17.83it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:20, 19.26it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:20, 19.31it/s]
eval model::  20%|██        | 101/500 [00:05<00:21, 18.96it/s]
eval model::  21%|██        | 104/500 [00:05<00:19, 20.51it/s]
eval model::  21%|██▏       | 107/500 [00:05<00:17, 22.32it/s]
eval model::  22%|██▏       | 110/500 [00:05<00:17, 22.51it/s]
eval model::  23%|██▎       | 113/500 [00:05<00:18, 21.43it/s]
eval model::  23%|██▎       | 116/500 [00:06<00:19, 19.88it/s]
eval model::  24%|██▍       | 119/500 [00:06<00:18, 21.08it/s]
eval model::  24%|██▍       | 122/500 [00:06<00:18, 20.07it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:21, 17.57it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:19, 18.94it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:21, 17.57it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:21, 17.16it/s]
eval model::  27%|██▋       | 135/500 [00:07<00:18, 19.41it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:17, 20.24it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:17, 20.71it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:15, 22.47it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:17, 20.50it/s]
eval model::  30%|███       | 150/500 [00:07<00:15, 22.09it/s]
eval model::  31%|███       | 153/500 [00:07<00:16, 20.93it/s]
eval model::  31%|███       | 156/500 [00:08<00:15, 22.42it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:15, 21.32it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:20, 16.32it/s]
eval model::  33%|███▎      | 165/500 [00:08<00:18, 18.29it/s]
eval model::  34%|███▎      | 168/500 [00:08<00:17, 19.17it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:17, 19.31it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:19, 16.44it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:19, 16.52it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:17, 18.65it/s]
eval model::  36%|███▋      | 182/500 [00:09<00:17, 17.68it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:14, 21.61it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:14, 22.15it/s]
eval model::  38%|███▊      | 192/500 [00:09<00:13, 22.57it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:14, 20.72it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:14, 21.04it/s]
eval model::  40%|████      | 201/500 [00:10<00:15, 19.88it/s]
eval model::  41%|████      | 204/500 [00:10<00:14, 20.80it/s]
eval model::  41%|████▏     | 207/500 [00:11<00:23, 12.26it/s]
eval model::  42%|████▏     | 209/500 [00:11<00:22, 13.21it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:21, 13.51it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:20, 14.25it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:23, 12.10it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:23, 12.27it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:18, 14.85it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:19, 14.38it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:15, 17.90it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:12, 21.12it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:11, 22.87it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:11, 22.84it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:11, 22.84it/s]
eval model::  48%|████▊     | 242/500 [00:12<00:13, 18.54it/s]
eval model::  49%|████▉     | 245/500 [00:13<00:12, 20.03it/s]
eval model::  50%|████▉     | 248/500 [00:13<00:11, 21.79it/s]
eval model::  50%|█████     | 251/500 [00:13<00:12, 20.27it/s]
eval model::  51%|█████     | 254/500 [00:13<00:11, 21.02it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:11, 20.39it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:11, 21.47it/s]
eval model::  53%|█████▎    | 263/500 [00:13<00:10, 21.75it/s]
eval model::  53%|█████▎    | 266/500 [00:14<00:11, 19.62it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:12, 18.88it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:11, 20.42it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:12, 18.49it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:11, 19.55it/s]
eval model::  56%|█████▌    | 281/500 [00:14<00:11, 19.73it/s]
eval model::  57%|█████▋    | 284/500 [00:14<00:10, 21.10it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:18, 11.70it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:13, 15.30it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:13, 15.40it/s]
eval model::  59%|█████▉    | 296/500 [00:16<00:15, 13.40it/s]
eval model::  60%|█████▉    | 299/500 [00:16<00:12, 16.15it/s]
eval model::  60%|██████    | 302/500 [00:16<00:12, 16.18it/s]
eval model::  61%|██████    | 305/500 [00:16<00:11, 17.65it/s]
eval model::  62%|██████▏   | 308/500 [00:16<00:09, 19.34it/s]
eval model::  62%|██████▏   | 311/500 [00:16<00:09, 20.86it/s]
eval model::  63%|██████▎   | 314/500 [00:16<00:09, 20.23it/s]
eval model::  63%|██████▎   | 317/500 [00:16<00:08, 20.66it/s]
eval model::  64%|██████▍   | 320/500 [00:17<00:09, 19.64it/s]
eval model::  65%|██████▍   | 323/500 [00:17<00:09, 17.77it/s]
eval model::  65%|██████▌   | 326/500 [00:17<00:09, 19.07it/s]
eval model::  66%|██████▌   | 328/500 [00:17<00:09, 18.58it/s]
eval model::  66%|██████▌   | 331/500 [00:17<00:08, 19.51it/s]
eval model::  67%|██████▋   | 335/500 [00:17<00:07, 22.31it/s]
eval model::  68%|██████▊   | 338/500 [00:18<00:08, 19.98it/s]
eval model::  68%|██████▊   | 341/500 [00:18<00:10, 14.80it/s]
eval model::  69%|██████▊   | 343/500 [00:18<00:10, 15.40it/s]
eval model::  69%|██████▉   | 347/500 [00:18<00:08, 18.45it/s]
eval model::  70%|███████   | 350/500 [00:18<00:07, 19.83it/s]
eval model::  71%|███████   | 353/500 [00:18<00:07, 20.16it/s]
eval model::  71%|███████   | 356/500 [00:19<00:07, 19.34it/s]
eval model::  72%|███████▏  | 359/500 [00:19<00:07, 19.96it/s]
eval model::  72%|███████▏  | 362/500 [00:19<00:08, 16.29it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:08, 15.98it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:08, 16.67it/s]
eval model::  74%|███████▍  | 369/500 [00:19<00:07, 18.23it/s]
eval model::  74%|███████▍  | 372/500 [00:20<00:06, 18.96it/s]
eval model::  75%|███████▌  | 375/500 [00:20<00:06, 20.82it/s]
eval model::  76%|███████▌  | 379/500 [00:20<00:05, 23.99it/s]
eval model::  76%|███████▋  | 382/500 [00:20<00:05, 22.22it/s]
eval model::  77%|███████▋  | 385/500 [00:20<00:04, 23.92it/s]
eval model::  78%|███████▊  | 388/500 [00:20<00:07, 14.53it/s]
eval model::  78%|███████▊  | 391/500 [00:21<00:06, 16.44it/s]
eval model::  79%|███████▉  | 394/500 [00:21<00:06, 17.65it/s]
eval model::  79%|███████▉  | 397/500 [00:21<00:05, 19.94it/s]
eval model::  80%|████████  | 400/500 [00:21<00:05, 19.74it/s]
eval model::  81%|████████  | 403/500 [00:21<00:04, 20.55it/s]
eval model::  81%|████████  | 406/500 [00:21<00:04, 21.03it/s]
eval model::  82%|████████▏ | 409/500 [00:21<00:04, 22.32it/s]
eval model::  82%|████████▏ | 412/500 [00:21<00:03, 22.98it/s]
eval model::  83%|████████▎ | 415/500 [00:22<00:03, 22.99it/s]
eval model::  84%|████████▎ | 418/500 [00:22<00:03, 20.99it/s]
eval model::  84%|████████▍ | 421/500 [00:22<00:05, 13.77it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:04, 15.47it/s]
eval model::  85%|████████▌ | 426/500 [00:22<00:04, 16.10it/s]
eval model::  86%|████████▌ | 430/500 [00:23<00:03, 20.16it/s]
eval model::  87%|████████▋ | 433/500 [00:23<00:03, 20.96it/s]
eval model::  87%|████████▋ | 437/500 [00:23<00:02, 23.98it/s]
eval model::  88%|████████▊ | 440/500 [00:23<00:02, 23.76it/s]
eval model::  89%|████████▉ | 444/500 [00:23<00:02, 26.22it/s]
eval model::  89%|████████▉ | 447/500 [00:23<00:02, 25.57it/s]
eval model::  90%|█████████ | 450/500 [00:23<00:02, 22.13it/s]
eval model::  91%|█████████ | 453/500 [00:23<00:02, 21.72it/s]
eval model::  91%|█████████ | 456/500 [00:24<00:01, 22.87it/s]
eval model::  92%|█████████▏| 459/500 [00:24<00:01, 22.16it/s]
eval model::  92%|█████████▏| 462/500 [00:24<00:02, 16.57it/s]
eval model::  93%|█████████▎| 464/500 [00:24<00:02, 16.81it/s]
eval model::  93%|█████████▎| 466/500 [00:24<00:02, 15.96it/s]
eval model::  94%|█████████▎| 468/500 [00:24<00:01, 16.40it/s]
eval model::  94%|█████████▍| 471/500 [00:25<00:01, 18.73it/s]
eval model::  95%|█████████▍| 474/500 [00:25<00:01, 18.72it/s]
eval model::  95%|█████████▌| 477/500 [00:25<00:01, 20.62it/s]
eval model::  96%|█████████▌| 480/500 [00:25<00:00, 21.15it/s]
eval model::  97%|█████████▋| 483/500 [00:25<00:00, 21.68it/s]
eval model::  97%|█████████▋| 486/500 [00:25<00:00, 21.83it/s]
eval model::  98%|█████████▊| 489/500 [00:25<00:00, 23.04it/s]
eval model::  98%|█████████▊| 492/500 [00:26<00:00, 19.08it/s]
eval model::  99%|█████████▉| 495/500 [00:26<00:00, 20.54it/s]
eval model:: 100%|█████████▉| 498/500 [00:26<00:00, 22.02it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 19.00it/s]
[2024/07/27 13:33:27] ppocr INFO: cur metric, precision: 0.7223382045929019, recall: 0.666345690900337, hmean: 0.6932131229651891, fps: 45.56820783819796
[2024/07/27 13:33:27] ppocr INFO: best metric, hmean: 0.7032851511169513, precision: 0.7743055555555556, recall: 0.6441983630235917, fps: 43.729055311097895, best_epoch: 640
[2024/07/27 13:33:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:33:36] ppocr INFO: epoch: [721/1500], global_step: 2163, lr: 0.001000, loss: 1.378038, loss_shrink_maps: 0.712009, loss_threshold_maps: 0.518302, loss_binary_maps: 0.141373, avg_reader_cost: 2.15995 s, avg_batch_cost: 2.58630 s, avg_samples: 12.5, ips: 4.83316 samples/s, eta: 5:39:20
[2024/07/27 13:33:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:33:46] ppocr INFO: epoch: [722/1500], global_step: 2166, lr: 0.001000, loss: 1.263592, loss_shrink_maps: 0.649077, loss_threshold_maps: 0.497003, loss_binary_maps: 0.129003, avg_reader_cost: 2.37198 s, avg_batch_cost: 2.62385 s, avg_samples: 12.5, ips: 4.76400 samples/s, eta: 5:38:54
[2024/07/27 13:33:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:33:56] ppocr INFO: epoch: [723/1500], global_step: 2169, lr: 0.001000, loss: 1.339754, loss_shrink_maps: 0.694594, loss_threshold_maps: 0.506154, loss_binary_maps: 0.138188, avg_reader_cost: 2.20087 s, avg_batch_cost: 2.56623 s, avg_samples: 12.5, ips: 4.87095 samples/s, eta: 5:38:27
[2024/07/27 13:33:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:34:04] ppocr INFO: epoch: [724/1500], global_step: 2170, lr: 0.001000, loss: 1.353938, loss_shrink_maps: 0.708472, loss_threshold_maps: 0.517673, loss_binary_maps: 0.140828, avg_reader_cost: 0.56539 s, avg_batch_cost: 0.82227 s, avg_samples: 4.8, ips: 5.83751 samples/s, eta: 5:38:18
[2024/07/27 13:34:06] ppocr INFO: epoch: [724/1500], global_step: 2172, lr: 0.001000, loss: 1.311413, loss_shrink_maps: 0.669585, loss_threshold_maps: 0.498105, loss_binary_maps: 0.133305, avg_reader_cost: 1.73722 s, avg_batch_cost: 1.88555 s, avg_samples: 7.7, ips: 4.08369 samples/s, eta: 5:38:02
[2024/07/27 13:34:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:34:15] ppocr INFO: epoch: [725/1500], global_step: 2175, lr: 0.001000, loss: 1.319874, loss_shrink_maps: 0.671555, loss_threshold_maps: 0.498105, loss_binary_maps: 0.133930, avg_reader_cost: 2.26978 s, avg_batch_cost: 2.50710 s, avg_samples: 12.5, ips: 4.98584 samples/s, eta: 5:37:35
[2024/07/27 13:34:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:34:25] ppocr INFO: epoch: [726/1500], global_step: 2178, lr: 0.001000, loss: 1.315939, loss_shrink_maps: 0.671555, loss_threshold_maps: 0.495852, loss_binary_maps: 0.133930, avg_reader_cost: 2.34951 s, avg_batch_cost: 2.58457 s, avg_samples: 12.5, ips: 4.83640 samples/s, eta: 5:37:08
[2024/07/27 13:34:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:34:34] ppocr INFO: epoch: [727/1500], global_step: 2180, lr: 0.001000, loss: 1.315939, loss_shrink_maps: 0.668258, loss_threshold_maps: 0.496954, loss_binary_maps: 0.133197, avg_reader_cost: 1.44292 s, avg_batch_cost: 1.62417 s, avg_samples: 9.6, ips: 5.91071 samples/s, eta: 5:36:50
[2024/07/27 13:34:35] ppocr INFO: epoch: [727/1500], global_step: 2181, lr: 0.001000, loss: 1.292242, loss_shrink_maps: 0.659558, loss_threshold_maps: 0.495852, loss_binary_maps: 0.131374, avg_reader_cost: 0.85850 s, avg_batch_cost: 0.91339 s, avg_samples: 2.9, ips: 3.17499 samples/s, eta: 5:36:41
[2024/07/27 13:34:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:34:45] ppocr INFO: epoch: [728/1500], global_step: 2184, lr: 0.001000, loss: 1.249141, loss_shrink_maps: 0.628522, loss_threshold_maps: 0.495013, loss_binary_maps: 0.125022, avg_reader_cost: 2.19743 s, avg_batch_cost: 2.55166 s, avg_samples: 12.5, ips: 4.89877 samples/s, eta: 5:36:15
[2024/07/27 13:34:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:34:54] ppocr INFO: epoch: [729/1500], global_step: 2187, lr: 0.001000, loss: 1.287385, loss_shrink_maps: 0.654484, loss_threshold_maps: 0.495421, loss_binary_maps: 0.130609, avg_reader_cost: 2.28868 s, avg_batch_cost: 2.52713 s, avg_samples: 12.5, ips: 4.94633 samples/s, eta: 5:35:48
[2024/07/27 13:34:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:35:04] ppocr INFO: epoch: [730/1500], global_step: 2190, lr: 0.001000, loss: 1.278852, loss_shrink_maps: 0.643192, loss_threshold_maps: 0.496833, loss_binary_maps: 0.128213, avg_reader_cost: 2.21703 s, avg_batch_cost: 2.58263 s, avg_samples: 12.5, ips: 4.84003 samples/s, eta: 5:35:21
[2024/07/27 13:35:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:35:14] ppocr INFO: epoch: [731/1500], global_step: 2193, lr: 0.001000, loss: 1.278852, loss_shrink_maps: 0.643192, loss_threshold_maps: 0.500590, loss_binary_maps: 0.128213, avg_reader_cost: 2.22475 s, avg_batch_cost: 2.55981 s, avg_samples: 12.5, ips: 4.88318 samples/s, eta: 5:34:54
[2024/07/27 13:35:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:35:24] ppocr INFO: epoch: [732/1500], global_step: 2196, lr: 0.001000, loss: 1.271121, loss_shrink_maps: 0.638535, loss_threshold_maps: 0.497857, loss_binary_maps: 0.127207, avg_reader_cost: 2.22506 s, avg_batch_cost: 2.56070 s, avg_samples: 12.5, ips: 4.88148 samples/s, eta: 5:34:28
[2024/07/27 13:35:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:35:34] ppocr INFO: epoch: [733/1500], global_step: 2199, lr: 0.001000, loss: 1.278852, loss_shrink_maps: 0.643192, loss_threshold_maps: 0.500575, loss_binary_maps: 0.128213, avg_reader_cost: 2.35889 s, avg_batch_cost: 2.60886 s, avg_samples: 12.5, ips: 4.79137 samples/s, eta: 5:34:02
[2024/07/27 13:35:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:35:42] ppocr INFO: epoch: [734/1500], global_step: 2200, lr: 0.001000, loss: 1.278852, loss_shrink_maps: 0.643192, loss_threshold_maps: 0.500575, loss_binary_maps: 0.128213, avg_reader_cost: 0.56391 s, avg_batch_cost: 0.80167 s, avg_samples: 4.8, ips: 5.98751 samples/s, eta: 5:33:52
[2024/07/27 13:35:44] ppocr INFO: epoch: [734/1500], global_step: 2202, lr: 0.001000, loss: 1.294581, loss_shrink_maps: 0.664616, loss_threshold_maps: 0.504998, loss_binary_maps: 0.133137, avg_reader_cost: 1.69571 s, avg_batch_cost: 1.84309 s, avg_samples: 7.7, ips: 4.17776 samples/s, eta: 5:33:36
[2024/07/27 13:35:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:35:53] ppocr INFO: epoch: [735/1500], global_step: 2205, lr: 0.001000, loss: 1.325098, loss_shrink_maps: 0.680239, loss_threshold_maps: 0.513684, loss_binary_maps: 0.135533, avg_reader_cost: 2.29183 s, avg_batch_cost: 2.53164 s, avg_samples: 12.5, ips: 4.93751 samples/s, eta: 5:33:09
[2024/07/27 13:35:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:36:03] ppocr INFO: epoch: [736/1500], global_step: 2208, lr: 0.001000, loss: 1.362877, loss_shrink_maps: 0.690801, loss_threshold_maps: 0.518879, loss_binary_maps: 0.137128, avg_reader_cost: 2.26244 s, avg_batch_cost: 2.57596 s, avg_samples: 12.5, ips: 4.85255 samples/s, eta: 5:32:42
[2024/07/27 13:36:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:36:12] ppocr INFO: epoch: [737/1500], global_step: 2210, lr: 0.001000, loss: 1.362877, loss_shrink_maps: 0.690801, loss_threshold_maps: 0.529648, loss_binary_maps: 0.137128, avg_reader_cost: 1.46181 s, avg_batch_cost: 1.64666 s, avg_samples: 9.6, ips: 5.82999 samples/s, eta: 5:32:24
[2024/07/27 13:36:13] ppocr INFO: epoch: [737/1500], global_step: 2211, lr: 0.001000, loss: 1.362877, loss_shrink_maps: 0.690801, loss_threshold_maps: 0.529648, loss_binary_maps: 0.137128, avg_reader_cost: 0.86978 s, avg_batch_cost: 0.92516 s, avg_samples: 2.9, ips: 3.13459 samples/s, eta: 5:32:16
[2024/07/27 13:36:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:36:22] ppocr INFO: epoch: [738/1500], global_step: 2214, lr: 0.001000, loss: 1.362760, loss_shrink_maps: 0.691373, loss_threshold_maps: 0.531782, loss_binary_maps: 0.137395, avg_reader_cost: 2.20192 s, avg_batch_cost: 2.55223 s, avg_samples: 12.5, ips: 4.89768 samples/s, eta: 5:31:49
[2024/07/27 13:36:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:36:32] ppocr INFO: epoch: [739/1500], global_step: 2217, lr: 0.001000, loss: 1.384723, loss_shrink_maps: 0.705040, loss_threshold_maps: 0.534262, loss_binary_maps: 0.139926, avg_reader_cost: 2.34884 s, avg_batch_cost: 2.58685 s, avg_samples: 12.5, ips: 4.83212 samples/s, eta: 5:31:23
[2024/07/27 13:36:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:36:42] ppocr INFO: epoch: [740/1500], global_step: 2220, lr: 0.001000, loss: 1.362373, loss_shrink_maps: 0.691373, loss_threshold_maps: 0.530012, loss_binary_maps: 0.137395, avg_reader_cost: 2.32689 s, avg_batch_cost: 2.57215 s, avg_samples: 12.5, ips: 4.85974 samples/s, eta: 5:30:56

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:54,  9.14it/s]
eval model::   1%|          | 3/500 [00:00<00:37, 13.15it/s]
eval model::   1%|          | 6/500 [00:00<00:32, 15.33it/s]
eval model::   2%|▏         | 9/500 [00:00<00:26, 18.27it/s]
eval model::   2%|▏         | 11/500 [00:00<00:29, 16.66it/s]
eval model::   3%|▎         | 14/500 [00:00<00:27, 17.47it/s]
eval model::   3%|▎         | 16/500 [00:01<00:33, 14.54it/s]
eval model::   4%|▍         | 19/500 [00:01<00:28, 17.17it/s]
eval model::   4%|▍         | 21/500 [00:01<00:28, 16.84it/s]
eval model::   5%|▍         | 24/500 [00:01<00:24, 19.32it/s]
eval model::   5%|▌         | 27/500 [00:01<00:23, 20.12it/s]
eval model::   6%|▌         | 30/500 [00:01<00:22, 21.16it/s]
eval model::   7%|▋         | 33/500 [00:01<00:23, 19.61it/s]
eval model::   7%|▋         | 36/500 [00:02<00:24, 18.84it/s]
eval model::   8%|▊         | 39/500 [00:02<00:25, 17.74it/s]
eval model::   8%|▊         | 42/500 [00:02<00:27, 16.72it/s]
eval model::   9%|▉         | 44/500 [00:02<00:26, 17.21it/s]
eval model::   9%|▉         | 46/500 [00:02<00:27, 16.42it/s]
eval model::  10%|▉         | 49/500 [00:02<00:26, 17.27it/s]
eval model::  10%|█         | 51/500 [00:02<00:27, 16.22it/s]
eval model::  11%|█         | 54/500 [00:03<00:24, 18.25it/s]
eval model::  11%|█▏        | 57/500 [00:03<00:22, 19.57it/s]
eval model::  12%|█▏        | 60/500 [00:03<00:21, 20.86it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:27, 15.65it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:24, 18.03it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:19, 21.72it/s]
eval model::  15%|█▍        | 73/500 [00:04<00:20, 21.22it/s]
eval model::  15%|█▌        | 76/500 [00:04<00:19, 21.96it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:19, 21.49it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:18, 22.60it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:18, 22.64it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:20, 19.96it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:24, 16.83it/s]
eval model::  19%|█▊        | 93/500 [00:05<00:24, 16.49it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:22, 18.19it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:20, 19.90it/s]
eval model::  20%|██        | 102/500 [00:05<00:19, 20.23it/s]
eval model::  21%|██        | 106/500 [00:05<00:17, 22.57it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:17, 22.31it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:17, 22.39it/s]
eval model::  23%|██▎       | 115/500 [00:06<00:19, 19.55it/s]
eval model::  24%|██▎       | 118/500 [00:06<00:18, 20.52it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:21, 17.94it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:20, 18.62it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:20, 18.59it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:19, 19.11it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:20, 18.41it/s]
eval model::  27%|██▋       | 133/500 [00:07<00:21, 17.06it/s]
eval model::  27%|██▋       | 136/500 [00:07<00:19, 18.42it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:18, 19.49it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:19, 18.26it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:17, 19.99it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:20, 17.28it/s]
eval model::  30%|███       | 150/500 [00:08<00:18, 18.56it/s]
eval model::  30%|███       | 152/500 [00:08<00:19, 18.15it/s]
eval model::  31%|███       | 155/500 [00:08<00:17, 20.08it/s]
eval model::  32%|███▏      | 158/500 [00:08<00:15, 22.32it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:22, 15.16it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:22, 15.32it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:19, 17.13it/s]
eval model::  34%|███▎      | 168/500 [00:09<00:19, 17.46it/s]
eval model::  34%|███▍      | 171/500 [00:09<00:17, 18.99it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:20, 15.98it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:20, 16.19it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:18, 17.68it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:20, 15.58it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:19, 16.40it/s]
eval model::  37%|███▋      | 186/500 [00:10<00:17, 17.63it/s]
eval model::  38%|███▊      | 188/500 [00:10<00:17, 17.82it/s]
eval model::  38%|███▊      | 190/500 [00:10<00:17, 17.30it/s]
eval model::  39%|███▊      | 193/500 [00:10<00:16, 19.16it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:16, 18.22it/s]
eval model::  39%|███▉      | 197/500 [00:10<00:16, 17.91it/s]
eval model::  40%|████      | 200/500 [00:10<00:14, 20.12it/s]
eval model::  41%|████      | 203/500 [00:10<00:13, 21.69it/s]
eval model::  41%|████      | 206/500 [00:11<00:19, 14.90it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:20, 13.99it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:21, 13.51it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:19, 15.06it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:22, 12.84it/s]
eval model::  43%|████▎     | 217/500 [00:12<00:22, 12.83it/s]
eval model::  44%|████▍     | 219/500 [00:12<00:19, 14.08it/s]
eval model::  44%|████▍     | 221/500 [00:12<00:23, 12.09it/s]
eval model::  45%|████▍     | 223/500 [00:12<00:20, 13.51it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:17, 15.23it/s]
eval model::  46%|████▌     | 229/500 [00:12<00:14, 18.21it/s]
eval model::  46%|████▋     | 232/500 [00:12<00:12, 20.71it/s]
eval model::  47%|████▋     | 235/500 [00:13<00:12, 20.68it/s]
eval model::  48%|████▊     | 238/500 [00:13<00:11, 22.01it/s]
eval model::  48%|████▊     | 241/500 [00:13<00:12, 21.51it/s]
eval model::  49%|████▉     | 244/500 [00:13<00:16, 15.65it/s]
eval model::  49%|████▉     | 247/500 [00:13<00:14, 17.10it/s]
eval model::  50%|█████     | 250/500 [00:13<00:13, 18.34it/s]
eval model::  51%|█████     | 253/500 [00:14<00:12, 20.17it/s]
eval model::  51%|█████     | 256/500 [00:14<00:12, 19.28it/s]
eval model::  52%|█████▏    | 259/500 [00:14<00:11, 21.37it/s]
eval model::  52%|█████▏    | 262/500 [00:14<00:10, 23.21it/s]
eval model::  53%|█████▎    | 265/500 [00:14<00:10, 22.28it/s]
eval model::  54%|█████▎    | 268/500 [00:14<00:10, 21.74it/s]
eval model::  54%|█████▍    | 271/500 [00:14<00:11, 19.87it/s]
eval model::  55%|█████▍    | 274/500 [00:15<00:10, 20.99it/s]
eval model::  55%|█████▌    | 277/500 [00:15<00:11, 19.23it/s]
eval model::  56%|█████▌    | 280/500 [00:15<00:11, 19.96it/s]
eval model::  57%|█████▋    | 283/500 [00:15<00:10, 20.75it/s]
eval model::  57%|█████▋    | 286/500 [00:15<00:16, 12.92it/s]
eval model::  58%|█████▊    | 289/500 [00:16<00:13, 15.29it/s]
eval model::  58%|█████▊    | 292/500 [00:16<00:12, 16.90it/s]
eval model::  59%|█████▉    | 295/500 [00:16<00:15, 13.35it/s]
eval model::  60%|█████▉    | 299/500 [00:16<00:11, 16.90it/s]
eval model::  60%|██████    | 302/500 [00:16<00:11, 16.60it/s]
eval model::  61%|██████    | 304/500 [00:16<00:11, 16.67it/s]
eval model::  61%|██████▏   | 307/500 [00:17<00:10, 18.17it/s]
eval model::  62%|██████▏   | 310/500 [00:17<00:10, 18.47it/s]
eval model::  62%|██████▏   | 312/500 [00:17<00:10, 18.07it/s]
eval model::  63%|██████▎   | 315/500 [00:17<00:09, 19.05it/s]
eval model::  64%|██████▎   | 318/500 [00:17<00:09, 19.89it/s]
eval model::  64%|██████▍   | 321/500 [00:17<00:08, 19.98it/s]
eval model::  65%|██████▍   | 324/500 [00:17<00:08, 19.98it/s]
eval model::  65%|██████▌   | 327/500 [00:18<00:08, 20.36it/s]
eval model::  66%|██████▌   | 330/500 [00:18<00:08, 19.26it/s]
eval model::  67%|██████▋   | 333/500 [00:18<00:08, 20.06it/s]
eval model::  67%|██████▋   | 336/500 [00:18<00:08, 19.69it/s]
eval model::  68%|██████▊   | 338/500 [00:18<00:08, 18.10it/s]
eval model::  68%|██████▊   | 340/500 [00:18<00:10, 14.69it/s]
eval model::  69%|██████▊   | 343/500 [00:19<00:09, 16.58it/s]
eval model::  69%|██████▉   | 346/500 [00:19<00:08, 17.87it/s]
eval model::  70%|██████▉   | 349/500 [00:19<00:07, 19.93it/s]
eval model::  70%|███████   | 352/500 [00:19<00:07, 20.33it/s]
eval model::  71%|███████   | 355/500 [00:19<00:07, 19.75it/s]
eval model::  72%|███████▏  | 358/500 [00:19<00:07, 19.95it/s]
eval model::  72%|███████▏  | 361/500 [00:19<00:07, 18.07it/s]
eval model::  73%|███████▎  | 364/500 [00:20<00:07, 17.19it/s]
eval model::  73%|███████▎  | 366/500 [00:20<00:07, 17.41it/s]
eval model::  74%|███████▍  | 369/500 [00:20<00:07, 18.51it/s]
eval model::  74%|███████▍  | 372/500 [00:20<00:06, 19.93it/s]
eval model::  75%|███████▌  | 375/500 [00:20<00:05, 21.03it/s]
eval model::  76%|███████▌  | 378/500 [00:20<00:05, 22.51it/s]
eval model::  76%|███████▌  | 381/500 [00:20<00:05, 22.44it/s]
eval model::  77%|███████▋  | 384/500 [00:20<00:04, 24.26it/s]
eval model::  77%|███████▋  | 387/500 [00:21<00:08, 13.59it/s]
eval model::  78%|███████▊  | 389/500 [00:21<00:07, 14.64it/s]
eval model::  78%|███████▊  | 391/500 [00:21<00:07, 15.51it/s]
eval model::  79%|███████▊  | 393/500 [00:21<00:07, 15.15it/s]
eval model::  79%|███████▉  | 395/500 [00:21<00:06, 15.71it/s]
eval model::  80%|███████▉  | 398/500 [00:22<00:05, 18.10it/s]
eval model::  80%|████████  | 400/500 [00:22<00:06, 16.07it/s]
eval model::  81%|████████  | 403/500 [00:22<00:05, 17.87it/s]
eval model::  81%|████████  | 406/500 [00:22<00:04, 19.05it/s]
eval model::  82%|████████▏ | 409/500 [00:22<00:04, 21.61it/s]
eval model::  82%|████████▏ | 412/500 [00:22<00:03, 22.38it/s]
eval model::  83%|████████▎ | 415/500 [00:22<00:04, 20.72it/s]
eval model::  84%|████████▎ | 418/500 [00:23<00:04, 19.68it/s]
eval model::  84%|████████▍ | 421/500 [00:23<00:06, 13.10it/s]
eval model::  85%|████████▍ | 424/500 [00:23<00:05, 14.59it/s]
eval model::  85%|████████▌ | 426/500 [00:23<00:05, 14.37it/s]
eval model::  86%|████████▌ | 428/500 [00:23<00:04, 15.27it/s]
eval model::  86%|████████▌ | 430/500 [00:23<00:04, 15.54it/s]
eval model::  86%|████████▋ | 432/500 [00:24<00:04, 16.23it/s]
eval model::  87%|████████▋ | 435/500 [00:24<00:03, 18.90it/s]
eval model::  88%|████████▊ | 438/500 [00:24<00:02, 20.71it/s]
eval model::  88%|████████▊ | 441/500 [00:24<00:03, 19.25it/s]
eval model::  89%|████████▉ | 444/500 [00:24<00:02, 20.86it/s]
eval model::  89%|████████▉ | 447/500 [00:24<00:02, 20.85it/s]
eval model::  90%|█████████ | 450/500 [00:24<00:02, 18.63it/s]
eval model::  91%|█████████ | 453/500 [00:25<00:02, 20.13it/s]
eval model::  91%|█████████ | 456/500 [00:25<00:02, 21.36it/s]
eval model::  92%|█████████▏| 459/500 [00:25<00:02, 20.26it/s]
eval model::  92%|█████████▏| 462/500 [00:25<00:02, 16.35it/s]
eval model::  93%|█████████▎| 464/500 [00:25<00:02, 16.76it/s]
eval model::  93%|█████████▎| 466/500 [00:25<00:02, 16.73it/s]
eval model::  94%|█████████▎| 468/500 [00:25<00:01, 17.41it/s]
eval model::  94%|█████████▍| 471/500 [00:26<00:01, 19.17it/s]
eval model::  95%|█████████▍| 473/500 [00:26<00:01, 19.32it/s]
eval model::  95%|█████████▌| 475/500 [00:26<00:01, 18.89it/s]
eval model::  96%|█████████▌| 478/500 [00:26<00:01, 21.26it/s]
eval model::  96%|█████████▌| 481/500 [00:26<00:00, 23.13it/s]
eval model::  97%|█████████▋| 484/500 [00:26<00:00, 22.79it/s]
eval model::  97%|█████████▋| 487/500 [00:26<00:00, 24.00it/s]
eval model::  98%|█████████▊| 490/500 [00:26<00:00, 24.36it/s]
eval model::  99%|█████████▊| 493/500 [00:27<00:00, 22.05it/s]
eval model::  99%|█████████▉| 496/500 [00:27<00:00, 22.74it/s]
eval model:: 100%|██████████| 500/500 [00:27<00:00, 25.11it/s]
eval model:: 100%|██████████| 500/500 [00:27<00:00, 18.34it/s]
[2024/07/27 13:37:09] ppocr INFO: cur metric, precision: 0.7627118644067796, recall: 0.6716417910447762, hmean: 0.7142857142857143, fps: 43.33575316801794
[2024/07/27 13:37:09] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/27 13:37:09] ppocr INFO: best metric, hmean: 0.7142857142857143, precision: 0.7627118644067796, recall: 0.6716417910447762, fps: 43.33575316801794, best_epoch: 740
[2024/07/27 13:37:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:37:18] ppocr INFO: epoch: [741/1500], global_step: 2223, lr: 0.001000, loss: 1.362373, loss_shrink_maps: 0.691373, loss_threshold_maps: 0.532127, loss_binary_maps: 0.137395, avg_reader_cost: 2.14513 s, avg_batch_cost: 2.38204 s, avg_samples: 12.5, ips: 5.24761 samples/s, eta: 5:30:28
[2024/07/27 13:37:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:37:28] ppocr INFO: epoch: [742/1500], global_step: 2226, lr: 0.001000, loss: 1.353238, loss_shrink_maps: 0.686898, loss_threshold_maps: 0.532127, loss_binary_maps: 0.136474, avg_reader_cost: 2.34346 s, avg_batch_cost: 2.58410 s, avg_samples: 12.5, ips: 4.83728 samples/s, eta: 5:30:01
[2024/07/27 13:37:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:37:38] ppocr INFO: epoch: [743/1500], global_step: 2229, lr: 0.001000, loss: 1.373469, loss_shrink_maps: 0.695754, loss_threshold_maps: 0.537944, loss_binary_maps: 0.138296, avg_reader_cost: 2.09766 s, avg_batch_cost: 2.52708 s, avg_samples: 12.5, ips: 4.94641 samples/s, eta: 5:29:34
[2024/07/27 13:37:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:37:46] ppocr INFO: epoch: [744/1500], global_step: 2230, lr: 0.001000, loss: 1.373469, loss_shrink_maps: 0.695754, loss_threshold_maps: 0.539541, loss_binary_maps: 0.138296, avg_reader_cost: 0.72523 s, avg_batch_cost: 0.82140 s, avg_samples: 4.8, ips: 5.84366 samples/s, eta: 5:29:25
[2024/07/27 13:37:48] ppocr INFO: epoch: [744/1500], global_step: 2232, lr: 0.001000, loss: 1.382242, loss_shrink_maps: 0.698318, loss_threshold_maps: 0.539541, loss_binary_maps: 0.138979, avg_reader_cost: 1.73464 s, avg_batch_cost: 1.88149 s, avg_samples: 7.7, ips: 4.09249 samples/s, eta: 5:29:09
[2024/07/27 13:37:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:37:57] ppocr INFO: epoch: [745/1500], global_step: 2235, lr: 0.001000, loss: 1.368193, loss_shrink_maps: 0.698318, loss_threshold_maps: 0.528313, loss_binary_maps: 0.138979, avg_reader_cost: 2.25676 s, avg_batch_cost: 2.60864 s, avg_samples: 12.5, ips: 4.79177 samples/s, eta: 5:28:43
[2024/07/27 13:37:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:38:07] ppocr INFO: epoch: [746/1500], global_step: 2238, lr: 0.001000, loss: 1.383972, loss_shrink_maps: 0.705716, loss_threshold_maps: 0.534402, loss_binary_maps: 0.140349, avg_reader_cost: 2.33167 s, avg_batch_cost: 2.57094 s, avg_samples: 12.5, ips: 4.86203 samples/s, eta: 5:28:16
[2024/07/27 13:38:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:38:16] ppocr INFO: epoch: [747/1500], global_step: 2240, lr: 0.001000, loss: 1.383972, loss_shrink_maps: 0.705716, loss_threshold_maps: 0.538452, loss_binary_maps: 0.140349, avg_reader_cost: 1.27618 s, avg_batch_cost: 1.64307 s, avg_samples: 9.6, ips: 5.84273 samples/s, eta: 5:27:58
[2024/07/27 13:38:17] ppocr INFO: epoch: [747/1500], global_step: 2241, lr: 0.001000, loss: 1.369786, loss_shrink_maps: 0.698318, loss_threshold_maps: 0.534402, loss_binary_maps: 0.138979, avg_reader_cost: 0.86769 s, avg_batch_cost: 0.92377 s, avg_samples: 2.9, ips: 3.13932 samples/s, eta: 5:27:50
[2024/07/27 13:38:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:38:27] ppocr INFO: epoch: [748/1500], global_step: 2244, lr: 0.001000, loss: 1.372734, loss_shrink_maps: 0.719784, loss_threshold_maps: 0.532824, loss_binary_maps: 0.143236, avg_reader_cost: 2.41953 s, avg_batch_cost: 2.65213 s, avg_samples: 12.5, ips: 4.71319 samples/s, eta: 5:27:24
[2024/07/27 13:38:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:38:37] ppocr INFO: epoch: [749/1500], global_step: 2247, lr: 0.001000, loss: 1.395385, loss_shrink_maps: 0.729901, loss_threshold_maps: 0.532824, loss_binary_maps: 0.145270, avg_reader_cost: 2.21782 s, avg_batch_cost: 2.61879 s, avg_samples: 12.5, ips: 4.77319 samples/s, eta: 5:26:58
[2024/07/27 13:38:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:38:47] ppocr INFO: epoch: [750/1500], global_step: 2250, lr: 0.001000, loss: 1.372734, loss_shrink_maps: 0.708398, loss_threshold_maps: 0.520221, loss_binary_maps: 0.140213, avg_reader_cost: 2.18937 s, avg_batch_cost: 2.59686 s, avg_samples: 12.5, ips: 4.81351 samples/s, eta: 5:26:32
[2024/07/27 13:38:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:38:57] ppocr INFO: epoch: [751/1500], global_step: 2253, lr: 0.001000, loss: 1.372734, loss_shrink_maps: 0.708398, loss_threshold_maps: 0.517996, loss_binary_maps: 0.140213, avg_reader_cost: 2.41097 s, avg_batch_cost: 2.65105 s, avg_samples: 12.5, ips: 4.71511 samples/s, eta: 5:26:06
[2024/07/27 13:38:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:39:06] ppocr INFO: epoch: [752/1500], global_step: 2256, lr: 0.001000, loss: 1.372596, loss_shrink_maps: 0.710579, loss_threshold_maps: 0.518687, loss_binary_maps: 0.141192, avg_reader_cost: 2.20645 s, avg_batch_cost: 2.56160 s, avg_samples: 12.5, ips: 4.87975 samples/s, eta: 5:25:39
[2024/07/27 13:39:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:39:16] ppocr INFO: epoch: [753/1500], global_step: 2259, lr: 0.001000, loss: 1.383744, loss_shrink_maps: 0.724471, loss_threshold_maps: 0.524783, loss_binary_maps: 0.144382, avg_reader_cost: 2.33878 s, avg_batch_cost: 2.58497 s, avg_samples: 12.5, ips: 4.83564 samples/s, eta: 5:25:13
[2024/07/27 13:39:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:39:24] ppocr INFO: epoch: [754/1500], global_step: 2260, lr: 0.001000, loss: 1.383744, loss_shrink_maps: 0.724471, loss_threshold_maps: 0.518687, loss_binary_maps: 0.144382, avg_reader_cost: 0.55726 s, avg_batch_cost: 0.75041 s, avg_samples: 4.8, ips: 6.39647 samples/s, eta: 5:25:03
[2024/07/27 13:39:26] ppocr INFO: epoch: [754/1500], global_step: 2262, lr: 0.001000, loss: 1.372172, loss_shrink_maps: 0.710579, loss_threshold_maps: 0.524570, loss_binary_maps: 0.141192, avg_reader_cost: 1.59312 s, avg_batch_cost: 1.74044 s, avg_samples: 7.7, ips: 4.42417 samples/s, eta: 5:24:45
[2024/07/27 13:39:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:39:36] ppocr INFO: epoch: [755/1500], global_step: 2265, lr: 0.001000, loss: 1.372172, loss_shrink_maps: 0.710579, loss_threshold_maps: 0.532494, loss_binary_maps: 0.141192, avg_reader_cost: 2.36602 s, avg_batch_cost: 2.60332 s, avg_samples: 12.5, ips: 4.80156 samples/s, eta: 5:24:19
[2024/07/27 13:39:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:39:46] ppocr INFO: epoch: [756/1500], global_step: 2268, lr: 0.001000, loss: 1.323145, loss_shrink_maps: 0.673677, loss_threshold_maps: 0.524570, loss_binary_maps: 0.134515, avg_reader_cost: 2.26522 s, avg_batch_cost: 2.66258 s, avg_samples: 12.5, ips: 4.69469 samples/s, eta: 5:23:54
[2024/07/27 13:39:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:39:55] ppocr INFO: epoch: [757/1500], global_step: 2270, lr: 0.001000, loss: 1.323145, loss_shrink_maps: 0.673677, loss_threshold_maps: 0.524570, loss_binary_maps: 0.134515, avg_reader_cost: 1.31631 s, avg_batch_cost: 1.61299 s, avg_samples: 9.6, ips: 5.95167 samples/s, eta: 5:23:35
[2024/07/27 13:39:55] ppocr INFO: epoch: [757/1500], global_step: 2271, lr: 0.001000, loss: 1.344811, loss_shrink_maps: 0.673844, loss_threshold_maps: 0.532494, loss_binary_maps: 0.133827, avg_reader_cost: 0.85274 s, avg_batch_cost: 0.90863 s, avg_samples: 2.9, ips: 3.19163 samples/s, eta: 5:23:27
[2024/07/27 13:39:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:40:05] ppocr INFO: epoch: [758/1500], global_step: 2274, lr: 0.001000, loss: 1.307874, loss_shrink_maps: 0.657161, loss_threshold_maps: 0.525476, loss_binary_maps: 0.130935, avg_reader_cost: 2.25684 s, avg_batch_cost: 2.64556 s, avg_samples: 12.5, ips: 4.72490 samples/s, eta: 5:23:01
[2024/07/27 13:40:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:40:15] ppocr INFO: epoch: [759/1500], global_step: 2277, lr: 0.001000, loss: 1.307874, loss_shrink_maps: 0.657161, loss_threshold_maps: 0.533844, loss_binary_maps: 0.130935, avg_reader_cost: 2.36560 s, avg_batch_cost: 2.60659 s, avg_samples: 12.5, ips: 4.79553 samples/s, eta: 5:22:35
[2024/07/27 13:40:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:40:25] ppocr INFO: epoch: [760/1500], global_step: 2280, lr: 0.001000, loss: 1.310020, loss_shrink_maps: 0.657161, loss_threshold_maps: 0.533844, loss_binary_maps: 0.130935, avg_reader_cost: 2.32775 s, avg_batch_cost: 2.57162 s, avg_samples: 12.5, ips: 4.86076 samples/s, eta: 5:22:08

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:57,  8.73it/s]
eval model::   1%|          | 4/500 [00:00<00:28, 17.29it/s]
eval model::   1%|          | 6/500 [00:00<00:31, 15.54it/s]
eval model::   2%|▏         | 8/500 [00:00<00:31, 15.87it/s]
eval model::   2%|▏         | 11/500 [00:00<00:32, 15.11it/s]
eval model::   3%|▎         | 14/500 [00:00<00:30, 16.13it/s]
eval model::   4%|▎         | 18/500 [00:01<00:23, 20.57it/s]
eval model::   4%|▍         | 21/500 [00:01<00:24, 19.28it/s]
eval model::   5%|▍         | 24/500 [00:01<00:24, 19.33it/s]
eval model::   5%|▌         | 26/500 [00:01<00:25, 18.64it/s]
eval model::   6%|▌         | 29/500 [00:01<00:23, 19.77it/s]
eval model::   6%|▋         | 32/500 [00:01<00:26, 17.98it/s]
eval model::   7%|▋         | 34/500 [00:01<00:26, 17.59it/s]
eval model::   7%|▋         | 37/500 [00:02<00:24, 18.60it/s]
eval model::   8%|▊         | 39/500 [00:02<00:29, 15.47it/s]
eval model::   8%|▊         | 41/500 [00:02<00:29, 15.79it/s]
eval model::   9%|▊         | 43/500 [00:02<00:30, 15.15it/s]
eval model::   9%|▉         | 46/500 [00:02<00:29, 15.39it/s]
eval model::  10%|▉         | 49/500 [00:02<00:24, 18.47it/s]
eval model::  10%|█         | 52/500 [00:02<00:22, 20.00it/s]
eval model::  11%|█         | 55/500 [00:03<00:20, 21.48it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:21, 20.92it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:26, 16.82it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:27, 15.89it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:23, 18.28it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:20, 20.70it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:20, 21.07it/s]
eval model::  15%|█▌        | 75/500 [00:04<00:20, 20.61it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:22, 18.53it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:21, 19.69it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:23, 17.71it/s]
eval model::  17%|█▋        | 86/500 [00:04<00:23, 17.68it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:25, 15.91it/s]
eval model::  18%|█▊        | 90/500 [00:05<00:29, 14.10it/s]
eval model::  19%|█▊        | 93/500 [00:05<00:26, 15.56it/s]
eval model::  19%|█▉        | 95/500 [00:05<00:25, 16.19it/s]
eval model::  20%|█▉        | 98/500 [00:05<00:22, 18.02it/s]
eval model::  20%|██        | 100/500 [00:05<00:22, 17.85it/s]
eval model::  21%|██        | 103/500 [00:05<00:19, 20.21it/s]
eval model::  21%|██        | 106/500 [00:05<00:18, 21.02it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:17, 22.54it/s]
eval model::  22%|██▏       | 112/500 [00:06<00:18, 21.16it/s]
eval model::  23%|██▎       | 115/500 [00:06<00:18, 20.96it/s]
eval model::  24%|██▎       | 118/500 [00:06<00:17, 22.39it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:18, 19.95it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:18, 19.88it/s]
eval model::  25%|██▌       | 127/500 [00:06<00:18, 20.05it/s]
eval model::  26%|██▌       | 130/500 [00:07<00:19, 18.92it/s]
eval model::  26%|██▋       | 132/500 [00:07<00:20, 17.58it/s]
eval model::  27%|██▋       | 135/500 [00:07<00:18, 19.51it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:18, 19.76it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:18, 19.52it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:17, 20.89it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:18, 18.85it/s]
eval model::  30%|███       | 150/500 [00:08<00:17, 20.02it/s]
eval model::  31%|███       | 153/500 [00:08<00:17, 19.47it/s]
eval model::  31%|███▏      | 157/500 [00:08<00:14, 23.02it/s]
eval model::  32%|███▏      | 160/500 [00:08<00:22, 14.92it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:20, 16.20it/s]
eval model::  33%|███▎      | 166/500 [00:09<00:18, 17.71it/s]
eval model::  34%|███▍      | 169/500 [00:09<00:18, 17.63it/s]
eval model::  34%|███▍      | 172/500 [00:09<00:17, 18.57it/s]
eval model::  35%|███▌      | 175/500 [00:09<00:18, 17.80it/s]
eval model::  36%|███▌      | 178/500 [00:09<00:16, 19.23it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:18, 17.18it/s]
eval model::  37%|███▋      | 184/500 [00:10<00:17, 18.57it/s]
eval model::  37%|███▋      | 187/500 [00:10<00:16, 18.76it/s]
eval model::  38%|███▊      | 190/500 [00:10<00:16, 19.15it/s]
eval model::  39%|███▊      | 193/500 [00:10<00:15, 20.33it/s]
eval model::  39%|███▉      | 196/500 [00:10<00:15, 19.23it/s]
eval model::  40%|███▉      | 199/500 [00:10<00:14, 20.72it/s]
eval model::  40%|████      | 202/500 [00:10<00:13, 21.98it/s]
eval model::  41%|████      | 205/500 [00:11<00:21, 14.02it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:19, 14.99it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:19, 15.09it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:17, 16.59it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:18, 15.27it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:18, 15.18it/s]
eval model::  44%|████▍     | 220/500 [00:12<00:16, 17.27it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:18, 14.99it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:15, 18.01it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:12, 21.90it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:11, 22.43it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:11, 22.71it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:10, 23.99it/s]
eval model::  48%|████▊     | 242/500 [00:13<00:13, 18.67it/s]
eval model::  49%|████▉     | 245/500 [00:13<00:12, 19.94it/s]
eval model::  50%|████▉     | 248/500 [00:13<00:12, 19.56it/s]
eval model::  50%|█████     | 251/500 [00:13<00:12, 19.18it/s]
eval model::  51%|█████     | 254/500 [00:13<00:12, 20.15it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:11, 21.48it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:10, 23.45it/s]
eval model::  53%|█████▎    | 263/500 [00:14<00:10, 21.64it/s]
eval model::  53%|█████▎    | 266/500 [00:14<00:11, 19.79it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:12, 18.35it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:11, 20.09it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:11, 18.82it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:11, 20.16it/s]
eval model::  56%|█████▌    | 281/500 [00:15<00:10, 20.29it/s]
eval model::  57%|█████▋    | 284/500 [00:15<00:10, 20.90it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:17, 12.16it/s]
eval model::  58%|█████▊    | 290/500 [00:15<00:14, 14.64it/s]
eval model::  59%|█████▊    | 293/500 [00:15<00:13, 15.87it/s]
eval model::  59%|█████▉    | 296/500 [00:16<00:14, 14.26it/s]
eval model::  60%|██████    | 300/500 [00:16<00:12, 16.02it/s]
eval model::  61%|██████    | 303/500 [00:16<00:11, 17.76it/s]
eval model::  61%|██████    | 306/500 [00:16<00:11, 17.64it/s]
eval model::  62%|██████▏   | 309/500 [00:16<00:10, 18.41it/s]
eval model::  62%|██████▏   | 312/500 [00:16<00:09, 20.22it/s]
eval model::  63%|██████▎   | 315/500 [00:17<00:08, 21.04it/s]
eval model::  64%|██████▎   | 318/500 [00:17<00:07, 23.05it/s]
eval model::  64%|██████▍   | 321/500 [00:17<00:08, 20.66it/s]
eval model::  65%|██████▍   | 324/500 [00:17<00:09, 18.40it/s]
eval model::  65%|██████▌   | 327/500 [00:17<00:08, 19.80it/s]
eval model::  66%|██████▌   | 330/500 [00:17<00:08, 19.86it/s]
eval model::  67%|██████▋   | 333/500 [00:18<00:08, 19.99it/s]
eval model::  67%|██████▋   | 336/500 [00:18<00:08, 20.07it/s]
eval model::  68%|██████▊   | 339/500 [00:18<00:08, 18.54it/s]
eval model::  68%|██████▊   | 341/500 [00:18<00:11, 14.23it/s]
eval model::  69%|██████▉   | 344/500 [00:18<00:09, 16.58it/s]
eval model::  69%|██████▉   | 347/500 [00:18<00:08, 17.99it/s]
eval model::  70%|███████   | 351/500 [00:19<00:07, 20.78it/s]
eval model::  71%|███████   | 354/500 [00:19<00:06, 22.40it/s]
eval model::  71%|███████▏  | 357/500 [00:19<00:07, 19.93it/s]
eval model::  72%|███████▏  | 360/500 [00:19<00:06, 20.69it/s]
eval model::  73%|███████▎  | 363/500 [00:19<00:06, 20.25it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:07, 19.06it/s]
eval model::  74%|███████▍  | 369/500 [00:19<00:06, 20.26it/s]
eval model::  74%|███████▍  | 372/500 [00:20<00:06, 20.40it/s]
eval model::  75%|███████▌  | 375/500 [00:20<00:06, 18.95it/s]
eval model::  76%|███████▌  | 378/500 [00:20<00:05, 20.38it/s]
eval model::  76%|███████▌  | 381/500 [00:20<00:06, 17.47it/s]
eval model::  77%|███████▋  | 384/500 [00:20<00:06, 18.55it/s]
eval model::  77%|███████▋  | 386/500 [00:21<00:10, 10.97it/s]
eval model::  78%|███████▊  | 389/500 [00:21<00:08, 13.54it/s]
eval model::  78%|███████▊  | 392/500 [00:21<00:07, 14.90it/s]
eval model::  79%|███████▉  | 395/500 [00:21<00:06, 17.14it/s]
eval model::  80%|███████▉  | 398/500 [00:21<00:05, 19.17it/s]
eval model::  80%|████████  | 401/500 [00:21<00:05, 17.73it/s]
eval model::  81%|████████  | 404/500 [00:21<00:04, 19.68it/s]
eval model::  81%|████████▏ | 407/500 [00:22<00:04, 20.45it/s]
eval model::  82%|████████▏ | 410/500 [00:22<00:04, 21.31it/s]
eval model::  83%|████████▎ | 413/500 [00:22<00:04, 20.89it/s]
eval model::  83%|████████▎ | 416/500 [00:22<00:04, 19.53it/s]
eval model::  84%|████████▍ | 419/500 [00:22<00:04, 18.47it/s]
eval model::  84%|████████▍ | 421/500 [00:23<00:05, 13.17it/s]
eval model::  85%|████████▍ | 424/500 [00:23<00:05, 14.11it/s]
eval model::  85%|████████▌ | 426/500 [00:23<00:05, 14.70it/s]
eval model::  86%|████████▌ | 429/500 [00:23<00:04, 17.58it/s]
eval model::  86%|████████▌ | 431/500 [00:23<00:04, 17.02it/s]
eval model::  87%|████████▋ | 435/500 [00:23<00:03, 20.66it/s]
eval model::  88%|████████▊ | 438/500 [00:23<00:02, 22.32it/s]
eval model::  88%|████████▊ | 441/500 [00:23<00:02, 21.75it/s]
eval model::  89%|████████▉ | 444/500 [00:24<00:02, 23.62it/s]
eval model::  89%|████████▉ | 447/500 [00:24<00:02, 23.88it/s]
eval model::  90%|█████████ | 450/500 [00:24<00:02, 21.29it/s]
eval model::  91%|█████████ | 453/500 [00:24<00:02, 22.87it/s]
eval model::  91%|█████████ | 456/500 [00:24<00:01, 23.40it/s]
eval model::  92%|█████████▏| 459/500 [00:24<00:01, 23.35it/s]
eval model::  92%|█████████▏| 462/500 [00:24<00:02, 17.95it/s]
eval model::  93%|█████████▎| 465/500 [00:25<00:02, 16.53it/s]
eval model::  93%|█████████▎| 467/500 [00:25<00:01, 17.02it/s]
eval model::  94%|█████████▍| 470/500 [00:25<00:01, 19.53it/s]
eval model::  95%|█████████▍| 473/500 [00:25<00:01, 20.36it/s]
eval model::  95%|█████████▌| 476/500 [00:25<00:01, 20.30it/s]
eval model::  96%|█████████▌| 479/500 [00:25<00:00, 21.26it/s]
eval model::  96%|█████████▋| 482/500 [00:25<00:00, 19.84it/s]
eval model::  97%|█████████▋| 485/500 [00:26<00:00, 21.91it/s]
eval model::  98%|█████████▊| 488/500 [00:26<00:00, 21.97it/s]
eval model::  98%|█████████▊| 491/500 [00:26<00:00, 21.41it/s]
eval model::  99%|█████████▉| 494/500 [00:26<00:00, 20.34it/s]
eval model::  99%|█████████▉| 497/500 [00:26<00:00, 20.93it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 21.29it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.64it/s]
[2024/07/27 13:40:52] ppocr INFO: cur metric, precision: 0.7556512378902045, recall: 0.6759749638902263, hmean: 0.7135959339263024, fps: 45.444833450798015
[2024/07/27 13:40:52] ppocr INFO: best metric, hmean: 0.7142857142857143, precision: 0.7627118644067796, recall: 0.6716417910447762, fps: 43.33575316801794, best_epoch: 740
[2024/07/27 13:40:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:41:01] ppocr INFO: epoch: [761/1500], global_step: 2283, lr: 0.001000, loss: 1.302773, loss_shrink_maps: 0.645857, loss_threshold_maps: 0.523027, loss_binary_maps: 0.128722, avg_reader_cost: 2.11312 s, avg_batch_cost: 2.47911 s, avg_samples: 12.5, ips: 5.04214 samples/s, eta: 5:21:41
[2024/07/27 13:41:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:41:11] ppocr INFO: epoch: [762/1500], global_step: 2286, lr: 0.001000, loss: 1.317220, loss_shrink_maps: 0.657161, loss_threshold_maps: 0.521656, loss_binary_maps: 0.130935, avg_reader_cost: 2.21479 s, avg_batch_cost: 2.59287 s, avg_samples: 12.5, ips: 4.82092 samples/s, eta: 5:21:14
[2024/07/27 13:41:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:41:21] ppocr INFO: epoch: [763/1500], global_step: 2289, lr: 0.001000, loss: 1.317220, loss_shrink_maps: 0.657161, loss_threshold_maps: 0.521656, loss_binary_maps: 0.130935, avg_reader_cost: 2.45592 s, avg_batch_cost: 2.70173 s, avg_samples: 12.5, ips: 4.62667 samples/s, eta: 5:20:49
[2024/07/27 13:41:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:41:29] ppocr INFO: epoch: [764/1500], global_step: 2290, lr: 0.001000, loss: 1.317220, loss_shrink_maps: 0.657161, loss_threshold_maps: 0.521656, loss_binary_maps: 0.130935, avg_reader_cost: 0.55675 s, avg_batch_cost: 0.80983 s, avg_samples: 4.8, ips: 5.92714 samples/s, eta: 5:20:40
[2024/07/27 13:41:31] ppocr INFO: epoch: [764/1500], global_step: 2292, lr: 0.001000, loss: 1.325607, loss_shrink_maps: 0.667958, loss_threshold_maps: 0.519836, loss_binary_maps: 0.132418, avg_reader_cost: 1.71140 s, avg_batch_cost: 1.85833 s, avg_samples: 7.7, ips: 4.14352 samples/s, eta: 5:20:24
[2024/07/27 13:41:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:41:40] ppocr INFO: epoch: [765/1500], global_step: 2295, lr: 0.001000, loss: 1.336895, loss_shrink_maps: 0.679370, loss_threshold_maps: 0.521207, loss_binary_maps: 0.134669, avg_reader_cost: 2.29374 s, avg_batch_cost: 2.52694 s, avg_samples: 12.5, ips: 4.94669 samples/s, eta: 5:19:57
[2024/07/27 13:41:41] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:41:50] ppocr INFO: epoch: [766/1500], global_step: 2298, lr: 0.001000, loss: 1.336895, loss_shrink_maps: 0.679370, loss_threshold_maps: 0.514758, loss_binary_maps: 0.134669, avg_reader_cost: 2.36618 s, avg_batch_cost: 2.60631 s, avg_samples: 12.5, ips: 4.79606 samples/s, eta: 5:19:31
[2024/07/27 13:41:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:42:00] ppocr INFO: epoch: [767/1500], global_step: 2300, lr: 0.001000, loss: 1.325607, loss_shrink_maps: 0.659728, loss_threshold_maps: 0.508156, loss_binary_maps: 0.130744, avg_reader_cost: 1.38186 s, avg_batch_cost: 1.71223 s, avg_samples: 9.6, ips: 5.60672 samples/s, eta: 5:19:13
[2024/07/27 13:42:00] ppocr INFO: epoch: [767/1500], global_step: 2301, lr: 0.001000, loss: 1.336895, loss_shrink_maps: 0.679370, loss_threshold_maps: 0.508156, loss_binary_maps: 0.134669, avg_reader_cost: 0.90240 s, avg_batch_cost: 0.95827 s, avg_samples: 2.9, ips: 3.02630 samples/s, eta: 5:19:05
[2024/07/27 13:42:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:42:10] ppocr INFO: epoch: [768/1500], global_step: 2304, lr: 0.001000, loss: 1.336895, loss_shrink_maps: 0.679370, loss_threshold_maps: 0.508156, loss_binary_maps: 0.134669, avg_reader_cost: 2.35678 s, avg_batch_cost: 2.59877 s, avg_samples: 12.5, ips: 4.80997 samples/s, eta: 5:18:39
[2024/07/27 13:42:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:42:20] ppocr INFO: epoch: [769/1500], global_step: 2307, lr: 0.001000, loss: 1.333692, loss_shrink_maps: 0.692216, loss_threshold_maps: 0.508156, loss_binary_maps: 0.137986, avg_reader_cost: 2.35490 s, avg_batch_cost: 2.60937 s, avg_samples: 12.5, ips: 4.79043 samples/s, eta: 5:18:13
[2024/07/27 13:42:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:42:30] ppocr INFO: epoch: [770/1500], global_step: 2310, lr: 0.001000, loss: 1.321404, loss_shrink_maps: 0.680065, loss_threshold_maps: 0.493714, loss_binary_maps: 0.135078, avg_reader_cost: 2.42994 s, avg_batch_cost: 2.67862 s, avg_samples: 12.5, ips: 4.66659 samples/s, eta: 5:17:47
[2024/07/27 13:42:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:42:40] ppocr INFO: epoch: [771/1500], global_step: 2313, lr: 0.001000, loss: 1.307244, loss_shrink_maps: 0.676019, loss_threshold_maps: 0.492140, loss_binary_maps: 0.134281, avg_reader_cost: 2.24933 s, avg_batch_cost: 2.51302 s, avg_samples: 12.5, ips: 4.97409 samples/s, eta: 5:17:20
[2024/07/27 13:42:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:42:50] ppocr INFO: epoch: [772/1500], global_step: 2316, lr: 0.001000, loss: 1.284238, loss_shrink_maps: 0.642678, loss_threshold_maps: 0.491171, loss_binary_maps: 0.127661, avg_reader_cost: 2.39418 s, avg_batch_cost: 2.63484 s, avg_samples: 12.5, ips: 4.74412 samples/s, eta: 5:16:54
[2024/07/27 13:42:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:43:00] ppocr INFO: epoch: [773/1500], global_step: 2319, lr: 0.001000, loss: 1.288594, loss_shrink_maps: 0.647888, loss_threshold_maps: 0.491171, loss_binary_maps: 0.128714, avg_reader_cost: 2.23840 s, avg_batch_cost: 2.60485 s, avg_samples: 12.5, ips: 4.79874 samples/s, eta: 5:16:28
[2024/07/27 13:43:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:43:08] ppocr INFO: epoch: [774/1500], global_step: 2320, lr: 0.001000, loss: 1.289417, loss_shrink_maps: 0.658377, loss_threshold_maps: 0.492140, loss_binary_maps: 0.131247, avg_reader_cost: 0.55489 s, avg_batch_cost: 0.78926 s, avg_samples: 4.8, ips: 6.08162 samples/s, eta: 5:16:18
[2024/07/27 13:43:09] ppocr INFO: epoch: [774/1500], global_step: 2322, lr: 0.001000, loss: 1.289417, loss_shrink_maps: 0.657839, loss_threshold_maps: 0.507100, loss_binary_maps: 0.130440, avg_reader_cost: 1.67070 s, avg_batch_cost: 1.81806 s, avg_samples: 7.7, ips: 4.23527 samples/s, eta: 5:16:02
[2024/07/27 13:43:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:43:19] ppocr INFO: epoch: [775/1500], global_step: 2325, lr: 0.001000, loss: 1.306293, loss_shrink_maps: 0.676019, loss_threshold_maps: 0.519884, loss_binary_maps: 0.134281, avg_reader_cost: 2.38080 s, avg_batch_cost: 2.62006 s, avg_samples: 12.5, ips: 4.77089 samples/s, eta: 5:15:36
[2024/07/27 13:43:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:43:29] ppocr INFO: epoch: [776/1500], global_step: 2328, lr: 0.001000, loss: 1.306293, loss_shrink_maps: 0.670644, loss_threshold_maps: 0.521930, loss_binary_maps: 0.132981, avg_reader_cost: 2.31246 s, avg_batch_cost: 2.69061 s, avg_samples: 12.5, ips: 4.64579 samples/s, eta: 5:15:10
[2024/07/27 13:43:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:43:38] ppocr INFO: epoch: [777/1500], global_step: 2330, lr: 0.001000, loss: 1.312800, loss_shrink_maps: 0.678526, loss_threshold_maps: 0.522664, loss_binary_maps: 0.134492, avg_reader_cost: 1.34728 s, avg_batch_cost: 1.53313 s, avg_samples: 9.6, ips: 6.26170 samples/s, eta: 5:14:51
[2024/07/27 13:43:38] ppocr INFO: epoch: [777/1500], global_step: 2331, lr: 0.001000, loss: 1.333119, loss_shrink_maps: 0.692445, loss_threshold_maps: 0.522664, loss_binary_maps: 0.137446, avg_reader_cost: 0.81294 s, avg_batch_cost: 0.86846 s, avg_samples: 2.9, ips: 3.33923 samples/s, eta: 5:14:42
[2024/07/27 13:43:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:43:48] ppocr INFO: epoch: [778/1500], global_step: 2334, lr: 0.001000, loss: 1.362524, loss_shrink_maps: 0.710297, loss_threshold_maps: 0.521930, loss_binary_maps: 0.140843, avg_reader_cost: 2.19044 s, avg_batch_cost: 2.53716 s, avg_samples: 12.5, ips: 4.92678 samples/s, eta: 5:14:15
[2024/07/27 13:43:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:43:58] ppocr INFO: epoch: [779/1500], global_step: 2337, lr: 0.001000, loss: 1.384550, loss_shrink_maps: 0.718400, loss_threshold_maps: 0.522152, loss_binary_maps: 0.142738, avg_reader_cost: 2.29293 s, avg_batch_cost: 2.53047 s, avg_samples: 12.5, ips: 4.93980 samples/s, eta: 5:13:49
[2024/07/27 13:43:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:44:08] ppocr INFO: epoch: [780/1500], global_step: 2340, lr: 0.001000, loss: 1.378044, loss_shrink_maps: 0.710297, loss_threshold_maps: 0.519884, loss_binary_maps: 0.140843, avg_reader_cost: 2.38080 s, avg_batch_cost: 2.62467 s, avg_samples: 12.5, ips: 4.76249 samples/s, eta: 5:13:23

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:56,  8.77it/s]
eval model::   1%|          | 4/500 [00:00<00:26, 18.55it/s]
eval model::   1%|▏         | 7/500 [00:00<00:24, 20.51it/s]
eval model::   2%|▏         | 10/500 [00:00<00:27, 18.14it/s]
eval model::   2%|▏         | 12/500 [00:00<00:28, 16.89it/s]
eval model::   3%|▎         | 14/500 [00:00<00:31, 15.33it/s]
eval model::   3%|▎         | 17/500 [00:00<00:26, 18.28it/s]
eval model::   4%|▍         | 20/500 [00:01<00:25, 18.99it/s]
eval model::   5%|▍         | 23/500 [00:01<00:23, 20.56it/s]
eval model::   5%|▌         | 26/500 [00:01<00:24, 19.24it/s]
eval model::   6%|▌         | 29/500 [00:01<00:22, 20.62it/s]
eval model::   6%|▋         | 32/500 [00:01<00:25, 18.42it/s]
eval model::   7%|▋         | 34/500 [00:01<00:25, 18.54it/s]
eval model::   7%|▋         | 36/500 [00:01<00:25, 18.42it/s]
eval model::   8%|▊         | 38/500 [00:02<00:25, 18.15it/s]
eval model::   8%|▊         | 40/500 [00:02<00:27, 16.66it/s]
eval model::   8%|▊         | 42/500 [00:02<00:27, 16.41it/s]
eval model::   9%|▉         | 45/500 [00:02<00:24, 18.32it/s]
eval model::   9%|▉         | 47/500 [00:02<00:27, 16.50it/s]
eval model::  10%|▉         | 49/500 [00:02<00:26, 16.92it/s]
eval model::  10%|█         | 51/500 [00:02<00:25, 17.61it/s]
eval model::  11%|█         | 54/500 [00:02<00:23, 18.74it/s]
eval model::  11%|█         | 56/500 [00:03<00:24, 18.46it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:25, 17.64it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:28, 15.67it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:28, 15.40it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:23, 18.40it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:20, 20.58it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:20, 20.83it/s]
eval model::  15%|█▌        | 75/500 [00:04<00:22, 18.62it/s]
eval model::  15%|█▌        | 77/500 [00:04<00:23, 17.98it/s]
eval model::  16%|█▌        | 80/500 [00:04<00:22, 18.88it/s]
eval model::  17%|█▋        | 83/500 [00:04<00:20, 20.62it/s]
eval model::  17%|█▋        | 86/500 [00:04<00:20, 20.22it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:25, 15.88it/s]
eval model::  18%|█▊        | 91/500 [00:05<00:26, 15.16it/s]
eval model::  19%|█▊        | 93/500 [00:05<00:27, 14.88it/s]
eval model::  19%|█▉        | 95/500 [00:05<00:26, 15.56it/s]
eval model::  19%|█▉        | 97/500 [00:05<00:24, 16.19it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:23, 16.75it/s]
eval model::  20%|██        | 101/500 [00:05<00:23, 16.80it/s]
eval model::  21%|██        | 104/500 [00:05<00:19, 20.07it/s]
eval model::  21%|██▏       | 107/500 [00:05<00:18, 21.56it/s]
eval model::  22%|██▏       | 110/500 [00:06<00:18, 20.58it/s]
eval model::  23%|██▎       | 113/500 [00:06<00:19, 19.85it/s]
eval model::  23%|██▎       | 116/500 [00:06<00:19, 19.23it/s]
eval model::  24%|██▍       | 119/500 [00:06<00:18, 20.30it/s]
eval model::  24%|██▍       | 122/500 [00:06<00:21, 17.87it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:21, 17.22it/s]
eval model::  25%|██▌       | 126/500 [00:07<00:22, 16.84it/s]
eval model::  26%|██▌       | 129/500 [00:07<00:20, 17.93it/s]
eval model::  26%|██▌       | 131/500 [00:07<00:21, 17.30it/s]
eval model::  27%|██▋       | 133/500 [00:07<00:22, 16.02it/s]
eval model::  27%|██▋       | 136/500 [00:07<00:21, 17.09it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:21, 16.96it/s]
eval model::  28%|██▊       | 140/500 [00:07<00:20, 17.28it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:20, 17.43it/s]
eval model::  29%|██▉       | 145/500 [00:08<00:19, 17.83it/s]
eval model::  29%|██▉       | 147/500 [00:08<00:21, 16.13it/s]
eval model::  30%|███       | 150/500 [00:08<00:18, 19.27it/s]
eval model::  31%|███       | 153/500 [00:08<00:17, 19.41it/s]
eval model::  31%|███       | 156/500 [00:08<00:15, 21.86it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:16, 20.50it/s]
eval model::  32%|███▏      | 162/500 [00:09<00:23, 14.55it/s]
eval model::  33%|███▎      | 165/500 [00:09<00:20, 16.00it/s]
eval model::  33%|███▎      | 167/500 [00:09<00:19, 16.66it/s]
eval model::  34%|███▍      | 170/500 [00:09<00:17, 19.00it/s]
eval model::  35%|███▍      | 173/500 [00:09<00:16, 19.26it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:21, 15.03it/s]
eval model::  36%|███▌      | 179/500 [00:10<00:19, 16.81it/s]
eval model::  36%|███▌      | 181/500 [00:10<00:20, 15.36it/s]
eval model::  37%|███▋      | 183/500 [00:10<00:19, 16.02it/s]
eval model::  37%|███▋      | 186/500 [00:10<00:17, 17.96it/s]
eval model::  38%|███▊      | 188/500 [00:10<00:17, 17.38it/s]
eval model::  38%|███▊      | 191/500 [00:10<00:16, 18.64it/s]
eval model::  39%|███▉      | 194/500 [00:10<00:14, 21.13it/s]
eval model::  39%|███▉      | 197/500 [00:11<00:15, 19.60it/s]
eval model::  40%|████      | 200/500 [00:11<00:14, 21.13it/s]
eval model::  41%|████      | 203/500 [00:11<00:13, 22.63it/s]
eval model::  41%|████      | 206/500 [00:11<00:24, 11.98it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:23, 12.47it/s]
eval model::  42%|████▏     | 210/500 [00:12<00:23, 12.46it/s]
eval model::  43%|████▎     | 213/500 [00:12<00:20, 14.17it/s]
eval model::  43%|████▎     | 215/500 [00:12<00:25, 11.18it/s]
eval model::  43%|████▎     | 217/500 [00:12<00:27, 10.46it/s]
eval model::  44%|████▍     | 219/500 [00:12<00:24, 11.62it/s]
eval model::  44%|████▍     | 221/500 [00:13<00:24, 11.47it/s]
eval model::  45%|████▍     | 223/500 [00:13<00:21, 12.80it/s]
eval model::  45%|████▌     | 226/500 [00:13<00:18, 14.82it/s]
eval model::  46%|████▌     | 229/500 [00:13<00:16, 16.88it/s]
eval model::  46%|████▌     | 231/500 [00:13<00:15, 16.99it/s]
eval model::  47%|████▋     | 233/500 [00:13<00:15, 16.72it/s]
eval model::  47%|████▋     | 235/500 [00:13<00:15, 17.28it/s]
eval model::  47%|████▋     | 237/500 [00:13<00:15, 16.68it/s]
eval model::  48%|████▊     | 239/500 [00:14<00:15, 17.21it/s]
eval model::  48%|████▊     | 241/500 [00:14<00:14, 17.49it/s]
eval model::  49%|████▊     | 243/500 [00:14<00:17, 14.92it/s]
eval model::  49%|████▉     | 246/500 [00:14<00:14, 17.89it/s]
eval model::  50%|████▉     | 249/500 [00:14<00:14, 17.17it/s]
eval model::  50%|█████     | 252/500 [00:14<00:12, 19.92it/s]
eval model::  51%|█████     | 255/500 [00:14<00:11, 20.50it/s]
eval model::  52%|█████▏    | 258/500 [00:14<00:10, 22.38it/s]
eval model::  52%|█████▏    | 262/500 [00:15<00:09, 25.14it/s]
eval model::  53%|█████▎    | 265/500 [00:15<00:11, 20.73it/s]
eval model::  54%|█████▎    | 268/500 [00:15<00:10, 21.66it/s]
eval model::  54%|█████▍    | 271/500 [00:15<00:11, 20.55it/s]
eval model::  55%|█████▍    | 274/500 [00:15<00:10, 21.32it/s]
eval model::  55%|█████▌    | 277/500 [00:15<00:11, 18.89it/s]
eval model::  56%|█████▌    | 279/500 [00:16<00:11, 18.79it/s]
eval model::  56%|█████▋    | 282/500 [00:16<00:10, 21.23it/s]
eval model::  57%|█████▋    | 285/500 [00:16<00:18, 11.70it/s]
eval model::  58%|█████▊    | 288/500 [00:16<00:14, 14.25it/s]
eval model::  58%|█████▊    | 291/500 [00:16<00:12, 16.65it/s]
eval model::  59%|█████▉    | 294/500 [00:17<00:13, 15.43it/s]
eval model::  59%|█████▉    | 296/500 [00:17<00:15, 13.21it/s]
eval model::  60%|█████▉    | 299/500 [00:17<00:12, 15.91it/s]
eval model::  60%|██████    | 301/500 [00:17<00:14, 13.90it/s]
eval model::  61%|██████    | 304/500 [00:17<00:12, 15.35it/s]
eval model::  61%|██████▏   | 307/500 [00:17<00:11, 17.05it/s]
eval model::  62%|██████▏   | 309/500 [00:17<00:10, 17.65it/s]
eval model::  62%|██████▏   | 312/500 [00:18<00:09, 19.96it/s]
eval model::  63%|██████▎   | 315/500 [00:18<00:09, 19.89it/s]
eval model::  64%|██████▎   | 318/500 [00:18<00:08, 20.41it/s]
eval model::  64%|██████▍   | 321/500 [00:18<00:08, 21.14it/s]
eval model::  65%|██████▍   | 324/500 [00:18<00:08, 20.08it/s]
eval model::  65%|██████▌   | 327/500 [00:18<00:07, 21.76it/s]
eval model::  66%|██████▌   | 330/500 [00:18<00:07, 21.50it/s]
eval model::  67%|██████▋   | 333/500 [00:19<00:07, 21.00it/s]
eval model::  67%|██████▋   | 336/500 [00:19<00:07, 21.77it/s]
eval model::  68%|██████▊   | 339/500 [00:19<00:08, 18.98it/s]
eval model::  68%|██████▊   | 341/500 [00:19<00:11, 14.18it/s]
eval model::  69%|██████▊   | 343/500 [00:19<00:10, 15.21it/s]
eval model::  69%|██████▉   | 346/500 [00:19<00:08, 17.46it/s]
eval model::  70%|██████▉   | 349/500 [00:20<00:07, 19.53it/s]
eval model::  70%|███████   | 352/500 [00:20<00:07, 20.87it/s]
eval model::  71%|███████   | 355/500 [00:20<00:06, 21.26it/s]
eval model::  72%|███████▏  | 358/500 [00:20<00:06, 21.39it/s]
eval model::  72%|███████▏  | 361/500 [00:20<00:07, 19.06it/s]
eval model::  73%|███████▎  | 364/500 [00:20<00:07, 18.92it/s]
eval model::  73%|███████▎  | 366/500 [00:20<00:07, 18.39it/s]
eval model::  74%|███████▍  | 369/500 [00:21<00:06, 20.78it/s]
eval model::  74%|███████▍  | 372/500 [00:21<00:06, 18.30it/s]
eval model::  75%|███████▌  | 375/500 [00:21<00:06, 19.33it/s]
eval model::  76%|███████▌  | 378/500 [00:21<00:05, 21.49it/s]
eval model::  76%|███████▌  | 381/500 [00:21<00:05, 21.12it/s]
eval model::  77%|███████▋  | 384/500 [00:21<00:05, 23.15it/s]
eval model::  77%|███████▋  | 387/500 [00:22<00:08, 13.81it/s]
eval model::  78%|███████▊  | 390/500 [00:22<00:06, 15.84it/s]
eval model::  79%|███████▊  | 393/500 [00:22<00:06, 17.03it/s]
eval model::  79%|███████▉  | 396/500 [00:22<00:05, 18.07it/s]
eval model::  80%|███████▉  | 399/500 [00:22<00:04, 20.23it/s]
eval model::  80%|████████  | 402/500 [00:22<00:05, 18.95it/s]
eval model::  81%|████████  | 405/500 [00:22<00:04, 19.47it/s]
eval model::  82%|████████▏ | 408/500 [00:23<00:04, 19.47it/s]
eval model::  82%|████████▏ | 411/500 [00:23<00:04, 20.84it/s]
eval model::  83%|████████▎ | 414/500 [00:23<00:03, 22.17it/s]
eval model::  83%|████████▎ | 417/500 [00:23<00:03, 21.69it/s]
eval model::  84%|████████▍ | 420/500 [00:23<00:05, 14.97it/s]
eval model::  84%|████████▍ | 422/500 [00:23<00:04, 15.75it/s]
eval model::  85%|████████▍ | 424/500 [00:24<00:05, 15.16it/s]
eval model::  85%|████████▌ | 426/500 [00:24<00:04, 15.92it/s]
eval model::  86%|████████▌ | 428/500 [00:24<00:04, 16.65it/s]
eval model::  86%|████████▌ | 431/500 [00:24<00:03, 17.57it/s]
eval model::  87%|████████▋ | 434/500 [00:24<00:03, 20.22it/s]
eval model::  87%|████████▋ | 437/500 [00:24<00:02, 21.39it/s]
eval model::  88%|████████▊ | 440/500 [00:24<00:03, 19.09it/s]
eval model::  89%|████████▊ | 443/500 [00:24<00:02, 21.25it/s]
eval model::  89%|████████▉ | 446/500 [00:25<00:02, 21.57it/s]
eval model::  90%|████████▉ | 449/500 [00:25<00:02, 17.97it/s]
eval model::  90%|█████████ | 452/500 [00:25<00:02, 20.13it/s]
eval model::  91%|█████████ | 455/500 [00:25<00:02, 20.89it/s]
eval model::  92%|█████████▏| 458/500 [00:25<00:01, 22.48it/s]
eval model::  92%|█████████▏| 461/500 [00:25<00:01, 21.22it/s]
eval model::  93%|█████████▎| 464/500 [00:26<00:02, 16.94it/s]
eval model::  93%|█████████▎| 466/500 [00:26<00:02, 16.16it/s]
eval model::  94%|█████████▎| 468/500 [00:26<00:01, 16.86it/s]
eval model::  94%|█████████▍| 471/500 [00:26<00:01, 18.73it/s]
eval model::  95%|█████████▍| 473/500 [00:26<00:01, 17.93it/s]
eval model::  95%|█████████▌| 475/500 [00:26<00:01, 18.12it/s]
eval model::  96%|█████████▌| 478/500 [00:26<00:01, 19.44it/s]
eval model::  96%|█████████▌| 480/500 [00:26<00:01, 19.33it/s]
eval model::  97%|█████████▋| 483/500 [00:27<00:00, 20.41it/s]
eval model::  97%|█████████▋| 486/500 [00:27<00:00, 20.03it/s]
eval model::  98%|█████████▊| 489/500 [00:27<00:00, 20.88it/s]
eval model::  98%|█████████▊| 492/500 [00:27<00:00, 20.45it/s]
eval model::  99%|█████████▉| 495/500 [00:27<00:00, 20.82it/s]
eval model:: 100%|█████████▉| 499/500 [00:27<00:00, 24.20it/s]
eval model:: 100%|██████████| 500/500 [00:27<00:00, 17.96it/s]
[2024/07/27 13:44:36] ppocr INFO: cur metric, precision: 0.7142152023692004, recall: 0.6966779008184882, hmean: 0.7053375578844747, fps: 43.85500415829066
[2024/07/27 13:44:36] ppocr INFO: best metric, hmean: 0.7142857142857143, precision: 0.7627118644067796, recall: 0.6716417910447762, fps: 43.33575316801794, best_epoch: 740
[2024/07/27 13:44:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:44:45] ppocr INFO: epoch: [781/1500], global_step: 2343, lr: 0.001000, loss: 1.386170, loss_shrink_maps: 0.718954, loss_threshold_maps: 0.503484, loss_binary_maps: 0.142428, avg_reader_cost: 2.16863 s, avg_batch_cost: 2.45751 s, avg_samples: 12.5, ips: 5.08644 samples/s, eta: 5:12:55
[2024/07/27 13:44:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:44:54] ppocr INFO: epoch: [782/1500], global_step: 2346, lr: 0.001000, loss: 1.386170, loss_shrink_maps: 0.714050, loss_threshold_maps: 0.503484, loss_binary_maps: 0.142091, avg_reader_cost: 2.18705 s, avg_batch_cost: 2.54454 s, avg_samples: 12.5, ips: 4.91248 samples/s, eta: 5:12:28
[2024/07/27 13:44:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:45:04] ppocr INFO: epoch: [783/1500], global_step: 2349, lr: 0.001000, loss: 1.373016, loss_shrink_maps: 0.707927, loss_threshold_maps: 0.506501, loss_binary_maps: 0.140489, avg_reader_cost: 2.33824 s, avg_batch_cost: 2.57690 s, avg_samples: 12.5, ips: 4.85080 samples/s, eta: 5:12:02
[2024/07/27 13:45:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:45:13] ppocr INFO: epoch: [784/1500], global_step: 2350, lr: 0.001000, loss: 1.373016, loss_shrink_maps: 0.707927, loss_threshold_maps: 0.513728, loss_binary_maps: 0.140489, avg_reader_cost: 0.59730 s, avg_batch_cost: 0.79544 s, avg_samples: 4.8, ips: 6.03438 samples/s, eta: 5:11:53
[2024/07/27 13:45:14] ppocr INFO: epoch: [784/1500], global_step: 2352, lr: 0.001000, loss: 1.358009, loss_shrink_maps: 0.704189, loss_threshold_maps: 0.506162, loss_binary_maps: 0.140093, avg_reader_cost: 1.68336 s, avg_batch_cost: 1.83115 s, avg_samples: 7.7, ips: 4.20502 samples/s, eta: 5:11:36
[2024/07/27 13:45:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:45:24] ppocr INFO: epoch: [785/1500], global_step: 2355, lr: 0.001000, loss: 1.358009, loss_shrink_maps: 0.704189, loss_threshold_maps: 0.513728, loss_binary_maps: 0.140093, avg_reader_cost: 2.33117 s, avg_batch_cost: 2.57033 s, avg_samples: 12.5, ips: 4.86320 samples/s, eta: 5:11:09
[2024/07/27 13:45:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:45:34] ppocr INFO: epoch: [786/1500], global_step: 2358, lr: 0.001000, loss: 1.347768, loss_shrink_maps: 0.699875, loss_threshold_maps: 0.505980, loss_binary_maps: 0.138730, avg_reader_cost: 2.36381 s, avg_batch_cost: 2.61327 s, avg_samples: 12.5, ips: 4.78327 samples/s, eta: 5:10:43
[2024/07/27 13:45:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:45:43] ppocr INFO: epoch: [787/1500], global_step: 2360, lr: 0.001000, loss: 1.349906, loss_shrink_maps: 0.700404, loss_threshold_maps: 0.508996, loss_binary_maps: 0.139137, avg_reader_cost: 1.48951 s, avg_batch_cost: 1.67433 s, avg_samples: 9.6, ips: 5.73365 samples/s, eta: 5:10:25
[2024/07/27 13:45:44] ppocr INFO: epoch: [787/1500], global_step: 2361, lr: 0.001000, loss: 1.347768, loss_shrink_maps: 0.690157, loss_threshold_maps: 0.505980, loss_binary_maps: 0.136845, avg_reader_cost: 0.88329 s, avg_batch_cost: 0.93888 s, avg_samples: 2.9, ips: 3.08879 samples/s, eta: 5:10:17
[2024/07/27 13:45:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:45:54] ppocr INFO: epoch: [788/1500], global_step: 2364, lr: 0.001000, loss: 1.347768, loss_shrink_maps: 0.690157, loss_threshold_maps: 0.505871, loss_binary_maps: 0.136845, avg_reader_cost: 2.14428 s, avg_batch_cost: 2.51380 s, avg_samples: 12.5, ips: 4.97256 samples/s, eta: 5:09:50
[2024/07/27 13:45:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:46:03] ppocr INFO: epoch: [789/1500], global_step: 2367, lr: 0.001000, loss: 1.330250, loss_shrink_maps: 0.676225, loss_threshold_maps: 0.505871, loss_binary_maps: 0.134463, avg_reader_cost: 2.33524 s, avg_batch_cost: 2.58619 s, avg_samples: 12.5, ips: 4.83337 samples/s, eta: 5:09:24
[2024/07/27 13:46:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:46:13] ppocr INFO: epoch: [790/1500], global_step: 2370, lr: 0.001000, loss: 1.291572, loss_shrink_maps: 0.657999, loss_threshold_maps: 0.504912, loss_binary_maps: 0.130967, avg_reader_cost: 2.24034 s, avg_batch_cost: 2.63777 s, avg_samples: 12.5, ips: 4.73886 samples/s, eta: 5:08:58
[2024/07/27 13:46:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:46:24] ppocr INFO: epoch: [791/1500], global_step: 2373, lr: 0.001000, loss: 1.366368, loss_shrink_maps: 0.678924, loss_threshold_maps: 0.508476, loss_binary_maps: 0.135092, avg_reader_cost: 2.25008 s, avg_batch_cost: 2.67503 s, avg_samples: 12.5, ips: 4.67284 samples/s, eta: 5:08:33
[2024/07/27 13:46:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:46:33] ppocr INFO: epoch: [792/1500], global_step: 2376, lr: 0.001000, loss: 1.300022, loss_shrink_maps: 0.659923, loss_threshold_maps: 0.507354, loss_binary_maps: 0.131623, avg_reader_cost: 2.30470 s, avg_batch_cost: 2.55899 s, avg_samples: 12.5, ips: 4.88473 samples/s, eta: 5:08:06
[2024/07/27 13:46:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:46:43] ppocr INFO: epoch: [793/1500], global_step: 2379, lr: 0.001000, loss: 1.355994, loss_shrink_maps: 0.691650, loss_threshold_maps: 0.512648, loss_binary_maps: 0.137548, avg_reader_cost: 2.29487 s, avg_batch_cost: 2.54767 s, avg_samples: 12.5, ips: 4.90645 samples/s, eta: 5:07:39
[2024/07/27 13:46:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:46:51] ppocr INFO: epoch: [794/1500], global_step: 2380, lr: 0.001000, loss: 1.323181, loss_shrink_maps: 0.678924, loss_threshold_maps: 0.508476, loss_binary_maps: 0.135092, avg_reader_cost: 0.67585 s, avg_batch_cost: 0.77819 s, avg_samples: 4.8, ips: 6.16816 samples/s, eta: 5:07:30
[2024/07/27 13:46:53] ppocr INFO: epoch: [794/1500], global_step: 2382, lr: 0.001000, loss: 1.316232, loss_shrink_maps: 0.669987, loss_threshold_maps: 0.512648, loss_binary_maps: 0.133598, avg_reader_cost: 1.64885 s, avg_batch_cost: 1.79645 s, avg_samples: 7.7, ips: 4.28624 samples/s, eta: 5:07:13
[2024/07/27 13:46:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:47:03] ppocr INFO: epoch: [795/1500], global_step: 2385, lr: 0.001000, loss: 1.312738, loss_shrink_maps: 0.669987, loss_threshold_maps: 0.508476, loss_binary_maps: 0.133598, avg_reader_cost: 2.26795 s, avg_batch_cost: 2.63034 s, avg_samples: 12.5, ips: 4.75224 samples/s, eta: 5:06:47
[2024/07/27 13:47:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:47:12] ppocr INFO: epoch: [796/1500], global_step: 2388, lr: 0.001000, loss: 1.310576, loss_shrink_maps: 0.677724, loss_threshold_maps: 0.507155, loss_binary_maps: 0.134918, avg_reader_cost: 2.30914 s, avg_batch_cost: 2.57084 s, avg_samples: 12.5, ips: 4.86222 samples/s, eta: 5:06:20
[2024/07/27 13:47:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:47:21] ppocr INFO: epoch: [797/1500], global_step: 2390, lr: 0.001000, loss: 1.293746, loss_shrink_maps: 0.647075, loss_threshold_maps: 0.502995, loss_binary_maps: 0.128655, avg_reader_cost: 1.33377 s, avg_batch_cost: 1.60249 s, avg_samples: 9.6, ips: 5.99067 samples/s, eta: 5:06:02
[2024/07/27 13:47:22] ppocr INFO: epoch: [797/1500], global_step: 2391, lr: 0.001000, loss: 1.280976, loss_shrink_maps: 0.644340, loss_threshold_maps: 0.502988, loss_binary_maps: 0.127529, avg_reader_cost: 0.84756 s, avg_batch_cost: 0.90325 s, avg_samples: 2.9, ips: 3.21064 samples/s, eta: 5:05:53
[2024/07/27 13:47:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:47:32] ppocr INFO: epoch: [798/1500], global_step: 2394, lr: 0.001000, loss: 1.288780, loss_shrink_maps: 0.644340, loss_threshold_maps: 0.505591, loss_binary_maps: 0.127529, avg_reader_cost: 2.24166 s, avg_batch_cost: 2.60041 s, avg_samples: 12.5, ips: 4.80693 samples/s, eta: 5:05:27
[2024/07/27 13:47:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:47:42] ppocr INFO: epoch: [799/1500], global_step: 2397, lr: 0.001000, loss: 1.273118, loss_shrink_maps: 0.641131, loss_threshold_maps: 0.502988, loss_binary_maps: 0.127102, avg_reader_cost: 2.41607 s, avg_batch_cost: 2.65276 s, avg_samples: 12.5, ips: 4.71208 samples/s, eta: 5:05:01
[2024/07/27 13:47:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:47:52] ppocr INFO: epoch: [800/1500], global_step: 2400, lr: 0.001000, loss: 1.267214, loss_shrink_maps: 0.638685, loss_threshold_maps: 0.505591, loss_binary_maps: 0.126846, avg_reader_cost: 2.39154 s, avg_batch_cost: 2.64035 s, avg_samples: 12.5, ips: 4.73422 samples/s, eta: 5:04:36

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<01:02,  7.99it/s]
eval model::   1%|          | 4/500 [00:00<00:30, 16.06it/s]
eval model::   1%|          | 6/500 [00:00<00:29, 16.67it/s]
eval model::   2%|▏         | 8/500 [00:00<00:32, 15.27it/s]
eval model::   2%|▏         | 11/500 [00:00<00:32, 15.27it/s]
eval model::   3%|▎         | 13/500 [00:00<00:30, 16.18it/s]
eval model::   3%|▎         | 15/500 [00:00<00:31, 15.54it/s]
eval model::   4%|▎         | 18/500 [00:01<00:25, 18.90it/s]
eval model::   4%|▍         | 20/500 [00:01<00:26, 18.13it/s]
eval model::   5%|▍         | 23/500 [00:01<00:23, 20.11it/s]
eval model::   5%|▌         | 26/500 [00:01<00:22, 21.34it/s]
eval model::   6%|▌         | 29/500 [00:01<00:23, 20.02it/s]
eval model::   6%|▋         | 32/500 [00:01<00:24, 19.33it/s]
eval model::   7%|▋         | 34/500 [00:01<00:25, 18.13it/s]
eval model::   7%|▋         | 37/500 [00:02<00:22, 20.34it/s]
eval model::   8%|▊         | 40/500 [00:02<00:24, 19.11it/s]
eval model::   8%|▊         | 42/500 [00:02<00:25, 18.13it/s]
eval model::   9%|▉         | 45/500 [00:02<00:23, 19.26it/s]
eval model::   9%|▉         | 47/500 [00:02<00:26, 17.29it/s]
eval model::  10%|█         | 50/500 [00:02<00:25, 17.66it/s]
eval model::  11%|█         | 53/500 [00:02<00:23, 18.79it/s]
eval model::  11%|█         | 56/500 [00:03<00:23, 18.55it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:23, 18.44it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:27, 16.10it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:28, 15.35it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:23, 18.23it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:20, 21.14it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:20, 20.76it/s]
eval model::  15%|█▌        | 76/500 [00:04<00:19, 21.93it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:19, 21.39it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:19, 21.10it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:21, 19.62it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:23, 17.65it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:25, 15.86it/s]
eval model::  19%|█▊        | 93/500 [00:05<00:24, 16.55it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:21, 19.09it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:19, 20.50it/s]
eval model::  20%|██        | 102/500 [00:05<00:20, 19.79it/s]
eval model::  21%|██        | 105/500 [00:05<00:18, 21.73it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:17, 21.88it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:19, 19.93it/s]
eval model::  23%|██▎       | 114/500 [00:06<00:19, 19.59it/s]
eval model::  23%|██▎       | 117/500 [00:06<00:22, 17.40it/s]
eval model::  24%|██▍       | 119/500 [00:06<00:21, 17.43it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:22, 16.86it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:23, 16.18it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:23, 16.02it/s]
eval model::  26%|██▌       | 129/500 [00:07<00:20, 18.03it/s]
eval model::  26%|██▌       | 131/500 [00:07<00:21, 17.19it/s]
eval model::  27%|██▋       | 133/500 [00:07<00:21, 17.29it/s]
eval model::  27%|██▋       | 135/500 [00:07<00:21, 17.34it/s]
eval model::  27%|██▋       | 137/500 [00:07<00:20, 17.45it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:21, 17.17it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:19, 18.66it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:19, 18.18it/s]
eval model::  29%|██▉       | 147/500 [00:08<00:21, 16.55it/s]
eval model::  30%|██▉       | 149/500 [00:08<00:20, 17.29it/s]
eval model::  30%|███       | 151/500 [00:08<00:22, 15.41it/s]
eval model::  31%|███       | 155/500 [00:08<00:18, 19.16it/s]
eval model::  32%|███▏      | 158/500 [00:08<00:16, 20.69it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:22, 15.28it/s]
eval model::  33%|███▎      | 163/500 [00:09<00:20, 16.09it/s]
eval model::  33%|███▎      | 166/500 [00:09<00:18, 17.98it/s]
eval model::  34%|███▎      | 168/500 [00:09<00:19, 17.12it/s]
eval model::  34%|███▍      | 171/500 [00:09<00:19, 16.54it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:22, 14.36it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:22, 14.69it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:19, 16.55it/s]
eval model::  36%|███▌      | 181/500 [00:10<00:21, 15.04it/s]
eval model::  37%|███▋      | 184/500 [00:10<00:18, 17.04it/s]
eval model::  37%|███▋      | 187/500 [00:10<00:18, 16.99it/s]
eval model::  38%|███▊      | 190/500 [00:10<00:17, 17.38it/s]
eval model::  39%|███▊      | 193/500 [00:10<00:16, 18.65it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:17, 17.10it/s]
eval model::  39%|███▉      | 197/500 [00:11<00:17, 17.50it/s]
eval model::  40%|████      | 200/500 [00:11<00:15, 19.60it/s]
eval model::  41%|████      | 203/500 [00:11<00:14, 20.89it/s]
eval model::  41%|████      | 206/500 [00:11<00:23, 12.58it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:22, 12.95it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:21, 13.30it/s]
eval model::  43%|████▎     | 213/500 [00:12<00:19, 14.95it/s]
eval model::  43%|████▎     | 215/500 [00:12<00:21, 13.09it/s]
eval model::  43%|████▎     | 217/500 [00:12<00:21, 13.31it/s]
eval model::  44%|████▍     | 219/500 [00:12<00:19, 14.25it/s]
eval model::  44%|████▍     | 221/500 [00:12<00:22, 12.61it/s]
eval model::  45%|████▍     | 223/500 [00:12<00:20, 13.50it/s]
eval model::  45%|████▌     | 226/500 [00:13<00:18, 15.11it/s]
eval model::  46%|████▌     | 230/500 [00:13<00:13, 19.65it/s]
eval model::  47%|████▋     | 233/500 [00:13<00:13, 19.71it/s]
eval model::  47%|████▋     | 236/500 [00:13<00:13, 18.93it/s]
eval model::  48%|████▊     | 239/500 [00:13<00:12, 20.36it/s]
eval model::  48%|████▊     | 242/500 [00:13<00:14, 17.95it/s]
eval model::  49%|████▉     | 244/500 [00:13<00:14, 18.22it/s]
eval model::  49%|████▉     | 247/500 [00:14<00:12, 19.75it/s]
eval model::  50%|█████     | 250/500 [00:14<00:12, 19.52it/s]
eval model::  51%|█████     | 254/500 [00:14<00:11, 22.33it/s]
eval model::  51%|█████▏    | 257/500 [00:14<00:10, 23.13it/s]
eval model::  52%|█████▏    | 260/500 [00:14<00:09, 24.58it/s]
eval model::  53%|█████▎    | 263/500 [00:14<00:09, 24.56it/s]
eval model::  53%|█████▎    | 266/500 [00:14<00:10, 21.66it/s]
eval model::  54%|█████▍    | 269/500 [00:15<00:11, 19.59it/s]
eval model::  54%|█████▍    | 272/500 [00:15<00:10, 21.44it/s]
eval model::  55%|█████▌    | 275/500 [00:15<00:11, 19.53it/s]
eval model::  56%|█████▌    | 278/500 [00:15<00:10, 21.41it/s]
eval model::  56%|█████▌    | 281/500 [00:15<00:09, 22.15it/s]
eval model::  57%|█████▋    | 284/500 [00:15<00:09, 22.87it/s]
eval model::  57%|█████▋    | 287/500 [00:16<00:16, 12.86it/s]
eval model::  58%|█████▊    | 290/500 [00:16<00:13, 15.48it/s]
eval model::  59%|█████▊    | 293/500 [00:16<00:13, 15.71it/s]
eval model::  59%|█████▉    | 296/500 [00:16<00:15, 13.49it/s]
eval model::  60%|█████▉    | 299/500 [00:16<00:12, 15.60it/s]
eval model::  60%|██████    | 301/500 [00:17<00:14, 13.47it/s]
eval model::  61%|██████    | 304/500 [00:17<00:13, 15.08it/s]
eval model::  61%|██████▏   | 307/500 [00:17<00:11, 16.62it/s]
eval model::  62%|██████▏   | 309/500 [00:17<00:11, 17.15it/s]
eval model::  62%|██████▏   | 312/500 [00:17<00:10, 17.65it/s]
eval model::  63%|██████▎   | 315/500 [00:17<00:10, 18.49it/s]
eval model::  64%|██████▎   | 318/500 [00:17<00:09, 19.75it/s]
eval model::  64%|██████▍   | 321/500 [00:18<00:08, 20.48it/s]
eval model::  65%|██████▍   | 324/500 [00:18<00:09, 19.04it/s]
eval model::  65%|██████▌   | 327/500 [00:18<00:08, 20.00it/s]
eval model::  66%|██████▌   | 330/500 [00:18<00:08, 19.56it/s]
eval model::  67%|██████▋   | 333/500 [00:18<00:07, 21.10it/s]
eval model::  67%|██████▋   | 336/500 [00:18<00:07, 22.62it/s]
eval model::  68%|██████▊   | 339/500 [00:19<00:08, 20.12it/s]
eval model::  68%|██████▊   | 342/500 [00:19<00:10, 15.47it/s]
eval model::  69%|██████▉   | 345/500 [00:19<00:08, 17.74it/s]
eval model::  70%|██████▉   | 348/500 [00:19<00:08, 18.88it/s]
eval model::  70%|███████   | 351/500 [00:19<00:07, 19.52it/s]
eval model::  71%|███████   | 354/500 [00:19<00:06, 21.32it/s]
eval model::  71%|███████▏  | 357/500 [00:19<00:07, 19.24it/s]
eval model::  72%|███████▏  | 360/500 [00:20<00:07, 19.22it/s]
eval model::  73%|███████▎  | 363/500 [00:20<00:07, 19.48it/s]
eval model::  73%|███████▎  | 366/500 [00:20<00:07, 18.12it/s]
eval model::  74%|███████▍  | 369/500 [00:20<00:06, 18.88it/s]
eval model::  74%|███████▍  | 371/500 [00:20<00:06, 18.71it/s]
eval model::  75%|███████▍  | 373/500 [00:20<00:06, 18.62it/s]
eval model::  75%|███████▌  | 375/500 [00:20<00:06, 18.01it/s]
eval model::  76%|███████▌  | 378/500 [00:21<00:06, 20.17it/s]
eval model::  76%|███████▌  | 381/500 [00:21<00:06, 19.53it/s]
eval model::  77%|███████▋  | 384/500 [00:21<00:05, 21.23it/s]
eval model::  77%|███████▋  | 387/500 [00:21<00:09, 12.54it/s]
eval model::  78%|███████▊  | 390/500 [00:21<00:07, 14.85it/s]
eval model::  78%|███████▊  | 392/500 [00:22<00:06, 15.49it/s]
eval model::  79%|███████▉  | 395/500 [00:22<00:06, 17.01it/s]
eval model::  80%|███████▉  | 398/500 [00:22<00:05, 19.44it/s]
eval model::  80%|████████  | 401/500 [00:22<00:06, 16.12it/s]
eval model::  81%|████████  | 404/500 [00:22<00:05, 16.99it/s]
eval model::  81%|████████▏ | 407/500 [00:22<00:04, 18.95it/s]
eval model::  82%|████████▏ | 410/500 [00:22<00:04, 20.82it/s]
eval model::  83%|████████▎ | 413/500 [00:23<00:04, 20.98it/s]
eval model::  83%|████████▎ | 416/500 [00:23<00:04, 20.87it/s]
eval model::  84%|████████▍ | 419/500 [00:23<00:04, 19.80it/s]
eval model::  84%|████████▍ | 422/500 [00:23<00:06, 12.89it/s]
eval model::  85%|████████▍ | 424/500 [00:23<00:05, 13.44it/s]
eval model::  85%|████████▌ | 426/500 [00:24<00:05, 13.26it/s]
eval model::  86%|████████▌ | 429/500 [00:24<00:04, 15.68it/s]
eval model::  86%|████████▌ | 431/500 [00:24<00:04, 15.43it/s]
eval model::  87%|████████▋ | 434/500 [00:24<00:03, 18.08it/s]
eval model::  87%|████████▋ | 437/500 [00:24<00:03, 19.98it/s]
eval model::  88%|████████▊ | 440/500 [00:24<00:03, 17.14it/s]
eval model::  89%|████████▊ | 443/500 [00:24<00:02, 19.69it/s]
eval model::  89%|████████▉ | 446/500 [00:25<00:02, 20.46it/s]
eval model::  90%|████████▉ | 449/500 [00:25<00:02, 19.76it/s]
eval model::  90%|█████████ | 452/500 [00:25<00:02, 21.89it/s]
eval model::  91%|█████████ | 455/500 [00:25<00:01, 23.62it/s]
eval model::  92%|█████████▏| 458/500 [00:25<00:01, 24.61it/s]
eval model::  92%|█████████▏| 461/500 [00:25<00:01, 24.37it/s]
eval model::  93%|█████████▎| 464/500 [00:25<00:01, 18.28it/s]
eval model::  93%|█████████▎| 467/500 [00:26<00:02, 16.36it/s]
eval model::  94%|█████████▍| 470/500 [00:26<00:01, 18.18it/s]
eval model::  95%|█████████▍| 473/500 [00:26<00:01, 18.59it/s]
eval model::  95%|█████████▌| 476/500 [00:26<00:01, 19.11it/s]
eval model::  96%|█████████▌| 479/500 [00:26<00:01, 19.58it/s]
eval model::  96%|█████████▋| 482/500 [00:26<00:00, 19.68it/s]
eval model::  97%|█████████▋| 485/500 [00:26<00:00, 21.25it/s]
eval model::  98%|█████████▊| 488/500 [00:27<00:00, 21.84it/s]
eval model::  98%|█████████▊| 491/500 [00:27<00:00, 19.89it/s]
eval model::  99%|█████████▉| 494/500 [00:27<00:00, 20.29it/s]
eval model::  99%|█████████▉| 497/500 [00:27<00:00, 21.40it/s]
eval model:: 100%|██████████| 500/500 [00:27<00:00, 21.70it/s]
eval model:: 100%|██████████| 500/500 [00:27<00:00, 18.06it/s]
[2024/07/27 13:48:20] ppocr INFO: cur metric, precision: 0.7083544303797469, recall: 0.673567645642754, hmean: 0.6905231984205331, fps: 44.58056628436093
[2024/07/27 13:48:20] ppocr INFO: best metric, hmean: 0.7142857142857143, precision: 0.7627118644067796, recall: 0.6716417910447762, fps: 43.33575316801794, best_epoch: 740
[2024/07/27 13:48:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:48:28] ppocr INFO: epoch: [801/1500], global_step: 2403, lr: 0.001000, loss: 1.267214, loss_shrink_maps: 0.638685, loss_threshold_maps: 0.506042, loss_binary_maps: 0.126846, avg_reader_cost: 2.04428 s, avg_batch_cost: 2.38128 s, avg_samples: 12.5, ips: 5.24927 samples/s, eta: 5:04:08
[2024/07/27 13:48:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:48:38] ppocr INFO: epoch: [802/1500], global_step: 2406, lr: 0.001000, loss: 1.331274, loss_shrink_maps: 0.690519, loss_threshold_maps: 0.512359, loss_binary_maps: 0.137175, avg_reader_cost: 2.37633 s, avg_batch_cost: 2.62304 s, avg_samples: 12.5, ips: 4.76547 samples/s, eta: 5:03:42
[2024/07/27 13:48:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:48:48] ppocr INFO: epoch: [803/1500], global_step: 2409, lr: 0.001000, loss: 1.324939, loss_shrink_maps: 0.679163, loss_threshold_maps: 0.512359, loss_binary_maps: 0.134763, avg_reader_cost: 2.27179 s, avg_batch_cost: 2.52051 s, avg_samples: 12.5, ips: 4.95932 samples/s, eta: 5:03:15
[2024/07/27 13:48:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:48:56] ppocr INFO: epoch: [804/1500], global_step: 2410, lr: 0.001000, loss: 1.324939, loss_shrink_maps: 0.679163, loss_threshold_maps: 0.512359, loss_binary_maps: 0.134763, avg_reader_cost: 0.68963 s, avg_batch_cost: 0.78156 s, avg_samples: 4.8, ips: 6.14157 samples/s, eta: 5:03:05
[2024/07/27 13:48:58] ppocr INFO: epoch: [804/1500], global_step: 2412, lr: 0.001000, loss: 1.360917, loss_shrink_maps: 0.689702, loss_threshold_maps: 0.518610, loss_binary_maps: 0.137564, avg_reader_cost: 1.65562 s, avg_batch_cost: 1.80384 s, avg_samples: 7.7, ips: 4.26867 samples/s, eta: 5:02:48
[2024/07/27 13:48:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:49:08] ppocr INFO: epoch: [805/1500], global_step: 2415, lr: 0.001000, loss: 1.370457, loss_shrink_maps: 0.694572, loss_threshold_maps: 0.520483, loss_binary_maps: 0.138695, avg_reader_cost: 2.47214 s, avg_batch_cost: 2.71104 s, avg_samples: 12.5, ips: 4.61077 samples/s, eta: 5:02:23
[2024/07/27 13:49:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:49:18] ppocr INFO: epoch: [806/1500], global_step: 2418, lr: 0.001000, loss: 1.370457, loss_shrink_maps: 0.694572, loss_threshold_maps: 0.518900, loss_binary_maps: 0.138695, avg_reader_cost: 2.38495 s, avg_batch_cost: 2.62349 s, avg_samples: 12.5, ips: 4.76464 samples/s, eta: 5:01:57
[2024/07/27 13:49:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:49:27] ppocr INFO: epoch: [807/1500], global_step: 2420, lr: 0.001000, loss: 1.379099, loss_shrink_maps: 0.701816, loss_threshold_maps: 0.521863, loss_binary_maps: 0.139945, avg_reader_cost: 1.51298 s, avg_batch_cost: 1.69401 s, avg_samples: 9.6, ips: 5.66701 samples/s, eta: 5:01:39
[2024/07/27 13:49:28] ppocr INFO: epoch: [807/1500], global_step: 2421, lr: 0.001000, loss: 1.379099, loss_shrink_maps: 0.701816, loss_threshold_maps: 0.530808, loss_binary_maps: 0.139945, avg_reader_cost: 0.89311 s, avg_batch_cost: 0.94902 s, avg_samples: 2.9, ips: 3.05578 samples/s, eta: 5:01:31
[2024/07/27 13:49:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:49:38] ppocr INFO: epoch: [808/1500], global_step: 2424, lr: 0.001000, loss: 1.370457, loss_shrink_maps: 0.694572, loss_threshold_maps: 0.521863, loss_binary_maps: 0.138695, avg_reader_cost: 2.39392 s, avg_batch_cost: 2.63406 s, avg_samples: 12.5, ips: 4.74553 samples/s, eta: 5:01:05
[2024/07/27 13:49:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:49:48] ppocr INFO: epoch: [809/1500], global_step: 2427, lr: 0.001000, loss: 1.333085, loss_shrink_maps: 0.677057, loss_threshold_maps: 0.506142, loss_binary_maps: 0.134827, avg_reader_cost: 2.22942 s, avg_batch_cost: 2.59386 s, avg_samples: 12.5, ips: 4.81908 samples/s, eta: 5:00:39
[2024/07/27 13:49:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:49:58] ppocr INFO: epoch: [810/1500], global_step: 2430, lr: 0.001000, loss: 1.311206, loss_shrink_maps: 0.670725, loss_threshold_maps: 0.499660, loss_binary_maps: 0.133679, avg_reader_cost: 2.21266 s, avg_batch_cost: 2.59520 s, avg_samples: 12.5, ips: 4.81658 samples/s, eta: 5:00:13
[2024/07/27 13:49:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:50:06] ppocr INFO: epoch: [811/1500], global_step: 2433, lr: 0.001000, loss: 1.226560, loss_shrink_maps: 0.638791, loss_threshold_maps: 0.483449, loss_binary_maps: 0.126728, avg_reader_cost: 1.98685 s, avg_batch_cost: 2.26267 s, avg_samples: 12.5, ips: 5.52444 samples/s, eta: 4:59:44
[2024/07/27 13:50:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:50:16] ppocr INFO: epoch: [812/1500], global_step: 2436, lr: 0.001000, loss: 1.226560, loss_shrink_maps: 0.643609, loss_threshold_maps: 0.486716, loss_binary_maps: 0.127977, avg_reader_cost: 2.27407 s, avg_batch_cost: 2.63235 s, avg_samples: 12.5, ips: 4.74861 samples/s, eta: 4:59:18
[2024/07/27 13:50:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:50:26] ppocr INFO: epoch: [813/1500], global_step: 2439, lr: 0.001000, loss: 1.285423, loss_shrink_maps: 0.655614, loss_threshold_maps: 0.495404, loss_binary_maps: 0.130272, avg_reader_cost: 2.19542 s, avg_batch_cost: 2.56031 s, avg_samples: 12.5, ips: 4.88223 samples/s, eta: 4:58:51
[2024/07/27 13:50:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:50:33] ppocr INFO: epoch: [814/1500], global_step: 2440, lr: 0.001000, loss: 1.262433, loss_shrink_maps: 0.648153, loss_threshold_maps: 0.492326, loss_binary_maps: 0.128867, avg_reader_cost: 0.57742 s, avg_batch_cost: 0.66536 s, avg_samples: 4.8, ips: 7.21414 samples/s, eta: 4:58:41
[2024/07/27 13:50:35] ppocr INFO: epoch: [814/1500], global_step: 2442, lr: 0.001000, loss: 1.189010, loss_shrink_maps: 0.591105, loss_threshold_maps: 0.486716, loss_binary_maps: 0.117480, avg_reader_cost: 1.50016 s, avg_batch_cost: 1.64827 s, avg_samples: 7.7, ips: 4.67157 samples/s, eta: 4:58:23
[2024/07/27 13:50:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:50:45] ppocr INFO: epoch: [815/1500], global_step: 2445, lr: 0.001000, loss: 1.239133, loss_shrink_maps: 0.616538, loss_threshold_maps: 0.493698, loss_binary_maps: 0.122531, avg_reader_cost: 2.21612 s, avg_batch_cost: 2.59088 s, avg_samples: 12.5, ips: 4.82461 samples/s, eta: 4:57:56
[2024/07/27 13:50:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:50:55] ppocr INFO: epoch: [816/1500], global_step: 2448, lr: 0.001000, loss: 1.280312, loss_shrink_maps: 0.643307, loss_threshold_maps: 0.495404, loss_binary_maps: 0.127938, avg_reader_cost: 2.38216 s, avg_batch_cost: 2.65480 s, avg_samples: 12.5, ips: 4.70845 samples/s, eta: 4:57:31
[2024/07/27 13:50:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:51:04] ppocr INFO: epoch: [817/1500], global_step: 2450, lr: 0.001000, loss: 1.280312, loss_shrink_maps: 0.643307, loss_threshold_maps: 0.497556, loss_binary_maps: 0.127938, avg_reader_cost: 1.46458 s, avg_batch_cost: 1.64393 s, avg_samples: 9.6, ips: 5.83965 samples/s, eta: 4:57:13
[2024/07/27 13:51:05] ppocr INFO: epoch: [817/1500], global_step: 2451, lr: 0.001000, loss: 1.285423, loss_shrink_maps: 0.650769, loss_threshold_maps: 0.502676, loss_binary_maps: 0.129409, avg_reader_cost: 0.86794 s, avg_batch_cost: 0.92352 s, avg_samples: 2.9, ips: 3.14015 samples/s, eta: 4:57:04
[2024/07/27 13:51:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:51:15] ppocr INFO: epoch: [818/1500], global_step: 2454, lr: 0.001000, loss: 1.301170, loss_shrink_maps: 0.650621, loss_threshold_maps: 0.507805, loss_binary_maps: 0.128874, avg_reader_cost: 2.29458 s, avg_batch_cost: 2.53467 s, avg_samples: 12.5, ips: 4.93161 samples/s, eta: 4:56:38
[2024/07/27 13:51:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:51:25] ppocr INFO: epoch: [819/1500], global_step: 2457, lr: 0.001000, loss: 1.307455, loss_shrink_maps: 0.655821, loss_threshold_maps: 0.513971, loss_binary_maps: 0.129353, avg_reader_cost: 2.23339 s, avg_batch_cost: 2.60909 s, avg_samples: 12.5, ips: 4.79093 samples/s, eta: 4:56:11
[2024/07/27 13:51:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:51:35] ppocr INFO: epoch: [820/1500], global_step: 2460, lr: 0.001000, loss: 1.316978, loss_shrink_maps: 0.661287, loss_threshold_maps: 0.511114, loss_binary_maps: 0.130518, avg_reader_cost: 2.37238 s, avg_batch_cost: 2.61559 s, avg_samples: 12.5, ips: 4.77904 samples/s, eta: 4:55:45

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<01:07,  7.36it/s]
eval model::   1%|          | 4/500 [00:00<00:29, 16.55it/s]
eval model::   1%|          | 6/500 [00:00<00:28, 17.53it/s]
eval model::   2%|▏         | 8/500 [00:00<00:28, 17.42it/s]
eval model::   2%|▏         | 11/500 [00:00<00:29, 16.68it/s]
eval model::   3%|▎         | 13/500 [00:00<00:28, 17.24it/s]
eval model::   3%|▎         | 15/500 [00:00<00:27, 17.73it/s]
eval model::   4%|▎         | 18/500 [00:00<00:23, 20.83it/s]
eval model::   4%|▍         | 21/500 [00:01<00:24, 19.62it/s]
eval model::   5%|▍         | 24/500 [00:01<00:21, 21.76it/s]
eval model::   5%|▌         | 27/500 [00:01<00:21, 22.07it/s]
eval model::   6%|▌         | 30/500 [00:01<00:21, 22.22it/s]
eval model::   7%|▋         | 33/500 [00:01<00:23, 20.16it/s]
eval model::   7%|▋         | 36/500 [00:01<00:23, 20.00it/s]
eval model::   8%|▊         | 39/500 [00:02<00:25, 17.74it/s]
eval model::   8%|▊         | 42/500 [00:02<00:25, 17.69it/s]
eval model::   9%|▉         | 45/500 [00:02<00:22, 19.79it/s]
eval model::  10%|▉         | 48/500 [00:02<00:23, 19.35it/s]
eval model::  10%|█         | 51/500 [00:02<00:21, 20.74it/s]
eval model::  11%|█         | 54/500 [00:02<00:21, 21.16it/s]
eval model::  11%|█▏        | 57/500 [00:02<00:20, 21.12it/s]
eval model::  12%|█▏        | 60/500 [00:03<00:22, 19.37it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:29, 14.92it/s]
eval model::  13%|█▎        | 64/500 [00:03<00:28, 15.43it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:23, 18.42it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:20, 20.87it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:20, 21.13it/s]
eval model::  15%|█▌        | 76/500 [00:03<00:19, 21.49it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:21, 19.90it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:19, 21.28it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:20, 20.50it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:22, 18.25it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:25, 16.05it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:24, 16.74it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:21, 18.91it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:19, 20.76it/s]
eval model::  20%|██        | 102/500 [00:05<00:19, 20.22it/s]
eval model::  21%|██        | 106/500 [00:05<00:16, 23.40it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:15, 24.63it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:17, 22.61it/s]
eval model::  23%|██▎       | 115/500 [00:05<00:17, 21.45it/s]
eval model::  24%|██▎       | 118/500 [00:06<00:17, 22.01it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:18, 20.13it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:18, 20.03it/s]
eval model::  25%|██▌       | 127/500 [00:06<00:17, 21.04it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:20, 18.28it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:20, 17.96it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:17, 20.62it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:16, 21.88it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:16, 21.65it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:17, 20.20it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:19, 18.31it/s]
eval model::  30%|███       | 150/500 [00:07<00:17, 20.18it/s]
eval model::  31%|███       | 153/500 [00:07<00:17, 19.76it/s]
eval model::  31%|███       | 156/500 [00:07<00:16, 21.17it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:16, 21.12it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:18, 17.97it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:18, 18.12it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:17, 19.15it/s]
eval model::  34%|███▍      | 170/500 [00:08<00:15, 20.74it/s]
eval model::  35%|███▍      | 173/500 [00:08<00:16, 19.62it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:21, 15.20it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:18, 17.48it/s]
eval model::  36%|███▋      | 182/500 [00:09<00:19, 16.60it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:16, 18.82it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:16, 18.66it/s]
eval model::  38%|███▊      | 191/500 [00:09<00:16, 18.73it/s]
eval model::  39%|███▉      | 194/500 [00:09<00:14, 20.49it/s]
eval model::  39%|███▉      | 197/500 [00:10<00:16, 18.87it/s]
eval model::  40%|████      | 200/500 [00:10<00:14, 20.35it/s]
eval model::  41%|████      | 203/500 [00:10<00:14, 20.96it/s]
eval model::  41%|████      | 206/500 [00:10<00:23, 12.69it/s]
eval model::  42%|████▏     | 208/500 [00:10<00:22, 13.21it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:20, 13.88it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.18it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:21, 13.24it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:22, 12.82it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:17, 15.81it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:19, 14.25it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:15, 17.80it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:12, 21.09it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:12, 22.04it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:12, 20.54it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:12, 20.88it/s]
eval model::  48%|████▊     | 242/500 [00:12<00:15, 17.00it/s]
eval model::  49%|████▉     | 245/500 [00:13<00:13, 18.96it/s]
eval model::  50%|████▉     | 248/500 [00:13<00:12, 19.94it/s]
eval model::  50%|█████     | 251/500 [00:13<00:13, 18.41it/s]
eval model::  51%|█████     | 253/500 [00:13<00:13, 18.66it/s]
eval model::  51%|█████     | 256/500 [00:13<00:12, 19.39it/s]
eval model::  52%|█████▏    | 259/500 [00:13<00:12, 18.99it/s]
eval model::  52%|█████▏    | 262/500 [00:13<00:11, 19.91it/s]
eval model::  53%|█████▎    | 265/500 [00:14<00:12, 19.20it/s]
eval model::  54%|█████▎    | 268/500 [00:14<00:11, 20.00it/s]
eval model::  54%|█████▍    | 271/500 [00:14<00:11, 20.09it/s]
eval model::  55%|█████▍    | 274/500 [00:14<00:10, 21.23it/s]
eval model::  55%|█████▌    | 277/500 [00:14<00:11, 19.43it/s]
eval model::  56%|█████▌    | 280/500 [00:14<00:10, 20.47it/s]
eval model::  57%|█████▋    | 283/500 [00:14<00:10, 21.55it/s]
eval model::  57%|█████▋    | 286/500 [00:15<00:17, 12.56it/s]
eval model::  58%|█████▊    | 289/500 [00:15<00:14, 14.79it/s]
eval model::  58%|█████▊    | 292/500 [00:15<00:12, 16.53it/s]
eval model::  59%|█████▉    | 295/500 [00:15<00:14, 13.81it/s]
eval model::  60%|█████▉    | 298/500 [00:16<00:12, 16.32it/s]
eval model::  60%|██████    | 301/500 [00:16<00:12, 15.92it/s]
eval model::  61%|██████    | 304/500 [00:16<00:11, 17.46it/s]
eval model::  61%|██████▏   | 307/500 [00:16<00:09, 19.81it/s]
eval model::  62%|██████▏   | 310/500 [00:16<00:08, 21.12it/s]
eval model::  63%|██████▎   | 313/500 [00:16<00:08, 21.34it/s]
eval model::  63%|██████▎   | 316/500 [00:16<00:09, 18.92it/s]
eval model::  64%|██████▍   | 319/500 [00:17<00:09, 19.75it/s]
eval model::  64%|██████▍   | 322/500 [00:17<00:09, 17.86it/s]
eval model::  65%|██████▍   | 324/500 [00:17<00:09, 18.08it/s]
eval model::  65%|██████▌   | 327/500 [00:17<00:08, 19.47it/s]
eval model::  66%|██████▌   | 330/500 [00:17<00:08, 19.37it/s]
eval model::  66%|██████▋   | 332/500 [00:17<00:08, 19.05it/s]
eval model::  67%|██████▋   | 335/500 [00:17<00:07, 20.88it/s]
eval model::  68%|██████▊   | 338/500 [00:18<00:08, 18.68it/s]
eval model::  68%|██████▊   | 340/500 [00:18<00:10, 15.55it/s]
eval model::  69%|██████▊   | 343/500 [00:18<00:08, 17.94it/s]
eval model::  69%|██████▉   | 346/500 [00:18<00:07, 20.00it/s]
eval model::  70%|██████▉   | 349/500 [00:18<00:07, 20.94it/s]
eval model::  70%|███████   | 352/500 [00:18<00:06, 21.95it/s]
eval model::  71%|███████   | 355/500 [00:18<00:06, 21.55it/s]
eval model::  72%|███████▏  | 358/500 [00:19<00:06, 22.02it/s]
eval model::  72%|███████▏  | 361/500 [00:19<00:07, 18.68it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:07, 18.14it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:07, 17.87it/s]
eval model::  74%|███████▎  | 368/500 [00:19<00:07, 18.25it/s]
eval model::  74%|███████▍  | 371/500 [00:19<00:06, 19.22it/s]
eval model::  75%|███████▍  | 373/500 [00:19<00:06, 18.64it/s]
eval model::  75%|███████▌  | 376/500 [00:20<00:05, 20.67it/s]
eval model::  76%|███████▌  | 379/500 [00:20<00:05, 21.56it/s]
eval model::  76%|███████▋  | 382/500 [00:20<00:05, 20.34it/s]
eval model::  77%|███████▋  | 385/500 [00:20<00:05, 20.96it/s]
eval model::  78%|███████▊  | 388/500 [00:20<00:08, 13.21it/s]
eval model::  78%|███████▊  | 391/500 [00:20<00:06, 15.59it/s]
eval model::  79%|███████▉  | 394/500 [00:21<00:06, 17.35it/s]
eval model::  80%|███████▉  | 398/500 [00:21<00:04, 21.10it/s]
eval model::  80%|████████  | 401/500 [00:21<00:05, 18.60it/s]
eval model::  81%|████████  | 404/500 [00:21<00:04, 19.53it/s]
eval model::  81%|████████▏ | 407/500 [00:21<00:04, 19.81it/s]
eval model::  82%|████████▏ | 410/500 [00:21<00:04, 21.44it/s]
eval model::  83%|████████▎ | 413/500 [00:21<00:04, 20.69it/s]
eval model::  83%|████████▎ | 416/500 [00:22<00:04, 20.68it/s]
eval model::  84%|████████▍ | 419/500 [00:22<00:04, 20.07it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:05, 14.26it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:05, 15.13it/s]
eval model::  85%|████████▌ | 426/500 [00:22<00:04, 15.38it/s]
eval model::  86%|████████▌ | 429/500 [00:23<00:04, 17.43it/s]
eval model::  86%|████████▌ | 431/500 [00:23<00:03, 17.59it/s]
eval model::  87%|████████▋ | 435/500 [00:23<00:03, 21.61it/s]
eval model::  88%|████████▊ | 438/500 [00:23<00:02, 22.68it/s]
eval model::  88%|████████▊ | 441/500 [00:23<00:02, 22.34it/s]
eval model::  89%|████████▉ | 444/500 [00:23<00:02, 22.16it/s]
eval model::  89%|████████▉ | 447/500 [00:23<00:02, 22.89it/s]
eval model::  90%|█████████ | 450/500 [00:23<00:02, 20.41it/s]
eval model::  91%|█████████ | 453/500 [00:24<00:02, 21.71it/s]
eval model::  91%|█████████ | 456/500 [00:24<00:01, 22.54it/s]
eval model::  92%|█████████▏| 459/500 [00:24<00:01, 21.70it/s]
eval model::  92%|█████████▏| 462/500 [00:24<00:02, 17.15it/s]
eval model::  93%|█████████▎| 464/500 [00:24<00:02, 17.54it/s]
eval model::  93%|█████████▎| 466/500 [00:24<00:02, 16.22it/s]
eval model::  94%|█████████▎| 468/500 [00:24<00:01, 16.78it/s]
eval model::  94%|█████████▍| 471/500 [00:25<00:01, 19.42it/s]
eval model::  95%|█████████▍| 474/500 [00:25<00:01, 18.22it/s]
eval model::  95%|█████████▌| 477/500 [00:25<00:01, 19.54it/s]
eval model::  96%|█████████▌| 480/500 [00:25<00:00, 20.42it/s]
eval model::  97%|█████████▋| 483/500 [00:25<00:00, 21.22it/s]
eval model::  97%|█████████▋| 486/500 [00:25<00:00, 21.12it/s]
eval model::  98%|█████████▊| 489/500 [00:25<00:00, 20.97it/s]
eval model::  98%|█████████▊| 492/500 [00:26<00:00, 17.78it/s]
eval model::  99%|█████████▉| 495/500 [00:26<00:00, 18.43it/s]
eval model::  99%|█████████▉| 497/500 [00:26<00:00, 18.25it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.86it/s]
[2024/07/27 13:52:01] ppocr INFO: cur metric, precision: 0.714210802307289, recall: 0.6557534906114588, hmean: 0.6837349397590361, fps: 45.171169631596904
[2024/07/27 13:52:01] ppocr INFO: best metric, hmean: 0.7142857142857143, precision: 0.7627118644067796, recall: 0.6716417910447762, fps: 43.33575316801794, best_epoch: 740
[2024/07/27 13:52:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:52:11] ppocr INFO: epoch: [821/1500], global_step: 2463, lr: 0.001000, loss: 1.307455, loss_shrink_maps: 0.655821, loss_threshold_maps: 0.511114, loss_binary_maps: 0.129353, avg_reader_cost: 2.38330 s, avg_batch_cost: 2.64060 s, avg_samples: 12.5, ips: 4.73378 samples/s, eta: 4:55:20
[2024/07/27 13:52:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:52:21] ppocr INFO: epoch: [822/1500], global_step: 2466, lr: 0.001000, loss: 1.289168, loss_shrink_maps: 0.647129, loss_threshold_maps: 0.507177, loss_binary_maps: 0.128014, avg_reader_cost: 2.15494 s, avg_batch_cost: 2.52274 s, avg_samples: 12.5, ips: 4.95493 samples/s, eta: 4:54:53
[2024/07/27 13:52:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:52:30] ppocr INFO: epoch: [823/1500], global_step: 2469, lr: 0.001000, loss: 1.297737, loss_shrink_maps: 0.655821, loss_threshold_maps: 0.505786, loss_binary_maps: 0.129353, avg_reader_cost: 2.27693 s, avg_batch_cost: 2.62946 s, avg_samples: 12.5, ips: 4.75383 samples/s, eta: 4:54:27
[2024/07/27 13:52:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:52:39] ppocr INFO: epoch: [824/1500], global_step: 2470, lr: 0.001000, loss: 1.307455, loss_shrink_maps: 0.664444, loss_threshold_maps: 0.505786, loss_binary_maps: 0.131575, avg_reader_cost: 0.56775 s, avg_batch_cost: 0.78328 s, avg_samples: 4.8, ips: 6.12805 samples/s, eta: 4:54:17
[2024/07/27 13:52:40] ppocr INFO: epoch: [824/1500], global_step: 2472, lr: 0.001000, loss: 1.297737, loss_shrink_maps: 0.663187, loss_threshold_maps: 0.503929, loss_binary_maps: 0.131185, avg_reader_cost: 1.65864 s, avg_batch_cost: 1.80613 s, avg_samples: 7.7, ips: 4.26325 samples/s, eta: 4:54:01
[2024/07/27 13:52:41] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:52:50] ppocr INFO: epoch: [825/1500], global_step: 2475, lr: 0.001000, loss: 1.302764, loss_shrink_maps: 0.663005, loss_threshold_maps: 0.503929, loss_binary_maps: 0.132317, avg_reader_cost: 2.21315 s, avg_batch_cost: 2.57857 s, avg_samples: 12.5, ips: 4.84765 samples/s, eta: 4:53:34
[2024/07/27 13:52:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:53:00] ppocr INFO: epoch: [826/1500], global_step: 2478, lr: 0.001000, loss: 1.290877, loss_shrink_maps: 0.654662, loss_threshold_maps: 0.505411, loss_binary_maps: 0.130377, avg_reader_cost: 2.26765 s, avg_batch_cost: 2.50550 s, avg_samples: 12.5, ips: 4.98902 samples/s, eta: 4:53:07
[2024/07/27 13:53:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:53:09] ppocr INFO: epoch: [827/1500], global_step: 2480, lr: 0.001000, loss: 1.290877, loss_shrink_maps: 0.654662, loss_threshold_maps: 0.502781, loss_binary_maps: 0.130377, avg_reader_cost: 1.35655 s, avg_batch_cost: 1.66802 s, avg_samples: 9.6, ips: 5.75533 samples/s, eta: 4:52:49
[2024/07/27 13:53:09] ppocr INFO: epoch: [827/1500], global_step: 2481, lr: 0.001000, loss: 1.290877, loss_shrink_maps: 0.654662, loss_threshold_maps: 0.499732, loss_binary_maps: 0.130377, avg_reader_cost: 0.88024 s, avg_batch_cost: 0.93588 s, avg_samples: 2.9, ips: 3.09869 samples/s, eta: 4:52:41
[2024/07/27 13:53:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:53:19] ppocr INFO: epoch: [828/1500], global_step: 2484, lr: 0.001000, loss: 1.307119, loss_shrink_maps: 0.668178, loss_threshold_maps: 0.505411, loss_binary_maps: 0.132651, avg_reader_cost: 2.32483 s, avg_batch_cost: 2.60326 s, avg_samples: 12.5, ips: 4.80166 samples/s, eta: 4:52:15
[2024/07/27 13:53:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:53:29] ppocr INFO: epoch: [829/1500], global_step: 2487, lr: 0.001000, loss: 1.308745, loss_shrink_maps: 0.668271, loss_threshold_maps: 0.506261, loss_binary_maps: 0.132651, avg_reader_cost: 2.32747 s, avg_batch_cost: 2.56422 s, avg_samples: 12.5, ips: 4.87479 samples/s, eta: 4:51:49
[2024/07/27 13:53:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:53:39] ppocr INFO: epoch: [830/1500], global_step: 2490, lr: 0.001000, loss: 1.295904, loss_shrink_maps: 0.654662, loss_threshold_maps: 0.504127, loss_binary_maps: 0.130377, avg_reader_cost: 2.36144 s, avg_batch_cost: 2.60251 s, avg_samples: 12.5, ips: 4.80306 samples/s, eta: 4:51:22
[2024/07/27 13:53:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:53:49] ppocr INFO: epoch: [831/1500], global_step: 2493, lr: 0.001000, loss: 1.297530, loss_shrink_maps: 0.659104, loss_threshold_maps: 0.501497, loss_binary_maps: 0.131525, avg_reader_cost: 2.25136 s, avg_batch_cost: 2.62785 s, avg_samples: 12.5, ips: 4.75674 samples/s, eta: 4:50:56
[2024/07/27 13:53:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:53:58] ppocr INFO: epoch: [832/1500], global_step: 2496, lr: 0.001000, loss: 1.297530, loss_shrink_maps: 0.662054, loss_threshold_maps: 0.504201, loss_binary_maps: 0.131852, avg_reader_cost: 2.29511 s, avg_batch_cost: 2.53403 s, avg_samples: 12.5, ips: 4.93286 samples/s, eta: 4:50:30
[2024/07/27 13:53:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:54:08] ppocr INFO: epoch: [833/1500], global_step: 2499, lr: 0.001000, loss: 1.308745, loss_shrink_maps: 0.668271, loss_threshold_maps: 0.504201, loss_binary_maps: 0.132536, avg_reader_cost: 2.27330 s, avg_batch_cost: 2.63165 s, avg_samples: 12.5, ips: 4.74988 samples/s, eta: 4:50:04
[2024/07/27 13:54:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:54:17] ppocr INFO: epoch: [834/1500], global_step: 2500, lr: 0.001000, loss: 1.316647, loss_shrink_maps: 0.668271, loss_threshold_maps: 0.504201, loss_binary_maps: 0.132536, avg_reader_cost: 0.69114 s, avg_batch_cost: 0.78479 s, avg_samples: 4.8, ips: 6.11632 samples/s, eta: 4:49:54
[2024/07/27 13:54:18] ppocr INFO: epoch: [834/1500], global_step: 2502, lr: 0.001000, loss: 1.316647, loss_shrink_maps: 0.668271, loss_threshold_maps: 0.504201, loss_binary_maps: 0.132536, avg_reader_cost: 1.66172 s, avg_batch_cost: 1.80882 s, avg_samples: 7.7, ips: 4.25692 samples/s, eta: 4:49:38
[2024/07/27 13:54:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:54:28] ppocr INFO: epoch: [835/1500], global_step: 2505, lr: 0.001000, loss: 1.308280, loss_shrink_maps: 0.671342, loss_threshold_maps: 0.491722, loss_binary_maps: 0.133430, avg_reader_cost: 2.29750 s, avg_batch_cost: 2.53346 s, avg_samples: 12.5, ips: 4.93395 samples/s, eta: 4:49:11
[2024/07/27 13:54:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:54:38] ppocr INFO: epoch: [836/1500], global_step: 2508, lr: 0.001000, loss: 1.328063, loss_shrink_maps: 0.694848, loss_threshold_maps: 0.484352, loss_binary_maps: 0.138096, avg_reader_cost: 2.23563 s, avg_batch_cost: 2.58979 s, avg_samples: 12.5, ips: 4.82664 samples/s, eta: 4:48:45
[2024/07/27 13:54:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:54:47] ppocr INFO: epoch: [837/1500], global_step: 2510, lr: 0.001000, loss: 1.328063, loss_shrink_maps: 0.694848, loss_threshold_maps: 0.484352, loss_binary_maps: 0.138096, avg_reader_cost: 1.51747 s, avg_batch_cost: 1.69910 s, avg_samples: 9.6, ips: 5.65004 samples/s, eta: 4:48:27
[2024/07/27 13:54:48] ppocr INFO: epoch: [837/1500], global_step: 2511, lr: 0.001000, loss: 1.328063, loss_shrink_maps: 0.694848, loss_threshold_maps: 0.493066, loss_binary_maps: 0.138096, avg_reader_cost: 0.89575 s, avg_batch_cost: 0.95086 s, avg_samples: 2.9, ips: 3.04987 samples/s, eta: 4:48:19
[2024/07/27 13:54:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:54:58] ppocr INFO: epoch: [838/1500], global_step: 2514, lr: 0.001000, loss: 1.328063, loss_shrink_maps: 0.703177, loss_threshold_maps: 0.498539, loss_binary_maps: 0.139580, avg_reader_cost: 2.33180 s, avg_batch_cost: 2.58118 s, avg_samples: 12.5, ips: 4.84274 samples/s, eta: 4:47:53
[2024/07/27 13:54:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:55:08] ppocr INFO: epoch: [839/1500], global_step: 2517, lr: 0.001000, loss: 1.328063, loss_shrink_maps: 0.703177, loss_threshold_maps: 0.500088, loss_binary_maps: 0.139580, avg_reader_cost: 2.44021 s, avg_batch_cost: 2.67889 s, avg_samples: 12.5, ips: 4.66612 samples/s, eta: 4:47:27
[2024/07/27 13:55:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:55:17] ppocr INFO: epoch: [840/1500], global_step: 2520, lr: 0.001000, loss: 1.316078, loss_shrink_maps: 0.683490, loss_threshold_maps: 0.498539, loss_binary_maps: 0.135827, avg_reader_cost: 2.24728 s, avg_batch_cost: 2.48876 s, avg_samples: 12.5, ips: 5.02258 samples/s, eta: 4:47:00

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:55,  8.93it/s]
eval model::   1%|          | 4/500 [00:00<00:28, 17.42it/s]
eval model::   1%|          | 6/500 [00:00<00:27, 17.69it/s]
eval model::   2%|▏         | 8/500 [00:00<00:27, 18.06it/s]
eval model::   2%|▏         | 11/500 [00:00<00:26, 18.64it/s]
eval model::   3%|▎         | 14/500 [00:00<00:25, 18.82it/s]
eval model::   3%|▎         | 17/500 [00:00<00:23, 20.29it/s]
eval model::   4%|▍         | 20/500 [00:01<00:24, 19.33it/s]
eval model::   5%|▍         | 23/500 [00:01<00:23, 20.67it/s]
eval model::   5%|▌         | 26/500 [00:01<00:25, 18.76it/s]
eval model::   6%|▌         | 29/500 [00:01<00:23, 20.43it/s]
eval model::   6%|▋         | 32/500 [00:01<00:24, 19.25it/s]
eval model::   7%|▋         | 34/500 [00:01<00:25, 18.58it/s]
eval model::   7%|▋         | 37/500 [00:01<00:23, 19.55it/s]
eval model::   8%|▊         | 39/500 [00:02<00:25, 18.24it/s]
eval model::   8%|▊         | 42/500 [00:02<00:25, 17.78it/s]
eval model::   9%|▉         | 45/500 [00:02<00:23, 19.35it/s]
eval model::   9%|▉         | 47/500 [00:02<00:24, 18.28it/s]
eval model::  10%|█         | 50/500 [00:02<00:22, 19.83it/s]
eval model::  11%|█         | 54/500 [00:02<00:19, 22.86it/s]
eval model::  11%|█▏        | 57/500 [00:02<00:20, 21.58it/s]
eval model::  12%|█▏        | 60/500 [00:03<00:23, 19.02it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:29, 14.91it/s]
eval model::  13%|█▎        | 64/500 [00:03<00:27, 15.69it/s]
eval model::  14%|█▎        | 68/500 [00:03<00:21, 19.85it/s]
eval model::  14%|█▍        | 71/500 [00:03<00:19, 21.54it/s]
eval model::  15%|█▍        | 74/500 [00:03<00:21, 19.98it/s]
eval model::  15%|█▌        | 77/500 [00:04<00:21, 19.33it/s]
eval model::  16%|█▌        | 80/500 [00:04<00:20, 20.53it/s]
eval model::  17%|█▋        | 83/500 [00:04<00:20, 20.60it/s]
eval model::  17%|█▋        | 86/500 [00:04<00:20, 20.32it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:23, 17.37it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:23, 17.39it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:22, 17.75it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:20, 20.03it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:18, 21.91it/s]
eval model::  20%|██        | 102/500 [00:05<00:19, 20.53it/s]
eval model::  21%|██        | 105/500 [00:05<00:18, 21.42it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:18, 21.61it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:19, 20.04it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:18, 20.85it/s]
eval model::  23%|██▎       | 117/500 [00:06<00:18, 20.91it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:19, 19.59it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:18, 20.04it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:19, 19.09it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:18, 20.34it/s]
eval model::  27%|██▋       | 133/500 [00:06<00:18, 20.01it/s]
eval model::  27%|██▋       | 136/500 [00:06<00:16, 21.45it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:16, 21.44it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:16, 21.58it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:16, 21.21it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:18, 19.17it/s]
eval model::  30%|███       | 150/500 [00:07<00:18, 18.73it/s]
eval model::  30%|███       | 152/500 [00:07<00:20, 16.94it/s]
eval model::  31%|███       | 155/500 [00:07<00:18, 18.45it/s]
eval model::  32%|███▏      | 158/500 [00:08<00:17, 19.91it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:21, 15.46it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:19, 17.47it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:18, 18.15it/s]
eval model::  34%|███▍      | 170/500 [00:08<00:17, 19.26it/s]
eval model::  35%|███▍      | 173/500 [00:08<00:17, 18.36it/s]
eval model::  35%|███▌      | 175/500 [00:09<00:19, 16.34it/s]
eval model::  35%|███▌      | 177/500 [00:09<00:19, 16.21it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:19, 16.71it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:21, 15.07it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:20, 15.61it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:18, 17.43it/s]
eval model::  38%|███▊      | 188/500 [00:09<00:18, 17.25it/s]
eval model::  38%|███▊      | 191/500 [00:10<00:15, 19.58it/s]
eval model::  39%|███▉      | 194/500 [00:10<00:14, 21.82it/s]
eval model::  39%|███▉      | 197/500 [00:10<00:16, 18.16it/s]
eval model::  40%|████      | 200/500 [00:10<00:15, 19.62it/s]
eval model::  41%|████      | 203/500 [00:10<00:14, 20.75it/s]
eval model::  41%|████      | 206/500 [00:10<00:20, 14.57it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:19, 14.62it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:19, 14.73it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.78it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:19, 14.69it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:20, 13.82it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:17, 16.27it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:18, 15.08it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:15, 17.92it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:12, 21.17it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:12, 21.02it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:12, 20.62it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:12, 20.69it/s]
eval model::  48%|████▊     | 242/500 [00:12<00:14, 17.93it/s]
eval model::  49%|████▉     | 245/500 [00:13<00:13, 18.71it/s]
eval model::  50%|████▉     | 248/500 [00:13<00:12, 19.71it/s]
eval model::  50%|█████     | 251/500 [00:13<00:13, 18.84it/s]
eval model::  51%|█████     | 254/500 [00:13<00:12, 19.15it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:12, 20.12it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:10, 21.99it/s]
eval model::  53%|█████▎    | 263/500 [00:13<00:10, 22.58it/s]
eval model::  53%|█████▎    | 266/500 [00:14<00:11, 20.34it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:12, 18.70it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:11, 20.46it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:11, 19.23it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:10, 20.70it/s]
eval model::  56%|█████▌    | 281/500 [00:14<00:10, 20.97it/s]
eval model::  57%|█████▋    | 284/500 [00:14<00:09, 22.17it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:17, 12.51it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:13, 15.90it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:12, 16.43it/s]
eval model::  59%|█████▉    | 297/500 [00:16<00:13, 14.61it/s]
eval model::  60%|██████    | 300/500 [00:16<00:12, 15.67it/s]
eval model::  61%|██████    | 303/500 [00:16<00:11, 17.79it/s]
eval model::  61%|██████    | 306/500 [00:16<00:10, 18.83it/s]
eval model::  62%|██████▏   | 309/500 [00:16<00:09, 20.14it/s]
eval model::  62%|██████▏   | 312/500 [00:16<00:09, 19.40it/s]
eval model::  63%|██████▎   | 315/500 [00:16<00:09, 18.97it/s]
eval model::  64%|██████▎   | 318/500 [00:17<00:08, 20.52it/s]
eval model::  64%|██████▍   | 321/500 [00:17<00:08, 20.99it/s]
eval model::  65%|██████▍   | 324/500 [00:17<00:08, 20.00it/s]
eval model::  65%|██████▌   | 327/500 [00:17<00:08, 20.61it/s]
eval model::  66%|██████▌   | 330/500 [00:17<00:08, 19.28it/s]
eval model::  67%|██████▋   | 333/500 [00:17<00:08, 20.69it/s]
eval model::  67%|██████▋   | 337/500 [00:17<00:07, 23.17it/s]
eval model::  68%|██████▊   | 340/500 [00:18<00:09, 17.41it/s]
eval model::  69%|██████▊   | 343/500 [00:18<00:08, 19.26it/s]
eval model::  69%|██████▉   | 346/500 [00:18<00:07, 20.23it/s]
eval model::  70%|██████▉   | 349/500 [00:18<00:07, 20.48it/s]
eval model::  70%|███████   | 352/500 [00:18<00:06, 21.38it/s]
eval model::  71%|███████   | 355/500 [00:18<00:07, 19.28it/s]
eval model::  72%|███████▏  | 358/500 [00:19<00:07, 19.69it/s]
eval model::  72%|███████▏  | 361/500 [00:19<00:07, 17.65it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:08, 16.78it/s]
eval model::  73%|███████▎  | 367/500 [00:19<00:07, 17.92it/s]
eval model::  74%|███████▍  | 370/500 [00:19<00:06, 19.74it/s]
eval model::  75%|███████▍  | 373/500 [00:19<00:06, 18.44it/s]
eval model::  75%|███████▌  | 377/500 [00:19<00:05, 21.83it/s]
eval model::  76%|███████▌  | 380/500 [00:20<00:05, 20.51it/s]
eval model::  77%|███████▋  | 383/500 [00:20<00:05, 22.11it/s]
eval model::  77%|███████▋  | 386/500 [00:20<00:08, 14.16it/s]
eval model::  78%|███████▊  | 389/500 [00:20<00:06, 16.18it/s]
eval model::  78%|███████▊  | 392/500 [00:20<00:05, 18.04it/s]
eval model::  79%|███████▉  | 395/500 [00:21<00:05, 19.92it/s]
eval model::  80%|███████▉  | 398/500 [00:21<00:04, 21.28it/s]
eval model::  80%|████████  | 401/500 [00:21<00:05, 18.71it/s]
eval model::  81%|████████  | 404/500 [00:21<00:04, 20.25it/s]
eval model::  81%|████████▏ | 407/500 [00:21<00:04, 22.15it/s]
eval model::  82%|████████▏ | 411/500 [00:21<00:03, 24.30it/s]
eval model::  83%|████████▎ | 414/500 [00:21<00:03, 22.93it/s]
eval model::  83%|████████▎ | 417/500 [00:22<00:03, 21.98it/s]
eval model::  84%|████████▍ | 420/500 [00:22<00:05, 15.56it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:04, 15.97it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:04, 15.59it/s]
eval model::  85%|████████▌ | 426/500 [00:22<00:04, 15.97it/s]
eval model::  86%|████████▌ | 430/500 [00:22<00:03, 20.52it/s]
eval model::  87%|████████▋ | 433/500 [00:22<00:03, 20.25it/s]
eval model::  87%|████████▋ | 436/500 [00:23<00:02, 21.70it/s]
eval model::  88%|████████▊ | 439/500 [00:23<00:02, 23.34it/s]
eval model::  88%|████████▊ | 442/500 [00:23<00:02, 22.95it/s]
eval model::  89%|████████▉ | 445/500 [00:23<00:02, 22.48it/s]
eval model::  90%|████████▉ | 448/500 [00:23<00:02, 21.11it/s]
eval model::  90%|█████████ | 451/500 [00:23<00:02, 21.63it/s]
eval model::  91%|█████████ | 454/500 [00:23<00:02, 21.32it/s]
eval model::  91%|█████████▏| 457/500 [00:24<00:01, 22.39it/s]
eval model::  92%|█████████▏| 460/500 [00:24<00:01, 21.20it/s]
eval model::  93%|█████████▎| 463/500 [00:24<00:02, 17.85it/s]
eval model::  93%|█████████▎| 465/500 [00:24<00:02, 16.75it/s]
eval model::  94%|█████████▎| 468/500 [00:24<00:01, 18.01it/s]
eval model::  94%|█████████▍| 471/500 [00:24<00:01, 19.81it/s]
eval model::  95%|█████████▍| 474/500 [00:25<00:01, 18.87it/s]
eval model::  95%|█████████▌| 477/500 [00:25<00:01, 20.26it/s]
eval model::  96%|█████████▌| 480/500 [00:25<00:00, 20.53it/s]
eval model::  97%|█████████▋| 483/500 [00:25<00:00, 21.19it/s]
eval model::  97%|█████████▋| 486/500 [00:25<00:00, 19.21it/s]
eval model::  98%|█████████▊| 489/500 [00:25<00:00, 20.83it/s]
eval model::  98%|█████████▊| 492/500 [00:25<00:00, 18.45it/s]
eval model::  99%|█████████▉| 495/500 [00:26<00:00, 18.55it/s]
eval model:: 100%|█████████▉| 499/500 [00:26<00:00, 21.86it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 19.06it/s]
[2024/07/27 13:55:44] ppocr INFO: cur metric, precision: 0.732650739476678, recall: 0.6201251805488686, hmean: 0.6717079530638852, fps: 43.76186539825858
[2024/07/27 13:55:44] ppocr INFO: best metric, hmean: 0.7142857142857143, precision: 0.7627118644067796, recall: 0.6716417910447762, fps: 43.33575316801794, best_epoch: 740
[2024/07/27 13:55:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:55:53] ppocr INFO: epoch: [841/1500], global_step: 2523, lr: 0.001000, loss: 1.278918, loss_shrink_maps: 0.658058, loss_threshold_maps: 0.486851, loss_binary_maps: 0.130707, avg_reader_cost: 2.41686 s, avg_batch_cost: 2.72913 s, avg_samples: 12.5, ips: 4.58022 samples/s, eta: 4:46:35
[2024/07/27 13:55:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:56:03] ppocr INFO: epoch: [842/1500], global_step: 2526, lr: 0.001000, loss: 1.278918, loss_shrink_maps: 0.658058, loss_threshold_maps: 0.498539, loss_binary_maps: 0.130707, avg_reader_cost: 2.14931 s, avg_batch_cost: 2.61164 s, avg_samples: 12.5, ips: 4.78626 samples/s, eta: 4:46:09
[2024/07/27 13:56:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:56:12] ppocr INFO: epoch: [843/1500], global_step: 2529, lr: 0.001000, loss: 1.263496, loss_shrink_maps: 0.648119, loss_threshold_maps: 0.499257, loss_binary_maps: 0.128722, avg_reader_cost: 2.09867 s, avg_batch_cost: 2.37301 s, avg_samples: 12.5, ips: 5.26758 samples/s, eta: 4:45:41
[2024/07/27 13:56:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:56:21] ppocr INFO: epoch: [844/1500], global_step: 2530, lr: 0.001000, loss: 1.270769, loss_shrink_maps: 0.651737, loss_threshold_maps: 0.500769, loss_binary_maps: 0.129458, avg_reader_cost: 0.57770 s, avg_batch_cost: 0.80891 s, avg_samples: 4.8, ips: 5.93392 samples/s, eta: 4:45:32
[2024/07/27 13:56:22] ppocr INFO: epoch: [844/1500], global_step: 2532, lr: 0.001000, loss: 1.256458, loss_shrink_maps: 0.642327, loss_threshold_maps: 0.500030, loss_binary_maps: 0.127331, avg_reader_cost: 1.70997 s, avg_batch_cost: 1.85740 s, avg_samples: 7.7, ips: 4.14559 samples/s, eta: 4:45:15
[2024/07/27 13:56:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:56:32] ppocr INFO: epoch: [845/1500], global_step: 2535, lr: 0.001000, loss: 1.242716, loss_shrink_maps: 0.636744, loss_threshold_maps: 0.498642, loss_binary_maps: 0.126380, avg_reader_cost: 2.22040 s, avg_batch_cost: 2.58124 s, avg_samples: 12.5, ips: 4.84263 samples/s, eta: 4:44:49
[2024/07/27 13:56:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:56:42] ppocr INFO: epoch: [846/1500], global_step: 2538, lr: 0.001000, loss: 1.268552, loss_shrink_maps: 0.648119, loss_threshold_maps: 0.503638, loss_binary_maps: 0.128791, avg_reader_cost: 2.26498 s, avg_batch_cost: 2.50405 s, avg_samples: 12.5, ips: 4.99192 samples/s, eta: 4:44:22
[2024/07/27 13:56:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:56:51] ppocr INFO: epoch: [847/1500], global_step: 2540, lr: 0.001000, loss: 1.268552, loss_shrink_maps: 0.648119, loss_threshold_maps: 0.503638, loss_binary_maps: 0.128791, avg_reader_cost: 1.36096 s, avg_batch_cost: 1.69603 s, avg_samples: 9.6, ips: 5.66028 samples/s, eta: 4:44:04
[2024/07/27 13:56:52] ppocr INFO: epoch: [847/1500], global_step: 2541, lr: 0.001000, loss: 1.282590, loss_shrink_maps: 0.651737, loss_threshold_maps: 0.506775, loss_binary_maps: 0.129458, avg_reader_cost: 0.89470 s, avg_batch_cost: 0.94971 s, avg_samples: 2.9, ips: 3.05356 samples/s, eta: 4:43:56
[2024/07/27 13:56:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:57:02] ppocr INFO: epoch: [848/1500], global_step: 2544, lr: 0.001000, loss: 1.291143, loss_shrink_maps: 0.652554, loss_threshold_maps: 0.506701, loss_binary_maps: 0.129550, avg_reader_cost: 2.19697 s, avg_batch_cost: 2.60083 s, avg_samples: 12.5, ips: 4.80616 samples/s, eta: 4:43:30
[2024/07/27 13:57:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:57:11] ppocr INFO: epoch: [849/1500], global_step: 2547, lr: 0.001000, loss: 1.291143, loss_shrink_maps: 0.650873, loss_threshold_maps: 0.503260, loss_binary_maps: 0.129078, avg_reader_cost: 2.19103 s, avg_batch_cost: 2.53953 s, avg_samples: 12.5, ips: 4.92217 samples/s, eta: 4:43:03
[2024/07/27 13:57:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:57:21] ppocr INFO: epoch: [850/1500], global_step: 2550, lr: 0.001000, loss: 1.293882, loss_shrink_maps: 0.656134, loss_threshold_maps: 0.506701, loss_binary_maps: 0.129935, avg_reader_cost: 2.25458 s, avg_batch_cost: 2.49982 s, avg_samples: 12.5, ips: 5.00036 samples/s, eta: 4:42:36
[2024/07/27 13:57:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:57:31] ppocr INFO: epoch: [851/1500], global_step: 2553, lr: 0.001000, loss: 1.293882, loss_shrink_maps: 0.656134, loss_threshold_maps: 0.506701, loss_binary_maps: 0.129935, avg_reader_cost: 2.38390 s, avg_batch_cost: 2.63241 s, avg_samples: 12.5, ips: 4.74850 samples/s, eta: 4:42:11
[2024/07/27 13:57:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:57:41] ppocr INFO: epoch: [852/1500], global_step: 2556, lr: 0.001000, loss: 1.293882, loss_shrink_maps: 0.656134, loss_threshold_maps: 0.506701, loss_binary_maps: 0.129935, avg_reader_cost: 2.26290 s, avg_batch_cost: 2.49738 s, avg_samples: 12.5, ips: 5.00525 samples/s, eta: 4:41:44
[2024/07/27 13:57:41] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:57:50] ppocr INFO: epoch: [853/1500], global_step: 2559, lr: 0.001000, loss: 1.304868, loss_shrink_maps: 0.661409, loss_threshold_maps: 0.506701, loss_binary_maps: 0.131237, avg_reader_cost: 2.23090 s, avg_batch_cost: 2.58769 s, avg_samples: 12.5, ips: 4.83056 samples/s, eta: 4:41:17
[2024/07/27 13:57:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:57:59] ppocr INFO: epoch: [854/1500], global_step: 2560, lr: 0.001000, loss: 1.293882, loss_shrink_maps: 0.661168, loss_threshold_maps: 0.503212, loss_binary_maps: 0.131237, avg_reader_cost: 0.69986 s, avg_batch_cost: 0.79061 s, avg_samples: 4.8, ips: 6.07124 samples/s, eta: 4:41:08
[2024/07/27 13:58:00] ppocr INFO: epoch: [854/1500], global_step: 2562, lr: 0.001000, loss: 1.293882, loss_shrink_maps: 0.661168, loss_threshold_maps: 0.502976, loss_binary_maps: 0.131237, avg_reader_cost: 1.67315 s, avg_batch_cost: 1.81995 s, avg_samples: 7.7, ips: 4.23087 samples/s, eta: 4:40:51
[2024/07/27 13:58:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:58:10] ppocr INFO: epoch: [855/1500], global_step: 2565, lr: 0.001000, loss: 1.333309, loss_shrink_maps: 0.689501, loss_threshold_maps: 0.503772, loss_binary_maps: 0.137309, avg_reader_cost: 2.19692 s, avg_batch_cost: 2.53205 s, avg_samples: 12.5, ips: 4.93670 samples/s, eta: 4:40:25
[2024/07/27 13:58:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:58:20] ppocr INFO: epoch: [856/1500], global_step: 2568, lr: 0.001000, loss: 1.313372, loss_shrink_maps: 0.688211, loss_threshold_maps: 0.496425, loss_binary_maps: 0.137307, avg_reader_cost: 2.21673 s, avg_batch_cost: 2.58808 s, avg_samples: 12.5, ips: 4.82983 samples/s, eta: 4:39:58
[2024/07/27 13:58:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:58:29] ppocr INFO: epoch: [857/1500], global_step: 2570, lr: 0.001000, loss: 1.292124, loss_shrink_maps: 0.673823, loss_threshold_maps: 0.494500, loss_binary_maps: 0.134129, avg_reader_cost: 1.43364 s, avg_batch_cost: 1.69768 s, avg_samples: 9.6, ips: 5.65477 samples/s, eta: 4:39:41
[2024/07/27 13:58:30] ppocr INFO: epoch: [857/1500], global_step: 2571, lr: 0.001000, loss: 1.292124, loss_shrink_maps: 0.673823, loss_threshold_maps: 0.494500, loss_binary_maps: 0.134129, avg_reader_cost: 0.89573 s, avg_batch_cost: 0.95128 s, avg_samples: 2.9, ips: 3.04852 samples/s, eta: 4:39:33
[2024/07/27 13:58:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:58:40] ppocr INFO: epoch: [858/1500], global_step: 2574, lr: 0.001000, loss: 1.313372, loss_shrink_maps: 0.688211, loss_threshold_maps: 0.498029, loss_binary_maps: 0.137307, avg_reader_cost: 2.37690 s, avg_batch_cost: 2.63134 s, avg_samples: 12.5, ips: 4.75042 samples/s, eta: 4:39:07
[2024/07/27 13:58:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:58:50] ppocr INFO: epoch: [859/1500], global_step: 2577, lr: 0.001000, loss: 1.298388, loss_shrink_maps: 0.679338, loss_threshold_maps: 0.495184, loss_binary_maps: 0.135499, avg_reader_cost: 2.25883 s, avg_batch_cost: 2.59209 s, avg_samples: 12.5, ips: 4.82236 samples/s, eta: 4:38:41
[2024/07/27 13:58:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:58:59] ppocr INFO: epoch: [860/1500], global_step: 2580, lr: 0.001000, loss: 1.273996, loss_shrink_maps: 0.659165, loss_threshold_maps: 0.485401, loss_binary_maps: 0.131198, avg_reader_cost: 2.26097 s, avg_batch_cost: 2.59842 s, avg_samples: 12.5, ips: 4.81062 samples/s, eta: 4:38:14

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<01:03,  7.86it/s]
eval model::   1%|          | 4/500 [00:00<00:34, 14.52it/s]
eval model::   1%|▏         | 7/500 [00:00<00:29, 16.75it/s]
eval model::   2%|▏         | 9/500 [00:00<00:29, 16.76it/s]
eval model::   2%|▏         | 11/500 [00:00<00:29, 16.71it/s]
eval model::   3%|▎         | 14/500 [00:00<00:28, 17.31it/s]
eval model::   3%|▎         | 17/500 [00:00<00:24, 19.48it/s]
eval model::   4%|▍         | 20/500 [00:01<00:25, 19.07it/s]
eval model::   5%|▍         | 23/500 [00:01<00:22, 21.21it/s]
eval model::   5%|▌         | 26/500 [00:01<00:22, 21.27it/s]
eval model::   6%|▌         | 29/500 [00:01<00:21, 22.00it/s]
eval model::   6%|▋         | 32/500 [00:01<00:23, 20.13it/s]
eval model::   7%|▋         | 35/500 [00:01<00:22, 20.81it/s]
eval model::   8%|▊         | 38/500 [00:01<00:22, 20.66it/s]
eval model::   8%|▊         | 41/500 [00:02<00:22, 20.00it/s]
eval model::   9%|▉         | 44/500 [00:02<00:23, 19.04it/s]
eval model::   9%|▉         | 46/500 [00:02<00:26, 17.37it/s]
eval model::  10%|▉         | 49/500 [00:02<00:22, 20.01it/s]
eval model::  10%|█         | 52/500 [00:02<00:22, 19.64it/s]
eval model::  11%|█         | 55/500 [00:02<00:22, 19.57it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:24, 17.85it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:28, 15.17it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:28, 15.57it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:23, 18.39it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:20, 20.94it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:19, 22.29it/s]
eval model::  15%|█▌        | 75/500 [00:03<00:18, 22.72it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:19, 21.70it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:19, 21.85it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:21, 19.80it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:23, 17.76it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:23, 17.29it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:24, 16.75it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:23, 17.29it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:21, 18.77it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:19, 20.50it/s]
eval model::  20%|██        | 102/500 [00:05<00:18, 21.05it/s]
eval model::  21%|██        | 105/500 [00:05<00:17, 22.77it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:16, 23.44it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:18, 21.45it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:18, 21.13it/s]
eval model::  23%|██▎       | 117/500 [00:06<00:18, 20.29it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:18, 21.02it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:17, 21.64it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:21, 17.60it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:20, 18.28it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:22, 16.35it/s]
eval model::  27%|██▋       | 133/500 [00:07<00:23, 15.67it/s]
eval model::  27%|██▋       | 136/500 [00:07<00:20, 17.43it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:18, 19.31it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:18, 19.27it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:17, 20.33it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:18, 18.81it/s]
eval model::  30%|███       | 151/500 [00:07<00:21, 16.15it/s]
eval model::  31%|███       | 154/500 [00:08<00:19, 17.63it/s]
eval model::  31%|███       | 156/500 [00:08<00:19, 17.82it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:18, 18.44it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:22, 14.81it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:21, 15.74it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:18, 17.74it/s]
eval model::  34%|███▎      | 168/500 [00:08<00:19, 17.12it/s]
eval model::  34%|███▍      | 171/500 [00:09<00:18, 17.95it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:20, 16.19it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:20, 15.68it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:19, 16.88it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:20, 15.62it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:17, 17.94it/s]
eval model::  37%|███▋      | 187/500 [00:10<00:16, 18.96it/s]
eval model::  38%|███▊      | 190/500 [00:10<00:15, 19.61it/s]
eval model::  39%|███▊      | 193/500 [00:10<00:14, 21.84it/s]
eval model::  39%|███▉      | 196/500 [00:10<00:14, 20.86it/s]
eval model::  40%|███▉      | 199/500 [00:10<00:13, 21.79it/s]
eval model::  40%|████      | 202/500 [00:10<00:13, 22.06it/s]
eval model::  41%|████      | 205/500 [00:11<00:18, 15.79it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:17, 16.24it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:18, 15.83it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:17, 16.56it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:19, 14.91it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:20, 13.77it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:17, 15.74it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:19, 14.54it/s]
eval model::  45%|████▌     | 225/500 [00:12<00:15, 17.48it/s]
eval model::  46%|████▌     | 228/500 [00:12<00:14, 19.28it/s]
eval model::  46%|████▌     | 231/500 [00:12<00:12, 20.95it/s]
eval model::  47%|████▋     | 234/500 [00:12<00:12, 21.46it/s]
eval model::  47%|████▋     | 237/500 [00:12<00:11, 22.93it/s]
eval model::  48%|████▊     | 240/500 [00:12<00:11, 23.07it/s]
eval model::  49%|████▊     | 243/500 [00:13<00:12, 20.87it/s]
eval model::  49%|████▉     | 246/500 [00:13<00:11, 22.13it/s]
eval model::  50%|████▉     | 249/500 [00:13<00:12, 19.52it/s]
eval model::  51%|█████     | 253/500 [00:13<00:10, 22.53it/s]
eval model::  51%|█████     | 256/500 [00:13<00:10, 22.73it/s]
eval model::  52%|█████▏    | 259/500 [00:13<00:10, 23.20it/s]
eval model::  52%|█████▏    | 262/500 [00:13<00:11, 21.55it/s]
eval model::  53%|█████▎    | 265/500 [00:14<00:11, 19.61it/s]
eval model::  54%|█████▎    | 268/500 [00:14<00:11, 20.51it/s]
eval model::  54%|█████▍    | 271/500 [00:14<00:11, 20.03it/s]
eval model::  55%|█████▍    | 274/500 [00:14<00:12, 18.00it/s]
eval model::  55%|█████▌    | 276/500 [00:14<00:13, 16.82it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:11, 18.97it/s]
eval model::  56%|█████▋    | 282/500 [00:14<00:10, 20.51it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:20, 10.63it/s]
eval model::  58%|█████▊    | 288/500 [00:15<00:16, 13.09it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:13, 15.73it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:12, 16.76it/s]
eval model::  59%|█████▉    | 297/500 [00:16<00:13, 15.40it/s]
eval model::  60%|██████    | 300/500 [00:16<00:12, 16.46it/s]
eval model::  60%|██████    | 302/500 [00:16<00:11, 16.92it/s]
eval model::  61%|██████    | 304/500 [00:16<00:11, 17.31it/s]
eval model::  61%|██████▏   | 307/500 [00:16<00:09, 19.59it/s]
eval model::  62%|██████▏   | 310/500 [00:16<00:09, 20.94it/s]
eval model::  63%|██████▎   | 313/500 [00:16<00:08, 21.74it/s]
eval model::  63%|██████▎   | 316/500 [00:17<00:08, 20.87it/s]
eval model::  64%|██████▍   | 319/500 [00:17<00:07, 22.72it/s]
eval model::  64%|██████▍   | 322/500 [00:17<00:08, 20.76it/s]
eval model::  65%|██████▌   | 325/500 [00:17<00:07, 22.74it/s]
eval model::  66%|██████▌   | 328/500 [00:17<00:07, 21.62it/s]
eval model::  66%|██████▌   | 331/500 [00:17<00:07, 22.19it/s]
eval model::  67%|██████▋   | 335/500 [00:17<00:06, 23.67it/s]
eval model::  68%|██████▊   | 338/500 [00:18<00:07, 21.19it/s]
eval model::  68%|██████▊   | 341/500 [00:18<00:09, 16.67it/s]
eval model::  69%|██████▉   | 344/500 [00:18<00:08, 18.83it/s]
eval model::  69%|██████▉   | 347/500 [00:18<00:07, 20.49it/s]
eval model::  70%|███████   | 351/500 [00:18<00:06, 23.45it/s]
eval model::  71%|███████   | 354/500 [00:18<00:05, 24.35it/s]
eval model::  71%|███████▏  | 357/500 [00:18<00:06, 20.97it/s]
eval model::  72%|███████▏  | 360/500 [00:19<00:06, 21.84it/s]
eval model::  73%|███████▎  | 363/500 [00:19<00:06, 19.96it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:07, 19.06it/s]
eval model::  74%|███████▍  | 369/500 [00:19<00:06, 20.48it/s]
eval model::  74%|███████▍  | 372/500 [00:19<00:06, 21.00it/s]
eval model::  75%|███████▌  | 375/500 [00:19<00:06, 20.38it/s]
eval model::  76%|███████▌  | 378/500 [00:19<00:05, 20.47it/s]
eval model::  76%|███████▌  | 381/500 [00:20<00:06, 17.74it/s]
eval model::  77%|███████▋  | 384/500 [00:20<00:05, 19.43it/s]
eval model::  77%|███████▋  | 387/500 [00:20<00:08, 13.05it/s]
eval model::  78%|███████▊  | 390/500 [00:20<00:07, 14.97it/s]
eval model::  78%|███████▊  | 392/500 [00:20<00:06, 15.82it/s]
eval model::  79%|███████▉  | 395/500 [00:21<00:06, 17.20it/s]
eval model::  80%|███████▉  | 398/500 [00:21<00:05, 19.06it/s]
eval model::  80%|████████  | 401/500 [00:21<00:05, 16.85it/s]
eval model::  81%|████████  | 404/500 [00:21<00:05, 18.26it/s]
eval model::  81%|████████▏ | 407/500 [00:21<00:04, 19.42it/s]
eval model::  82%|████████▏ | 410/500 [00:21<00:04, 21.24it/s]
eval model::  83%|████████▎ | 413/500 [00:21<00:03, 21.82it/s]
eval model::  83%|████████▎ | 416/500 [00:22<00:03, 22.01it/s]
eval model::  84%|████████▍ | 419/500 [00:22<00:03, 20.34it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:05, 15.01it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:04, 15.39it/s]
eval model::  85%|████████▌ | 426/500 [00:22<00:04, 15.15it/s]
eval model::  86%|████████▌ | 429/500 [00:22<00:04, 17.53it/s]
eval model::  86%|████████▌ | 431/500 [00:23<00:04, 16.07it/s]
eval model::  87%|████████▋ | 435/500 [00:23<00:03, 20.04it/s]
eval model::  88%|████████▊ | 439/500 [00:23<00:02, 23.21it/s]
eval model::  88%|████████▊ | 442/500 [00:23<00:02, 22.81it/s]
eval model::  89%|████████▉ | 445/500 [00:23<00:02, 22.10it/s]
eval model::  90%|████████▉ | 448/500 [00:23<00:02, 20.52it/s]
eval model::  90%|█████████ | 451/500 [00:23<00:02, 21.67it/s]
eval model::  91%|█████████ | 454/500 [00:24<00:02, 20.75it/s]
eval model::  91%|█████████▏| 457/500 [00:24<00:02, 20.85it/s]
eval model::  92%|█████████▏| 460/500 [00:24<00:01, 20.62it/s]
eval model::  93%|█████████▎| 463/500 [00:24<00:02, 17.46it/s]
eval model::  93%|█████████▎| 465/500 [00:24<00:01, 17.75it/s]
eval model::  94%|█████████▎| 468/500 [00:24<00:01, 18.79it/s]
eval model::  94%|█████████▍| 471/500 [00:25<00:01, 19.38it/s]
eval model::  95%|█████████▍| 473/500 [00:25<00:01, 19.09it/s]
eval model::  95%|█████████▌| 475/500 [00:25<00:01, 19.02it/s]
eval model::  96%|█████████▌| 478/500 [00:25<00:01, 19.83it/s]
eval model::  96%|█████████▌| 481/500 [00:25<00:00, 20.07it/s]
eval model::  97%|█████████▋| 484/500 [00:25<00:00, 19.57it/s]
eval model::  97%|█████████▋| 487/500 [00:25<00:00, 20.56it/s]
eval model::  98%|█████████▊| 490/500 [00:25<00:00, 21.68it/s]
eval model::  99%|█████████▊| 493/500 [00:26<00:00, 20.26it/s]
eval model::  99%|█████████▉| 496/500 [00:26<00:00, 20.60it/s]
eval model:: 100%|█████████▉| 499/500 [00:26<00:00, 21.55it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.93it/s]
[2024/07/27 13:59:26] ppocr INFO: cur metric, precision: 0.7822857142857143, recall: 0.6591237361579201, hmean: 0.7154429056702378, fps: 44.393764002497214
[2024/07/27 13:59:26] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/27 13:59:26] ppocr INFO: best metric, hmean: 0.7154429056702378, precision: 0.7822857142857143, recall: 0.6591237361579201, fps: 44.393764002497214, best_epoch: 860
[2024/07/27 13:59:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:59:35] ppocr INFO: epoch: [861/1500], global_step: 2583, lr: 0.001000, loss: 1.273996, loss_shrink_maps: 0.659165, loss_threshold_maps: 0.481068, loss_binary_maps: 0.131198, avg_reader_cost: 2.11415 s, avg_batch_cost: 2.45683 s, avg_samples: 12.5, ips: 5.08786 samples/s, eta: 4:37:47
[2024/07/27 13:59:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:59:45] ppocr INFO: epoch: [862/1500], global_step: 2586, lr: 0.001000, loss: 1.287828, loss_shrink_maps: 0.656214, loss_threshold_maps: 0.485401, loss_binary_maps: 0.130521, avg_reader_cost: 2.32493 s, avg_batch_cost: 2.56215 s, avg_samples: 12.5, ips: 4.87871 samples/s, eta: 4:37:21
[2024/07/27 13:59:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 13:59:54] ppocr INFO: epoch: [863/1500], global_step: 2589, lr: 0.001000, loss: 1.286369, loss_shrink_maps: 0.654314, loss_threshold_maps: 0.496499, loss_binary_maps: 0.129337, avg_reader_cost: 2.17517 s, avg_batch_cost: 2.53247 s, avg_samples: 12.5, ips: 4.93590 samples/s, eta: 4:36:54
[2024/07/27 13:59:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:00:02] ppocr INFO: epoch: [864/1500], global_step: 2590, lr: 0.001000, loss: 1.279100, loss_shrink_maps: 0.650014, loss_threshold_maps: 0.496499, loss_binary_maps: 0.128974, avg_reader_cost: 0.56148 s, avg_batch_cost: 0.71401 s, avg_samples: 4.8, ips: 6.72257 samples/s, eta: 4:36:44
[2024/07/27 14:00:03] ppocr INFO: epoch: [864/1500], global_step: 2592, lr: 0.001000, loss: 1.266727, loss_shrink_maps: 0.645082, loss_threshold_maps: 0.496499, loss_binary_maps: 0.128476, avg_reader_cost: 1.52100 s, avg_batch_cost: 1.66875 s, avg_samples: 7.7, ips: 4.61423 samples/s, eta: 4:36:26
[2024/07/27 14:00:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:00:13] ppocr INFO: epoch: [865/1500], global_step: 2595, lr: 0.001000, loss: 1.252878, loss_shrink_maps: 0.639675, loss_threshold_maps: 0.481068, loss_binary_maps: 0.126738, avg_reader_cost: 2.43955 s, avg_batch_cost: 2.69095 s, avg_samples: 12.5, ips: 4.64520 samples/s, eta: 4:36:01
[2024/07/27 14:00:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:00:23] ppocr INFO: epoch: [866/1500], global_step: 2598, lr: 0.001000, loss: 1.236236, loss_shrink_maps: 0.625682, loss_threshold_maps: 0.490225, loss_binary_maps: 0.124167, avg_reader_cost: 2.41432 s, avg_batch_cost: 2.65631 s, avg_samples: 12.5, ips: 4.70578 samples/s, eta: 4:35:35
[2024/07/27 14:00:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:00:33] ppocr INFO: epoch: [867/1500], global_step: 2600, lr: 0.001000, loss: 1.252345, loss_shrink_maps: 0.633728, loss_threshold_maps: 0.490428, loss_binary_maps: 0.126123, avg_reader_cost: 1.49239 s, avg_batch_cost: 1.67931 s, avg_samples: 9.6, ips: 5.71663 samples/s, eta: 4:35:17
[2024/07/27 14:00:33] ppocr INFO: epoch: [867/1500], global_step: 2601, lr: 0.001000, loss: 1.258118, loss_shrink_maps: 0.642339, loss_threshold_maps: 0.490726, loss_binary_maps: 0.127507, avg_reader_cost: 0.88580 s, avg_batch_cost: 0.94137 s, avg_samples: 2.9, ips: 3.08062 samples/s, eta: 4:35:09
[2024/07/27 14:00:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:00:43] ppocr INFO: epoch: [868/1500], global_step: 2604, lr: 0.001000, loss: 1.238719, loss_shrink_maps: 0.622947, loss_threshold_maps: 0.490225, loss_binary_maps: 0.123879, avg_reader_cost: 2.26874 s, avg_batch_cost: 2.50402 s, avg_samples: 12.5, ips: 4.99196 samples/s, eta: 4:34:42
[2024/07/27 14:00:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:00:53] ppocr INFO: epoch: [869/1500], global_step: 2607, lr: 0.001000, loss: 1.238719, loss_shrink_maps: 0.622947, loss_threshold_maps: 0.490225, loss_binary_maps: 0.123879, avg_reader_cost: 2.35283 s, avg_batch_cost: 2.60501 s, avg_samples: 12.5, ips: 4.79844 samples/s, eta: 4:34:16
[2024/07/27 14:00:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:01:03] ppocr INFO: epoch: [870/1500], global_step: 2610, lr: 0.001000, loss: 1.232104, loss_shrink_maps: 0.617324, loss_threshold_maps: 0.490225, loss_binary_maps: 0.122635, avg_reader_cost: 2.28781 s, avg_batch_cost: 2.69485 s, avg_samples: 12.5, ips: 4.63848 samples/s, eta: 4:33:51
[2024/07/27 14:01:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:01:13] ppocr INFO: epoch: [871/1500], global_step: 2613, lr: 0.001000, loss: 1.241204, loss_shrink_maps: 0.622947, loss_threshold_maps: 0.490225, loss_binary_maps: 0.123879, avg_reader_cost: 2.17150 s, avg_batch_cost: 2.58158 s, avg_samples: 12.5, ips: 4.84199 samples/s, eta: 4:33:24
[2024/07/27 14:01:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:01:22] ppocr INFO: epoch: [872/1500], global_step: 2616, lr: 0.001000, loss: 1.263036, loss_shrink_maps: 0.636760, loss_threshold_maps: 0.494946, loss_binary_maps: 0.126721, avg_reader_cost: 2.33561 s, avg_batch_cost: 2.58780 s, avg_samples: 12.5, ips: 4.83037 samples/s, eta: 4:32:58
[2024/07/27 14:01:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:01:32] ppocr INFO: epoch: [873/1500], global_step: 2619, lr: 0.001000, loss: 1.258510, loss_shrink_maps: 0.629004, loss_threshold_maps: 0.498044, loss_binary_maps: 0.125337, avg_reader_cost: 2.33286 s, avg_batch_cost: 2.57700 s, avg_samples: 12.5, ips: 4.85060 samples/s, eta: 4:32:32
[2024/07/27 14:01:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:01:41] ppocr INFO: epoch: [874/1500], global_step: 2620, lr: 0.001000, loss: 1.281586, loss_shrink_maps: 0.637155, loss_threshold_maps: 0.508413, loss_binary_maps: 0.126753, avg_reader_cost: 0.59345 s, avg_batch_cost: 0.79699 s, avg_samples: 4.8, ips: 6.02263 samples/s, eta: 4:32:23
[2024/07/27 14:01:42] ppocr INFO: epoch: [874/1500], global_step: 2622, lr: 0.001000, loss: 1.256716, loss_shrink_maps: 0.629004, loss_threshold_maps: 0.496016, loss_binary_maps: 0.124952, avg_reader_cost: 1.68586 s, avg_batch_cost: 1.83345 s, avg_samples: 7.7, ips: 4.19973 samples/s, eta: 4:32:06
[2024/07/27 14:01:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:01:52] ppocr INFO: epoch: [875/1500], global_step: 2625, lr: 0.001000, loss: 1.283140, loss_shrink_maps: 0.644839, loss_threshold_maps: 0.498188, loss_binary_maps: 0.128528, avg_reader_cost: 2.39745 s, avg_batch_cost: 2.63397 s, avg_samples: 12.5, ips: 4.74568 samples/s, eta: 4:31:40
[2024/07/27 14:01:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:02:02] ppocr INFO: epoch: [876/1500], global_step: 2628, lr: 0.001000, loss: 1.296812, loss_shrink_maps: 0.649320, loss_threshold_maps: 0.507487, loss_binary_maps: 0.128948, avg_reader_cost: 2.31353 s, avg_batch_cost: 2.55367 s, avg_samples: 12.5, ips: 4.89492 samples/s, eta: 4:31:14
[2024/07/27 14:02:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:02:11] ppocr INFO: epoch: [877/1500], global_step: 2630, lr: 0.001000, loss: 1.284221, loss_shrink_maps: 0.644839, loss_threshold_maps: 0.500763, loss_binary_maps: 0.128495, avg_reader_cost: 1.33160 s, avg_batch_cost: 1.63666 s, avg_samples: 9.6, ips: 5.86561 samples/s, eta: 4:30:56
[2024/07/27 14:02:12] ppocr INFO: epoch: [877/1500], global_step: 2631, lr: 0.001000, loss: 1.273389, loss_shrink_maps: 0.642887, loss_threshold_maps: 0.500763, loss_binary_maps: 0.128060, avg_reader_cost: 0.86436 s, avg_batch_cost: 0.92017 s, avg_samples: 2.9, ips: 3.15159 samples/s, eta: 4:30:47
[2024/07/27 14:02:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:02:21] ppocr INFO: epoch: [878/1500], global_step: 2634, lr: 0.001000, loss: 1.287061, loss_shrink_maps: 0.644839, loss_threshold_maps: 0.511920, loss_binary_maps: 0.128495, avg_reader_cost: 2.38264 s, avg_batch_cost: 2.62084 s, avg_samples: 12.5, ips: 4.76946 samples/s, eta: 4:30:21
[2024/07/27 14:02:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:02:31] ppocr INFO: epoch: [879/1500], global_step: 2637, lr: 0.001000, loss: 1.287061, loss_shrink_maps: 0.644839, loss_threshold_maps: 0.511920, loss_binary_maps: 0.128495, avg_reader_cost: 2.25315 s, avg_batch_cost: 2.51202 s, avg_samples: 12.5, ips: 4.97607 samples/s, eta: 4:29:54
[2024/07/27 14:02:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:02:41] ppocr INFO: epoch: [880/1500], global_step: 2640, lr: 0.001000, loss: 1.273389, loss_shrink_maps: 0.644114, loss_threshold_maps: 0.500763, loss_binary_maps: 0.128479, avg_reader_cost: 2.18738 s, avg_batch_cost: 2.53573 s, avg_samples: 12.5, ips: 4.92954 samples/s, eta: 4:29:28

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:55,  8.97it/s]
eval model::   1%|          | 4/500 [00:00<00:27, 18.05it/s]
eval model::   1%|          | 6/500 [00:00<00:28, 17.37it/s]
eval model::   2%|▏         | 8/500 [00:00<00:28, 17.37it/s]
eval model::   2%|▏         | 11/500 [00:00<00:25, 18.83it/s]
eval model::   3%|▎         | 13/500 [00:00<00:27, 18.03it/s]
eval model::   3%|▎         | 15/500 [00:00<00:28, 16.96it/s]
eval model::   4%|▎         | 18/500 [00:00<00:24, 19.43it/s]
eval model::   4%|▍         | 20/500 [00:01<00:25, 18.84it/s]
eval model::   5%|▍         | 23/500 [00:01<00:22, 21.12it/s]
eval model::   5%|▌         | 26/500 [00:01<00:21, 21.64it/s]
eval model::   6%|▌         | 29/500 [00:01<00:20, 22.87it/s]
eval model::   6%|▋         | 32/500 [00:01<00:23, 20.15it/s]
eval model::   7%|▋         | 35/500 [00:01<00:24, 18.88it/s]
eval model::   8%|▊         | 38/500 [00:02<00:25, 18.40it/s]
eval model::   8%|▊         | 40/500 [00:02<00:27, 16.98it/s]
eval model::   8%|▊         | 42/500 [00:02<00:26, 17.00it/s]
eval model::   9%|▉         | 45/500 [00:02<00:23, 19.33it/s]
eval model::   9%|▉         | 47/500 [00:02<00:25, 18.08it/s]
eval model::  10%|█         | 50/500 [00:02<00:24, 18.16it/s]
eval model::  11%|█         | 53/500 [00:02<00:21, 20.32it/s]
eval model::  11%|█         | 56/500 [00:02<00:21, 20.97it/s]
eval model::  12%|█▏        | 59/500 [00:03<00:22, 19.21it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:28, 15.17it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:28, 15.16it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:23, 18.21it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:21, 20.12it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:20, 21.02it/s]
eval model::  15%|█▌        | 75/500 [00:03<00:20, 20.54it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:19, 21.55it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:18, 23.07it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:19, 20.99it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:20, 20.45it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:20, 19.54it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:20, 19.54it/s]
eval model::  19%|█▉        | 96/500 [00:04<00:19, 20.59it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:18, 22.20it/s]
eval model::  20%|██        | 102/500 [00:05<00:18, 21.79it/s]
eval model::  21%|██        | 105/500 [00:05<00:18, 20.84it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:18, 21.27it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:18, 20.60it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:17, 22.03it/s]
eval model::  23%|██▎       | 117/500 [00:05<00:19, 19.98it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:21, 17.76it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:18, 19.86it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:21, 17.73it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:19, 19.01it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:20, 17.75it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:18, 19.68it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:17, 20.34it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:19, 18.46it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:17, 20.74it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:19, 18.02it/s]
eval model::  30%|███       | 150/500 [00:07<00:17, 20.30it/s]
eval model::  31%|███       | 153/500 [00:07<00:17, 20.36it/s]
eval model::  31%|███       | 156/500 [00:07<00:15, 21.91it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:16, 20.96it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:18, 18.54it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:18, 18.18it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:18, 18.35it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:18, 17.80it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:19, 17.29it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:19, 16.35it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:19, 16.25it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:17, 18.46it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:18, 17.26it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:15, 19.90it/s]
eval model::  37%|███▋      | 187/500 [00:09<00:15, 20.04it/s]
eval model::  38%|███▊      | 190/500 [00:09<00:15, 20.22it/s]
eval model::  39%|███▊      | 193/500 [00:09<00:14, 21.82it/s]
eval model::  39%|███▉      | 196/500 [00:10<00:14, 20.87it/s]
eval model::  40%|███▉      | 199/500 [00:10<00:13, 22.25it/s]
eval model::  40%|████      | 202/500 [00:10<00:14, 21.07it/s]
eval model::  41%|████      | 205/500 [00:10<00:19, 14.86it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:18, 15.69it/s]
eval model::  42%|████▏     | 209/500 [00:10<00:17, 16.17it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:18, 15.88it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.92it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:20, 13.72it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:20, 13.58it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:17, 16.04it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:19, 14.52it/s]
eval model::  45%|████▌     | 225/500 [00:11<00:15, 17.72it/s]
eval model::  45%|████▌     | 227/500 [00:12<00:15, 18.19it/s]
eval model::  46%|████▌     | 231/500 [00:12<00:12, 22.01it/s]
eval model::  47%|████▋     | 234/500 [00:12<00:12, 20.93it/s]
eval model::  47%|████▋     | 237/500 [00:12<00:11, 21.97it/s]
eval model::  48%|████▊     | 240/500 [00:12<00:11, 21.89it/s]
eval model::  49%|████▊     | 243/500 [00:12<00:13, 19.51it/s]
eval model::  49%|████▉     | 246/500 [00:12<00:12, 21.15it/s]
eval model::  50%|████▉     | 249/500 [00:13<00:13, 19.25it/s]
eval model::  51%|█████     | 253/500 [00:13<00:11, 22.26it/s]
eval model::  51%|█████     | 256/500 [00:13<00:10, 22.36it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:09, 24.77it/s]
eval model::  53%|█████▎    | 263/500 [00:13<00:10, 22.23it/s]
eval model::  53%|█████▎    | 266/500 [00:13<00:11, 20.01it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:11, 20.24it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:10, 21.82it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:11, 19.13it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:11, 19.89it/s]
eval model::  56%|█████▌    | 281/500 [00:14<00:11, 19.85it/s]
eval model::  57%|█████▋    | 284/500 [00:14<00:10, 20.05it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:18, 11.36it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:14, 14.83it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:13, 15.58it/s]
eval model::  59%|█████▉    | 296/500 [00:15<00:14, 13.62it/s]
eval model::  60%|██████    | 300/500 [00:15<00:12, 15.73it/s]
eval model::  61%|██████    | 303/500 [00:16<00:11, 17.35it/s]
eval model::  61%|██████    | 306/500 [00:16<00:10, 18.88it/s]
eval model::  62%|██████▏   | 309/500 [00:16<00:09, 20.73it/s]
eval model::  62%|██████▏   | 312/500 [00:16<00:09, 20.38it/s]
eval model::  63%|██████▎   | 315/500 [00:16<00:09, 19.90it/s]
eval model::  64%|██████▎   | 318/500 [00:16<00:08, 21.20it/s]
eval model::  64%|██████▍   | 321/500 [00:16<00:08, 21.47it/s]
eval model::  65%|██████▍   | 324/500 [00:17<00:08, 21.44it/s]
eval model::  65%|██████▌   | 327/500 [00:17<00:07, 22.51it/s]
eval model::  66%|██████▌   | 330/500 [00:17<00:07, 21.61it/s]
eval model::  67%|██████▋   | 333/500 [00:17<00:07, 22.03it/s]
eval model::  67%|██████▋   | 336/500 [00:17<00:06, 23.79it/s]
eval model::  68%|██████▊   | 339/500 [00:17<00:07, 21.67it/s]
eval model::  68%|██████▊   | 342/500 [00:18<00:10, 15.79it/s]
eval model::  69%|██████▉   | 345/500 [00:18<00:08, 18.09it/s]
eval model::  70%|██████▉   | 348/500 [00:18<00:07, 19.48it/s]
eval model::  70%|███████   | 352/500 [00:18<00:06, 22.51it/s]
eval model::  71%|███████   | 355/500 [00:18<00:06, 22.20it/s]
eval model::  72%|███████▏  | 358/500 [00:18<00:06, 21.68it/s]
eval model::  72%|███████▏  | 361/500 [00:18<00:06, 21.35it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:07, 18.81it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:07, 17.33it/s]
eval model::  74%|███████▍  | 369/500 [00:19<00:06, 18.97it/s]
eval model::  74%|███████▍  | 371/500 [00:19<00:06, 18.88it/s]
eval model::  75%|███████▍  | 373/500 [00:19<00:06, 18.34it/s]
eval model::  75%|███████▌  | 375/500 [00:19<00:06, 18.10it/s]
eval model::  76%|███████▌  | 379/500 [00:19<00:05, 22.77it/s]
eval model::  76%|███████▋  | 382/500 [00:19<00:05, 20.72it/s]
eval model::  77%|███████▋  | 385/500 [00:20<00:05, 21.93it/s]
eval model::  78%|███████▊  | 388/500 [00:20<00:08, 12.55it/s]
eval model::  78%|███████▊  | 391/500 [00:20<00:07, 14.52it/s]
eval model::  79%|███████▊  | 393/500 [00:20<00:06, 15.32it/s]
eval model::  79%|███████▉  | 396/500 [00:20<00:06, 17.23it/s]
eval model::  80%|███████▉  | 399/500 [00:21<00:05, 19.74it/s]
eval model::  80%|████████  | 402/500 [00:21<00:05, 19.13it/s]
eval model::  81%|████████  | 405/500 [00:21<00:04, 20.00it/s]
eval model::  82%|████████▏ | 408/500 [00:21<00:04, 21.98it/s]
eval model::  82%|████████▏ | 411/500 [00:21<00:03, 23.71it/s]
eval model::  83%|████████▎ | 414/500 [00:21<00:03, 22.28it/s]
eval model::  83%|████████▎ | 417/500 [00:21<00:04, 19.47it/s]
eval model::  84%|████████▍ | 420/500 [00:22<00:05, 13.75it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:05, 14.13it/s]
eval model::  85%|████████▌ | 425/500 [00:22<00:04, 15.53it/s]
eval model::  86%|████████▌ | 428/500 [00:22<00:04, 17.69it/s]
eval model::  86%|████████▌ | 431/500 [00:22<00:03, 19.32it/s]
eval model::  87%|████████▋ | 435/500 [00:22<00:02, 22.59it/s]
eval model::  88%|████████▊ | 439/500 [00:23<00:02, 25.07it/s]
eval model::  88%|████████▊ | 442/500 [00:23<00:02, 24.07it/s]
eval model::  89%|████████▉ | 445/500 [00:23<00:02, 25.06it/s]
eval model::  90%|████████▉ | 448/500 [00:23<00:02, 23.67it/s]
eval model::  90%|█████████ | 451/500 [00:23<00:02, 22.43it/s]
eval model::  91%|█████████ | 454/500 [00:23<00:01, 23.18it/s]
eval model::  91%|█████████▏| 457/500 [00:23<00:01, 23.92it/s]
eval model::  92%|█████████▏| 460/500 [00:23<00:01, 21.09it/s]
eval model::  93%|█████████▎| 463/500 [00:24<00:02, 15.99it/s]
eval model::  93%|█████████▎| 465/500 [00:24<00:02, 14.66it/s]
eval model::  93%|█████████▎| 467/500 [00:24<00:02, 14.73it/s]
eval model::  94%|█████████▍| 470/500 [00:24<00:01, 17.12it/s]
eval model::  95%|█████████▍| 473/500 [00:24<00:01, 18.59it/s]
eval model::  95%|█████████▌| 476/500 [00:24<00:01, 20.03it/s]
eval model::  96%|█████████▌| 479/500 [00:25<00:01, 19.91it/s]
eval model::  96%|█████████▋| 482/500 [00:25<00:00, 20.23it/s]
eval model::  97%|█████████▋| 485/500 [00:25<00:00, 22.29it/s]
eval model::  98%|█████████▊| 488/500 [00:25<00:00, 21.83it/s]
eval model::  98%|█████████▊| 491/500 [00:25<00:00, 21.17it/s]
eval model::  99%|█████████▉| 494/500 [00:25<00:00, 19.34it/s]
eval model::  99%|█████████▉| 497/500 [00:25<00:00, 19.94it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 21.20it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 19.16it/s]
[2024/07/27 14:03:07] ppocr INFO: cur metric, precision: 0.7548913043478261, recall: 0.6687530091478093, hmean: 0.7092162369160071, fps: 45.657436854920455
[2024/07/27 14:03:07] ppocr INFO: best metric, hmean: 0.7154429056702378, precision: 0.7822857142857143, recall: 0.6591237361579201, fps: 44.393764002497214, best_epoch: 860
[2024/07/27 14:03:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:03:17] ppocr INFO: epoch: [881/1500], global_step: 2643, lr: 0.001000, loss: 1.342170, loss_shrink_maps: 0.671811, loss_threshold_maps: 0.522285, loss_binary_maps: 0.133278, avg_reader_cost: 2.39422 s, avg_batch_cost: 2.83735 s, avg_samples: 12.5, ips: 4.40552 samples/s, eta: 4:29:03
[2024/07/27 14:03:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:03:27] ppocr INFO: epoch: [882/1500], global_step: 2646, lr: 0.001000, loss: 1.220131, loss_shrink_maps: 0.622015, loss_threshold_maps: 0.495034, loss_binary_maps: 0.123985, avg_reader_cost: 2.34058 s, avg_batch_cost: 2.57677 s, avg_samples: 12.5, ips: 4.85103 samples/s, eta: 4:28:37
[2024/07/27 14:03:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:03:37] ppocr INFO: epoch: [883/1500], global_step: 2649, lr: 0.001000, loss: 1.205146, loss_shrink_maps: 0.619025, loss_threshold_maps: 0.485295, loss_binary_maps: 0.123627, avg_reader_cost: 2.22532 s, avg_batch_cost: 2.58225 s, avg_samples: 12.5, ips: 4.84074 samples/s, eta: 4:28:11
[2024/07/27 14:03:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:03:45] ppocr INFO: epoch: [884/1500], global_step: 2650, lr: 0.001000, loss: 1.203629, loss_shrink_maps: 0.619025, loss_threshold_maps: 0.471531, loss_binary_maps: 0.123627, avg_reader_cost: 0.69053 s, avg_batch_cost: 0.81013 s, avg_samples: 4.8, ips: 5.92494 samples/s, eta: 4:28:02
[2024/07/27 14:03:47] ppocr INFO: epoch: [884/1500], global_step: 2652, lr: 0.001000, loss: 1.196864, loss_shrink_maps: 0.611248, loss_threshold_maps: 0.471531, loss_binary_maps: 0.121921, avg_reader_cost: 1.71311 s, avg_batch_cost: 1.85994 s, avg_samples: 7.7, ips: 4.13993 samples/s, eta: 4:27:45
[2024/07/27 14:03:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:03:56] ppocr INFO: epoch: [885/1500], global_step: 2655, lr: 0.001000, loss: 1.182082, loss_shrink_maps: 0.595143, loss_threshold_maps: 0.471531, loss_binary_maps: 0.118405, avg_reader_cost: 2.21801 s, avg_batch_cost: 2.58120 s, avg_samples: 12.5, ips: 4.84271 samples/s, eta: 4:27:19
[2024/07/27 14:03:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:04:07] ppocr INFO: epoch: [886/1500], global_step: 2658, lr: 0.001000, loss: 1.151308, loss_shrink_maps: 0.578979, loss_threshold_maps: 0.460676, loss_binary_maps: 0.115169, avg_reader_cost: 2.32685 s, avg_batch_cost: 2.71230 s, avg_samples: 12.5, ips: 4.60864 samples/s, eta: 4:26:54
[2024/07/27 14:04:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:04:16] ppocr INFO: epoch: [887/1500], global_step: 2660, lr: 0.001000, loss: 1.149090, loss_shrink_maps: 0.574148, loss_threshold_maps: 0.454773, loss_binary_maps: 0.114001, avg_reader_cost: 1.55027 s, avg_batch_cost: 1.74791 s, avg_samples: 9.6, ips: 5.49228 samples/s, eta: 4:26:36
[2024/07/27 14:04:17] ppocr INFO: epoch: [887/1500], global_step: 2661, lr: 0.001000, loss: 1.149090, loss_shrink_maps: 0.574148, loss_threshold_maps: 0.454773, loss_binary_maps: 0.114001, avg_reader_cost: 0.92044 s, avg_batch_cost: 0.97562 s, avg_samples: 2.9, ips: 2.97248 samples/s, eta: 4:26:28
[2024/07/27 14:04:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:04:27] ppocr INFO: epoch: [888/1500], global_step: 2664, lr: 0.001000, loss: 1.149090, loss_shrink_maps: 0.574148, loss_threshold_maps: 0.454773, loss_binary_maps: 0.114001, avg_reader_cost: 2.33030 s, avg_batch_cost: 2.57253 s, avg_samples: 12.5, ips: 4.85902 samples/s, eta: 4:26:02
[2024/07/27 14:04:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:04:36] ppocr INFO: epoch: [889/1500], global_step: 2667, lr: 0.001000, loss: 1.151683, loss_shrink_maps: 0.587365, loss_threshold_maps: 0.464592, loss_binary_maps: 0.116931, avg_reader_cost: 2.22219 s, avg_batch_cost: 2.57817 s, avg_samples: 12.5, ips: 4.84839 samples/s, eta: 4:25:36
[2024/07/27 14:04:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:04:46] ppocr INFO: epoch: [890/1500], global_step: 2670, lr: 0.001000, loss: 1.185316, loss_shrink_maps: 0.589235, loss_threshold_maps: 0.491543, loss_binary_maps: 0.117639, avg_reader_cost: 2.27204 s, avg_batch_cost: 2.51073 s, avg_samples: 12.5, ips: 4.97864 samples/s, eta: 4:25:09
[2024/07/27 14:04:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:04:55] ppocr INFO: epoch: [891/1500], global_step: 2673, lr: 0.001000, loss: 1.188132, loss_shrink_maps: 0.589235, loss_threshold_maps: 0.485728, loss_binary_maps: 0.117639, avg_reader_cost: 2.34853 s, avg_batch_cost: 2.58892 s, avg_samples: 12.5, ips: 4.82826 samples/s, eta: 4:24:43
[2024/07/27 14:04:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:05:06] ppocr INFO: epoch: [892/1500], global_step: 2676, lr: 0.001000, loss: 1.249764, loss_shrink_maps: 0.627532, loss_threshold_maps: 0.495367, loss_binary_maps: 0.124741, avg_reader_cost: 2.32150 s, avg_batch_cost: 2.70834 s, avg_samples: 12.5, ips: 4.61537 samples/s, eta: 4:24:17
[2024/07/27 14:05:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:05:16] ppocr INFO: epoch: [893/1500], global_step: 2679, lr: 0.001000, loss: 1.291969, loss_shrink_maps: 0.657550, loss_threshold_maps: 0.504244, loss_binary_maps: 0.130831, avg_reader_cost: 2.25759 s, avg_batch_cost: 2.62962 s, avg_samples: 12.5, ips: 4.75353 samples/s, eta: 4:23:51
[2024/07/27 14:05:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:05:24] ppocr INFO: epoch: [894/1500], global_step: 2680, lr: 0.001000, loss: 1.291969, loss_shrink_maps: 0.657550, loss_threshold_maps: 0.509144, loss_binary_maps: 0.130831, avg_reader_cost: 0.65783 s, avg_batch_cost: 0.75207 s, avg_samples: 4.8, ips: 6.38240 samples/s, eta: 4:23:42
[2024/07/27 14:05:25] ppocr INFO: epoch: [894/1500], global_step: 2682, lr: 0.001000, loss: 1.291969, loss_shrink_maps: 0.657550, loss_threshold_maps: 0.509144, loss_binary_maps: 0.130831, avg_reader_cost: 1.59687 s, avg_batch_cost: 1.74396 s, avg_samples: 7.7, ips: 4.41524 samples/s, eta: 4:23:25
[2024/07/27 14:05:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:05:35] ppocr INFO: epoch: [895/1500], global_step: 2685, lr: 0.001000, loss: 1.267692, loss_shrink_maps: 0.640106, loss_threshold_maps: 0.508576, loss_binary_maps: 0.127039, avg_reader_cost: 2.40831 s, avg_batch_cost: 2.65501 s, avg_samples: 12.5, ips: 4.70808 samples/s, eta: 4:22:59
[2024/07/27 14:05:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:05:45] ppocr INFO: epoch: [896/1500], global_step: 2688, lr: 0.001000, loss: 1.258737, loss_shrink_maps: 0.640106, loss_threshold_maps: 0.501182, loss_binary_maps: 0.127039, avg_reader_cost: 2.39887 s, avg_batch_cost: 2.64364 s, avg_samples: 12.5, ips: 4.72833 samples/s, eta: 4:22:33
[2024/07/27 14:05:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:05:55] ppocr INFO: epoch: [897/1500], global_step: 2690, lr: 0.001000, loss: 1.270703, loss_shrink_maps: 0.642196, loss_threshold_maps: 0.502546, loss_binary_maps: 0.127435, avg_reader_cost: 1.37866 s, avg_batch_cost: 1.69397 s, avg_samples: 9.6, ips: 5.66715 samples/s, eta: 4:22:15
[2024/07/27 14:05:55] ppocr INFO: epoch: [897/1500], global_step: 2691, lr: 0.001000, loss: 1.290825, loss_shrink_maps: 0.648998, loss_threshold_maps: 0.508252, loss_binary_maps: 0.129211, avg_reader_cost: 0.89373 s, avg_batch_cost: 0.94875 s, avg_samples: 2.9, ips: 3.05667 samples/s, eta: 4:22:07
[2024/07/27 14:05:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:06:05] ppocr INFO: epoch: [898/1500], global_step: 2694, lr: 0.001000, loss: 1.257593, loss_shrink_maps: 0.631553, loss_threshold_maps: 0.503182, loss_binary_maps: 0.125419, avg_reader_cost: 2.18185 s, avg_batch_cost: 2.55205 s, avg_samples: 12.5, ips: 4.89803 samples/s, eta: 4:21:41
[2024/07/27 14:06:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:06:15] ppocr INFO: epoch: [899/1500], global_step: 2697, lr: 0.001000, loss: 1.257593, loss_shrink_maps: 0.641718, loss_threshold_maps: 0.498542, loss_binary_maps: 0.127784, avg_reader_cost: 2.30602 s, avg_batch_cost: 2.54711 s, avg_samples: 12.5, ips: 4.90753 samples/s, eta: 4:21:14
[2024/07/27 14:06:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:06:24] ppocr INFO: epoch: [900/1500], global_step: 2700, lr: 0.001000, loss: 1.253112, loss_shrink_maps: 0.641718, loss_threshold_maps: 0.493428, loss_binary_maps: 0.127784, avg_reader_cost: 2.23645 s, avg_batch_cost: 2.62910 s, avg_samples: 12.5, ips: 4.75448 samples/s, eta: 4:20:48

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:59,  8.43it/s]
eval model::   1%|          | 4/500 [00:00<00:27, 18.17it/s]
eval model::   1%|          | 6/500 [00:00<00:26, 18.75it/s]
eval model::   2%|▏         | 8/500 [00:00<00:27, 17.60it/s]
eval model::   2%|▏         | 10/500 [00:00<00:27, 18.09it/s]
eval model::   2%|▏         | 12/500 [00:00<00:26, 18.11it/s]
eval model::   3%|▎         | 14/500 [00:00<00:29, 16.58it/s]
eval model::   3%|▎         | 17/500 [00:00<00:24, 20.03it/s]
eval model::   4%|▍         | 20/500 [00:01<00:23, 20.52it/s]
eval model::   5%|▍         | 23/500 [00:01<00:23, 20.56it/s]
eval model::   5%|▌         | 26/500 [00:01<00:24, 19.00it/s]
eval model::   6%|▌         | 28/500 [00:01<00:26, 17.88it/s]
eval model::   6%|▌         | 31/500 [00:01<00:27, 17.15it/s]
eval model::   7%|▋         | 34/500 [00:01<00:25, 18.52it/s]
eval model::   7%|▋         | 37/500 [00:01<00:23, 19.85it/s]
eval model::   8%|▊         | 40/500 [00:02<00:25, 18.22it/s]
eval model::   8%|▊         | 42/500 [00:02<00:27, 16.41it/s]
eval model::   9%|▉         | 44/500 [00:02<00:26, 16.89it/s]
eval model::   9%|▉         | 46/500 [00:02<00:28, 15.90it/s]
eval model::  10%|▉         | 49/500 [00:02<00:24, 18.25it/s]
eval model::  10%|█         | 51/500 [00:02<00:24, 18.66it/s]
eval model::  11%|█         | 54/500 [00:02<00:21, 20.67it/s]
eval model::  11%|█▏        | 57/500 [00:03<00:22, 19.47it/s]
eval model::  12%|█▏        | 60/500 [00:03<00:24, 18.17it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:29, 14.79it/s]
eval model::  13%|█▎        | 64/500 [00:03<00:29, 14.60it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:28, 15.13it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:24, 17.51it/s]
eval model::  14%|█▍        | 72/500 [00:04<00:23, 18.18it/s]
eval model::  15%|█▍        | 74/500 [00:04<00:25, 16.75it/s]
eval model::  15%|█▌        | 77/500 [00:04<00:23, 17.68it/s]
eval model::  16%|█▌        | 80/500 [00:04<00:20, 20.09it/s]
eval model::  17%|█▋        | 83/500 [00:04<00:19, 21.73it/s]
eval model::  17%|█▋        | 86/500 [00:04<00:20, 20.20it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:22, 18.22it/s]
eval model::  18%|█▊        | 91/500 [00:05<00:24, 17.04it/s]
eval model::  19%|█▊        | 93/500 [00:05<00:23, 16.99it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:22, 18.09it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:20, 19.66it/s]
eval model::  20%|██        | 102/500 [00:05<00:20, 19.43it/s]
eval model::  21%|██        | 106/500 [00:05<00:17, 22.72it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:16, 23.10it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:16, 23.85it/s]
eval model::  23%|██▎       | 115/500 [00:06<00:16, 22.85it/s]
eval model::  24%|██▎       | 118/500 [00:06<00:16, 22.72it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:19, 19.49it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:21, 17.73it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:20, 18.02it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:19, 19.40it/s]
eval model::  26%|██▋       | 132/500 [00:07<00:22, 16.58it/s]
eval model::  27%|██▋       | 135/500 [00:07<00:20, 17.92it/s]
eval model::  27%|██▋       | 137/500 [00:07<00:20, 17.69it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:19, 18.15it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:18, 19.63it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:18, 19.29it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:19, 18.35it/s]
eval model::  30%|███       | 150/500 [00:08<00:18, 19.33it/s]
eval model::  30%|███       | 152/500 [00:08<00:18, 19.05it/s]
eval model::  31%|███       | 156/500 [00:08<00:15, 22.91it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:15, 22.20it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:18, 18.42it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:17, 18.75it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:17, 19.10it/s]
eval model::  34%|███▍      | 170/500 [00:09<00:15, 20.97it/s]
eval model::  35%|███▍      | 173/500 [00:09<00:16, 19.63it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:19, 16.33it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:17, 18.28it/s]
eval model::  36%|███▋      | 182/500 [00:09<00:18, 16.90it/s]
eval model::  37%|███▋      | 185/500 [00:09<00:16, 19.38it/s]
eval model::  38%|███▊      | 188/500 [00:10<00:16, 18.95it/s]
eval model::  38%|███▊      | 191/500 [00:10<00:16, 18.64it/s]
eval model::  39%|███▉      | 194/500 [00:10<00:15, 20.25it/s]
eval model::  39%|███▉      | 197/500 [00:10<00:16, 18.73it/s]
eval model::  40%|████      | 200/500 [00:10<00:15, 19.92it/s]
eval model::  41%|████      | 203/500 [00:10<00:14, 20.67it/s]
eval model::  41%|████      | 206/500 [00:11<00:20, 14.07it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:21, 13.59it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:20, 14.07it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:19, 15.06it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:20, 13.92it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:20, 13.63it/s]
eval model::  44%|████▍     | 220/500 [00:12<00:18, 15.34it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:22, 12.46it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:17, 15.50it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:13, 19.87it/s]
eval model::  47%|████▋     | 234/500 [00:12<00:12, 21.62it/s]
eval model::  47%|████▋     | 237/500 [00:12<00:11, 22.89it/s]
eval model::  48%|████▊     | 240/500 [00:13<00:10, 24.32it/s]
eval model::  49%|████▊     | 243/500 [00:13<00:13, 18.64it/s]
eval model::  49%|████▉     | 246/500 [00:13<00:12, 20.56it/s]
eval model::  50%|████▉     | 249/500 [00:13<00:13, 18.95it/s]
eval model::  50%|█████     | 252/500 [00:13<00:11, 20.90it/s]
eval model::  51%|█████     | 255/500 [00:13<00:11, 21.64it/s]
eval model::  52%|█████▏    | 258/500 [00:13<00:11, 20.33it/s]
eval model::  52%|█████▏    | 261/500 [00:14<00:11, 20.98it/s]
eval model::  53%|█████▎    | 264/500 [00:14<00:11, 20.91it/s]
eval model::  53%|█████▎    | 267/500 [00:14<00:11, 20.73it/s]
eval model::  54%|█████▍    | 270/500 [00:14<00:11, 19.36it/s]
eval model::  55%|█████▍    | 273/500 [00:14<00:11, 19.68it/s]
eval model::  55%|█████▌    | 276/500 [00:14<00:12, 18.41it/s]
eval model::  56%|█████▌    | 279/500 [00:15<00:11, 19.41it/s]
eval model::  56%|█████▋    | 282/500 [00:15<00:10, 20.31it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:17, 12.30it/s]
eval model::  58%|█████▊    | 288/500 [00:15<00:14, 14.67it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:12, 17.30it/s]
eval model::  59%|█████▉    | 294/500 [00:16<00:11, 17.33it/s]
eval model::  59%|█████▉    | 297/500 [00:16<00:13, 15.06it/s]
eval model::  60%|██████    | 300/500 [00:16<00:12, 15.84it/s]
eval model::  61%|██████    | 303/500 [00:16<00:11, 17.69it/s]
eval model::  61%|██████    | 305/500 [00:16<00:10, 17.74it/s]
eval model::  61%|██████▏   | 307/500 [00:16<00:10, 18.07it/s]
eval model::  62%|██████▏   | 309/500 [00:16<00:10, 17.86it/s]
eval model::  62%|██████▏   | 312/500 [00:17<00:10, 18.73it/s]
eval model::  63%|██████▎   | 315/500 [00:17<00:09, 19.42it/s]
eval model::  64%|██████▎   | 318/500 [00:17<00:09, 19.03it/s]
eval model::  64%|██████▍   | 321/500 [00:17<00:09, 19.89it/s]
eval model::  65%|██████▍   | 324/500 [00:17<00:09, 18.61it/s]
eval model::  65%|██████▌   | 327/500 [00:17<00:08, 19.51it/s]
eval model::  66%|██████▌   | 329/500 [00:17<00:08, 19.21it/s]
eval model::  66%|██████▋   | 332/500 [00:18<00:07, 21.31it/s]
eval model::  67%|██████▋   | 336/500 [00:18<00:06, 23.84it/s]
eval model::  68%|██████▊   | 339/500 [00:18<00:06, 23.99it/s]
eval model::  68%|██████▊   | 342/500 [00:18<00:08, 19.02it/s]
eval model::  69%|██████▉   | 346/500 [00:18<00:07, 21.25it/s]
eval model::  70%|██████▉   | 349/500 [00:18<00:06, 22.38it/s]
eval model::  70%|███████   | 352/500 [00:18<00:06, 22.58it/s]
eval model::  71%|███████   | 355/500 [00:19<00:06, 20.91it/s]
eval model::  72%|███████▏  | 358/500 [00:19<00:06, 20.85it/s]
eval model::  72%|███████▏  | 361/500 [00:19<00:07, 19.24it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:07, 18.67it/s]
eval model::  73%|███████▎  | 367/500 [00:19<00:06, 19.21it/s]
eval model::  74%|███████▍  | 370/500 [00:19<00:06, 20.70it/s]
eval model::  75%|███████▍  | 373/500 [00:20<00:06, 20.88it/s]
eval model::  75%|███████▌  | 376/500 [00:20<00:05, 21.27it/s]
eval model::  76%|███████▌  | 380/500 [00:20<00:05, 21.58it/s]
eval model::  77%|███████▋  | 384/500 [00:20<00:04, 23.47it/s]
eval model::  77%|███████▋  | 387/500 [00:20<00:07, 14.44it/s]
eval model::  78%|███████▊  | 390/500 [00:21<00:06, 16.31it/s]
eval model::  79%|███████▊  | 393/500 [00:21<00:06, 16.89it/s]
eval model::  79%|███████▉  | 395/500 [00:21<00:06, 16.59it/s]
eval model::  79%|███████▉  | 397/500 [00:21<00:06, 17.03it/s]
eval model::  80%|███████▉  | 399/500 [00:21<00:06, 16.57it/s]
eval model::  80%|████████  | 401/500 [00:21<00:06, 15.84it/s]
eval model::  81%|████████  | 403/500 [00:21<00:05, 16.70it/s]
eval model::  81%|████████  | 406/500 [00:21<00:05, 18.63it/s]
eval model::  82%|████████▏ | 408/500 [00:22<00:04, 18.78it/s]
eval model::  82%|████████▏ | 411/500 [00:22<00:04, 20.43it/s]
eval model::  83%|████████▎ | 414/500 [00:22<00:04, 20.79it/s]
eval model::  83%|████████▎ | 417/500 [00:22<00:04, 19.17it/s]
eval model::  84%|████████▍ | 419/500 [00:22<00:04, 18.63it/s]
eval model::  84%|████████▍ | 421/500 [00:22<00:06, 12.67it/s]
eval model::  85%|████████▍ | 424/500 [00:23<00:05, 14.70it/s]
eval model::  85%|████████▌ | 426/500 [00:23<00:04, 15.09it/s]
eval model::  86%|████████▌ | 429/500 [00:23<00:03, 17.82it/s]
eval model::  86%|████████▌ | 431/500 [00:23<00:04, 16.51it/s]
eval model::  87%|████████▋ | 434/500 [00:23<00:03, 18.80it/s]
eval model::  87%|████████▋ | 437/500 [00:23<00:03, 19.95it/s]
eval model::  88%|████████▊ | 440/500 [00:23<00:03, 19.29it/s]
eval model::  89%|████████▊ | 443/500 [00:23<00:02, 21.45it/s]
eval model::  89%|████████▉ | 446/500 [00:24<00:02, 21.36it/s]
eval model::  90%|████████▉ | 449/500 [00:24<00:02, 19.06it/s]
eval model::  90%|█████████ | 452/500 [00:24<00:02, 18.85it/s]
eval model::  91%|█████████ | 455/500 [00:24<00:02, 19.01it/s]
eval model::  92%|█████████▏| 458/500 [00:24<00:02, 20.25it/s]
eval model::  92%|█████████▏| 461/500 [00:24<00:02, 19.23it/s]
eval model::  93%|█████████▎| 463/500 [00:25<00:02, 16.04it/s]
eval model::  93%|█████████▎| 465/500 [00:25<00:02, 15.19it/s]
eval model::  93%|█████████▎| 467/500 [00:25<00:02, 16.04it/s]
eval model::  94%|█████████▍| 471/500 [00:25<00:01, 19.99it/s]
eval model::  95%|█████████▍| 474/500 [00:25<00:01, 18.66it/s]
eval model::  95%|█████████▌| 477/500 [00:25<00:01, 20.09it/s]
eval model::  96%|█████████▌| 480/500 [00:25<00:00, 20.68it/s]
eval model::  97%|█████████▋| 483/500 [00:26<00:00, 20.45it/s]
eval model::  97%|█████████▋| 486/500 [00:26<00:00, 20.27it/s]
eval model::  98%|█████████▊| 489/500 [00:26<00:00, 21.67it/s]
eval model::  98%|█████████▊| 492/500 [00:26<00:00, 19.56it/s]
eval model::  99%|█████████▉| 495/500 [00:26<00:00, 20.16it/s]
eval model:: 100%|█████████▉| 498/500 [00:26<00:00, 22.34it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.64it/s]
[2024/07/27 14:06:51] ppocr INFO: cur metric, precision: 0.766951566951567, recall: 0.6480500722195475, hmean: 0.7025052192066806, fps: 42.7353551947244
[2024/07/27 14:06:51] ppocr INFO: best metric, hmean: 0.7154429056702378, precision: 0.7822857142857143, recall: 0.6591237361579201, fps: 44.393764002497214, best_epoch: 860
[2024/07/27 14:06:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:07:00] ppocr INFO: epoch: [901/1500], global_step: 2703, lr: 0.001000, loss: 1.278390, loss_shrink_maps: 0.650514, loss_threshold_maps: 0.493428, loss_binary_maps: 0.129554, avg_reader_cost: 2.18321 s, avg_batch_cost: 2.42211 s, avg_samples: 12.5, ips: 5.16078 samples/s, eta: 4:20:21
[2024/07/27 14:07:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:07:10] ppocr INFO: epoch: [902/1500], global_step: 2706, lr: 0.001000, loss: 1.278390, loss_shrink_maps: 0.650514, loss_threshold_maps: 0.491774, loss_binary_maps: 0.129554, avg_reader_cost: 2.17512 s, avg_batch_cost: 2.63590 s, avg_samples: 12.5, ips: 4.74221 samples/s, eta: 4:19:55
[2024/07/27 14:07:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:07:20] ppocr INFO: epoch: [903/1500], global_step: 2709, lr: 0.001000, loss: 1.270680, loss_shrink_maps: 0.643333, loss_threshold_maps: 0.496321, loss_binary_maps: 0.127931, avg_reader_cost: 2.23763 s, avg_batch_cost: 2.57591 s, avg_samples: 12.5, ips: 4.85266 samples/s, eta: 4:19:29
[2024/07/27 14:07:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:07:28] ppocr INFO: epoch: [904/1500], global_step: 2710, lr: 0.001000, loss: 1.257115, loss_shrink_maps: 0.643333, loss_threshold_maps: 0.490972, loss_binary_maps: 0.127931, avg_reader_cost: 0.61084 s, avg_batch_cost: 0.78153 s, avg_samples: 4.8, ips: 6.14176 samples/s, eta: 4:19:19
[2024/07/27 14:07:30] ppocr INFO: epoch: [904/1500], global_step: 2712, lr: 0.001000, loss: 1.239546, loss_shrink_maps: 0.630027, loss_threshold_maps: 0.484054, loss_binary_maps: 0.125118, avg_reader_cost: 1.65492 s, avg_batch_cost: 1.80168 s, avg_samples: 7.7, ips: 4.27379 samples/s, eta: 4:19:02
[2024/07/27 14:07:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:07:39] ppocr INFO: epoch: [905/1500], global_step: 2715, lr: 0.001000, loss: 1.257115, loss_shrink_maps: 0.630027, loss_threshold_maps: 0.496321, loss_binary_maps: 0.125118, avg_reader_cost: 2.22798 s, avg_batch_cost: 2.57299 s, avg_samples: 12.5, ips: 4.85816 samples/s, eta: 4:18:36
[2024/07/27 14:07:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:07:49] ppocr INFO: epoch: [906/1500], global_step: 2718, lr: 0.001000, loss: 1.240538, loss_shrink_maps: 0.619162, loss_threshold_maps: 0.489590, loss_binary_maps: 0.123687, avg_reader_cost: 2.21896 s, avg_batch_cost: 2.56093 s, avg_samples: 12.5, ips: 4.88104 samples/s, eta: 4:18:10
[2024/07/27 14:07:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:07:58] ppocr INFO: epoch: [907/1500], global_step: 2720, lr: 0.001000, loss: 1.257115, loss_shrink_maps: 0.630027, loss_threshold_maps: 0.494136, loss_binary_maps: 0.125118, avg_reader_cost: 1.33708 s, avg_batch_cost: 1.64259 s, avg_samples: 9.6, ips: 5.84443 samples/s, eta: 4:17:52
[2024/07/27 14:07:59] ppocr INFO: epoch: [907/1500], global_step: 2721, lr: 0.001000, loss: 1.257115, loss_shrink_maps: 0.630027, loss_threshold_maps: 0.496926, loss_binary_maps: 0.125118, avg_reader_cost: 0.86808 s, avg_batch_cost: 0.92297 s, avg_samples: 2.9, ips: 3.14203 samples/s, eta: 4:17:43
[2024/07/27 14:08:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:08:09] ppocr INFO: epoch: [908/1500], global_step: 2724, lr: 0.001000, loss: 1.256775, loss_shrink_maps: 0.627255, loss_threshold_maps: 0.496926, loss_binary_maps: 0.124645, avg_reader_cost: 2.32964 s, avg_batch_cost: 2.56909 s, avg_samples: 12.5, ips: 4.86553 samples/s, eta: 4:17:17
[2024/07/27 14:08:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:08:18] ppocr INFO: epoch: [909/1500], global_step: 2727, lr: 0.001000, loss: 1.254886, loss_shrink_maps: 0.623235, loss_threshold_maps: 0.498849, loss_binary_maps: 0.124604, avg_reader_cost: 2.38412 s, avg_batch_cost: 2.61712 s, avg_samples: 12.5, ips: 4.77624 samples/s, eta: 4:16:51
[2024/07/27 14:08:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:08:28] ppocr INFO: epoch: [910/1500], global_step: 2730, lr: 0.001000, loss: 1.254886, loss_shrink_maps: 0.623235, loss_threshold_maps: 0.500734, loss_binary_maps: 0.124604, avg_reader_cost: 2.20556 s, avg_batch_cost: 2.52590 s, avg_samples: 12.5, ips: 4.94873 samples/s, eta: 4:16:24
[2024/07/27 14:08:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:08:38] ppocr INFO: epoch: [911/1500], global_step: 2733, lr: 0.001000, loss: 1.290775, loss_shrink_maps: 0.647521, loss_threshold_maps: 0.514917, loss_binary_maps: 0.128901, avg_reader_cost: 2.19956 s, avg_batch_cost: 2.58793 s, avg_samples: 12.5, ips: 4.83011 samples/s, eta: 4:15:58
[2024/07/27 14:08:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:08:48] ppocr INFO: epoch: [912/1500], global_step: 2736, lr: 0.001000, loss: 1.307988, loss_shrink_maps: 0.644757, loss_threshold_maps: 0.520882, loss_binary_maps: 0.127979, avg_reader_cost: 2.16694 s, avg_batch_cost: 2.52566 s, avg_samples: 12.5, ips: 4.94920 samples/s, eta: 4:15:32
[2024/07/27 14:08:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:08:57] ppocr INFO: epoch: [913/1500], global_step: 2739, lr: 0.001000, loss: 1.307988, loss_shrink_maps: 0.644757, loss_threshold_maps: 0.530770, loss_binary_maps: 0.127979, avg_reader_cost: 2.23045 s, avg_batch_cost: 2.58394 s, avg_samples: 12.5, ips: 4.83757 samples/s, eta: 4:15:05
[2024/07/27 14:08:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:09:06] ppocr INFO: epoch: [914/1500], global_step: 2740, lr: 0.001000, loss: 1.307988, loss_shrink_maps: 0.644757, loss_threshold_maps: 0.530770, loss_binary_maps: 0.127979, avg_reader_cost: 0.69729 s, avg_batch_cost: 0.79775 s, avg_samples: 4.8, ips: 6.01693 samples/s, eta: 4:14:56
[2024/07/27 14:09:07] ppocr INFO: epoch: [914/1500], global_step: 2742, lr: 0.001000, loss: 1.294910, loss_shrink_maps: 0.643604, loss_threshold_maps: 0.520882, loss_binary_maps: 0.127720, avg_reader_cost: 1.68745 s, avg_batch_cost: 1.83374 s, avg_samples: 7.7, ips: 4.19907 samples/s, eta: 4:14:40
[2024/07/27 14:09:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:09:17] ppocr INFO: epoch: [915/1500], global_step: 2745, lr: 0.001000, loss: 1.311152, loss_shrink_maps: 0.654354, loss_threshold_maps: 0.527721, loss_binary_maps: 0.130366, avg_reader_cost: 2.21171 s, avg_batch_cost: 2.56009 s, avg_samples: 12.5, ips: 4.88264 samples/s, eta: 4:14:13
[2024/07/27 14:09:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:09:27] ppocr INFO: epoch: [916/1500], global_step: 2748, lr: 0.001000, loss: 1.311152, loss_shrink_maps: 0.654354, loss_threshold_maps: 0.524441, loss_binary_maps: 0.130366, avg_reader_cost: 2.19930 s, avg_batch_cost: 2.53804 s, avg_samples: 12.5, ips: 4.92506 samples/s, eta: 4:13:47
[2024/07/27 14:09:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:09:36] ppocr INFO: epoch: [917/1500], global_step: 2750, lr: 0.001000, loss: 1.331597, loss_shrink_maps: 0.685020, loss_threshold_maps: 0.519452, loss_binary_maps: 0.136518, avg_reader_cost: 1.46481 s, avg_batch_cost: 1.66692 s, avg_samples: 9.6, ips: 5.75912 samples/s, eta: 4:13:29
[2024/07/27 14:09:36] ppocr INFO: epoch: [917/1500], global_step: 2751, lr: 0.001000, loss: 1.331597, loss_shrink_maps: 0.685020, loss_threshold_maps: 0.515746, loss_binary_maps: 0.136518, avg_reader_cost: 0.87923 s, avg_batch_cost: 0.93448 s, avg_samples: 2.9, ips: 3.10332 samples/s, eta: 4:13:20
[2024/07/27 14:09:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:09:46] ppocr INFO: epoch: [918/1500], global_step: 2754, lr: 0.001000, loss: 1.368693, loss_shrink_maps: 0.708725, loss_threshold_maps: 0.517117, loss_binary_maps: 0.141079, avg_reader_cost: 2.32934 s, avg_batch_cost: 2.56789 s, avg_samples: 12.5, ips: 4.86780 samples/s, eta: 4:12:54
[2024/07/27 14:09:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:09:56] ppocr INFO: epoch: [919/1500], global_step: 2757, lr: 0.001000, loss: 1.331670, loss_shrink_maps: 0.696560, loss_threshold_maps: 0.502141, loss_binary_maps: 0.138400, avg_reader_cost: 2.20657 s, avg_batch_cost: 2.58357 s, avg_samples: 12.5, ips: 4.83826 samples/s, eta: 4:12:28
[2024/07/27 14:09:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:10:06] ppocr INFO: epoch: [920/1500], global_step: 2760, lr: 0.001000, loss: 1.331376, loss_shrink_maps: 0.694342, loss_threshold_maps: 0.502141, loss_binary_maps: 0.138178, avg_reader_cost: 2.27967 s, avg_batch_cost: 2.65665 s, avg_samples: 12.5, ips: 4.70517 samples/s, eta: 4:12:02

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:50,  9.96it/s]
eval model::   1%|          | 3/500 [00:00<00:32, 15.49it/s]
eval model::   1%|          | 5/500 [00:00<00:32, 15.46it/s]
eval model::   2%|▏         | 8/500 [00:00<00:27, 18.02it/s]
eval model::   2%|▏         | 11/500 [00:00<00:25, 19.14it/s]
eval model::   3%|▎         | 14/500 [00:00<00:25, 18.98it/s]
eval model::   3%|▎         | 17/500 [00:00<00:23, 20.46it/s]
eval model::   4%|▍         | 20/500 [00:01<00:27, 17.58it/s]
eval model::   5%|▍         | 23/500 [00:01<00:25, 19.04it/s]
eval model::   5%|▌         | 26/500 [00:01<00:23, 20.38it/s]
eval model::   6%|▌         | 29/500 [00:01<00:22, 20.88it/s]
eval model::   6%|▋         | 32/500 [00:01<00:25, 18.40it/s]
eval model::   7%|▋         | 34/500 [00:01<00:25, 18.59it/s]
eval model::   7%|▋         | 37/500 [00:01<00:23, 19.92it/s]
eval model::   8%|▊         | 40/500 [00:02<00:26, 17.51it/s]
eval model::   8%|▊         | 42/500 [00:02<00:28, 16.17it/s]
eval model::   9%|▉         | 45/500 [00:02<00:25, 17.64it/s]
eval model::   9%|▉         | 47/500 [00:02<00:29, 15.57it/s]
eval model::  10%|▉         | 49/500 [00:02<00:28, 15.80it/s]
eval model::  10%|█         | 51/500 [00:02<00:28, 15.98it/s]
eval model::  11%|█         | 54/500 [00:02<00:23, 19.06it/s]
eval model::  11%|█▏        | 57/500 [00:03<00:22, 19.38it/s]
eval model::  12%|█▏        | 60/500 [00:03<00:24, 18.03it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:29, 14.75it/s]
eval model::  13%|█▎        | 64/500 [00:03<00:29, 14.75it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:24, 17.79it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:22, 19.29it/s]
eval model::  15%|█▍        | 73/500 [00:04<00:21, 20.27it/s]
eval model::  15%|█▌        | 76/500 [00:04<00:19, 21.93it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:18, 22.46it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:17, 23.23it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:19, 21.41it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:20, 19.66it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:23, 17.74it/s]
eval model::  19%|█▊        | 93/500 [00:05<00:23, 17.13it/s]
eval model::  19%|█▉        | 95/500 [00:05<00:23, 17.02it/s]
eval model::  20%|█▉        | 98/500 [00:05<00:21, 19.00it/s]
eval model::  20%|██        | 100/500 [00:05<00:23, 17.31it/s]
eval model::  21%|██        | 103/500 [00:05<00:19, 20.08it/s]
eval model::  21%|██▏       | 107/500 [00:05<00:17, 21.92it/s]
eval model::  22%|██▏       | 110/500 [00:05<00:16, 23.30it/s]
eval model::  23%|██▎       | 113/500 [00:05<00:16, 23.98it/s]
eval model::  23%|██▎       | 116/500 [00:06<00:15, 24.00it/s]
eval model::  24%|██▍       | 119/500 [00:06<00:17, 21.45it/s]
eval model::  24%|██▍       | 122/500 [00:06<00:18, 20.73it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:22, 16.94it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:20, 18.31it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:22, 16.35it/s]
eval model::  26%|██▋       | 132/500 [00:07<00:22, 16.50it/s]
eval model::  27%|██▋       | 135/500 [00:07<00:19, 18.55it/s]
eval model::  27%|██▋       | 137/500 [00:07<00:19, 18.60it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:19, 18.87it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:18, 19.87it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:18, 19.49it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:18, 19.03it/s]
eval model::  30%|███       | 150/500 [00:07<00:16, 20.60it/s]
eval model::  31%|███       | 153/500 [00:08<00:16, 20.51it/s]
eval model::  31%|███       | 156/500 [00:08<00:15, 22.23it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:14, 23.08it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:20, 16.67it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:19, 17.21it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:18, 18.28it/s]
eval model::  34%|███▍      | 170/500 [00:08<00:16, 19.65it/s]
eval model::  35%|███▍      | 173/500 [00:09<00:17, 18.50it/s]
eval model::  35%|███▌      | 175/500 [00:09<00:20, 15.81it/s]
eval model::  35%|███▌      | 177/500 [00:09<00:21, 15.35it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:22, 14.31it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:19, 16.56it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:16, 18.97it/s]
eval model::  38%|███▊      | 189/500 [00:10<00:16, 19.43it/s]
eval model::  38%|███▊      | 192/500 [00:10<00:15, 19.83it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:16, 18.97it/s]
eval model::  39%|███▉      | 197/500 [00:10<00:16, 18.67it/s]
eval model::  40%|████      | 200/500 [00:10<00:14, 20.76it/s]
eval model::  41%|████      | 204/500 [00:10<00:12, 23.50it/s]
eval model::  41%|████▏     | 207/500 [00:11<00:20, 14.33it/s]
eval model::  42%|████▏     | 209/500 [00:11<00:19, 14.67it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:20, 13.91it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:21, 13.34it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:24, 11.87it/s]
eval model::  43%|████▎     | 217/500 [00:12<00:22, 12.31it/s]
eval model::  44%|████▍     | 219/500 [00:12<00:20, 13.74it/s]
eval model::  44%|████▍     | 221/500 [00:12<00:20, 13.56it/s]
eval model::  45%|████▍     | 224/500 [00:12<00:17, 16.12it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:16, 16.52it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:13, 19.77it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:12, 21.23it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:12, 21.83it/s]
eval model::  48%|████▊     | 239/500 [00:13<00:11, 23.13it/s]
eval model::  48%|████▊     | 242/500 [00:13<00:13, 18.45it/s]
eval model::  49%|████▉     | 245/500 [00:13<00:12, 19.84it/s]
eval model::  50%|████▉     | 248/500 [00:13<00:12, 20.25it/s]
eval model::  50%|█████     | 251/500 [00:13<00:12, 20.73it/s]
eval model::  51%|█████     | 254/500 [00:13<00:11, 21.50it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:11, 21.74it/s]
eval model::  52%|█████▏    | 261/500 [00:14<00:10, 23.36it/s]
eval model::  53%|█████▎    | 264/500 [00:14<00:10, 21.80it/s]
eval model::  53%|█████▎    | 267/500 [00:14<00:11, 21.06it/s]
eval model::  54%|█████▍    | 270/500 [00:14<00:11, 20.86it/s]
eval model::  55%|█████▍    | 273/500 [00:14<00:10, 20.93it/s]
eval model::  55%|█████▌    | 276/500 [00:14<00:11, 18.98it/s]
eval model::  56%|█████▌    | 279/500 [00:15<00:11, 19.68it/s]
eval model::  56%|█████▋    | 282/500 [00:15<00:09, 21.84it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:17, 12.37it/s]
eval model::  58%|█████▊    | 288/500 [00:15<00:14, 14.76it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:12, 16.72it/s]
eval model::  59%|█████▉    | 294/500 [00:16<00:12, 16.55it/s]
eval model::  59%|█████▉    | 297/500 [00:16<00:13, 14.79it/s]
eval model::  60%|██████    | 300/500 [00:16<00:12, 16.22it/s]
eval model::  61%|██████    | 303/500 [00:16<00:11, 17.89it/s]
eval model::  61%|██████    | 306/500 [00:16<00:11, 17.40it/s]
eval model::  62%|██████▏   | 309/500 [00:16<00:10, 18.42it/s]
eval model::  62%|██████▏   | 312/500 [00:17<00:10, 18.04it/s]
eval model::  63%|██████▎   | 315/500 [00:17<00:09, 18.59it/s]
eval model::  64%|██████▎   | 318/500 [00:17<00:08, 20.81it/s]
eval model::  64%|██████▍   | 321/500 [00:17<00:08, 20.64it/s]
eval model::  65%|██████▍   | 324/500 [00:17<00:08, 20.26it/s]
eval model::  65%|██████▌   | 327/500 [00:17<00:07, 22.42it/s]
eval model::  66%|██████▌   | 330/500 [00:17<00:07, 22.77it/s]
eval model::  67%|██████▋   | 333/500 [00:17<00:07, 23.26it/s]
eval model::  67%|██████▋   | 336/500 [00:18<00:06, 24.24it/s]
eval model::  68%|██████▊   | 339/500 [00:18<00:06, 23.12it/s]
eval model::  68%|██████▊   | 342/500 [00:18<00:09, 17.49it/s]
eval model::  69%|██████▉   | 345/500 [00:18<00:07, 19.83it/s]
eval model::  70%|██████▉   | 348/500 [00:18<00:07, 21.13it/s]
eval model::  70%|███████   | 351/500 [00:18<00:06, 22.44it/s]
eval model::  71%|███████   | 355/500 [00:19<00:06, 22.23it/s]
eval model::  72%|███████▏  | 358/500 [00:19<00:06, 22.15it/s]
eval model::  72%|███████▏  | 361/500 [00:19<00:06, 19.91it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:07, 18.10it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:07, 17.99it/s]
eval model::  74%|███████▍  | 369/500 [00:19<00:06, 20.26it/s]
eval model::  74%|███████▍  | 372/500 [00:19<00:06, 20.66it/s]
eval model::  75%|███████▌  | 375/500 [00:20<00:05, 21.46it/s]
eval model::  76%|███████▌  | 379/500 [00:20<00:04, 24.46it/s]
eval model::  76%|███████▋  | 382/500 [00:20<00:05, 22.60it/s]
eval model::  77%|███████▋  | 385/500 [00:20<00:04, 23.38it/s]
eval model::  78%|███████▊  | 388/500 [00:20<00:08, 12.72it/s]
eval model::  78%|███████▊  | 391/500 [00:21<00:07, 14.49it/s]
eval model::  79%|███████▉  | 394/500 [00:21<00:06, 15.85it/s]
eval model::  79%|███████▉  | 397/500 [00:21<00:05, 18.06it/s]
eval model::  80%|████████  | 400/500 [00:21<00:05, 17.24it/s]
eval model::  81%|████████  | 403/500 [00:21<00:05, 18.64it/s]
eval model::  81%|████████  | 406/500 [00:21<00:04, 20.39it/s]
eval model::  82%|████████▏ | 409/500 [00:21<00:04, 22.53it/s]
eval model::  82%|████████▏ | 412/500 [00:21<00:03, 22.49it/s]
eval model::  83%|████████▎ | 415/500 [00:22<00:04, 20.67it/s]
eval model::  84%|████████▎ | 418/500 [00:22<00:04, 19.49it/s]
eval model::  84%|████████▍ | 421/500 [00:22<00:05, 13.46it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:05, 14.20it/s]
eval model::  85%|████████▌ | 426/500 [00:23<00:04, 14.98it/s]
eval model::  86%|████████▌ | 429/500 [00:23<00:04, 16.95it/s]
eval model::  86%|████████▌ | 431/500 [00:23<00:04, 16.50it/s]
eval model::  87%|████████▋ | 434/500 [00:23<00:03, 19.15it/s]
eval model::  87%|████████▋ | 437/500 [00:23<00:02, 21.47it/s]
eval model::  88%|████████▊ | 440/500 [00:23<00:02, 20.48it/s]
eval model::  89%|████████▉ | 444/500 [00:23<00:02, 23.45it/s]
eval model::  89%|████████▉ | 447/500 [00:23<00:02, 23.77it/s]
eval model::  90%|█████████ | 450/500 [00:24<00:02, 22.67it/s]
eval model::  91%|█████████ | 453/500 [00:24<00:01, 24.02it/s]
eval model::  91%|█████████ | 456/500 [00:24<00:01, 23.69it/s]
eval model::  92%|█████████▏| 459/500 [00:24<00:01, 22.80it/s]
eval model::  92%|█████████▏| 462/500 [00:24<00:02, 18.53it/s]
eval model::  93%|█████████▎| 465/500 [00:24<00:02, 17.14it/s]
eval model::  94%|█████████▎| 468/500 [00:24<00:01, 18.84it/s]
eval model::  94%|█████████▍| 471/500 [00:25<00:01, 21.14it/s]
eval model::  95%|█████████▍| 474/500 [00:25<00:01, 20.37it/s]
eval model::  96%|█████████▌| 478/500 [00:25<00:00, 23.31it/s]
eval model::  96%|█████████▌| 481/500 [00:25<00:00, 22.24it/s]
eval model::  97%|█████████▋| 484/500 [00:25<00:00, 22.07it/s]
eval model::  97%|█████████▋| 487/500 [00:25<00:00, 20.41it/s]
eval model::  98%|█████████▊| 490/500 [00:25<00:00, 21.21it/s]
eval model::  99%|█████████▊| 493/500 [00:26<00:00, 19.56it/s]
eval model::  99%|█████████▉| 496/500 [00:26<00:00, 20.48it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 24.08it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.94it/s]
[2024/07/27 14:10:32] ppocr INFO: cur metric, precision: 0.7458445040214478, recall: 0.6697159364467983, hmean: 0.7057331303906647, fps: 46.09005744466407
[2024/07/27 14:10:32] ppocr INFO: best metric, hmean: 0.7154429056702378, precision: 0.7822857142857143, recall: 0.6591237361579201, fps: 44.393764002497214, best_epoch: 860
[2024/07/27 14:10:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:10:41] ppocr INFO: epoch: [921/1500], global_step: 2763, lr: 0.001000, loss: 1.311065, loss_shrink_maps: 0.679477, loss_threshold_maps: 0.494801, loss_binary_maps: 0.135208, avg_reader_cost: 2.09319 s, avg_batch_cost: 2.45396 s, avg_samples: 12.5, ips: 5.09381 samples/s, eta: 4:11:35
[2024/07/27 14:10:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:10:51] ppocr INFO: epoch: [922/1500], global_step: 2766, lr: 0.001000, loss: 1.330857, loss_shrink_maps: 0.687115, loss_threshold_maps: 0.496248, loss_binary_maps: 0.136103, avg_reader_cost: 2.32745 s, avg_batch_cost: 2.56806 s, avg_samples: 12.5, ips: 4.86749 samples/s, eta: 4:11:09
[2024/07/27 14:10:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:11:00] ppocr INFO: epoch: [923/1500], global_step: 2769, lr: 0.001000, loss: 1.311065, loss_shrink_maps: 0.676077, loss_threshold_maps: 0.497954, loss_binary_maps: 0.134402, avg_reader_cost: 2.17514 s, avg_batch_cost: 2.53644 s, avg_samples: 12.5, ips: 4.92816 samples/s, eta: 4:10:42
[2024/07/27 14:11:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:11:09] ppocr INFO: epoch: [924/1500], global_step: 2770, lr: 0.001000, loss: 1.311065, loss_shrink_maps: 0.676077, loss_threshold_maps: 0.499000, loss_binary_maps: 0.134402, avg_reader_cost: 0.57765 s, avg_batch_cost: 0.76025 s, avg_samples: 4.8, ips: 6.31368 samples/s, eta: 4:10:33
[2024/07/27 14:11:10] ppocr INFO: epoch: [924/1500], global_step: 2772, lr: 0.001000, loss: 1.311065, loss_shrink_maps: 0.676077, loss_threshold_maps: 0.496234, loss_binary_maps: 0.134402, avg_reader_cost: 1.61276 s, avg_batch_cost: 1.75981 s, avg_samples: 7.7, ips: 4.37548 samples/s, eta: 4:10:16
[2024/07/27 14:11:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:11:20] ppocr INFO: epoch: [925/1500], global_step: 2775, lr: 0.001000, loss: 1.316096, loss_shrink_maps: 0.681653, loss_threshold_maps: 0.493198, loss_binary_maps: 0.135181, avg_reader_cost: 2.33631 s, avg_batch_cost: 2.57625 s, avg_samples: 12.5, ips: 4.85202 samples/s, eta: 4:09:49
[2024/07/27 14:11:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:11:29] ppocr INFO: epoch: [926/1500], global_step: 2778, lr: 0.001000, loss: 1.332232, loss_shrink_maps: 0.683714, loss_threshold_maps: 0.497003, loss_binary_maps: 0.135297, avg_reader_cost: 2.10952 s, avg_batch_cost: 2.41965 s, avg_samples: 12.5, ips: 5.16603 samples/s, eta: 4:09:22
[2024/07/27 14:11:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:11:38] ppocr INFO: epoch: [927/1500], global_step: 2780, lr: 0.001000, loss: 1.326892, loss_shrink_maps: 0.677057, loss_threshold_maps: 0.497003, loss_binary_maps: 0.134267, avg_reader_cost: 1.44388 s, avg_batch_cost: 1.62513 s, avg_samples: 9.6, ips: 5.90720 samples/s, eta: 4:09:04
[2024/07/27 14:11:39] ppocr INFO: epoch: [927/1500], global_step: 2781, lr: 0.001000, loss: 1.326892, loss_shrink_maps: 0.677057, loss_threshold_maps: 0.497003, loss_binary_maps: 0.134267, avg_reader_cost: 0.85876 s, avg_batch_cost: 0.91416 s, avg_samples: 2.9, ips: 3.17230 samples/s, eta: 4:08:56
[2024/07/27 14:11:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:11:49] ppocr INFO: epoch: [928/1500], global_step: 2784, lr: 0.001000, loss: 1.336408, loss_shrink_maps: 0.683714, loss_threshold_maps: 0.501494, loss_binary_maps: 0.135297, avg_reader_cost: 2.39213 s, avg_batch_cost: 2.63390 s, avg_samples: 12.5, ips: 4.74581 samples/s, eta: 4:08:30
[2024/07/27 14:11:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:11:58] ppocr INFO: epoch: [929/1500], global_step: 2787, lr: 0.001000, loss: 1.299656, loss_shrink_maps: 0.670047, loss_threshold_maps: 0.497003, loss_binary_maps: 0.133362, avg_reader_cost: 2.30149 s, avg_batch_cost: 2.54321 s, avg_samples: 12.5, ips: 4.91504 samples/s, eta: 4:08:03
[2024/07/27 14:11:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:12:08] ppocr INFO: epoch: [930/1500], global_step: 2790, lr: 0.001000, loss: 1.299656, loss_shrink_maps: 0.665823, loss_threshold_maps: 0.495762, loss_binary_maps: 0.132300, avg_reader_cost: 2.15161 s, avg_batch_cost: 2.48316 s, avg_samples: 12.5, ips: 5.03390 samples/s, eta: 4:07:37
[2024/07/27 14:12:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:12:18] ppocr INFO: epoch: [931/1500], global_step: 2793, lr: 0.001000, loss: 1.288958, loss_shrink_maps: 0.659201, loss_threshold_maps: 0.496246, loss_binary_maps: 0.130577, avg_reader_cost: 2.28081 s, avg_batch_cost: 2.52122 s, avg_samples: 12.5, ips: 4.95792 samples/s, eta: 4:07:10
[2024/07/27 14:12:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:12:27] ppocr INFO: epoch: [932/1500], global_step: 2796, lr: 0.001000, loss: 1.250689, loss_shrink_maps: 0.634184, loss_threshold_maps: 0.494932, loss_binary_maps: 0.126408, avg_reader_cost: 2.23900 s, avg_batch_cost: 2.62720 s, avg_samples: 12.5, ips: 4.75792 samples/s, eta: 4:06:44
[2024/07/27 14:12:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:12:37] ppocr INFO: epoch: [933/1500], global_step: 2799, lr: 0.001000, loss: 1.242049, loss_shrink_maps: 0.622702, loss_threshold_maps: 0.494047, loss_binary_maps: 0.123850, avg_reader_cost: 2.21617 s, avg_batch_cost: 2.56016 s, avg_samples: 12.5, ips: 4.88251 samples/s, eta: 4:06:18
[2024/07/27 14:12:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:12:46] ppocr INFO: epoch: [934/1500], global_step: 2800, lr: 0.001000, loss: 1.248148, loss_shrink_maps: 0.634184, loss_threshold_maps: 0.492898, loss_binary_maps: 0.126408, avg_reader_cost: 0.57146 s, avg_batch_cost: 0.78432 s, avg_samples: 4.8, ips: 6.11992 samples/s, eta: 4:06:08
[2024/07/27 14:12:47] ppocr INFO: epoch: [934/1500], global_step: 2802, lr: 0.001000, loss: 1.248148, loss_shrink_maps: 0.634184, loss_threshold_maps: 0.490488, loss_binary_maps: 0.126408, avg_reader_cost: 1.66125 s, avg_batch_cost: 1.80876 s, avg_samples: 7.7, ips: 4.25706 samples/s, eta: 4:05:52
[2024/07/27 14:12:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:12:57] ppocr INFO: epoch: [935/1500], global_step: 2805, lr: 0.001000, loss: 1.233405, loss_shrink_maps: 0.617668, loss_threshold_maps: 0.485827, loss_binary_maps: 0.122348, avg_reader_cost: 2.25438 s, avg_batch_cost: 2.60692 s, avg_samples: 12.5, ips: 4.79493 samples/s, eta: 4:05:25
[2024/07/27 14:12:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:13:07] ppocr INFO: epoch: [936/1500], global_step: 2808, lr: 0.001000, loss: 1.241431, loss_shrink_maps: 0.623607, loss_threshold_maps: 0.483774, loss_binary_maps: 0.123712, avg_reader_cost: 2.22885 s, avg_batch_cost: 2.62715 s, avg_samples: 12.5, ips: 4.75800 samples/s, eta: 4:05:00
[2024/07/27 14:13:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:13:16] ppocr INFO: epoch: [937/1500], global_step: 2810, lr: 0.001000, loss: 1.241431, loss_shrink_maps: 0.623607, loss_threshold_maps: 0.485827, loss_binary_maps: 0.123712, avg_reader_cost: 1.51112 s, avg_batch_cost: 1.69372 s, avg_samples: 9.6, ips: 5.66801 samples/s, eta: 4:04:42
[2024/07/27 14:13:17] ppocr INFO: epoch: [937/1500], global_step: 2811, lr: 0.001000, loss: 1.239504, loss_shrink_maps: 0.617668, loss_threshold_maps: 0.485827, loss_binary_maps: 0.122348, avg_reader_cost: 0.89370 s, avg_batch_cost: 0.94834 s, avg_samples: 2.9, ips: 3.05799 samples/s, eta: 4:04:34
[2024/07/27 14:13:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:13:27] ppocr INFO: epoch: [938/1500], global_step: 2814, lr: 0.001000, loss: 1.239572, loss_shrink_maps: 0.628442, loss_threshold_maps: 0.485827, loss_binary_maps: 0.124868, avg_reader_cost: 2.25266 s, avg_batch_cost: 2.63976 s, avg_samples: 12.5, ips: 4.73528 samples/s, eta: 4:04:08
[2024/07/27 14:13:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:13:37] ppocr INFO: epoch: [939/1500], global_step: 2817, lr: 0.001000, loss: 1.250114, loss_shrink_maps: 0.641924, loss_threshold_maps: 0.487256, loss_binary_maps: 0.127596, avg_reader_cost: 2.33108 s, avg_batch_cost: 2.57692 s, avg_samples: 12.5, ips: 4.85076 samples/s, eta: 4:03:42
[2024/07/27 14:13:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:13:47] ppocr INFO: epoch: [940/1500], global_step: 2820, lr: 0.001000, loss: 1.255361, loss_shrink_maps: 0.633588, loss_threshold_maps: 0.487256, loss_binary_maps: 0.125763, avg_reader_cost: 2.28776 s, avg_batch_cost: 2.68948 s, avg_samples: 12.5, ips: 4.64774 samples/s, eta: 4:03:16

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<01:00,  8.27it/s]
eval model::   1%|          | 4/500 [00:00<00:29, 17.07it/s]
eval model::   1%|          | 6/500 [00:00<00:28, 17.52it/s]
eval model::   2%|▏         | 9/500 [00:00<00:24, 20.04it/s]
eval model::   2%|▏         | 11/500 [00:00<00:30, 16.13it/s]
eval model::   3%|▎         | 14/500 [00:00<00:28, 17.34it/s]
eval model::   3%|▎         | 17/500 [00:00<00:26, 18.48it/s]
eval model::   4%|▍         | 20/500 [00:01<00:25, 19.15it/s]
eval model::   5%|▍         | 23/500 [00:01<00:22, 21.17it/s]
eval model::   5%|▌         | 26/500 [00:01<00:23, 20.35it/s]
eval model::   6%|▌         | 29/500 [00:01<00:22, 21.05it/s]
eval model::   6%|▋         | 32/500 [00:01<00:26, 17.90it/s]
eval model::   7%|▋         | 34/500 [00:01<00:27, 16.77it/s]
eval model::   7%|▋         | 36/500 [00:01<00:26, 17.23it/s]
eval model::   8%|▊         | 39/500 [00:02<00:26, 17.68it/s]
eval model::   8%|▊         | 42/500 [00:02<00:27, 16.70it/s]
eval model::   9%|▉         | 45/500 [00:02<00:25, 17.78it/s]
eval model::   9%|▉         | 47/500 [00:02<00:28, 16.13it/s]
eval model::  10%|█         | 50/500 [00:02<00:26, 17.09it/s]
eval model::  11%|█         | 53/500 [00:02<00:23, 18.74it/s]
eval model::  11%|█         | 56/500 [00:03<00:23, 19.17it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:23, 18.74it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:28, 15.41it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:29, 14.76it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:25, 16.82it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:22, 19.31it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:20, 21.05it/s]
eval model::  15%|█▌        | 75/500 [00:04<00:21, 19.90it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:21, 19.99it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:19, 20.98it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:21, 19.04it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:22, 18.74it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:23, 17.27it/s]
eval model::  18%|█▊        | 91/500 [00:05<00:23, 17.36it/s]
eval model::  19%|█▊        | 93/500 [00:05<00:24, 16.59it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:22, 18.36it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:19, 20.99it/s]
eval model::  20%|██        | 102/500 [00:05<00:19, 20.36it/s]
eval model::  21%|██        | 105/500 [00:05<00:18, 21.70it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:17, 21.83it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:18, 21.10it/s]
eval model::  23%|██▎       | 114/500 [00:06<00:17, 22.11it/s]
eval model::  23%|██▎       | 117/500 [00:06<00:20, 19.02it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:23, 16.01it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:20, 18.07it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:22, 16.48it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:19, 18.71it/s]
eval model::  26%|██▌       | 131/500 [00:07<00:19, 18.74it/s]
eval model::  27%|██▋       | 133/500 [00:07<00:20, 17.81it/s]
eval model::  27%|██▋       | 136/500 [00:07<00:20, 17.92it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:20, 17.95it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:18, 19.17it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:19, 18.22it/s]
eval model::  29%|██▉       | 147/500 [00:08<00:21, 16.59it/s]
eval model::  30%|███       | 150/500 [00:08<00:19, 18.10it/s]
eval model::  30%|███       | 152/500 [00:08<00:20, 17.31it/s]
eval model::  31%|███       | 155/500 [00:08<00:17, 19.77it/s]
eval model::  32%|███▏      | 158/500 [00:08<00:16, 21.25it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:24, 13.73it/s]
eval model::  33%|███▎      | 163/500 [00:09<00:22, 14.80it/s]
eval model::  33%|███▎      | 166/500 [00:09<00:19, 17.49it/s]
eval model::  34%|███▍      | 169/500 [00:09<00:18, 18.26it/s]
eval model::  34%|███▍      | 172/500 [00:09<00:17, 18.99it/s]
eval model::  35%|███▌      | 175/500 [00:09<00:20, 15.52it/s]
eval model::  35%|███▌      | 177/500 [00:09<00:19, 16.25it/s]
eval model::  36%|███▌      | 180/500 [00:10<00:22, 14.52it/s]
eval model::  36%|███▋      | 182/500 [00:10<00:20, 15.31it/s]
eval model::  37%|███▋      | 185/500 [00:10<00:17, 18.35it/s]
eval model::  38%|███▊      | 188/500 [00:10<00:17, 17.83it/s]
eval model::  38%|███▊      | 191/500 [00:10<00:16, 19.27it/s]
eval model::  39%|███▉      | 194/500 [00:10<00:14, 21.67it/s]
eval model::  39%|███▉      | 197/500 [00:10<00:15, 19.42it/s]
eval model::  40%|████      | 201/500 [00:10<00:13, 21.87it/s]
eval model::  41%|████      | 205/500 [00:11<00:21, 13.72it/s]
eval model::  41%|████▏     | 207/500 [00:11<00:20, 14.54it/s]
eval model::  42%|████▏     | 209/500 [00:11<00:19, 15.19it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:19, 15.15it/s]
eval model::  43%|████▎     | 214/500 [00:11<00:16, 17.25it/s]
eval model::  43%|████▎     | 216/500 [00:12<00:20, 13.91it/s]
eval model::  44%|████▎     | 218/500 [00:12<00:22, 12.58it/s]
eval model::  44%|████▍     | 221/500 [00:12<00:20, 13.89it/s]
eval model::  45%|████▍     | 224/500 [00:12<00:17, 15.93it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:16, 16.37it/s]
eval model::  46%|████▌     | 229/500 [00:12<00:14, 19.31it/s]
eval model::  46%|████▋     | 232/500 [00:13<00:12, 21.07it/s]
eval model::  47%|████▋     | 235/500 [00:13<00:12, 20.61it/s]
eval model::  48%|████▊     | 238/500 [00:13<00:11, 22.09it/s]
eval model::  48%|████▊     | 241/500 [00:13<00:11, 21.82it/s]
eval model::  49%|████▉     | 244/500 [00:13<00:12, 19.97it/s]
eval model::  49%|████▉     | 247/500 [00:13<00:12, 20.74it/s]
eval model::  50%|█████     | 250/500 [00:13<00:12, 19.36it/s]
eval model::  50%|█████     | 252/500 [00:14<00:13, 18.47it/s]
eval model::  51%|█████     | 255/500 [00:14<00:12, 19.80it/s]
eval model::  52%|█████▏    | 258/500 [00:14<00:10, 22.08it/s]
eval model::  52%|█████▏    | 262/500 [00:14<00:09, 24.67it/s]
eval model::  53%|█████▎    | 265/500 [00:14<00:10, 23.33it/s]
eval model::  54%|█████▎    | 268/500 [00:14<00:10, 22.29it/s]
eval model::  54%|█████▍    | 271/500 [00:14<00:11, 20.08it/s]
eval model::  55%|█████▍    | 274/500 [00:15<00:10, 20.67it/s]
eval model::  55%|█████▌    | 277/500 [00:15<00:11, 18.94it/s]
eval model::  56%|█████▌    | 280/500 [00:15<00:11, 19.93it/s]
eval model::  57%|█████▋    | 283/500 [00:15<00:10, 21.67it/s]
eval model::  57%|█████▋    | 286/500 [00:15<00:17, 12.31it/s]
eval model::  58%|█████▊    | 289/500 [00:16<00:14, 14.08it/s]
eval model::  58%|█████▊    | 292/500 [00:16<00:14, 14.80it/s]
eval model::  59%|█████▉    | 294/500 [00:16<00:13, 14.92it/s]
eval model::  59%|█████▉    | 296/500 [00:16<00:15, 12.87it/s]
eval model::  60%|██████    | 300/500 [00:16<00:13, 14.96it/s]
eval model::  60%|██████    | 302/500 [00:16<00:12, 15.54it/s]
eval model::  61%|██████    | 304/500 [00:17<00:12, 15.81it/s]
eval model::  61%|██████▏   | 307/500 [00:17<00:10, 17.60it/s]
eval model::  62%|██████▏   | 309/500 [00:17<00:10, 18.07it/s]
eval model::  62%|██████▏   | 312/500 [00:17<00:10, 18.26it/s]
eval model::  63%|██████▎   | 315/500 [00:17<00:09, 19.70it/s]
eval model::  64%|██████▎   | 318/500 [00:17<00:08, 20.65it/s]
eval model::  64%|██████▍   | 321/500 [00:17<00:08, 21.53it/s]
eval model::  65%|██████▍   | 324/500 [00:18<00:08, 19.78it/s]
eval model::  65%|██████▌   | 327/500 [00:18<00:08, 21.06it/s]
eval model::  66%|██████▌   | 330/500 [00:18<00:08, 19.93it/s]
eval model::  67%|██████▋   | 333/500 [00:18<00:07, 20.93it/s]
eval model::  67%|██████▋   | 336/500 [00:18<00:07, 21.77it/s]
eval model::  68%|██████▊   | 339/500 [00:18<00:07, 21.20it/s]
eval model::  68%|██████▊   | 342/500 [00:19<00:10, 15.78it/s]
eval model::  69%|██████▉   | 345/500 [00:19<00:08, 18.34it/s]
eval model::  70%|██████▉   | 348/500 [00:19<00:07, 19.43it/s]
eval model::  70%|███████   | 351/500 [00:19<00:07, 21.19it/s]
eval model::  71%|███████   | 355/500 [00:19<00:06, 21.64it/s]
eval model::  72%|███████▏  | 358/500 [00:19<00:06, 22.14it/s]
eval model::  72%|███████▏  | 361/500 [00:19<00:07, 19.12it/s]
eval model::  73%|███████▎  | 364/500 [00:20<00:07, 17.86it/s]
eval model::  73%|███████▎  | 366/500 [00:20<00:07, 18.23it/s]
eval model::  74%|███████▍  | 369/500 [00:20<00:06, 19.40it/s]
eval model::  74%|███████▍  | 372/500 [00:20<00:06, 18.54it/s]
eval model::  75%|███████▌  | 375/500 [00:20<00:06, 19.50it/s]
eval model::  76%|███████▌  | 379/500 [00:20<00:05, 22.41it/s]
eval model::  76%|███████▋  | 382/500 [00:20<00:05, 19.96it/s]
eval model::  77%|███████▋  | 385/500 [00:21<00:05, 20.63it/s]
eval model::  78%|███████▊  | 388/500 [00:21<00:08, 12.65it/s]
eval model::  78%|███████▊  | 390/500 [00:21<00:08, 13.57it/s]
eval model::  79%|███████▊  | 393/500 [00:21<00:06, 15.74it/s]
eval model::  79%|███████▉  | 395/500 [00:21<00:06, 16.20it/s]
eval model::  80%|███████▉  | 398/500 [00:22<00:05, 18.01it/s]
eval model::  80%|████████  | 401/500 [00:22<00:06, 16.27it/s]
eval model::  81%|████████  | 404/500 [00:22<00:05, 17.30it/s]
eval model::  81%|████████▏ | 407/500 [00:22<00:04, 18.76it/s]
eval model::  82%|████████▏ | 410/500 [00:22<00:04, 20.70it/s]
eval model::  83%|████████▎ | 413/500 [00:22<00:04, 21.00it/s]
eval model::  83%|████████▎ | 416/500 [00:22<00:04, 19.70it/s]
eval model::  84%|████████▍ | 419/500 [00:23<00:04, 19.61it/s]
eval model::  84%|████████▍ | 422/500 [00:23<00:05, 13.98it/s]
eval model::  85%|████████▍ | 424/500 [00:23<00:05, 14.38it/s]
eval model::  85%|████████▌ | 426/500 [00:23<00:05, 14.67it/s]
eval model::  86%|████████▌ | 429/500 [00:23<00:04, 17.17it/s]
eval model::  86%|████████▌ | 431/500 [00:23<00:04, 15.86it/s]
eval model::  87%|████████▋ | 434/500 [00:24<00:03, 18.44it/s]
eval model::  87%|████████▋ | 437/500 [00:24<00:03, 19.93it/s]
eval model::  88%|████████▊ | 440/500 [00:24<00:03, 18.66it/s]
eval model::  89%|████████▊ | 443/500 [00:24<00:02, 20.22it/s]
eval model::  89%|████████▉ | 446/500 [00:24<00:02, 19.52it/s]
eval model::  90%|████████▉ | 449/500 [00:24<00:02, 18.45it/s]
eval model::  90%|█████████ | 452/500 [00:25<00:02, 19.26it/s]
eval model::  91%|█████████ | 455/500 [00:25<00:02, 19.82it/s]
eval model::  92%|█████████▏| 458/500 [00:25<00:01, 21.55it/s]
eval model::  92%|█████████▏| 461/500 [00:25<00:01, 22.57it/s]
eval model::  93%|█████████▎| 464/500 [00:25<00:02, 16.98it/s]
eval model::  93%|█████████▎| 466/500 [00:25<00:02, 16.15it/s]
eval model::  94%|█████████▍| 469/500 [00:25<00:01, 18.01it/s]
eval model::  94%|█████████▍| 472/500 [00:26<00:01, 19.29it/s]
eval model::  95%|█████████▌| 475/500 [00:26<00:01, 17.95it/s]
eval model::  96%|█████████▌| 478/500 [00:26<00:01, 19.29it/s]
eval model::  96%|█████████▌| 481/500 [00:26<00:00, 20.44it/s]
eval model::  97%|█████████▋| 484/500 [00:26<00:00, 21.37it/s]
eval model::  97%|█████████▋| 487/500 [00:26<00:00, 19.12it/s]
eval model::  98%|█████████▊| 490/500 [00:26<00:00, 21.30it/s]
eval model::  99%|█████████▊| 493/500 [00:27<00:00, 20.54it/s]
eval model::  99%|█████████▉| 496/500 [00:27<00:00, 20.31it/s]
eval model:: 100%|██████████| 500/500 [00:27<00:00, 24.56it/s]
eval model:: 100%|██████████| 500/500 [00:27<00:00, 18.28it/s]
[2024/07/27 14:14:14] ppocr INFO: cur metric, precision: 0.7219115404168785, recall: 0.6836783822821377, hmean: 0.702274975272008, fps: 43.763510117517484
[2024/07/27 14:14:14] ppocr INFO: best metric, hmean: 0.7154429056702378, precision: 0.7822857142857143, recall: 0.6591237361579201, fps: 44.393764002497214, best_epoch: 860
[2024/07/27 14:14:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:14:23] ppocr INFO: epoch: [941/1500], global_step: 2823, lr: 0.001000, loss: 1.274460, loss_shrink_maps: 0.637102, loss_threshold_maps: 0.489500, loss_binary_maps: 0.126916, avg_reader_cost: 2.05845 s, avg_batch_cost: 2.29326 s, avg_samples: 12.5, ips: 5.45076 samples/s, eta: 4:02:48
[2024/07/27 14:14:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:14:33] ppocr INFO: epoch: [942/1500], global_step: 2826, lr: 0.001000, loss: 1.255361, loss_shrink_maps: 0.635455, loss_threshold_maps: 0.490231, loss_binary_maps: 0.126463, avg_reader_cost: 2.44507 s, avg_batch_cost: 2.73684 s, avg_samples: 12.5, ips: 4.56731 samples/s, eta: 4:02:23
[2024/07/27 14:14:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:14:43] ppocr INFO: epoch: [943/1500], global_step: 2829, lr: 0.001000, loss: 1.235157, loss_shrink_maps: 0.631098, loss_threshold_maps: 0.485402, loss_binary_maps: 0.125321, avg_reader_cost: 2.23688 s, avg_batch_cost: 2.60006 s, avg_samples: 12.5, ips: 4.80758 samples/s, eta: 4:01:57
[2024/07/27 14:14:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:14:50] ppocr INFO: epoch: [944/1500], global_step: 2830, lr: 0.001000, loss: 1.245699, loss_shrink_maps: 0.633588, loss_threshold_maps: 0.485402, loss_binary_maps: 0.125763, avg_reader_cost: 0.57512 s, avg_batch_cost: 0.70068 s, avg_samples: 4.8, ips: 6.85048 samples/s, eta: 4:01:47
[2024/07/27 14:14:52] ppocr INFO: epoch: [944/1500], global_step: 2832, lr: 0.001000, loss: 1.255361, loss_shrink_maps: 0.635455, loss_threshold_maps: 0.490231, loss_binary_maps: 0.126463, avg_reader_cost: 1.49459 s, avg_batch_cost: 1.64205 s, avg_samples: 7.7, ips: 4.68926 samples/s, eta: 4:01:29
[2024/07/27 14:14:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:15:01] ppocr INFO: epoch: [945/1500], global_step: 2835, lr: 0.001000, loss: 1.269792, loss_shrink_maps: 0.640067, loss_threshold_maps: 0.492622, loss_binary_maps: 0.127214, avg_reader_cost: 2.29290 s, avg_batch_cost: 2.53552 s, avg_samples: 12.5, ips: 4.92995 samples/s, eta: 4:01:03
[2024/07/27 14:15:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:15:11] ppocr INFO: epoch: [946/1500], global_step: 2838, lr: 0.001000, loss: 1.269792, loss_shrink_maps: 0.642054, loss_threshold_maps: 0.496024, loss_binary_maps: 0.127539, avg_reader_cost: 2.35512 s, avg_batch_cost: 2.61068 s, avg_samples: 12.5, ips: 4.78802 samples/s, eta: 4:00:37
[2024/07/27 14:15:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:15:20] ppocr INFO: epoch: [947/1500], global_step: 2840, lr: 0.001000, loss: 1.282941, loss_shrink_maps: 0.645970, loss_threshold_maps: 0.503682, loss_binary_maps: 0.128605, avg_reader_cost: 1.46879 s, avg_batch_cost: 1.65098 s, avg_samples: 9.6, ips: 5.81472 samples/s, eta: 4:00:19
[2024/07/27 14:15:21] ppocr INFO: epoch: [947/1500], global_step: 2841, lr: 0.001000, loss: 1.282941, loss_shrink_maps: 0.645970, loss_threshold_maps: 0.503682, loss_binary_maps: 0.128605, avg_reader_cost: 0.87178 s, avg_batch_cost: 0.92712 s, avg_samples: 2.9, ips: 3.12797 samples/s, eta: 4:00:10
[2024/07/27 14:15:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:15:31] ppocr INFO: epoch: [948/1500], global_step: 2844, lr: 0.001000, loss: 1.298204, loss_shrink_maps: 0.653381, loss_threshold_maps: 0.517540, loss_binary_maps: 0.130231, avg_reader_cost: 2.24423 s, avg_batch_cost: 2.60261 s, avg_samples: 12.5, ips: 4.80287 samples/s, eta: 3:59:44
[2024/07/27 14:15:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:15:40] ppocr INFO: epoch: [949/1500], global_step: 2847, lr: 0.001000, loss: 1.298204, loss_shrink_maps: 0.653381, loss_threshold_maps: 0.517540, loss_binary_maps: 0.130231, avg_reader_cost: 2.13954 s, avg_batch_cost: 2.48384 s, avg_samples: 12.5, ips: 5.03253 samples/s, eta: 3:59:18
[2024/07/27 14:15:41] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:15:50] ppocr INFO: epoch: [950/1500], global_step: 2850, lr: 0.001000, loss: 1.308818, loss_shrink_maps: 0.660671, loss_threshold_maps: 0.518958, loss_binary_maps: 0.132034, avg_reader_cost: 2.26189 s, avg_batch_cost: 2.50465 s, avg_samples: 12.5, ips: 4.99073 samples/s, eta: 3:58:51
[2024/07/27 14:15:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:16:00] ppocr INFO: epoch: [951/1500], global_step: 2853, lr: 0.001000, loss: 1.267454, loss_shrink_maps: 0.649688, loss_threshold_maps: 0.502072, loss_binary_maps: 0.129876, avg_reader_cost: 2.38712 s, avg_batch_cost: 2.63399 s, avg_samples: 12.5, ips: 4.74566 samples/s, eta: 3:58:25
[2024/07/27 14:16:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:16:10] ppocr INFO: epoch: [952/1500], global_step: 2856, lr: 0.001000, loss: 1.247860, loss_shrink_maps: 0.645293, loss_threshold_maps: 0.496883, loss_binary_maps: 0.128499, avg_reader_cost: 2.36477 s, avg_batch_cost: 2.63927 s, avg_samples: 12.5, ips: 4.73615 samples/s, eta: 3:57:59
[2024/07/27 14:16:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:16:19] ppocr INFO: epoch: [953/1500], global_step: 2859, lr: 0.001000, loss: 1.246385, loss_shrink_maps: 0.641076, loss_threshold_maps: 0.485952, loss_binary_maps: 0.127429, avg_reader_cost: 2.21020 s, avg_batch_cost: 2.58080 s, avg_samples: 12.5, ips: 4.84345 samples/s, eta: 3:57:33
[2024/07/27 14:16:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:16:28] ppocr INFO: epoch: [954/1500], global_step: 2860, lr: 0.001000, loss: 1.242879, loss_shrink_maps: 0.632489, loss_threshold_maps: 0.480622, loss_binary_maps: 0.125879, avg_reader_cost: 0.53180 s, avg_batch_cost: 0.80439 s, avg_samples: 4.8, ips: 5.96724 samples/s, eta: 3:57:24
[2024/07/27 14:16:29] ppocr INFO: epoch: [954/1500], global_step: 2862, lr: 0.001000, loss: 1.242879, loss_shrink_maps: 0.632489, loss_threshold_maps: 0.480622, loss_binary_maps: 0.125879, avg_reader_cost: 1.70048 s, avg_batch_cost: 1.84658 s, avg_samples: 7.7, ips: 4.16988 samples/s, eta: 3:57:07
[2024/07/27 14:16:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:16:39] ppocr INFO: epoch: [955/1500], global_step: 2865, lr: 0.001000, loss: 1.233722, loss_shrink_maps: 0.622718, loss_threshold_maps: 0.480591, loss_binary_maps: 0.122688, avg_reader_cost: 2.16793 s, avg_batch_cost: 2.50826 s, avg_samples: 12.5, ips: 4.98354 samples/s, eta: 3:56:40
[2024/07/27 14:16:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:16:49] ppocr INFO: epoch: [956/1500], global_step: 2868, lr: 0.001000, loss: 1.246385, loss_shrink_maps: 0.632489, loss_threshold_maps: 0.486117, loss_binary_maps: 0.125879, avg_reader_cost: 2.24467 s, avg_batch_cost: 2.48650 s, avg_samples: 12.5, ips: 5.02714 samples/s, eta: 3:56:14
[2024/07/27 14:16:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:16:58] ppocr INFO: epoch: [957/1500], global_step: 2870, lr: 0.001000, loss: 1.243017, loss_shrink_maps: 0.623907, loss_threshold_maps: 0.486117, loss_binary_maps: 0.123938, avg_reader_cost: 1.39471 s, avg_batch_cost: 1.70330 s, avg_samples: 9.6, ips: 5.63611 samples/s, eta: 3:55:56
[2024/07/27 14:16:58] ppocr INFO: epoch: [957/1500], global_step: 2871, lr: 0.001000, loss: 1.243017, loss_shrink_maps: 0.623907, loss_threshold_maps: 0.486117, loss_binary_maps: 0.123938, avg_reader_cost: 0.89770 s, avg_batch_cost: 0.95366 s, avg_samples: 2.9, ips: 3.04092 samples/s, eta: 3:55:48
[2024/07/27 14:16:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:17:08] ppocr INFO: epoch: [958/1500], global_step: 2874, lr: 0.001000, loss: 1.271217, loss_shrink_maps: 0.627850, loss_threshold_maps: 0.506138, loss_binary_maps: 0.124617, avg_reader_cost: 2.15897 s, avg_batch_cost: 2.52748 s, avg_samples: 12.5, ips: 4.94563 samples/s, eta: 3:55:21
[2024/07/27 14:17:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:17:18] ppocr INFO: epoch: [959/1500], global_step: 2877, lr: 0.001000, loss: 1.291694, loss_shrink_maps: 0.646124, loss_threshold_maps: 0.511089, loss_binary_maps: 0.127980, avg_reader_cost: 2.32807 s, avg_batch_cost: 2.56118 s, avg_samples: 12.5, ips: 4.88056 samples/s, eta: 3:54:55
[2024/07/27 14:17:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:17:28] ppocr INFO: epoch: [960/1500], global_step: 2880, lr: 0.001000, loss: 1.267579, loss_shrink_maps: 0.645990, loss_threshold_maps: 0.493961, loss_binary_maps: 0.127980, avg_reader_cost: 2.25857 s, avg_batch_cost: 2.61926 s, avg_samples: 12.5, ips: 4.77235 samples/s, eta: 3:54:29

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<01:05,  7.61it/s]
eval model::   1%|          | 4/500 [00:00<00:30, 16.16it/s]
eval model::   1%|▏         | 7/500 [00:00<00:26, 18.56it/s]
eval model::   2%|▏         | 9/500 [00:00<00:26, 18.31it/s]
eval model::   2%|▏         | 11/500 [00:00<00:27, 18.03it/s]
eval model::   3%|▎         | 14/500 [00:00<00:27, 17.66it/s]
eval model::   3%|▎         | 17/500 [00:00<00:25, 19.19it/s]
eval model::   4%|▍         | 19/500 [00:01<00:26, 18.35it/s]
eval model::   4%|▍         | 21/500 [00:01<00:27, 17.38it/s]
eval model::   5%|▍         | 24/500 [00:01<00:24, 19.73it/s]
eval model::   5%|▌         | 26/500 [00:01<00:24, 19.16it/s]
eval model::   6%|▌         | 29/500 [00:01<00:23, 20.01it/s]
eval model::   6%|▋         | 32/500 [00:01<00:23, 20.04it/s]
eval model::   7%|▋         | 35/500 [00:01<00:22, 20.52it/s]
eval model::   8%|▊         | 38/500 [00:01<00:21, 21.60it/s]
eval model::   8%|▊         | 41/500 [00:02<00:21, 21.38it/s]
eval model::   9%|▉         | 44/500 [00:02<00:24, 18.65it/s]
eval model::   9%|▉         | 46/500 [00:02<00:25, 17.97it/s]
eval model::  10%|▉         | 49/500 [00:02<00:22, 20.27it/s]
eval model::  10%|█         | 52/500 [00:02<00:21, 21.07it/s]
eval model::  11%|█         | 55/500 [00:02<00:19, 22.67it/s]
eval model::  12%|█▏        | 58/500 [00:02<00:20, 21.72it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:24, 17.60it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:24, 17.81it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:20, 21.41it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:19, 21.57it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:21, 20.07it/s]
eval model::  15%|█▌        | 76/500 [00:03<00:20, 20.27it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:21, 19.16it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:21, 19.25it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:21, 19.28it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:22, 18.70it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:24, 16.57it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:24, 16.58it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:24, 16.35it/s]
eval model::  19%|█▉        | 95/500 [00:05<00:23, 17.08it/s]
eval model::  20%|█▉        | 98/500 [00:05<00:20, 19.23it/s]
eval model::  20%|██        | 100/500 [00:05<00:21, 18.23it/s]
eval model::  20%|██        | 102/500 [00:05<00:21, 18.33it/s]
eval model::  21%|██        | 105/500 [00:05<00:19, 20.60it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:17, 21.88it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:18, 20.95it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:17, 22.06it/s]
eval model::  23%|██▎       | 117/500 [00:06<00:19, 19.79it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:19, 19.56it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:18, 20.63it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:22, 16.31it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:20, 18.54it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:21, 17.46it/s]
eval model::  27%|██▋       | 135/500 [00:07<00:18, 19.65it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:17, 20.35it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:17, 20.26it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:17, 20.57it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:21, 16.41it/s]
eval model::  30%|███       | 150/500 [00:07<00:18, 18.48it/s]
eval model::  31%|███       | 153/500 [00:08<00:19, 17.90it/s]
eval model::  31%|███       | 156/500 [00:08<00:18, 18.87it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:17, 18.96it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:22, 14.84it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:20, 16.75it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:19, 17.43it/s]
eval model::  34%|███▍      | 170/500 [00:08<00:17, 19.13it/s]
eval model::  35%|███▍      | 173/500 [00:09<00:16, 19.79it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:18, 17.37it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:17, 18.27it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:19, 16.28it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:18, 16.72it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:16, 18.66it/s]
eval model::  38%|███▊      | 189/500 [00:10<00:16, 19.17it/s]
eval model::  38%|███▊      | 191/500 [00:10<00:16, 18.31it/s]
eval model::  39%|███▊      | 193/500 [00:10<00:17, 17.48it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:17, 17.01it/s]
eval model::  39%|███▉      | 197/500 [00:10<00:17, 17.20it/s]
eval model::  40%|███▉      | 199/500 [00:10<00:17, 17.50it/s]
eval model::  40%|████      | 201/500 [00:10<00:16, 18.14it/s]
eval model::  41%|████      | 204/500 [00:10<00:14, 20.97it/s]
eval model::  41%|████▏     | 207/500 [00:11<00:21, 13.41it/s]
eval model::  42%|████▏     | 209/500 [00:11<00:21, 13.57it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:21, 13.45it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:20, 14.33it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:22, 12.63it/s]
eval model::  43%|████▎     | 217/500 [00:12<00:23, 12.16it/s]
eval model::  44%|████▍     | 219/500 [00:12<00:21, 12.99it/s]
eval model::  44%|████▍     | 221/500 [00:12<00:24, 11.55it/s]
eval model::  45%|████▍     | 223/500 [00:12<00:21, 12.61it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:19, 14.35it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:14, 18.33it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:14, 18.49it/s]
eval model::  47%|████▋     | 235/500 [00:13<00:14, 17.98it/s]
eval model::  48%|████▊     | 238/500 [00:13<00:13, 19.29it/s]
eval model::  48%|████▊     | 241/500 [00:13<00:12, 19.94it/s]
eval model::  49%|████▉     | 244/500 [00:13<00:14, 17.38it/s]
eval model::  49%|████▉     | 247/500 [00:13<00:12, 19.67it/s]
eval model::  50%|█████     | 250/500 [00:13<00:12, 20.38it/s]
eval model::  51%|█████     | 254/500 [00:13<00:10, 23.71it/s]
eval model::  51%|█████▏    | 257/500 [00:14<00:09, 25.02it/s]
eval model::  52%|█████▏    | 261/500 [00:14<00:09, 26.52it/s]
eval model::  53%|█████▎    | 264/500 [00:14<00:09, 24.69it/s]
eval model::  53%|█████▎    | 267/500 [00:14<00:10, 23.09it/s]
eval model::  54%|█████▍    | 270/500 [00:14<00:10, 22.95it/s]
eval model::  55%|█████▍    | 273/500 [00:14<00:09, 22.89it/s]
eval model::  55%|█████▌    | 276/500 [00:14<00:10, 21.57it/s]
eval model::  56%|█████▌    | 279/500 [00:15<00:10, 20.51it/s]
eval model::  56%|█████▋    | 282/500 [00:15<00:10, 20.48it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:18, 11.93it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:16, 13.10it/s]
eval model::  58%|█████▊    | 290/500 [00:15<00:13, 15.68it/s]
eval model::  59%|█████▊    | 293/500 [00:16<00:12, 16.73it/s]
eval model::  59%|█████▉    | 296/500 [00:16<00:14, 13.87it/s]
eval model::  60%|█████▉    | 299/500 [00:16<00:13, 15.38it/s]
eval model::  60%|██████    | 301/500 [00:16<00:13, 14.51it/s]
eval model::  61%|██████    | 304/500 [00:16<00:12, 15.18it/s]
eval model::  61%|██████▏   | 307/500 [00:16<00:11, 16.54it/s]
eval model::  62%|██████▏   | 309/500 [00:17<00:11, 16.74it/s]
eval model::  62%|██████▏   | 312/500 [00:17<00:10, 17.93it/s]
eval model::  63%|██████▎   | 315/500 [00:17<00:09, 19.06it/s]
eval model::  63%|██████▎   | 317/500 [00:17<00:09, 18.98it/s]
eval model::  64%|██████▍   | 320/500 [00:17<00:09, 19.97it/s]
eval model::  65%|██████▍   | 323/500 [00:17<00:09, 19.51it/s]
eval model::  65%|██████▌   | 326/500 [00:17<00:08, 21.38it/s]
eval model::  66%|██████▌   | 329/500 [00:18<00:08, 19.68it/s]
eval model::  66%|██████▋   | 332/500 [00:18<00:08, 20.35it/s]
eval model::  67%|██████▋   | 335/500 [00:18<00:07, 21.61it/s]
eval model::  68%|██████▊   | 338/500 [00:18<00:08, 19.39it/s]
eval model::  68%|██████▊   | 341/500 [00:18<00:10, 15.24it/s]
eval model::  69%|██████▉   | 344/500 [00:18<00:09, 17.17it/s]
eval model::  69%|██████▉   | 346/500 [00:19<00:09, 17.08it/s]
eval model::  70%|██████▉   | 348/500 [00:19<00:08, 17.58it/s]
eval model::  70%|███████   | 351/500 [00:19<00:07, 19.22it/s]
eval model::  71%|███████   | 354/500 [00:19<00:07, 20.63it/s]
eval model::  71%|███████▏  | 357/500 [00:19<00:07, 19.22it/s]
eval model::  72%|███████▏  | 360/500 [00:19<00:06, 20.30it/s]
eval model::  73%|███████▎  | 363/500 [00:19<00:07, 19.18it/s]
eval model::  73%|███████▎  | 365/500 [00:20<00:08, 16.86it/s]
eval model::  73%|███████▎  | 367/500 [00:20<00:08, 15.16it/s]
eval model::  74%|███████▍  | 370/500 [00:20<00:07, 17.64it/s]
eval model::  74%|███████▍  | 372/500 [00:20<00:07, 16.65it/s]
eval model::  75%|███████▌  | 375/500 [00:20<00:06, 18.71it/s]
eval model::  76%|███████▌  | 378/500 [00:20<00:06, 20.32it/s]
eval model::  76%|███████▌  | 381/500 [00:20<00:06, 19.44it/s]
eval model::  77%|███████▋  | 385/500 [00:21<00:05, 22.88it/s]
eval model::  78%|███████▊  | 388/500 [00:21<00:08, 13.12it/s]
eval model::  78%|███████▊  | 391/500 [00:21<00:07, 15.19it/s]
eval model::  79%|███████▉  | 394/500 [00:21<00:06, 15.49it/s]
eval model::  79%|███████▉  | 397/500 [00:21<00:05, 17.51it/s]
eval model::  80%|████████  | 400/500 [00:22<00:05, 18.30it/s]
eval model::  81%|████████  | 403/500 [00:22<00:05, 19.38it/s]
eval model::  81%|████████  | 406/500 [00:22<00:05, 18.50it/s]
eval model::  82%|████████▏ | 408/500 [00:22<00:05, 18.21it/s]
eval model::  82%|████████▏ | 411/500 [00:22<00:04, 19.78it/s]
eval model::  83%|████████▎ | 414/500 [00:22<00:04, 20.74it/s]
eval model::  83%|████████▎ | 417/500 [00:22<00:04, 19.71it/s]
eval model::  84%|████████▍ | 420/500 [00:23<00:05, 13.39it/s]
eval model::  85%|████████▍ | 423/500 [00:23<00:05, 15.34it/s]
eval model::  85%|████████▌ | 425/500 [00:23<00:05, 13.59it/s]
eval model::  86%|████████▌ | 428/500 [00:23<00:04, 15.48it/s]
eval model::  86%|████████▌ | 431/500 [00:23<00:04, 16.77it/s]
eval model::  87%|████████▋ | 433/500 [00:24<00:03, 17.15it/s]
eval model::  87%|████████▋ | 436/500 [00:24<00:03, 19.09it/s]
eval model::  88%|████████▊ | 439/500 [00:24<00:02, 20.79it/s]
eval model::  88%|████████▊ | 442/500 [00:24<00:02, 20.13it/s]
eval model::  89%|████████▉ | 445/500 [00:24<00:02, 21.81it/s]
eval model::  90%|████████▉ | 448/500 [00:24<00:02, 21.72it/s]
eval model::  90%|█████████ | 451/500 [00:24<00:02, 20.48it/s]
eval model::  91%|█████████ | 454/500 [00:24<00:02, 21.63it/s]
eval model::  91%|█████████▏| 457/500 [00:25<00:02, 20.76it/s]
eval model::  92%|█████████▏| 460/500 [00:25<00:01, 20.55it/s]
eval model::  93%|█████████▎| 463/500 [00:25<00:02, 17.96it/s]
eval model::  93%|█████████▎| 465/500 [00:25<00:02, 16.03it/s]
eval model::  94%|█████████▎| 468/500 [00:25<00:01, 17.58it/s]
eval model::  94%|█████████▍| 471/500 [00:25<00:01, 19.35it/s]
eval model::  95%|█████████▍| 474/500 [00:26<00:01, 18.50it/s]
eval model::  96%|█████████▌| 478/500 [00:26<00:01, 21.48it/s]
eval model::  96%|█████████▌| 481/500 [00:26<00:00, 23.07it/s]
eval model::  97%|█████████▋| 484/500 [00:26<00:00, 23.93it/s]
eval model::  97%|█████████▋| 487/500 [00:26<00:00, 23.01it/s]
eval model::  98%|█████████▊| 490/500 [00:26<00:00, 23.21it/s]
eval model::  99%|█████████▊| 493/500 [00:26<00:00, 19.39it/s]
eval model::  99%|█████████▉| 496/500 [00:27<00:00, 20.98it/s]
eval model:: 100%|██████████| 500/500 [00:27<00:00, 25.04it/s]
eval model:: 100%|██████████| 500/500 [00:27<00:00, 18.41it/s]
[2024/07/27 14:17:55] ppocr INFO: cur metric, precision: 0.7747163695299838, recall: 0.6904188733750601, hmean: 0.7301425661914459, fps: 43.582139874688714
[2024/07/27 14:17:55] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/27 14:17:55] ppocr INFO: best metric, hmean: 0.7301425661914459, precision: 0.7747163695299838, recall: 0.6904188733750601, fps: 43.582139874688714, best_epoch: 960
[2024/07/27 14:17:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:18:03] ppocr INFO: epoch: [961/1500], global_step: 2883, lr: 0.001000, loss: 1.284311, loss_shrink_maps: 0.647198, loss_threshold_maps: 0.506316, loss_binary_maps: 0.128436, avg_reader_cost: 1.91082 s, avg_batch_cost: 2.18826 s, avg_samples: 12.5, ips: 5.71230 samples/s, eta: 3:54:01
[2024/07/27 14:18:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:18:13] ppocr INFO: epoch: [962/1500], global_step: 2886, lr: 0.001000, loss: 1.284311, loss_shrink_maps: 0.647198, loss_threshold_maps: 0.504749, loss_binary_maps: 0.128805, avg_reader_cost: 2.17919 s, avg_batch_cost: 2.55354 s, avg_samples: 12.5, ips: 4.89516 samples/s, eta: 3:53:34
[2024/07/27 14:18:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:18:22] ppocr INFO: epoch: [963/1500], global_step: 2889, lr: 0.001000, loss: 1.276412, loss_shrink_maps: 0.646124, loss_threshold_maps: 0.500961, loss_binary_maps: 0.128436, avg_reader_cost: 2.32726 s, avg_batch_cost: 2.57316 s, avg_samples: 12.5, ips: 4.85785 samples/s, eta: 3:53:08
[2024/07/27 14:18:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:18:31] ppocr INFO: epoch: [964/1500], global_step: 2890, lr: 0.001000, loss: 1.276412, loss_shrink_maps: 0.646124, loss_threshold_maps: 0.500961, loss_binary_maps: 0.128436, avg_reader_cost: 0.68074 s, avg_batch_cost: 0.76786 s, avg_samples: 4.8, ips: 6.25111 samples/s, eta: 3:52:59
[2024/07/27 14:18:32] ppocr INFO: epoch: [964/1500], global_step: 2892, lr: 0.001000, loss: 1.276412, loss_shrink_maps: 0.647198, loss_threshold_maps: 0.500961, loss_binary_maps: 0.128805, avg_reader_cost: 1.62779 s, avg_batch_cost: 1.77527 s, avg_samples: 7.7, ips: 4.33736 samples/s, eta: 3:52:42
[2024/07/27 14:18:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:18:42] ppocr INFO: epoch: [965/1500], global_step: 2895, lr: 0.001000, loss: 1.276412, loss_shrink_maps: 0.648361, loss_threshold_maps: 0.500049, loss_binary_maps: 0.129198, avg_reader_cost: 2.30959 s, avg_batch_cost: 2.55640 s, avg_samples: 12.5, ips: 4.88968 samples/s, eta: 3:52:16
[2024/07/27 14:18:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:18:51] ppocr INFO: epoch: [966/1500], global_step: 2898, lr: 0.001000, loss: 1.276412, loss_shrink_maps: 0.648361, loss_threshold_maps: 0.496686, loss_binary_maps: 0.129198, avg_reader_cost: 2.09908 s, avg_batch_cost: 2.41441 s, avg_samples: 12.5, ips: 5.17725 samples/s, eta: 3:51:48
[2024/07/27 14:18:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:19:00] ppocr INFO: epoch: [967/1500], global_step: 2900, lr: 0.001000, loss: 1.302665, loss_shrink_maps: 0.676338, loss_threshold_maps: 0.501973, loss_binary_maps: 0.134259, avg_reader_cost: 1.36198 s, avg_batch_cost: 1.67630 s, avg_samples: 9.6, ips: 5.72691 samples/s, eta: 3:51:31
[2024/07/27 14:19:01] ppocr INFO: epoch: [967/1500], global_step: 2901, lr: 0.001000, loss: 1.283151, loss_shrink_maps: 0.665312, loss_threshold_maps: 0.500049, loss_binary_maps: 0.132772, avg_reader_cost: 0.88499 s, avg_batch_cost: 0.93984 s, avg_samples: 2.9, ips: 3.08564 samples/s, eta: 3:51:22
[2024/07/27 14:19:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:19:10] ppocr INFO: epoch: [968/1500], global_step: 2904, lr: 0.001000, loss: 1.262326, loss_shrink_maps: 0.659014, loss_threshold_maps: 0.498243, loss_binary_maps: 0.131281, avg_reader_cost: 2.19252 s, avg_batch_cost: 2.55427 s, avg_samples: 12.5, ips: 4.89376 samples/s, eta: 3:50:56
[2024/07/27 14:19:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:19:20] ppocr INFO: epoch: [969/1500], global_step: 2907, lr: 0.001000, loss: 1.262326, loss_shrink_maps: 0.651053, loss_threshold_maps: 0.493048, loss_binary_maps: 0.129324, avg_reader_cost: 2.31730 s, avg_batch_cost: 2.55738 s, avg_samples: 12.5, ips: 4.88782 samples/s, eta: 3:50:30
[2024/07/27 14:19:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:19:30] ppocr INFO: epoch: [970/1500], global_step: 2910, lr: 0.001000, loss: 1.305824, loss_shrink_maps: 0.677163, loss_threshold_maps: 0.507131, loss_binary_maps: 0.134872, avg_reader_cost: 2.28247 s, avg_batch_cost: 2.53046 s, avg_samples: 12.5, ips: 4.93982 samples/s, eta: 3:50:03
[2024/07/27 14:19:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:19:39] ppocr INFO: epoch: [971/1500], global_step: 2913, lr: 0.001000, loss: 1.296692, loss_shrink_maps: 0.669959, loss_threshold_maps: 0.502700, loss_binary_maps: 0.133349, avg_reader_cost: 2.18750 s, avg_batch_cost: 2.55686 s, avg_samples: 12.5, ips: 4.88880 samples/s, eta: 3:49:37
[2024/07/27 14:19:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:19:49] ppocr INFO: epoch: [972/1500], global_step: 2916, lr: 0.001000, loss: 1.290502, loss_shrink_maps: 0.662462, loss_threshold_maps: 0.502700, loss_binary_maps: 0.131670, avg_reader_cost: 2.27723 s, avg_batch_cost: 2.51663 s, avg_samples: 12.5, ips: 4.96696 samples/s, eta: 3:49:11
[2024/07/27 14:19:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:19:59] ppocr INFO: epoch: [973/1500], global_step: 2919, lr: 0.001000, loss: 1.267419, loss_shrink_maps: 0.647977, loss_threshold_maps: 0.502700, loss_binary_maps: 0.128870, avg_reader_cost: 2.36195 s, avg_batch_cost: 2.59890 s, avg_samples: 12.5, ips: 4.80973 samples/s, eta: 3:48:44
[2024/07/27 14:20:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:20:07] ppocr INFO: epoch: [974/1500], global_step: 2920, lr: 0.001000, loss: 1.244677, loss_shrink_maps: 0.633492, loss_threshold_maps: 0.499019, loss_binary_maps: 0.126180, avg_reader_cost: 0.68225 s, avg_batch_cost: 0.77405 s, avg_samples: 4.8, ips: 6.20118 samples/s, eta: 3:48:35
[2024/07/27 14:20:09] ppocr INFO: epoch: [974/1500], global_step: 2922, lr: 0.001000, loss: 1.271362, loss_shrink_maps: 0.647977, loss_threshold_maps: 0.504038, loss_binary_maps: 0.128870, avg_reader_cost: 1.64008 s, avg_batch_cost: 1.78737 s, avg_samples: 7.7, ips: 4.30800 samples/s, eta: 3:48:18
[2024/07/27 14:20:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:20:18] ppocr INFO: epoch: [975/1500], global_step: 2925, lr: 0.001000, loss: 1.244677, loss_shrink_maps: 0.626358, loss_threshold_maps: 0.499019, loss_binary_maps: 0.124645, avg_reader_cost: 2.21341 s, avg_batch_cost: 2.58751 s, avg_samples: 12.5, ips: 4.83089 samples/s, eta: 3:47:52
[2024/07/27 14:20:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:20:28] ppocr INFO: epoch: [976/1500], global_step: 2928, lr: 0.001000, loss: 1.219362, loss_shrink_maps: 0.606180, loss_threshold_maps: 0.491089, loss_binary_maps: 0.120670, avg_reader_cost: 2.37290 s, avg_batch_cost: 2.61996 s, avg_samples: 12.5, ips: 4.77107 samples/s, eta: 3:47:26
[2024/07/27 14:20:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:20:38] ppocr INFO: epoch: [977/1500], global_step: 2930, lr: 0.001000, loss: 1.219362, loss_shrink_maps: 0.606180, loss_threshold_maps: 0.490272, loss_binary_maps: 0.120670, avg_reader_cost: 1.35321 s, avg_batch_cost: 1.67974 s, avg_samples: 9.6, ips: 5.71517 samples/s, eta: 3:47:08
[2024/07/27 14:20:38] ppocr INFO: epoch: [977/1500], global_step: 2931, lr: 0.001000, loss: 1.234817, loss_shrink_maps: 0.616795, loss_threshold_maps: 0.496060, loss_binary_maps: 0.122618, avg_reader_cost: 0.88624 s, avg_batch_cost: 0.94176 s, avg_samples: 2.9, ips: 3.07935 samples/s, eta: 3:47:00
[2024/07/27 14:20:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:20:48] ppocr INFO: epoch: [978/1500], global_step: 2934, lr: 0.001000, loss: 1.252359, loss_shrink_maps: 0.627096, loss_threshold_maps: 0.500357, loss_binary_maps: 0.124778, avg_reader_cost: 2.36671 s, avg_batch_cost: 2.60394 s, avg_samples: 12.5, ips: 4.80041 samples/s, eta: 3:46:34
[2024/07/27 14:20:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:20:58] ppocr INFO: epoch: [979/1500], global_step: 2937, lr: 0.001000, loss: 1.226932, loss_shrink_maps: 0.616795, loss_threshold_maps: 0.496060, loss_binary_maps: 0.122618, avg_reader_cost: 2.41291 s, avg_batch_cost: 2.66819 s, avg_samples: 12.5, ips: 4.68482 samples/s, eta: 3:46:08
[2024/07/27 14:20:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:21:08] ppocr INFO: epoch: [980/1500], global_step: 2940, lr: 0.001000, loss: 1.226932, loss_shrink_maps: 0.619084, loss_threshold_maps: 0.484629, loss_binary_maps: 0.123199, avg_reader_cost: 2.29148 s, avg_batch_cost: 2.52721 s, avg_samples: 12.5, ips: 4.94616 samples/s, eta: 3:45:42

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:57,  8.65it/s]
eval model::   1%|          | 4/500 [00:00<00:27, 17.92it/s]
eval model::   1%|          | 6/500 [00:00<00:27, 18.06it/s]
eval model::   2%|▏         | 8/500 [00:00<00:26, 18.33it/s]
eval model::   2%|▏         | 11/500 [00:00<00:27, 17.79it/s]
eval model::   3%|▎         | 14/500 [00:00<00:27, 17.94it/s]
eval model::   3%|▎         | 17/500 [00:00<00:24, 19.97it/s]
eval model::   4%|▍         | 20/500 [00:01<00:24, 19.47it/s]
eval model::   5%|▍         | 23/500 [00:01<00:23, 20.63it/s]
eval model::   5%|▌         | 26/500 [00:01<00:21, 21.63it/s]
eval model::   6%|▌         | 29/500 [00:01<00:21, 21.73it/s]
eval model::   6%|▋         | 32/500 [00:01<00:24, 19.24it/s]
eval model::   7%|▋         | 34/500 [00:01<00:24, 19.05it/s]
eval model::   7%|▋         | 37/500 [00:01<00:21, 21.24it/s]
eval model::   8%|▊         | 40/500 [00:02<00:24, 18.87it/s]
eval model::   8%|▊         | 42/500 [00:02<00:25, 17.88it/s]
eval model::   9%|▉         | 45/500 [00:02<00:23, 19.19it/s]
eval model::   9%|▉         | 47/500 [00:02<00:26, 17.40it/s]
eval model::  10%|█         | 50/500 [00:02<00:24, 18.10it/s]
eval model::  11%|█         | 53/500 [00:02<00:23, 19.06it/s]
eval model::  11%|█         | 56/500 [00:02<00:23, 19.02it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:24, 18.24it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:29, 14.96it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:29, 14.95it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:22, 19.41it/s]
eval model::  14%|█▍        | 71/500 [00:03<00:18, 22.81it/s]
eval model::  15%|█▍        | 74/500 [00:03<00:19, 21.58it/s]
eval model::  15%|█▌        | 77/500 [00:04<00:20, 20.58it/s]
eval model::  16%|█▌        | 80/500 [00:04<00:19, 22.00it/s]
eval model::  17%|█▋        | 83/500 [00:04<00:18, 22.17it/s]
eval model::  17%|█▋        | 86/500 [00:04<00:20, 20.06it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:24, 17.02it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:25, 15.75it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:25, 16.04it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:22, 17.71it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:21, 18.33it/s]
eval model::  20%|██        | 101/500 [00:05<00:22, 17.74it/s]
eval model::  21%|██        | 104/500 [00:05<00:20, 19.50it/s]
eval model::  21%|██▏       | 107/500 [00:05<00:18, 21.51it/s]
eval model::  22%|██▏       | 110/500 [00:05<00:17, 22.61it/s]
eval model::  23%|██▎       | 113/500 [00:05<00:17, 21.57it/s]
eval model::  23%|██▎       | 116/500 [00:06<00:19, 19.69it/s]
eval model::  24%|██▍       | 119/500 [00:06<00:18, 20.96it/s]
eval model::  24%|██▍       | 122/500 [00:06<00:18, 20.84it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:20, 18.17it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:18, 20.35it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:19, 19.32it/s]
eval model::  27%|██▋       | 134/500 [00:07<00:19, 18.82it/s]
eval model::  27%|██▋       | 137/500 [00:07<00:18, 19.97it/s]
eval model::  28%|██▊       | 140/500 [00:07<00:18, 19.54it/s]
eval model::  29%|██▊       | 143/500 [00:07<00:17, 20.31it/s]
eval model::  29%|██▉       | 146/500 [00:07<00:18, 19.57it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:18, 18.81it/s]
eval model::  30%|███       | 151/500 [00:07<00:18, 18.88it/s]
eval model::  31%|███       | 155/500 [00:08<00:15, 21.98it/s]
eval model::  32%|███▏      | 158/500 [00:08<00:15, 22.71it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:23, 14.52it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:21, 15.39it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:18, 17.62it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:19, 17.02it/s]
eval model::  34%|███▍      | 171/500 [00:09<00:19, 17.20it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:19, 16.73it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:19, 16.58it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:17, 18.12it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:20, 15.55it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:19, 16.50it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:16, 19.05it/s]
eval model::  38%|███▊      | 189/500 [00:10<00:15, 20.10it/s]
eval model::  38%|███▊      | 192/500 [00:10<00:15, 20.41it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:16, 18.03it/s]
eval model::  39%|███▉      | 197/500 [00:10<00:17, 17.29it/s]
eval model::  40%|████      | 200/500 [00:10<00:15, 19.58it/s]
eval model::  41%|████      | 203/500 [00:10<00:14, 20.31it/s]
eval model::  41%|████      | 206/500 [00:11<00:21, 13.93it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:20, 13.98it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:22, 13.15it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:19, 14.55it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:20, 13.57it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:22, 12.51it/s]
eval model::  44%|████▍     | 220/500 [00:12<00:18, 14.80it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:20, 13.30it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:16, 16.45it/s]
eval model::  46%|████▌     | 229/500 [00:12<00:14, 18.77it/s]
eval model::  46%|████▋     | 232/500 [00:12<00:13, 19.25it/s]
eval model::  47%|████▋     | 235/500 [00:12<00:13, 19.19it/s]
eval model::  48%|████▊     | 238/500 [00:13<00:12, 20.45it/s]
eval model::  48%|████▊     | 241/500 [00:13<00:12, 21.45it/s]
eval model::  49%|████▉     | 244/500 [00:13<00:12, 19.71it/s]
eval model::  49%|████▉     | 247/500 [00:13<00:12, 20.30it/s]
eval model::  50%|█████     | 250/500 [00:13<00:12, 19.62it/s]
eval model::  51%|█████     | 254/500 [00:13<00:11, 21.17it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:10, 22.48it/s]
eval model::  52%|█████▏    | 260/500 [00:14<00:10, 23.17it/s]
eval model::  53%|█████▎    | 263/500 [00:14<00:10, 23.00it/s]
eval model::  53%|█████▎    | 266/500 [00:14<00:10, 21.39it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:11, 19.60it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:11, 19.66it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:11, 18.78it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:11, 19.95it/s]
eval model::  56%|█████▌    | 281/500 [00:15<00:10, 21.28it/s]
eval model::  57%|█████▋    | 284/500 [00:15<00:09, 22.28it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:18, 11.64it/s]
eval model::  58%|█████▊    | 290/500 [00:15<00:14, 14.16it/s]
eval model::  59%|█████▊    | 293/500 [00:16<00:13, 14.83it/s]
eval model::  59%|█████▉    | 295/500 [00:16<00:17, 11.92it/s]
eval model::  60%|█████▉    | 299/500 [00:16<00:12, 15.89it/s]
eval model::  60%|██████    | 302/500 [00:16<00:12, 15.53it/s]
eval model::  61%|██████    | 304/500 [00:16<00:12, 15.71it/s]
eval model::  61%|██████▏   | 307/500 [00:16<00:10, 17.93it/s]
eval model::  62%|██████▏   | 310/500 [00:17<00:10, 18.75it/s]
eval model::  63%|██████▎   | 313/500 [00:17<00:09, 19.47it/s]
eval model::  63%|██████▎   | 316/500 [00:17<00:10, 18.12it/s]
eval model::  64%|██████▍   | 319/500 [00:17<00:09, 20.01it/s]
eval model::  64%|██████▍   | 322/500 [00:17<00:09, 19.43it/s]
eval model::  65%|██████▌   | 325/500 [00:17<00:08, 21.04it/s]
eval model::  66%|██████▌   | 328/500 [00:17<00:08, 19.96it/s]
eval model::  66%|██████▌   | 331/500 [00:18<00:08, 20.77it/s]
eval model::  67%|██████▋   | 334/500 [00:18<00:08, 20.72it/s]
eval model::  67%|██████▋   | 337/500 [00:18<00:08, 19.09it/s]
eval model::  68%|██████▊   | 340/500 [00:18<00:11, 14.24it/s]
eval model::  69%|██████▊   | 343/500 [00:18<00:10, 15.67it/s]
eval model::  69%|██████▉   | 346/500 [00:18<00:08, 18.16it/s]
eval model::  70%|██████▉   | 349/500 [00:19<00:07, 20.16it/s]
eval model::  70%|███████   | 352/500 [00:19<00:07, 20.14it/s]
eval model::  71%|███████   | 355/500 [00:19<00:07, 19.65it/s]
eval model::  72%|███████▏  | 358/500 [00:19<00:07, 19.38it/s]
eval model::  72%|███████▏  | 361/500 [00:19<00:07, 18.02it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:07, 17.92it/s]
eval model::  73%|███████▎  | 366/500 [00:20<00:07, 17.21it/s]
eval model::  74%|███████▍  | 369/500 [00:20<00:07, 18.69it/s]
eval model::  74%|███████▍  | 371/500 [00:20<00:06, 18.60it/s]
eval model::  75%|███████▍  | 374/500 [00:20<00:06, 19.99it/s]
eval model::  75%|███████▌  | 377/500 [00:20<00:05, 21.96it/s]
eval model::  76%|███████▌  | 380/500 [00:20<00:05, 21.11it/s]
eval model::  77%|███████▋  | 384/500 [00:20<00:04, 24.57it/s]
eval model::  77%|███████▋  | 387/500 [00:21<00:07, 14.31it/s]
eval model::  78%|███████▊  | 390/500 [00:21<00:06, 16.01it/s]
eval model::  79%|███████▊  | 393/500 [00:21<00:06, 16.91it/s]
eval model::  79%|███████▉  | 396/500 [00:21<00:05, 17.55it/s]
eval model::  80%|███████▉  | 399/500 [00:21<00:05, 19.28it/s]
eval model::  80%|████████  | 402/500 [00:21<00:05, 18.88it/s]
eval model::  81%|████████  | 405/500 [00:22<00:04, 20.36it/s]
eval model::  82%|████████▏ | 408/500 [00:22<00:04, 22.04it/s]
eval model::  82%|████████▏ | 411/500 [00:22<00:04, 21.98it/s]
eval model::  83%|████████▎ | 414/500 [00:22<00:03, 21.87it/s]
eval model::  83%|████████▎ | 417/500 [00:22<00:03, 21.33it/s]
eval model::  84%|████████▍ | 420/500 [00:22<00:05, 14.63it/s]
eval model::  84%|████████▍ | 422/500 [00:23<00:05, 15.13it/s]
eval model::  85%|████████▍ | 424/500 [00:23<00:05, 14.66it/s]
eval model::  85%|████████▌ | 427/500 [00:23<00:04, 16.74it/s]
eval model::  86%|████████▌ | 430/500 [00:23<00:03, 18.99it/s]
eval model::  87%|████████▋ | 433/500 [00:23<00:03, 19.74it/s]
eval model::  87%|████████▋ | 436/500 [00:23<00:03, 21.04it/s]
eval model::  88%|████████▊ | 439/500 [00:23<00:02, 21.88it/s]
eval model::  88%|████████▊ | 442/500 [00:23<00:02, 21.82it/s]
eval model::  89%|████████▉ | 445/500 [00:24<00:02, 22.20it/s]
eval model::  90%|████████▉ | 448/500 [00:24<00:02, 22.15it/s]
eval model::  90%|█████████ | 451/500 [00:24<00:02, 22.66it/s]
eval model::  91%|█████████ | 454/500 [00:24<00:01, 23.33it/s]
eval model::  92%|█████████▏| 458/500 [00:24<00:01, 24.26it/s]
eval model::  92%|█████████▏| 461/500 [00:24<00:01, 21.85it/s]
eval model::  93%|█████████▎| 464/500 [00:25<00:02, 17.49it/s]
eval model::  93%|█████████▎| 466/500 [00:25<00:02, 16.37it/s]
eval model::  94%|█████████▍| 469/500 [00:25<00:01, 17.87it/s]
eval model::  94%|█████████▍| 472/500 [00:25<00:01, 19.11it/s]
eval model::  95%|█████████▍| 474/500 [00:25<00:01, 18.18it/s]
eval model::  95%|█████████▌| 477/500 [00:25<00:01, 20.17it/s]
eval model::  96%|█████████▌| 480/500 [00:25<00:01, 19.91it/s]
eval model::  97%|█████████▋| 483/500 [00:26<00:00, 20.77it/s]
eval model::  97%|█████████▋| 486/500 [00:26<00:00, 20.07it/s]
eval model::  98%|█████████▊| 489/500 [00:26<00:00, 20.88it/s]
eval model::  98%|█████████▊| 492/500 [00:26<00:00, 19.54it/s]
eval model::  99%|█████████▉| 495/500 [00:26<00:00, 20.28it/s]
eval model:: 100%|█████████▉| 498/500 [00:26<00:00, 22.12it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.66it/s]
[2024/07/27 14:21:35] ppocr INFO: cur metric, precision: 0.7678762006403416, recall: 0.6928261916225325, hmean: 0.7284231840040496, fps: 45.08591318252024
[2024/07/27 14:21:35] ppocr INFO: best metric, hmean: 0.7301425661914459, precision: 0.7747163695299838, recall: 0.6904188733750601, fps: 43.582139874688714, best_epoch: 960
[2024/07/27 14:21:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:21:44] ppocr INFO: epoch: [981/1500], global_step: 2943, lr: 0.001000, loss: 1.205666, loss_shrink_maps: 0.610115, loss_threshold_maps: 0.472353, loss_binary_maps: 0.121250, avg_reader_cost: 2.34249 s, avg_batch_cost: 2.59314 s, avg_samples: 12.5, ips: 4.82041 samples/s, eta: 3:45:16
[2024/07/27 14:21:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:21:54] ppocr INFO: epoch: [982/1500], global_step: 2946, lr: 0.001000, loss: 1.216745, loss_shrink_maps: 0.619822, loss_threshold_maps: 0.473486, loss_binary_maps: 0.123333, avg_reader_cost: 2.21437 s, avg_batch_cost: 2.56795 s, avg_samples: 12.5, ips: 4.86770 samples/s, eta: 3:44:50
[2024/07/27 14:21:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:22:04] ppocr INFO: epoch: [983/1500], global_step: 2949, lr: 0.001000, loss: 1.212477, loss_shrink_maps: 0.614335, loss_threshold_maps: 0.472353, loss_binary_maps: 0.122311, avg_reader_cost: 2.36984 s, avg_batch_cost: 2.60931 s, avg_samples: 12.5, ips: 4.79053 samples/s, eta: 3:44:24
[2024/07/27 14:22:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:22:12] ppocr INFO: epoch: [984/1500], global_step: 2950, lr: 0.001000, loss: 1.205666, loss_shrink_maps: 0.602180, loss_threshold_maps: 0.471374, loss_binary_maps: 0.120060, avg_reader_cost: 0.51619 s, avg_batch_cost: 0.75651 s, avg_samples: 4.8, ips: 6.34495 samples/s, eta: 3:44:14
[2024/07/27 14:22:13] ppocr INFO: epoch: [984/1500], global_step: 2952, lr: 0.001000, loss: 1.179520, loss_shrink_maps: 0.587328, loss_threshold_maps: 0.469749, loss_binary_maps: 0.116867, avg_reader_cost: 1.60541 s, avg_batch_cost: 1.75267 s, avg_samples: 7.7, ips: 4.39329 samples/s, eta: 3:43:57
[2024/07/27 14:22:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:22:23] ppocr INFO: epoch: [985/1500], global_step: 2955, lr: 0.001000, loss: 1.154585, loss_shrink_maps: 0.570910, loss_threshold_maps: 0.459555, loss_binary_maps: 0.113832, avg_reader_cost: 2.38068 s, avg_batch_cost: 2.65803 s, avg_samples: 12.5, ips: 4.70273 samples/s, eta: 3:43:31
[2024/07/27 14:22:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:22:33] ppocr INFO: epoch: [986/1500], global_step: 2958, lr: 0.001000, loss: 1.179520, loss_shrink_maps: 0.602180, loss_threshold_maps: 0.466736, loss_binary_maps: 0.120060, avg_reader_cost: 2.32070 s, avg_batch_cost: 2.56470 s, avg_samples: 12.5, ips: 4.87386 samples/s, eta: 3:43:05
[2024/07/27 14:22:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:22:42] ppocr INFO: epoch: [987/1500], global_step: 2960, lr: 0.001000, loss: 1.159312, loss_shrink_maps: 0.581816, loss_threshold_maps: 0.467985, loss_binary_maps: 0.115890, avg_reader_cost: 1.41005 s, avg_batch_cost: 1.62390 s, avg_samples: 9.6, ips: 5.91170 samples/s, eta: 3:42:47
[2024/07/27 14:22:43] ppocr INFO: epoch: [987/1500], global_step: 2961, lr: 0.001000, loss: 1.163423, loss_shrink_maps: 0.581816, loss_threshold_maps: 0.474219, loss_binary_maps: 0.115890, avg_reader_cost: 0.85819 s, avg_batch_cost: 0.91397 s, avg_samples: 2.9, ips: 3.17298 samples/s, eta: 3:42:39
[2024/07/27 14:22:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:22:52] ppocr INFO: epoch: [988/1500], global_step: 2964, lr: 0.001000, loss: 1.208546, loss_shrink_maps: 0.611675, loss_threshold_maps: 0.480968, loss_binary_maps: 0.122289, avg_reader_cost: 2.20443 s, avg_batch_cost: 2.57353 s, avg_samples: 12.5, ips: 4.85714 samples/s, eta: 3:42:12
[2024/07/27 14:22:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:23:02] ppocr INFO: epoch: [989/1500], global_step: 2967, lr: 0.001000, loss: 1.183740, loss_shrink_maps: 0.594101, loss_threshold_maps: 0.480968, loss_binary_maps: 0.118479, avg_reader_cost: 2.21682 s, avg_batch_cost: 2.60614 s, avg_samples: 12.5, ips: 4.79636 samples/s, eta: 3:41:46
[2024/07/27 14:23:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:23:12] ppocr INFO: epoch: [990/1500], global_step: 2970, lr: 0.001000, loss: 1.205669, loss_shrink_maps: 0.611675, loss_threshold_maps: 0.480968, loss_binary_maps: 0.122289, avg_reader_cost: 2.22390 s, avg_batch_cost: 2.60320 s, avg_samples: 12.5, ips: 4.80178 samples/s, eta: 3:41:20
[2024/07/27 14:23:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:23:22] ppocr INFO: epoch: [991/1500], global_step: 2973, lr: 0.001000, loss: 1.195568, loss_shrink_maps: 0.602139, loss_threshold_maps: 0.480968, loss_binary_maps: 0.120010, avg_reader_cost: 2.16846 s, avg_batch_cost: 2.50458 s, avg_samples: 12.5, ips: 4.99085 samples/s, eta: 3:40:54
[2024/07/27 14:23:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:23:32] ppocr INFO: epoch: [992/1500], global_step: 2976, lr: 0.001000, loss: 1.195568, loss_shrink_maps: 0.602139, loss_threshold_maps: 0.484420, loss_binary_maps: 0.120010, avg_reader_cost: 2.37069 s, avg_batch_cost: 2.61166 s, avg_samples: 12.5, ips: 4.78623 samples/s, eta: 3:40:28
[2024/07/27 14:23:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:23:41] ppocr INFO: epoch: [993/1500], global_step: 2979, lr: 0.001000, loss: 1.198214, loss_shrink_maps: 0.598650, loss_threshold_maps: 0.484420, loss_binary_maps: 0.118371, avg_reader_cost: 2.12395 s, avg_batch_cost: 2.58663 s, avg_samples: 12.5, ips: 4.83254 samples/s, eta: 3:40:02
[2024/07/27 14:23:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:23:49] ppocr INFO: epoch: [994/1500], global_step: 2980, lr: 0.001000, loss: 1.198214, loss_shrink_maps: 0.598650, loss_threshold_maps: 0.478033, loss_binary_maps: 0.118371, avg_reader_cost: 0.66324 s, avg_batch_cost: 0.76835 s, avg_samples: 4.8, ips: 6.24717 samples/s, eta: 3:39:53
[2024/07/27 14:23:51] ppocr INFO: epoch: [994/1500], global_step: 2982, lr: 0.001000, loss: 1.211191, loss_shrink_maps: 0.604468, loss_threshold_maps: 0.478033, loss_binary_maps: 0.120280, avg_reader_cost: 1.62864 s, avg_batch_cost: 1.77564 s, avg_samples: 7.7, ips: 4.33646 samples/s, eta: 3:39:35
[2024/07/27 14:23:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:24:00] ppocr INFO: epoch: [995/1500], global_step: 2985, lr: 0.001000, loss: 1.206183, loss_shrink_maps: 0.605355, loss_threshold_maps: 0.472286, loss_binary_maps: 0.120132, avg_reader_cost: 2.11198 s, avg_batch_cost: 2.43061 s, avg_samples: 12.5, ips: 5.14274 samples/s, eta: 3:39:08
[2024/07/27 14:24:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:24:10] ppocr INFO: epoch: [996/1500], global_step: 2988, lr: 0.001000, loss: 1.212802, loss_shrink_maps: 0.605355, loss_threshold_maps: 0.476618, loss_binary_maps: 0.120132, avg_reader_cost: 2.30899 s, avg_batch_cost: 2.56220 s, avg_samples: 12.5, ips: 4.87861 samples/s, eta: 3:38:42
[2024/07/27 14:24:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:24:19] ppocr INFO: epoch: [997/1500], global_step: 2990, lr: 0.001000, loss: 1.233700, loss_shrink_maps: 0.633833, loss_threshold_maps: 0.482594, loss_binary_maps: 0.126131, avg_reader_cost: 1.38828 s, avg_batch_cost: 1.57544 s, avg_samples: 9.6, ips: 6.09354 samples/s, eta: 3:38:24
[2024/07/27 14:24:19] ppocr INFO: epoch: [997/1500], global_step: 2991, lr: 0.001000, loss: 1.250026, loss_shrink_maps: 0.658620, loss_threshold_maps: 0.482594, loss_binary_maps: 0.130892, avg_reader_cost: 0.83364 s, avg_batch_cost: 0.88895 s, avg_samples: 2.9, ips: 3.26227 samples/s, eta: 3:38:15
[2024/07/27 14:24:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:24:29] ppocr INFO: epoch: [998/1500], global_step: 2994, lr: 0.001000, loss: 1.275238, loss_shrink_maps: 0.658620, loss_threshold_maps: 0.487976, loss_binary_maps: 0.130892, avg_reader_cost: 2.20365 s, avg_batch_cost: 2.55986 s, avg_samples: 12.5, ips: 4.88308 samples/s, eta: 3:37:49
[2024/07/27 14:24:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:24:39] ppocr INFO: epoch: [999/1500], global_step: 2997, lr: 0.001000, loss: 1.225560, loss_shrink_maps: 0.618750, loss_threshold_maps: 0.481797, loss_binary_maps: 0.123068, avg_reader_cost: 2.29731 s, avg_batch_cost: 2.57847 s, avg_samples: 12.5, ips: 4.84784 samples/s, eta: 3:37:23
[2024/07/27 14:24:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:24:48] ppocr INFO: epoch: [1000/1500], global_step: 3000, lr: 0.001000, loss: 1.275238, loss_shrink_maps: 0.649573, loss_threshold_maps: 0.483742, loss_binary_maps: 0.129528, avg_reader_cost: 2.20274 s, avg_batch_cost: 2.57930 s, avg_samples: 12.5, ips: 4.84627 samples/s, eta: 3:36:57

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 2/500 [00:00<00:37, 13.36it/s]
eval model::   1%|          | 5/500 [00:00<00:23, 21.06it/s]
eval model::   2%|▏         | 8/500 [00:00<00:28, 17.36it/s]
eval model::   2%|▏         | 11/500 [00:00<00:31, 15.53it/s]
eval model::   3%|▎         | 13/500 [00:00<00:30, 15.90it/s]
eval model::   3%|▎         | 15/500 [00:00<00:31, 15.49it/s]
eval model::   4%|▎         | 18/500 [00:01<00:27, 17.22it/s]
eval model::   4%|▍         | 20/500 [00:01<00:27, 17.33it/s]
eval model::   5%|▍         | 24/500 [00:01<00:22, 21.22it/s]
eval model::   5%|▌         | 27/500 [00:01<00:22, 20.78it/s]
eval model::   6%|▌         | 30/500 [00:01<00:21, 21.85it/s]
eval model::   7%|▋         | 33/500 [00:01<00:23, 19.50it/s]
eval model::   7%|▋         | 36/500 [00:01<00:24, 19.30it/s]
eval model::   8%|▊         | 38/500 [00:02<00:24, 18.58it/s]
eval model::   8%|▊         | 40/500 [00:02<00:27, 16.81it/s]
eval model::   8%|▊         | 42/500 [00:02<00:29, 15.78it/s]
eval model::   9%|▉         | 44/500 [00:02<00:27, 16.38it/s]
eval model::   9%|▉         | 46/500 [00:02<00:28, 16.08it/s]
eval model::  10%|▉         | 49/500 [00:02<00:24, 18.64it/s]
eval model::  10%|█         | 52/500 [00:02<00:23, 19.48it/s]
eval model::  11%|█         | 55/500 [00:02<00:21, 20.64it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:22, 19.78it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:26, 16.52it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:26, 16.19it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:21, 20.04it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:19, 21.73it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:20, 21.18it/s]
eval model::  15%|█▌        | 76/500 [00:04<00:20, 20.99it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:19, 21.08it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:20, 20.60it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:19, 21.33it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:21, 19.41it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:23, 17.29it/s]
eval model::  18%|█▊        | 92/500 [00:04<00:23, 17.41it/s]
eval model::  19%|█▉        | 95/500 [00:05<00:21, 18.42it/s]
eval model::  20%|█▉        | 98/500 [00:05<00:19, 20.37it/s]
eval model::  20%|██        | 101/500 [00:05<00:20, 19.61it/s]
eval model::  21%|██        | 105/500 [00:05<00:17, 23.02it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:16, 23.09it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:17, 21.94it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:16, 23.45it/s]
eval model::  23%|██▎       | 117/500 [00:06<00:18, 20.69it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:20, 18.74it/s]
eval model::  24%|██▍       | 122/500 [00:06<00:20, 18.63it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:20, 18.35it/s]
eval model::  25%|██▌       | 127/500 [00:06<00:18, 19.95it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:19, 18.53it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:20, 17.61it/s]
eval model::  27%|██▋       | 135/500 [00:07<00:18, 19.96it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:17, 20.50it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:17, 20.92it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:16, 21.76it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:19, 17.95it/s]
eval model::  30%|███       | 150/500 [00:07<00:18, 19.38it/s]
eval model::  31%|███       | 153/500 [00:08<00:19, 17.49it/s]
eval model::  31%|███       | 156/500 [00:08<00:18, 18.64it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:18, 18.54it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:23, 14.55it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:22, 14.68it/s]
eval model::  33%|███▎      | 165/500 [00:08<00:21, 15.60it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:21, 15.57it/s]
eval model::  34%|███▍      | 170/500 [00:09<00:18, 17.82it/s]
eval model::  35%|███▍      | 173/500 [00:09<00:16, 19.35it/s]
eval model::  35%|███▌      | 175/500 [00:09<00:21, 15.26it/s]
eval model::  36%|███▌      | 178/500 [00:09<00:18, 17.40it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:21, 15.07it/s]
eval model::  36%|███▋      | 182/500 [00:09<00:20, 15.58it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:19, 16.51it/s]
eval model::  37%|███▋      | 186/500 [00:10<00:18, 17.10it/s]
eval model::  38%|███▊      | 189/500 [00:10<00:16, 18.83it/s]
eval model::  38%|███▊      | 191/500 [00:10<00:16, 18.27it/s]
eval model::  39%|███▉      | 194/500 [00:10<00:15, 19.92it/s]
eval model::  39%|███▉      | 197/500 [00:10<00:16, 18.46it/s]
eval model::  40%|████      | 201/500 [00:10<00:14, 21.07it/s]
eval model::  41%|████      | 205/500 [00:11<00:20, 14.20it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:19, 14.84it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:19, 14.59it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.81it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:20, 13.94it/s]
eval model::  43%|████▎     | 217/500 [00:12<00:21, 13.12it/s]
eval model::  44%|████▍     | 219/500 [00:12<00:19, 14.36it/s]
eval model::  44%|████▍     | 221/500 [00:12<00:21, 13.16it/s]
eval model::  45%|████▍     | 224/500 [00:12<00:18, 15.20it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:17, 16.08it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:13, 20.04it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:13, 19.24it/s]
eval model::  47%|████▋     | 235/500 [00:13<00:13, 18.93it/s]
eval model::  48%|████▊     | 238/500 [00:13<00:13, 19.63it/s]
eval model::  48%|████▊     | 240/500 [00:13<00:13, 19.68it/s]
eval model::  48%|████▊     | 242/500 [00:13<00:15, 16.25it/s]
eval model::  49%|████▉     | 245/500 [00:13<00:13, 18.35it/s]
eval model::  49%|████▉     | 247/500 [00:13<00:13, 18.47it/s]
eval model::  50%|████▉     | 249/500 [00:13<00:14, 17.46it/s]
eval model::  50%|█████     | 252/500 [00:13<00:12, 19.63it/s]
eval model::  51%|█████     | 255/500 [00:14<00:11, 21.26it/s]
eval model::  52%|█████▏    | 258/500 [00:14<00:11, 21.28it/s]
eval model::  52%|█████▏    | 261/500 [00:14<00:10, 22.37it/s]
eval model::  53%|█████▎    | 264/500 [00:14<00:11, 20.31it/s]
eval model::  53%|█████▎    | 267/500 [00:14<00:11, 19.76it/s]
eval model::  54%|█████▍    | 270/500 [00:14<00:12, 18.25it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:12, 18.08it/s]
eval model::  55%|█████▌    | 275/500 [00:15<00:12, 17.67it/s]
eval model::  55%|█████▌    | 277/500 [00:15<00:12, 17.87it/s]
eval model::  56%|█████▌    | 280/500 [00:15<00:11, 19.76it/s]
eval model::  57%|█████▋    | 283/500 [00:15<00:10, 19.98it/s]
eval model::  57%|█████▋    | 286/500 [00:16<00:19, 10.94it/s]
eval model::  58%|█████▊    | 288/500 [00:16<00:17, 12.10it/s]
eval model::  58%|█████▊    | 291/500 [00:16<00:13, 15.02it/s]
eval model::  59%|█████▉    | 294/500 [00:16<00:13, 15.09it/s]
eval model::  59%|█████▉    | 296/500 [00:16<00:16, 12.70it/s]
eval model::  60%|█████▉    | 299/500 [00:16<00:13, 14.60it/s]
eval model::  60%|██████    | 301/500 [00:16<00:14, 14.01it/s]
eval model::  61%|██████    | 304/500 [00:17<00:12, 15.57it/s]
eval model::  61%|██████    | 306/500 [00:17<00:11, 16.32it/s]
eval model::  62%|██████▏   | 308/500 [00:17<00:11, 17.09it/s]
eval model::  62%|██████▏   | 311/500 [00:17<00:10, 18.71it/s]
eval model::  63%|██████▎   | 313/500 [00:17<00:10, 18.49it/s]
eval model::  63%|██████▎   | 315/500 [00:17<00:10, 16.87it/s]
eval model::  64%|██████▎   | 318/500 [00:17<00:09, 18.35it/s]
eval model::  64%|██████▍   | 321/500 [00:18<00:09, 18.74it/s]
eval model::  65%|██████▍   | 323/500 [00:18<00:10, 17.08it/s]
eval model::  65%|██████▌   | 326/500 [00:18<00:09, 19.32it/s]
eval model::  66%|██████▌   | 328/500 [00:18<00:08, 19.26it/s]
eval model::  66%|██████▌   | 331/500 [00:18<00:08, 19.23it/s]
eval model::  67%|██████▋   | 334/500 [00:18<00:07, 21.35it/s]
eval model::  67%|██████▋   | 337/500 [00:18<00:07, 21.00it/s]
eval model::  68%|██████▊   | 340/500 [00:19<00:10, 14.72it/s]
eval model::  69%|██████▊   | 343/500 [00:19<00:09, 16.21it/s]
eval model::  69%|██████▉   | 346/500 [00:19<00:08, 17.60it/s]
eval model::  70%|██████▉   | 349/500 [00:19<00:07, 19.13it/s]
eval model::  70%|███████   | 352/500 [00:19<00:07, 20.30it/s]
eval model::  71%|███████   | 355/500 [00:19<00:07, 18.75it/s]
eval model::  72%|███████▏  | 358/500 [00:20<00:07, 19.72it/s]
eval model::  72%|███████▏  | 361/500 [00:20<00:07, 17.93it/s]
eval model::  73%|███████▎  | 364/500 [00:20<00:07, 17.51it/s]
eval model::  73%|███████▎  | 366/500 [00:20<00:07, 17.69it/s]
eval model::  74%|███████▍  | 369/500 [00:20<00:06, 18.82it/s]
eval model::  74%|███████▍  | 371/500 [00:20<00:06, 18.81it/s]
eval model::  75%|███████▌  | 375/500 [00:20<00:05, 21.93it/s]
eval model::  76%|███████▌  | 378/500 [00:21<00:05, 22.66it/s]
eval model::  76%|███████▌  | 381/500 [00:21<00:06, 19.59it/s]
eval model::  77%|███████▋  | 385/500 [00:21<00:05, 22.71it/s]
eval model::  78%|███████▊  | 388/500 [00:21<00:07, 14.20it/s]
eval model::  78%|███████▊  | 391/500 [00:21<00:06, 15.89it/s]
eval model::  79%|███████▊  | 393/500 [00:21<00:06, 16.23it/s]
eval model::  79%|███████▉  | 395/500 [00:22<00:06, 15.60it/s]
eval model::  80%|███████▉  | 398/500 [00:22<00:05, 17.88it/s]
eval model::  80%|████████  | 400/500 [00:22<00:05, 16.70it/s]
eval model::  80%|████████  | 402/500 [00:22<00:05, 16.38it/s]
eval model::  81%|████████  | 404/500 [00:22<00:05, 16.11it/s]
eval model::  81%|████████▏ | 407/500 [00:22<00:05, 17.80it/s]
eval model::  82%|████████▏ | 410/500 [00:22<00:04, 20.04it/s]
eval model::  83%|████████▎ | 413/500 [00:23<00:04, 20.75it/s]
eval model::  83%|████████▎ | 416/500 [00:23<00:03, 21.67it/s]
eval model::  84%|████████▍ | 419/500 [00:23<00:03, 20.26it/s]
eval model::  84%|████████▍ | 422/500 [00:23<00:05, 15.28it/s]
eval model::  85%|████████▍ | 424/500 [00:23<00:05, 15.17it/s]
eval model::  85%|████████▌ | 426/500 [00:23<00:04, 15.34it/s]
eval model::  86%|████████▌ | 429/500 [00:24<00:03, 18.03it/s]
eval model::  86%|████████▌ | 431/500 [00:24<00:04, 16.73it/s]
eval model::  87%|████████▋ | 434/500 [00:24<00:03, 19.04it/s]
eval model::  87%|████████▋ | 437/500 [00:24<00:03, 19.75it/s]
eval model::  88%|████████▊ | 440/500 [00:24<00:03, 17.94it/s]
eval model::  89%|████████▊ | 443/500 [00:24<00:02, 19.65it/s]
eval model::  89%|████████▉ | 446/500 [00:24<00:02, 20.59it/s]
eval model::  90%|████████▉ | 449/500 [00:25<00:02, 19.01it/s]
eval model::  91%|█████████ | 453/500 [00:25<00:02, 21.97it/s]
eval model::  91%|█████████▏| 457/500 [00:25<00:01, 25.30it/s]
eval model::  92%|█████████▏| 460/500 [00:25<00:01, 23.75it/s]
eval model::  93%|█████████▎| 463/500 [00:25<00:02, 18.13it/s]
eval model::  93%|█████████▎| 466/500 [00:25<00:01, 17.06it/s]
eval model::  94%|█████████▎| 468/500 [00:26<00:01, 16.57it/s]
eval model::  94%|█████████▍| 472/500 [00:26<00:01, 19.52it/s]
eval model::  95%|█████████▌| 475/500 [00:26<00:01, 20.58it/s]
eval model::  96%|█████████▌| 478/500 [00:26<00:00, 22.55it/s]
eval model::  96%|█████████▌| 481/500 [00:26<00:00, 23.77it/s]
eval model::  97%|█████████▋| 484/500 [00:26<00:00, 24.04it/s]
eval model::  97%|█████████▋| 487/500 [00:26<00:00, 19.46it/s]
eval model::  98%|█████████▊| 490/500 [00:27<00:00, 20.64it/s]
eval model::  99%|█████████▊| 493/500 [00:27<00:00, 17.07it/s]
eval model::  99%|█████████▉| 496/500 [00:27<00:00, 18.25it/s]
eval model:: 100%|██████████| 500/500 [00:27<00:00, 18.19it/s]
[2024/07/27 14:25:16] ppocr INFO: cur metric, precision: 0.7417721518987341, recall: 0.7053442465093885, hmean: 0.7230997038499506, fps: 44.1903043427176
[2024/07/27 14:25:16] ppocr INFO: best metric, hmean: 0.7301425661914459, precision: 0.7747163695299838, recall: 0.6904188733750601, fps: 43.582139874688714, best_epoch: 960
[2024/07/27 14:25:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:25:25] ppocr INFO: epoch: [1001/1500], global_step: 3003, lr: 0.001000, loss: 1.240090, loss_shrink_maps: 0.633969, loss_threshold_maps: 0.481797, loss_binary_maps: 0.126263, avg_reader_cost: 2.13190 s, avg_batch_cost: 2.44840 s, avg_samples: 12.5, ips: 5.10537 samples/s, eta: 3:36:30
[2024/07/27 14:25:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:25:35] ppocr INFO: epoch: [1002/1500], global_step: 3006, lr: 0.001000, loss: 1.225560, loss_shrink_maps: 0.623559, loss_threshold_maps: 0.474738, loss_binary_maps: 0.123616, avg_reader_cost: 2.19406 s, avg_batch_cost: 2.55684 s, avg_samples: 12.5, ips: 4.88884 samples/s, eta: 3:36:04
[2024/07/27 14:25:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:25:44] ppocr INFO: epoch: [1003/1500], global_step: 3009, lr: 0.001000, loss: 1.240090, loss_shrink_maps: 0.638495, loss_threshold_maps: 0.475996, loss_binary_maps: 0.126796, avg_reader_cost: 2.18034 s, avg_batch_cost: 2.52507 s, avg_samples: 12.5, ips: 4.95035 samples/s, eta: 3:35:37
[2024/07/27 14:25:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:25:53] ppocr INFO: epoch: [1004/1500], global_step: 3010, lr: 0.001000, loss: 1.240090, loss_shrink_maps: 0.638495, loss_threshold_maps: 0.475996, loss_binary_maps: 0.126796, avg_reader_cost: 0.70696 s, avg_batch_cost: 0.80637 s, avg_samples: 4.8, ips: 5.95263 samples/s, eta: 3:35:28
[2024/07/27 14:25:54] ppocr INFO: epoch: [1004/1500], global_step: 3012, lr: 0.001000, loss: 1.225560, loss_shrink_maps: 0.623559, loss_threshold_maps: 0.483742, loss_binary_maps: 0.123616, avg_reader_cost: 1.70487 s, avg_batch_cost: 1.85104 s, avg_samples: 7.7, ips: 4.15983 samples/s, eta: 3:35:12
[2024/07/27 14:25:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:26:04] ppocr INFO: epoch: [1005/1500], global_step: 3015, lr: 0.001000, loss: 1.252391, loss_shrink_maps: 0.638495, loss_threshold_maps: 0.478235, loss_binary_maps: 0.126796, avg_reader_cost: 2.21310 s, avg_batch_cost: 2.59446 s, avg_samples: 12.5, ips: 4.81796 samples/s, eta: 3:34:46
[2024/07/27 14:26:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:26:14] ppocr INFO: epoch: [1006/1500], global_step: 3018, lr: 0.001000, loss: 1.243346, loss_shrink_maps: 0.640047, loss_threshold_maps: 0.469726, loss_binary_maps: 0.126871, avg_reader_cost: 2.22947 s, avg_batch_cost: 2.58663 s, avg_samples: 12.5, ips: 4.83254 samples/s, eta: 3:34:19
[2024/07/27 14:26:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:26:23] ppocr INFO: epoch: [1007/1500], global_step: 3020, lr: 0.001000, loss: 1.243346, loss_shrink_maps: 0.640047, loss_threshold_maps: 0.469726, loss_binary_maps: 0.126871, avg_reader_cost: 1.46951 s, avg_batch_cost: 1.64734 s, avg_samples: 9.6, ips: 5.82759 samples/s, eta: 3:34:02
[2024/07/27 14:26:24] ppocr INFO: epoch: [1007/1500], global_step: 3021, lr: 0.001000, loss: 1.243346, loss_shrink_maps: 0.640047, loss_threshold_maps: 0.469726, loss_binary_maps: 0.126871, avg_reader_cost: 0.87055 s, avg_batch_cost: 0.92582 s, avg_samples: 2.9, ips: 3.13236 samples/s, eta: 3:33:53
[2024/07/27 14:26:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:26:33] ppocr INFO: epoch: [1008/1500], global_step: 3024, lr: 0.001000, loss: 1.294126, loss_shrink_maps: 0.669738, loss_threshold_maps: 0.481114, loss_binary_maps: 0.132293, avg_reader_cost: 2.31711 s, avg_batch_cost: 2.55078 s, avg_samples: 12.5, ips: 4.90046 samples/s, eta: 3:33:27
[2024/07/27 14:26:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:26:43] ppocr INFO: epoch: [1009/1500], global_step: 3027, lr: 0.001000, loss: 1.290283, loss_shrink_maps: 0.649969, loss_threshold_maps: 0.483041, loss_binary_maps: 0.129416, avg_reader_cost: 2.36566 s, avg_batch_cost: 2.61854 s, avg_samples: 12.5, ips: 4.77365 samples/s, eta: 3:33:01
[2024/07/27 14:26:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:26:53] ppocr INFO: epoch: [1010/1500], global_step: 3030, lr: 0.001000, loss: 1.202179, loss_shrink_maps: 0.616576, loss_threshold_maps: 0.473263, loss_binary_maps: 0.122461, avg_reader_cost: 2.26633 s, avg_batch_cost: 2.65642 s, avg_samples: 12.5, ips: 4.70558 samples/s, eta: 3:32:35
[2024/07/27 14:26:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:27:03] ppocr INFO: epoch: [1011/1500], global_step: 3033, lr: 0.001000, loss: 1.202179, loss_shrink_maps: 0.616576, loss_threshold_maps: 0.459301, loss_binary_maps: 0.122461, avg_reader_cost: 2.24059 s, avg_batch_cost: 2.60086 s, avg_samples: 12.5, ips: 4.80610 samples/s, eta: 3:32:09
[2024/07/27 14:27:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:27:13] ppocr INFO: epoch: [1012/1500], global_step: 3036, lr: 0.001000, loss: 1.232040, loss_shrink_maps: 0.624681, loss_threshold_maps: 0.473937, loss_binary_maps: 0.124256, avg_reader_cost: 2.26557 s, avg_batch_cost: 2.65670 s, avg_samples: 12.5, ips: 4.70508 samples/s, eta: 3:31:43
[2024/07/27 14:27:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:27:23] ppocr INFO: epoch: [1013/1500], global_step: 3039, lr: 0.001000, loss: 1.202179, loss_shrink_maps: 0.616576, loss_threshold_maps: 0.472551, loss_binary_maps: 0.122461, avg_reader_cost: 2.44506 s, avg_batch_cost: 2.68667 s, avg_samples: 12.5, ips: 4.65260 samples/s, eta: 3:31:18
[2024/07/27 14:27:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:27:32] ppocr INFO: epoch: [1014/1500], global_step: 3040, lr: 0.001000, loss: 1.202179, loss_shrink_maps: 0.616576, loss_threshold_maps: 0.472551, loss_binary_maps: 0.122461, avg_reader_cost: 0.68122 s, avg_batch_cost: 0.81173 s, avg_samples: 4.8, ips: 5.91333 samples/s, eta: 3:31:09
[2024/07/27 14:27:33] ppocr INFO: epoch: [1014/1500], global_step: 3042, lr: 0.001000, loss: 1.189902, loss_shrink_maps: 0.606275, loss_threshold_maps: 0.472551, loss_binary_maps: 0.120524, avg_reader_cost: 1.71567 s, avg_batch_cost: 1.86126 s, avg_samples: 7.7, ips: 4.13699 samples/s, eta: 3:30:52
[2024/07/27 14:27:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:27:43] ppocr INFO: epoch: [1015/1500], global_step: 3045, lr: 0.001000, loss: 1.186328, loss_shrink_maps: 0.602014, loss_threshold_maps: 0.473895, loss_binary_maps: 0.119675, avg_reader_cost: 2.32990 s, avg_batch_cost: 2.57987 s, avg_samples: 12.5, ips: 4.84520 samples/s, eta: 3:30:26
[2024/07/27 14:27:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:27:53] ppocr INFO: epoch: [1016/1500], global_step: 3048, lr: 0.001000, loss: 1.186328, loss_shrink_maps: 0.606275, loss_threshold_maps: 0.473336, loss_binary_maps: 0.120524, avg_reader_cost: 2.19367 s, avg_batch_cost: 2.53088 s, avg_samples: 12.5, ips: 4.93900 samples/s, eta: 3:30:00
[2024/07/27 14:27:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:28:02] ppocr INFO: epoch: [1017/1500], global_step: 3050, lr: 0.001000, loss: 1.202004, loss_shrink_maps: 0.609697, loss_threshold_maps: 0.480195, loss_binary_maps: 0.121614, avg_reader_cost: 1.33446 s, avg_batch_cost: 1.66759 s, avg_samples: 9.6, ips: 5.75681 samples/s, eta: 3:29:42
[2024/07/27 14:28:03] ppocr INFO: epoch: [1017/1500], global_step: 3051, lr: 0.001000, loss: 1.217510, loss_shrink_maps: 0.618505, loss_threshold_maps: 0.482780, loss_binary_maps: 0.122840, avg_reader_cost: 0.87998 s, avg_batch_cost: 0.93602 s, avg_samples: 2.9, ips: 3.09824 samples/s, eta: 3:29:34
[2024/07/27 14:28:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:28:12] ppocr INFO: epoch: [1018/1500], global_step: 3054, lr: 0.001000, loss: 1.217510, loss_shrink_maps: 0.618505, loss_threshold_maps: 0.482780, loss_binary_maps: 0.122840, avg_reader_cost: 2.15767 s, avg_batch_cost: 2.52597 s, avg_samples: 12.5, ips: 4.94859 samples/s, eta: 3:29:07
[2024/07/27 14:28:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:28:22] ppocr INFO: epoch: [1019/1500], global_step: 3057, lr: 0.001000, loss: 1.211473, loss_shrink_maps: 0.600759, loss_threshold_maps: 0.482780, loss_binary_maps: 0.119369, avg_reader_cost: 2.16172 s, avg_batch_cost: 2.49174 s, avg_samples: 12.5, ips: 5.01657 samples/s, eta: 3:28:41
[2024/07/27 14:28:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:28:32] ppocr INFO: epoch: [1020/1500], global_step: 3060, lr: 0.001000, loss: 1.217510, loss_shrink_maps: 0.615306, loss_threshold_maps: 0.490382, loss_binary_maps: 0.121993, avg_reader_cost: 2.15067 s, avg_batch_cost: 2.54665 s, avg_samples: 12.5, ips: 4.90841 samples/s, eta: 3:28:14

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:58,  8.55it/s]
eval model::   1%|          | 4/500 [00:00<00:34, 14.30it/s]
eval model::   1%|          | 6/500 [00:00<00:35, 13.92it/s]
eval model::   2%|▏         | 9/500 [00:00<00:27, 17.89it/s]
eval model::   2%|▏         | 11/500 [00:00<00:32, 15.25it/s]
eval model::   3%|▎         | 13/500 [00:00<00:31, 15.66it/s]
eval model::   3%|▎         | 15/500 [00:01<00:33, 14.49it/s]
eval model::   4%|▍         | 19/500 [00:01<00:26, 18.23it/s]
eval model::   4%|▍         | 21/500 [00:01<00:25, 18.59it/s]
eval model::   5%|▍         | 24/500 [00:01<00:23, 20.42it/s]
eval model::   5%|▌         | 27/500 [00:01<00:23, 19.90it/s]
eval model::   6%|▌         | 30/500 [00:01<00:22, 20.87it/s]
eval model::   7%|▋         | 33/500 [00:01<00:24, 18.93it/s]
eval model::   7%|▋         | 35/500 [00:02<00:26, 17.35it/s]
eval model::   8%|▊         | 38/500 [00:02<00:25, 18.30it/s]
eval model::   8%|▊         | 40/500 [00:02<00:28, 16.10it/s]
eval model::   8%|▊         | 42/500 [00:02<00:29, 15.78it/s]
eval model::   9%|▉         | 45/500 [00:02<00:24, 18.34it/s]
eval model::   9%|▉         | 47/500 [00:02<00:26, 17.11it/s]
eval model::  10%|█         | 50/500 [00:02<00:25, 17.69it/s]
eval model::  11%|█         | 53/500 [00:03<00:23, 18.93it/s]
eval model::  11%|█         | 56/500 [00:03<00:23, 18.96it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:23, 18.56it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:27, 15.99it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:28, 15.27it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:24, 17.88it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:23, 18.70it/s]
eval model::  14%|█▍        | 72/500 [00:04<00:20, 20.52it/s]
eval model::  15%|█▌        | 75/500 [00:04<00:20, 20.51it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:21, 19.76it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:19, 21.28it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:21, 19.20it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:23, 17.71it/s]
eval model::  18%|█▊        | 89/500 [00:05<00:25, 16.42it/s]
eval model::  18%|█▊        | 91/500 [00:05<00:25, 16.05it/s]
eval model::  19%|█▊        | 93/500 [00:05<00:24, 16.29it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:21, 18.40it/s]
eval model::  20%|█▉        | 98/500 [00:05<00:21, 18.70it/s]
eval model::  20%|██        | 100/500 [00:05<00:21, 18.61it/s]
eval model::  21%|██        | 103/500 [00:05<00:19, 20.20it/s]
eval model::  21%|██        | 106/500 [00:05<00:17, 22.03it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:17, 21.82it/s]
eval model::  22%|██▏       | 112/500 [00:06<00:19, 20.03it/s]
eval model::  23%|██▎       | 115/500 [00:06<00:19, 20.12it/s]
eval model::  24%|██▎       | 118/500 [00:06<00:18, 20.34it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:20, 18.83it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:20, 18.39it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:21, 17.11it/s]
eval model::  26%|██▌       | 129/500 [00:07<00:20, 17.89it/s]
eval model::  26%|██▌       | 131/500 [00:07<00:21, 17.53it/s]
eval model::  27%|██▋       | 133/500 [00:07<00:22, 15.96it/s]
eval model::  27%|██▋       | 135/500 [00:07<00:22, 16.49it/s]
eval model::  27%|██▋       | 137/500 [00:07<00:22, 15.96it/s]
eval model::  28%|██▊       | 140/500 [00:07<00:19, 18.18it/s]
eval model::  29%|██▊       | 143/500 [00:07<00:18, 19.39it/s]
eval model::  29%|██▉       | 145/500 [00:08<00:20, 17.50it/s]
eval model::  29%|██▉       | 147/500 [00:08<00:20, 17.02it/s]
eval model::  30%|███       | 150/500 [00:08<00:18, 18.89it/s]
eval model::  30%|███       | 152/500 [00:08<00:19, 18.23it/s]
eval model::  31%|███       | 155/500 [00:08<00:16, 20.57it/s]
eval model::  32%|███▏      | 158/500 [00:08<00:15, 22.20it/s]
eval model::  32%|███▏      | 161/500 [00:09<00:24, 13.75it/s]
eval model::  33%|███▎      | 163/500 [00:09<00:22, 14.75it/s]
eval model::  33%|███▎      | 166/500 [00:09<00:19, 16.93it/s]
eval model::  34%|███▍      | 169/500 [00:09<00:20, 16.30it/s]
eval model::  34%|███▍      | 171/500 [00:09<00:20, 15.68it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:19, 16.42it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:20, 15.64it/s]
eval model::  36%|███▌      | 179/500 [00:10<00:17, 18.14it/s]
eval model::  36%|███▌      | 181/500 [00:10<00:19, 16.57it/s]
eval model::  37%|███▋      | 183/500 [00:10<00:18, 16.99it/s]
eval model::  37%|███▋      | 186/500 [00:10<00:16, 18.99it/s]
eval model::  38%|███▊      | 188/500 [00:10<00:16, 18.88it/s]
eval model::  38%|███▊      | 191/500 [00:10<00:15, 19.92it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:13, 22.04it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:12, 23.57it/s]
eval model::  40%|████      | 201/500 [00:11<00:12, 24.37it/s]
eval model::  41%|████      | 204/500 [00:11<00:11, 25.81it/s]
eval model::  41%|████▏     | 207/500 [00:11<00:18, 15.69it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:19, 14.83it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.86it/s]
eval model::  43%|████▎     | 215/500 [00:12<00:21, 13.38it/s]
eval model::  43%|████▎     | 217/500 [00:12<00:21, 13.15it/s]
eval model::  44%|████▍     | 219/500 [00:12<00:20, 13.78it/s]
eval model::  44%|████▍     | 221/500 [00:12<00:22, 12.30it/s]
eval model::  45%|████▍     | 224/500 [00:12<00:18, 14.85it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:17, 15.60it/s]
eval model::  46%|████▌     | 229/500 [00:12<00:14, 18.13it/s]
eval model::  46%|████▋     | 232/500 [00:13<00:13, 20.51it/s]
eval model::  47%|████▋     | 235/500 [00:13<00:13, 19.74it/s]
eval model::  48%|████▊     | 238/500 [00:13<00:12, 20.51it/s]
eval model::  48%|████▊     | 241/500 [00:13<00:12, 21.01it/s]
eval model::  49%|████▉     | 244/500 [00:13<00:13, 18.53it/s]
eval model::  49%|████▉     | 246/500 [00:13<00:13, 18.81it/s]
eval model::  50%|████▉     | 249/500 [00:13<00:13, 18.70it/s]
eval model::  50%|█████     | 252/500 [00:14<00:12, 20.01it/s]
eval model::  51%|█████     | 255/500 [00:14<00:11, 20.49it/s]
eval model::  52%|█████▏    | 258/500 [00:14<00:12, 19.57it/s]
eval model::  52%|█████▏    | 260/500 [00:14<00:12, 19.61it/s]
eval model::  53%|█████▎    | 263/500 [00:14<00:11, 20.15it/s]
eval model::  53%|█████▎    | 266/500 [00:14<00:12, 19.17it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:11, 19.37it/s]
eval model::  54%|█████▍    | 272/500 [00:15<00:10, 21.21it/s]
eval model::  55%|█████▌    | 275/500 [00:15<00:11, 20.22it/s]
eval model::  56%|█████▌    | 278/500 [00:15<00:10, 20.93it/s]
eval model::  56%|█████▌    | 281/500 [00:15<00:09, 21.97it/s]
eval model::  57%|█████▋    | 284/500 [00:15<00:09, 23.60it/s]
eval model::  57%|█████▋    | 287/500 [00:16<00:19, 10.72it/s]
eval model::  58%|█████▊    | 290/500 [00:16<00:16, 12.99it/s]
eval model::  59%|█████▊    | 293/500 [00:16<00:14, 14.10it/s]
eval model::  59%|█████▉    | 295/500 [00:16<00:18, 11.36it/s]
eval model::  60%|█████▉    | 298/500 [00:16<00:14, 14.02it/s]
eval model::  60%|██████    | 300/500 [00:17<00:15, 13.21it/s]
eval model::  60%|██████    | 302/500 [00:17<00:14, 14.03it/s]
eval model::  61%|██████    | 304/500 [00:17<00:13, 14.14it/s]
eval model::  61%|██████▏   | 307/500 [00:17<00:11, 16.63it/s]
eval model::  62%|██████▏   | 309/500 [00:17<00:11, 17.35it/s]
eval model::  62%|██████▏   | 312/500 [00:17<00:10, 17.43it/s]
eval model::  63%|██████▎   | 315/500 [00:17<00:09, 18.63it/s]
eval model::  64%|██████▍   | 319/500 [00:18<00:08, 21.61it/s]
eval model::  64%|██████▍   | 322/500 [00:18<00:08, 20.06it/s]
eval model::  65%|██████▌   | 325/500 [00:18<00:08, 19.61it/s]
eval model::  66%|██████▌   | 328/500 [00:18<00:08, 19.14it/s]
eval model::  66%|██████▌   | 331/500 [00:18<00:08, 20.39it/s]
eval model::  67%|██████▋   | 335/500 [00:18<00:06, 23.58it/s]
eval model::  68%|██████▊   | 338/500 [00:18<00:07, 21.28it/s]
eval model::  68%|██████▊   | 341/500 [00:19<00:10, 15.79it/s]
eval model::  69%|██████▊   | 343/500 [00:19<00:09, 16.03it/s]
eval model::  69%|██████▉   | 346/500 [00:19<00:08, 18.00it/s]
eval model::  70%|██████▉   | 348/500 [00:19<00:08, 18.36it/s]
eval model::  70%|███████   | 351/500 [00:19<00:07, 19.18it/s]
eval model::  71%|███████   | 354/500 [00:19<00:06, 21.06it/s]
eval model::  71%|███████▏  | 357/500 [00:20<00:07, 20.13it/s]
eval model::  72%|███████▏  | 360/500 [00:20<00:06, 21.05it/s]
eval model::  73%|███████▎  | 363/500 [00:20<00:07, 19.48it/s]
eval model::  73%|███████▎  | 366/500 [00:20<00:07, 18.66it/s]
eval model::  74%|███████▍  | 369/500 [00:20<00:06, 20.05it/s]
eval model::  74%|███████▍  | 372/500 [00:20<00:07, 17.82it/s]
eval model::  75%|███████▌  | 375/500 [00:21<00:06, 17.90it/s]
eval model::  76%|███████▌  | 379/500 [00:21<00:05, 21.14it/s]
eval model::  76%|███████▋  | 382/500 [00:21<00:05, 20.04it/s]
eval model::  77%|███████▋  | 385/500 [00:21<00:05, 21.66it/s]
eval model::  78%|███████▊  | 388/500 [00:21<00:08, 12.49it/s]
eval model::  78%|███████▊  | 391/500 [00:22<00:07, 14.41it/s]
eval model::  79%|███████▉  | 394/500 [00:22<00:06, 15.53it/s]
eval model::  79%|███████▉  | 396/500 [00:22<00:06, 16.32it/s]
eval model::  80%|███████▉  | 399/500 [00:22<00:05, 18.80it/s]
eval model::  80%|████████  | 402/500 [00:22<00:05, 17.69it/s]
eval model::  81%|████████  | 405/500 [00:22<00:05, 18.90it/s]
eval model::  82%|████████▏ | 408/500 [00:22<00:04, 20.38it/s]
eval model::  82%|████████▏ | 411/500 [00:23<00:04, 20.96it/s]
eval model::  83%|████████▎ | 414/500 [00:23<00:04, 20.72it/s]
eval model::  83%|████████▎ | 417/500 [00:23<00:03, 21.16it/s]
eval model::  84%|████████▍ | 420/500 [00:23<00:05, 15.22it/s]
eval model::  84%|████████▍ | 422/500 [00:23<00:05, 15.48it/s]
eval model::  85%|████████▍ | 424/500 [00:23<00:05, 14.67it/s]
eval model::  85%|████████▌ | 426/500 [00:24<00:04, 15.25it/s]
eval model::  86%|████████▌ | 429/500 [00:24<00:04, 17.28it/s]
eval model::  86%|████████▌ | 431/500 [00:24<00:04, 16.81it/s]
eval model::  87%|████████▋ | 434/500 [00:24<00:03, 18.67it/s]
eval model::  87%|████████▋ | 437/500 [00:24<00:03, 20.47it/s]
eval model::  88%|████████▊ | 440/500 [00:24<00:03, 17.55it/s]
eval model::  89%|████████▊ | 443/500 [00:24<00:03, 18.88it/s]
eval model::  89%|████████▉ | 445/500 [00:25<00:03, 17.05it/s]
eval model::  90%|████████▉ | 448/500 [00:25<00:03, 16.54it/s]
eval model::  90%|█████████ | 450/500 [00:25<00:03, 16.19it/s]
eval model::  91%|█████████ | 453/500 [00:25<00:02, 17.66it/s]
eval model::  91%|█████████ | 456/500 [00:25<00:02, 18.73it/s]
eval model::  92%|█████████▏| 459/500 [00:25<00:02, 19.98it/s]
eval model::  92%|█████████▏| 462/500 [00:25<00:02, 17.29it/s]
eval model::  93%|█████████▎| 464/500 [00:26<00:02, 17.26it/s]
eval model::  93%|█████████▎| 466/500 [00:26<00:02, 16.34it/s]
eval model::  94%|█████████▎| 468/500 [00:26<00:01, 16.27it/s]
eval model::  94%|█████████▍| 471/500 [00:26<00:01, 19.23it/s]
eval model::  95%|█████████▍| 474/500 [00:26<00:01, 18.74it/s]
eval model::  96%|█████████▌| 478/500 [00:26<00:01, 21.56it/s]
eval model::  96%|█████████▌| 481/500 [00:26<00:00, 22.34it/s]
eval model::  97%|█████████▋| 484/500 [00:27<00:00, 23.35it/s]
eval model::  97%|█████████▋| 487/500 [00:27<00:00, 23.01it/s]
eval model::  98%|█████████▊| 491/500 [00:27<00:00, 24.20it/s]
eval model::  99%|█████████▉| 494/500 [00:27<00:00, 22.95it/s]
eval model::  99%|█████████▉| 497/500 [00:27<00:00, 24.29it/s]
eval model:: 100%|██████████| 500/500 [00:27<00:00, 18.09it/s]
[2024/07/27 14:28:59] ppocr INFO: cur metric, precision: 0.7501290655653072, recall: 0.699566682715455, hmean: 0.7239661185849527, fps: 43.98590464047862
[2024/07/27 14:28:59] ppocr INFO: best metric, hmean: 0.7301425661914459, precision: 0.7747163695299838, recall: 0.6904188733750601, fps: 43.582139874688714, best_epoch: 960
[2024/07/27 14:28:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:29:07] ppocr INFO: epoch: [1021/1500], global_step: 3063, lr: 0.001000, loss: 1.229111, loss_shrink_maps: 0.622291, loss_threshold_maps: 0.486940, loss_binary_maps: 0.123990, avg_reader_cost: 1.93663 s, avg_batch_cost: 2.20194 s, avg_samples: 12.5, ips: 5.67680 samples/s, eta: 3:27:46
[2024/07/27 14:29:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:29:17] ppocr INFO: epoch: [1022/1500], global_step: 3066, lr: 0.001000, loss: 1.192654, loss_shrink_maps: 0.596691, loss_threshold_maps: 0.478425, loss_binary_maps: 0.119101, avg_reader_cost: 2.35167 s, avg_batch_cost: 2.58944 s, avg_samples: 12.5, ips: 4.82730 samples/s, eta: 3:27:20
[2024/07/27 14:29:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:29:27] ppocr INFO: epoch: [1023/1500], global_step: 3069, lr: 0.001000, loss: 1.192654, loss_shrink_maps: 0.589406, loss_threshold_maps: 0.478425, loss_binary_maps: 0.117183, avg_reader_cost: 2.15044 s, avg_batch_cost: 2.47955 s, avg_samples: 12.5, ips: 5.04125 samples/s, eta: 3:26:54
[2024/07/27 14:29:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:29:35] ppocr INFO: epoch: [1024/1500], global_step: 3070, lr: 0.001000, loss: 1.162001, loss_shrink_maps: 0.581674, loss_threshold_maps: 0.472788, loss_binary_maps: 0.115517, avg_reader_cost: 0.58296 s, avg_batch_cost: 0.81549 s, avg_samples: 4.8, ips: 5.88600 samples/s, eta: 3:26:45
[2024/07/27 14:29:37] ppocr INFO: epoch: [1024/1500], global_step: 3072, lr: 0.001000, loss: 1.165262, loss_shrink_maps: 0.581674, loss_threshold_maps: 0.476662, loss_binary_maps: 0.115517, avg_reader_cost: 1.72452 s, avg_batch_cost: 1.87285 s, avg_samples: 7.7, ips: 4.11139 samples/s, eta: 3:26:28
[2024/07/27 14:29:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:29:47] ppocr INFO: epoch: [1025/1500], global_step: 3075, lr: 0.001000, loss: 1.182492, loss_shrink_maps: 0.589406, loss_threshold_maps: 0.477968, loss_binary_maps: 0.117183, avg_reader_cost: 2.23424 s, avg_batch_cost: 2.59989 s, avg_samples: 12.5, ips: 4.80790 samples/s, eta: 3:26:02
[2024/07/27 14:29:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:29:56] ppocr INFO: epoch: [1026/1500], global_step: 3078, lr: 0.001000, loss: 1.183162, loss_shrink_maps: 0.595141, loss_threshold_maps: 0.477968, loss_binary_maps: 0.118291, avg_reader_cost: 2.23681 s, avg_batch_cost: 2.62836 s, avg_samples: 12.5, ips: 4.75582 samples/s, eta: 3:25:36
[2024/07/27 14:29:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:30:06] ppocr INFO: epoch: [1027/1500], global_step: 3080, lr: 0.001000, loss: 1.197108, loss_shrink_maps: 0.601233, loss_threshold_maps: 0.482800, loss_binary_maps: 0.119546, avg_reader_cost: 1.33041 s, avg_batch_cost: 1.63936 s, avg_samples: 9.6, ips: 5.85593 samples/s, eta: 3:25:18
[2024/07/27 14:30:06] ppocr INFO: epoch: [1027/1500], global_step: 3081, lr: 0.001000, loss: 1.211528, loss_shrink_maps: 0.604572, loss_threshold_maps: 0.482800, loss_binary_maps: 0.120358, avg_reader_cost: 0.86548 s, avg_batch_cost: 0.92151 s, avg_samples: 2.9, ips: 3.14701 samples/s, eta: 3:25:10
[2024/07/27 14:30:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:30:16] ppocr INFO: epoch: [1028/1500], global_step: 3084, lr: 0.001000, loss: 1.211528, loss_shrink_maps: 0.601233, loss_threshold_maps: 0.482800, loss_binary_maps: 0.119546, avg_reader_cost: 2.26398 s, avg_batch_cost: 2.62650 s, avg_samples: 12.5, ips: 4.75918 samples/s, eta: 3:24:44
[2024/07/27 14:30:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:30:26] ppocr INFO: epoch: [1029/1500], global_step: 3087, lr: 0.001000, loss: 1.211528, loss_shrink_maps: 0.604880, loss_threshold_maps: 0.482800, loss_binary_maps: 0.120286, avg_reader_cost: 2.25531 s, avg_batch_cost: 2.67564 s, avg_samples: 12.5, ips: 4.67178 samples/s, eta: 3:24:18
[2024/07/27 14:30:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:30:36] ppocr INFO: epoch: [1030/1500], global_step: 3090, lr: 0.001000, loss: 1.221957, loss_shrink_maps: 0.624478, loss_threshold_maps: 0.484644, loss_binary_maps: 0.124070, avg_reader_cost: 2.38543 s, avg_batch_cost: 2.64139 s, avg_samples: 12.5, ips: 4.73236 samples/s, eta: 3:23:52
[2024/07/27 14:30:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:30:46] ppocr INFO: epoch: [1031/1500], global_step: 3093, lr: 0.001000, loss: 1.227928, loss_shrink_maps: 0.631201, loss_threshold_maps: 0.477456, loss_binary_maps: 0.125232, avg_reader_cost: 2.36030 s, avg_batch_cost: 2.60445 s, avg_samples: 12.5, ips: 4.79947 samples/s, eta: 3:23:26
[2024/07/27 14:30:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:30:56] ppocr INFO: epoch: [1032/1500], global_step: 3096, lr: 0.001000, loss: 1.235188, loss_shrink_maps: 0.634706, loss_threshold_maps: 0.484644, loss_binary_maps: 0.126099, avg_reader_cost: 2.33368 s, avg_batch_cost: 2.57232 s, avg_samples: 12.5, ips: 4.85942 samples/s, eta: 3:23:00
[2024/07/27 14:30:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:31:06] ppocr INFO: epoch: [1033/1500], global_step: 3099, lr: 0.001000, loss: 1.227928, loss_shrink_maps: 0.630202, loss_threshold_maps: 0.477456, loss_binary_maps: 0.125232, avg_reader_cost: 2.30333 s, avg_batch_cost: 2.70378 s, avg_samples: 12.5, ips: 4.62315 samples/s, eta: 3:22:35
[2024/07/27 14:31:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:31:14] ppocr INFO: epoch: [1034/1500], global_step: 3100, lr: 0.001000, loss: 1.210755, loss_shrink_maps: 0.616269, loss_threshold_maps: 0.472026, loss_binary_maps: 0.122460, avg_reader_cost: 0.59043 s, avg_batch_cost: 0.73126 s, avg_samples: 4.8, ips: 6.56401 samples/s, eta: 3:22:25
[2024/07/27 14:31:15] ppocr INFO: epoch: [1034/1500], global_step: 3102, lr: 0.001000, loss: 1.227928, loss_shrink_maps: 0.630202, loss_threshold_maps: 0.486666, loss_binary_maps: 0.125232, avg_reader_cost: 1.55468 s, avg_batch_cost: 1.70082 s, avg_samples: 7.7, ips: 4.52723 samples/s, eta: 3:22:08
[2024/07/27 14:31:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:31:25] ppocr INFO: epoch: [1035/1500], global_step: 3105, lr: 0.001000, loss: 1.227928, loss_shrink_maps: 0.630202, loss_threshold_maps: 0.478982, loss_binary_maps: 0.125232, avg_reader_cost: 2.33225 s, avg_batch_cost: 2.56674 s, avg_samples: 12.5, ips: 4.86999 samples/s, eta: 3:21:42
[2024/07/27 14:31:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:31:34] ppocr INFO: epoch: [1036/1500], global_step: 3108, lr: 0.001000, loss: 1.227928, loss_shrink_maps: 0.630202, loss_threshold_maps: 0.483720, loss_binary_maps: 0.125232, avg_reader_cost: 2.27417 s, avg_batch_cost: 2.52240 s, avg_samples: 12.5, ips: 4.95559 samples/s, eta: 3:21:15
[2024/07/27 14:31:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:31:44] ppocr INFO: epoch: [1037/1500], global_step: 3110, lr: 0.001000, loss: 1.239456, loss_shrink_maps: 0.634706, loss_threshold_maps: 0.481148, loss_binary_maps: 0.125232, avg_reader_cost: 1.38056 s, avg_batch_cost: 1.66574 s, avg_samples: 9.6, ips: 5.76321 samples/s, eta: 3:20:58
[2024/07/27 14:31:44] ppocr INFO: epoch: [1037/1500], global_step: 3111, lr: 0.001000, loss: 1.256772, loss_shrink_maps: 0.639432, loss_threshold_maps: 0.487764, loss_binary_maps: 0.126099, avg_reader_cost: 0.87901 s, avg_batch_cost: 0.93453 s, avg_samples: 2.9, ips: 3.10317 samples/s, eta: 3:20:49
[2024/07/27 14:31:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:31:54] ppocr INFO: epoch: [1038/1500], global_step: 3114, lr: 0.001000, loss: 1.340306, loss_shrink_maps: 0.717342, loss_threshold_maps: 0.499173, loss_binary_maps: 0.129085, avg_reader_cost: 2.20282 s, avg_batch_cost: 2.57903 s, avg_samples: 12.5, ips: 4.84678 samples/s, eta: 3:20:23
[2024/07/27 14:31:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:32:03] ppocr INFO: epoch: [1039/1500], global_step: 3117, lr: 0.001000, loss: 1.399750, loss_shrink_maps: 0.752291, loss_threshold_maps: 0.520080, loss_binary_maps: 0.138792, avg_reader_cost: 2.14340 s, avg_batch_cost: 2.47992 s, avg_samples: 12.5, ips: 5.04049 samples/s, eta: 3:19:57
[2024/07/27 14:32:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:32:13] ppocr INFO: epoch: [1040/1500], global_step: 3120, lr: 0.001000, loss: 1.520162, loss_shrink_maps: 0.789766, loss_threshold_maps: 0.543626, loss_binary_maps: 0.153932, avg_reader_cost: 2.14476 s, avg_batch_cost: 2.44888 s, avg_samples: 12.5, ips: 5.10436 samples/s, eta: 3:19:30

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<01:00,  8.30it/s]
eval model::   1%|          | 4/500 [00:00<00:27, 18.27it/s]
eval model::   1%|          | 6/500 [00:00<00:27, 17.91it/s]
eval model::   2%|▏         | 8/500 [00:00<00:26, 18.46it/s]
eval model::   2%|▏         | 11/500 [00:00<00:24, 19.98it/s]
eval model::   3%|▎         | 13/500 [00:00<00:25, 19.39it/s]
eval model::   3%|▎         | 16/500 [00:00<00:24, 19.74it/s]
eval model::   4%|▎         | 18/500 [00:00<00:24, 19.78it/s]
eval model::   4%|▍         | 20/500 [00:01<00:26, 18.22it/s]
eval model::   5%|▍         | 23/500 [00:01<00:23, 19.97it/s]
eval model::   5%|▌         | 25/500 [00:01<00:25, 18.40it/s]
eval model::   5%|▌         | 27/500 [00:01<00:25, 18.79it/s]
eval model::   6%|▌         | 30/500 [00:01<00:24, 19.50it/s]
eval model::   6%|▋         | 32/500 [00:01<00:24, 19.31it/s]
eval model::   7%|▋         | 35/500 [00:01<00:22, 20.37it/s]
eval model::   8%|▊         | 38/500 [00:01<00:21, 21.08it/s]
eval model::   8%|▊         | 41/500 [00:02<00:23, 19.81it/s]
eval model::   9%|▊         | 43/500 [00:02<00:23, 19.58it/s]
eval model::   9%|▉         | 45/500 [00:02<00:23, 19.32it/s]
eval model::   9%|▉         | 47/500 [00:02<00:24, 18.85it/s]
eval model::  10%|▉         | 49/500 [00:02<00:25, 17.88it/s]
eval model::  10%|█         | 51/500 [00:02<00:24, 18.26it/s]
eval model::  11%|█         | 54/500 [00:02<00:22, 19.59it/s]
eval model::  11%|█         | 56/500 [00:02<00:23, 18.60it/s]
eval model::  12%|█▏        | 59/500 [00:03<00:21, 20.79it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:23, 18.83it/s]
eval model::  13%|█▎        | 64/500 [00:03<00:23, 18.79it/s]
eval model::  14%|█▎        | 68/500 [00:03<00:19, 22.57it/s]
eval model::  14%|█▍        | 71/500 [00:03<00:20, 21.13it/s]
eval model::  15%|█▍        | 74/500 [00:03<00:21, 19.47it/s]
eval model::  15%|█▌        | 77/500 [00:03<00:21, 19.74it/s]
eval model::  16%|█▌        | 80/500 [00:04<00:21, 19.48it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:21, 19.35it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:21, 19.02it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:21, 19.02it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:21, 19.48it/s]
eval model::  18%|█▊        | 92/500 [00:04<00:20, 19.54it/s]
eval model::  19%|█▉        | 95/500 [00:04<00:20, 20.21it/s]
eval model::  20%|█▉        | 98/500 [00:05<00:20, 19.46it/s]
eval model::  20%|██        | 101/500 [00:05<00:19, 20.83it/s]
eval model::  21%|██        | 104/500 [00:05<00:18, 21.30it/s]
eval model::  21%|██▏       | 107/500 [00:05<00:18, 21.20it/s]
eval model::  22%|██▏       | 110/500 [00:05<00:18, 21.19it/s]
eval model::  23%|██▎       | 113/500 [00:05<00:18, 21.09it/s]
eval model::  23%|██▎       | 116/500 [00:05<00:17, 21.54it/s]
eval model::  24%|██▍       | 119/500 [00:05<00:17, 22.35it/s]
eval model::  24%|██▍       | 122/500 [00:06<00:17, 21.89it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:18, 20.50it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:17, 20.89it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:17, 20.89it/s]
eval model::  27%|██▋       | 134/500 [00:06<00:17, 20.86it/s]
eval model::  27%|██▋       | 137/500 [00:06<00:18, 19.73it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:19, 18.97it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:17, 20.29it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:17, 19.96it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:18, 19.22it/s]
eval model::  30%|███       | 151/500 [00:07<00:18, 18.49it/s]
eval model::  31%|███       | 154/500 [00:07<00:16, 20.74it/s]
eval model::  31%|███▏      | 157/500 [00:07<00:15, 21.49it/s]
eval model::  32%|███▏      | 160/500 [00:08<00:18, 18.78it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:17, 19.65it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:15, 21.40it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:15, 20.77it/s]
eval model::  34%|███▍      | 172/500 [00:08<00:15, 21.19it/s]
eval model::  35%|███▌      | 175/500 [00:08<00:15, 21.07it/s]
eval model::  36%|███▌      | 178/500 [00:08<00:15, 20.29it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:16, 19.91it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:16, 19.62it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:16, 19.43it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:15, 20.13it/s]
eval model::  38%|███▊      | 192/500 [00:09<00:14, 20.85it/s]
eval model::  39%|███▉      | 195/500 [00:09<00:13, 22.46it/s]
eval model::  40%|███▉      | 198/500 [00:09<00:13, 22.23it/s]
eval model::  40%|████      | 201/500 [00:10<00:13, 21.49it/s]
eval model::  41%|████      | 204/500 [00:10<00:14, 20.90it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:18, 16.22it/s]
eval model::  42%|████▏     | 209/500 [00:10<00:17, 16.59it/s]
eval model::  42%|████▏     | 211/500 [00:10<00:18, 15.96it/s]
eval model::  43%|████▎     | 213/500 [00:10<00:17, 16.61it/s]
eval model::  43%|████▎     | 215/500 [00:10<00:17, 16.03it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:17, 15.80it/s]
eval model::  44%|████▍     | 219/500 [00:11<00:17, 16.02it/s]
eval model::  44%|████▍     | 221/500 [00:11<00:16, 16.44it/s]
eval model::  45%|████▍     | 224/500 [00:11<00:14, 19.19it/s]
eval model::  45%|████▌     | 226/500 [00:11<00:14, 18.36it/s]
eval model::  46%|████▌     | 230/500 [00:11<00:12, 22.40it/s]
eval model::  47%|████▋     | 233/500 [00:11<00:11, 23.35it/s]
eval model::  47%|████▋     | 236/500 [00:11<00:11, 22.76it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:11, 22.19it/s]
eval model::  48%|████▊     | 242/500 [00:12<00:12, 21.45it/s]
eval model::  49%|████▉     | 245/500 [00:12<00:11, 23.13it/s]
eval model::  50%|████▉     | 248/500 [00:12<00:11, 21.96it/s]
eval model::  50%|█████     | 251/500 [00:12<00:10, 22.71it/s]
eval model::  51%|█████     | 254/500 [00:12<00:11, 21.30it/s]
eval model::  51%|█████▏    | 257/500 [00:12<00:11, 20.29it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:12, 19.79it/s]
eval model::  53%|█████▎    | 263/500 [00:13<00:12, 18.80it/s]
eval model::  53%|█████▎    | 265/500 [00:13<00:12, 18.25it/s]
eval model::  54%|█████▎    | 268/500 [00:13<00:11, 19.48it/s]
eval model::  54%|█████▍    | 271/500 [00:13<00:11, 20.53it/s]
eval model::  55%|█████▍    | 274/500 [00:13<00:11, 19.28it/s]
eval model::  55%|█████▌    | 277/500 [00:13<00:11, 20.27it/s]
eval model::  56%|█████▌    | 280/500 [00:14<00:10, 21.17it/s]
eval model::  57%|█████▋    | 283/500 [00:14<00:10, 21.70it/s]
eval model::  57%|█████▋    | 286/500 [00:14<00:11, 18.39it/s]
eval model::  58%|█████▊    | 289/500 [00:14<00:10, 20.34it/s]
eval model::  58%|█████▊    | 292/500 [00:14<00:09, 21.09it/s]
eval model::  59%|█████▉    | 295/500 [00:14<00:10, 19.20it/s]
eval model::  60%|█████▉    | 298/500 [00:14<00:10, 20.15it/s]
eval model::  60%|██████    | 301/500 [00:15<00:10, 19.23it/s]
eval model::  61%|██████    | 304/500 [00:15<00:09, 20.27it/s]
eval model::  61%|██████▏   | 307/500 [00:15<00:09, 21.29it/s]
eval model::  62%|██████▏   | 310/500 [00:15<00:08, 21.11it/s]
eval model::  63%|██████▎   | 313/500 [00:15<00:08, 21.34it/s]
eval model::  63%|██████▎   | 316/500 [00:15<00:08, 20.66it/s]
eval model::  64%|██████▍   | 319/500 [00:16<00:08, 20.66it/s]
eval model::  64%|██████▍   | 322/500 [00:16<00:08, 20.95it/s]
eval model::  65%|██████▌   | 325/500 [00:16<00:08, 21.39it/s]
eval model::  66%|██████▌   | 328/500 [00:16<00:08, 19.42it/s]
eval model::  66%|██████▌   | 331/500 [00:16<00:08, 20.28it/s]
eval model::  67%|██████▋   | 334/500 [00:16<00:08, 20.63it/s]
eval model::  67%|██████▋   | 337/500 [00:16<00:08, 19.13it/s]
eval model::  68%|██████▊   | 340/500 [00:17<00:09, 16.18it/s]
eval model::  69%|██████▊   | 343/500 [00:17<00:08, 18.53it/s]
eval model::  69%|██████▉   | 346/500 [00:17<00:07, 20.67it/s]
eval model::  70%|██████▉   | 349/500 [00:17<00:07, 21.35it/s]
eval model::  70%|███████   | 352/500 [00:17<00:07, 20.59it/s]
eval model::  71%|███████   | 355/500 [00:17<00:07, 18.90it/s]
eval model::  72%|███████▏  | 358/500 [00:18<00:07, 19.52it/s]
eval model::  72%|███████▏  | 361/500 [00:18<00:07, 19.69it/s]
eval model::  73%|███████▎  | 364/500 [00:18<00:07, 18.89it/s]
eval model::  73%|███████▎  | 367/500 [00:18<00:06, 19.89it/s]
eval model::  74%|███████▍  | 370/500 [00:18<00:06, 20.27it/s]
eval model::  75%|███████▍  | 373/500 [00:18<00:06, 19.81it/s]
eval model::  75%|███████▌  | 376/500 [00:18<00:05, 20.76it/s]
eval model::  76%|███████▌  | 379/500 [00:19<00:05, 20.90it/s]
eval model::  76%|███████▋  | 382/500 [00:19<00:06, 18.74it/s]
eval model::  77%|███████▋  | 384/500 [00:19<00:06, 18.42it/s]
eval model::  77%|███████▋  | 386/500 [00:19<00:07, 15.92it/s]
eval model::  78%|███████▊  | 388/500 [00:19<00:06, 16.27it/s]
eval model::  78%|███████▊  | 391/500 [00:19<00:05, 18.27it/s]
eval model::  79%|███████▉  | 394/500 [00:19<00:05, 19.16it/s]
eval model::  79%|███████▉  | 396/500 [00:20<00:05, 19.02it/s]
eval model::  80%|███████▉  | 398/500 [00:20<00:05, 18.39it/s]
eval model::  80%|████████  | 400/500 [00:20<00:05, 17.91it/s]
eval model::  81%|████████  | 403/500 [00:20<00:04, 20.45it/s]
eval model::  81%|████████  | 406/500 [00:20<00:05, 18.39it/s]
eval model::  82%|████████▏ | 409/500 [00:20<00:04, 18.98it/s]
eval model::  82%|████████▏ | 411/500 [00:20<00:04, 19.18it/s]
eval model::  83%|████████▎ | 414/500 [00:20<00:04, 21.17it/s]
eval model::  83%|████████▎ | 417/500 [00:21<00:04, 20.73it/s]
eval model::  84%|████████▍ | 420/500 [00:21<00:04, 18.37it/s]
eval model::  85%|████████▍ | 423/500 [00:21<00:03, 19.68it/s]
eval model::  85%|████████▌ | 426/500 [00:21<00:03, 18.88it/s]
eval model::  86%|████████▌ | 429/500 [00:21<00:03, 20.49it/s]
eval model::  86%|████████▋ | 432/500 [00:21<00:03, 20.99it/s]
eval model::  87%|████████▋ | 435/500 [00:22<00:03, 19.78it/s]
eval model::  88%|████████▊ | 438/500 [00:22<00:03, 19.31it/s]
eval model::  88%|████████▊ | 440/500 [00:22<00:03, 17.42it/s]
eval model::  89%|████████▊ | 443/500 [00:22<00:02, 19.90it/s]
eval model::  89%|████████▉ | 446/500 [00:22<00:02, 18.94it/s]
eval model::  90%|████████▉ | 448/500 [00:22<00:02, 17.93it/s]
eval model::  90%|█████████ | 450/500 [00:22<00:02, 16.89it/s]
eval model::  91%|█████████ | 453/500 [00:22<00:02, 18.85it/s]
eval model::  91%|█████████ | 456/500 [00:23<00:02, 19.40it/s]
eval model::  92%|█████████▏| 459/500 [00:23<00:02, 20.09it/s]
eval model::  92%|█████████▏| 462/500 [00:23<00:02, 18.18it/s]
eval model::  93%|█████████▎| 465/500 [00:23<00:01, 18.70it/s]
eval model::  94%|█████████▎| 468/500 [00:23<00:01, 20.89it/s]
eval model::  94%|█████████▍| 471/500 [00:23<00:01, 19.05it/s]
eval model::  95%|█████████▍| 474/500 [00:24<00:01, 18.22it/s]
eval model::  95%|█████████▌| 477/500 [00:24<00:01, 19.97it/s]
eval model::  96%|█████████▌| 480/500 [00:24<00:01, 19.59it/s]
eval model::  97%|█████████▋| 483/500 [00:24<00:00, 19.41it/s]
eval model::  97%|█████████▋| 486/500 [00:24<00:00, 19.11it/s]
eval model::  98%|█████████▊| 489/500 [00:24<00:00, 19.79it/s]
eval model::  98%|█████████▊| 492/500 [00:25<00:00, 18.59it/s]
eval model::  99%|█████████▉| 495/500 [00:25<00:00, 19.79it/s]
eval model:: 100%|█████████▉| 498/500 [00:25<00:00, 21.89it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.73it/s]
[2024/07/27 14:32:38] ppocr INFO: cur metric, precision: 0.7542147293700089, recall: 0.4092441020702937, hmean: 0.5305867665418227, fps: 44.32687928330005
[2024/07/27 14:32:38] ppocr INFO: best metric, hmean: 0.7301425661914459, precision: 0.7747163695299838, recall: 0.6904188733750601, fps: 43.582139874688714, best_epoch: 960
[2024/07/27 14:32:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:32:47] ppocr INFO: epoch: [1041/1500], global_step: 3123, lr: 0.001000, loss: 1.587472, loss_shrink_maps: 0.829006, loss_threshold_maps: 0.540659, loss_binary_maps: 0.154715, avg_reader_cost: 2.13127 s, avg_batch_cost: 2.42845 s, avg_samples: 12.5, ips: 5.14732 samples/s, eta: 3:19:03
[2024/07/27 14:32:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:32:57] ppocr INFO: epoch: [1042/1500], global_step: 3126, lr: 0.001000, loss: 1.650586, loss_shrink_maps: 0.874009, loss_threshold_maps: 0.568582, loss_binary_maps: 0.164186, avg_reader_cost: 2.28198 s, avg_batch_cost: 2.52059 s, avg_samples: 12.5, ips: 4.95915 samples/s, eta: 3:18:37
[2024/07/27 14:32:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:33:06] ppocr INFO: epoch: [1043/1500], global_step: 3129, lr: 0.001000, loss: 1.650586, loss_shrink_maps: 0.850014, loss_threshold_maps: 0.568582, loss_binary_maps: 0.161309, avg_reader_cost: 2.36006 s, avg_batch_cost: 2.59792 s, avg_samples: 12.5, ips: 4.81153 samples/s, eta: 3:18:11
[2024/07/27 14:33:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:33:15] ppocr INFO: epoch: [1044/1500], global_step: 3130, lr: 0.001000, loss: 1.650586, loss_shrink_maps: 0.850014, loss_threshold_maps: 0.568582, loss_binary_maps: 0.161309, avg_reader_cost: 0.53974 s, avg_batch_cost: 0.75997 s, avg_samples: 4.8, ips: 6.31604 samples/s, eta: 3:18:02
[2024/07/27 14:33:16] ppocr INFO: epoch: [1044/1500], global_step: 3132, lr: 0.001000, loss: 1.606895, loss_shrink_maps: 0.829006, loss_threshold_maps: 0.568582, loss_binary_maps: 0.154715, avg_reader_cost: 1.61206 s, avg_batch_cost: 1.75927 s, avg_samples: 7.7, ips: 4.37681 samples/s, eta: 3:17:44
[2024/07/27 14:33:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:33:26] ppocr INFO: epoch: [1045/1500], global_step: 3135, lr: 0.001000, loss: 1.498324, loss_shrink_maps: 0.790626, loss_threshold_maps: 0.557578, loss_binary_maps: 0.147329, avg_reader_cost: 2.36282 s, avg_batch_cost: 2.59620 s, avg_samples: 12.5, ips: 4.81474 samples/s, eta: 3:17:18
[2024/07/27 14:33:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:33:36] ppocr INFO: epoch: [1046/1500], global_step: 3138, lr: 0.001000, loss: 1.463379, loss_shrink_maps: 0.772871, loss_threshold_maps: 0.550387, loss_binary_maps: 0.145892, avg_reader_cost: 2.31146 s, avg_batch_cost: 2.55222 s, avg_samples: 12.5, ips: 4.89771 samples/s, eta: 3:16:52
[2024/07/27 14:33:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:33:45] ppocr INFO: epoch: [1047/1500], global_step: 3140, lr: 0.001000, loss: 1.434247, loss_shrink_maps: 0.738310, loss_threshold_maps: 0.540659, loss_binary_maps: 0.142875, avg_reader_cost: 1.36937 s, avg_batch_cost: 1.64782 s, avg_samples: 9.6, ips: 5.82587 samples/s, eta: 3:16:34
[2024/07/27 14:33:45] ppocr INFO: epoch: [1047/1500], global_step: 3141, lr: 0.001000, loss: 1.425404, loss_shrink_maps: 0.732450, loss_threshold_maps: 0.540286, loss_binary_maps: 0.140770, avg_reader_cost: 0.87011 s, avg_batch_cost: 0.92548 s, avg_samples: 2.9, ips: 3.13351 samples/s, eta: 3:16:26
[2024/07/27 14:33:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:33:55] ppocr INFO: epoch: [1048/1500], global_step: 3144, lr: 0.001000, loss: 1.400400, loss_shrink_maps: 0.717962, loss_threshold_maps: 0.532896, loss_binary_maps: 0.138593, avg_reader_cost: 2.26921 s, avg_batch_cost: 2.67104 s, avg_samples: 12.5, ips: 4.67983 samples/s, eta: 3:16:00
[2024/07/27 14:33:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:34:05] ppocr INFO: epoch: [1049/1500], global_step: 3147, lr: 0.001000, loss: 1.377586, loss_shrink_maps: 0.713650, loss_threshold_maps: 0.529260, loss_binary_maps: 0.138224, avg_reader_cost: 2.38188 s, avg_batch_cost: 2.63457 s, avg_samples: 12.5, ips: 4.74461 samples/s, eta: 3:15:34
[2024/07/27 14:34:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:34:15] ppocr INFO: epoch: [1050/1500], global_step: 3150, lr: 0.001000, loss: 1.431347, loss_shrink_maps: 0.743988, loss_threshold_maps: 0.538569, loss_binary_maps: 0.144234, avg_reader_cost: 2.20693 s, avg_batch_cost: 2.61781 s, avg_samples: 12.5, ips: 4.77498 samples/s, eta: 3:15:08
[2024/07/27 14:34:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:34:25] ppocr INFO: epoch: [1051/1500], global_step: 3153, lr: 0.001000, loss: 1.394655, loss_shrink_maps: 0.717962, loss_threshold_maps: 0.526044, loss_binary_maps: 0.139767, avg_reader_cost: 2.44939 s, avg_batch_cost: 2.69128 s, avg_samples: 12.5, ips: 4.64463 samples/s, eta: 3:14:43
[2024/07/27 14:34:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:34:35] ppocr INFO: epoch: [1052/1500], global_step: 3156, lr: 0.001000, loss: 1.416249, loss_shrink_maps: 0.735547, loss_threshold_maps: 0.529657, loss_binary_maps: 0.143803, avg_reader_cost: 2.42317 s, avg_batch_cost: 2.66152 s, avg_samples: 12.5, ips: 4.69656 samples/s, eta: 3:14:17
[2024/07/27 14:34:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:34:45] ppocr INFO: epoch: [1053/1500], global_step: 3159, lr: 0.001000, loss: 1.345102, loss_shrink_maps: 0.690514, loss_threshold_maps: 0.522990, loss_binary_maps: 0.134954, avg_reader_cost: 2.34351 s, avg_batch_cost: 2.59382 s, avg_samples: 12.5, ips: 4.81915 samples/s, eta: 3:13:51
[2024/07/27 14:34:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:34:53] ppocr INFO: epoch: [1054/1500], global_step: 3160, lr: 0.001000, loss: 1.345102, loss_shrink_maps: 0.690514, loss_threshold_maps: 0.522990, loss_binary_maps: 0.134954, avg_reader_cost: 0.56146 s, avg_batch_cost: 0.77227 s, avg_samples: 4.8, ips: 6.21544 samples/s, eta: 3:13:42
[2024/07/27 14:34:55] ppocr INFO: epoch: [1054/1500], global_step: 3162, lr: 0.001000, loss: 1.384376, loss_shrink_maps: 0.715040, loss_threshold_maps: 0.525726, loss_binary_maps: 0.139076, avg_reader_cost: 1.63615 s, avg_batch_cost: 1.78216 s, avg_samples: 7.7, ips: 4.32059 samples/s, eta: 3:13:25
[2024/07/27 14:34:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:35:05] ppocr INFO: epoch: [1055/1500], global_step: 3165, lr: 0.001000, loss: 1.363674, loss_shrink_maps: 0.715094, loss_threshold_maps: 0.525149, loss_binary_maps: 0.139076, avg_reader_cost: 2.22840 s, avg_batch_cost: 2.59225 s, avg_samples: 12.5, ips: 4.82206 samples/s, eta: 3:12:59
[2024/07/27 14:35:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:35:14] ppocr INFO: epoch: [1056/1500], global_step: 3168, lr: 0.001000, loss: 1.352611, loss_shrink_maps: 0.693566, loss_threshold_maps: 0.524617, loss_binary_maps: 0.134428, avg_reader_cost: 2.35449 s, avg_batch_cost: 2.59402 s, avg_samples: 12.5, ips: 4.81878 samples/s, eta: 3:12:32
[2024/07/27 14:35:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:35:24] ppocr INFO: epoch: [1057/1500], global_step: 3170, lr: 0.001000, loss: 1.326459, loss_shrink_maps: 0.677909, loss_threshold_maps: 0.517232, loss_binary_maps: 0.133428, avg_reader_cost: 1.44912 s, avg_batch_cost: 1.65012 s, avg_samples: 9.6, ips: 5.81775 samples/s, eta: 3:12:15
[2024/07/27 14:35:24] ppocr INFO: epoch: [1057/1500], global_step: 3171, lr: 0.001000, loss: 1.326459, loss_shrink_maps: 0.677909, loss_threshold_maps: 0.517232, loss_binary_maps: 0.133428, avg_reader_cost: 0.87140 s, avg_batch_cost: 0.92708 s, avg_samples: 2.9, ips: 3.12811 samples/s, eta: 3:12:06
[2024/07/27 14:35:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:35:34] ppocr INFO: epoch: [1058/1500], global_step: 3174, lr: 0.001000, loss: 1.315058, loss_shrink_maps: 0.668438, loss_threshold_maps: 0.503904, loss_binary_maps: 0.131378, avg_reader_cost: 2.38029 s, avg_batch_cost: 2.62924 s, avg_samples: 12.5, ips: 4.75423 samples/s, eta: 3:11:40
[2024/07/27 14:35:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:35:44] ppocr INFO: epoch: [1059/1500], global_step: 3177, lr: 0.001000, loss: 1.338674, loss_shrink_maps: 0.680908, loss_threshold_maps: 0.524617, loss_binary_maps: 0.133823, avg_reader_cost: 2.37479 s, avg_batch_cost: 2.62548 s, avg_samples: 12.5, ips: 4.76104 samples/s, eta: 3:11:15
[2024/07/27 14:35:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:35:54] ppocr INFO: epoch: [1060/1500], global_step: 3180, lr: 0.001000, loss: 1.352611, loss_shrink_maps: 0.693566, loss_threshold_maps: 0.509531, loss_binary_maps: 0.134797, avg_reader_cost: 2.18189 s, avg_batch_cost: 2.54426 s, avg_samples: 12.5, ips: 4.91301 samples/s, eta: 3:10:48

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:54,  9.14it/s]
eval model::   1%|          | 4/500 [00:00<00:27, 18.16it/s]
eval model::   1%|▏         | 7/500 [00:00<00:23, 20.85it/s]
eval model::   2%|▏         | 10/500 [00:00<00:22, 21.34it/s]
eval model::   3%|▎         | 13/500 [00:00<00:27, 17.85it/s]
eval model::   3%|▎         | 16/500 [00:00<00:24, 19.93it/s]
eval model::   4%|▍         | 19/500 [00:00<00:23, 20.84it/s]
eval model::   4%|▍         | 22/500 [00:01<00:22, 21.05it/s]
eval model::   5%|▌         | 25/500 [00:01<00:22, 20.72it/s]
eval model::   6%|▌         | 28/500 [00:01<00:22, 21.15it/s]
eval model::   6%|▌         | 31/500 [00:01<00:23, 19.79it/s]
eval model::   7%|▋         | 34/500 [00:01<00:23, 19.60it/s]
eval model::   7%|▋         | 37/500 [00:01<00:21, 21.35it/s]
eval model::   8%|▊         | 40/500 [00:02<00:25, 18.35it/s]
eval model::   8%|▊         | 42/500 [00:02<00:26, 17.18it/s]
eval model::   9%|▉         | 45/500 [00:02<00:24, 18.92it/s]
eval model::   9%|▉         | 47/500 [00:02<00:25, 17.71it/s]
eval model::  10%|█         | 50/500 [00:02<00:23, 18.94it/s]
eval model::  11%|█         | 53/500 [00:02<00:22, 20.24it/s]
eval model::  11%|█         | 56/500 [00:02<00:22, 19.39it/s]
eval model::  12%|█▏        | 59/500 [00:03<00:22, 20.01it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:27, 15.92it/s]
eval model::  13%|█▎        | 64/500 [00:03<00:26, 16.48it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:22, 19.02it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:21, 20.03it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:19, 21.39it/s]
eval model::  15%|█▌        | 77/500 [00:03<00:18, 22.64it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:16, 25.14it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:18, 22.70it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:21, 19.38it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:23, 17.55it/s]
eval model::  18%|█▊        | 92/500 [00:04<00:23, 17.64it/s]
eval model::  19%|█▉        | 95/500 [00:04<00:22, 18.21it/s]
eval model::  20%|█▉        | 98/500 [00:05<00:20, 20.09it/s]
eval model::  20%|██        | 101/500 [00:05<00:19, 20.83it/s]
eval model::  21%|██        | 104/500 [00:05<00:17, 22.28it/s]
eval model::  21%|██▏       | 107/500 [00:05<00:16, 23.94it/s]
eval model::  22%|██▏       | 110/500 [00:05<00:16, 24.32it/s]
eval model::  23%|██▎       | 113/500 [00:05<00:17, 22.30it/s]
eval model::  23%|██▎       | 116/500 [00:05<00:17, 21.89it/s]
eval model::  24%|██▍       | 119/500 [00:05<00:18, 20.66it/s]
eval model::  24%|██▍       | 122/500 [00:06<00:18, 20.61it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:19, 19.59it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:17, 21.38it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:17, 20.62it/s]
eval model::  27%|██▋       | 134/500 [00:06<00:17, 20.58it/s]
eval model::  27%|██▋       | 137/500 [00:06<00:18, 19.65it/s]
eval model::  28%|██▊       | 140/500 [00:07<00:18, 19.64it/s]
eval model::  29%|██▊       | 143/500 [00:07<00:17, 20.20it/s]
eval model::  29%|██▉       | 146/500 [00:07<00:17, 20.21it/s]
eval model::  30%|██▉       | 149/500 [00:07<00:18, 18.80it/s]
eval model::  30%|███       | 151/500 [00:07<00:19, 18.28it/s]
eval model::  31%|███       | 154/500 [00:07<00:16, 20.36it/s]
eval model::  31%|███▏      | 157/500 [00:07<00:15, 22.33it/s]
eval model::  32%|███▏      | 160/500 [00:08<00:22, 15.17it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:20, 16.74it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:17, 18.98it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:17, 18.83it/s]
eval model::  34%|███▍      | 172/500 [00:08<00:16, 19.35it/s]
eval model::  35%|███▌      | 175/500 [00:08<00:17, 18.49it/s]
eval model::  35%|███▌      | 177/500 [00:08<00:17, 18.39it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:18, 17.24it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:17, 18.48it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:15, 20.16it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:15, 20.15it/s]
eval model::  38%|███▊      | 192/500 [00:09<00:15, 20.47it/s]
eval model::  39%|███▉      | 195/500 [00:09<00:14, 20.48it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:14, 21.17it/s]
eval model::  40%|████      | 201/500 [00:10<00:14, 20.78it/s]
eval model::  41%|████      | 204/500 [00:10<00:13, 21.91it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:18, 15.50it/s]
eval model::  42%|████▏     | 209/500 [00:10<00:19, 15.23it/s]
eval model::  42%|████▏     | 211/500 [00:10<00:18, 15.27it/s]
eval model::  43%|████▎     | 213/500 [00:10<00:17, 16.10it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:19, 14.76it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:20, 13.97it/s]
eval model::  44%|████▍     | 219/500 [00:11<00:18, 15.23it/s]
eval model::  44%|████▍     | 221/500 [00:11<00:18, 14.71it/s]
eval model::  45%|████▍     | 224/500 [00:11<00:15, 17.63it/s]
eval model::  45%|████▌     | 227/500 [00:11<00:13, 19.97it/s]
eval model::  46%|████▌     | 231/500 [00:11<00:11, 24.04it/s]
eval model::  47%|████▋     | 234/500 [00:12<00:11, 22.69it/s]
eval model::  47%|████▋     | 237/500 [00:12<00:11, 23.12it/s]
eval model::  48%|████▊     | 240/500 [00:12<00:11, 22.63it/s]
eval model::  49%|████▊     | 243/500 [00:12<00:13, 19.57it/s]
eval model::  49%|████▉     | 246/500 [00:12<00:12, 21.02it/s]
eval model::  50%|████▉     | 249/500 [00:12<00:11, 21.04it/s]
eval model::  50%|█████     | 252/500 [00:12<00:11, 21.95it/s]
eval model::  51%|█████     | 255/500 [00:13<00:11, 20.82it/s]
eval model::  52%|█████▏    | 258/500 [00:13<00:11, 20.51it/s]
eval model::  52%|█████▏    | 261/500 [00:13<00:11, 20.74it/s]
eval model::  53%|█████▎    | 264/500 [00:13<00:11, 20.27it/s]
eval model::  53%|█████▎    | 267/500 [00:13<00:12, 19.32it/s]
eval model::  54%|█████▍    | 269/500 [00:13<00:12, 18.91it/s]
eval model::  54%|█████▍    | 272/500 [00:13<00:11, 20.72it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:13, 16.90it/s]
eval model::  55%|█████▌    | 277/500 [00:14<00:12, 17.32it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:12, 17.80it/s]
eval model::  56%|█████▋    | 282/500 [00:14<00:10, 20.02it/s]
eval model::  57%|█████▋    | 285/500 [00:14<00:18, 11.69it/s]
eval model::  58%|█████▊    | 288/500 [00:15<00:14, 14.17it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:12, 16.82it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:12, 16.55it/s]
eval model::  59%|█████▉    | 297/500 [00:15<00:12, 16.42it/s]
eval model::  60%|██████    | 300/500 [00:15<00:12, 16.50it/s]
eval model::  61%|██████    | 303/500 [00:15<00:10, 18.45it/s]
eval model::  61%|██████    | 306/500 [00:15<00:10, 19.31it/s]
eval model::  62%|██████▏   | 309/500 [00:16<00:09, 19.99it/s]
eval model::  62%|██████▏   | 312/500 [00:16<00:08, 21.00it/s]
eval model::  63%|██████▎   | 315/500 [00:16<00:08, 21.65it/s]
eval model::  64%|██████▎   | 318/500 [00:16<00:07, 22.85it/s]
eval model::  64%|██████▍   | 321/500 [00:16<00:08, 22.23it/s]
eval model::  65%|██████▍   | 324/500 [00:16<00:08, 20.51it/s]
eval model::  65%|██████▌   | 327/500 [00:16<00:07, 22.40it/s]
eval model::  66%|██████▌   | 330/500 [00:17<00:07, 22.70it/s]
eval model::  67%|██████▋   | 333/500 [00:17<00:07, 23.46it/s]
eval model::  67%|██████▋   | 336/500 [00:17<00:07, 22.34it/s]
eval model::  68%|██████▊   | 339/500 [00:17<00:08, 20.01it/s]
eval model::  68%|██████▊   | 342/500 [00:17<00:09, 15.92it/s]
eval model::  69%|██████▉   | 345/500 [00:17<00:08, 18.30it/s]
eval model::  70%|██████▉   | 348/500 [00:18<00:08, 18.96it/s]
eval model::  70%|███████   | 351/500 [00:18<00:07, 20.25it/s]
eval model::  71%|███████   | 355/500 [00:18<00:06, 21.46it/s]
eval model::  72%|███████▏  | 358/500 [00:18<00:06, 21.50it/s]
eval model::  72%|███████▏  | 361/500 [00:18<00:06, 20.40it/s]
eval model::  73%|███████▎  | 364/500 [00:18<00:07, 18.40it/s]
eval model::  73%|███████▎  | 366/500 [00:18<00:07, 18.18it/s]
eval model::  74%|███████▍  | 369/500 [00:19<00:06, 19.05it/s]
eval model::  74%|███████▍  | 371/500 [00:19<00:06, 18.46it/s]
eval model::  75%|███████▍  | 374/500 [00:19<00:06, 20.72it/s]
eval model::  75%|███████▌  | 377/500 [00:19<00:05, 22.66it/s]
eval model::  76%|███████▌  | 380/500 [00:19<00:05, 20.80it/s]
eval model::  77%|███████▋  | 384/500 [00:19<00:04, 23.49it/s]
eval model::  77%|███████▋  | 387/500 [00:20<00:07, 14.38it/s]
eval model::  78%|███████▊  | 390/500 [00:20<00:06, 16.61it/s]
eval model::  79%|███████▊  | 393/500 [00:20<00:06, 17.03it/s]
eval model::  79%|███████▉  | 396/500 [00:20<00:05, 18.41it/s]
eval model::  80%|███████▉  | 399/500 [00:20<00:05, 20.15it/s]
eval model::  80%|████████  | 402/500 [00:20<00:05, 19.40it/s]
eval model::  81%|████████  | 405/500 [00:20<00:04, 20.37it/s]
eval model::  82%|████████▏ | 408/500 [00:21<00:04, 22.07it/s]
eval model::  82%|████████▏ | 411/500 [00:21<00:03, 22.45it/s]
eval model::  83%|████████▎ | 414/500 [00:21<00:03, 21.55it/s]
eval model::  83%|████████▎ | 417/500 [00:21<00:04, 20.71it/s]
eval model::  84%|████████▍ | 420/500 [00:21<00:05, 15.12it/s]
eval model::  84%|████████▍ | 422/500 [00:21<00:04, 15.76it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:04, 16.14it/s]
eval model::  85%|████████▌ | 427/500 [00:22<00:04, 17.67it/s]
eval model::  86%|████████▌ | 430/500 [00:22<00:03, 18.86it/s]
eval model::  87%|████████▋ | 433/500 [00:22<00:03, 20.64it/s]
eval model::  87%|████████▋ | 436/500 [00:22<00:02, 22.13it/s]
eval model::  88%|████████▊ | 439/500 [00:22<00:02, 23.67it/s]
eval model::  88%|████████▊ | 442/500 [00:22<00:02, 23.59it/s]
eval model::  89%|████████▉ | 445/500 [00:22<00:02, 25.08it/s]
eval model::  90%|████████▉ | 448/500 [00:23<00:02, 24.18it/s]
eval model::  90%|█████████ | 451/500 [00:23<00:02, 21.58it/s]
eval model::  91%|█████████ | 454/500 [00:23<00:02, 22.92it/s]
eval model::  91%|█████████▏| 457/500 [00:23<00:01, 23.59it/s]
eval model::  92%|█████████▏| 460/500 [00:23<00:01, 21.49it/s]
eval model::  93%|█████████▎| 463/500 [00:23<00:02, 16.45it/s]
eval model::  93%|█████████▎| 465/500 [00:24<00:02, 16.66it/s]
eval model::  94%|█████████▎| 468/500 [00:24<00:01, 18.10it/s]
eval model::  94%|█████████▍| 471/500 [00:24<00:01, 20.63it/s]
eval model::  95%|█████████▍| 474/500 [00:24<00:01, 20.60it/s]
eval model::  95%|█████████▌| 477/500 [00:24<00:01, 22.24it/s]
eval model::  96%|█████████▌| 480/500 [00:24<00:00, 23.12it/s]
eval model::  97%|█████████▋| 483/500 [00:24<00:00, 23.22it/s]
eval model::  97%|█████████▋| 486/500 [00:24<00:00, 21.65it/s]
eval model::  98%|█████████▊| 489/500 [00:25<00:00, 22.61it/s]
eval model::  98%|█████████▊| 492/500 [00:25<00:00, 19.39it/s]
eval model::  99%|█████████▉| 495/500 [00:25<00:00, 18.33it/s]
eval model:: 100%|█████████▉| 498/500 [00:25<00:00, 20.33it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.53it/s]
[2024/07/27 14:36:19] ppocr INFO: cur metric, precision: 0.7777777777777778, recall: 0.6336061627347135, hmean: 0.6983284690899443, fps: 45.32204794560884
[2024/07/27 14:36:19] ppocr INFO: best metric, hmean: 0.7301425661914459, precision: 0.7747163695299838, recall: 0.6904188733750601, fps: 43.582139874688714, best_epoch: 960
[2024/07/27 14:36:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:36:28] ppocr INFO: epoch: [1061/1500], global_step: 3183, lr: 0.001000, loss: 1.323514, loss_shrink_maps: 0.678633, loss_threshold_maps: 0.500147, loss_binary_maps: 0.133591, avg_reader_cost: 2.20531 s, avg_batch_cost: 2.46293 s, avg_samples: 12.5, ips: 5.07526 samples/s, eta: 3:10:22
[2024/07/27 14:36:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:36:38] ppocr INFO: epoch: [1062/1500], global_step: 3186, lr: 0.001000, loss: 1.307670, loss_shrink_maps: 0.668438, loss_threshold_maps: 0.500147, loss_binary_maps: 0.131172, avg_reader_cost: 2.23232 s, avg_batch_cost: 2.61112 s, avg_samples: 12.5, ips: 4.78722 samples/s, eta: 3:09:56
[2024/07/27 14:36:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:36:47] ppocr INFO: epoch: [1063/1500], global_step: 3189, lr: 0.001000, loss: 1.267994, loss_shrink_maps: 0.651916, loss_threshold_maps: 0.495866, loss_binary_maps: 0.127623, avg_reader_cost: 2.17417 s, avg_batch_cost: 2.48466 s, avg_samples: 12.5, ips: 5.03087 samples/s, eta: 3:09:29
[2024/07/27 14:36:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:36:56] ppocr INFO: epoch: [1064/1500], global_step: 3190, lr: 0.001000, loss: 1.257244, loss_shrink_maps: 0.636791, loss_threshold_maps: 0.493663, loss_binary_maps: 0.125541, avg_reader_cost: 0.68455 s, avg_batch_cost: 0.77984 s, avg_samples: 4.8, ips: 6.15513 samples/s, eta: 3:09:20
[2024/07/27 14:36:57] ppocr INFO: epoch: [1064/1500], global_step: 3192, lr: 0.001000, loss: 1.296477, loss_shrink_maps: 0.667977, loss_threshold_maps: 0.495866, loss_binary_maps: 0.130412, avg_reader_cost: 1.65177 s, avg_batch_cost: 1.79948 s, avg_samples: 7.7, ips: 4.27901 samples/s, eta: 3:09:03
[2024/07/27 14:36:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:37:07] ppocr INFO: epoch: [1065/1500], global_step: 3195, lr: 0.001000, loss: 1.296477, loss_shrink_maps: 0.667977, loss_threshold_maps: 0.495866, loss_binary_maps: 0.130200, avg_reader_cost: 2.21650 s, avg_batch_cost: 2.58702 s, avg_samples: 12.5, ips: 4.83181 samples/s, eta: 3:08:37
[2024/07/27 14:37:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:37:17] ppocr INFO: epoch: [1066/1500], global_step: 3198, lr: 0.001000, loss: 1.250027, loss_shrink_maps: 0.633131, loss_threshold_maps: 0.489308, loss_binary_maps: 0.124281, avg_reader_cost: 2.40122 s, avg_batch_cost: 2.64263 s, avg_samples: 12.5, ips: 4.73013 samples/s, eta: 3:08:11
[2024/07/27 14:37:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:37:27] ppocr INFO: epoch: [1067/1500], global_step: 3200, lr: 0.001000, loss: 1.243519, loss_shrink_maps: 0.633131, loss_threshold_maps: 0.485026, loss_binary_maps: 0.124281, avg_reader_cost: 1.48228 s, avg_batch_cost: 1.67551 s, avg_samples: 9.6, ips: 5.72959 samples/s, eta: 3:07:54
[2024/07/27 14:37:27] ppocr INFO: epoch: [1067/1500], global_step: 3201, lr: 0.001000, loss: 1.233100, loss_shrink_maps: 0.627787, loss_threshold_maps: 0.481842, loss_binary_maps: 0.123637, avg_reader_cost: 0.88382 s, avg_batch_cost: 0.93893 s, avg_samples: 2.9, ips: 3.08863 samples/s, eta: 3:07:45
[2024/07/27 14:37:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:37:38] ppocr INFO: epoch: [1068/1500], global_step: 3204, lr: 0.001000, loss: 1.226412, loss_shrink_maps: 0.633131, loss_threshold_maps: 0.478361, loss_binary_maps: 0.124281, avg_reader_cost: 2.29127 s, avg_batch_cost: 2.68582 s, avg_samples: 12.5, ips: 4.65408 samples/s, eta: 3:07:20
[2024/07/27 14:37:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:37:48] ppocr INFO: epoch: [1069/1500], global_step: 3207, lr: 0.001000, loss: 1.234631, loss_shrink_maps: 0.637684, loss_threshold_maps: 0.485026, loss_binary_maps: 0.125783, avg_reader_cost: 2.27498 s, avg_batch_cost: 2.63749 s, avg_samples: 12.5, ips: 4.73936 samples/s, eta: 3:06:54
[2024/07/27 14:37:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:37:57] ppocr INFO: epoch: [1070/1500], global_step: 3210, lr: 0.001000, loss: 1.234631, loss_shrink_maps: 0.637684, loss_threshold_maps: 0.482803, loss_binary_maps: 0.125783, avg_reader_cost: 2.40531 s, avg_batch_cost: 2.64433 s, avg_samples: 12.5, ips: 4.72709 samples/s, eta: 3:06:28
[2024/07/27 14:37:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:38:07] ppocr INFO: epoch: [1071/1500], global_step: 3213, lr: 0.001000, loss: 1.234631, loss_shrink_maps: 0.637684, loss_threshold_maps: 0.486711, loss_binary_maps: 0.125783, avg_reader_cost: 2.27901 s, avg_batch_cost: 2.51930 s, avg_samples: 12.5, ips: 4.96170 samples/s, eta: 3:06:01
[2024/07/27 14:38:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:38:17] ppocr INFO: epoch: [1072/1500], global_step: 3216, lr: 0.001000, loss: 1.236831, loss_shrink_maps: 0.637684, loss_threshold_maps: 0.486711, loss_binary_maps: 0.125783, avg_reader_cost: 2.24113 s, avg_batch_cost: 2.60601 s, avg_samples: 12.5, ips: 4.79660 samples/s, eta: 3:05:35
[2024/07/27 14:38:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:38:27] ppocr INFO: epoch: [1073/1500], global_step: 3219, lr: 0.001000, loss: 1.214935, loss_shrink_maps: 0.628662, loss_threshold_maps: 0.480793, loss_binary_maps: 0.123909, avg_reader_cost: 2.18733 s, avg_batch_cost: 2.67186 s, avg_samples: 12.5, ips: 4.67838 samples/s, eta: 3:05:10
[2024/07/27 14:38:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:38:35] ppocr INFO: epoch: [1074/1500], global_step: 3220, lr: 0.001000, loss: 1.216465, loss_shrink_maps: 0.628662, loss_threshold_maps: 0.484893, loss_binary_maps: 0.123909, avg_reader_cost: 0.53605 s, avg_batch_cost: 0.79239 s, avg_samples: 4.8, ips: 6.05762 samples/s, eta: 3:05:01
[2024/07/27 14:38:36] ppocr INFO: epoch: [1074/1500], global_step: 3222, lr: 0.001000, loss: 1.220240, loss_shrink_maps: 0.628662, loss_threshold_maps: 0.484893, loss_binary_maps: 0.123909, avg_reader_cost: 1.67805 s, avg_batch_cost: 1.82641 s, avg_samples: 7.7, ips: 4.21592 samples/s, eta: 3:04:44
[2024/07/27 14:38:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:38:46] ppocr INFO: epoch: [1075/1500], global_step: 3225, lr: 0.001000, loss: 1.208762, loss_shrink_maps: 0.619640, loss_threshold_maps: 0.484893, loss_binary_maps: 0.122421, avg_reader_cost: 2.16642 s, avg_batch_cost: 2.49493 s, avg_samples: 12.5, ips: 5.01017 samples/s, eta: 3:04:17
[2024/07/27 14:38:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:38:56] ppocr INFO: epoch: [1076/1500], global_step: 3228, lr: 0.001000, loss: 1.242027, loss_shrink_maps: 0.622928, loss_threshold_maps: 0.484893, loss_binary_maps: 0.123256, avg_reader_cost: 2.44785 s, avg_batch_cost: 2.69047 s, avg_samples: 12.5, ips: 4.64603 samples/s, eta: 3:03:52
[2024/07/27 14:38:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:39:06] ppocr INFO: epoch: [1077/1500], global_step: 3230, lr: 0.001000, loss: 1.283639, loss_shrink_maps: 0.642418, loss_threshold_maps: 0.488435, loss_binary_maps: 0.126868, avg_reader_cost: 1.50450 s, avg_batch_cost: 1.68917 s, avg_samples: 9.6, ips: 5.68327 samples/s, eta: 3:03:34
[2024/07/27 14:39:06] ppocr INFO: epoch: [1077/1500], global_step: 3231, lr: 0.001000, loss: 1.290807, loss_shrink_maps: 0.646269, loss_threshold_maps: 0.488435, loss_binary_maps: 0.126868, avg_reader_cost: 0.89072 s, avg_batch_cost: 0.94627 s, avg_samples: 2.9, ips: 3.06465 samples/s, eta: 3:03:26
[2024/07/27 14:39:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:39:16] ppocr INFO: epoch: [1078/1500], global_step: 3234, lr: 0.001000, loss: 1.242027, loss_shrink_maps: 0.624349, loss_threshold_maps: 0.480793, loss_binary_maps: 0.124101, avg_reader_cost: 2.25290 s, avg_batch_cost: 2.62801 s, avg_samples: 12.5, ips: 4.75645 samples/s, eta: 3:03:00
[2024/07/27 14:39:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:39:26] ppocr INFO: epoch: [1079/1500], global_step: 3237, lr: 0.001000, loss: 1.265655, loss_shrink_maps: 0.652225, loss_threshold_maps: 0.479607, loss_binary_maps: 0.128659, avg_reader_cost: 2.25988 s, avg_batch_cost: 2.62805 s, avg_samples: 12.5, ips: 4.75638 samples/s, eta: 3:02:34
[2024/07/27 14:39:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:39:36] ppocr INFO: epoch: [1080/1500], global_step: 3240, lr: 0.001000, loss: 1.251863, loss_shrink_maps: 0.649910, loss_threshold_maps: 0.483149, loss_binary_maps: 0.128659, avg_reader_cost: 2.35089 s, avg_batch_cost: 2.59338 s, avg_samples: 12.5, ips: 4.81997 samples/s, eta: 3:02:08

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:57,  8.72it/s]
eval model::   1%|          | 4/500 [00:00<00:30, 16.34it/s]
eval model::   1%|▏         | 7/500 [00:00<00:25, 19.41it/s]
eval model::   2%|▏         | 9/500 [00:00<00:25, 19.36it/s]
eval model::   2%|▏         | 11/500 [00:00<00:26, 18.41it/s]
eval model::   3%|▎         | 13/500 [00:00<00:25, 18.75it/s]
eval model::   3%|▎         | 16/500 [00:00<00:22, 21.19it/s]
eval model::   4%|▍         | 19/500 [00:00<00:21, 22.73it/s]
eval model::   4%|▍         | 22/500 [00:01<00:20, 22.99it/s]
eval model::   5%|▌         | 25/500 [00:01<00:21, 21.87it/s]
eval model::   6%|▌         | 28/500 [00:01<00:21, 22.27it/s]
eval model::   6%|▌         | 31/500 [00:01<00:20, 22.75it/s]
eval model::   7%|▋         | 34/500 [00:01<00:21, 21.99it/s]
eval model::   7%|▋         | 37/500 [00:01<00:21, 22.03it/s]
eval model::   8%|▊         | 40/500 [00:01<00:23, 19.97it/s]
eval model::   9%|▊         | 43/500 [00:02<00:23, 19.51it/s]
eval model::   9%|▉         | 46/500 [00:02<00:25, 17.83it/s]
eval model::  10%|▉         | 49/500 [00:02<00:23, 19.55it/s]
eval model::  10%|█         | 52/500 [00:02<00:22, 20.23it/s]
eval model::  11%|█         | 55/500 [00:02<00:20, 21.41it/s]
eval model::  12%|█▏        | 58/500 [00:02<00:22, 19.48it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:27, 16.23it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:27, 16.00it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:23, 18.39it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:20, 20.61it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:19, 21.61it/s]
eval model::  15%|█▌        | 75/500 [00:03<00:20, 21.09it/s]
eval model::  16%|█▌        | 78/500 [00:03<00:20, 20.78it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:18, 22.58it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:18, 22.61it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:20, 19.81it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:20, 19.69it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:20, 20.03it/s]
eval model::  19%|█▉        | 96/500 [00:04<00:19, 21.20it/s]
eval model::  20%|█▉        | 99/500 [00:04<00:19, 20.67it/s]
eval model::  20%|██        | 102/500 [00:05<00:19, 20.48it/s]
eval model::  21%|██        | 105/500 [00:05<00:18, 21.67it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:17, 21.78it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:20, 18.83it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:19, 19.86it/s]
eval model::  23%|██▎       | 117/500 [00:05<00:18, 20.29it/s]
eval model::  24%|██▍       | 120/500 [00:05<00:18, 20.03it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:18, 20.16it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:20, 18.45it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:18, 19.91it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:20, 17.89it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:18, 19.28it/s]
eval model::  28%|██▊       | 138/500 [00:06<00:17, 20.70it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:18, 19.82it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:17, 20.49it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:19, 17.80it/s]
eval model::  30%|███       | 150/500 [00:07<00:17, 19.95it/s]
eval model::  31%|███       | 153/500 [00:07<00:17, 19.85it/s]
eval model::  31%|███▏      | 157/500 [00:07<00:15, 22.85it/s]
eval model::  32%|███▏      | 160/500 [00:08<00:18, 17.95it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:17, 19.59it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:15, 21.48it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:16, 20.56it/s]
eval model::  34%|███▍      | 172/500 [00:08<00:15, 20.54it/s]
eval model::  35%|███▌      | 175/500 [00:08<00:16, 20.00it/s]
eval model::  36%|███▌      | 178/500 [00:08<00:14, 21.62it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:16, 19.61it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:14, 21.54it/s]
eval model::  37%|███▋      | 187/500 [00:09<00:13, 22.81it/s]
eval model::  38%|███▊      | 190/500 [00:09<00:13, 22.70it/s]
eval model::  39%|███▊      | 193/500 [00:09<00:12, 24.40it/s]
eval model::  39%|███▉      | 196/500 [00:09<00:14, 21.71it/s]
eval model::  40%|███▉      | 199/500 [00:09<00:13, 22.63it/s]
eval model::  40%|████      | 202/500 [00:09<00:12, 23.18it/s]
eval model::  41%|████      | 205/500 [00:10<00:18, 16.01it/s]
eval model::  42%|████▏     | 208/500 [00:10<00:17, 16.28it/s]
eval model::  42%|████▏     | 210/500 [00:10<00:17, 16.47it/s]
eval model::  43%|████▎     | 213/500 [00:10<00:16, 17.28it/s]
eval model::  43%|████▎     | 215/500 [00:10<00:17, 16.10it/s]
eval model::  43%|████▎     | 217/500 [00:10<00:19, 14.66it/s]
eval model::  44%|████▍     | 219/500 [00:11<00:18, 14.95it/s]
eval model::  44%|████▍     | 221/500 [00:11<00:19, 14.53it/s]
eval model::  45%|████▍     | 224/500 [00:11<00:15, 17.35it/s]
eval model::  45%|████▌     | 226/500 [00:11<00:15, 17.94it/s]
eval model::  46%|████▌     | 229/500 [00:11<00:13, 20.56it/s]
eval model::  46%|████▋     | 232/500 [00:11<00:11, 22.52it/s]
eval model::  47%|████▋     | 235/500 [00:11<00:11, 22.24it/s]
eval model::  48%|████▊     | 238/500 [00:11<00:11, 23.00it/s]
eval model::  48%|████▊     | 241/500 [00:12<00:11, 22.22it/s]
eval model::  49%|████▉     | 244/500 [00:12<00:12, 20.28it/s]
eval model::  49%|████▉     | 247/500 [00:12<00:12, 19.79it/s]
eval model::  50%|█████     | 250/500 [00:12<00:12, 20.49it/s]
eval model::  51%|█████     | 253/500 [00:12<00:11, 20.83it/s]
eval model::  51%|█████     | 256/500 [00:12<00:11, 21.20it/s]
eval model::  52%|█████▏    | 259/500 [00:12<00:10, 22.97it/s]
eval model::  52%|█████▏    | 262/500 [00:13<00:11, 21.52it/s]
eval model::  53%|█████▎    | 265/500 [00:13<00:11, 20.88it/s]
eval model::  54%|█████▎    | 268/500 [00:13<00:11, 21.09it/s]
eval model::  54%|█████▍    | 271/500 [00:13<00:11, 20.50it/s]
eval model::  55%|█████▍    | 274/500 [00:13<00:10, 21.33it/s]
eval model::  55%|█████▌    | 277/500 [00:13<00:11, 18.86it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:11, 18.84it/s]
eval model::  56%|█████▋    | 282/500 [00:14<00:11, 19.59it/s]
eval model::  57%|█████▋    | 285/500 [00:14<00:18, 11.90it/s]
eval model::  57%|█████▋    | 287/500 [00:14<00:16, 13.04it/s]
eval model::  58%|█████▊    | 291/500 [00:14<00:12, 16.98it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:12, 16.34it/s]
eval model::  59%|█████▉    | 296/500 [00:15<00:16, 12.29it/s]
eval model::  60%|█████▉    | 299/500 [00:15<00:13, 14.68it/s]
eval model::  60%|██████    | 301/500 [00:15<00:13, 14.72it/s]
eval model::  61%|██████    | 304/500 [00:15<00:11, 16.84it/s]
eval model::  61%|██████▏   | 307/500 [00:15<00:10, 18.58it/s]
eval model::  62%|██████▏   | 310/500 [00:15<00:09, 20.00it/s]
eval model::  63%|██████▎   | 313/500 [00:16<00:08, 21.28it/s]
eval model::  63%|██████▎   | 316/500 [00:16<00:08, 21.52it/s]
eval model::  64%|██████▍   | 319/500 [00:16<00:08, 22.03it/s]
eval model::  64%|██████▍   | 322/500 [00:16<00:09, 18.83it/s]
eval model::  65%|██████▌   | 325/500 [00:16<00:09, 19.23it/s]
eval model::  66%|██████▌   | 328/500 [00:16<00:08, 19.30it/s]
eval model::  66%|██████▌   | 330/500 [00:17<00:09, 18.64it/s]
eval model::  67%|██████▋   | 333/500 [00:17<00:08, 20.54it/s]
eval model::  67%|██████▋   | 336/500 [00:17<00:07, 21.24it/s]
eval model::  68%|██████▊   | 339/500 [00:17<00:07, 20.72it/s]
eval model::  68%|██████▊   | 342/500 [00:17<00:10, 15.70it/s]
eval model::  69%|██████▉   | 345/500 [00:17<00:08, 18.20it/s]
eval model::  70%|██████▉   | 348/500 [00:17<00:07, 20.55it/s]
eval model::  70%|███████   | 351/500 [00:18<00:06, 22.13it/s]
eval model::  71%|███████   | 355/500 [00:18<00:06, 22.91it/s]
eval model::  72%|███████▏  | 358/500 [00:18<00:06, 22.57it/s]
eval model::  72%|███████▏  | 361/500 [00:18<00:06, 21.49it/s]
eval model::  73%|███████▎  | 364/500 [00:18<00:06, 19.47it/s]
eval model::  73%|███████▎  | 367/500 [00:18<00:06, 19.75it/s]
eval model::  74%|███████▍  | 370/500 [00:18<00:06, 21.16it/s]
eval model::  75%|███████▍  | 373/500 [00:19<00:05, 21.29it/s]
eval model::  75%|███████▌  | 376/500 [00:19<00:05, 22.18it/s]
eval model::  76%|███████▌  | 379/500 [00:19<00:05, 22.01it/s]
eval model::  76%|███████▋  | 382/500 [00:19<00:05, 20.91it/s]
eval model::  77%|███████▋  | 385/500 [00:19<00:05, 21.09it/s]
eval model::  78%|███████▊  | 388/500 [00:20<00:08, 13.61it/s]
eval model::  78%|███████▊  | 391/500 [00:20<00:07, 15.47it/s]
eval model::  79%|███████▉  | 394/500 [00:20<00:06, 17.32it/s]
eval model::  80%|███████▉  | 398/500 [00:20<00:04, 20.87it/s]
eval model::  80%|████████  | 401/500 [00:20<00:04, 20.83it/s]
eval model::  81%|████████  | 404/500 [00:20<00:04, 21.43it/s]
eval model::  81%|████████▏ | 407/500 [00:20<00:04, 22.01it/s]
eval model::  82%|████████▏ | 410/500 [00:20<00:03, 23.26it/s]
eval model::  83%|████████▎ | 413/500 [00:21<00:04, 21.39it/s]
eval model::  83%|████████▎ | 416/500 [00:21<00:04, 19.09it/s]
eval model::  84%|████████▍ | 419/500 [00:21<00:04, 17.35it/s]
eval model::  84%|████████▍ | 421/500 [00:21<00:06, 12.47it/s]
eval model::  85%|████████▍ | 424/500 [00:21<00:05, 14.78it/s]
eval model::  85%|████████▌ | 427/500 [00:22<00:04, 16.70it/s]
eval model::  86%|████████▌ | 430/500 [00:22<00:03, 18.96it/s]
eval model::  87%|████████▋ | 433/500 [00:22<00:03, 20.72it/s]
eval model::  87%|████████▋ | 436/500 [00:22<00:02, 21.62it/s]
eval model::  88%|████████▊ | 439/500 [00:22<00:02, 22.57it/s]
eval model::  88%|████████▊ | 442/500 [00:22<00:02, 22.89it/s]
eval model::  89%|████████▉ | 445/500 [00:22<00:02, 23.33it/s]
eval model::  90%|████████▉ | 448/500 [00:22<00:02, 22.71it/s]
eval model::  90%|█████████ | 451/500 [00:23<00:02, 22.68it/s]
eval model::  91%|█████████ | 454/500 [00:23<00:01, 23.19it/s]
eval model::  91%|█████████▏| 457/500 [00:23<00:01, 23.58it/s]
eval model::  92%|█████████▏| 460/500 [00:23<00:01, 21.94it/s]
eval model::  93%|█████████▎| 463/500 [00:23<00:01, 19.03it/s]
eval model::  93%|█████████▎| 465/500 [00:23<00:01, 17.76it/s]
eval model::  94%|█████████▎| 468/500 [00:23<00:01, 19.60it/s]
eval model::  94%|█████████▍| 471/500 [00:24<00:01, 21.08it/s]
eval model::  95%|█████████▍| 474/500 [00:24<00:01, 20.47it/s]
eval model::  95%|█████████▌| 477/500 [00:24<00:01, 20.30it/s]
eval model::  96%|█████████▌| 480/500 [00:24<00:00, 20.27it/s]
eval model::  97%|█████████▋| 483/500 [00:24<00:00, 19.27it/s]
eval model::  97%|█████████▋| 486/500 [00:24<00:00, 18.32it/s]
eval model::  98%|█████████▊| 489/500 [00:24<00:00, 19.92it/s]
eval model::  98%|█████████▊| 492/500 [00:25<00:00, 17.56it/s]
eval model::  99%|█████████▉| 494/500 [00:25<00:00, 17.81it/s]
eval model::  99%|█████████▉| 497/500 [00:25<00:00, 19.15it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.98it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.55it/s]
[2024/07/27 14:40:01] ppocr INFO: cur metric, precision: 0.7830130192188469, recall: 0.608088589311507, hmean: 0.6845528455284553, fps: 44.999275600650655
[2024/07/27 14:40:01] ppocr INFO: best metric, hmean: 0.7301425661914459, precision: 0.7747163695299838, recall: 0.6904188733750601, fps: 43.582139874688714, best_epoch: 960
[2024/07/27 14:40:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:40:11] ppocr INFO: epoch: [1081/1500], global_step: 3243, lr: 0.001000, loss: 1.244452, loss_shrink_maps: 0.643593, loss_threshold_maps: 0.473215, loss_binary_maps: 0.127747, avg_reader_cost: 2.35316 s, avg_batch_cost: 2.71280 s, avg_samples: 12.5, ips: 4.60779 samples/s, eta: 3:01:42
[2024/07/27 14:40:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:40:21] ppocr INFO: epoch: [1082/1500], global_step: 3246, lr: 0.001000, loss: 1.251863, loss_shrink_maps: 0.649910, loss_threshold_maps: 0.485692, loss_binary_maps: 0.128801, avg_reader_cost: 2.35540 s, avg_batch_cost: 2.59497 s, avg_samples: 12.5, ips: 4.81702 samples/s, eta: 3:01:16
[2024/07/27 14:40:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:40:31] ppocr INFO: epoch: [1083/1500], global_step: 3249, lr: 0.001000, loss: 1.251667, loss_shrink_maps: 0.649475, loss_threshold_maps: 0.476143, loss_binary_maps: 0.128307, avg_reader_cost: 2.24102 s, avg_batch_cost: 2.59531 s, avg_samples: 12.5, ips: 4.81638 samples/s, eta: 3:00:50
[2024/07/27 14:40:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:40:39] ppocr INFO: epoch: [1084/1500], global_step: 3250, lr: 0.001000, loss: 1.244858, loss_shrink_maps: 0.643593, loss_threshold_maps: 0.476143, loss_binary_maps: 0.127728, avg_reader_cost: 0.53449 s, avg_batch_cost: 0.80933 s, avg_samples: 4.8, ips: 5.93085 samples/s, eta: 3:00:41
[2024/07/27 14:40:41] ppocr INFO: epoch: [1084/1500], global_step: 3252, lr: 0.001000, loss: 1.244858, loss_shrink_maps: 0.643593, loss_threshold_maps: 0.476143, loss_binary_maps: 0.127728, avg_reader_cost: 1.71110 s, avg_batch_cost: 1.85882 s, avg_samples: 7.7, ips: 4.14241 samples/s, eta: 3:00:24
[2024/07/27 14:40:41] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:40:51] ppocr INFO: epoch: [1085/1500], global_step: 3255, lr: 0.001000, loss: 1.243948, loss_shrink_maps: 0.637679, loss_threshold_maps: 0.474284, loss_binary_maps: 0.126864, avg_reader_cost: 2.28083 s, avg_batch_cost: 2.70463 s, avg_samples: 12.5, ips: 4.62171 samples/s, eta: 2:59:59
[2024/07/27 14:40:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:41:00] ppocr INFO: epoch: [1086/1500], global_step: 3258, lr: 0.001000, loss: 1.206394, loss_shrink_maps: 0.618691, loss_threshold_maps: 0.479167, loss_binary_maps: 0.121100, avg_reader_cost: 2.19281 s, avg_batch_cost: 2.46826 s, avg_samples: 12.5, ips: 5.06430 samples/s, eta: 2:59:32
[2024/07/27 14:41:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:41:09] ppocr INFO: epoch: [1087/1500], global_step: 3260, lr: 0.001000, loss: 1.206394, loss_shrink_maps: 0.618691, loss_threshold_maps: 0.479167, loss_binary_maps: 0.121100, avg_reader_cost: 1.38580 s, avg_batch_cost: 1.56906 s, avg_samples: 9.6, ips: 6.11831 samples/s, eta: 2:59:14
[2024/07/27 14:41:10] ppocr INFO: epoch: [1087/1500], global_step: 3261, lr: 0.001000, loss: 1.233927, loss_shrink_maps: 0.629157, loss_threshold_maps: 0.479968, loss_binary_maps: 0.123868, avg_reader_cost: 0.83048 s, avg_batch_cost: 0.88638 s, avg_samples: 2.9, ips: 3.27175 samples/s, eta: 2:59:06
[2024/07/27 14:41:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:41:20] ppocr INFO: epoch: [1088/1500], global_step: 3264, lr: 0.001000, loss: 1.228386, loss_shrink_maps: 0.626886, loss_threshold_maps: 0.479167, loss_binary_maps: 0.123633, avg_reader_cost: 2.34258 s, avg_batch_cost: 2.62455 s, avg_samples: 12.5, ips: 4.76273 samples/s, eta: 2:58:40
[2024/07/27 14:41:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:41:29] ppocr INFO: epoch: [1089/1500], global_step: 3267, lr: 0.001000, loss: 1.228386, loss_shrink_maps: 0.632137, loss_threshold_maps: 0.479968, loss_binary_maps: 0.124107, avg_reader_cost: 2.24952 s, avg_batch_cost: 2.48570 s, avg_samples: 12.5, ips: 5.02877 samples/s, eta: 2:58:13
[2024/07/27 14:41:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:41:39] ppocr INFO: epoch: [1090/1500], global_step: 3270, lr: 0.001000, loss: 1.245888, loss_shrink_maps: 0.632137, loss_threshold_maps: 0.481183, loss_binary_maps: 0.124107, avg_reader_cost: 2.15644 s, avg_batch_cost: 2.47367 s, avg_samples: 12.5, ips: 5.05323 samples/s, eta: 2:57:47
[2024/07/27 14:41:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:41:48] ppocr INFO: epoch: [1091/1500], global_step: 3273, lr: 0.001000, loss: 1.245888, loss_shrink_maps: 0.632137, loss_threshold_maps: 0.481183, loss_binary_maps: 0.124107, avg_reader_cost: 2.16007 s, avg_batch_cost: 2.51967 s, avg_samples: 12.5, ips: 4.96096 samples/s, eta: 2:57:20
[2024/07/27 14:41:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:41:58] ppocr INFO: epoch: [1092/1500], global_step: 3276, lr: 0.001000, loss: 1.261286, loss_shrink_maps: 0.633086, loss_threshold_maps: 0.487644, loss_binary_maps: 0.124768, avg_reader_cost: 2.41255 s, avg_batch_cost: 2.66323 s, avg_samples: 12.5, ips: 4.69355 samples/s, eta: 2:56:55
[2024/07/27 14:41:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:42:08] ppocr INFO: epoch: [1093/1500], global_step: 3279, lr: 0.001000, loss: 1.245888, loss_shrink_maps: 0.632137, loss_threshold_maps: 0.479581, loss_binary_maps: 0.124107, avg_reader_cost: 2.20235 s, avg_batch_cost: 2.56764 s, avg_samples: 12.5, ips: 4.86829 samples/s, eta: 2:56:29
[2024/07/27 14:42:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:42:16] ppocr INFO: epoch: [1094/1500], global_step: 3280, lr: 0.001000, loss: 1.228059, loss_shrink_maps: 0.626473, loss_threshold_maps: 0.475088, loss_binary_maps: 0.123320, avg_reader_cost: 0.69372 s, avg_batch_cost: 0.78481 s, avg_samples: 4.8, ips: 6.11610 samples/s, eta: 2:56:20
[2024/07/27 14:42:17] ppocr INFO: epoch: [1094/1500], global_step: 3282, lr: 0.001000, loss: 1.205277, loss_shrink_maps: 0.619651, loss_threshold_maps: 0.468524, loss_binary_maps: 0.122076, avg_reader_cost: 1.66224 s, avg_batch_cost: 1.80887 s, avg_samples: 7.7, ips: 4.25680 samples/s, eta: 2:56:02
[2024/07/27 14:42:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:42:27] ppocr INFO: epoch: [1095/1500], global_step: 3285, lr: 0.001000, loss: 1.199754, loss_shrink_maps: 0.616571, loss_threshold_maps: 0.465047, loss_binary_maps: 0.121203, avg_reader_cost: 2.34288 s, avg_batch_cost: 2.60304 s, avg_samples: 12.5, ips: 4.80208 samples/s, eta: 2:55:36
[2024/07/27 14:42:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:42:37] ppocr INFO: epoch: [1096/1500], global_step: 3288, lr: 0.001000, loss: 1.205277, loss_shrink_maps: 0.620703, loss_threshold_maps: 0.472576, loss_binary_maps: 0.121951, avg_reader_cost: 2.27934 s, avg_batch_cost: 2.64921 s, avg_samples: 12.5, ips: 4.71839 samples/s, eta: 2:55:11
[2024/07/27 14:42:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:42:47] ppocr INFO: epoch: [1097/1500], global_step: 3290, lr: 0.001000, loss: 1.205277, loss_shrink_maps: 0.621343, loss_threshold_maps: 0.472576, loss_binary_maps: 0.121951, avg_reader_cost: 1.45302 s, avg_batch_cost: 1.63459 s, avg_samples: 9.6, ips: 5.87304 samples/s, eta: 2:54:53
[2024/07/27 14:42:47] ppocr INFO: epoch: [1097/1500], global_step: 3291, lr: 0.001000, loss: 1.225060, loss_shrink_maps: 0.621343, loss_threshold_maps: 0.479268, loss_binary_maps: 0.122550, avg_reader_cost: 0.86360 s, avg_batch_cost: 0.91919 s, avg_samples: 2.9, ips: 3.15494 samples/s, eta: 2:54:44
[2024/07/27 14:42:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:42:57] ppocr INFO: epoch: [1098/1500], global_step: 3294, lr: 0.001000, loss: 1.226036, loss_shrink_maps: 0.624959, loss_threshold_maps: 0.484747, loss_binary_maps: 0.123461, avg_reader_cost: 2.38159 s, avg_batch_cost: 2.63554 s, avg_samples: 12.5, ips: 4.74287 samples/s, eta: 2:54:19
[2024/07/27 14:42:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:43:07] ppocr INFO: epoch: [1099/1500], global_step: 3297, lr: 0.001000, loss: 1.226036, loss_shrink_maps: 0.624959, loss_threshold_maps: 0.484747, loss_binary_maps: 0.123461, avg_reader_cost: 2.25415 s, avg_batch_cost: 2.64389 s, avg_samples: 12.5, ips: 4.72789 samples/s, eta: 2:53:53
[2024/07/27 14:43:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:43:17] ppocr INFO: epoch: [1100/1500], global_step: 3300, lr: 0.001000, loss: 1.244105, loss_shrink_maps: 0.626826, loss_threshold_maps: 0.489882, loss_binary_maps: 0.123838, avg_reader_cost: 2.16453 s, avg_batch_cost: 2.53453 s, avg_samples: 12.5, ips: 4.93187 samples/s, eta: 2:53:26

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:58,  8.49it/s]
eval model::   1%|          | 3/500 [00:00<00:41, 11.97it/s]
eval model::   1%|          | 6/500 [00:00<00:28, 17.21it/s]
eval model::   2%|▏         | 8/500 [00:00<00:28, 17.28it/s]
eval model::   2%|▏         | 11/500 [00:00<00:27, 17.59it/s]
eval model::   3%|▎         | 14/500 [00:00<00:25, 18.77it/s]
eval model::   3%|▎         | 17/500 [00:00<00:23, 20.96it/s]
eval model::   4%|▍         | 20/500 [00:01<00:24, 19.61it/s]
eval model::   5%|▍         | 24/500 [00:01<00:21, 22.13it/s]
eval model::   5%|▌         | 27/500 [00:01<00:22, 20.90it/s]
eval model::   6%|▌         | 30/500 [00:01<00:21, 21.66it/s]
eval model::   7%|▋         | 33/500 [00:01<00:25, 18.33it/s]
eval model::   7%|▋         | 35/500 [00:01<00:26, 17.82it/s]
eval model::   8%|▊         | 38/500 [00:01<00:23, 20.03it/s]
eval model::   8%|▊         | 41/500 [00:02<00:23, 19.18it/s]
eval model::   9%|▊         | 43/500 [00:02<00:25, 17.76it/s]
eval model::   9%|▉         | 46/500 [00:02<00:25, 17.54it/s]
eval model::  10%|▉         | 49/500 [00:02<00:23, 19.25it/s]
eval model::  10%|█         | 52/500 [00:02<00:21, 20.94it/s]
eval model::  11%|█         | 55/500 [00:02<00:20, 21.79it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:23, 19.03it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:26, 16.77it/s]
eval model::  13%|█▎        | 64/500 [00:03<00:23, 18.41it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:21, 20.38it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:19, 22.03it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:18, 22.76it/s]
eval model::  15%|█▌        | 76/500 [00:03<00:18, 23.24it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:18, 22.52it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:20, 20.28it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:19, 21.02it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:21, 19.24it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:23, 17.15it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:22, 18.12it/s]
eval model::  19%|█▉        | 95/500 [00:04<00:21, 18.47it/s]
eval model::  20%|█▉        | 98/500 [00:05<00:21, 19.01it/s]
eval model::  20%|██        | 100/500 [00:05<00:21, 18.38it/s]
eval model::  21%|██        | 103/500 [00:05<00:18, 21.03it/s]
eval model::  21%|██        | 106/500 [00:05<00:18, 21.45it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:19, 19.70it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:20, 18.84it/s]
eval model::  23%|██▎       | 115/500 [00:05<00:20, 18.62it/s]
eval model::  24%|██▎       | 118/500 [00:06<00:19, 19.64it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:20, 18.28it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:21, 17.69it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:21, 17.73it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:18, 19.79it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:20, 17.85it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:18, 19.42it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:17, 20.60it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:17, 20.94it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:16, 22.14it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:18, 19.26it/s]
eval model::  30%|███       | 150/500 [00:07<00:17, 20.03it/s]
eval model::  31%|███       | 153/500 [00:07<00:20, 17.18it/s]
eval model::  31%|███       | 156/500 [00:08<00:17, 19.33it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:16, 20.23it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:20, 16.61it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:19, 17.20it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:18, 18.12it/s]
eval model::  34%|███▍      | 170/500 [00:08<00:16, 19.61it/s]
eval model::  35%|███▍      | 173/500 [00:08<00:16, 19.79it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:18, 17.81it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:16, 18.95it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:18, 17.20it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:16, 19.68it/s]
eval model::  37%|███▋      | 187/500 [00:09<00:15, 20.70it/s]
eval model::  38%|███▊      | 190/500 [00:09<00:14, 21.08it/s]
eval model::  39%|███▊      | 193/500 [00:09<00:13, 22.13it/s]
eval model::  39%|███▉      | 196/500 [00:10<00:14, 20.73it/s]
eval model::  40%|███▉      | 199/500 [00:10<00:14, 21.27it/s]
eval model::  40%|████      | 202/500 [00:10<00:14, 21.00it/s]
eval model::  41%|████      | 205/500 [00:10<00:19, 14.97it/s]
eval model::  42%|████▏     | 208/500 [00:10<00:19, 15.26it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:20, 14.07it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.69it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:20, 13.91it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:20, 13.57it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:17, 15.75it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:19, 13.99it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:16, 17.10it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:13, 20.49it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:12, 20.78it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:12, 21.44it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:11, 22.02it/s]
eval model::  48%|████▊     | 242/500 [00:12<00:14, 17.89it/s]
eval model::  49%|████▉     | 245/500 [00:12<00:12, 19.89it/s]
eval model::  50%|████▉     | 248/500 [00:13<00:12, 19.48it/s]
eval model::  50%|█████     | 251/500 [00:13<00:12, 20.18it/s]
eval model::  51%|█████     | 254/500 [00:13<00:11, 22.10it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:10, 23.80it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:10, 22.42it/s]
eval model::  53%|█████▎    | 263/500 [00:13<00:10, 21.90it/s]
eval model::  53%|█████▎    | 266/500 [00:13<00:12, 19.28it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:11, 19.74it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:11, 20.56it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:12, 18.16it/s]
eval model::  55%|█████▌    | 277/500 [00:14<00:12, 18.38it/s]
eval model::  56%|█████▌    | 280/500 [00:14<00:11, 19.98it/s]
eval model::  57%|█████▋    | 283/500 [00:14<00:10, 20.73it/s]
eval model::  57%|█████▋    | 286/500 [00:15<00:17, 12.03it/s]
eval model::  58%|█████▊    | 289/500 [00:15<00:14, 14.66it/s]
eval model::  58%|█████▊    | 292/500 [00:15<00:12, 16.70it/s]
eval model::  59%|█████▉    | 295/500 [00:15<00:14, 13.95it/s]
eval model::  60%|█████▉    | 299/500 [00:15<00:11, 17.70it/s]
eval model::  60%|██████    | 302/500 [00:16<00:11, 17.34it/s]
eval model::  61%|██████    | 305/500 [00:16<00:10, 17.87it/s]
eval model::  62%|██████▏   | 308/500 [00:16<00:09, 19.26it/s]
eval model::  62%|██████▏   | 311/500 [00:16<00:09, 19.39it/s]
eval model::  63%|██████▎   | 314/500 [00:16<00:09, 19.24it/s]
eval model::  63%|██████▎   | 317/500 [00:16<00:09, 20.10it/s]
eval model::  64%|██████▍   | 320/500 [00:17<00:09, 18.80it/s]
eval model::  64%|██████▍   | 322/500 [00:17<00:10, 16.29it/s]
eval model::  65%|██████▌   | 325/500 [00:17<00:09, 18.17it/s]
eval model::  65%|██████▌   | 327/500 [00:17<00:09, 18.38it/s]
eval model::  66%|██████▌   | 329/500 [00:17<00:10, 15.90it/s]
eval model::  66%|██████▌   | 331/500 [00:17<00:10, 16.55it/s]
eval model::  67%|██████▋   | 334/500 [00:17<00:08, 18.53it/s]
eval model::  67%|██████▋   | 337/500 [00:17<00:08, 19.50it/s]
eval model::  68%|██████▊   | 340/500 [00:18<00:11, 14.30it/s]
eval model::  69%|██████▊   | 343/500 [00:18<00:09, 16.60it/s]
eval model::  69%|██████▉   | 346/500 [00:18<00:08, 19.17it/s]
eval model::  70%|██████▉   | 349/500 [00:18<00:07, 20.76it/s]
eval model::  70%|███████   | 352/500 [00:18<00:07, 20.81it/s]
eval model::  71%|███████   | 355/500 [00:18<00:06, 21.50it/s]
eval model::  72%|███████▏  | 358/500 [00:19<00:07, 20.07it/s]
eval model::  72%|███████▏  | 361/500 [00:19<00:07, 19.71it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:07, 19.22it/s]
eval model::  73%|███████▎  | 367/500 [00:19<00:06, 20.94it/s]
eval model::  74%|███████▍  | 370/500 [00:19<00:05, 21.91it/s]
eval model::  75%|███████▍  | 373/500 [00:19<00:06, 20.79it/s]
eval model::  75%|███████▌  | 376/500 [00:19<00:06, 20.48it/s]
eval model::  76%|███████▌  | 379/500 [00:20<00:05, 22.10it/s]
eval model::  76%|███████▋  | 382/500 [00:20<00:05, 20.30it/s]
eval model::  77%|███████▋  | 386/500 [00:20<00:08, 13.98it/s]
eval model::  78%|███████▊  | 390/500 [00:20<00:06, 17.24it/s]
eval model::  79%|███████▊  | 393/500 [00:20<00:05, 18.38it/s]
eval model::  79%|███████▉  | 396/500 [00:21<00:05, 19.11it/s]
eval model::  80%|███████▉  | 399/500 [00:21<00:04, 20.94it/s]
eval model::  80%|████████  | 402/500 [00:21<00:04, 20.42it/s]
eval model::  81%|████████  | 405/500 [00:21<00:04, 21.19it/s]
eval model::  82%|████████▏ | 408/500 [00:21<00:04, 22.65it/s]
eval model::  82%|████████▏ | 411/500 [00:21<00:03, 23.63it/s]
eval model::  83%|████████▎ | 414/500 [00:21<00:03, 23.94it/s]
eval model::  83%|████████▎ | 417/500 [00:22<00:03, 21.49it/s]
eval model::  84%|████████▍ | 420/500 [00:22<00:05, 15.28it/s]
eval model::  85%|████████▍ | 423/500 [00:22<00:04, 16.98it/s]
eval model::  85%|████████▌ | 425/500 [00:22<00:04, 15.18it/s]
eval model::  86%|████████▌ | 428/500 [00:22<00:04, 16.31it/s]
eval model::  86%|████████▌ | 431/500 [00:22<00:04, 16.99it/s]
eval model::  87%|████████▋ | 435/500 [00:23<00:03, 19.86it/s]
eval model::  88%|████████▊ | 438/500 [00:23<00:02, 21.83it/s]
eval model::  88%|████████▊ | 441/500 [00:23<00:02, 20.83it/s]
eval model::  89%|████████▉ | 444/500 [00:23<00:02, 22.25it/s]
eval model::  89%|████████▉ | 447/500 [00:23<00:02, 23.16it/s]
eval model::  90%|█████████ | 450/500 [00:23<00:02, 20.25it/s]
eval model::  91%|█████████ | 453/500 [00:23<00:02, 21.52it/s]
eval model::  91%|█████████ | 456/500 [00:24<00:01, 22.25it/s]
eval model::  92%|█████████▏| 459/500 [00:24<00:01, 22.15it/s]
eval model::  92%|█████████▏| 462/500 [00:24<00:02, 16.86it/s]
eval model::  93%|█████████▎| 464/500 [00:24<00:02, 17.20it/s]
eval model::  93%|█████████▎| 466/500 [00:24<00:02, 15.73it/s]
eval model::  94%|█████████▎| 468/500 [00:24<00:01, 16.38it/s]
eval model::  94%|█████████▍| 471/500 [00:24<00:01, 18.65it/s]
eval model::  95%|█████████▍| 473/500 [00:25<00:01, 17.57it/s]
eval model::  95%|█████████▌| 475/500 [00:25<00:01, 17.83it/s]
eval model::  96%|█████████▌| 479/500 [00:25<00:00, 21.51it/s]
eval model::  96%|█████████▋| 482/500 [00:25<00:00, 21.50it/s]
eval model::  97%|█████████▋| 486/500 [00:25<00:00, 23.38it/s]
eval model::  98%|█████████▊| 489/500 [00:25<00:00, 21.97it/s]
eval model::  98%|█████████▊| 492/500 [00:25<00:00, 19.94it/s]
eval model::  99%|█████████▉| 495/500 [00:26<00:00, 20.94it/s]
eval model:: 100%|█████████▉| 498/500 [00:26<00:00, 21.93it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 19.03it/s]
[2024/07/27 14:43:43] ppocr INFO: cur metric, precision: 0.7910879629629629, recall: 0.6581608088589311, hmean: 0.7185282522996057, fps: 45.07907300154631
[2024/07/27 14:43:43] ppocr INFO: best metric, hmean: 0.7301425661914459, precision: 0.7747163695299838, recall: 0.6904188733750601, fps: 43.582139874688714, best_epoch: 960
[2024/07/27 14:43:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:43:52] ppocr INFO: epoch: [1101/1500], global_step: 3303, lr: 0.001000, loss: 1.249068, loss_shrink_maps: 0.629452, loss_threshold_maps: 0.496749, loss_binary_maps: 0.124810, avg_reader_cost: 2.29735 s, avg_batch_cost: 2.54349 s, avg_samples: 12.5, ips: 4.91451 samples/s, eta: 2:53:00
[2024/07/27 14:43:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:44:02] ppocr INFO: epoch: [1102/1500], global_step: 3306, lr: 0.001000, loss: 1.249068, loss_shrink_maps: 0.629452, loss_threshold_maps: 0.494011, loss_binary_maps: 0.124810, avg_reader_cost: 2.42307 s, avg_batch_cost: 2.69427 s, avg_samples: 12.5, ips: 4.63948 samples/s, eta: 2:52:34
[2024/07/27 14:44:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:44:12] ppocr INFO: epoch: [1103/1500], global_step: 3309, lr: 0.001000, loss: 1.249068, loss_shrink_maps: 0.633149, loss_threshold_maps: 0.489830, loss_binary_maps: 0.125253, avg_reader_cost: 2.21279 s, avg_batch_cost: 2.57380 s, avg_samples: 12.5, ips: 4.85664 samples/s, eta: 2:52:08
[2024/07/27 14:44:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:44:21] ppocr INFO: epoch: [1104/1500], global_step: 3310, lr: 0.001000, loss: 1.240769, loss_shrink_maps: 0.626826, loss_threshold_maps: 0.488064, loss_binary_maps: 0.123838, avg_reader_cost: 0.55327 s, avg_batch_cost: 0.82102 s, avg_samples: 4.8, ips: 5.84635 samples/s, eta: 2:52:00
[2024/07/27 14:44:22] ppocr INFO: epoch: [1104/1500], global_step: 3312, lr: 0.001000, loss: 1.240769, loss_shrink_maps: 0.632979, loss_threshold_maps: 0.488064, loss_binary_maps: 0.125224, avg_reader_cost: 1.73454 s, avg_batch_cost: 1.88181 s, avg_samples: 7.7, ips: 4.09180 samples/s, eta: 2:51:43
[2024/07/27 14:44:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:44:32] ppocr INFO: epoch: [1105/1500], global_step: 3315, lr: 0.001000, loss: 1.240769, loss_shrink_maps: 0.632979, loss_threshold_maps: 0.483890, loss_binary_maps: 0.125224, avg_reader_cost: 2.11152 s, avg_batch_cost: 2.44994 s, avg_samples: 12.5, ips: 5.10218 samples/s, eta: 2:51:16
[2024/07/27 14:44:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:44:42] ppocr INFO: epoch: [1106/1500], global_step: 3318, lr: 0.001000, loss: 1.226875, loss_shrink_maps: 0.614264, loss_threshold_maps: 0.478819, loss_binary_maps: 0.121216, avg_reader_cost: 2.24414 s, avg_batch_cost: 2.62309 s, avg_samples: 12.5, ips: 4.76537 samples/s, eta: 2:50:50
[2024/07/27 14:44:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:44:51] ppocr INFO: epoch: [1107/1500], global_step: 3320, lr: 0.001000, loss: 1.226875, loss_shrink_maps: 0.614264, loss_threshold_maps: 0.478819, loss_binary_maps: 0.121216, avg_reader_cost: 1.35791 s, avg_batch_cost: 1.69187 s, avg_samples: 9.6, ips: 5.67418 samples/s, eta: 2:50:33
[2024/07/27 14:44:52] ppocr INFO: epoch: [1107/1500], global_step: 3321, lr: 0.001000, loss: 1.243387, loss_shrink_maps: 0.627295, loss_threshold_maps: 0.478819, loss_binary_maps: 0.123576, avg_reader_cost: 0.89204 s, avg_batch_cost: 0.94733 s, avg_samples: 2.9, ips: 3.06122 samples/s, eta: 2:50:24
[2024/07/27 14:44:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:45:02] ppocr INFO: epoch: [1108/1500], global_step: 3324, lr: 0.001000, loss: 1.243387, loss_shrink_maps: 0.627295, loss_threshold_maps: 0.478177, loss_binary_maps: 0.123576, avg_reader_cost: 2.28287 s, avg_batch_cost: 2.70505 s, avg_samples: 12.5, ips: 4.62099 samples/s, eta: 2:49:59
[2024/07/27 14:45:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:45:11] ppocr INFO: epoch: [1109/1500], global_step: 3327, lr: 0.001000, loss: 1.196200, loss_shrink_maps: 0.596071, loss_threshold_maps: 0.475320, loss_binary_maps: 0.117909, avg_reader_cost: 2.34030 s, avg_batch_cost: 2.58039 s, avg_samples: 12.5, ips: 4.84424 samples/s, eta: 2:49:33
[2024/07/27 14:45:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:45:21] ppocr INFO: epoch: [1110/1500], global_step: 3330, lr: 0.001000, loss: 1.162649, loss_shrink_maps: 0.585231, loss_threshold_maps: 0.465912, loss_binary_maps: 0.115793, avg_reader_cost: 2.23080 s, avg_batch_cost: 2.62252 s, avg_samples: 12.5, ips: 4.76641 samples/s, eta: 2:49:07
[2024/07/27 14:45:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:45:31] ppocr INFO: epoch: [1111/1500], global_step: 3333, lr: 0.001000, loss: 1.162649, loss_shrink_maps: 0.585231, loss_threshold_maps: 0.466155, loss_binary_maps: 0.115793, avg_reader_cost: 2.41675 s, avg_batch_cost: 2.66489 s, avg_samples: 12.5, ips: 4.69062 samples/s, eta: 2:48:41
[2024/07/27 14:45:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:45:42] ppocr INFO: epoch: [1112/1500], global_step: 3336, lr: 0.001000, loss: 1.162248, loss_shrink_maps: 0.588499, loss_threshold_maps: 0.466155, loss_binary_maps: 0.115990, avg_reader_cost: 2.39162 s, avg_batch_cost: 2.63348 s, avg_samples: 12.5, ips: 4.74656 samples/s, eta: 2:48:15
[2024/07/27 14:45:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:45:51] ppocr INFO: epoch: [1113/1500], global_step: 3339, lr: 0.001000, loss: 1.203479, loss_shrink_maps: 0.607625, loss_threshold_maps: 0.477404, loss_binary_maps: 0.119757, avg_reader_cost: 2.32277 s, avg_batch_cost: 2.56527 s, avg_samples: 12.5, ips: 4.87278 samples/s, eta: 2:47:49
[2024/07/27 14:45:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:46:00] ppocr INFO: epoch: [1114/1500], global_step: 3340, lr: 0.001000, loss: 1.254982, loss_shrink_maps: 0.638453, loss_threshold_maps: 0.480981, loss_binary_maps: 0.125543, avg_reader_cost: 0.68212 s, avg_batch_cost: 0.78909 s, avg_samples: 4.8, ips: 6.08292 samples/s, eta: 2:47:40
[2024/07/27 14:46:01] ppocr INFO: epoch: [1114/1500], global_step: 3342, lr: 0.001000, loss: 1.203479, loss_shrink_maps: 0.607625, loss_threshold_maps: 0.483125, loss_binary_maps: 0.119757, avg_reader_cost: 1.67021 s, avg_batch_cost: 1.81749 s, avg_samples: 7.7, ips: 4.23661 samples/s, eta: 2:47:23
[2024/07/27 14:46:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:46:11] ppocr INFO: epoch: [1115/1500], global_step: 3345, lr: 0.001000, loss: 1.217206, loss_shrink_maps: 0.615025, loss_threshold_maps: 0.483125, loss_binary_maps: 0.121597, avg_reader_cost: 2.29906 s, avg_batch_cost: 2.56408 s, avg_samples: 12.5, ips: 4.87504 samples/s, eta: 2:46:57
[2024/07/27 14:46:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:46:21] ppocr INFO: epoch: [1116/1500], global_step: 3348, lr: 0.001000, loss: 1.217206, loss_shrink_maps: 0.623131, loss_threshold_maps: 0.483125, loss_binary_maps: 0.122388, avg_reader_cost: 2.31719 s, avg_batch_cost: 2.56271 s, avg_samples: 12.5, ips: 4.87764 samples/s, eta: 2:46:30
[2024/07/27 14:46:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:46:30] ppocr INFO: epoch: [1117/1500], global_step: 3350, lr: 0.001000, loss: 1.191055, loss_shrink_maps: 0.613893, loss_threshold_maps: 0.473937, loss_binary_maps: 0.120643, avg_reader_cost: 1.38289 s, avg_batch_cost: 1.64598 s, avg_samples: 9.6, ips: 5.83239 samples/s, eta: 2:46:13
[2024/07/27 14:46:30] ppocr INFO: epoch: [1117/1500], global_step: 3351, lr: 0.001000, loss: 1.202501, loss_shrink_maps: 0.615161, loss_threshold_maps: 0.475790, loss_binary_maps: 0.120643, avg_reader_cost: 0.86921 s, avg_batch_cost: 0.92462 s, avg_samples: 2.9, ips: 3.13642 samples/s, eta: 2:46:04
[2024/07/27 14:46:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:46:41] ppocr INFO: epoch: [1118/1500], global_step: 3354, lr: 0.001000, loss: 1.202501, loss_shrink_maps: 0.615161, loss_threshold_maps: 0.476392, loss_binary_maps: 0.120643, avg_reader_cost: 2.41063 s, avg_batch_cost: 2.64286 s, avg_samples: 12.5, ips: 4.72972 samples/s, eta: 2:45:38
[2024/07/27 14:46:41] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:46:50] ppocr INFO: epoch: [1119/1500], global_step: 3357, lr: 0.001000, loss: 1.191055, loss_shrink_maps: 0.607055, loss_threshold_maps: 0.475564, loss_binary_maps: 0.119656, avg_reader_cost: 2.22862 s, avg_batch_cost: 2.57827 s, avg_samples: 12.5, ips: 4.84821 samples/s, eta: 2:45:12
[2024/07/27 14:46:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:47:00] ppocr INFO: epoch: [1120/1500], global_step: 3360, lr: 0.001000, loss: 1.177236, loss_shrink_maps: 0.594231, loss_threshold_maps: 0.473110, loss_binary_maps: 0.117768, avg_reader_cost: 2.33824 s, avg_batch_cost: 2.57763 s, avg_samples: 12.5, ips: 4.84942 samples/s, eta: 2:44:46

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<01:02,  8.04it/s]
eval model::   1%|          | 4/500 [00:00<00:27, 17.80it/s]
eval model::   1%|          | 6/500 [00:00<00:26, 18.34it/s]
eval model::   2%|▏         | 8/500 [00:00<00:27, 18.08it/s]
eval model::   2%|▏         | 11/500 [00:00<00:28, 16.88it/s]
eval model::   3%|▎         | 13/500 [00:00<00:28, 17.16it/s]
eval model::   3%|▎         | 15/500 [00:00<00:27, 17.80it/s]
eval model::   4%|▎         | 18/500 [00:00<00:24, 19.85it/s]
eval model::   4%|▍         | 21/500 [00:01<00:24, 19.57it/s]
eval model::   5%|▍         | 24/500 [00:01<00:22, 21.51it/s]
eval model::   5%|▌         | 27/500 [00:01<00:21, 21.80it/s]
eval model::   6%|▌         | 30/500 [00:01<00:23, 19.70it/s]
eval model::   7%|▋         | 33/500 [00:01<00:22, 20.39it/s]
eval model::   7%|▋         | 36/500 [00:01<00:24, 18.80it/s]
eval model::   8%|▊         | 38/500 [00:02<00:24, 18.91it/s]
eval model::   8%|▊         | 40/500 [00:02<00:25, 17.88it/s]
eval model::   8%|▊         | 42/500 [00:02<00:26, 17.07it/s]
eval model::   9%|▉         | 45/500 [00:02<00:24, 18.71it/s]
eval model::   9%|▉         | 47/500 [00:02<00:27, 16.47it/s]
eval model::  10%|█         | 50/500 [00:02<00:24, 18.22it/s]
eval model::  11%|█         | 53/500 [00:02<00:21, 20.85it/s]
eval model::  11%|█         | 56/500 [00:02<00:21, 21.11it/s]
eval model::  12%|█▏        | 59/500 [00:03<00:21, 20.54it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:25, 17.18it/s]
eval model::  13%|█▎        | 64/500 [00:03<00:26, 16.51it/s]
eval model::  14%|█▎        | 68/500 [00:03<00:21, 20.06it/s]
eval model::  14%|█▍        | 71/500 [00:03<00:20, 21.36it/s]
eval model::  15%|█▍        | 74/500 [00:03<00:20, 20.43it/s]
eval model::  15%|█▌        | 77/500 [00:04<00:20, 20.17it/s]
eval model::  16%|█▌        | 80/500 [00:04<00:19, 21.93it/s]
eval model::  17%|█▋        | 83/500 [00:04<00:19, 21.28it/s]
eval model::  17%|█▋        | 86/500 [00:04<00:20, 20.31it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:22, 17.91it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:24, 16.61it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:24, 16.66it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:21, 18.68it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:19, 20.09it/s]
eval model::  20%|██        | 102/500 [00:05<00:19, 20.02it/s]
eval model::  21%|██        | 105/500 [00:05<00:17, 22.33it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:16, 23.15it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:17, 22.51it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:17, 22.35it/s]
eval model::  23%|██▎       | 117/500 [00:05<00:17, 21.58it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:19, 19.26it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:18, 20.89it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:21, 17.02it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:19, 18.82it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:22, 16.06it/s]
eval model::  27%|██▋       | 135/500 [00:07<00:19, 18.55it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:18, 19.10it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:18, 19.81it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:16, 21.63it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:18, 19.04it/s]
eval model::  30%|███       | 150/500 [00:07<00:17, 19.79it/s]
eval model::  31%|███       | 153/500 [00:07<00:17, 20.19it/s]
eval model::  31%|███       | 156/500 [00:08<00:16, 20.37it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:19, 17.69it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:23, 14.15it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:24, 14.01it/s]
eval model::  33%|███▎      | 165/500 [00:08<00:22, 14.73it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:21, 15.69it/s]
eval model::  34%|███▍      | 170/500 [00:09<00:18, 17.48it/s]
eval model::  34%|███▍      | 172/500 [00:09<00:19, 17.00it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:20, 15.95it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:20, 16.05it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:18, 17.67it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:20, 15.75it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:18, 17.43it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:17, 17.97it/s]
eval model::  38%|███▊      | 188/500 [00:10<00:17, 17.85it/s]
eval model::  38%|███▊      | 190/500 [00:10<00:16, 18.30it/s]
eval model::  38%|███▊      | 192/500 [00:10<00:17, 17.55it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:16, 18.07it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:14, 20.67it/s]
eval model::  40%|████      | 201/500 [00:10<00:14, 20.61it/s]
eval model::  41%|████      | 204/500 [00:10<00:13, 21.55it/s]
eval model::  41%|████▏     | 207/500 [00:11<00:21, 13.61it/s]
eval model::  42%|████▏     | 209/500 [00:11<00:20, 13.98it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:20, 14.20it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:19, 14.58it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:21, 13.00it/s]
eval model::  43%|████▎     | 217/500 [00:12<00:23, 12.20it/s]
eval model::  44%|████▍     | 219/500 [00:12<00:20, 13.49it/s]
eval model::  44%|████▍     | 221/500 [00:12<00:24, 11.35it/s]
eval model::  45%|████▍     | 223/500 [00:12<00:23, 12.03it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:18, 14.42it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:14, 18.02it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:13, 19.88it/s]
eval model::  47%|████▋     | 236/500 [00:13<00:12, 20.41it/s]
eval model::  48%|████▊     | 239/500 [00:13<00:11, 22.35it/s]
eval model::  48%|████▊     | 242/500 [00:13<00:13, 18.68it/s]
eval model::  49%|████▉     | 245/500 [00:13<00:12, 20.09it/s]
eval model::  50%|████▉     | 248/500 [00:13<00:12, 20.95it/s]
eval model::  50%|█████     | 251/500 [00:13<00:11, 21.41it/s]
eval model::  51%|█████     | 254/500 [00:13<00:10, 22.91it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:10, 23.96it/s]
eval model::  52%|█████▏    | 260/500 [00:14<00:09, 25.36it/s]
eval model::  53%|█████▎    | 263/500 [00:14<00:09, 24.92it/s]
eval model::  53%|█████▎    | 266/500 [00:14<00:10, 21.54it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:11, 20.49it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:10, 21.19it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:11, 20.31it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:10, 21.47it/s]
eval model::  56%|█████▌    | 281/500 [00:15<00:09, 22.65it/s]
eval model::  57%|█████▋    | 284/500 [00:15<00:09, 23.63it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:18, 11.62it/s]
eval model::  58%|█████▊    | 289/500 [00:15<00:16, 12.74it/s]
eval model::  58%|█████▊    | 292/500 [00:16<00:14, 13.99it/s]
eval model::  59%|█████▉    | 294/500 [00:16<00:15, 12.90it/s]
eval model::  59%|█████▉    | 296/500 [00:16<00:17, 11.65it/s]
eval model::  60%|█████▉    | 299/500 [00:16<00:14, 14.35it/s]
eval model::  60%|██████    | 301/500 [00:16<00:15, 12.83it/s]
eval model::  61%|██████    | 304/500 [00:16<00:13, 14.52it/s]
eval model::  61%|██████▏   | 307/500 [00:17<00:11, 16.99it/s]
eval model::  62%|██████▏   | 309/500 [00:17<00:10, 17.51it/s]
eval model::  62%|██████▏   | 312/500 [00:17<00:09, 18.97it/s]
eval model::  63%|██████▎   | 315/500 [00:17<00:09, 19.00it/s]
eval model::  64%|██████▎   | 318/500 [00:17<00:08, 20.38it/s]
eval model::  64%|██████▍   | 321/500 [00:17<00:08, 20.55it/s]
eval model::  65%|██████▍   | 324/500 [00:17<00:09, 19.21it/s]
eval model::  65%|██████▌   | 327/500 [00:18<00:08, 21.02it/s]
eval model::  66%|██████▌   | 330/500 [00:18<00:08, 20.69it/s]
eval model::  67%|██████▋   | 333/500 [00:18<00:08, 20.79it/s]
eval model::  67%|██████▋   | 336/500 [00:18<00:07, 21.75it/s]
eval model::  68%|██████▊   | 339/500 [00:18<00:07, 21.63it/s]
eval model::  68%|██████▊   | 342/500 [00:18<00:09, 16.25it/s]
eval model::  69%|██████▉   | 345/500 [00:18<00:08, 18.20it/s]
eval model::  70%|██████▉   | 348/500 [00:19<00:07, 19.26it/s]
eval model::  70%|███████   | 351/500 [00:19<00:07, 20.72it/s]
eval model::  71%|███████   | 354/500 [00:19<00:06, 22.26it/s]
eval model::  71%|███████▏  | 357/500 [00:19<00:07, 19.99it/s]
eval model::  72%|███████▏  | 360/500 [00:19<00:06, 20.91it/s]
eval model::  73%|███████▎  | 363/500 [00:19<00:07, 19.27it/s]
eval model::  73%|███████▎  | 366/500 [00:20<00:07, 17.90it/s]
eval model::  74%|███████▍  | 369/500 [00:20<00:07, 18.52it/s]
eval model::  74%|███████▍  | 372/500 [00:20<00:06, 18.87it/s]
eval model::  75%|███████▌  | 376/500 [00:20<00:05, 22.11it/s]
eval model::  76%|███████▌  | 380/500 [00:20<00:05, 22.11it/s]
eval model::  77%|███████▋  | 384/500 [00:20<00:04, 24.55it/s]
eval model::  77%|███████▋  | 387/500 [00:21<00:07, 14.25it/s]
eval model::  78%|███████▊  | 390/500 [00:21<00:06, 16.15it/s]
eval model::  79%|███████▊  | 393/500 [00:21<00:06, 16.85it/s]
eval model::  79%|███████▉  | 396/500 [00:21<00:06, 16.70it/s]
eval model::  80%|███████▉  | 399/500 [00:21<00:05, 17.80it/s]
eval model::  80%|████████  | 401/500 [00:21<00:06, 16.26it/s]
eval model::  81%|████████  | 404/500 [00:22<00:05, 18.19it/s]
eval model::  81%|████████▏ | 407/500 [00:22<00:04, 19.33it/s]
eval model::  82%|████████▏ | 410/500 [00:22<00:04, 21.02it/s]
eval model::  83%|████████▎ | 413/500 [00:22<00:04, 21.37it/s]
eval model::  83%|████████▎ | 416/500 [00:22<00:04, 20.51it/s]
eval model::  84%|████████▍ | 419/500 [00:22<00:03, 20.78it/s]
eval model::  84%|████████▍ | 422/500 [00:23<00:05, 15.18it/s]
eval model::  85%|████████▍ | 424/500 [00:23<00:05, 14.64it/s]
eval model::  85%|████████▌ | 426/500 [00:23<00:05, 14.47it/s]
eval model::  86%|████████▌ | 429/500 [00:23<00:04, 16.65it/s]
eval model::  86%|████████▌ | 431/500 [00:23<00:04, 16.23it/s]
eval model::  87%|████████▋ | 434/500 [00:23<00:03, 18.26it/s]
eval model::  87%|████████▋ | 437/500 [00:23<00:03, 20.01it/s]
eval model::  88%|████████▊ | 440/500 [00:24<00:03, 19.29it/s]
eval model::  89%|████████▉ | 444/500 [00:24<00:02, 22.16it/s]
eval model::  89%|████████▉ | 447/500 [00:24<00:02, 23.01it/s]
eval model::  90%|█████████ | 450/500 [00:24<00:02, 21.23it/s]
eval model::  91%|█████████ | 454/500 [00:24<00:01, 23.65it/s]
eval model::  91%|█████████▏| 457/500 [00:24<00:01, 23.08it/s]
eval model::  92%|█████████▏| 460/500 [00:24<00:01, 20.80it/s]
eval model::  93%|█████████▎| 463/500 [00:25<00:02, 16.23it/s]
eval model::  93%|█████████▎| 465/500 [00:25<00:02, 15.35it/s]
eval model::  94%|█████████▎| 468/500 [00:25<00:01, 16.96it/s]
eval model::  94%|█████████▍| 471/500 [00:25<00:01, 18.96it/s]
eval model::  95%|█████████▍| 474/500 [00:25<00:01, 18.17it/s]
eval model::  95%|█████████▌| 477/500 [00:25<00:01, 20.63it/s]
eval model::  96%|█████████▌| 480/500 [00:26<00:00, 22.21it/s]
eval model::  97%|█████████▋| 483/500 [00:26<00:00, 22.96it/s]
eval model::  97%|█████████▋| 486/500 [00:26<00:00, 21.68it/s]
eval model::  98%|█████████▊| 489/500 [00:26<00:00, 20.80it/s]
eval model::  98%|█████████▊| 492/500 [00:26<00:00, 19.86it/s]
eval model::  99%|█████████▉| 495/500 [00:26<00:00, 21.42it/s]
eval model:: 100%|█████████▉| 499/500 [00:26<00:00, 25.05it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.57it/s]
[2024/07/27 14:47:27] ppocr INFO: cur metric, precision: 0.7657807308970099, recall: 0.6658642272508426, hmean: 0.7123358228174093, fps: 44.7780426615207
[2024/07/27 14:47:27] ppocr INFO: best metric, hmean: 0.7301425661914459, precision: 0.7747163695299838, recall: 0.6904188733750601, fps: 43.582139874688714, best_epoch: 960
[2024/07/27 14:47:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:47:36] ppocr INFO: epoch: [1121/1500], global_step: 3363, lr: 0.001000, loss: 1.202501, loss_shrink_maps: 0.613279, loss_threshold_maps: 0.475564, loss_binary_maps: 0.120200, avg_reader_cost: 2.17243 s, avg_batch_cost: 2.40901 s, avg_samples: 12.5, ips: 5.18886 samples/s, eta: 2:44:20
[2024/07/27 14:47:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:47:46] ppocr INFO: epoch: [1122/1500], global_step: 3366, lr: 0.001000, loss: 1.253095, loss_shrink_maps: 0.638708, loss_threshold_maps: 0.486001, loss_binary_maps: 0.124748, avg_reader_cost: 2.20781 s, avg_batch_cost: 2.55942 s, avg_samples: 12.5, ips: 4.88391 samples/s, eta: 2:43:53
[2024/07/27 14:47:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:47:56] ppocr INFO: epoch: [1123/1500], global_step: 3369, lr: 0.001000, loss: 1.270302, loss_shrink_maps: 0.656367, loss_threshold_maps: 0.490362, loss_binary_maps: 0.129339, avg_reader_cost: 2.25456 s, avg_batch_cost: 2.63280 s, avg_samples: 12.5, ips: 4.74779 samples/s, eta: 2:43:28
[2024/07/27 14:47:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:48:04] ppocr INFO: epoch: [1124/1500], global_step: 3370, lr: 0.001000, loss: 1.270302, loss_shrink_maps: 0.656367, loss_threshold_maps: 0.490362, loss_binary_maps: 0.129339, avg_reader_cost: 0.57187 s, avg_batch_cost: 0.77520 s, avg_samples: 4.8, ips: 6.19193 samples/s, eta: 2:43:19
[2024/07/27 14:48:05] ppocr INFO: epoch: [1124/1500], global_step: 3372, lr: 0.001000, loss: 1.270302, loss_shrink_maps: 0.656367, loss_threshold_maps: 0.490362, loss_binary_maps: 0.129339, avg_reader_cost: 1.64302 s, avg_batch_cost: 1.78975 s, avg_samples: 7.7, ips: 4.30228 samples/s, eta: 2:43:01
[2024/07/27 14:48:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:48:15] ppocr INFO: epoch: [1125/1500], global_step: 3375, lr: 0.001000, loss: 1.270302, loss_shrink_maps: 0.656367, loss_threshold_maps: 0.501618, loss_binary_maps: 0.129339, avg_reader_cost: 2.42472 s, avg_batch_cost: 2.66328 s, avg_samples: 12.5, ips: 4.69347 samples/s, eta: 2:42:36
[2024/07/27 14:48:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:48:25] ppocr INFO: epoch: [1126/1500], global_step: 3378, lr: 0.001000, loss: 1.286990, loss_shrink_maps: 0.657829, loss_threshold_maps: 0.501618, loss_binary_maps: 0.129969, avg_reader_cost: 2.25002 s, avg_batch_cost: 2.62432 s, avg_samples: 12.5, ips: 4.76313 samples/s, eta: 2:42:10
[2024/07/27 14:48:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:48:34] ppocr INFO: epoch: [1127/1500], global_step: 3380, lr: 0.001000, loss: 1.286990, loss_shrink_maps: 0.657829, loss_threshold_maps: 0.501618, loss_binary_maps: 0.129969, avg_reader_cost: 1.30409 s, avg_batch_cost: 1.60038 s, avg_samples: 9.6, ips: 5.99857 samples/s, eta: 2:41:52
[2024/07/27 14:48:35] ppocr INFO: epoch: [1127/1500], global_step: 3381, lr: 0.001000, loss: 1.286990, loss_shrink_maps: 0.657829, loss_threshold_maps: 0.496145, loss_binary_maps: 0.129969, avg_reader_cost: 0.84654 s, avg_batch_cost: 0.90174 s, avg_samples: 2.9, ips: 3.21601 samples/s, eta: 2:41:43
[2024/07/27 14:48:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:48:44] ppocr INFO: epoch: [1128/1500], global_step: 3384, lr: 0.001000, loss: 1.244908, loss_shrink_maps: 0.634740, loss_threshold_maps: 0.476427, loss_binary_maps: 0.125616, avg_reader_cost: 2.14798 s, avg_batch_cost: 2.46500 s, avg_samples: 12.5, ips: 5.07100 samples/s, eta: 2:41:17
[2024/07/27 14:48:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:48:55] ppocr INFO: epoch: [1129/1500], global_step: 3387, lr: 0.001000, loss: 1.161734, loss_shrink_maps: 0.581033, loss_threshold_maps: 0.465822, loss_binary_maps: 0.115789, avg_reader_cost: 2.48042 s, avg_batch_cost: 2.71807 s, avg_samples: 12.5, ips: 4.59885 samples/s, eta: 2:40:51
[2024/07/27 14:48:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:49:04] ppocr INFO: epoch: [1130/1500], global_step: 3390, lr: 0.001000, loss: 1.220297, loss_shrink_maps: 0.620290, loss_threshold_maps: 0.469077, loss_binary_maps: 0.122498, avg_reader_cost: 2.20501 s, avg_batch_cost: 2.54289 s, avg_samples: 12.5, ips: 4.91566 samples/s, eta: 2:40:25
[2024/07/27 14:49:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:49:14] ppocr INFO: epoch: [1131/1500], global_step: 3393, lr: 0.001000, loss: 1.228444, loss_shrink_maps: 0.613439, loss_threshold_maps: 0.471131, loss_binary_maps: 0.121189, avg_reader_cost: 2.37242 s, avg_batch_cost: 2.62073 s, avg_samples: 12.5, ips: 4.76967 samples/s, eta: 2:39:59
[2024/07/27 14:49:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:49:24] ppocr INFO: epoch: [1132/1500], global_step: 3396, lr: 0.001000, loss: 1.161734, loss_shrink_maps: 0.581033, loss_threshold_maps: 0.469077, loss_binary_maps: 0.115789, avg_reader_cost: 2.21494 s, avg_batch_cost: 2.52207 s, avg_samples: 12.5, ips: 4.95624 samples/s, eta: 2:39:33
[2024/07/27 14:49:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:49:34] ppocr INFO: epoch: [1133/1500], global_step: 3399, lr: 0.001000, loss: 1.178330, loss_shrink_maps: 0.603343, loss_threshold_maps: 0.469077, loss_binary_maps: 0.118915, avg_reader_cost: 2.31732 s, avg_batch_cost: 2.55342 s, avg_samples: 12.5, ips: 4.89540 samples/s, eta: 2:39:07
[2024/07/27 14:49:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:49:42] ppocr INFO: epoch: [1134/1500], global_step: 3400, lr: 0.001000, loss: 1.178330, loss_shrink_maps: 0.603343, loss_threshold_maps: 0.465440, loss_binary_maps: 0.118915, avg_reader_cost: 0.59733 s, avg_batch_cost: 0.76026 s, avg_samples: 4.8, ips: 6.31367 samples/s, eta: 2:38:58
[2024/07/27 14:49:43] ppocr INFO: epoch: [1134/1500], global_step: 3402, lr: 0.001000, loss: 1.194952, loss_shrink_maps: 0.609851, loss_threshold_maps: 0.459083, loss_binary_maps: 0.120490, avg_reader_cost: 1.61289 s, avg_batch_cost: 1.75949 s, avg_samples: 7.7, ips: 4.37626 samples/s, eta: 2:38:40
[2024/07/27 14:49:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:49:53] ppocr INFO: epoch: [1135/1500], global_step: 3405, lr: 0.001000, loss: 1.224246, loss_shrink_maps: 0.613537, loss_threshold_maps: 0.469747, loss_binary_maps: 0.121189, avg_reader_cost: 2.32166 s, avg_batch_cost: 2.58296 s, avg_samples: 12.5, ips: 4.83940 samples/s, eta: 2:38:14
[2024/07/27 14:49:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:50:03] ppocr INFO: epoch: [1136/1500], global_step: 3408, lr: 0.001000, loss: 1.224246, loss_shrink_maps: 0.613537, loss_threshold_maps: 0.467493, loss_binary_maps: 0.121189, avg_reader_cost: 2.23620 s, avg_batch_cost: 2.54769 s, avg_samples: 12.5, ips: 4.90641 samples/s, eta: 2:37:48
[2024/07/27 14:50:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:50:12] ppocr INFO: epoch: [1137/1500], global_step: 3410, lr: 0.001000, loss: 1.206864, loss_shrink_maps: 0.613537, loss_threshold_maps: 0.459079, loss_binary_maps: 0.121113, avg_reader_cost: 1.44483 s, avg_batch_cost: 1.73587 s, avg_samples: 9.6, ips: 5.53036 samples/s, eta: 2:37:31
[2024/07/27 14:50:13] ppocr INFO: epoch: [1137/1500], global_step: 3411, lr: 0.001000, loss: 1.206864, loss_shrink_maps: 0.618029, loss_threshold_maps: 0.459079, loss_binary_maps: 0.122010, avg_reader_cost: 0.91435 s, avg_batch_cost: 0.96953 s, avg_samples: 2.9, ips: 2.99114 samples/s, eta: 2:37:22
[2024/07/27 14:50:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:50:23] ppocr INFO: epoch: [1138/1500], global_step: 3414, lr: 0.001000, loss: 1.194952, loss_shrink_maps: 0.615919, loss_threshold_maps: 0.454425, loss_binary_maps: 0.121613, avg_reader_cost: 2.24892 s, avg_batch_cost: 2.60698 s, avg_samples: 12.5, ips: 4.79481 samples/s, eta: 2:36:56
[2024/07/27 14:50:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:50:32] ppocr INFO: epoch: [1139/1500], global_step: 3417, lr: 0.001000, loss: 1.254062, loss_shrink_maps: 0.636544, loss_threshold_maps: 0.467748, loss_binary_maps: 0.125762, avg_reader_cost: 2.18170 s, avg_batch_cost: 2.52876 s, avg_samples: 12.5, ips: 4.94313 samples/s, eta: 2:36:30
[2024/07/27 14:50:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:50:42] ppocr INFO: epoch: [1140/1500], global_step: 3420, lr: 0.001000, loss: 1.276793, loss_shrink_maps: 0.642946, loss_threshold_maps: 0.478260, loss_binary_maps: 0.127362, avg_reader_cost: 2.29482 s, avg_batch_cost: 2.53825 s, avg_samples: 12.5, ips: 4.92464 samples/s, eta: 2:36:04

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:51,  9.73it/s]
eval model::   1%|          | 3/500 [00:00<00:33, 14.82it/s]
eval model::   1%|          | 5/500 [00:00<00:29, 16.93it/s]
eval model::   2%|▏         | 8/500 [00:00<00:25, 19.31it/s]
eval model::   2%|▏         | 11/500 [00:00<00:25, 19.33it/s]
eval model::   3%|▎         | 13/500 [00:00<00:25, 19.23it/s]
eval model::   3%|▎         | 15/500 [00:00<00:25, 19.13it/s]
eval model::   4%|▎         | 18/500 [00:00<00:22, 21.66it/s]
eval model::   4%|▍         | 21/500 [00:01<00:24, 19.46it/s]
eval model::   5%|▍         | 24/500 [00:01<00:21, 21.64it/s]
eval model::   5%|▌         | 27/500 [00:01<00:22, 21.29it/s]
eval model::   6%|▌         | 30/500 [00:01<00:22, 20.74it/s]
eval model::   7%|▋         | 33/500 [00:01<00:22, 20.34it/s]
eval model::   7%|▋         | 36/500 [00:01<00:23, 19.70it/s]
eval model::   8%|▊         | 38/500 [00:01<00:23, 19.57it/s]
eval model::   8%|▊         | 40/500 [00:02<00:27, 16.74it/s]
eval model::   8%|▊         | 42/500 [00:02<00:26, 17.22it/s]
eval model::   9%|▉         | 45/500 [00:02<00:23, 19.30it/s]
eval model::   9%|▉         | 47/500 [00:02<00:25, 17.91it/s]
eval model::  10%|█         | 50/500 [00:02<00:24, 18.71it/s]
eval model::  11%|█         | 53/500 [00:02<00:22, 20.22it/s]
eval model::  11%|█         | 56/500 [00:02<00:22, 19.52it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:24, 17.93it/s]
eval model::  12%|█▏        | 60/500 [00:03<00:24, 18.06it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:30, 14.46it/s]
eval model::  13%|█▎        | 64/500 [00:03<00:30, 14.30it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:25, 16.71it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:22, 19.38it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:22, 19.30it/s]
eval model::  15%|█▌        | 76/500 [00:04<00:20, 20.27it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:21, 19.60it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:20, 20.53it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:20, 19.80it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:21, 18.81it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:22, 18.01it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:22, 18.44it/s]
eval model::  19%|█▉        | 95/500 [00:05<00:22, 18.32it/s]
eval model::  20%|█▉        | 98/500 [00:05<00:19, 20.46it/s]
eval model::  20%|██        | 101/500 [00:05<00:18, 21.42it/s]
eval model::  21%|██        | 104/500 [00:05<00:18, 20.89it/s]
eval model::  21%|██▏       | 107/500 [00:05<00:18, 21.22it/s]
eval model::  22%|██▏       | 110/500 [00:05<00:17, 21.69it/s]
eval model::  23%|██▎       | 113/500 [00:05<00:18, 21.30it/s]
eval model::  23%|██▎       | 116/500 [00:06<00:18, 20.69it/s]
eval model::  24%|██▍       | 119/500 [00:06<00:18, 20.19it/s]
eval model::  24%|██▍       | 122/500 [00:06<00:19, 19.33it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:20, 18.65it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:21, 17.69it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:20, 18.13it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:21, 17.19it/s]
eval model::  27%|██▋       | 133/500 [00:07<00:22, 16.59it/s]
eval model::  27%|██▋       | 136/500 [00:07<00:19, 18.62it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:18, 19.80it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:16, 21.19it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:16, 21.38it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:18, 18.80it/s]
eval model::  30%|███       | 151/500 [00:07<00:19, 18.24it/s]
eval model::  31%|███       | 155/500 [00:08<00:16, 21.11it/s]
eval model::  32%|███▏      | 158/500 [00:08<00:15, 21.56it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:22, 14.94it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:20, 16.72it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:19, 17.29it/s]
eval model::  34%|███▍      | 170/500 [00:08<00:17, 19.01it/s]
eval model::  35%|███▍      | 173/500 [00:09<00:17, 18.62it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:20, 15.91it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:17, 18.12it/s]
eval model::  36%|███▋      | 182/500 [00:09<00:18, 16.78it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:16, 19.31it/s]
eval model::  38%|███▊      | 189/500 [00:10<00:16, 19.40it/s]
eval model::  38%|███▊      | 192/500 [00:10<00:17, 17.39it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:17, 17.91it/s]
eval model::  39%|███▉      | 197/500 [00:10<00:16, 18.14it/s]
eval model::  40%|████      | 200/500 [00:10<00:14, 20.34it/s]
eval model::  41%|████      | 203/500 [00:10<00:13, 22.27it/s]
eval model::  41%|████      | 206/500 [00:11<00:18, 15.55it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:18, 15.39it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:19, 15.26it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:17, 16.84it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:19, 14.66it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:20, 14.02it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:17, 15.85it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:20, 13.70it/s]
eval model::  45%|████▌     | 225/500 [00:12<00:16, 16.76it/s]
eval model::  46%|████▌     | 228/500 [00:12<00:14, 18.22it/s]
eval model::  46%|████▌     | 231/500 [00:12<00:13, 19.78it/s]
eval model::  47%|████▋     | 234/500 [00:12<00:13, 20.01it/s]
eval model::  47%|████▋     | 237/500 [00:12<00:12, 20.87it/s]
eval model::  48%|████▊     | 240/500 [00:12<00:11, 22.20it/s]
eval model::  49%|████▊     | 243/500 [00:13<00:15, 16.92it/s]
eval model::  49%|████▉     | 246/500 [00:13<00:13, 19.11it/s]
eval model::  50%|████▉     | 249/500 [00:13<00:13, 18.54it/s]
eval model::  50%|█████     | 252/500 [00:13<00:12, 20.26it/s]
eval model::  51%|█████     | 255/500 [00:13<00:11, 21.49it/s]
eval model::  52%|█████▏    | 258/500 [00:13<00:10, 22.41it/s]
eval model::  52%|█████▏    | 262/500 [00:13<00:09, 24.33it/s]
eval model::  53%|█████▎    | 265/500 [00:14<00:11, 20.96it/s]
eval model::  54%|█████▎    | 268/500 [00:14<00:11, 21.02it/s]
eval model::  54%|█████▍    | 271/500 [00:14<00:11, 19.68it/s]
eval model::  55%|█████▍    | 274/500 [00:14<00:11, 19.93it/s]
eval model::  55%|█████▌    | 277/500 [00:14<00:13, 17.12it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:12, 17.56it/s]
eval model::  56%|█████▋    | 282/500 [00:15<00:10, 20.09it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:18, 11.59it/s]
eval model::  58%|█████▊    | 288/500 [00:15<00:14, 14.25it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:12, 16.51it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:12, 16.08it/s]
eval model::  59%|█████▉    | 297/500 [00:16<00:14, 14.11it/s]
eval model::  60%|██████    | 300/500 [00:16<00:13, 14.69it/s]
eval model::  61%|██████    | 303/500 [00:16<00:11, 16.47it/s]
eval model::  61%|██████    | 305/500 [00:16<00:11, 16.26it/s]
eval model::  62%|██████▏   | 308/500 [00:16<00:11, 17.41it/s]
eval model::  62%|██████▏   | 311/500 [00:16<00:09, 19.23it/s]
eval model::  63%|██████▎   | 314/500 [00:17<00:09, 18.98it/s]
eval model::  63%|██████▎   | 316/500 [00:17<00:10, 18.17it/s]
eval model::  64%|██████▍   | 319/500 [00:17<00:08, 20.52it/s]
eval model::  64%|██████▍   | 322/500 [00:17<00:09, 18.76it/s]
eval model::  65%|██████▍   | 324/500 [00:17<00:09, 18.98it/s]
eval model::  65%|██████▌   | 327/500 [00:17<00:08, 20.70it/s]
eval model::  66%|██████▌   | 330/500 [00:17<00:08, 19.24it/s]
eval model::  67%|██████▋   | 333/500 [00:18<00:07, 20.97it/s]
eval model::  67%|██████▋   | 337/500 [00:18<00:07, 22.61it/s]
eval model::  68%|██████▊   | 340/500 [00:18<00:09, 16.03it/s]
eval model::  69%|██████▊   | 343/500 [00:18<00:08, 17.55it/s]
eval model::  69%|██████▉   | 346/500 [00:18<00:07, 19.55it/s]
eval model::  70%|██████▉   | 349/500 [00:18<00:07, 20.34it/s]
eval model::  70%|███████   | 352/500 [00:19<00:07, 21.08it/s]
eval model::  71%|███████   | 355/500 [00:19<00:07, 19.22it/s]
eval model::  72%|███████▏  | 358/500 [00:19<00:07, 19.58it/s]
eval model::  72%|███████▏  | 361/500 [00:19<00:08, 17.36it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:07, 17.71it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:07, 17.41it/s]
eval model::  74%|███████▍  | 369/500 [00:19<00:06, 18.80it/s]
eval model::  74%|███████▍  | 371/500 [00:20<00:06, 19.07it/s]
eval model::  75%|███████▍  | 373/500 [00:20<00:06, 18.59it/s]
eval model::  75%|███████▌  | 376/500 [00:20<00:05, 20.68it/s]
eval model::  76%|███████▌  | 379/500 [00:20<00:05, 22.86it/s]
eval model::  76%|███████▋  | 382/500 [00:20<00:05, 20.47it/s]
eval model::  77%|███████▋  | 385/500 [00:20<00:05, 22.56it/s]
eval model::  78%|███████▊  | 388/500 [00:21<00:08, 13.57it/s]
eval model::  78%|███████▊  | 391/500 [00:21<00:07, 15.46it/s]
eval model::  79%|███████▉  | 394/500 [00:21<00:06, 16.55it/s]
eval model::  79%|███████▉  | 397/500 [00:21<00:05, 19.02it/s]
eval model::  80%|████████  | 400/500 [00:21<00:05, 18.66it/s]
eval model::  81%|████████  | 403/500 [00:21<00:04, 19.52it/s]
eval model::  81%|████████  | 406/500 [00:21<00:04, 19.93it/s]
eval model::  82%|████████▏ | 409/500 [00:22<00:04, 21.53it/s]
eval model::  82%|████████▏ | 412/500 [00:22<00:03, 22.26it/s]
eval model::  83%|████████▎ | 415/500 [00:22<00:04, 20.15it/s]
eval model::  84%|████████▎ | 418/500 [00:22<00:04, 18.88it/s]
eval model::  84%|████████▍ | 420/500 [00:22<00:05, 13.82it/s]
eval model::  85%|████████▍ | 423/500 [00:22<00:04, 15.87it/s]
eval model::  85%|████████▌ | 425/500 [00:23<00:04, 15.08it/s]
eval model::  86%|████████▌ | 428/500 [00:23<00:04, 17.43it/s]
eval model::  86%|████████▌ | 431/500 [00:23<00:03, 17.31it/s]
eval model::  87%|████████▋ | 435/500 [00:23<00:03, 20.28it/s]
eval model::  88%|████████▊ | 438/500 [00:23<00:02, 21.72it/s]
eval model::  88%|████████▊ | 441/500 [00:23<00:02, 20.52it/s]
eval model::  89%|████████▉ | 444/500 [00:23<00:02, 22.01it/s]
eval model::  89%|████████▉ | 447/500 [00:24<00:02, 22.80it/s]
eval model::  90%|█████████ | 450/500 [00:24<00:02, 19.81it/s]
eval model::  91%|█████████ | 453/500 [00:24<00:02, 21.01it/s]
eval model::  91%|█████████ | 456/500 [00:24<00:01, 22.59it/s]
eval model::  92%|█████████▏| 459/500 [00:24<00:01, 23.31it/s]
eval model::  92%|█████████▏| 462/500 [00:24<00:02, 17.73it/s]
eval model::  93%|█████████▎| 465/500 [00:25<00:02, 16.56it/s]
eval model::  94%|█████████▎| 468/500 [00:25<00:01, 18.35it/s]
eval model::  94%|█████████▍| 471/500 [00:25<00:01, 19.67it/s]
eval model::  95%|█████████▍| 474/500 [00:25<00:01, 18.99it/s]
eval model::  96%|█████████▌| 478/500 [00:25<00:01, 21.98it/s]
eval model::  96%|█████████▌| 481/500 [00:25<00:00, 21.76it/s]
eval model::  97%|█████████▋| 484/500 [00:25<00:00, 22.61it/s]
eval model::  97%|█████████▋| 487/500 [00:26<00:00, 21.40it/s]
eval model::  98%|█████████▊| 490/500 [00:26<00:00, 22.28it/s]
eval model::  99%|█████████▊| 493/500 [00:26<00:00, 21.29it/s]
eval model::  99%|█████████▉| 496/500 [00:26<00:00, 20.49it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 23.95it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.77it/s]
[2024/07/27 14:51:09] ppocr INFO: cur metric, precision: 0.7557826788596019, recall: 0.6764564275397208, hmean: 0.7139227642276423, fps: 44.80655525591726
[2024/07/27 14:51:09] ppocr INFO: best metric, hmean: 0.7301425661914459, precision: 0.7747163695299838, recall: 0.6904188733750601, fps: 43.582139874688714, best_epoch: 960
[2024/07/27 14:51:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:51:18] ppocr INFO: epoch: [1141/1500], global_step: 3423, lr: 0.001000, loss: 1.254217, loss_shrink_maps: 0.624958, loss_threshold_maps: 0.484593, loss_binary_maps: 0.123792, avg_reader_cost: 2.17629 s, avg_batch_cost: 2.49501 s, avg_samples: 12.5, ips: 5.01001 samples/s, eta: 2:35:38
[2024/07/27 14:51:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:51:28] ppocr INFO: epoch: [1142/1500], global_step: 3426, lr: 0.001000, loss: 1.234817, loss_shrink_maps: 0.617324, loss_threshold_maps: 0.478260, loss_binary_maps: 0.122290, avg_reader_cost: 2.21001 s, avg_batch_cost: 2.59121 s, avg_samples: 12.5, ips: 4.82400 samples/s, eta: 2:35:12
[2024/07/27 14:51:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:51:38] ppocr INFO: epoch: [1143/1500], global_step: 3429, lr: 0.001000, loss: 1.234817, loss_shrink_maps: 0.617324, loss_threshold_maps: 0.484593, loss_binary_maps: 0.122290, avg_reader_cost: 2.31323 s, avg_batch_cost: 2.71015 s, avg_samples: 12.5, ips: 4.61230 samples/s, eta: 2:34:46
[2024/07/27 14:51:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:51:46] ppocr INFO: epoch: [1144/1500], global_step: 3430, lr: 0.001000, loss: 1.254160, loss_shrink_maps: 0.624958, loss_threshold_maps: 0.491439, loss_binary_maps: 0.123792, avg_reader_cost: 0.70817 s, avg_batch_cost: 0.82127 s, avg_samples: 4.8, ips: 5.84464 samples/s, eta: 2:34:37
[2024/07/27 14:51:48] ppocr INFO: epoch: [1144/1500], global_step: 3432, lr: 0.001000, loss: 1.248402, loss_shrink_maps: 0.618429, loss_threshold_maps: 0.493123, loss_binary_maps: 0.122787, avg_reader_cost: 1.73466 s, avg_batch_cost: 1.88150 s, avg_samples: 7.7, ips: 4.09248 samples/s, eta: 2:34:20
[2024/07/27 14:51:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:51:58] ppocr INFO: epoch: [1145/1500], global_step: 3435, lr: 0.001000, loss: 1.248402, loss_shrink_maps: 0.622469, loss_threshold_maps: 0.493123, loss_binary_maps: 0.123792, avg_reader_cost: 2.40131 s, avg_batch_cost: 2.63778 s, avg_samples: 12.5, ips: 4.73883 samples/s, eta: 2:33:54
[2024/07/27 14:51:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:52:08] ppocr INFO: epoch: [1146/1500], global_step: 3438, lr: 0.001000, loss: 1.249191, loss_shrink_maps: 0.630194, loss_threshold_maps: 0.488772, loss_binary_maps: 0.124968, avg_reader_cost: 2.31490 s, avg_batch_cost: 2.55708 s, avg_samples: 12.5, ips: 4.88840 samples/s, eta: 2:33:28
[2024/07/27 14:52:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:52:17] ppocr INFO: epoch: [1147/1500], global_step: 3440, lr: 0.001000, loss: 1.233131, loss_shrink_maps: 0.618429, loss_threshold_maps: 0.488772, loss_binary_maps: 0.122020, avg_reader_cost: 1.49172 s, avg_batch_cost: 1.71952 s, avg_samples: 9.6, ips: 5.58296 samples/s, eta: 2:33:11
[2024/07/27 14:52:17] ppocr INFO: epoch: [1147/1500], global_step: 3441, lr: 0.001000, loss: 1.233131, loss_shrink_maps: 0.618429, loss_threshold_maps: 0.485390, loss_binary_maps: 0.122020, avg_reader_cost: 0.90592 s, avg_batch_cost: 0.96209 s, avg_samples: 2.9, ips: 3.01426 samples/s, eta: 2:33:02
[2024/07/27 14:52:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:52:27] ppocr INFO: epoch: [1148/1500], global_step: 3444, lr: 0.001000, loss: 1.214881, loss_shrink_maps: 0.613343, loss_threshold_maps: 0.479419, loss_binary_maps: 0.121433, avg_reader_cost: 2.26674 s, avg_batch_cost: 2.50642 s, avg_samples: 12.5, ips: 4.98720 samples/s, eta: 2:32:36
[2024/07/27 14:52:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:52:37] ppocr INFO: epoch: [1149/1500], global_step: 3447, lr: 0.001000, loss: 1.224410, loss_shrink_maps: 0.619034, loss_threshold_maps: 0.484051, loss_binary_maps: 0.122800, avg_reader_cost: 2.23673 s, avg_batch_cost: 2.59262 s, avg_samples: 12.5, ips: 4.82137 samples/s, eta: 2:32:10
[2024/07/27 14:52:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:52:47] ppocr INFO: epoch: [1150/1500], global_step: 3450, lr: 0.001000, loss: 1.224410, loss_shrink_maps: 0.619034, loss_threshold_maps: 0.484051, loss_binary_maps: 0.122800, avg_reader_cost: 2.21386 s, avg_batch_cost: 2.54295 s, avg_samples: 12.5, ips: 4.91555 samples/s, eta: 2:31:44
[2024/07/27 14:52:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:52:56] ppocr INFO: epoch: [1151/1500], global_step: 3453, lr: 0.001000, loss: 1.203739, loss_shrink_maps: 0.608348, loss_threshold_maps: 0.472788, loss_binary_maps: 0.120008, avg_reader_cost: 2.30410 s, avg_batch_cost: 2.54603 s, avg_samples: 12.5, ips: 4.90960 samples/s, eta: 2:31:18
[2024/07/27 14:52:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:53:06] ppocr INFO: epoch: [1152/1500], global_step: 3456, lr: 0.001000, loss: 1.192946, loss_shrink_maps: 0.589100, loss_threshold_maps: 0.467330, loss_binary_maps: 0.116465, avg_reader_cost: 2.33727 s, avg_batch_cost: 2.57774 s, avg_samples: 12.5, ips: 4.84921 samples/s, eta: 2:30:52
[2024/07/27 14:53:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:53:16] ppocr INFO: epoch: [1153/1500], global_step: 3459, lr: 0.001000, loss: 1.169292, loss_shrink_maps: 0.575732, loss_threshold_maps: 0.467330, loss_binary_maps: 0.114323, avg_reader_cost: 2.27028 s, avg_batch_cost: 2.63745 s, avg_samples: 12.5, ips: 4.73942 samples/s, eta: 2:30:26
[2024/07/27 14:53:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:53:24] ppocr INFO: epoch: [1154/1500], global_step: 3460, lr: 0.001000, loss: 1.169292, loss_shrink_maps: 0.583160, loss_threshold_maps: 0.467330, loss_binary_maps: 0.115656, avg_reader_cost: 0.56858 s, avg_batch_cost: 0.76013 s, avg_samples: 4.8, ips: 6.31474 samples/s, eta: 2:30:17
[2024/07/27 14:53:26] ppocr INFO: epoch: [1154/1500], global_step: 3462, lr: 0.001000, loss: 1.194558, loss_shrink_maps: 0.602527, loss_threshold_maps: 0.469728, loss_binary_maps: 0.119073, avg_reader_cost: 1.61300 s, avg_batch_cost: 1.76050 s, avg_samples: 7.7, ips: 4.37377 samples/s, eta: 2:29:59
[2024/07/27 14:53:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:53:36] ppocr INFO: epoch: [1155/1500], global_step: 3465, lr: 0.001000, loss: 1.202304, loss_shrink_maps: 0.602950, loss_threshold_maps: 0.476676, loss_binary_maps: 0.119899, avg_reader_cost: 2.35747 s, avg_batch_cost: 2.68568 s, avg_samples: 12.5, ips: 4.65432 samples/s, eta: 2:29:34
[2024/07/27 14:53:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:53:45] ppocr INFO: epoch: [1156/1500], global_step: 3468, lr: 0.001000, loss: 1.202304, loss_shrink_maps: 0.602950, loss_threshold_maps: 0.473341, loss_binary_maps: 0.119899, avg_reader_cost: 2.33184 s, avg_batch_cost: 2.58617 s, avg_samples: 12.5, ips: 4.83340 samples/s, eta: 2:29:08
[2024/07/27 14:53:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:53:54] ppocr INFO: epoch: [1157/1500], global_step: 3470, lr: 0.001000, loss: 1.192619, loss_shrink_maps: 0.595961, loss_threshold_maps: 0.466021, loss_binary_maps: 0.118462, avg_reader_cost: 1.27818 s, avg_batch_cost: 1.51438 s, avg_samples: 9.6, ips: 6.33923 samples/s, eta: 2:28:50
[2024/07/27 14:53:54] ppocr INFO: epoch: [1157/1500], global_step: 3471, lr: 0.001000, loss: 1.202304, loss_shrink_maps: 0.602950, loss_threshold_maps: 0.473341, loss_binary_maps: 0.119899, avg_reader_cost: 0.80346 s, avg_batch_cost: 0.85900 s, avg_samples: 2.9, ips: 3.37603 samples/s, eta: 2:28:41
[2024/07/27 14:53:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:54:04] ppocr INFO: epoch: [1158/1500], global_step: 3474, lr: 0.001000, loss: 1.206597, loss_shrink_maps: 0.612005, loss_threshold_maps: 0.473341, loss_binary_maps: 0.121158, avg_reader_cost: 2.44615 s, avg_batch_cost: 2.69338 s, avg_samples: 12.5, ips: 4.64101 samples/s, eta: 2:28:15
[2024/07/27 14:54:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:54:14] ppocr INFO: epoch: [1159/1500], global_step: 3477, lr: 0.001000, loss: 1.219628, loss_shrink_maps: 0.621368, loss_threshold_maps: 0.473341, loss_binary_maps: 0.122362, avg_reader_cost: 2.25470 s, avg_batch_cost: 2.62718 s, avg_samples: 12.5, ips: 4.75795 samples/s, eta: 2:27:49
[2024/07/27 14:54:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:54:24] ppocr INFO: epoch: [1160/1500], global_step: 3480, lr: 0.001000, loss: 1.213080, loss_shrink_maps: 0.615238, loss_threshold_maps: 0.461436, loss_binary_maps: 0.121433, avg_reader_cost: 2.16432 s, avg_batch_cost: 2.50258 s, avg_samples: 12.5, ips: 4.99484 samples/s, eta: 2:27:23

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:57,  8.64it/s]
eval model::   1%|          | 3/500 [00:00<00:33, 14.70it/s]
eval model::   1%|          | 6/500 [00:00<00:29, 16.71it/s]
eval model::   2%|▏         | 8/500 [00:00<00:31, 15.47it/s]
eval model::   2%|▏         | 10/500 [00:00<00:29, 16.62it/s]
eval model::   2%|▏         | 12/500 [00:00<00:31, 15.54it/s]
eval model::   3%|▎         | 14/500 [00:00<00:30, 15.99it/s]
eval model::   3%|▎         | 17/500 [00:01<00:25, 19.15it/s]
eval model::   4%|▍         | 20/500 [00:01<00:24, 19.39it/s]
eval model::   5%|▍         | 23/500 [00:01<00:24, 19.18it/s]
eval model::   5%|▌         | 25/500 [00:01<00:25, 18.85it/s]
eval model::   6%|▌         | 28/500 [00:01<00:22, 21.00it/s]
eval model::   6%|▌         | 31/500 [00:01<00:23, 20.11it/s]
eval model::   7%|▋         | 34/500 [00:01<00:22, 21.11it/s]
eval model::   7%|▋         | 37/500 [00:01<00:22, 20.94it/s]
eval model::   8%|▊         | 40/500 [00:02<00:25, 17.89it/s]
eval model::   8%|▊         | 42/500 [00:02<00:26, 17.36it/s]
eval model::   9%|▉         | 45/500 [00:02<00:24, 18.87it/s]
eval model::   9%|▉         | 47/500 [00:02<00:29, 15.47it/s]
eval model::  10%|█         | 50/500 [00:02<00:26, 17.19it/s]
eval model::  11%|█         | 53/500 [00:02<00:24, 18.48it/s]
eval model::  11%|█         | 56/500 [00:03<00:23, 18.73it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:23, 18.62it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:26, 16.63it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:26, 16.69it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:22, 19.24it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:20, 21.39it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:19, 22.17it/s]
eval model::  15%|█▌        | 75/500 [00:04<00:20, 20.72it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:20, 21.08it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:18, 22.40it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:19, 20.85it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:24, 16.94it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:24, 16.86it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:24, 16.70it/s]
eval model::  19%|█▊        | 93/500 [00:05<00:23, 17.18it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:21, 18.65it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:19, 20.28it/s]
eval model::  20%|██        | 102/500 [00:05<00:19, 19.99it/s]
eval model::  21%|██        | 105/500 [00:05<00:18, 21.65it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:17, 22.07it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:17, 21.83it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:17, 22.01it/s]
eval model::  23%|██▎       | 117/500 [00:06<00:18, 20.58it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:18, 20.49it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:16, 22.58it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:20, 18.33it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:18, 19.81it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:21, 17.35it/s]
eval model::  27%|██▋       | 135/500 [00:07<00:19, 19.21it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:18, 19.61it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:18, 19.43it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:17, 20.75it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:19, 18.38it/s]
eval model::  30%|███       | 150/500 [00:07<00:17, 20.12it/s]
eval model::  31%|███       | 153/500 [00:08<00:17, 19.71it/s]
eval model::  31%|███▏      | 157/500 [00:08<00:15, 22.48it/s]
eval model::  32%|███▏      | 160/500 [00:08<00:20, 16.47it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:18, 18.44it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:16, 20.09it/s]
eval model::  34%|███▍      | 170/500 [00:08<00:15, 21.87it/s]
eval model::  35%|███▍      | 173/500 [00:09<00:15, 20.75it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:17, 18.74it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:16, 19.40it/s]
eval model::  36%|███▋      | 182/500 [00:09<00:18, 17.40it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:15, 20.29it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:14, 21.08it/s]
eval model::  38%|███▊      | 192/500 [00:09<00:14, 21.45it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:14, 20.93it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:14, 21.21it/s]
eval model::  40%|████      | 201/500 [00:10<00:15, 19.81it/s]
eval model::  41%|████      | 204/500 [00:10<00:14, 20.55it/s]
eval model::  41%|████▏     | 207/500 [00:11<00:22, 12.82it/s]
eval model::  42%|████▏     | 209/500 [00:11<00:21, 13.37it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:20, 13.95it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:19, 14.88it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:21, 12.97it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:21, 13.39it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:17, 15.69it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:20, 13.48it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:16, 17.10it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:13, 20.77it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:12, 22.19it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:11, 23.08it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:10, 23.75it/s]
eval model::  48%|████▊     | 242/500 [00:12<00:12, 20.33it/s]
eval model::  49%|████▉     | 245/500 [00:12<00:11, 21.60it/s]
eval model::  50%|████▉     | 248/500 [00:13<00:10, 23.11it/s]
eval model::  50%|█████     | 251/500 [00:13<00:11, 21.08it/s]
eval model::  51%|█████     | 254/500 [00:13<00:11, 21.37it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:10, 22.89it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:10, 23.09it/s]
eval model::  53%|█████▎    | 263/500 [00:13<00:10, 23.59it/s]
eval model::  53%|█████▎    | 266/500 [00:13<00:10, 21.86it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:11, 20.29it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:10, 21.03it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:12, 17.73it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:11, 19.10it/s]
eval model::  56%|█████▌    | 281/500 [00:14<00:11, 19.70it/s]
eval model::  57%|█████▋    | 284/500 [00:14<00:10, 20.41it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:20, 10.48it/s]
eval model::  58%|█████▊    | 290/500 [00:15<00:16, 12.95it/s]
eval model::  59%|█████▊    | 293/500 [00:15<00:14, 14.55it/s]
eval model::  59%|█████▉    | 296/500 [00:16<00:16, 12.64it/s]
eval model::  60%|██████    | 300/500 [00:16<00:13, 14.79it/s]
eval model::  61%|██████    | 303/500 [00:16<00:11, 16.87it/s]
eval model::  61%|██████    | 306/500 [00:16<00:10, 18.13it/s]
eval model::  62%|██████▏   | 309/500 [00:16<00:10, 19.04it/s]
eval model::  62%|██████▏   | 312/500 [00:16<00:09, 19.73it/s]
eval model::  63%|██████▎   | 315/500 [00:16<00:09, 20.31it/s]
eval model::  64%|██████▎   | 318/500 [00:16<00:08, 21.97it/s]
eval model::  64%|██████▍   | 321/500 [00:17<00:07, 22.73it/s]
eval model::  65%|██████▍   | 324/500 [00:17<00:08, 20.86it/s]
eval model::  65%|██████▌   | 327/500 [00:17<00:07, 22.35it/s]
eval model::  66%|██████▌   | 330/500 [00:17<00:08, 20.83it/s]
eval model::  67%|██████▋   | 333/500 [00:17<00:07, 21.22it/s]
eval model::  67%|██████▋   | 336/500 [00:17<00:07, 22.25it/s]
eval model::  68%|██████▊   | 339/500 [00:18<00:07, 20.20it/s]
eval model::  68%|██████▊   | 342/500 [00:18<00:10, 15.75it/s]
eval model::  69%|██████▉   | 345/500 [00:18<00:08, 17.30it/s]
eval model::  69%|██████▉   | 347/500 [00:18<00:08, 17.47it/s]
eval model::  70%|███████   | 350/500 [00:18<00:07, 19.61it/s]
eval model::  71%|███████   | 353/500 [00:18<00:06, 21.01it/s]
eval model::  71%|███████   | 356/500 [00:18<00:07, 19.23it/s]
eval model::  72%|███████▏  | 359/500 [00:19<00:06, 20.34it/s]
eval model::  72%|███████▏  | 362/500 [00:19<00:07, 18.96it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:07, 17.73it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:07, 17.26it/s]
eval model::  74%|███████▍  | 370/500 [00:19<00:06, 20.78it/s]
eval model::  75%|███████▍  | 373/500 [00:19<00:05, 22.77it/s]
eval model::  75%|███████▌  | 376/500 [00:19<00:05, 23.24it/s]
eval model::  76%|███████▌  | 380/500 [00:20<00:05, 23.02it/s]
eval model::  77%|███████▋  | 384/500 [00:20<00:04, 25.18it/s]
eval model::  77%|███████▋  | 387/500 [00:20<00:07, 14.20it/s]
eval model::  78%|███████▊  | 390/500 [00:20<00:06, 15.72it/s]
eval model::  79%|███████▊  | 393/500 [00:20<00:06, 17.27it/s]
eval model::  79%|███████▉  | 396/500 [00:21<00:05, 17.88it/s]
eval model::  80%|███████▉  | 399/500 [00:21<00:05, 19.12it/s]
eval model::  80%|████████  | 402/500 [00:21<00:05, 18.82it/s]
eval model::  81%|████████  | 405/500 [00:21<00:04, 19.24it/s]
eval model::  82%|████████▏ | 408/500 [00:21<00:04, 20.93it/s]
eval model::  82%|████████▏ | 411/500 [00:21<00:04, 21.58it/s]
eval model::  83%|████████▎ | 414/500 [00:21<00:04, 21.04it/s]
eval model::  83%|████████▎ | 417/500 [00:22<00:04, 19.69it/s]
eval model::  84%|████████▍ | 420/500 [00:22<00:05, 15.69it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:04, 15.99it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:04, 15.64it/s]
eval model::  85%|████████▌ | 426/500 [00:22<00:04, 16.33it/s]
eval model::  86%|████████▌ | 429/500 [00:22<00:03, 18.54it/s]
eval model::  86%|████████▌ | 431/500 [00:22<00:03, 17.53it/s]
eval model::  87%|████████▋ | 434/500 [00:23<00:03, 20.14it/s]
eval model::  87%|████████▋ | 437/500 [00:23<00:03, 20.31it/s]
eval model::  88%|████████▊ | 440/500 [00:23<00:03, 19.49it/s]
eval model::  89%|████████▊ | 443/500 [00:23<00:02, 19.60it/s]
eval model::  89%|████████▉ | 445/500 [00:23<00:02, 19.09it/s]
eval model::  89%|████████▉ | 447/500 [00:23<00:02, 19.20it/s]
eval model::  90%|████████▉ | 449/500 [00:23<00:02, 18.51it/s]
eval model::  90%|█████████ | 452/500 [00:23<00:02, 21.46it/s]
eval model::  91%|█████████ | 455/500 [00:24<00:01, 23.74it/s]
eval model::  92%|█████████▏| 459/500 [00:24<00:01, 25.86it/s]
eval model::  92%|█████████▏| 462/500 [00:24<00:01, 20.81it/s]
eval model::  93%|█████████▎| 465/500 [00:24<00:01, 18.52it/s]
eval model::  94%|█████████▎| 468/500 [00:24<00:01, 19.24it/s]
eval model::  94%|█████████▍| 471/500 [00:24<00:01, 20.07it/s]
eval model::  95%|█████████▍| 474/500 [00:25<00:01, 18.13it/s]
eval model::  95%|█████████▌| 477/500 [00:25<00:01, 19.19it/s]
eval model::  96%|█████████▌| 480/500 [00:25<00:01, 19.86it/s]
eval model::  97%|█████████▋| 483/500 [00:25<00:00, 21.17it/s]
eval model::  97%|█████████▋| 486/500 [00:25<00:00, 20.55it/s]
eval model::  98%|█████████▊| 489/500 [00:25<00:00, 21.14it/s]
eval model::  98%|█████████▊| 492/500 [00:25<00:00, 19.51it/s]
eval model::  99%|█████████▉| 495/500 [00:26<00:00, 20.12it/s]
eval model:: 100%|█████████▉| 499/500 [00:26<00:00, 23.40it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 19.01it/s]
[2024/07/27 14:54:50] ppocr INFO: cur metric, precision: 0.7411194833153929, recall: 0.6629754453538758, hmean: 0.6998729351969504, fps: 45.64836031633566
[2024/07/27 14:54:50] ppocr INFO: best metric, hmean: 0.7301425661914459, precision: 0.7747163695299838, recall: 0.6904188733750601, fps: 43.582139874688714, best_epoch: 960
[2024/07/27 14:54:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:55:00] ppocr INFO: epoch: [1161/1500], global_step: 3483, lr: 0.001000, loss: 1.221597, loss_shrink_maps: 0.619819, loss_threshold_maps: 0.468756, loss_binary_maps: 0.122282, avg_reader_cost: 2.30291 s, avg_batch_cost: 2.74029 s, avg_samples: 12.5, ips: 4.56156 samples/s, eta: 2:26:57
[2024/07/27 14:55:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:55:09] ppocr INFO: epoch: [1162/1500], global_step: 3486, lr: 0.001000, loss: 1.215049, loss_shrink_maps: 0.614866, loss_threshold_maps: 0.472882, loss_binary_maps: 0.121981, avg_reader_cost: 2.04987 s, avg_batch_cost: 2.32192 s, avg_samples: 12.5, ips: 5.38348 samples/s, eta: 2:26:31
[2024/07/27 14:55:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:55:19] ppocr INFO: epoch: [1163/1500], global_step: 3489, lr: 0.001000, loss: 1.230917, loss_shrink_maps: 0.620438, loss_threshold_maps: 0.472637, loss_binary_maps: 0.122353, avg_reader_cost: 2.26314 s, avg_batch_cost: 2.50030 s, avg_samples: 12.5, ips: 4.99939 samples/s, eta: 2:26:04
[2024/07/27 14:55:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:55:27] ppocr INFO: epoch: [1164/1500], global_step: 3490, lr: 0.001000, loss: 1.240201, loss_shrink_maps: 0.627338, loss_threshold_maps: 0.479509, loss_binary_maps: 0.124112, avg_reader_cost: 0.56444 s, avg_batch_cost: 0.78627 s, avg_samples: 4.8, ips: 6.10474 samples/s, eta: 2:25:55
[2024/07/27 14:55:29] ppocr INFO: epoch: [1164/1500], global_step: 3492, lr: 0.001000, loss: 1.230917, loss_shrink_maps: 0.620438, loss_threshold_maps: 0.472637, loss_binary_maps: 0.122353, avg_reader_cost: 1.66496 s, avg_batch_cost: 1.81138 s, avg_samples: 7.7, ips: 4.25091 samples/s, eta: 2:25:38
[2024/07/27 14:55:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:55:38] ppocr INFO: epoch: [1165/1500], global_step: 3495, lr: 0.001000, loss: 1.230917, loss_shrink_maps: 0.620438, loss_threshold_maps: 0.470897, loss_binary_maps: 0.122353, avg_reader_cost: 2.22551 s, avg_batch_cost: 2.59153 s, avg_samples: 12.5, ips: 4.82340 samples/s, eta: 2:25:12
[2024/07/27 14:55:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:55:48] ppocr INFO: epoch: [1166/1500], global_step: 3498, lr: 0.001000, loss: 1.218295, loss_shrink_maps: 0.610740, loss_threshold_maps: 0.470897, loss_binary_maps: 0.121235, avg_reader_cost: 2.37917 s, avg_batch_cost: 2.61894 s, avg_samples: 12.5, ips: 4.77293 samples/s, eta: 2:24:46
[2024/07/27 14:55:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:55:58] ppocr INFO: epoch: [1167/1500], global_step: 3500, lr: 0.001000, loss: 1.221869, loss_shrink_maps: 0.614866, loss_threshold_maps: 0.473131, loss_binary_maps: 0.121981, avg_reader_cost: 1.35289 s, avg_batch_cost: 1.68486 s, avg_samples: 9.6, ips: 5.69782 samples/s, eta: 2:24:29
[2024/07/27 14:55:58] ppocr INFO: epoch: [1167/1500], global_step: 3501, lr: 0.001000, loss: 1.218295, loss_shrink_maps: 0.610740, loss_threshold_maps: 0.470897, loss_binary_maps: 0.121235, avg_reader_cost: 0.88834 s, avg_batch_cost: 0.94392 s, avg_samples: 2.9, ips: 3.07231 samples/s, eta: 2:24:20
[2024/07/27 14:55:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:56:08] ppocr INFO: epoch: [1168/1500], global_step: 3504, lr: 0.001000, loss: 1.210720, loss_shrink_maps: 0.608897, loss_threshold_maps: 0.467809, loss_binary_maps: 0.119855, avg_reader_cost: 2.21930 s, avg_batch_cost: 2.62186 s, avg_samples: 12.5, ips: 4.76760 samples/s, eta: 2:23:54
[2024/07/27 14:56:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:56:18] ppocr INFO: epoch: [1169/1500], global_step: 3507, lr: 0.001000, loss: 1.143430, loss_shrink_maps: 0.566532, loss_threshold_maps: 0.454691, loss_binary_maps: 0.112364, avg_reader_cost: 2.16675 s, avg_batch_cost: 2.51481 s, avg_samples: 12.5, ips: 4.97055 samples/s, eta: 2:23:28
[2024/07/27 14:56:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:56:27] ppocr INFO: epoch: [1170/1500], global_step: 3510, lr: 0.001000, loss: 1.179922, loss_shrink_maps: 0.582749, loss_threshold_maps: 0.453216, loss_binary_maps: 0.116047, avg_reader_cost: 2.29149 s, avg_batch_cost: 2.52538 s, avg_samples: 12.5, ips: 4.94975 samples/s, eta: 2:23:02
[2024/07/27 14:56:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:56:37] ppocr INFO: epoch: [1171/1500], global_step: 3513, lr: 0.001000, loss: 1.195772, loss_shrink_maps: 0.593594, loss_threshold_maps: 0.468303, loss_binary_maps: 0.118283, avg_reader_cost: 2.18891 s, avg_batch_cost: 2.55239 s, avg_samples: 12.5, ips: 4.89737 samples/s, eta: 2:22:36
[2024/07/27 14:56:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:56:47] ppocr INFO: epoch: [1172/1500], global_step: 3516, lr: 0.001000, loss: 1.149080, loss_shrink_maps: 0.573060, loss_threshold_maps: 0.449105, loss_binary_maps: 0.113401, avg_reader_cost: 2.41311 s, avg_batch_cost: 2.66090 s, avg_samples: 12.5, ips: 4.69766 samples/s, eta: 2:22:10
[2024/07/27 14:56:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:56:57] ppocr INFO: epoch: [1173/1500], global_step: 3519, lr: 0.001000, loss: 1.149080, loss_shrink_maps: 0.573060, loss_threshold_maps: 0.453155, loss_binary_maps: 0.113401, avg_reader_cost: 2.16251 s, avg_batch_cost: 2.50924 s, avg_samples: 12.5, ips: 4.98160 samples/s, eta: 2:21:44
[2024/07/27 14:56:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:57:05] ppocr INFO: epoch: [1174/1500], global_step: 3520, lr: 0.001000, loss: 1.149080, loss_shrink_maps: 0.573060, loss_threshold_maps: 0.453155, loss_binary_maps: 0.113401, avg_reader_cost: 0.54710 s, avg_batch_cost: 0.77087 s, avg_samples: 4.8, ips: 6.22671 samples/s, eta: 2:21:35
[2024/07/27 14:57:06] ppocr INFO: epoch: [1174/1500], global_step: 3522, lr: 0.001000, loss: 1.162063, loss_shrink_maps: 0.578004, loss_threshold_maps: 0.461120, loss_binary_maps: 0.115263, avg_reader_cost: 1.63377 s, avg_batch_cost: 1.78117 s, avg_samples: 7.7, ips: 4.32300 samples/s, eta: 2:21:17
[2024/07/27 14:57:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:57:16] ppocr INFO: epoch: [1175/1500], global_step: 3525, lr: 0.001000, loss: 1.163071, loss_shrink_maps: 0.581714, loss_threshold_maps: 0.468630, loss_binary_maps: 0.115925, avg_reader_cost: 2.34502 s, avg_batch_cost: 2.61212 s, avg_samples: 12.5, ips: 4.78539 samples/s, eta: 2:20:52
[2024/07/27 14:57:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:57:26] ppocr INFO: epoch: [1176/1500], global_step: 3528, lr: 0.001000, loss: 1.195772, loss_shrink_maps: 0.593594, loss_threshold_maps: 0.469673, loss_binary_maps: 0.118283, avg_reader_cost: 2.19542 s, avg_batch_cost: 2.52310 s, avg_samples: 12.5, ips: 4.95423 samples/s, eta: 2:20:25
[2024/07/27 14:57:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:57:35] ppocr INFO: epoch: [1177/1500], global_step: 3530, lr: 0.001000, loss: 1.178922, loss_shrink_maps: 0.588849, loss_threshold_maps: 0.465298, loss_binary_maps: 0.117499, avg_reader_cost: 1.29624 s, avg_batch_cost: 1.56514 s, avg_samples: 9.6, ips: 6.13364 samples/s, eta: 2:20:07
[2024/07/27 14:57:35] ppocr INFO: epoch: [1177/1500], global_step: 3531, lr: 0.001000, loss: 1.178922, loss_shrink_maps: 0.588849, loss_threshold_maps: 0.465298, loss_binary_maps: 0.117499, avg_reader_cost: 0.82858 s, avg_batch_cost: 0.88406 s, avg_samples: 2.9, ips: 3.28030 samples/s, eta: 2:19:59
[2024/07/27 14:57:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:57:45] ppocr INFO: epoch: [1178/1500], global_step: 3534, lr: 0.001000, loss: 1.215057, loss_shrink_maps: 0.614903, loss_threshold_maps: 0.461808, loss_binary_maps: 0.122776, avg_reader_cost: 2.21319 s, avg_batch_cost: 2.45286 s, avg_samples: 12.5, ips: 5.09610 samples/s, eta: 2:19:32
[2024/07/27 14:57:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:57:55] ppocr INFO: epoch: [1179/1500], global_step: 3537, lr: 0.001000, loss: 1.222784, loss_shrink_maps: 0.625365, loss_threshold_maps: 0.471665, loss_binary_maps: 0.124115, avg_reader_cost: 2.20228 s, avg_batch_cost: 2.55545 s, avg_samples: 12.5, ips: 4.89150 samples/s, eta: 2:19:06
[2024/07/27 14:57:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:58:04] ppocr INFO: epoch: [1180/1500], global_step: 3540, lr: 0.001000, loss: 1.215057, loss_shrink_maps: 0.605815, loss_threshold_maps: 0.465298, loss_binary_maps: 0.121168, avg_reader_cost: 2.30658 s, avg_batch_cost: 2.54397 s, avg_samples: 12.5, ips: 4.91357 samples/s, eta: 2:18:40

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:51,  9.74it/s]
eval model::   1%|          | 4/500 [00:00<00:26, 18.43it/s]
eval model::   1%|          | 6/500 [00:00<00:30, 16.23it/s]
eval model::   2%|▏         | 8/500 [00:00<00:31, 15.87it/s]
eval model::   2%|▏         | 11/500 [00:00<00:29, 16.38it/s]
eval model::   3%|▎         | 13/500 [00:00<00:29, 16.75it/s]
eval model::   3%|▎         | 15/500 [00:00<00:28, 17.21it/s]
eval model::   4%|▎         | 18/500 [00:01<00:24, 19.45it/s]
eval model::   4%|▍         | 20/500 [00:01<00:24, 19.37it/s]
eval model::   5%|▍         | 23/500 [00:01<00:21, 22.27it/s]
eval model::   5%|▌         | 26/500 [00:01<00:21, 22.44it/s]
eval model::   6%|▌         | 29/500 [00:01<00:19, 23.81it/s]
eval model::   6%|▋         | 32/500 [00:01<00:23, 19.82it/s]
eval model::   7%|▋         | 35/500 [00:01<00:22, 20.52it/s]
eval model::   8%|▊         | 38/500 [00:01<00:22, 20.78it/s]
eval model::   8%|▊         | 41/500 [00:02<00:22, 20.53it/s]
eval model::   9%|▉         | 44/500 [00:02<00:24, 18.83it/s]
eval model::   9%|▉         | 46/500 [00:02<00:26, 17.27it/s]
eval model::  10%|▉         | 49/500 [00:02<00:23, 19.03it/s]
eval model::  10%|█         | 52/500 [00:02<00:22, 19.91it/s]
eval model::  11%|█         | 55/500 [00:02<00:21, 20.25it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:24, 18.12it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:26, 16.32it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:26, 16.45it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:20, 20.69it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:19, 22.50it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:19, 21.48it/s]
eval model::  15%|█▌        | 76/500 [00:03<00:19, 21.47it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:18, 22.72it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:19, 21.00it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:19, 21.69it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:21, 19.24it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:23, 17.40it/s]
eval model::  19%|█▉        | 94/500 [00:04<00:21, 19.18it/s]
eval model::  19%|█▉        | 97/500 [00:04<00:19, 20.69it/s]
eval model::  20%|██        | 100/500 [00:05<00:19, 20.42it/s]
eval model::  21%|██        | 103/500 [00:05<00:18, 21.27it/s]
eval model::  21%|██        | 106/500 [00:05<00:19, 20.24it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:19, 20.15it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:18, 20.54it/s]
eval model::  23%|██▎       | 115/500 [00:05<00:20, 18.67it/s]
eval model::  24%|██▎       | 118/500 [00:06<00:19, 19.92it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:20, 18.76it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:20, 18.65it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:19, 18.90it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:17, 20.74it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:20, 17.91it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:17, 20.43it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:17, 20.66it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:17, 20.52it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:17, 20.92it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:19, 18.16it/s]
eval model::  30%|███       | 150/500 [00:07<00:17, 19.94it/s]
eval model::  31%|███       | 153/500 [00:07<00:18, 18.85it/s]
eval model::  31%|███       | 156/500 [00:07<00:16, 21.20it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:17, 19.10it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:23, 14.68it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:21, 15.43it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:20, 16.53it/s]
eval model::  34%|███▍      | 170/500 [00:08<00:17, 18.42it/s]
eval model::  35%|███▍      | 173/500 [00:08<00:17, 18.29it/s]
eval model::  35%|███▌      | 175/500 [00:09<00:18, 17.54it/s]
eval model::  36%|███▌      | 178/500 [00:09<00:17, 18.80it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:19, 16.80it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:16, 18.95it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:15, 20.67it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:14, 21.91it/s]
eval model::  38%|███▊      | 192/500 [00:09<00:13, 22.43it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:14, 21.24it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:15, 19.40it/s]
eval model::  40%|████      | 201/500 [00:10<00:15, 19.62it/s]
eval model::  41%|████      | 205/500 [00:10<00:18, 15.58it/s]
eval model::  42%|████▏     | 208/500 [00:10<00:18, 16.13it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:18, 15.93it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:16, 17.01it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:19, 14.41it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:20, 13.90it/s]
eval model::  44%|████▍     | 219/500 [00:11<00:18, 15.10it/s]
eval model::  44%|████▍     | 221/500 [00:11<00:19, 14.60it/s]
eval model::  45%|████▍     | 224/500 [00:11<00:16, 16.89it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:15, 17.52it/s]
eval model::  46%|████▌     | 229/500 [00:12<00:13, 19.68it/s]
eval model::  46%|████▋     | 232/500 [00:12<00:12, 21.85it/s]
eval model::  47%|████▋     | 235/500 [00:12<00:12, 20.95it/s]
eval model::  48%|████▊     | 238/500 [00:12<00:11, 21.89it/s]
eval model::  48%|████▊     | 241/500 [00:12<00:11, 21.76it/s]
eval model::  49%|████▉     | 244/500 [00:12<00:12, 19.98it/s]
eval model::  49%|████▉     | 247/500 [00:13<00:12, 20.55it/s]
eval model::  50%|█████     | 250/500 [00:13<00:12, 19.40it/s]
eval model::  51%|█████     | 253/500 [00:13<00:11, 21.11it/s]
eval model::  51%|█████     | 256/500 [00:13<00:11, 20.39it/s]
eval model::  52%|█████▏    | 259/500 [00:13<00:10, 21.96it/s]
eval model::  52%|█████▏    | 262/500 [00:13<00:11, 20.68it/s]
eval model::  53%|█████▎    | 265/500 [00:13<00:12, 19.30it/s]
eval model::  54%|█████▎    | 268/500 [00:14<00:11, 20.69it/s]
eval model::  54%|█████▍    | 271/500 [00:14<00:11, 20.39it/s]
eval model::  55%|█████▍    | 274/500 [00:14<00:10, 21.39it/s]
eval model::  55%|█████▌    | 277/500 [00:14<00:12, 17.39it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:12, 17.11it/s]
eval model::  56%|█████▋    | 282/500 [00:14<00:11, 19.01it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:19, 11.04it/s]
eval model::  58%|█████▊    | 288/500 [00:15<00:15, 13.32it/s]
eval model::  58%|█████▊    | 292/500 [00:15<00:12, 16.83it/s]
eval model::  59%|█████▉    | 295/500 [00:15<00:14, 14.40it/s]
eval model::  60%|█████▉    | 298/500 [00:15<00:12, 16.19it/s]
eval model::  60%|██████    | 300/500 [00:16<00:12, 16.02it/s]
eval model::  61%|██████    | 303/500 [00:16<00:11, 17.82it/s]
eval model::  61%|██████    | 306/500 [00:16<00:10, 18.20it/s]
eval model::  62%|██████▏   | 309/500 [00:16<00:09, 19.65it/s]
eval model::  62%|██████▏   | 312/500 [00:16<00:09, 20.78it/s]
eval model::  63%|██████▎   | 315/500 [00:16<00:09, 20.45it/s]
eval model::  64%|██████▎   | 318/500 [00:16<00:08, 21.75it/s]
eval model::  64%|██████▍   | 321/500 [00:17<00:08, 21.00it/s]
eval model::  65%|██████▍   | 324/500 [00:17<00:08, 20.52it/s]
eval model::  65%|██████▌   | 327/500 [00:17<00:08, 21.07it/s]
eval model::  66%|██████▌   | 330/500 [00:17<00:08, 19.93it/s]
eval model::  67%|██████▋   | 333/500 [00:17<00:07, 21.54it/s]
eval model::  67%|██████▋   | 336/500 [00:17<00:07, 23.35it/s]
eval model::  68%|██████▊   | 339/500 [00:17<00:07, 20.87it/s]
eval model::  68%|██████▊   | 342/500 [00:18<00:10, 15.58it/s]
eval model::  69%|██████▉   | 345/500 [00:18<00:08, 17.32it/s]
eval model::  70%|██████▉   | 348/500 [00:18<00:08, 18.79it/s]
eval model::  70%|███████   | 351/500 [00:18<00:07, 20.60it/s]
eval model::  71%|███████   | 355/500 [00:18<00:06, 22.06it/s]
eval model::  72%|███████▏  | 358/500 [00:18<00:06, 22.74it/s]
eval model::  72%|███████▏  | 361/500 [00:19<00:06, 20.61it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:06, 20.57it/s]
eval model::  73%|███████▎  | 367/500 [00:19<00:06, 20.32it/s]
eval model::  74%|███████▍  | 370/500 [00:19<00:06, 21.54it/s]
eval model::  75%|███████▍  | 373/500 [00:19<00:06, 20.32it/s]
eval model::  75%|███████▌  | 376/500 [00:19<00:05, 21.28it/s]
eval model::  76%|███████▌  | 379/500 [00:19<00:05, 22.48it/s]
eval model::  76%|███████▋  | 382/500 [00:20<00:06, 18.65it/s]
eval model::  77%|███████▋  | 385/500 [00:20<00:05, 20.43it/s]
eval model::  78%|███████▊  | 388/500 [00:20<00:09, 12.10it/s]
eval model::  78%|███████▊  | 391/500 [00:20<00:07, 14.02it/s]
eval model::  79%|███████▉  | 394/500 [00:20<00:06, 15.44it/s]
eval model::  79%|███████▉  | 397/500 [00:21<00:05, 17.94it/s]
eval model::  80%|████████  | 400/500 [00:21<00:05, 18.76it/s]
eval model::  81%|████████  | 403/500 [00:21<00:04, 19.68it/s]
eval model::  81%|████████  | 406/500 [00:21<00:04, 21.00it/s]
eval model::  82%|████████▏ | 409/500 [00:21<00:04, 21.67it/s]
eval model::  82%|████████▏ | 412/500 [00:21<00:03, 23.24it/s]
eval model::  83%|████████▎ | 415/500 [00:21<00:03, 22.71it/s]
eval model::  84%|████████▎ | 418/500 [00:22<00:04, 19.29it/s]
eval model::  84%|████████▍ | 421/500 [00:22<00:05, 14.17it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:05, 15.12it/s]
eval model::  85%|████████▌ | 426/500 [00:22<00:04, 15.47it/s]
eval model::  86%|████████▌ | 430/500 [00:22<00:03, 18.83it/s]
eval model::  87%|████████▋ | 433/500 [00:22<00:03, 19.91it/s]
eval model::  87%|████████▋ | 436/500 [00:23<00:02, 21.70it/s]
eval model::  88%|████████▊ | 439/500 [00:23<00:02, 22.92it/s]
eval model::  88%|████████▊ | 442/500 [00:23<00:02, 20.61it/s]
eval model::  89%|████████▉ | 445/500 [00:23<00:02, 21.15it/s]
eval model::  90%|████████▉ | 448/500 [00:23<00:02, 21.91it/s]
eval model::  90%|█████████ | 451/500 [00:23<00:02, 22.58it/s]
eval model::  91%|█████████ | 454/500 [00:23<00:01, 24.10it/s]
eval model::  91%|█████████▏| 457/500 [00:23<00:01, 24.89it/s]
eval model::  92%|█████████▏| 460/500 [00:24<00:01, 21.74it/s]
eval model::  93%|█████████▎| 463/500 [00:24<00:02, 17.98it/s]
eval model::  93%|█████████▎| 465/500 [00:24<00:02, 16.96it/s]
eval model::  94%|█████████▎| 468/500 [00:24<00:01, 18.49it/s]
eval model::  94%|█████████▍| 471/500 [00:24<00:01, 19.55it/s]
eval model::  95%|█████████▍| 474/500 [00:24<00:01, 18.88it/s]
eval model::  95%|█████████▌| 477/500 [00:25<00:01, 20.45it/s]
eval model::  96%|█████████▌| 480/500 [00:25<00:00, 22.06it/s]
eval model::  97%|█████████▋| 483/500 [00:25<00:00, 22.03it/s]
eval model::  97%|█████████▋| 486/500 [00:25<00:00, 20.31it/s]
eval model::  98%|█████████▊| 489/500 [00:25<00:00, 21.59it/s]
eval model::  98%|█████████▊| 492/500 [00:25<00:00, 20.36it/s]
eval model::  99%|█████████▉| 495/500 [00:25<00:00, 20.67it/s]
eval model:: 100%|█████████▉| 499/500 [00:26<00:00, 23.50it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 19.15it/s]
[2024/07/27 14:58:30] ppocr INFO: cur metric, precision: 0.7855946398659966, recall: 0.6774193548387096, hmean: 0.7275077559462254, fps: 45.654781000070706
[2024/07/27 14:58:30] ppocr INFO: best metric, hmean: 0.7301425661914459, precision: 0.7747163695299838, recall: 0.6904188733750601, fps: 43.582139874688714, best_epoch: 960
[2024/07/27 14:58:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:58:40] ppocr INFO: epoch: [1181/1500], global_step: 3543, lr: 0.001000, loss: 1.204971, loss_shrink_maps: 0.604840, loss_threshold_maps: 0.462821, loss_binary_maps: 0.120493, avg_reader_cost: 2.32559 s, avg_batch_cost: 2.61847 s, avg_samples: 12.5, ips: 4.77379 samples/s, eta: 2:18:14
[2024/07/27 14:58:41] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:58:50] ppocr INFO: epoch: [1182/1500], global_step: 3546, lr: 0.001000, loss: 1.191955, loss_shrink_maps: 0.604365, loss_threshold_maps: 0.460122, loss_binary_maps: 0.119488, avg_reader_cost: 2.33673 s, avg_batch_cost: 2.59705 s, avg_samples: 12.5, ips: 4.81316 samples/s, eta: 2:17:48
[2024/07/27 14:58:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:58:59] ppocr INFO: epoch: [1183/1500], global_step: 3549, lr: 0.001000, loss: 1.157947, loss_shrink_maps: 0.580123, loss_threshold_maps: 0.454594, loss_binary_maps: 0.115127, avg_reader_cost: 2.10728 s, avg_batch_cost: 2.44047 s, avg_samples: 12.5, ips: 5.12197 samples/s, eta: 2:17:22
[2024/07/27 14:59:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:59:07] ppocr INFO: epoch: [1184/1500], global_step: 3550, lr: 0.001000, loss: 1.157947, loss_shrink_maps: 0.580123, loss_threshold_maps: 0.454594, loss_binary_maps: 0.115127, avg_reader_cost: 0.57165 s, avg_batch_cost: 0.77401 s, avg_samples: 4.8, ips: 6.20146 samples/s, eta: 2:17:13
[2024/07/27 14:59:09] ppocr INFO: epoch: [1184/1500], global_step: 3552, lr: 0.001000, loss: 1.157426, loss_shrink_maps: 0.574250, loss_threshold_maps: 0.454594, loss_binary_maps: 0.113846, avg_reader_cost: 1.64013 s, avg_batch_cost: 1.78628 s, avg_samples: 7.7, ips: 4.31063 samples/s, eta: 2:16:56
[2024/07/27 14:59:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:59:19] ppocr INFO: epoch: [1185/1500], global_step: 3555, lr: 0.001000, loss: 1.126954, loss_shrink_maps: 0.565983, loss_threshold_maps: 0.449193, loss_binary_maps: 0.112669, avg_reader_cost: 2.47593 s, avg_batch_cost: 2.72025 s, avg_samples: 12.5, ips: 4.59516 samples/s, eta: 2:16:30
[2024/07/27 14:59:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:59:29] ppocr INFO: epoch: [1186/1500], global_step: 3558, lr: 0.001000, loss: 1.130230, loss_shrink_maps: 0.571662, loss_threshold_maps: 0.452653, loss_binary_maps: 0.113458, avg_reader_cost: 2.17190 s, avg_batch_cost: 2.51301 s, avg_samples: 12.5, ips: 4.97412 samples/s, eta: 2:16:04
[2024/07/27 14:59:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:59:38] ppocr INFO: epoch: [1187/1500], global_step: 3560, lr: 0.001000, loss: 1.130230, loss_shrink_maps: 0.571662, loss_threshold_maps: 0.449208, loss_binary_maps: 0.113458, avg_reader_cost: 1.47642 s, avg_batch_cost: 1.66256 s, avg_samples: 9.6, ips: 5.77421 samples/s, eta: 2:15:46
[2024/07/27 14:59:39] ppocr INFO: epoch: [1187/1500], global_step: 3561, lr: 0.001000, loss: 1.119740, loss_shrink_maps: 0.565983, loss_threshold_maps: 0.445010, loss_binary_maps: 0.112669, avg_reader_cost: 0.87734 s, avg_batch_cost: 0.93281 s, avg_samples: 2.9, ips: 3.10890 samples/s, eta: 2:15:38
[2024/07/27 14:59:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:59:48] ppocr INFO: epoch: [1188/1500], global_step: 3564, lr: 0.001000, loss: 1.130230, loss_shrink_maps: 0.571662, loss_threshold_maps: 0.455035, loss_binary_maps: 0.113378, avg_reader_cost: 2.15236 s, avg_batch_cost: 2.52648 s, avg_samples: 12.5, ips: 4.94760 samples/s, eta: 2:15:12
[2024/07/27 14:59:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 14:59:58] ppocr INFO: epoch: [1189/1500], global_step: 3567, lr: 0.001000, loss: 1.173868, loss_shrink_maps: 0.583312, loss_threshold_maps: 0.456752, loss_binary_maps: 0.115200, avg_reader_cost: 2.17176 s, avg_batch_cost: 2.49879 s, avg_samples: 12.5, ips: 5.00242 samples/s, eta: 2:14:45
[2024/07/27 14:59:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:00:07] ppocr INFO: epoch: [1190/1500], global_step: 3570, lr: 0.001000, loss: 1.193723, loss_shrink_maps: 0.597397, loss_threshold_maps: 0.470643, loss_binary_maps: 0.117921, avg_reader_cost: 2.29836 s, avg_batch_cost: 2.53645 s, avg_samples: 12.5, ips: 4.92814 samples/s, eta: 2:14:19
[2024/07/27 15:00:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:00:17] ppocr INFO: epoch: [1191/1500], global_step: 3573, lr: 0.001000, loss: 1.197404, loss_shrink_maps: 0.603180, loss_threshold_maps: 0.470643, loss_binary_maps: 0.119666, avg_reader_cost: 2.15392 s, avg_batch_cost: 2.49461 s, avg_samples: 12.5, ips: 5.01080 samples/s, eta: 2:13:53
[2024/07/27 15:00:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:00:26] ppocr INFO: epoch: [1192/1500], global_step: 3576, lr: 0.001000, loss: 1.214568, loss_shrink_maps: 0.617075, loss_threshold_maps: 0.488024, loss_binary_maps: 0.122919, avg_reader_cost: 2.14085 s, avg_batch_cost: 2.50785 s, avg_samples: 12.5, ips: 4.98435 samples/s, eta: 2:13:27
[2024/07/27 15:00:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:00:36] ppocr INFO: epoch: [1193/1500], global_step: 3579, lr: 0.001000, loss: 1.193723, loss_shrink_maps: 0.603180, loss_threshold_maps: 0.467216, loss_binary_maps: 0.119643, avg_reader_cost: 2.23652 s, avg_batch_cost: 2.57706 s, avg_samples: 12.5, ips: 4.85050 samples/s, eta: 2:13:01
[2024/07/27 15:00:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:00:44] ppocr INFO: epoch: [1194/1500], global_step: 3580, lr: 0.001000, loss: 1.187792, loss_shrink_maps: 0.594519, loss_threshold_maps: 0.454465, loss_binary_maps: 0.117786, avg_reader_cost: 0.66475 s, avg_batch_cost: 0.75108 s, avg_samples: 4.8, ips: 6.39076 samples/s, eta: 2:12:52
[2024/07/27 15:00:46] ppocr INFO: epoch: [1194/1500], global_step: 3582, lr: 0.001000, loss: 1.187792, loss_shrink_maps: 0.594519, loss_threshold_maps: 0.454465, loss_binary_maps: 0.117786, avg_reader_cost: 1.59417 s, avg_batch_cost: 1.74133 s, avg_samples: 7.7, ips: 4.42191 samples/s, eta: 2:12:34
[2024/07/27 15:00:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:00:55] ppocr INFO: epoch: [1195/1500], global_step: 3585, lr: 0.001000, loss: 1.178772, loss_shrink_maps: 0.594519, loss_threshold_maps: 0.453670, loss_binary_maps: 0.117786, avg_reader_cost: 2.16798 s, avg_batch_cost: 2.49098 s, avg_samples: 12.5, ips: 5.01810 samples/s, eta: 2:12:08
[2024/07/27 15:00:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:01:05] ppocr INFO: epoch: [1196/1500], global_step: 3588, lr: 0.001000, loss: 1.191473, loss_shrink_maps: 0.604007, loss_threshold_maps: 0.460974, loss_binary_maps: 0.120250, avg_reader_cost: 2.32998 s, avg_batch_cost: 2.57251 s, avg_samples: 12.5, ips: 4.85906 samples/s, eta: 2:11:42
[2024/07/27 15:01:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:01:14] ppocr INFO: epoch: [1197/1500], global_step: 3590, lr: 0.001000, loss: 1.140346, loss_shrink_maps: 0.581566, loss_threshold_maps: 0.452975, loss_binary_maps: 0.115737, avg_reader_cost: 1.50069 s, avg_batch_cost: 1.68830 s, avg_samples: 9.6, ips: 5.68620 samples/s, eta: 2:11:25
[2024/07/27 15:01:15] ppocr INFO: epoch: [1197/1500], global_step: 3591, lr: 0.001000, loss: 1.140346, loss_shrink_maps: 0.581566, loss_threshold_maps: 0.458954, loss_binary_maps: 0.115737, avg_reader_cost: 0.89034 s, avg_batch_cost: 0.94586 s, avg_samples: 2.9, ips: 3.06599 samples/s, eta: 2:11:16
[2024/07/27 15:01:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:01:25] ppocr INFO: epoch: [1198/1500], global_step: 3594, lr: 0.001000, loss: 1.202980, loss_shrink_maps: 0.611198, loss_threshold_maps: 0.470199, loss_binary_maps: 0.121389, avg_reader_cost: 2.37002 s, avg_batch_cost: 2.60921 s, avg_samples: 12.5, ips: 4.79071 samples/s, eta: 2:10:50
[2024/07/27 15:01:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:01:35] ppocr INFO: epoch: [1199/1500], global_step: 3597, lr: 0.001000, loss: 1.181874, loss_shrink_maps: 0.591022, loss_threshold_maps: 0.468457, loss_binary_maps: 0.117725, avg_reader_cost: 2.23910 s, avg_batch_cost: 2.62336 s, avg_samples: 12.5, ips: 4.76489 samples/s, eta: 2:10:24
[2024/07/27 15:01:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:01:44] ppocr INFO: epoch: [1200/1500], global_step: 3600, lr: 0.001000, loss: 1.202980, loss_shrink_maps: 0.611198, loss_threshold_maps: 0.470723, loss_binary_maps: 0.121389, avg_reader_cost: 2.20313 s, avg_batch_cost: 2.51728 s, avg_samples: 12.5, ips: 4.96568 samples/s, eta: 2:09:58

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:55,  9.00it/s]
eval model::   1%|          | 4/500 [00:00<00:27, 17.79it/s]
eval model::   1%|          | 6/500 [00:00<00:27, 18.10it/s]
eval model::   2%|▏         | 8/500 [00:00<00:26, 18.48it/s]
eval model::   2%|▏         | 11/500 [00:00<00:28, 17.23it/s]
eval model::   3%|▎         | 13/500 [00:00<00:28, 17.05it/s]
eval model::   3%|▎         | 15/500 [00:00<00:29, 16.53it/s]
eval model::   4%|▎         | 18/500 [00:01<00:25, 18.88it/s]
eval model::   4%|▍         | 20/500 [00:01<00:25, 19.03it/s]
eval model::   5%|▍         | 23/500 [00:01<00:22, 21.08it/s]
eval model::   5%|▌         | 26/500 [00:01<00:23, 20.38it/s]
eval model::   6%|▌         | 30/500 [00:01<00:19, 23.63it/s]
eval model::   7%|▋         | 33/500 [00:01<00:22, 20.70it/s]
eval model::   7%|▋         | 36/500 [00:01<00:22, 20.64it/s]
eval model::   8%|▊         | 39/500 [00:02<00:24, 18.89it/s]
eval model::   8%|▊         | 42/500 [00:02<00:26, 17.52it/s]
eval model::   9%|▉         | 45/500 [00:02<00:22, 19.89it/s]
eval model::  10%|▉         | 48/500 [00:02<00:26, 17.22it/s]
eval model::  10%|█         | 50/500 [00:02<00:25, 17.53it/s]
eval model::  11%|█         | 53/500 [00:02<00:23, 19.33it/s]
eval model::  11%|█         | 56/500 [00:02<00:21, 20.38it/s]
eval model::  12%|█▏        | 59/500 [00:03<00:23, 18.69it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:28, 15.59it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:28, 15.35it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:24, 17.41it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:21, 20.13it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:19, 21.87it/s]
eval model::  15%|█▌        | 75/500 [00:03<00:21, 20.13it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:19, 21.21it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:18, 22.64it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:19, 21.25it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:21, 19.21it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:22, 18.22it/s]
eval model::  18%|█▊        | 92/500 [00:04<00:22, 18.50it/s]
eval model::  19%|█▉        | 95/500 [00:04<00:20, 19.51it/s]
eval model::  20%|█▉        | 98/500 [00:05<00:19, 20.30it/s]
eval model::  20%|██        | 101/500 [00:05<00:20, 19.05it/s]
eval model::  21%|██        | 104/500 [00:05<00:19, 20.69it/s]
eval model::  21%|██▏       | 107/500 [00:05<00:18, 21.34it/s]
eval model::  22%|██▏       | 110/500 [00:05<00:19, 20.17it/s]
eval model::  23%|██▎       | 113/500 [00:05<00:19, 20.23it/s]
eval model::  23%|██▎       | 116/500 [00:06<00:19, 19.35it/s]
eval model::  24%|██▍       | 119/500 [00:06<00:18, 20.50it/s]
eval model::  24%|██▍       | 122/500 [00:06<00:19, 19.07it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:21, 17.26it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:23, 16.22it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:19, 18.68it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:20, 17.64it/s]
eval model::  27%|██▋       | 133/500 [00:06<00:20, 18.04it/s]
eval model::  27%|██▋       | 136/500 [00:07<00:19, 18.80it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:19, 18.65it/s]
eval model::  28%|██▊       | 140/500 [00:07<00:19, 18.59it/s]
eval model::  29%|██▊       | 143/500 [00:07<00:17, 20.93it/s]
eval model::  29%|██▉       | 146/500 [00:07<00:17, 20.12it/s]
eval model::  30%|██▉       | 149/500 [00:07<00:17, 19.75it/s]
eval model::  30%|███       | 151/500 [00:07<00:19, 18.21it/s]
eval model::  31%|███       | 155/500 [00:08<00:15, 21.59it/s]
eval model::  32%|███▏      | 158/500 [00:08<00:15, 22.42it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:19, 16.97it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:17, 19.06it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:17, 19.55it/s]
eval model::  34%|███▍      | 170/500 [00:08<00:15, 21.08it/s]
eval model::  35%|███▍      | 173/500 [00:09<00:16, 20.02it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:18, 17.90it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:17, 18.61it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:19, 16.75it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:17, 18.29it/s]
eval model::  37%|███▋      | 187/500 [00:09<00:16, 18.54it/s]
eval model::  38%|███▊      | 190/500 [00:09<00:16, 18.63it/s]
eval model::  39%|███▊      | 193/500 [00:10<00:15, 19.82it/s]
eval model::  39%|███▉      | 196/500 [00:10<00:16, 18.82it/s]
eval model::  40%|███▉      | 199/500 [00:10<00:14, 20.23it/s]
eval model::  40%|████      | 202/500 [00:10<00:15, 19.35it/s]
eval model::  41%|████      | 205/500 [00:10<00:19, 14.84it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:18, 15.61it/s]
eval model::  42%|████▏     | 209/500 [00:11<00:18, 15.74it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:19, 14.53it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:19, 14.81it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:20, 13.62it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:20, 13.82it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:17, 16.21it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:18, 15.12it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:14, 19.03it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:12, 21.67it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:12, 21.70it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:12, 20.53it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:12, 21.64it/s]
eval model::  48%|████▊     | 242/500 [00:12<00:14, 17.72it/s]
eval model::  49%|████▉     | 245/500 [00:13<00:13, 19.32it/s]
eval model::  50%|████▉     | 248/500 [00:13<00:12, 20.29it/s]
eval model::  50%|█████     | 251/500 [00:13<00:12, 20.63it/s]
eval model::  51%|█████     | 254/500 [00:13<00:11, 21.74it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:11, 21.87it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:10, 23.58it/s]
eval model::  53%|█████▎    | 263/500 [00:13<00:09, 24.14it/s]
eval model::  53%|█████▎    | 266/500 [00:13<00:10, 22.53it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:11, 20.47it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:10, 21.17it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:11, 19.32it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:10, 21.34it/s]
eval model::  56%|█████▌    | 281/500 [00:14<00:10, 20.19it/s]
eval model::  57%|█████▋    | 284/500 [00:14<00:10, 19.79it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:19, 10.95it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:14, 14.35it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:13, 14.94it/s]
eval model::  59%|█████▉    | 296/500 [00:16<00:16, 12.63it/s]
eval model::  60%|█████▉    | 299/500 [00:16<00:13, 14.75it/s]
eval model::  60%|██████    | 301/500 [00:16<00:13, 14.32it/s]
eval model::  61%|██████    | 304/500 [00:16<00:12, 16.29it/s]
eval model::  61%|██████▏   | 307/500 [00:16<00:10, 18.30it/s]
eval model::  62%|██████▏   | 310/500 [00:16<00:09, 19.19it/s]
eval model::  63%|██████▎   | 313/500 [00:16<00:09, 19.91it/s]
eval model::  63%|██████▎   | 316/500 [00:16<00:09, 20.05it/s]
eval model::  64%|██████▍   | 319/500 [00:17<00:08, 22.12it/s]
eval model::  64%|██████▍   | 322/500 [00:17<00:08, 20.74it/s]
eval model::  65%|██████▌   | 325/500 [00:17<00:07, 22.06it/s]
eval model::  66%|██████▌   | 328/500 [00:17<00:08, 21.13it/s]
eval model::  66%|██████▌   | 331/500 [00:17<00:07, 21.66it/s]
eval model::  67%|██████▋   | 334/500 [00:17<00:07, 23.61it/s]
eval model::  67%|██████▋   | 337/500 [00:17<00:07, 23.05it/s]
eval model::  68%|██████▊   | 340/500 [00:18<00:10, 15.94it/s]
eval model::  69%|██████▊   | 343/500 [00:18<00:08, 17.91it/s]
eval model::  69%|██████▉   | 347/500 [00:18<00:07, 20.61it/s]
eval model::  70%|███████   | 350/500 [00:18<00:06, 22.52it/s]
eval model::  71%|███████   | 353/500 [00:18<00:06, 23.33it/s]
eval model::  71%|███████   | 356/500 [00:18<00:06, 22.63it/s]
eval model::  72%|███████▏  | 359/500 [00:18<00:06, 23.45it/s]
eval model::  72%|███████▏  | 362/500 [00:19<00:06, 19.82it/s]
eval model::  73%|███████▎  | 365/500 [00:19<00:07, 18.57it/s]
eval model::  73%|███████▎  | 367/500 [00:19<00:07, 17.17it/s]
eval model::  74%|███████▍  | 370/500 [00:19<00:06, 18.61it/s]
eval model::  74%|███████▍  | 372/500 [00:19<00:06, 18.62it/s]
eval model::  75%|███████▌  | 375/500 [00:19<00:06, 20.36it/s]
eval model::  76%|███████▌  | 379/500 [00:19<00:05, 23.60it/s]
eval model::  76%|███████▋  | 382/500 [00:20<00:05, 22.55it/s]
eval model::  77%|███████▋  | 386/500 [00:20<00:07, 14.42it/s]
eval model::  78%|███████▊  | 389/500 [00:20<00:06, 16.50it/s]
eval model::  78%|███████▊  | 392/500 [00:20<00:06, 17.76it/s]
eval model::  79%|███████▉  | 395/500 [00:20<00:05, 18.61it/s]
eval model::  80%|███████▉  | 398/500 [00:21<00:04, 20.52it/s]
eval model::  80%|████████  | 401/500 [00:21<00:05, 19.41it/s]
eval model::  81%|████████  | 404/500 [00:21<00:04, 20.71it/s]
eval model::  81%|████████▏ | 407/500 [00:21<00:04, 20.41it/s]
eval model::  82%|████████▏ | 410/500 [00:21<00:04, 21.36it/s]
eval model::  83%|████████▎ | 413/500 [00:21<00:04, 19.86it/s]
eval model::  83%|████████▎ | 416/500 [00:22<00:04, 19.38it/s]
eval model::  84%|████████▎ | 418/500 [00:22<00:04, 19.03it/s]
eval model::  84%|████████▍ | 420/500 [00:22<00:05, 14.39it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:05, 15.06it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:05, 14.90it/s]
eval model::  85%|████████▌ | 426/500 [00:22<00:04, 15.79it/s]
eval model::  86%|████████▌ | 429/500 [00:22<00:03, 18.29it/s]
eval model::  86%|████████▌ | 431/500 [00:22<00:04, 17.10it/s]
eval model::  87%|████████▋ | 435/500 [00:23<00:03, 20.63it/s]
eval model::  88%|████████▊ | 438/500 [00:23<00:02, 22.45it/s]
eval model::  88%|████████▊ | 441/500 [00:23<00:02, 22.15it/s]
eval model::  89%|████████▉ | 445/500 [00:23<00:02, 23.88it/s]
eval model::  90%|████████▉ | 448/500 [00:23<00:02, 22.58it/s]
eval model::  90%|█████████ | 451/500 [00:23<00:02, 23.23it/s]
eval model::  91%|█████████ | 454/500 [00:23<00:01, 24.34it/s]
eval model::  92%|█████████▏| 458/500 [00:24<00:01, 26.32it/s]
eval model::  92%|█████████▏| 461/500 [00:24<00:01, 24.41it/s]
eval model::  93%|█████████▎| 464/500 [00:24<00:01, 18.11it/s]
eval model::  93%|█████████▎| 467/500 [00:24<00:01, 18.76it/s]
eval model::  94%|█████████▍| 471/500 [00:24<00:01, 21.72it/s]
eval model::  95%|█████████▍| 474/500 [00:24<00:01, 19.60it/s]
eval model::  95%|█████████▌| 477/500 [00:25<00:01, 20.65it/s]
eval model::  96%|█████████▌| 480/500 [00:25<00:00, 20.60it/s]
eval model::  97%|█████████▋| 483/500 [00:25<00:00, 21.77it/s]
eval model::  97%|█████████▋| 486/500 [00:25<00:00, 22.99it/s]
eval model::  98%|█████████▊| 489/500 [00:25<00:00, 23.98it/s]
eval model::  98%|█████████▊| 492/500 [00:25<00:00, 21.25it/s]
eval model::  99%|█████████▉| 495/500 [00:25<00:00, 20.89it/s]
eval model:: 100%|█████████▉| 498/500 [00:25<00:00, 22.68it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 19.20it/s]
[2024/07/27 15:02:10] ppocr INFO: cur metric, precision: 0.7494703389830508, recall: 0.6812710640346654, hmean: 0.7137452711223202, fps: 44.90074549960995
[2024/07/27 15:02:10] ppocr INFO: best metric, hmean: 0.7301425661914459, precision: 0.7747163695299838, recall: 0.6904188733750601, fps: 43.582139874688714, best_epoch: 960
[2024/07/27 15:02:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:02:11] ppocr INFO: save model in ./output/db_mv3/iter_epoch_1200
[2024/07/27 15:02:21] ppocr INFO: epoch: [1201/1500], global_step: 3603, lr: 0.001000, loss: 1.210829, loss_shrink_maps: 0.620955, loss_threshold_maps: 0.470199, loss_binary_maps: 0.123012, avg_reader_cost: 2.41219 s, avg_batch_cost: 2.79327 s, avg_samples: 12.5, ips: 4.47505 samples/s, eta: 2:09:32
[2024/07/27 15:02:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:02:30] ppocr INFO: epoch: [1202/1500], global_step: 3606, lr: 0.001000, loss: 1.210829, loss_shrink_maps: 0.620955, loss_threshold_maps: 0.470723, loss_binary_maps: 0.123012, avg_reader_cost: 2.05176 s, avg_batch_cost: 2.46461 s, avg_samples: 12.5, ips: 5.07180 samples/s, eta: 2:09:06
[2024/07/27 15:02:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:02:40] ppocr INFO: epoch: [1203/1500], global_step: 3609, lr: 0.001000, loss: 1.222667, loss_shrink_maps: 0.618954, loss_threshold_maps: 0.475583, loss_binary_maps: 0.123294, avg_reader_cost: 2.22188 s, avg_batch_cost: 2.60271 s, avg_samples: 12.5, ips: 4.80269 samples/s, eta: 2:08:40
[2024/07/27 15:02:41] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:02:48] ppocr INFO: epoch: [1204/1500], global_step: 3610, lr: 0.001000, loss: 1.222667, loss_shrink_maps: 0.618954, loss_threshold_maps: 0.475583, loss_binary_maps: 0.123294, avg_reader_cost: 0.56826 s, avg_batch_cost: 0.77787 s, avg_samples: 4.8, ips: 6.17066 samples/s, eta: 2:08:31
[2024/07/27 15:02:50] ppocr INFO: epoch: [1204/1500], global_step: 3612, lr: 0.001000, loss: 1.211168, loss_shrink_maps: 0.610592, loss_threshold_maps: 0.472748, loss_binary_maps: 0.121710, avg_reader_cost: 1.64792 s, avg_batch_cost: 1.79527 s, avg_samples: 7.7, ips: 4.28904 samples/s, eta: 2:08:14
[2024/07/27 15:02:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:03:00] ppocr INFO: epoch: [1205/1500], global_step: 3615, lr: 0.001000, loss: 1.187751, loss_shrink_maps: 0.595964, loss_threshold_maps: 0.468980, loss_binary_maps: 0.118608, avg_reader_cost: 2.23917 s, avg_batch_cost: 2.57881 s, avg_samples: 12.5, ips: 4.84720 samples/s, eta: 2:07:48
[2024/07/27 15:03:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:03:10] ppocr INFO: epoch: [1206/1500], global_step: 3618, lr: 0.001000, loss: 1.177054, loss_shrink_maps: 0.597902, loss_threshold_maps: 0.455270, loss_binary_maps: 0.118414, avg_reader_cost: 2.44212 s, avg_batch_cost: 2.68151 s, avg_samples: 12.5, ips: 4.66156 samples/s, eta: 2:07:22
[2024/07/27 15:03:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:03:19] ppocr INFO: epoch: [1207/1500], global_step: 3620, lr: 0.001000, loss: 1.167846, loss_shrink_maps: 0.597902, loss_threshold_maps: 0.459313, loss_binary_maps: 0.118414, avg_reader_cost: 1.52385 s, avg_batch_cost: 1.70953 s, avg_samples: 9.6, ips: 5.61557 samples/s, eta: 2:07:05
[2024/07/27 15:03:20] ppocr INFO: epoch: [1207/1500], global_step: 3621, lr: 0.001000, loss: 1.170976, loss_shrink_maps: 0.597902, loss_threshold_maps: 0.472856, loss_binary_maps: 0.118414, avg_reader_cost: 0.90086 s, avg_batch_cost: 0.95626 s, avg_samples: 2.9, ips: 3.03265 samples/s, eta: 2:06:56
[2024/07/27 15:03:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:03:29] ppocr INFO: epoch: [1208/1500], global_step: 3624, lr: 0.001000, loss: 1.155033, loss_shrink_maps: 0.595234, loss_threshold_maps: 0.472856, loss_binary_maps: 0.118414, avg_reader_cost: 2.16576 s, avg_batch_cost: 2.50840 s, avg_samples: 12.5, ips: 4.98326 samples/s, eta: 2:06:30
[2024/07/27 15:03:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:03:39] ppocr INFO: epoch: [1209/1500], global_step: 3627, lr: 0.001000, loss: 1.155033, loss_shrink_maps: 0.592731, loss_threshold_maps: 0.471393, loss_binary_maps: 0.117763, avg_reader_cost: 2.21408 s, avg_batch_cost: 2.58737 s, avg_samples: 12.5, ips: 4.83116 samples/s, eta: 2:06:04
[2024/07/27 15:03:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:03:49] ppocr INFO: epoch: [1210/1500], global_step: 3630, lr: 0.001000, loss: 1.167582, loss_shrink_maps: 0.594368, loss_threshold_maps: 0.468852, loss_binary_maps: 0.118266, avg_reader_cost: 2.29232 s, avg_batch_cost: 2.68161 s, avg_samples: 12.5, ips: 4.66138 samples/s, eta: 2:05:38
[2024/07/27 15:03:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:03:59] ppocr INFO: epoch: [1211/1500], global_step: 3633, lr: 0.001000, loss: 1.179579, loss_shrink_maps: 0.595454, loss_threshold_maps: 0.471393, loss_binary_maps: 0.118527, avg_reader_cost: 2.25193 s, avg_batch_cost: 2.66165 s, avg_samples: 12.5, ips: 4.69634 samples/s, eta: 2:05:12
[2024/07/27 15:04:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:04:09] ppocr INFO: epoch: [1212/1500], global_step: 3636, lr: 0.001000, loss: 1.182974, loss_shrink_maps: 0.595454, loss_threshold_maps: 0.475581, loss_binary_maps: 0.118578, avg_reader_cost: 2.30269 s, avg_batch_cost: 2.70852 s, avg_samples: 12.5, ips: 4.61506 samples/s, eta: 2:04:47
[2024/07/27 15:04:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:04:19] ppocr INFO: epoch: [1213/1500], global_step: 3639, lr: 0.001000, loss: 1.202208, loss_shrink_maps: 0.602948, loss_threshold_maps: 0.479162, loss_binary_maps: 0.119890, avg_reader_cost: 2.15135 s, avg_batch_cost: 2.51577 s, avg_samples: 12.5, ips: 4.96865 samples/s, eta: 2:04:21
[2024/07/27 15:04:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:04:27] ppocr INFO: epoch: [1214/1500], global_step: 3640, lr: 0.001000, loss: 1.202208, loss_shrink_maps: 0.602948, loss_threshold_maps: 0.477264, loss_binary_maps: 0.119890, avg_reader_cost: 0.51434 s, avg_batch_cost: 0.77805 s, avg_samples: 4.8, ips: 6.16927 samples/s, eta: 2:04:12
[2024/07/27 15:04:28] ppocr INFO: epoch: [1214/1500], global_step: 3642, lr: 0.001000, loss: 1.202208, loss_shrink_maps: 0.602948, loss_threshold_maps: 0.475152, loss_binary_maps: 0.119690, avg_reader_cost: 1.64752 s, avg_batch_cost: 1.79442 s, avg_samples: 7.7, ips: 4.29108 samples/s, eta: 2:03:54
[2024/07/27 15:04:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:04:38] ppocr INFO: epoch: [1215/1500], global_step: 3645, lr: 0.001000, loss: 1.179579, loss_shrink_maps: 0.592952, loss_threshold_maps: 0.470928, loss_binary_maps: 0.117875, avg_reader_cost: 2.31135 s, avg_batch_cost: 2.56093 s, avg_samples: 12.5, ips: 4.88104 samples/s, eta: 2:03:28
[2024/07/27 15:04:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:04:48] ppocr INFO: epoch: [1216/1500], global_step: 3648, lr: 0.001000, loss: 1.124130, loss_shrink_maps: 0.560264, loss_threshold_maps: 0.471785, loss_binary_maps: 0.111871, avg_reader_cost: 2.35028 s, avg_batch_cost: 2.59273 s, avg_samples: 12.5, ips: 4.82117 samples/s, eta: 2:03:02
[2024/07/27 15:04:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:04:57] ppocr INFO: epoch: [1217/1500], global_step: 3650, lr: 0.001000, loss: 1.097090, loss_shrink_maps: 0.556590, loss_threshold_maps: 0.457613, loss_binary_maps: 0.109749, avg_reader_cost: 1.33471 s, avg_batch_cost: 1.63011 s, avg_samples: 9.6, ips: 5.88918 samples/s, eta: 2:02:45
[2024/07/27 15:04:58] ppocr INFO: epoch: [1217/1500], global_step: 3651, lr: 0.001000, loss: 1.091683, loss_shrink_maps: 0.548639, loss_threshold_maps: 0.437388, loss_binary_maps: 0.108379, avg_reader_cost: 0.86148 s, avg_batch_cost: 0.91659 s, avg_samples: 2.9, ips: 3.16389 samples/s, eta: 2:02:36
[2024/07/27 15:04:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:05:07] ppocr INFO: epoch: [1218/1500], global_step: 3654, lr: 0.001000, loss: 1.097090, loss_shrink_maps: 0.556590, loss_threshold_maps: 0.439243, loss_binary_maps: 0.109749, avg_reader_cost: 2.17373 s, avg_batch_cost: 2.60175 s, avg_samples: 12.5, ips: 4.80446 samples/s, eta: 2:02:10
[2024/07/27 15:05:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:05:17] ppocr INFO: epoch: [1219/1500], global_step: 3657, lr: 0.001000, loss: 1.107791, loss_shrink_maps: 0.561658, loss_threshold_maps: 0.440479, loss_binary_maps: 0.112159, avg_reader_cost: 2.25269 s, avg_batch_cost: 2.60128 s, avg_samples: 12.5, ips: 4.80532 samples/s, eta: 2:01:44
[2024/07/27 15:05:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:05:27] ppocr INFO: epoch: [1220/1500], global_step: 3660, lr: 0.001000, loss: 1.118920, loss_shrink_maps: 0.561658, loss_threshold_maps: 0.443556, loss_binary_maps: 0.112100, avg_reader_cost: 2.32840 s, avg_batch_cost: 2.56671 s, avg_samples: 12.5, ips: 4.87005 samples/s, eta: 2:01:18

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<01:02,  7.96it/s]
eval model::   1%|          | 3/500 [00:00<00:35, 13.81it/s]
eval model::   1%|          | 6/500 [00:00<00:27, 18.03it/s]
eval model::   2%|▏         | 8/500 [00:00<00:27, 17.94it/s]
eval model::   2%|▏         | 11/500 [00:00<00:27, 17.57it/s]
eval model::   3%|▎         | 14/500 [00:00<00:26, 18.65it/s]
eval model::   4%|▎         | 18/500 [00:00<00:21, 22.51it/s]
eval model::   4%|▍         | 21/500 [00:01<00:25, 18.97it/s]
eval model::   5%|▍         | 24/500 [00:01<00:23, 20.37it/s]
eval model::   5%|▌         | 27/500 [00:01<00:22, 20.89it/s]
eval model::   6%|▌         | 30/500 [00:01<00:22, 21.14it/s]
eval model::   7%|▋         | 33/500 [00:01<00:23, 19.47it/s]
eval model::   7%|▋         | 36/500 [00:01<00:25, 18.56it/s]
eval model::   8%|▊         | 39/500 [00:02<00:26, 17.52it/s]
eval model::   8%|▊         | 42/500 [00:02<00:27, 16.82it/s]
eval model::   9%|▉         | 45/500 [00:02<00:24, 18.31it/s]
eval model::   9%|▉         | 47/500 [00:02<00:25, 17.66it/s]
eval model::  10%|█         | 50/500 [00:02<00:24, 18.32it/s]
eval model::  11%|█         | 53/500 [00:02<00:22, 19.45it/s]
eval model::  11%|█         | 56/500 [00:02<00:22, 20.12it/s]
eval model::  12%|█▏        | 59/500 [00:03<00:24, 18.09it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:28, 15.51it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:29, 14.94it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:24, 17.59it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:21, 19.99it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:19, 22.01it/s]
eval model::  15%|█▌        | 75/500 [00:03<00:18, 23.33it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:17, 24.10it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:16, 24.92it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:18, 22.84it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:20, 20.61it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:22, 18.30it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:20, 19.44it/s]
eval model::  19%|█▉        | 96/500 [00:04<00:19, 20.85it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:19, 20.80it/s]
eval model::  20%|██        | 102/500 [00:05<00:19, 20.03it/s]
eval model::  21%|██        | 106/500 [00:05<00:18, 21.87it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:19, 20.14it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:22, 17.09it/s]
eval model::  23%|██▎       | 115/500 [00:06<00:21, 17.61it/s]
eval model::  24%|██▎       | 118/500 [00:06<00:21, 17.50it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:22, 16.53it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:21, 17.88it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:23, 16.03it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:20, 18.54it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:20, 17.92it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:21, 17.32it/s]
eval model::  27%|██▋       | 135/500 [00:07<00:19, 19.04it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:17, 20.15it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:16, 21.16it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:16, 21.62it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:20, 17.61it/s]
eval model::  30%|███       | 150/500 [00:07<00:18, 19.23it/s]
eval model::  31%|███       | 153/500 [00:08<00:18, 19.07it/s]
eval model::  31%|███       | 156/500 [00:08<00:16, 20.65it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:16, 20.09it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:21, 15.57it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:20, 16.12it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:20, 16.52it/s]
eval model::  34%|███▍      | 170/500 [00:09<00:18, 17.89it/s]
eval model::  34%|███▍      | 172/500 [00:09<00:18, 17.30it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:19, 17.09it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:18, 17.54it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:17, 18.42it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:18, 17.03it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:16, 19.39it/s]
eval model::  37%|███▋      | 187/500 [00:09<00:15, 20.36it/s]
eval model::  38%|███▊      | 190/500 [00:10<00:15, 20.23it/s]
eval model::  39%|███▊      | 193/500 [00:10<00:15, 19.85it/s]
eval model::  39%|███▉      | 196/500 [00:10<00:16, 18.06it/s]
eval model::  40%|███▉      | 199/500 [00:10<00:15, 19.94it/s]
eval model::  40%|████      | 202/500 [00:10<00:13, 21.70it/s]
eval model::  41%|████      | 205/500 [00:11<00:22, 13.03it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:20, 14.34it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:19, 14.56it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.87it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:19, 14.66it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:19, 14.38it/s]
eval model::  44%|████▍     | 219/500 [00:11<00:18, 15.20it/s]
eval model::  44%|████▍     | 221/500 [00:12<00:22, 12.42it/s]
eval model::  45%|████▍     | 223/500 [00:12<00:20, 13.51it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:17, 15.74it/s]
eval model::  46%|████▌     | 229/500 [00:12<00:15, 17.66it/s]
eval model::  46%|████▋     | 232/500 [00:12<00:13, 20.06it/s]
eval model::  47%|████▋     | 235/500 [00:12<00:14, 17.74it/s]
eval model::  48%|████▊     | 238/500 [00:13<00:13, 19.20it/s]
eval model::  48%|████▊     | 241/500 [00:13<00:13, 18.77it/s]
eval model::  49%|████▊     | 243/500 [00:13<00:16, 15.55it/s]
eval model::  49%|████▉     | 245/500 [00:13<00:15, 16.00it/s]
eval model::  49%|████▉     | 247/500 [00:13<00:15, 16.64it/s]
eval model::  50%|████▉     | 249/500 [00:13<00:14, 16.81it/s]
eval model::  50%|█████     | 252/500 [00:13<00:12, 19.38it/s]
eval model::  51%|█████     | 255/500 [00:14<00:12, 19.74it/s]
eval model::  52%|█████▏    | 258/500 [00:14<00:11, 21.72it/s]
eval model::  52%|█████▏    | 261/500 [00:14<00:10, 23.75it/s]
eval model::  53%|█████▎    | 264/500 [00:14<00:11, 21.42it/s]
eval model::  53%|█████▎    | 267/500 [00:14<00:11, 20.60it/s]
eval model::  54%|█████▍    | 270/500 [00:14<00:11, 19.40it/s]
eval model::  55%|█████▍    | 273/500 [00:14<00:11, 19.46it/s]
eval model::  55%|█████▌    | 275/500 [00:15<00:12, 18.34it/s]
eval model::  56%|█████▌    | 278/500 [00:15<00:10, 20.42it/s]
eval model::  56%|█████▌    | 281/500 [00:15<00:09, 21.95it/s]
eval model::  57%|█████▋    | 284/500 [00:15<00:09, 23.33it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:20, 10.62it/s]
eval model::  58%|█████▊    | 290/500 [00:16<00:16, 12.70it/s]
eval model::  58%|█████▊    | 292/500 [00:16<00:15, 13.29it/s]
eval model::  59%|█████▉    | 294/500 [00:16<00:15, 13.09it/s]
eval model::  59%|█████▉    | 296/500 [00:16<00:17, 11.98it/s]
eval model::  60%|██████    | 300/500 [00:16<00:14, 14.02it/s]
eval model::  60%|██████    | 302/500 [00:16<00:13, 14.27it/s]
eval model::  61%|██████    | 304/500 [00:17<00:13, 14.36it/s]
eval model::  61%|██████▏   | 307/500 [00:17<00:11, 16.68it/s]
eval model::  62%|██████▏   | 310/500 [00:17<00:10, 18.11it/s]
eval model::  63%|██████▎   | 313/500 [00:17<00:09, 19.91it/s]
eval model::  63%|██████▎   | 316/500 [00:17<00:09, 20.22it/s]
eval model::  64%|██████▍   | 319/500 [00:17<00:08, 21.70it/s]
eval model::  64%|██████▍   | 322/500 [00:17<00:09, 19.56it/s]
eval model::  65%|██████▌   | 325/500 [00:18<00:08, 20.26it/s]
eval model::  66%|██████▌   | 328/500 [00:18<00:08, 20.83it/s]
eval model::  66%|██████▌   | 331/500 [00:18<00:08, 19.93it/s]
eval model::  67%|██████▋   | 334/500 [00:18<00:07, 21.45it/s]
eval model::  67%|██████▋   | 337/500 [00:18<00:08, 20.06it/s]
eval model::  68%|██████▊   | 340/500 [00:19<00:11, 14.00it/s]
eval model::  68%|██████▊   | 342/500 [00:19<00:10, 14.85it/s]
eval model::  69%|██████▉   | 345/500 [00:19<00:09, 16.86it/s]
eval model::  69%|██████▉   | 347/500 [00:19<00:09, 16.55it/s]
eval model::  70%|███████   | 350/500 [00:19<00:08, 18.47it/s]
eval model::  71%|███████   | 354/500 [00:19<00:06, 22.02it/s]
eval model::  71%|███████▏  | 357/500 [00:19<00:07, 19.38it/s]
eval model::  72%|███████▏  | 360/500 [00:19<00:06, 20.26it/s]
eval model::  73%|███████▎  | 363/500 [00:20<00:07, 17.77it/s]
eval model::  73%|███████▎  | 365/500 [00:20<00:07, 16.94it/s]
eval model::  73%|███████▎  | 367/500 [00:20<00:08, 15.58it/s]
eval model::  74%|███████▍  | 370/500 [00:20<00:07, 17.56it/s]
eval model::  74%|███████▍  | 372/500 [00:20<00:07, 17.65it/s]
eval model::  75%|███████▌  | 375/500 [00:20<00:06, 19.29it/s]
eval model::  76%|███████▌  | 378/500 [00:20<00:05, 20.97it/s]
eval model::  76%|███████▌  | 381/500 [00:21<00:06, 19.12it/s]
eval model::  77%|███████▋  | 384/500 [00:21<00:05, 21.47it/s]
eval model::  77%|███████▋  | 387/500 [00:21<00:08, 13.15it/s]
eval model::  78%|███████▊  | 390/500 [00:21<00:07, 15.08it/s]
eval model::  78%|███████▊  | 392/500 [00:21<00:06, 15.84it/s]
eval model::  79%|███████▉  | 394/500 [00:22<00:06, 16.27it/s]
eval model::  79%|███████▉  | 396/500 [00:22<00:06, 16.51it/s]
eval model::  80%|███████▉  | 399/500 [00:22<00:05, 19.08it/s]
eval model::  80%|████████  | 402/500 [00:22<00:05, 19.18it/s]
eval model::  81%|████████  | 405/500 [00:22<00:04, 21.32it/s]
eval model::  82%|████████▏ | 408/500 [00:22<00:04, 22.61it/s]
eval model::  82%|████████▏ | 412/500 [00:22<00:03, 25.46it/s]
eval model::  83%|████████▎ | 415/500 [00:22<00:03, 22.90it/s]
eval model::  84%|████████▎ | 418/500 [00:23<00:04, 20.07it/s]
eval model::  84%|████████▍ | 421/500 [00:23<00:05, 13.56it/s]
eval model::  85%|████████▍ | 424/500 [00:23<00:05, 14.34it/s]
eval model::  85%|████████▌ | 426/500 [00:23<00:04, 14.82it/s]
eval model::  86%|████████▌ | 429/500 [00:23<00:04, 17.12it/s]
eval model::  86%|████████▌ | 431/500 [00:24<00:04, 15.82it/s]
eval model::  87%|████████▋ | 435/500 [00:24<00:03, 18.94it/s]
eval model::  88%|████████▊ | 438/500 [00:24<00:03, 19.73it/s]
eval model::  88%|████████▊ | 441/500 [00:24<00:02, 19.99it/s]
eval model::  89%|████████▉ | 444/500 [00:24<00:02, 21.65it/s]
eval model::  89%|████████▉ | 447/500 [00:24<00:02, 23.17it/s]
eval model::  90%|█████████ | 450/500 [00:24<00:02, 20.22it/s]
eval model::  91%|█████████ | 453/500 [00:25<00:02, 22.18it/s]
eval model::  91%|█████████ | 456/500 [00:25<00:02, 20.63it/s]
eval model::  92%|█████████▏| 459/500 [00:25<00:02, 18.97it/s]
eval model::  92%|█████████▏| 462/500 [00:25<00:02, 15.81it/s]
eval model::  93%|█████████▎| 464/500 [00:25<00:02, 15.55it/s]
eval model::  93%|█████████▎| 466/500 [00:25<00:02, 14.93it/s]
eval model::  94%|█████████▎| 468/500 [00:26<00:02, 15.89it/s]
eval model::  94%|█████████▍| 471/500 [00:26<00:01, 18.06it/s]
eval model::  95%|█████████▍| 474/500 [00:26<00:01, 17.46it/s]
eval model::  95%|█████████▌| 477/500 [00:26<00:01, 19.81it/s]
eval model::  96%|█████████▌| 480/500 [00:26<00:00, 21.16it/s]
eval model::  97%|█████████▋| 483/500 [00:26<00:00, 21.30it/s]
eval model::  97%|█████████▋| 486/500 [00:26<00:00, 20.20it/s]
eval model::  98%|█████████▊| 489/500 [00:26<00:00, 21.76it/s]
eval model::  98%|█████████▊| 492/500 [00:27<00:00, 20.12it/s]
eval model::  99%|█████████▉| 495/500 [00:27<00:00, 22.01it/s]
eval model:: 100%|█████████▉| 499/500 [00:27<00:00, 25.99it/s]
eval model:: 100%|██████████| 500/500 [00:27<00:00, 18.24it/s]
[2024/07/27 15:05:54] ppocr INFO: cur metric, precision: 0.7439664218258132, recall: 0.6827154549831488, hmean: 0.7120261109716295, fps: 43.624911201553495
[2024/07/27 15:05:54] ppocr INFO: best metric, hmean: 0.7301425661914459, precision: 0.7747163695299838, recall: 0.6904188733750601, fps: 43.582139874688714, best_epoch: 960
[2024/07/27 15:05:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:06:03] ppocr INFO: epoch: [1221/1500], global_step: 3663, lr: 0.001000, loss: 1.118920, loss_shrink_maps: 0.561658, loss_threshold_maps: 0.443556, loss_binary_maps: 0.112100, avg_reader_cost: 2.11424 s, avg_batch_cost: 2.37154 s, avg_samples: 12.5, ips: 5.27084 samples/s, eta: 2:00:52
[2024/07/27 15:06:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:06:12] ppocr INFO: epoch: [1222/1500], global_step: 3666, lr: 0.001000, loss: 1.143639, loss_shrink_maps: 0.577752, loss_threshold_maps: 0.452289, loss_binary_maps: 0.114408, avg_reader_cost: 2.05061 s, avg_batch_cost: 2.40381 s, avg_samples: 12.5, ips: 5.20009 samples/s, eta: 2:00:25
[2024/07/27 15:06:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:06:21] ppocr INFO: epoch: [1223/1500], global_step: 3669, lr: 0.001000, loss: 1.143639, loss_shrink_maps: 0.577752, loss_threshold_maps: 0.445870, loss_binary_maps: 0.114408, avg_reader_cost: 2.15366 s, avg_batch_cost: 2.49514 s, avg_samples: 12.5, ips: 5.00973 samples/s, eta: 1:59:59
[2024/07/27 15:06:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:06:30] ppocr INFO: epoch: [1224/1500], global_step: 3670, lr: 0.001000, loss: 1.136540, loss_shrink_maps: 0.566351, loss_threshold_maps: 0.445870, loss_binary_maps: 0.112425, avg_reader_cost: 0.56606 s, avg_batch_cost: 0.79781 s, avg_samples: 4.8, ips: 6.01645 samples/s, eta: 1:59:50
[2024/07/27 15:06:31] ppocr INFO: epoch: [1224/1500], global_step: 3672, lr: 0.001000, loss: 1.136540, loss_shrink_maps: 0.567747, loss_threshold_maps: 0.448020, loss_binary_maps: 0.112425, avg_reader_cost: 1.68727 s, avg_batch_cost: 1.83389 s, avg_samples: 7.7, ips: 4.19873 samples/s, eta: 1:59:33
[2024/07/27 15:06:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:06:41] ppocr INFO: epoch: [1225/1500], global_step: 3675, lr: 0.001000, loss: 1.166560, loss_shrink_maps: 0.573624, loss_threshold_maps: 0.460884, loss_binary_maps: 0.113639, avg_reader_cost: 2.20695 s, avg_batch_cost: 2.53553 s, avg_samples: 12.5, ips: 4.92993 samples/s, eta: 1:59:07
[2024/07/27 15:06:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:06:51] ppocr INFO: epoch: [1226/1500], global_step: 3678, lr: 0.001000, loss: 1.169978, loss_shrink_maps: 0.575307, loss_threshold_maps: 0.468133, loss_binary_maps: 0.113878, avg_reader_cost: 2.34162 s, avg_batch_cost: 2.58080 s, avg_samples: 12.5, ips: 4.84346 samples/s, eta: 1:58:41
[2024/07/27 15:06:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:07:00] ppocr INFO: epoch: [1227/1500], global_step: 3680, lr: 0.001000, loss: 1.175131, loss_shrink_maps: 0.589967, loss_threshold_maps: 0.467637, loss_binary_maps: 0.116424, avg_reader_cost: 1.39253 s, avg_batch_cost: 1.57312 s, avg_samples: 9.6, ips: 6.10254 samples/s, eta: 1:58:23
[2024/07/27 15:07:00] ppocr INFO: epoch: [1227/1500], global_step: 3681, lr: 0.001000, loss: 1.169978, loss_shrink_maps: 0.575307, loss_threshold_maps: 0.460884, loss_binary_maps: 0.113878, avg_reader_cost: 0.83288 s, avg_batch_cost: 0.88808 s, avg_samples: 2.9, ips: 3.26548 samples/s, eta: 1:58:15
[2024/07/27 15:07:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:07:10] ppocr INFO: epoch: [1228/1500], global_step: 3684, lr: 0.001000, loss: 1.175131, loss_shrink_maps: 0.589967, loss_threshold_maps: 0.487047, loss_binary_maps: 0.116424, avg_reader_cost: 2.38162 s, avg_batch_cost: 2.62153 s, avg_samples: 12.5, ips: 4.76821 samples/s, eta: 1:57:49
[2024/07/27 15:07:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:07:20] ppocr INFO: epoch: [1229/1500], global_step: 3687, lr: 0.001000, loss: 1.192978, loss_shrink_maps: 0.612560, loss_threshold_maps: 0.491220, loss_binary_maps: 0.121170, avg_reader_cost: 2.37733 s, avg_batch_cost: 2.62515 s, avg_samples: 12.5, ips: 4.76163 samples/s, eta: 1:57:23
[2024/07/27 15:07:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:07:30] ppocr INFO: epoch: [1230/1500], global_step: 3690, lr: 0.001000, loss: 1.304942, loss_shrink_maps: 0.656577, loss_threshold_maps: 0.498689, loss_binary_maps: 0.130156, avg_reader_cost: 2.24110 s, avg_batch_cost: 2.62272 s, avg_samples: 12.5, ips: 4.76604 samples/s, eta: 1:56:57
[2024/07/27 15:07:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:07:40] ppocr INFO: epoch: [1231/1500], global_step: 3693, lr: 0.001000, loss: 1.309391, loss_shrink_maps: 0.667039, loss_threshold_maps: 0.509824, loss_binary_maps: 0.132823, avg_reader_cost: 2.36238 s, avg_batch_cost: 2.60324 s, avg_samples: 12.5, ips: 4.80170 samples/s, eta: 1:56:31
[2024/07/27 15:07:41] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:07:49] ppocr INFO: epoch: [1232/1500], global_step: 3696, lr: 0.001000, loss: 1.295664, loss_shrink_maps: 0.652536, loss_threshold_maps: 0.499480, loss_binary_maps: 0.129449, avg_reader_cost: 2.29876 s, avg_batch_cost: 2.53763 s, avg_samples: 12.5, ips: 4.92586 samples/s, eta: 1:56:05
[2024/07/27 15:07:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:07:59] ppocr INFO: epoch: [1233/1500], global_step: 3699, lr: 0.001000, loss: 1.295664, loss_shrink_maps: 0.652759, loss_threshold_maps: 0.503402, loss_binary_maps: 0.129902, avg_reader_cost: 2.31009 s, avg_batch_cost: 2.55248 s, avg_samples: 12.5, ips: 4.89721 samples/s, eta: 1:55:39
[2024/07/27 15:08:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:08:08] ppocr INFO: epoch: [1234/1500], global_step: 3700, lr: 0.001000, loss: 1.275480, loss_shrink_maps: 0.650964, loss_threshold_maps: 0.503402, loss_binary_maps: 0.129449, avg_reader_cost: 0.67562 s, avg_batch_cost: 0.80193 s, avg_samples: 4.8, ips: 5.98556 samples/s, eta: 1:55:30
[2024/07/27 15:08:09] ppocr INFO: epoch: [1234/1500], global_step: 3702, lr: 0.001000, loss: 1.296530, loss_shrink_maps: 0.652759, loss_threshold_maps: 0.509824, loss_binary_maps: 0.129902, avg_reader_cost: 1.69595 s, avg_batch_cost: 1.84290 s, avg_samples: 7.7, ips: 4.17819 samples/s, eta: 1:55:13
[2024/07/27 15:08:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:08:19] ppocr INFO: epoch: [1235/1500], global_step: 3705, lr: 0.001000, loss: 1.256276, loss_shrink_maps: 0.640015, loss_threshold_maps: 0.497102, loss_binary_maps: 0.126963, avg_reader_cost: 2.32316 s, avg_batch_cost: 2.57481 s, avg_samples: 12.5, ips: 4.85472 samples/s, eta: 1:54:47
[2024/07/27 15:08:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:08:29] ppocr INFO: epoch: [1236/1500], global_step: 3708, lr: 0.001000, loss: 1.248795, loss_shrink_maps: 0.633500, loss_threshold_maps: 0.491570, loss_binary_maps: 0.125674, avg_reader_cost: 2.28051 s, avg_batch_cost: 2.64315 s, avg_samples: 12.5, ips: 4.72921 samples/s, eta: 1:54:21
[2024/07/27 15:08:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:08:38] ppocr INFO: epoch: [1237/1500], global_step: 3710, lr: 0.001000, loss: 1.242170, loss_shrink_maps: 0.630183, loss_threshold_maps: 0.483017, loss_binary_maps: 0.124704, avg_reader_cost: 1.44738 s, avg_batch_cost: 1.63186 s, avg_samples: 9.6, ips: 5.88285 samples/s, eta: 1:54:03
[2024/07/27 15:08:39] ppocr INFO: epoch: [1237/1500], global_step: 3711, lr: 0.001000, loss: 1.244223, loss_shrink_maps: 0.632620, loss_threshold_maps: 0.485694, loss_binary_maps: 0.125301, avg_reader_cost: 0.86210 s, avg_batch_cost: 0.91765 s, avg_samples: 2.9, ips: 3.16024 samples/s, eta: 1:53:55
[2024/07/27 15:08:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:08:48] ppocr INFO: epoch: [1238/1500], global_step: 3714, lr: 0.001000, loss: 1.242170, loss_shrink_maps: 0.630183, loss_threshold_maps: 0.482782, loss_binary_maps: 0.124704, avg_reader_cost: 2.36851 s, avg_batch_cost: 2.60162 s, avg_samples: 12.5, ips: 4.80471 samples/s, eta: 1:53:29
[2024/07/27 15:08:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:08:58] ppocr INFO: epoch: [1239/1500], global_step: 3717, lr: 0.001000, loss: 1.227440, loss_shrink_maps: 0.618781, loss_threshold_maps: 0.478419, loss_binary_maps: 0.122922, avg_reader_cost: 2.26623 s, avg_batch_cost: 2.51563 s, avg_samples: 12.5, ips: 4.96893 samples/s, eta: 1:53:03
[2024/07/27 15:08:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:09:07] ppocr INFO: epoch: [1240/1500], global_step: 3720, lr: 0.001000, loss: 1.225920, loss_shrink_maps: 0.618847, loss_threshold_maps: 0.472736, loss_binary_maps: 0.122860, avg_reader_cost: 2.07314 s, avg_batch_cost: 2.32975 s, avg_samples: 12.5, ips: 5.36539 samples/s, eta: 1:52:36

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:59,  8.45it/s]
eval model::   1%|          | 3/500 [00:00<00:34, 14.25it/s]
eval model::   1%|          | 6/500 [00:00<00:27, 17.75it/s]
eval model::   2%|▏         | 8/500 [00:00<00:29, 16.84it/s]
eval model::   2%|▏         | 11/500 [00:00<00:28, 17.04it/s]
eval model::   3%|▎         | 13/500 [00:00<00:28, 16.83it/s]
eval model::   3%|▎         | 16/500 [00:00<00:24, 19.37it/s]
eval model::   4%|▎         | 18/500 [00:01<00:24, 19.33it/s]
eval model::   4%|▍         | 20/500 [00:01<00:26, 18.44it/s]
eval model::   5%|▍         | 24/500 [00:01<00:21, 22.53it/s]
eval model::   5%|▌         | 27/500 [00:01<00:21, 21.91it/s]
eval model::   6%|▌         | 30/500 [00:01<00:20, 22.65it/s]
eval model::   7%|▋         | 33/500 [00:01<00:22, 20.49it/s]
eval model::   7%|▋         | 36/500 [00:01<00:22, 20.81it/s]
eval model::   8%|▊         | 39/500 [00:02<00:23, 20.02it/s]
eval model::   8%|▊         | 42/500 [00:02<00:23, 19.47it/s]
eval model::   9%|▉         | 46/500 [00:02<00:24, 18.32it/s]
eval model::  10%|▉         | 49/500 [00:02<00:22, 20.08it/s]
eval model::  10%|█         | 52/500 [00:02<00:21, 20.85it/s]
eval model::  11%|█         | 55/500 [00:02<00:20, 21.85it/s]
eval model::  12%|█▏        | 58/500 [00:02<00:21, 20.58it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:27, 15.72it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:29, 15.04it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:24, 17.74it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:21, 19.60it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:21, 19.96it/s]
eval model::  15%|█▌        | 75/500 [00:03<00:20, 20.40it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:20, 20.46it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:18, 22.08it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:21, 19.48it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:21, 19.16it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:21, 18.79it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:22, 17.83it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:22, 17.73it/s]
eval model::  19%|█▉        | 95/500 [00:04<00:22, 18.11it/s]
eval model::  19%|█▉        | 97/500 [00:05<00:21, 18.52it/s]
eval model::  20%|██        | 100/500 [00:05<00:22, 18.01it/s]
eval model::  21%|██        | 103/500 [00:05<00:19, 19.98it/s]
eval model::  21%|██        | 106/500 [00:05<00:18, 21.42it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:18, 21.53it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:20, 18.76it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:20, 18.41it/s]
eval model::  23%|██▎       | 116/500 [00:06<00:23, 16.16it/s]
eval model::  24%|██▍       | 119/500 [00:06<00:21, 17.61it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:21, 17.29it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:22, 16.73it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:22, 16.81it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:19, 18.64it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:20, 17.75it/s]
eval model::  27%|██▋       | 133/500 [00:07<00:21, 16.90it/s]
eval model::  27%|██▋       | 136/500 [00:07<00:18, 19.22it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:19, 18.63it/s]
eval model::  28%|██▊       | 140/500 [00:07<00:20, 17.81it/s]
eval model::  29%|██▊       | 143/500 [00:07<00:18, 19.13it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:19, 18.02it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:20, 16.84it/s]
eval model::  30%|███       | 150/500 [00:07<00:18, 19.28it/s]
eval model::  30%|███       | 152/500 [00:08<00:17, 19.41it/s]
eval model::  31%|███       | 155/500 [00:08<00:15, 21.99it/s]
eval model::  32%|███▏      | 158/500 [00:08<00:15, 22.24it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:22, 15.13it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:21, 15.74it/s]
eval model::  33%|███▎      | 165/500 [00:08<00:21, 15.72it/s]
eval model::  33%|███▎      | 167/500 [00:09<00:21, 15.43it/s]
eval model::  34%|███▍      | 170/500 [00:09<00:18, 17.68it/s]
eval model::  34%|███▍      | 172/500 [00:09<00:18, 17.92it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:18, 18.07it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:19, 16.36it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:17, 18.18it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:19, 16.14it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:17, 18.35it/s]
eval model::  37%|███▋      | 187/500 [00:10<00:16, 18.67it/s]
eval model::  38%|███▊      | 190/500 [00:10<00:16, 19.05it/s]
eval model::  38%|███▊      | 192/500 [00:10<00:16, 18.68it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:15, 20.30it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:14, 21.39it/s]
eval model::  40%|████      | 201/500 [00:10<00:13, 21.43it/s]
eval model::  41%|████      | 205/500 [00:11<00:17, 17.01it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:17, 17.10it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:17, 17.02it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:16, 17.55it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:18, 15.16it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:19, 14.88it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:16, 16.92it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:17, 15.69it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:14, 19.50it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:11, 22.78it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:11, 22.66it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:12, 21.39it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:12, 21.59it/s]
eval model::  48%|████▊     | 242/500 [00:13<00:14, 17.99it/s]
eval model::  49%|████▉     | 245/500 [00:13<00:12, 20.00it/s]
eval model::  50%|████▉     | 248/500 [00:13<00:13, 18.10it/s]
eval model::  50%|█████     | 250/500 [00:13<00:15, 16.41it/s]
eval model::  51%|█████     | 253/500 [00:13<00:13, 18.42it/s]
eval model::  51%|█████     | 256/500 [00:13<00:12, 19.07it/s]
eval model::  52%|█████▏    | 259/500 [00:13<00:11, 20.76it/s]
eval model::  52%|█████▏    | 262/500 [00:14<00:11, 20.35it/s]
eval model::  53%|█████▎    | 265/500 [00:14<00:11, 20.23it/s]
eval model::  54%|█████▎    | 268/500 [00:14<00:11, 21.05it/s]
eval model::  54%|█████▍    | 271/500 [00:14<00:10, 20.85it/s]
eval model::  55%|█████▍    | 274/500 [00:14<00:10, 20.70it/s]
eval model::  55%|█████▌    | 277/500 [00:14<00:11, 18.66it/s]
eval model::  56%|█████▌    | 280/500 [00:14<00:10, 20.43it/s]
eval model::  57%|█████▋    | 283/500 [00:15<00:10, 21.10it/s]
eval model::  57%|█████▋    | 286/500 [00:15<00:19, 11.06it/s]
eval model::  58%|█████▊    | 289/500 [00:15<00:16, 13.03it/s]
eval model::  58%|█████▊    | 292/500 [00:15<00:14, 14.75it/s]
eval model::  59%|█████▉    | 294/500 [00:16<00:13, 14.95it/s]
eval model::  59%|█████▉    | 296/500 [00:16<00:16, 12.47it/s]
eval model::  60%|██████    | 300/500 [00:16<00:13, 14.76it/s]
eval model::  61%|██████    | 303/500 [00:16<00:12, 16.38it/s]
eval model::  61%|██████    | 305/500 [00:16<00:11, 16.68it/s]
eval model::  62%|██████▏   | 308/500 [00:16<00:10, 17.74it/s]
eval model::  62%|██████▏   | 311/500 [00:17<00:10, 18.80it/s]
eval model::  63%|██████▎   | 313/500 [00:17<00:10, 18.60it/s]
eval model::  63%|██████▎   | 315/500 [00:17<00:10, 17.49it/s]
eval model::  64%|██████▎   | 318/500 [00:17<00:10, 17.81it/s]
eval model::  64%|██████▍   | 320/500 [00:17<00:09, 18.28it/s]
eval model::  64%|██████▍   | 322/500 [00:17<00:09, 17.82it/s]
eval model::  65%|██████▌   | 325/500 [00:17<00:08, 20.78it/s]
eval model::  66%|██████▌   | 328/500 [00:17<00:08, 19.79it/s]
eval model::  66%|██████▌   | 331/500 [00:18<00:08, 19.89it/s]
eval model::  67%|██████▋   | 334/500 [00:18<00:07, 21.55it/s]
eval model::  67%|██████▋   | 337/500 [00:18<00:07, 22.23it/s]
eval model::  68%|██████▊   | 340/500 [00:18<00:10, 14.61it/s]
eval model::  69%|██████▊   | 343/500 [00:18<00:09, 16.02it/s]
eval model::  69%|██████▉   | 346/500 [00:18<00:08, 18.63it/s]
eval model::  70%|██████▉   | 349/500 [00:19<00:07, 19.53it/s]
eval model::  70%|███████   | 352/500 [00:19<00:07, 20.65it/s]
eval model::  71%|███████   | 355/500 [00:19<00:07, 19.63it/s]
eval model::  72%|███████▏  | 358/500 [00:19<00:07, 19.86it/s]
eval model::  72%|███████▏  | 361/500 [00:19<00:07, 18.74it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:07, 17.76it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:07, 17.64it/s]
eval model::  74%|███████▍  | 369/500 [00:20<00:06, 19.70it/s]
eval model::  74%|███████▍  | 372/500 [00:20<00:06, 19.19it/s]
eval model::  75%|███████▌  | 375/500 [00:20<00:06, 20.82it/s]
eval model::  76%|███████▌  | 378/500 [00:20<00:05, 22.85it/s]
eval model::  76%|███████▌  | 381/500 [00:20<00:05, 21.08it/s]
eval model::  77%|███████▋  | 384/500 [00:20<00:05, 22.79it/s]
eval model::  77%|███████▋  | 387/500 [00:21<00:08, 12.87it/s]
eval model::  78%|███████▊  | 390/500 [00:21<00:07, 14.16it/s]
eval model::  78%|███████▊  | 392/500 [00:21<00:07, 14.71it/s]
eval model::  79%|███████▉  | 395/500 [00:21<00:06, 16.81it/s]
eval model::  80%|███████▉  | 398/500 [00:21<00:05, 19.08it/s]
eval model::  80%|████████  | 401/500 [00:21<00:05, 18.55it/s]
eval model::  81%|████████  | 404/500 [00:22<00:04, 20.53it/s]
eval model::  81%|████████▏ | 407/500 [00:22<00:04, 21.95it/s]
eval model::  82%|████████▏ | 410/500 [00:22<00:03, 23.73it/s]
eval model::  83%|████████▎ | 413/500 [00:22<00:03, 23.96it/s]
eval model::  83%|████████▎ | 416/500 [00:22<00:03, 23.00it/s]
eval model::  84%|████████▍ | 419/500 [00:22<00:03, 21.72it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:04, 16.06it/s]
eval model::  85%|████████▍ | 424/500 [00:23<00:05, 14.30it/s]
eval model::  85%|████████▌ | 427/500 [00:23<00:04, 16.14it/s]
eval model::  86%|████████▌ | 430/500 [00:23<00:03, 17.75it/s]
eval model::  86%|████████▋ | 432/500 [00:23<00:03, 17.43it/s]
eval model::  87%|████████▋ | 435/500 [00:23<00:03, 19.03it/s]
eval model::  88%|████████▊ | 438/500 [00:23<00:03, 20.56it/s]
eval model::  88%|████████▊ | 441/500 [00:23<00:03, 19.52it/s]
eval model::  89%|████████▉ | 444/500 [00:24<00:02, 20.72it/s]
eval model::  90%|████████▉ | 448/500 [00:24<00:02, 22.46it/s]
eval model::  90%|█████████ | 451/500 [00:24<00:02, 21.99it/s]
eval model::  91%|█████████ | 454/500 [00:24<00:02, 22.00it/s]
eval model::  91%|█████████▏| 457/500 [00:24<00:01, 22.49it/s]
eval model::  92%|█████████▏| 460/500 [00:24<00:01, 23.31it/s]
eval model::  93%|█████████▎| 463/500 [00:24<00:01, 19.25it/s]
eval model::  93%|█████████▎| 466/500 [00:25<00:01, 18.44it/s]
eval model::  94%|█████████▎| 468/500 [00:25<00:01, 18.52it/s]
eval model::  94%|█████████▍| 471/500 [00:25<00:01, 20.03it/s]
eval model::  95%|█████████▍| 474/500 [00:25<00:01, 18.72it/s]
eval model::  96%|█████████▌| 478/500 [00:25<00:00, 22.36it/s]
eval model::  96%|█████████▌| 481/500 [00:25<00:00, 23.44it/s]
eval model::  97%|█████████▋| 484/500 [00:25<00:00, 24.13it/s]
eval model::  97%|█████████▋| 487/500 [00:26<00:00, 22.62it/s]
eval model::  98%|█████████▊| 490/500 [00:26<00:00, 24.33it/s]
eval model::  99%|█████████▊| 493/500 [00:26<00:00, 21.83it/s]
eval model::  99%|█████████▉| 496/500 [00:26<00:00, 21.98it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 25.39it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.79it/s]
[2024/07/27 15:09:34] ppocr INFO: cur metric, precision: 0.7351716961498439, recall: 0.6803081367356765, hmean: 0.7066766691672918, fps: 44.764177865562615
[2024/07/27 15:09:34] ppocr INFO: best metric, hmean: 0.7301425661914459, precision: 0.7747163695299838, recall: 0.6904188733750601, fps: 43.582139874688714, best_epoch: 960
[2024/07/27 15:09:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:09:42] ppocr INFO: epoch: [1241/1500], global_step: 3723, lr: 0.001000, loss: 1.171553, loss_shrink_maps: 0.593676, loss_threshold_maps: 0.470032, loss_binary_maps: 0.118950, avg_reader_cost: 2.19475 s, avg_batch_cost: 2.43643 s, avg_samples: 12.5, ips: 5.13046 samples/s, eta: 1:52:10
[2024/07/27 15:09:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:09:52] ppocr INFO: epoch: [1242/1500], global_step: 3726, lr: 0.001000, loss: 1.168512, loss_shrink_maps: 0.580488, loss_threshold_maps: 0.470032, loss_binary_maps: 0.115184, avg_reader_cost: 2.29650 s, avg_batch_cost: 2.60039 s, avg_samples: 12.5, ips: 4.80698 samples/s, eta: 1:51:44
[2024/07/27 15:09:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:10:03] ppocr INFO: epoch: [1243/1500], global_step: 3729, lr: 0.001000, loss: 1.179242, loss_shrink_maps: 0.591329, loss_threshold_maps: 0.470032, loss_binary_maps: 0.117992, avg_reader_cost: 2.41028 s, avg_batch_cost: 2.75427 s, avg_samples: 12.5, ips: 4.53840 samples/s, eta: 1:51:18
[2024/07/27 15:10:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:10:11] ppocr INFO: epoch: [1244/1500], global_step: 3730, lr: 0.001000, loss: 1.164345, loss_shrink_maps: 0.580488, loss_threshold_maps: 0.470032, loss_binary_maps: 0.115184, avg_reader_cost: 0.57896 s, avg_batch_cost: 0.77520 s, avg_samples: 4.8, ips: 6.19194 samples/s, eta: 1:51:09
[2024/07/27 15:10:12] ppocr INFO: epoch: [1244/1500], global_step: 3732, lr: 0.001000, loss: 1.140878, loss_shrink_maps: 0.579375, loss_threshold_maps: 0.465838, loss_binary_maps: 0.114615, avg_reader_cost: 1.64340 s, avg_batch_cost: 1.79113 s, avg_samples: 7.7, ips: 4.29896 samples/s, eta: 1:50:52
[2024/07/27 15:10:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:10:22] ppocr INFO: epoch: [1245/1500], global_step: 3735, lr: 0.001000, loss: 1.140878, loss_shrink_maps: 0.579375, loss_threshold_maps: 0.465838, loss_binary_maps: 0.114615, avg_reader_cost: 2.33342 s, avg_batch_cost: 2.58398 s, avg_samples: 12.5, ips: 4.83749 samples/s, eta: 1:50:26
[2024/07/27 15:10:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:10:32] ppocr INFO: epoch: [1246/1500], global_step: 3738, lr: 0.001000, loss: 1.162910, loss_shrink_maps: 0.579375, loss_threshold_maps: 0.467147, loss_binary_maps: 0.114615, avg_reader_cost: 2.31864 s, avg_batch_cost: 2.57669 s, avg_samples: 12.5, ips: 4.85118 samples/s, eta: 1:50:00
[2024/07/27 15:10:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:10:42] ppocr INFO: epoch: [1247/1500], global_step: 3740, lr: 0.001000, loss: 1.140878, loss_shrink_maps: 0.570048, loss_threshold_maps: 0.464982, loss_binary_maps: 0.112976, avg_reader_cost: 1.34446 s, avg_batch_cost: 1.65810 s, avg_samples: 9.6, ips: 5.78976 samples/s, eta: 1:49:42
[2024/07/27 15:10:42] ppocr INFO: epoch: [1247/1500], global_step: 3741, lr: 0.001000, loss: 1.162910, loss_shrink_maps: 0.578866, loss_threshold_maps: 0.469532, loss_binary_maps: 0.114615, avg_reader_cost: 0.87506 s, avg_batch_cost: 0.93044 s, avg_samples: 2.9, ips: 3.11680 samples/s, eta: 1:49:34
[2024/07/27 15:10:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:10:52] ppocr INFO: epoch: [1248/1500], global_step: 3744, lr: 0.001000, loss: 1.180975, loss_shrink_maps: 0.584805, loss_threshold_maps: 0.482045, loss_binary_maps: 0.116051, avg_reader_cost: 2.42161 s, avg_batch_cost: 2.66475 s, avg_samples: 12.5, ips: 4.69087 samples/s, eta: 1:49:08
[2024/07/27 15:10:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:11:02] ppocr INFO: epoch: [1249/1500], global_step: 3747, lr: 0.001000, loss: 1.180975, loss_shrink_maps: 0.589217, loss_threshold_maps: 0.482498, loss_binary_maps: 0.116482, avg_reader_cost: 2.17570 s, avg_batch_cost: 2.49170 s, avg_samples: 12.5, ips: 5.01665 samples/s, eta: 1:48:42
[2024/07/27 15:11:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:11:11] ppocr INFO: epoch: [1250/1500], global_step: 3750, lr: 0.001000, loss: 1.182179, loss_shrink_maps: 0.589217, loss_threshold_maps: 0.482498, loss_binary_maps: 0.116482, avg_reader_cost: 2.18559 s, avg_batch_cost: 2.50925 s, avg_samples: 12.5, ips: 4.98157 samples/s, eta: 1:48:16
[2024/07/27 15:11:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:11:21] ppocr INFO: epoch: [1251/1500], global_step: 3753, lr: 0.001000, loss: 1.184267, loss_shrink_maps: 0.592897, loss_threshold_maps: 0.489489, loss_binary_maps: 0.118011, avg_reader_cost: 2.23320 s, avg_batch_cost: 2.47310 s, avg_samples: 12.5, ips: 5.05438 samples/s, eta: 1:47:49
[2024/07/27 15:11:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:11:30] ppocr INFO: epoch: [1252/1500], global_step: 3756, lr: 0.001000, loss: 1.184055, loss_shrink_maps: 0.592897, loss_threshold_maps: 0.483808, loss_binary_maps: 0.118011, avg_reader_cost: 2.17798 s, avg_batch_cost: 2.51829 s, avg_samples: 12.5, ips: 4.96369 samples/s, eta: 1:47:23
[2024/07/27 15:11:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:11:40] ppocr INFO: epoch: [1253/1500], global_step: 3759, lr: 0.001000, loss: 1.231843, loss_shrink_maps: 0.615666, loss_threshold_maps: 0.483808, loss_binary_maps: 0.122637, avg_reader_cost: 2.21682 s, avg_batch_cost: 2.56964 s, avg_samples: 12.5, ips: 4.86450 samples/s, eta: 1:46:57
[2024/07/27 15:11:41] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:11:48] ppocr INFO: epoch: [1254/1500], global_step: 3760, lr: 0.001000, loss: 1.256707, loss_shrink_maps: 0.631304, loss_threshold_maps: 0.485686, loss_binary_maps: 0.125161, avg_reader_cost: 0.64829 s, avg_batch_cost: 0.74279 s, avg_samples: 4.8, ips: 6.46210 samples/s, eta: 1:46:48
[2024/07/27 15:11:50] ppocr INFO: epoch: [1254/1500], global_step: 3762, lr: 0.001000, loss: 1.184055, loss_shrink_maps: 0.592897, loss_threshold_maps: 0.475757, loss_binary_maps: 0.118011, avg_reader_cost: 1.57776 s, avg_batch_cost: 1.72497 s, avg_samples: 7.7, ips: 4.46385 samples/s, eta: 1:46:31
[2024/07/27 15:11:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:11:59] ppocr INFO: epoch: [1255/1500], global_step: 3765, lr: 0.001000, loss: 1.202360, loss_shrink_maps: 0.608658, loss_threshold_maps: 0.480401, loss_binary_maps: 0.121308, avg_reader_cost: 2.33138 s, avg_batch_cost: 2.57191 s, avg_samples: 12.5, ips: 4.86020 samples/s, eta: 1:46:05
[2024/07/27 15:12:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:12:09] ppocr INFO: epoch: [1256/1500], global_step: 3768, lr: 0.001000, loss: 1.170915, loss_shrink_maps: 0.577786, loss_threshold_maps: 0.471321, loss_binary_maps: 0.114911, avg_reader_cost: 2.23215 s, avg_batch_cost: 2.58523 s, avg_samples: 12.5, ips: 4.83516 samples/s, eta: 1:45:39
[2024/07/27 15:12:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:12:18] ppocr INFO: epoch: [1257/1500], global_step: 3770, lr: 0.001000, loss: 1.179398, loss_shrink_maps: 0.589981, loss_threshold_maps: 0.472738, loss_binary_maps: 0.117000, avg_reader_cost: 1.36975 s, avg_batch_cost: 1.67753 s, avg_samples: 9.6, ips: 5.72271 samples/s, eta: 1:45:22
[2024/07/27 15:12:19] ppocr INFO: epoch: [1257/1500], global_step: 3771, lr: 0.001000, loss: 1.170915, loss_shrink_maps: 0.577786, loss_threshold_maps: 0.467981, loss_binary_maps: 0.114911, avg_reader_cost: 0.88519 s, avg_batch_cost: 0.94046 s, avg_samples: 2.9, ips: 3.08360 samples/s, eta: 1:45:13
[2024/07/27 15:12:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:12:29] ppocr INFO: epoch: [1258/1500], global_step: 3774, lr: 0.001000, loss: 1.179398, loss_shrink_maps: 0.591206, loss_threshold_maps: 0.472417, loss_binary_maps: 0.117615, avg_reader_cost: 2.35080 s, avg_batch_cost: 2.59066 s, avg_samples: 12.5, ips: 4.82502 samples/s, eta: 1:44:47
[2024/07/27 15:12:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:12:39] ppocr INFO: epoch: [1259/1500], global_step: 3777, lr: 0.001000, loss: 1.165974, loss_shrink_maps: 0.579011, loss_threshold_maps: 0.459841, loss_binary_maps: 0.115526, avg_reader_cost: 2.25294 s, avg_batch_cost: 2.64269 s, avg_samples: 12.5, ips: 4.73002 samples/s, eta: 1:44:21
[2024/07/27 15:12:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:12:49] ppocr INFO: epoch: [1260/1500], global_step: 3780, lr: 0.001000, loss: 1.165974, loss_shrink_maps: 0.579011, loss_threshold_maps: 0.458555, loss_binary_maps: 0.115199, avg_reader_cost: 2.34970 s, avg_batch_cost: 2.60629 s, avg_samples: 12.5, ips: 4.79609 samples/s, eta: 1:43:55

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:59,  8.36it/s]
eval model::   1%|          | 4/500 [00:00<00:30, 16.25it/s]
eval model::   1%|          | 6/500 [00:00<00:32, 14.98it/s]
eval model::   2%|▏         | 9/500 [00:00<00:28, 17.32it/s]
eval model::   2%|▏         | 11/500 [00:00<00:29, 16.31it/s]
eval model::   3%|▎         | 14/500 [00:00<00:27, 17.84it/s]
eval model::   3%|▎         | 17/500 [00:00<00:24, 19.55it/s]
eval model::   4%|▍         | 19/500 [00:01<00:26, 18.37it/s]
eval model::   4%|▍         | 21/500 [00:01<00:25, 18.64it/s]
eval model::   5%|▍         | 23/500 [00:01<00:26, 18.28it/s]
eval model::   5%|▌         | 25/500 [00:01<00:25, 18.34it/s]
eval model::   5%|▌         | 27/500 [00:01<00:25, 18.69it/s]
eval model::   6%|▌         | 30/500 [00:01<00:23, 19.91it/s]
eval model::   6%|▋         | 32/500 [00:01<00:26, 17.80it/s]
eval model::   7%|▋         | 34/500 [00:01<00:27, 17.24it/s]
eval model::   7%|▋         | 37/500 [00:02<00:24, 18.91it/s]
eval model::   8%|▊         | 39/500 [00:02<00:24, 18.58it/s]
eval model::   8%|▊         | 42/500 [00:02<00:25, 17.75it/s]
eval model::   9%|▉         | 44/500 [00:02<00:25, 18.08it/s]
eval model::   9%|▉         | 46/500 [00:02<00:26, 17.07it/s]
eval model::  10%|▉         | 49/500 [00:02<00:24, 18.54it/s]
eval model::  10%|█         | 52/500 [00:02<00:23, 19.03it/s]
eval model::  11%|█         | 55/500 [00:03<00:23, 19.32it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:24, 18.08it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:27, 15.74it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:28, 15.35it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:25, 17.34it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:22, 19.19it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:21, 19.92it/s]
eval model::  15%|█▌        | 75/500 [00:04<00:22, 19.29it/s]
eval model::  15%|█▌        | 77/500 [00:04<00:22, 19.14it/s]
eval model::  16%|█▌        | 80/500 [00:04<00:20, 20.98it/s]
eval model::  17%|█▋        | 83/500 [00:04<00:18, 22.03it/s]
eval model::  17%|█▋        | 86/500 [00:04<00:19, 21.33it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:21, 19.13it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:22, 17.99it/s]
eval model::  19%|█▊        | 93/500 [00:05<00:22, 18.43it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:20, 20.08it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:18, 21.89it/s]
eval model::  20%|██        | 102/500 [00:05<00:19, 20.88it/s]
eval model::  21%|██        | 105/500 [00:05<00:17, 22.16it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:17, 22.30it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:18, 21.03it/s]
eval model::  23%|██▎       | 114/500 [00:06<00:17, 21.51it/s]
eval model::  23%|██▎       | 117/500 [00:06<00:18, 21.00it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:19, 19.91it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:18, 20.75it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:20, 17.83it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:19, 19.47it/s]
eval model::  26%|██▋       | 132/500 [00:07<00:21, 16.86it/s]
eval model::  27%|██▋       | 135/500 [00:07<00:19, 18.87it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:18, 19.93it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:18, 19.57it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:16, 20.99it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:18, 19.40it/s]
eval model::  30%|███       | 150/500 [00:07<00:16, 21.32it/s]
eval model::  31%|███       | 153/500 [00:08<00:16, 20.84it/s]
eval model::  31%|███       | 156/500 [00:08<00:15, 21.97it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:16, 20.67it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:18, 18.03it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:19, 17.67it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:18, 18.05it/s]
eval model::  34%|███▎      | 168/500 [00:08<00:19, 16.89it/s]
eval model::  34%|███▍      | 171/500 [00:09<00:18, 17.45it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:19, 16.74it/s]
eval model::  35%|███▌      | 177/500 [00:09<00:17, 18.56it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:20, 15.87it/s]
eval model::  36%|███▋      | 182/500 [00:09<00:19, 16.64it/s]
eval model::  37%|███▋      | 185/500 [00:09<00:16, 18.58it/s]
eval model::  37%|███▋      | 187/500 [00:09<00:17, 17.65it/s]
eval model::  38%|███▊      | 190/500 [00:10<00:16, 18.83it/s]
eval model::  39%|███▊      | 193/500 [00:10<00:14, 21.23it/s]
eval model::  39%|███▉      | 196/500 [00:10<00:15, 20.16it/s]
eval model::  40%|███▉      | 199/500 [00:10<00:14, 20.87it/s]
eval model::  40%|████      | 202/500 [00:10<00:14, 20.88it/s]
eval model::  41%|████      | 205/500 [00:10<00:16, 17.71it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:16, 17.59it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:17, 16.82it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:16, 17.25it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:18, 15.01it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:19, 14.73it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:16, 16.87it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:19, 14.62it/s]
eval model::  45%|████▌     | 225/500 [00:12<00:16, 17.16it/s]
eval model::  46%|████▌     | 228/500 [00:12<00:14, 18.44it/s]
eval model::  46%|████▌     | 231/500 [00:12<00:13, 20.56it/s]
eval model::  47%|████▋     | 234/500 [00:12<00:14, 18.65it/s]
eval model::  47%|████▋     | 237/500 [00:12<00:13, 20.18it/s]
eval model::  48%|████▊     | 240/500 [00:12<00:12, 20.52it/s]
eval model::  49%|████▊     | 243/500 [00:13<00:14, 17.99it/s]
eval model::  49%|████▉     | 246/500 [00:13<00:13, 18.85it/s]
eval model::  50%|████▉     | 249/500 [00:13<00:13, 18.62it/s]
eval model::  50%|█████     | 252/500 [00:13<00:11, 21.02it/s]
eval model::  51%|█████     | 255/500 [00:13<00:11, 21.78it/s]
eval model::  52%|█████▏    | 258/500 [00:13<00:10, 22.91it/s]
eval model::  52%|█████▏    | 261/500 [00:13<00:10, 22.38it/s]
eval model::  53%|█████▎    | 264/500 [00:13<00:11, 21.16it/s]
eval model::  53%|█████▎    | 267/500 [00:14<00:11, 21.08it/s]
eval model::  54%|█████▍    | 270/500 [00:14<00:12, 18.39it/s]
eval model::  55%|█████▍    | 273/500 [00:14<00:11, 20.18it/s]
eval model::  55%|█████▌    | 276/500 [00:14<00:12, 17.68it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:11, 18.48it/s]
eval model::  56%|█████▋    | 282/500 [00:14<00:11, 19.14it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:17, 12.27it/s]
eval model::  58%|█████▊    | 288/500 [00:15<00:14, 14.21it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:13, 15.83it/s]
eval model::  59%|█████▊    | 293/500 [00:15<00:12, 16.34it/s]
eval model::  59%|█████▉    | 295/500 [00:16<00:15, 13.22it/s]
eval model::  60%|█████▉    | 298/500 [00:16<00:12, 16.13it/s]
eval model::  60%|██████    | 300/500 [00:16<00:12, 16.00it/s]
eval model::  61%|██████    | 303/500 [00:16<00:10, 18.20it/s]
eval model::  61%|██████    | 306/500 [00:16<00:10, 18.29it/s]
eval model::  62%|██████▏   | 309/500 [00:16<00:09, 19.79it/s]
eval model::  62%|██████▏   | 312/500 [00:16<00:09, 20.39it/s]
eval model::  63%|██████▎   | 315/500 [00:16<00:09, 19.48it/s]
eval model::  64%|██████▎   | 318/500 [00:17<00:08, 21.60it/s]
eval model::  64%|██████▍   | 321/500 [00:17<00:08, 21.41it/s]
eval model::  65%|██████▍   | 324/500 [00:17<00:08, 19.90it/s]
eval model::  65%|██████▌   | 327/500 [00:17<00:08, 20.16it/s]
eval model::  66%|██████▌   | 330/500 [00:17<00:08, 19.40it/s]
eval model::  66%|██████▋   | 332/500 [00:17<00:08, 18.91it/s]
eval model::  67%|██████▋   | 335/500 [00:17<00:08, 20.49it/s]
eval model::  68%|██████▊   | 338/500 [00:18<00:08, 19.85it/s]
eval model::  68%|██████▊   | 341/500 [00:18<00:10, 14.71it/s]
eval model::  69%|██████▉   | 344/500 [00:18<00:09, 17.24it/s]
eval model::  69%|██████▉   | 347/500 [00:18<00:08, 17.72it/s]
eval model::  70%|███████   | 350/500 [00:18<00:08, 18.69it/s]
eval model::  71%|███████   | 353/500 [00:18<00:07, 20.31it/s]
eval model::  71%|███████   | 356/500 [00:19<00:08, 16.72it/s]
eval model::  72%|███████▏  | 359/500 [00:19<00:07, 17.91it/s]
eval model::  72%|███████▏  | 361/500 [00:19<00:08, 16.77it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:08, 16.36it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:07, 16.90it/s]
eval model::  74%|███████▍  | 369/500 [00:19<00:07, 18.37it/s]
eval model::  74%|███████▍  | 372/500 [00:20<00:07, 18.14it/s]
eval model::  75%|███████▌  | 375/500 [00:20<00:06, 19.04it/s]
eval model::  76%|███████▌  | 379/500 [00:20<00:05, 22.00it/s]
eval model::  76%|███████▋  | 382/500 [00:20<00:06, 19.62it/s]
eval model::  77%|███████▋  | 386/500 [00:20<00:07, 15.45it/s]
eval model::  78%|███████▊  | 390/500 [00:21<00:06, 18.22it/s]
eval model::  79%|███████▊  | 393/500 [00:21<00:05, 19.30it/s]
eval model::  79%|███████▉  | 396/500 [00:21<00:04, 21.13it/s]
eval model::  80%|███████▉  | 399/500 [00:21<00:04, 22.87it/s]
eval model::  80%|████████  | 402/500 [00:21<00:04, 20.16it/s]
eval model::  81%|████████  | 405/500 [00:21<00:04, 21.45it/s]
eval model::  82%|████████▏ | 408/500 [00:21<00:04, 21.36it/s]
eval model::  82%|████████▏ | 411/500 [00:21<00:03, 22.38it/s]
eval model::  83%|████████▎ | 414/500 [00:22<00:03, 22.37it/s]
eval model::  83%|████████▎ | 417/500 [00:22<00:03, 20.82it/s]
eval model::  84%|████████▍ | 420/500 [00:22<00:05, 15.17it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:05, 15.54it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:04, 15.76it/s]
eval model::  85%|████████▌ | 426/500 [00:22<00:04, 15.75it/s]
eval model::  86%|████████▌ | 429/500 [00:23<00:04, 17.59it/s]
eval model::  86%|████████▌ | 431/500 [00:23<00:04, 16.35it/s]
eval model::  87%|████████▋ | 435/500 [00:23<00:03, 20.21it/s]
eval model::  88%|████████▊ | 438/500 [00:23<00:02, 22.12it/s]
eval model::  88%|████████▊ | 441/500 [00:23<00:03, 18.40it/s]
eval model::  89%|████████▉ | 444/500 [00:23<00:02, 19.11it/s]
eval model::  89%|████████▉ | 447/500 [00:23<00:02, 20.38it/s]
eval model::  90%|█████████ | 450/500 [00:24<00:02, 19.44it/s]
eval model::  91%|█████████ | 453/500 [00:24<00:02, 21.66it/s]
eval model::  91%|█████████ | 456/500 [00:24<00:01, 22.12it/s]
eval model::  92%|█████████▏| 459/500 [00:24<00:01, 22.71it/s]
eval model::  92%|█████████▏| 462/500 [00:24<00:02, 18.98it/s]
eval model::  93%|█████████▎| 465/500 [00:24<00:02, 16.67it/s]
eval model::  94%|█████████▎| 468/500 [00:25<00:01, 18.01it/s]
eval model::  94%|█████████▍| 471/500 [00:25<00:01, 20.42it/s]
eval model::  95%|█████████▍| 474/500 [00:25<00:01, 18.70it/s]
eval model::  95%|█████████▌| 477/500 [00:25<00:01, 18.93it/s]
eval model::  96%|█████████▌| 480/500 [00:25<00:00, 20.06it/s]
eval model::  97%|█████████▋| 483/500 [00:25<00:00, 20.22it/s]
eval model::  97%|█████████▋| 486/500 [00:25<00:00, 20.83it/s]
eval model::  98%|█████████▊| 489/500 [00:26<00:00, 20.82it/s]
eval model::  98%|█████████▊| 492/500 [00:26<00:00, 19.17it/s]
eval model::  99%|█████████▉| 495/500 [00:26<00:00, 19.97it/s]
eval model:: 100%|█████████▉| 499/500 [00:26<00:00, 23.55it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.81it/s]
[2024/07/27 15:13:15] ppocr INFO: cur metric, precision: 0.7638660076880834, recall: 0.6697159364467983, hmean: 0.7136993329912775, fps: 43.5550968906054
[2024/07/27 15:13:15] ppocr INFO: best metric, hmean: 0.7301425661914459, precision: 0.7747163695299838, recall: 0.6904188733750601, fps: 43.582139874688714, best_epoch: 960
[2024/07/27 15:13:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:13:25] ppocr INFO: epoch: [1261/1500], global_step: 3783, lr: 0.001000, loss: 1.165974, loss_shrink_maps: 0.576516, loss_threshold_maps: 0.465636, loss_binary_maps: 0.114542, avg_reader_cost: 2.23557 s, avg_batch_cost: 2.64438 s, avg_samples: 12.5, ips: 4.72700 samples/s, eta: 1:43:29
[2024/07/27 15:13:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:13:35] ppocr INFO: epoch: [1262/1500], global_step: 3786, lr: 0.001000, loss: 1.131496, loss_shrink_maps: 0.561227, loss_threshold_maps: 0.465636, loss_binary_maps: 0.111638, avg_reader_cost: 2.23967 s, avg_batch_cost: 2.60761 s, avg_samples: 12.5, ips: 4.79366 samples/s, eta: 1:43:03
[2024/07/27 15:13:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:13:45] ppocr INFO: epoch: [1263/1500], global_step: 3789, lr: 0.001000, loss: 1.169877, loss_shrink_maps: 0.584146, loss_threshold_maps: 0.465050, loss_binary_maps: 0.116062, avg_reader_cost: 2.39605 s, avg_batch_cost: 2.64004 s, avg_samples: 12.5, ips: 4.73478 samples/s, eta: 1:42:37
[2024/07/27 15:13:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:13:53] ppocr INFO: epoch: [1264/1500], global_step: 3790, lr: 0.001000, loss: 1.169877, loss_shrink_maps: 0.583272, loss_threshold_maps: 0.465050, loss_binary_maps: 0.116062, avg_reader_cost: 0.58040 s, avg_batch_cost: 0.80113 s, avg_samples: 4.8, ips: 5.99157 samples/s, eta: 1:42:29
[2024/07/27 15:13:55] ppocr INFO: epoch: [1264/1500], global_step: 3792, lr: 0.001000, loss: 1.182084, loss_shrink_maps: 0.584668, loss_threshold_maps: 0.468505, loss_binary_maps: 0.116184, avg_reader_cost: 1.69458 s, avg_batch_cost: 1.84183 s, avg_samples: 7.7, ips: 4.18062 samples/s, eta: 1:42:12
[2024/07/27 15:13:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:14:04] ppocr INFO: epoch: [1265/1500], global_step: 3795, lr: 0.001000, loss: 1.125871, loss_shrink_maps: 0.560163, loss_threshold_maps: 0.458191, loss_binary_maps: 0.111352, avg_reader_cost: 2.21354 s, avg_batch_cost: 2.58311 s, avg_samples: 12.5, ips: 4.83912 samples/s, eta: 1:41:46
[2024/07/27 15:14:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:14:14] ppocr INFO: epoch: [1266/1500], global_step: 3798, lr: 0.001000, loss: 1.164252, loss_shrink_maps: 0.582208, loss_threshold_maps: 0.463966, loss_binary_maps: 0.115449, avg_reader_cost: 2.17423 s, avg_batch_cost: 2.53651 s, avg_samples: 12.5, ips: 4.92803 samples/s, eta: 1:41:19
[2024/07/27 15:14:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:14:23] ppocr INFO: epoch: [1267/1500], global_step: 3800, lr: 0.001000, loss: 1.118720, loss_shrink_maps: 0.551578, loss_threshold_maps: 0.458191, loss_binary_maps: 0.109587, avg_reader_cost: 1.36711 s, avg_batch_cost: 1.68689 s, avg_samples: 9.6, ips: 5.69094 samples/s, eta: 1:41:02
[2024/07/27 15:14:24] ppocr INFO: epoch: [1267/1500], global_step: 3801, lr: 0.001000, loss: 1.112257, loss_shrink_maps: 0.551578, loss_threshold_maps: 0.455144, loss_binary_maps: 0.109587, avg_reader_cost: 0.88947 s, avg_batch_cost: 0.94482 s, avg_samples: 2.9, ips: 3.06936 samples/s, eta: 1:40:54
[2024/07/27 15:14:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:14:34] ppocr INFO: epoch: [1268/1500], global_step: 3804, lr: 0.001000, loss: 1.144351, loss_shrink_maps: 0.572373, loss_threshold_maps: 0.458191, loss_binary_maps: 0.113398, avg_reader_cost: 2.33527 s, avg_batch_cost: 2.56815 s, avg_samples: 12.5, ips: 4.86732 samples/s, eta: 1:40:27
[2024/07/27 15:14:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:14:44] ppocr INFO: epoch: [1269/1500], global_step: 3807, lr: 0.001000, loss: 1.118743, loss_shrink_maps: 0.561835, loss_threshold_maps: 0.455144, loss_binary_maps: 0.111293, avg_reader_cost: 2.32787 s, avg_batch_cost: 2.73082 s, avg_samples: 12.5, ips: 4.57738 samples/s, eta: 1:40:02
[2024/07/27 15:14:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:14:54] ppocr INFO: epoch: [1270/1500], global_step: 3810, lr: 0.001000, loss: 1.091332, loss_shrink_maps: 0.547631, loss_threshold_maps: 0.445518, loss_binary_maps: 0.108339, avg_reader_cost: 2.36720 s, avg_batch_cost: 2.59996 s, avg_samples: 12.5, ips: 4.80777 samples/s, eta: 1:39:36
[2024/07/27 15:14:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:15:03] ppocr INFO: epoch: [1271/1500], global_step: 3813, lr: 0.001000, loss: 1.118743, loss_shrink_maps: 0.561835, loss_threshold_maps: 0.445624, loss_binary_maps: 0.111293, avg_reader_cost: 2.22906 s, avg_batch_cost: 2.46516 s, avg_samples: 12.5, ips: 5.07067 samples/s, eta: 1:39:10
[2024/07/27 15:15:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:15:13] ppocr INFO: epoch: [1272/1500], global_step: 3816, lr: 0.001000, loss: 1.086339, loss_shrink_maps: 0.554481, loss_threshold_maps: 0.431515, loss_binary_maps: 0.110567, avg_reader_cost: 2.39335 s, avg_batch_cost: 2.64196 s, avg_samples: 12.5, ips: 4.73134 samples/s, eta: 1:38:44
[2024/07/27 15:15:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:15:23] ppocr INFO: epoch: [1273/1500], global_step: 3819, lr: 0.001000, loss: 1.121573, loss_shrink_maps: 0.559842, loss_threshold_maps: 0.442868, loss_binary_maps: 0.110670, avg_reader_cost: 2.24052 s, avg_batch_cost: 2.60696 s, avg_samples: 12.5, ips: 4.79487 samples/s, eta: 1:38:18
[2024/07/27 15:15:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:15:31] ppocr INFO: epoch: [1274/1500], global_step: 3820, lr: 0.001000, loss: 1.121573, loss_shrink_maps: 0.559842, loss_threshold_maps: 0.442868, loss_binary_maps: 0.110670, avg_reader_cost: 0.55962 s, avg_batch_cost: 0.77770 s, avg_samples: 4.8, ips: 6.17205 samples/s, eta: 1:38:09
[2024/07/27 15:15:33] ppocr INFO: epoch: [1274/1500], global_step: 3822, lr: 0.001000, loss: 1.143460, loss_shrink_maps: 0.567817, loss_threshold_maps: 0.453239, loss_binary_maps: 0.112365, avg_reader_cost: 1.64772 s, avg_batch_cost: 1.79505 s, avg_samples: 7.7, ips: 4.28958 samples/s, eta: 1:37:52
[2024/07/27 15:15:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:15:42] ppocr INFO: epoch: [1275/1500], global_step: 3825, lr: 0.001000, loss: 1.143460, loss_shrink_maps: 0.567817, loss_threshold_maps: 0.453239, loss_binary_maps: 0.112365, avg_reader_cost: 2.35368 s, avg_batch_cost: 2.61146 s, avg_samples: 12.5, ips: 4.78659 samples/s, eta: 1:37:26
[2024/07/27 15:15:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:15:53] ppocr INFO: epoch: [1276/1500], global_step: 3828, lr: 0.001000, loss: 1.152261, loss_shrink_maps: 0.568457, loss_threshold_maps: 0.465354, loss_binary_maps: 0.112267, avg_reader_cost: 2.41061 s, avg_batch_cost: 2.65672 s, avg_samples: 12.5, ips: 4.70505 samples/s, eta: 1:37:00
[2024/07/27 15:15:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:16:02] ppocr INFO: epoch: [1277/1500], global_step: 3830, lr: 0.001000, loss: 1.152261, loss_shrink_maps: 0.563624, loss_threshold_maps: 0.465354, loss_binary_maps: 0.111563, avg_reader_cost: 1.46658 s, avg_batch_cost: 1.65490 s, avg_samples: 9.6, ips: 5.80094 samples/s, eta: 1:36:42
[2024/07/27 15:16:02] ppocr INFO: epoch: [1277/1500], global_step: 3831, lr: 0.001000, loss: 1.161759, loss_shrink_maps: 0.566905, loss_threshold_maps: 0.465354, loss_binary_maps: 0.112489, avg_reader_cost: 0.87347 s, avg_batch_cost: 0.92898 s, avg_samples: 2.9, ips: 3.12172 samples/s, eta: 1:36:34
[2024/07/27 15:16:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:16:12] ppocr INFO: epoch: [1278/1500], global_step: 3834, lr: 0.001000, loss: 1.137641, loss_shrink_maps: 0.556066, loss_threshold_maps: 0.456888, loss_binary_maps: 0.110309, avg_reader_cost: 2.20416 s, avg_batch_cost: 2.54801 s, avg_samples: 12.5, ips: 4.90578 samples/s, eta: 1:36:08
[2024/07/27 15:16:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:16:21] ppocr INFO: epoch: [1279/1500], global_step: 3837, lr: 0.001000, loss: 1.137641, loss_shrink_maps: 0.556066, loss_threshold_maps: 0.453549, loss_binary_maps: 0.110309, avg_reader_cost: 2.17365 s, avg_batch_cost: 2.50952 s, avg_samples: 12.5, ips: 4.98104 samples/s, eta: 1:35:42
[2024/07/27 15:16:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:16:31] ppocr INFO: epoch: [1280/1500], global_step: 3840, lr: 0.001000, loss: 1.149928, loss_shrink_maps: 0.563624, loss_threshold_maps: 0.456888, loss_binary_maps: 0.111563, avg_reader_cost: 2.34619 s, avg_batch_cost: 2.59738 s, avg_samples: 12.5, ips: 4.81254 samples/s, eta: 1:35:16

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:58,  8.52it/s]
eval model::   1%|          | 4/500 [00:00<00:28, 17.71it/s]
eval model::   1%|▏         | 7/500 [00:00<00:23, 20.79it/s]
eval model::   2%|▏         | 10/500 [00:00<00:25, 19.43it/s]
eval model::   2%|▏         | 12/500 [00:00<00:27, 18.04it/s]
eval model::   3%|▎         | 14/500 [00:00<00:27, 17.94it/s]
eval model::   3%|▎         | 17/500 [00:00<00:23, 20.33it/s]
eval model::   4%|▍         | 20/500 [00:01<00:25, 18.71it/s]
eval model::   5%|▍         | 23/500 [00:01<00:23, 19.92it/s]
eval model::   5%|▌         | 26/500 [00:01<00:26, 17.82it/s]
eval model::   6%|▌         | 29/500 [00:01<00:24, 18.95it/s]
eval model::   6%|▌         | 31/500 [00:01<00:26, 17.82it/s]
eval model::   7%|▋         | 34/500 [00:01<00:25, 18.62it/s]
eval model::   7%|▋         | 37/500 [00:01<00:23, 19.37it/s]
eval model::   8%|▊         | 39/500 [00:02<00:26, 17.29it/s]
eval model::   8%|▊         | 41/500 [00:02<00:27, 16.98it/s]
eval model::   9%|▊         | 43/500 [00:02<00:29, 15.35it/s]
eval model::   9%|▉         | 46/500 [00:02<00:27, 16.24it/s]
eval model::  10%|▉         | 49/500 [00:02<00:23, 18.84it/s]
eval model::  10%|█         | 52/500 [00:02<00:21, 20.55it/s]
eval model::  11%|█         | 55/500 [00:02<00:21, 20.65it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:24, 18.20it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:27, 15.75it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:27, 15.69it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:23, 18.13it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:23, 18.71it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:22, 19.36it/s]
eval model::  15%|█▌        | 75/500 [00:04<00:23, 18.25it/s]
eval model::  15%|█▌        | 77/500 [00:04<00:22, 18.49it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:18, 22.19it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:18, 22.87it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:20, 20.43it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:23, 17.27it/s]
eval model::  19%|█▊        | 93/500 [00:05<00:22, 18.21it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:20, 19.98it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:18, 21.69it/s]
eval model::  20%|██        | 102/500 [00:05<00:18, 21.17it/s]
eval model::  21%|██        | 106/500 [00:05<00:16, 23.32it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:16, 23.18it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:16, 22.98it/s]
eval model::  23%|██▎       | 115/500 [00:06<00:20, 18.56it/s]
eval model::  24%|██▎       | 118/500 [00:06<00:20, 18.95it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:20, 18.85it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:20, 18.67it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:20, 18.29it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:18, 19.76it/s]
eval model::  26%|██▋       | 132/500 [00:07<00:21, 17.45it/s]
eval model::  27%|██▋       | 135/500 [00:07<00:18, 19.22it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:17, 20.42it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:17, 20.56it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:16, 21.73it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:20, 17.47it/s]
eval model::  30%|███       | 150/500 [00:07<00:18, 19.11it/s]
eval model::  31%|███       | 153/500 [00:08<00:19, 17.51it/s]
eval model::  31%|███       | 156/500 [00:08<00:18, 18.31it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:18, 18.28it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:23, 14.50it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:22, 14.68it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:19, 17.20it/s]
eval model::  34%|███▎      | 168/500 [00:09<00:19, 17.15it/s]
eval model::  34%|███▍      | 171/500 [00:09<00:17, 18.66it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:18, 17.65it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:18, 17.25it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:16, 19.28it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:18, 17.19it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:18, 17.48it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:17, 18.13it/s]
eval model::  38%|███▊      | 188/500 [00:10<00:18, 17.24it/s]
eval model::  38%|███▊      | 190/500 [00:10<00:17, 17.80it/s]
eval model::  39%|███▊      | 193/500 [00:10<00:16, 18.88it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:16, 18.20it/s]
eval model::  40%|███▉      | 199/500 [00:10<00:13, 21.90it/s]
eval model::  40%|████      | 202/500 [00:10<00:14, 21.03it/s]
eval model::  41%|████      | 205/500 [00:11<00:19, 15.32it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:18, 16.17it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:17, 16.43it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:16, 17.45it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:18, 15.75it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:17, 15.74it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:15, 18.25it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:17, 16.32it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:13, 19.63it/s]
eval model::  46%|████▌     | 229/500 [00:12<00:12, 21.75it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:11, 23.39it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:12, 21.88it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:11, 22.00it/s]
eval model::  48%|████▊     | 242/500 [00:13<00:14, 18.08it/s]
eval model::  49%|████▉     | 246/500 [00:13<00:11, 21.37it/s]
eval model::  50%|████▉     | 249/500 [00:13<00:11, 21.89it/s]
eval model::  50%|█████     | 252/500 [00:13<00:10, 22.89it/s]
eval model::  51%|█████     | 255/500 [00:13<00:10, 22.28it/s]
eval model::  52%|█████▏    | 258/500 [00:13<00:11, 21.42it/s]
eval model::  52%|█████▏    | 261/500 [00:13<00:11, 20.66it/s]
eval model::  53%|█████▎    | 264/500 [00:14<00:12, 19.29it/s]
eval model::  53%|█████▎    | 267/500 [00:14<00:11, 19.68it/s]
eval model::  54%|█████▍    | 270/500 [00:14<00:13, 17.65it/s]
eval model::  55%|█████▍    | 273/500 [00:14<00:11, 18.97it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:12, 17.91it/s]
eval model::  55%|█████▌    | 277/500 [00:14<00:12, 18.32it/s]
eval model::  56%|█████▌    | 280/500 [00:14<00:11, 19.54it/s]
eval model::  57%|█████▋    | 283/500 [00:15<00:10, 20.37it/s]
eval model::  57%|█████▋    | 286/500 [00:15<00:17, 12.04it/s]
eval model::  58%|█████▊    | 289/500 [00:15<00:14, 14.57it/s]
eval model::  58%|█████▊    | 292/500 [00:15<00:12, 16.61it/s]
eval model::  59%|█████▉    | 295/500 [00:16<00:15, 13.54it/s]
eval model::  60%|█████▉    | 298/500 [00:16<00:12, 16.15it/s]
eval model::  60%|██████    | 301/500 [00:16<00:12, 16.05it/s]
eval model::  61%|██████    | 304/500 [00:16<00:11, 17.41it/s]
eval model::  61%|██████▏   | 307/500 [00:16<00:10, 18.97it/s]
eval model::  62%|██████▏   | 310/500 [00:16<00:09, 20.18it/s]
eval model::  63%|██████▎   | 313/500 [00:16<00:09, 20.69it/s]
eval model::  63%|██████▎   | 316/500 [00:17<00:09, 19.20it/s]
eval model::  64%|██████▍   | 319/500 [00:17<00:08, 21.07it/s]
eval model::  64%|██████▍   | 322/500 [00:17<00:08, 20.26it/s]
eval model::  65%|██████▌   | 326/500 [00:17<00:07, 22.53it/s]
eval model::  66%|██████▌   | 329/500 [00:17<00:07, 22.63it/s]
eval model::  66%|██████▋   | 332/500 [00:17<00:06, 24.19it/s]
eval model::  67%|██████▋   | 336/500 [00:17<00:06, 25.22it/s]
eval model::  68%|██████▊   | 339/500 [00:17<00:07, 22.47it/s]
eval model::  68%|██████▊   | 342/500 [00:18<00:09, 16.82it/s]
eval model::  69%|██████▉   | 345/500 [00:18<00:08, 18.65it/s]
eval model::  70%|██████▉   | 348/500 [00:18<00:07, 19.78it/s]
eval model::  70%|███████   | 351/500 [00:18<00:07, 20.94it/s]
eval model::  71%|███████   | 355/500 [00:18<00:06, 21.43it/s]
eval model::  72%|███████▏  | 358/500 [00:18<00:06, 21.95it/s]
eval model::  72%|███████▏  | 361/500 [00:19<00:06, 20.20it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:07, 18.59it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:07, 18.14it/s]
eval model::  74%|███████▍  | 369/500 [00:19<00:06, 20.02it/s]
eval model::  74%|███████▍  | 372/500 [00:19<00:06, 19.34it/s]
eval model::  75%|███████▌  | 375/500 [00:19<00:06, 20.51it/s]
eval model::  76%|███████▌  | 378/500 [00:19<00:05, 22.14it/s]
eval model::  76%|███████▌  | 381/500 [00:20<00:06, 19.81it/s]
eval model::  77%|███████▋  | 384/500 [00:20<00:05, 21.83it/s]
eval model::  77%|███████▋  | 387/500 [00:20<00:08, 13.67it/s]
eval model::  78%|███████▊  | 390/500 [00:20<00:06, 16.03it/s]
eval model::  79%|███████▊  | 393/500 [00:20<00:06, 17.82it/s]
eval model::  79%|███████▉  | 396/500 [00:21<00:05, 19.21it/s]
eval model::  80%|███████▉  | 399/500 [00:21<00:04, 21.12it/s]
eval model::  80%|████████  | 402/500 [00:21<00:04, 20.01it/s]
eval model::  81%|████████  | 405/500 [00:21<00:04, 21.27it/s]
eval model::  82%|████████▏ | 408/500 [00:21<00:04, 21.61it/s]
eval model::  82%|████████▏ | 411/500 [00:21<00:03, 22.39it/s]
eval model::  83%|████████▎ | 414/500 [00:21<00:03, 21.54it/s]
eval model::  83%|████████▎ | 417/500 [00:22<00:04, 20.70it/s]
eval model::  84%|████████▍ | 420/500 [00:22<00:05, 13.65it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:05, 14.07it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:05, 14.15it/s]
eval model::  85%|████████▌ | 426/500 [00:22<00:04, 15.04it/s]
eval model::  86%|████████▌ | 429/500 [00:22<00:04, 17.59it/s]
eval model::  86%|████████▌ | 431/500 [00:23<00:03, 17.54it/s]
eval model::  87%|████████▋ | 435/500 [00:23<00:03, 21.17it/s]
eval model::  88%|████████▊ | 438/500 [00:23<00:02, 21.47it/s]
eval model::  88%|████████▊ | 441/500 [00:23<00:03, 19.52it/s]
eval model::  89%|████████▉ | 444/500 [00:23<00:02, 21.65it/s]
eval model::  89%|████████▉ | 447/500 [00:23<00:02, 21.18it/s]
eval model::  90%|█████████ | 450/500 [00:23<00:02, 19.15it/s]
eval model::  91%|█████████ | 453/500 [00:24<00:02, 19.93it/s]
eval model::  91%|█████████ | 456/500 [00:24<00:02, 21.68it/s]
eval model::  92%|█████████▏| 459/500 [00:24<00:01, 22.81it/s]
eval model::  92%|█████████▏| 462/500 [00:24<00:02, 17.39it/s]
eval model::  93%|█████████▎| 464/500 [00:24<00:02, 16.89it/s]
eval model::  93%|█████████▎| 466/500 [00:24<00:02, 16.27it/s]
eval model::  94%|█████████▎| 468/500 [00:24<00:01, 16.12it/s]
eval model::  94%|█████████▍| 471/500 [00:25<00:01, 17.87it/s]
eval model::  95%|█████████▍| 473/500 [00:25<00:01, 17.81it/s]
eval model::  95%|█████████▌| 475/500 [00:25<00:01, 18.17it/s]
eval model::  96%|█████████▌| 478/500 [00:25<00:01, 20.32it/s]
eval model::  96%|█████████▌| 481/500 [00:25<00:00, 21.25it/s]
eval model::  97%|█████████▋| 484/500 [00:25<00:00, 22.25it/s]
eval model::  97%|█████████▋| 487/500 [00:25<00:00, 20.56it/s]
eval model::  98%|█████████▊| 490/500 [00:25<00:00, 22.06it/s]
eval model::  99%|█████████▊| 493/500 [00:26<00:00, 19.30it/s]
eval model::  99%|█████████▉| 496/500 [00:26<00:00, 18.36it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 21.63it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.90it/s]
[2024/07/27 15:16:58] ppocr INFO: cur metric, precision: 0.7604501607717041, recall: 0.6831969186326432, hmean: 0.7197565305604868, fps: 45.21531483716131
[2024/07/27 15:16:58] ppocr INFO: best metric, hmean: 0.7301425661914459, precision: 0.7747163695299838, recall: 0.6904188733750601, fps: 43.582139874688714, best_epoch: 960
[2024/07/27 15:16:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:17:07] ppocr INFO: epoch: [1281/1500], global_step: 3843, lr: 0.001000, loss: 1.149928, loss_shrink_maps: 0.563624, loss_threshold_maps: 0.475884, loss_binary_maps: 0.111563, avg_reader_cost: 2.32959 s, avg_batch_cost: 2.59986 s, avg_samples: 12.5, ips: 4.80796 samples/s, eta: 1:34:50
[2024/07/27 15:17:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:17:17] ppocr INFO: epoch: [1282/1500], global_step: 3846, lr: 0.001000, loss: 1.131420, loss_shrink_maps: 0.557214, loss_threshold_maps: 0.456888, loss_binary_maps: 0.110657, avg_reader_cost: 2.15014 s, avg_batch_cost: 2.48315 s, avg_samples: 12.5, ips: 5.03394 samples/s, eta: 1:34:23
[2024/07/27 15:17:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:17:26] ppocr INFO: epoch: [1283/1500], global_step: 3849, lr: 0.001000, loss: 1.131420, loss_shrink_maps: 0.558393, loss_threshold_maps: 0.456759, loss_binary_maps: 0.111163, avg_reader_cost: 2.14481 s, avg_batch_cost: 2.46136 s, avg_samples: 12.5, ips: 5.07849 samples/s, eta: 1:33:57
[2024/07/27 15:17:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:17:34] ppocr INFO: epoch: [1284/1500], global_step: 3850, lr: 0.001000, loss: 1.131420, loss_shrink_maps: 0.558393, loss_threshold_maps: 0.451252, loss_binary_maps: 0.111163, avg_reader_cost: 0.67607 s, avg_batch_cost: 0.77991 s, avg_samples: 4.8, ips: 6.15458 samples/s, eta: 1:33:48
[2024/07/27 15:17:36] ppocr INFO: epoch: [1284/1500], global_step: 3852, lr: 0.001000, loss: 1.129999, loss_shrink_maps: 0.558393, loss_threshold_maps: 0.451655, loss_binary_maps: 0.111163, avg_reader_cost: 1.65217 s, avg_batch_cost: 1.79890 s, avg_samples: 7.7, ips: 4.28039 samples/s, eta: 1:33:31
[2024/07/27 15:17:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:17:45] ppocr INFO: epoch: [1285/1500], global_step: 3855, lr: 0.001000, loss: 1.145912, loss_shrink_maps: 0.587743, loss_threshold_maps: 0.467522, loss_binary_maps: 0.116967, avg_reader_cost: 2.36358 s, avg_batch_cost: 2.60586 s, avg_samples: 12.5, ips: 4.79688 samples/s, eta: 1:33:05
[2024/07/27 15:17:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:17:55] ppocr INFO: epoch: [1286/1500], global_step: 3858, lr: 0.001000, loss: 1.133687, loss_shrink_maps: 0.566500, loss_threshold_maps: 0.459763, loss_binary_maps: 0.112512, avg_reader_cost: 2.21261 s, avg_batch_cost: 2.60739 s, avg_samples: 12.5, ips: 4.79407 samples/s, eta: 1:32:39
[2024/07/27 15:17:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:18:04] ppocr INFO: epoch: [1287/1500], global_step: 3860, lr: 0.001000, loss: 1.129999, loss_shrink_maps: 0.566255, loss_threshold_maps: 0.453732, loss_binary_maps: 0.111981, avg_reader_cost: 1.41826 s, avg_batch_cost: 1.60135 s, avg_samples: 9.6, ips: 5.99496 samples/s, eta: 1:32:22
[2024/07/27 15:18:05] ppocr INFO: epoch: [1287/1500], global_step: 3861, lr: 0.001000, loss: 1.133687, loss_shrink_maps: 0.568979, loss_threshold_maps: 0.459763, loss_binary_maps: 0.112725, avg_reader_cost: 0.84727 s, avg_batch_cost: 0.90333 s, avg_samples: 2.9, ips: 3.21035 samples/s, eta: 1:32:13
[2024/07/27 15:18:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:18:14] ppocr INFO: epoch: [1288/1500], global_step: 3864, lr: 0.001000, loss: 1.144694, loss_shrink_maps: 0.582079, loss_threshold_maps: 0.457634, loss_binary_maps: 0.115821, avg_reader_cost: 2.15855 s, avg_batch_cost: 2.50537 s, avg_samples: 12.5, ips: 4.98928 samples/s, eta: 1:31:47
[2024/07/27 15:18:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:18:25] ppocr INFO: epoch: [1289/1500], global_step: 3867, lr: 0.001000, loss: 1.160678, loss_shrink_maps: 0.599398, loss_threshold_maps: 0.455624, loss_binary_maps: 0.119030, avg_reader_cost: 2.28053 s, avg_batch_cost: 2.64067 s, avg_samples: 12.5, ips: 4.73364 samples/s, eta: 1:31:21
[2024/07/27 15:18:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:18:34] ppocr INFO: epoch: [1290/1500], global_step: 3870, lr: 0.001000, loss: 1.169204, loss_shrink_maps: 0.605446, loss_threshold_maps: 0.453584, loss_binary_maps: 0.119887, avg_reader_cost: 2.12516 s, avg_batch_cost: 2.43301 s, avg_samples: 12.5, ips: 5.13767 samples/s, eta: 1:30:55
[2024/07/27 15:18:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:18:43] ppocr INFO: epoch: [1291/1500], global_step: 3873, lr: 0.001000, loss: 1.169204, loss_shrink_maps: 0.607209, loss_threshold_maps: 0.453584, loss_binary_maps: 0.120253, avg_reader_cost: 2.11906 s, avg_batch_cost: 2.38439 s, avg_samples: 12.5, ips: 5.24242 samples/s, eta: 1:30:29
[2024/07/27 15:18:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:18:52] ppocr INFO: epoch: [1292/1500], global_step: 3876, lr: 0.001000, loss: 1.162888, loss_shrink_maps: 0.588644, loss_threshold_maps: 0.453584, loss_binary_maps: 0.116738, avg_reader_cost: 2.24824 s, avg_batch_cost: 2.49082 s, avg_samples: 12.5, ips: 5.01843 samples/s, eta: 1:30:02
[2024/07/27 15:18:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:19:03] ppocr INFO: epoch: [1293/1500], global_step: 3879, lr: 0.001000, loss: 1.182442, loss_shrink_maps: 0.604443, loss_threshold_maps: 0.456231, loss_binary_maps: 0.119562, avg_reader_cost: 2.48143 s, avg_batch_cost: 2.72136 s, avg_samples: 12.5, ips: 4.59330 samples/s, eta: 1:29:37
[2024/07/27 15:19:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:19:11] ppocr INFO: epoch: [1294/1500], global_step: 3880, lr: 0.001000, loss: 1.201440, loss_shrink_maps: 0.606720, loss_threshold_maps: 0.460452, loss_binary_maps: 0.120253, avg_reader_cost: 0.56761 s, avg_batch_cost: 0.77644 s, avg_samples: 4.8, ips: 6.18205 samples/s, eta: 1:29:28
[2024/07/27 15:19:13] ppocr INFO: epoch: [1294/1500], global_step: 3882, lr: 0.001000, loss: 1.182442, loss_shrink_maps: 0.604132, loss_threshold_maps: 0.456231, loss_binary_maps: 0.119714, avg_reader_cost: 1.64470 s, avg_batch_cost: 1.79209 s, avg_samples: 7.7, ips: 4.29667 samples/s, eta: 1:29:11
[2024/07/27 15:19:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:19:22] ppocr INFO: epoch: [1295/1500], global_step: 3885, lr: 0.001000, loss: 1.182442, loss_shrink_maps: 0.597012, loss_threshold_maps: 0.474499, loss_binary_maps: 0.118039, avg_reader_cost: 2.24890 s, avg_batch_cost: 2.48572 s, avg_samples: 12.5, ips: 5.02873 samples/s, eta: 1:28:44
[2024/07/27 15:19:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:19:32] ppocr INFO: epoch: [1296/1500], global_step: 3888, lr: 0.001000, loss: 1.176126, loss_shrink_maps: 0.588644, loss_threshold_maps: 0.474499, loss_binary_maps: 0.116738, avg_reader_cost: 2.31615 s, avg_batch_cost: 2.57986 s, avg_samples: 12.5, ips: 4.84523 samples/s, eta: 1:28:18
[2024/07/27 15:19:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:19:41] ppocr INFO: epoch: [1297/1500], global_step: 3890, lr: 0.001000, loss: 1.176126, loss_shrink_maps: 0.588644, loss_threshold_maps: 0.473520, loss_binary_maps: 0.116738, avg_reader_cost: 1.52244 s, avg_batch_cost: 1.71651 s, avg_samples: 9.6, ips: 5.59275 samples/s, eta: 1:28:01
[2024/07/27 15:19:42] ppocr INFO: epoch: [1297/1500], global_step: 3891, lr: 0.001000, loss: 1.137159, loss_shrink_maps: 0.578248, loss_threshold_maps: 0.471064, loss_binary_maps: 0.114969, avg_reader_cost: 0.90449 s, avg_batch_cost: 0.96016 s, avg_samples: 2.9, ips: 3.02032 samples/s, eta: 1:27:53
[2024/07/27 15:19:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:19:51] ppocr INFO: epoch: [1298/1500], global_step: 3894, lr: 0.001000, loss: 1.137159, loss_shrink_maps: 0.578248, loss_threshold_maps: 0.462477, loss_binary_maps: 0.114969, avg_reader_cost: 2.29077 s, avg_batch_cost: 2.53995 s, avg_samples: 12.5, ips: 4.92135 samples/s, eta: 1:27:27
[2024/07/27 15:19:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:20:02] ppocr INFO: epoch: [1299/1500], global_step: 3897, lr: 0.001000, loss: 1.116169, loss_shrink_maps: 0.565624, loss_threshold_maps: 0.460486, loss_binary_maps: 0.112813, avg_reader_cost: 2.44710 s, avg_batch_cost: 2.68789 s, avg_samples: 12.5, ips: 4.65048 samples/s, eta: 1:27:01
[2024/07/27 15:20:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:20:11] ppocr INFO: epoch: [1300/1500], global_step: 3900, lr: 0.001000, loss: 1.111190, loss_shrink_maps: 0.553546, loss_threshold_maps: 0.456178, loss_binary_maps: 0.109779, avg_reader_cost: 2.15731 s, avg_batch_cost: 2.46744 s, avg_samples: 12.5, ips: 5.06598 samples/s, eta: 1:26:35

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:59,  8.34it/s]
eval model::   1%|          | 4/500 [00:00<00:28, 17.18it/s]
eval model::   1%|▏         | 7/500 [00:00<00:24, 19.83it/s]
eval model::   2%|▏         | 9/500 [00:00<00:25, 19.46it/s]
eval model::   2%|▏         | 11/500 [00:00<00:31, 15.76it/s]
eval model::   3%|▎         | 13/500 [00:00<00:31, 15.33it/s]
eval model::   3%|▎         | 15/500 [00:00<00:30, 15.73it/s]
eval model::   4%|▎         | 18/500 [00:01<00:26, 17.88it/s]
eval model::   4%|▍         | 20/500 [00:01<00:28, 17.12it/s]
eval model::   5%|▍         | 23/500 [00:01<00:24, 19.19it/s]
eval model::   5%|▌         | 26/500 [00:01<00:23, 19.92it/s]
eval model::   6%|▌         | 29/500 [00:01<00:23, 20.24it/s]
eval model::   6%|▋         | 32/500 [00:01<00:25, 18.65it/s]
eval model::   7%|▋         | 34/500 [00:01<00:24, 18.82it/s]
eval model::   7%|▋         | 37/500 [00:02<00:22, 20.56it/s]
eval model::   8%|▊         | 40/500 [00:02<00:23, 19.78it/s]
eval model::   9%|▊         | 43/500 [00:02<00:23, 19.23it/s]
eval model::   9%|▉         | 46/500 [00:02<00:26, 17.40it/s]
eval model::  10%|▉         | 49/500 [00:02<00:24, 18.45it/s]
eval model::  10%|█         | 52/500 [00:02<00:22, 19.60it/s]
eval model::  11%|█         | 55/500 [00:02<00:20, 21.21it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:22, 19.50it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:27, 16.01it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:27, 16.12it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:23, 18.70it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:20, 21.15it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:19, 21.73it/s]
eval model::  15%|█▌        | 75/500 [00:03<00:19, 21.26it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:18, 22.27it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:18, 22.97it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:19, 21.12it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:20, 20.12it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:23, 17.29it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:22, 18.11it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:20, 19.39it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:21, 18.79it/s]
eval model::  20%|██        | 101/500 [00:05<00:21, 18.48it/s]
eval model::  21%|██        | 104/500 [00:05<00:19, 20.34it/s]
eval model::  21%|██▏       | 107/500 [00:05<00:17, 22.02it/s]
eval model::  22%|██▏       | 110/500 [00:05<00:17, 22.68it/s]
eval model::  23%|██▎       | 113/500 [00:05<00:17, 22.60it/s]
eval model::  23%|██▎       | 116/500 [00:06<00:19, 19.62it/s]
eval model::  24%|██▍       | 119/500 [00:06<00:17, 21.47it/s]
eval model::  24%|██▍       | 122/500 [00:06<00:18, 20.76it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:21, 17.61it/s]
eval model::  25%|██▌       | 127/500 [00:06<00:20, 17.86it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:20, 18.26it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:21, 17.04it/s]
eval model::  27%|██▋       | 133/500 [00:07<00:22, 16.29it/s]
eval model::  27%|██▋       | 136/500 [00:07<00:20, 17.63it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:20, 17.73it/s]
eval model::  28%|██▊       | 140/500 [00:07<00:20, 17.68it/s]
eval model::  29%|██▊       | 143/500 [00:07<00:18, 19.63it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:18, 19.71it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:19, 18.09it/s]
eval model::  30%|███       | 150/500 [00:07<00:18, 18.95it/s]
eval model::  30%|███       | 152/500 [00:07<00:18, 19.02it/s]
eval model::  31%|███       | 156/500 [00:08<00:15, 22.54it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:15, 22.33it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:19, 17.54it/s]
eval model::  33%|███▎      | 165/500 [00:08<00:18, 18.44it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:17, 18.74it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:17, 18.93it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:18, 18.16it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:19, 16.69it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:19, 16.76it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:16, 19.10it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:19, 16.22it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:19, 16.21it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:16, 18.84it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:15, 20.15it/s]
eval model::  38%|███▊      | 192/500 [00:10<00:14, 20.74it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:14, 20.40it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:14, 20.28it/s]
eval model::  40%|████      | 201/500 [00:10<00:15, 19.58it/s]
eval model::  41%|████      | 205/500 [00:10<00:19, 14.88it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:18, 15.54it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:19, 14.86it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.48it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:21, 13.47it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:21, 12.87it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:18, 15.39it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:20, 13.36it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:16, 16.72it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:13, 20.18it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:13, 20.38it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:13, 19.58it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:12, 21.25it/s]
eval model::  48%|████▊     | 242/500 [00:13<00:15, 16.14it/s]
eval model::  49%|████▉     | 245/500 [00:13<00:14, 17.64it/s]
eval model::  50%|████▉     | 248/500 [00:13<00:13, 18.76it/s]
eval model::  50%|█████     | 251/500 [00:13<00:14, 17.15it/s]
eval model::  51%|█████     | 254/500 [00:13<00:13, 18.26it/s]
eval model::  51%|█████     | 256/500 [00:13<00:13, 18.58it/s]
eval model::  52%|█████▏    | 259/500 [00:14<00:11, 20.91it/s]
eval model::  52%|█████▏    | 262/500 [00:14<00:11, 21.49it/s]
eval model::  53%|█████▎    | 265/500 [00:14<00:11, 19.83it/s]
eval model::  54%|█████▎    | 268/500 [00:14<00:11, 20.51it/s]
eval model::  54%|█████▍    | 271/500 [00:14<00:11, 20.61it/s]
eval model::  55%|█████▍    | 274/500 [00:14<00:10, 21.42it/s]
eval model::  55%|█████▌    | 277/500 [00:14<00:11, 19.04it/s]
eval model::  56%|█████▌    | 279/500 [00:15<00:12, 18.28it/s]
eval model::  56%|█████▋    | 282/500 [00:15<00:10, 19.86it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:19, 11.10it/s]
eval model::  58%|█████▊    | 288/500 [00:15<00:15, 13.32it/s]
eval model::  58%|█████▊    | 292/500 [00:16<00:13, 15.48it/s]
eval model::  59%|█████▉    | 294/500 [00:16<00:13, 14.98it/s]
eval model::  59%|█████▉    | 296/500 [00:16<00:15, 12.84it/s]
eval model::  60%|█████▉    | 299/500 [00:16<00:12, 15.54it/s]
eval model::  60%|██████    | 301/500 [00:16<00:14, 14.11it/s]
eval model::  61%|██████    | 304/500 [00:16<00:12, 15.22it/s]
eval model::  61%|██████▏   | 307/500 [00:16<00:10, 17.66it/s]
eval model::  62%|██████▏   | 309/500 [00:17<00:10, 18.01it/s]
eval model::  62%|██████▏   | 312/500 [00:17<00:10, 18.09it/s]
eval model::  63%|██████▎   | 314/500 [00:17<00:10, 18.18it/s]
eval model::  63%|██████▎   | 316/500 [00:17<00:11, 16.45it/s]
eval model::  64%|██████▍   | 319/500 [00:17<00:09, 18.51it/s]
eval model::  64%|██████▍   | 322/500 [00:17<00:09, 18.78it/s]
eval model::  65%|██████▌   | 325/500 [00:17<00:08, 20.41it/s]
eval model::  66%|██████▌   | 328/500 [00:18<00:09, 18.79it/s]
eval model::  66%|██████▌   | 331/500 [00:18<00:08, 19.63it/s]
eval model::  67%|██████▋   | 335/500 [00:18<00:07, 22.97it/s]
eval model::  68%|██████▊   | 338/500 [00:18<00:08, 19.92it/s]
eval model::  68%|██████▊   | 341/500 [00:18<00:09, 16.17it/s]
eval model::  69%|██████▊   | 343/500 [00:18<00:09, 16.40it/s]
eval model::  69%|██████▉   | 346/500 [00:19<00:08, 18.98it/s]
eval model::  70%|██████▉   | 349/500 [00:19<00:07, 20.89it/s]
eval model::  70%|███████   | 352/500 [00:19<00:07, 20.52it/s]
eval model::  71%|███████   | 355/500 [00:19<00:07, 18.63it/s]
eval model::  71%|███████▏  | 357/500 [00:19<00:07, 18.75it/s]
eval model::  72%|███████▏  | 360/500 [00:19<00:07, 19.86it/s]
eval model::  73%|███████▎  | 363/500 [00:19<00:07, 17.97it/s]
eval model::  73%|███████▎  | 365/500 [00:20<00:07, 17.50it/s]
eval model::  73%|███████▎  | 367/500 [00:20<00:08, 14.96it/s]
eval model::  74%|███████▍  | 370/500 [00:20<00:07, 17.03it/s]
eval model::  74%|███████▍  | 372/500 [00:20<00:07, 17.12it/s]
eval model::  75%|███████▌  | 375/500 [00:20<00:06, 19.13it/s]
eval model::  76%|███████▌  | 379/500 [00:20<00:05, 24.01it/s]
eval model::  76%|███████▋  | 382/500 [00:20<00:05, 22.47it/s]
eval model::  77%|███████▋  | 385/500 [00:20<00:04, 23.31it/s]
eval model::  78%|███████▊  | 388/500 [00:21<00:08, 13.74it/s]
eval model::  78%|███████▊  | 391/500 [00:21<00:06, 15.97it/s]
eval model::  79%|███████▉  | 394/500 [00:21<00:06, 17.02it/s]
eval model::  79%|███████▉  | 397/500 [00:21<00:05, 19.19it/s]
eval model::  80%|████████  | 400/500 [00:21<00:05, 18.09it/s]
eval model::  81%|████████  | 403/500 [00:22<00:05, 18.18it/s]
eval model::  81%|████████  | 406/500 [00:22<00:05, 18.79it/s]
eval model::  82%|████████▏ | 409/500 [00:22<00:04, 20.07it/s]
eval model::  82%|████████▏ | 412/500 [00:22<00:03, 22.12it/s]
eval model::  83%|████████▎ | 415/500 [00:22<00:03, 22.34it/s]
eval model::  84%|████████▎ | 418/500 [00:22<00:03, 21.98it/s]
eval model::  84%|████████▍ | 421/500 [00:23<00:05, 13.99it/s]
eval model::  85%|████████▍ | 424/500 [00:23<00:05, 14.12it/s]
eval model::  85%|████████▌ | 426/500 [00:23<00:05, 14.69it/s]
eval model::  86%|████████▌ | 429/500 [00:23<00:04, 16.57it/s]
eval model::  86%|████████▌ | 431/500 [00:23<00:04, 15.50it/s]
eval model::  87%|████████▋ | 435/500 [00:23<00:03, 19.12it/s]
eval model::  88%|████████▊ | 438/500 [00:24<00:03, 20.16it/s]
eval model::  88%|████████▊ | 441/500 [00:24<00:03, 18.34it/s]
eval model::  89%|████████▉ | 444/500 [00:24<00:02, 19.70it/s]
eval model::  89%|████████▉ | 447/500 [00:24<00:02, 20.90it/s]
eval model::  90%|█████████ | 450/500 [00:24<00:02, 20.39it/s]
eval model::  91%|█████████ | 453/500 [00:24<00:02, 22.06it/s]
eval model::  91%|█████████ | 456/500 [00:24<00:01, 22.73it/s]
eval model::  92%|█████████▏| 459/500 [00:25<00:01, 22.91it/s]
eval model::  92%|█████████▏| 462/500 [00:25<00:02, 18.16it/s]
eval model::  93%|█████████▎| 465/500 [00:25<00:02, 15.56it/s]
eval model::  93%|█████████▎| 467/500 [00:25<00:02, 15.74it/s]
eval model::  94%|█████████▍| 471/500 [00:25<00:01, 18.77it/s]
eval model::  95%|█████████▍| 474/500 [00:25<00:01, 18.45it/s]
eval model::  95%|█████████▌| 477/500 [00:26<00:01, 20.35it/s]
eval model::  96%|█████████▌| 480/500 [00:26<00:00, 21.54it/s]
eval model::  97%|█████████▋| 483/500 [00:26<00:00, 22.30it/s]
eval model::  97%|█████████▋| 486/500 [00:26<00:00, 21.08it/s]
eval model::  98%|█████████▊| 489/500 [00:26<00:00, 21.61it/s]
eval model::  98%|█████████▊| 492/500 [00:26<00:00, 19.80it/s]
eval model::  99%|█████████▉| 495/500 [00:26<00:00, 21.05it/s]
eval model:: 100%|█████████▉| 499/500 [00:27<00:00, 24.29it/s]
eval model:: 100%|██████████| 500/500 [00:27<00:00, 18.46it/s]
[2024/07/27 15:20:38] ppocr INFO: cur metric, precision: 0.7227319062181448, recall: 0.6827154549831488, hmean: 0.7021539985144838, fps: 44.38254242193704
[2024/07/27 15:20:38] ppocr INFO: best metric, hmean: 0.7301425661914459, precision: 0.7747163695299838, recall: 0.6904188733750601, fps: 43.582139874688714, best_epoch: 960
[2024/07/27 15:20:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:20:47] ppocr INFO: epoch: [1301/1500], global_step: 3903, lr: 0.001000, loss: 1.111190, loss_shrink_maps: 0.549394, loss_threshold_maps: 0.456178, loss_binary_maps: 0.109479, avg_reader_cost: 2.06085 s, avg_batch_cost: 2.35833 s, avg_samples: 12.5, ips: 5.30037 samples/s, eta: 1:26:08
[2024/07/27 15:20:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:20:56] ppocr INFO: epoch: [1302/1500], global_step: 3906, lr: 0.001000, loss: 1.106836, loss_shrink_maps: 0.537837, loss_threshold_maps: 0.439203, loss_binary_maps: 0.107253, avg_reader_cost: 2.28278 s, avg_batch_cost: 2.55281 s, avg_samples: 12.5, ips: 4.89657 samples/s, eta: 1:25:42
[2024/07/27 15:20:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:21:06] ppocr INFO: epoch: [1303/1500], global_step: 3909, lr: 0.001000, loss: 1.111190, loss_shrink_maps: 0.554420, loss_threshold_maps: 0.439996, loss_binary_maps: 0.110220, avg_reader_cost: 2.37278 s, avg_batch_cost: 2.61166 s, avg_samples: 12.5, ips: 4.78623 samples/s, eta: 1:25:16
[2024/07/27 15:21:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:21:15] ppocr INFO: epoch: [1304/1500], global_step: 3910, lr: 0.001000, loss: 1.116169, loss_shrink_maps: 0.556182, loss_threshold_maps: 0.447217, loss_binary_maps: 0.110898, avg_reader_cost: 0.56200 s, avg_batch_cost: 0.77235 s, avg_samples: 4.8, ips: 6.21481 samples/s, eta: 1:25:07
[2024/07/27 15:21:16] ppocr INFO: epoch: [1304/1500], global_step: 3912, lr: 0.001000, loss: 1.159606, loss_shrink_maps: 0.574412, loss_threshold_maps: 0.453521, loss_binary_maps: 0.114109, avg_reader_cost: 1.63704 s, avg_batch_cost: 1.78249 s, avg_samples: 7.7, ips: 4.31979 samples/s, eta: 1:24:50
[2024/07/27 15:21:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:21:26] ppocr INFO: epoch: [1305/1500], global_step: 3915, lr: 0.001000, loss: 1.159606, loss_shrink_maps: 0.576914, loss_threshold_maps: 0.458374, loss_binary_maps: 0.114699, avg_reader_cost: 2.29703 s, avg_batch_cost: 2.53785 s, avg_samples: 12.5, ips: 4.92543 samples/s, eta: 1:24:24
[2024/07/27 15:21:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:21:35] ppocr INFO: epoch: [1306/1500], global_step: 3918, lr: 0.001000, loss: 1.154426, loss_shrink_maps: 0.576914, loss_threshold_maps: 0.454913, loss_binary_maps: 0.114699, avg_reader_cost: 2.33805 s, avg_batch_cost: 2.57670 s, avg_samples: 12.5, ips: 4.85117 samples/s, eta: 1:23:58
[2024/07/27 15:21:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:21:45] ppocr INFO: epoch: [1307/1500], global_step: 3920, lr: 0.001000, loss: 1.163433, loss_shrink_maps: 0.581112, loss_threshold_maps: 0.454913, loss_binary_maps: 0.115361, avg_reader_cost: 1.43257 s, avg_batch_cost: 1.61817 s, avg_samples: 9.6, ips: 5.93261 samples/s, eta: 1:23:41
[2024/07/27 15:21:45] ppocr INFO: epoch: [1307/1500], global_step: 3921, lr: 0.001000, loss: 1.163433, loss_shrink_maps: 0.581112, loss_threshold_maps: 0.454913, loss_binary_maps: 0.115361, avg_reader_cost: 0.85584 s, avg_batch_cost: 0.91069 s, avg_samples: 2.9, ips: 3.18439 samples/s, eta: 1:23:32
[2024/07/27 15:21:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:21:55] ppocr INFO: epoch: [1308/1500], global_step: 3924, lr: 0.001000, loss: 1.163433, loss_shrink_maps: 0.581112, loss_threshold_maps: 0.459170, loss_binary_maps: 0.115361, avg_reader_cost: 2.37471 s, avg_batch_cost: 2.62077 s, avg_samples: 12.5, ips: 4.76959 samples/s, eta: 1:23:06
[2024/07/27 15:21:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:22:05] ppocr INFO: epoch: [1309/1500], global_step: 3927, lr: 0.001000, loss: 1.161251, loss_shrink_maps: 0.577259, loss_threshold_maps: 0.459170, loss_binary_maps: 0.114699, avg_reader_cost: 2.18009 s, avg_batch_cost: 2.59226 s, avg_samples: 12.5, ips: 4.82205 samples/s, eta: 1:22:40
[2024/07/27 15:22:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:22:15] ppocr INFO: epoch: [1310/1500], global_step: 3930, lr: 0.001000, loss: 1.148396, loss_shrink_maps: 0.575357, loss_threshold_maps: 0.450903, loss_binary_maps: 0.114321, avg_reader_cost: 2.24609 s, avg_batch_cost: 2.61566 s, avg_samples: 12.5, ips: 4.77892 samples/s, eta: 1:22:14
[2024/07/27 15:22:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:22:25] ppocr INFO: epoch: [1311/1500], global_step: 3933, lr: 0.001000, loss: 1.118981, loss_shrink_maps: 0.557111, loss_threshold_maps: 0.444163, loss_binary_maps: 0.110523, avg_reader_cost: 2.38659 s, avg_batch_cost: 2.65471 s, avg_samples: 12.5, ips: 4.70862 samples/s, eta: 1:21:48
[2024/07/27 15:22:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:22:35] ppocr INFO: epoch: [1312/1500], global_step: 3936, lr: 0.001000, loss: 1.118981, loss_shrink_maps: 0.557111, loss_threshold_maps: 0.444163, loss_binary_maps: 0.110464, avg_reader_cost: 2.25839 s, avg_batch_cost: 2.64049 s, avg_samples: 12.5, ips: 4.73398 samples/s, eta: 1:21:22
[2024/07/27 15:22:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:22:45] ppocr INFO: epoch: [1313/1500], global_step: 3939, lr: 0.001000, loss: 1.143445, loss_shrink_maps: 0.566877, loss_threshold_maps: 0.455160, loss_binary_maps: 0.112408, avg_reader_cost: 2.19911 s, avg_batch_cost: 2.56808 s, avg_samples: 12.5, ips: 4.86744 samples/s, eta: 1:20:56
[2024/07/27 15:22:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:22:53] ppocr INFO: epoch: [1314/1500], global_step: 3940, lr: 0.001000, loss: 1.154135, loss_shrink_maps: 0.578382, loss_threshold_maps: 0.466229, loss_binary_maps: 0.114613, avg_reader_cost: 0.67526 s, avg_batch_cost: 0.77942 s, avg_samples: 4.8, ips: 6.15843 samples/s, eta: 1:20:48
[2024/07/27 15:22:54] ppocr INFO: epoch: [1314/1500], global_step: 3942, lr: 0.001000, loss: 1.154135, loss_shrink_maps: 0.569556, loss_threshold_maps: 0.471662, loss_binary_maps: 0.112888, avg_reader_cost: 1.65114 s, avg_batch_cost: 1.79823 s, avg_samples: 7.7, ips: 4.28198 samples/s, eta: 1:20:30
[2024/07/27 15:22:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:23:04] ppocr INFO: epoch: [1315/1500], global_step: 3945, lr: 0.001000, loss: 1.145455, loss_shrink_maps: 0.579475, loss_threshold_maps: 0.444976, loss_binary_maps: 0.115185, avg_reader_cost: 2.35255 s, avg_batch_cost: 2.59904 s, avg_samples: 12.5, ips: 4.80946 samples/s, eta: 1:20:04
[2024/07/27 15:23:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:23:14] ppocr INFO: epoch: [1316/1500], global_step: 3948, lr: 0.001000, loss: 1.145455, loss_shrink_maps: 0.579475, loss_threshold_maps: 0.453595, loss_binary_maps: 0.115185, avg_reader_cost: 2.36378 s, avg_batch_cost: 2.60136 s, avg_samples: 12.5, ips: 4.80518 samples/s, eta: 1:19:38
[2024/07/27 15:23:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:23:23] ppocr INFO: epoch: [1317/1500], global_step: 3950, lr: 0.001000, loss: 1.154142, loss_shrink_maps: 0.579475, loss_threshold_maps: 0.461875, loss_binary_maps: 0.115185, avg_reader_cost: 1.31620 s, avg_batch_cost: 1.61623 s, avg_samples: 9.6, ips: 5.93975 samples/s, eta: 1:19:21
[2024/07/27 15:23:23] ppocr INFO: epoch: [1317/1500], global_step: 3951, lr: 0.001000, loss: 1.178124, loss_shrink_maps: 0.585112, loss_threshold_maps: 0.471662, loss_binary_maps: 0.116292, avg_reader_cost: 0.85428 s, avg_batch_cost: 0.90974 s, avg_samples: 2.9, ips: 3.18774 samples/s, eta: 1:19:12
[2024/07/27 15:23:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:23:33] ppocr INFO: epoch: [1318/1500], global_step: 3954, lr: 0.001000, loss: 1.119716, loss_shrink_maps: 0.571997, loss_threshold_maps: 0.443299, loss_binary_maps: 0.113856, avg_reader_cost: 2.36851 s, avg_batch_cost: 2.60917 s, avg_samples: 12.5, ips: 4.79079 samples/s, eta: 1:18:46
[2024/07/27 15:23:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:23:43] ppocr INFO: epoch: [1319/1500], global_step: 3957, lr: 0.001000, loss: 1.121383, loss_shrink_maps: 0.566237, loss_threshold_maps: 0.443299, loss_binary_maps: 0.112551, avg_reader_cost: 2.29930 s, avg_batch_cost: 2.54367 s, avg_samples: 12.5, ips: 4.91415 samples/s, eta: 1:18:20
[2024/07/27 15:23:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:23:53] ppocr INFO: epoch: [1320/1500], global_step: 3960, lr: 0.001000, loss: 1.100638, loss_shrink_maps: 0.550936, loss_threshold_maps: 0.433819, loss_binary_maps: 0.109479, avg_reader_cost: 2.42347 s, avg_batch_cost: 2.67614 s, avg_samples: 12.5, ips: 4.67091 samples/s, eta: 1:17:54

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:55,  8.92it/s]
eval model::   1%|          | 3/500 [00:00<00:33, 14.91it/s]
eval model::   1%|          | 6/500 [00:00<00:23, 21.14it/s]
eval model::   2%|▏         | 9/500 [00:00<00:22, 21.41it/s]
eval model::   2%|▏         | 12/500 [00:00<00:25, 19.23it/s]
eval model::   3%|▎         | 14/500 [00:00<00:27, 17.72it/s]
eval model::   4%|▎         | 18/500 [00:00<00:21, 22.35it/s]
eval model::   4%|▍         | 21/500 [00:01<00:21, 22.50it/s]
eval model::   5%|▌         | 25/500 [00:01<00:20, 23.60it/s]
eval model::   6%|▌         | 28/500 [00:01<00:19, 24.26it/s]
eval model::   6%|▌         | 31/500 [00:01<00:21, 22.21it/s]
eval model::   7%|▋         | 34/500 [00:01<00:21, 21.75it/s]
eval model::   7%|▋         | 37/500 [00:01<00:21, 21.96it/s]
eval model::   8%|▊         | 40/500 [00:01<00:23, 19.78it/s]
eval model::   9%|▊         | 43/500 [00:02<00:23, 19.20it/s]
eval model::   9%|▉         | 46/500 [00:02<00:24, 18.78it/s]
eval model::  10%|▉         | 49/500 [00:02<00:21, 20.87it/s]
eval model::  10%|█         | 52/500 [00:02<00:21, 21.12it/s]
eval model::  11%|█         | 55/500 [00:02<00:20, 21.25it/s]
eval model::  12%|█▏        | 58/500 [00:02<00:22, 19.80it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:27, 15.73it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:27, 15.90it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:21, 20.24it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:19, 21.92it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:19, 22.24it/s]
eval model::  15%|█▌        | 76/500 [00:03<00:18, 22.34it/s]
eval model::  16%|█▌        | 79/500 [00:03<00:17, 23.53it/s]
eval model::  16%|█▋        | 82/500 [00:03<00:17, 23.39it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:17, 23.65it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:20, 20.32it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:24, 16.37it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:24, 16.88it/s]
eval model::  19%|█▉        | 96/500 [00:04<00:20, 19.57it/s]
eval model::  20%|█▉        | 99/500 [00:04<00:18, 21.60it/s]
eval model::  20%|██        | 102/500 [00:05<00:19, 20.60it/s]
eval model::  21%|██        | 105/500 [00:05<00:17, 22.24it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:18, 21.64it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:18, 21.39it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:17, 22.61it/s]
eval model::  23%|██▎       | 117/500 [00:05<00:17, 21.71it/s]
eval model::  24%|██▍       | 120/500 [00:05<00:18, 20.97it/s]
eval model::  25%|██▍       | 123/500 [00:05<00:17, 21.04it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:21, 17.45it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:19, 19.33it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:21, 17.28it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:19, 18.45it/s]
eval model::  28%|██▊       | 138/500 [00:06<00:17, 20.25it/s]
eval model::  28%|██▊       | 141/500 [00:06<00:17, 20.12it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:16, 21.13it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:20, 17.29it/s]
eval model::  30%|██▉       | 149/500 [00:07<00:19, 17.65it/s]
eval model::  30%|███       | 151/500 [00:07<00:21, 16.31it/s]
eval model::  31%|███       | 154/500 [00:07<00:18, 19.16it/s]
eval model::  31%|███▏      | 157/500 [00:07<00:17, 19.76it/s]
eval model::  32%|███▏      | 160/500 [00:08<00:23, 14.68it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:20, 16.24it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:18, 17.94it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:19, 16.91it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:19, 16.69it/s]
eval model::  35%|███▍      | 174/500 [00:08<00:22, 14.58it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:21, 15.29it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:18, 17.15it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:20, 15.78it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:17, 18.33it/s]
eval model::  37%|███▋      | 187/500 [00:09<00:17, 18.40it/s]
eval model::  38%|███▊      | 190/500 [00:09<00:16, 19.10it/s]
eval model::  39%|███▊      | 193/500 [00:09<00:14, 20.81it/s]
eval model::  39%|███▉      | 196/500 [00:10<00:15, 19.98it/s]
eval model::  40%|███▉      | 199/500 [00:10<00:13, 21.57it/s]
eval model::  40%|████      | 202/500 [00:10<00:14, 21.20it/s]
eval model::  41%|████      | 205/500 [00:10<00:22, 13.02it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:20, 14.11it/s]
eval model::  42%|████▏     | 209/500 [00:11<00:20, 14.52it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:19, 14.51it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.31it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:21, 12.98it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:21, 13.31it/s]
eval model::  44%|████▍     | 219/500 [00:11<00:19, 14.40it/s]
eval model::  44%|████▍     | 221/500 [00:11<00:21, 12.72it/s]
eval model::  45%|████▍     | 224/500 [00:12<00:18, 15.29it/s]
eval model::  45%|████▌     | 227/500 [00:12<00:15, 17.92it/s]
eval model::  46%|████▌     | 231/500 [00:12<00:12, 21.11it/s]
eval model::  47%|████▋     | 234/500 [00:12<00:13, 20.41it/s]
eval model::  47%|████▋     | 237/500 [00:12<00:12, 21.64it/s]
eval model::  48%|████▊     | 240/500 [00:12<00:11, 22.20it/s]
eval model::  49%|████▊     | 243/500 [00:12<00:13, 18.90it/s]
eval model::  49%|████▉     | 246/500 [00:13<00:12, 20.71it/s]
eval model::  50%|████▉     | 249/500 [00:13<00:13, 19.01it/s]
eval model::  50%|█████     | 252/500 [00:13<00:11, 20.69it/s]
eval model::  51%|█████     | 255/500 [00:13<00:11, 20.60it/s]
eval model::  52%|█████▏    | 258/500 [00:13<00:11, 20.41it/s]
eval model::  52%|█████▏    | 261/500 [00:13<00:12, 19.16it/s]
eval model::  53%|█████▎    | 263/500 [00:13<00:12, 18.50it/s]
eval model::  53%|█████▎    | 265/500 [00:14<00:14, 16.36it/s]
eval model::  53%|█████▎    | 267/500 [00:14<00:13, 17.13it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:14, 15.76it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:12, 17.89it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:14, 15.84it/s]
eval model::  55%|█████▌    | 277/500 [00:14<00:14, 15.65it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:13, 15.98it/s]
eval model::  56%|█████▋    | 282/500 [00:15<00:11, 18.99it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:18, 11.79it/s]
eval model::  58%|█████▊    | 288/500 [00:15<00:15, 13.74it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:13, 15.70it/s]
eval model::  59%|█████▊    | 293/500 [00:15<00:12, 16.30it/s]
eval model::  59%|█████▉    | 295/500 [00:16<00:15, 13.35it/s]
eval model::  60%|█████▉    | 298/500 [00:16<00:13, 15.32it/s]
eval model::  60%|██████    | 300/500 [00:16<00:14, 13.75it/s]
eval model::  61%|██████    | 303/500 [00:16<00:12, 15.61it/s]
eval model::  61%|██████    | 305/500 [00:16<00:12, 16.01it/s]
eval model::  62%|██████▏   | 308/500 [00:16<00:10, 17.86it/s]
eval model::  62%|██████▏   | 311/500 [00:16<00:09, 19.86it/s]
eval model::  63%|██████▎   | 314/500 [00:17<00:09, 19.49it/s]
eval model::  63%|██████▎   | 317/500 [00:17<00:08, 20.61it/s]
eval model::  64%|██████▍   | 320/500 [00:17<00:08, 20.76it/s]
eval model::  65%|██████▍   | 323/500 [00:17<00:08, 20.38it/s]
eval model::  65%|██████▌   | 326/500 [00:17<00:08, 20.93it/s]
eval model::  66%|██████▌   | 329/500 [00:17<00:08, 20.70it/s]
eval model::  66%|██████▋   | 332/500 [00:18<00:08, 20.40it/s]
eval model::  67%|██████▋   | 335/500 [00:18<00:07, 22.31it/s]
eval model::  68%|██████▊   | 338/500 [00:18<00:07, 20.54it/s]
eval model::  68%|██████▊   | 341/500 [00:18<00:09, 16.06it/s]
eval model::  69%|██████▊   | 343/500 [00:18<00:09, 16.40it/s]
eval model::  69%|██████▉   | 346/500 [00:18<00:09, 16.84it/s]
eval model::  70%|██████▉   | 348/500 [00:18<00:08, 17.05it/s]
eval model::  70%|███████   | 351/500 [00:19<00:08, 18.44it/s]
eval model::  71%|███████   | 355/500 [00:19<00:07, 18.68it/s]
eval model::  71%|███████▏  | 357/500 [00:19<00:07, 18.58it/s]
eval model::  72%|███████▏  | 360/500 [00:19<00:07, 19.65it/s]
eval model::  72%|███████▏  | 362/500 [00:19<00:07, 17.91it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:07, 17.29it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:07, 17.70it/s]
eval model::  74%|███████▍  | 369/500 [00:20<00:06, 19.30it/s]
eval model::  74%|███████▍  | 372/500 [00:20<00:07, 18.14it/s]
eval model::  75%|███████▌  | 375/500 [00:20<00:06, 19.54it/s]
eval model::  76%|███████▌  | 379/500 [00:20<00:05, 22.75it/s]
eval model::  76%|███████▋  | 382/500 [00:20<00:05, 21.25it/s]
eval model::  77%|███████▋  | 385/500 [00:20<00:05, 22.72it/s]
eval model::  78%|███████▊  | 388/500 [00:21<00:07, 14.88it/s]
eval model::  78%|███████▊  | 391/500 [00:21<00:06, 16.49it/s]
eval model::  79%|███████▊  | 393/500 [00:21<00:06, 16.96it/s]
eval model::  79%|███████▉  | 395/500 [00:21<00:06, 17.17it/s]
eval model::  80%|███████▉  | 398/500 [00:21<00:05, 19.32it/s]
eval model::  80%|████████  | 401/500 [00:21<00:06, 16.36it/s]
eval model::  81%|████████  | 404/500 [00:21<00:05, 18.28it/s]
eval model::  81%|████████▏ | 407/500 [00:22<00:04, 19.88it/s]
eval model::  82%|████████▏ | 410/500 [00:22<00:04, 20.65it/s]
eval model::  83%|████████▎ | 413/500 [00:22<00:04, 20.77it/s]
eval model::  83%|████████▎ | 416/500 [00:22<00:03, 21.12it/s]
eval model::  84%|████████▍ | 419/500 [00:22<00:03, 20.76it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:04, 16.05it/s]
eval model::  85%|████████▍ | 424/500 [00:23<00:04, 15.51it/s]
eval model::  85%|████████▌ | 426/500 [00:23<00:05, 14.77it/s]
eval model::  86%|████████▌ | 429/500 [00:23<00:04, 16.94it/s]
eval model::  86%|████████▌ | 431/500 [00:23<00:04, 16.42it/s]
eval model::  87%|████████▋ | 435/500 [00:23<00:03, 19.44it/s]
eval model::  88%|████████▊ | 438/500 [00:23<00:02, 20.99it/s]
eval model::  88%|████████▊ | 441/500 [00:23<00:03, 19.65it/s]
eval model::  89%|████████▉ | 444/500 [00:24<00:02, 21.24it/s]
eval model::  89%|████████▉ | 447/500 [00:24<00:02, 22.36it/s]
eval model::  90%|█████████ | 450/500 [00:24<00:02, 20.93it/s]
eval model::  91%|█████████ | 453/500 [00:24<00:02, 21.89it/s]
eval model::  91%|█████████ | 456/500 [00:24<00:01, 22.59it/s]
eval model::  92%|█████████▏| 460/500 [00:24<00:01, 24.38it/s]
eval model::  93%|█████████▎| 463/500 [00:25<00:02, 17.71it/s]
eval model::  93%|█████████▎| 466/500 [00:25<00:01, 17.36it/s]
eval model::  94%|█████████▎| 468/500 [00:25<00:01, 17.13it/s]
eval model::  94%|█████████▍| 471/500 [00:25<00:01, 19.29it/s]
eval model::  95%|█████████▍| 474/500 [00:25<00:01, 18.67it/s]
eval model::  95%|█████████▌| 477/500 [00:25<00:01, 20.49it/s]
eval model::  96%|█████████▌| 480/500 [00:25<00:00, 21.09it/s]
eval model::  97%|█████████▋| 483/500 [00:25<00:00, 21.14it/s]
eval model::  97%|█████████▋| 486/500 [00:26<00:00, 19.88it/s]
eval model::  98%|█████████▊| 489/500 [00:26<00:00, 20.92it/s]
eval model::  98%|█████████▊| 492/500 [00:26<00:00, 19.63it/s]
eval model::  99%|█████████▉| 495/500 [00:26<00:00, 20.71it/s]
eval model:: 100%|█████████▉| 499/500 [00:26<00:00, 24.23it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.69it/s]
[2024/07/27 15:24:20] ppocr INFO: cur metric, precision: 0.7466039707419018, recall: 0.6880115551275878, hmean: 0.7161112503132047, fps: 44.60784484725058
[2024/07/27 15:24:20] ppocr INFO: best metric, hmean: 0.7301425661914459, precision: 0.7747163695299838, recall: 0.6904188733750601, fps: 43.582139874688714, best_epoch: 960
[2024/07/27 15:24:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:24:29] ppocr INFO: epoch: [1321/1500], global_step: 3963, lr: 0.001000, loss: 1.102305, loss_shrink_maps: 0.550936, loss_threshold_maps: 0.443997, loss_binary_maps: 0.109479, avg_reader_cost: 2.08630 s, avg_batch_cost: 2.42417 s, avg_samples: 12.5, ips: 5.15640 samples/s, eta: 1:17:28
[2024/07/27 15:24:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:24:39] ppocr INFO: epoch: [1322/1500], global_step: 3966, lr: 0.001000, loss: 1.098995, loss_shrink_maps: 0.550936, loss_threshold_maps: 0.444410, loss_binary_maps: 0.109479, avg_reader_cost: 2.28711 s, avg_batch_cost: 2.57610 s, avg_samples: 12.5, ips: 4.85229 samples/s, eta: 1:17:02
[2024/07/27 15:24:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:24:49] ppocr INFO: epoch: [1323/1500], global_step: 3969, lr: 0.001000, loss: 1.112331, loss_shrink_maps: 0.554495, loss_threshold_maps: 0.444410, loss_binary_maps: 0.110138, avg_reader_cost: 2.25880 s, avg_batch_cost: 2.61909 s, avg_samples: 12.5, ips: 4.77265 samples/s, eta: 1:16:36
[2024/07/27 15:24:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:24:57] ppocr INFO: epoch: [1324/1500], global_step: 3970, lr: 0.001000, loss: 1.098995, loss_shrink_maps: 0.550333, loss_threshold_maps: 0.444410, loss_binary_maps: 0.109329, avg_reader_cost: 0.67330 s, avg_batch_cost: 0.76636 s, avg_samples: 4.8, ips: 6.26340 samples/s, eta: 1:16:28
[2024/07/27 15:24:58] ppocr INFO: epoch: [1324/1500], global_step: 3972, lr: 0.001000, loss: 1.098995, loss_shrink_maps: 0.550333, loss_threshold_maps: 0.444410, loss_binary_maps: 0.109329, avg_reader_cost: 1.62475 s, avg_batch_cost: 1.77151 s, avg_samples: 7.7, ips: 4.34657 samples/s, eta: 1:16:10
[2024/07/27 15:24:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:25:08] ppocr INFO: epoch: [1325/1500], global_step: 3975, lr: 0.001000, loss: 1.098995, loss_shrink_maps: 0.550333, loss_threshold_maps: 0.444410, loss_binary_maps: 0.109329, avg_reader_cost: 2.33803 s, avg_batch_cost: 2.57523 s, avg_samples: 12.5, ips: 4.85393 samples/s, eta: 1:15:44
[2024/07/27 15:25:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:25:18] ppocr INFO: epoch: [1326/1500], global_step: 3978, lr: 0.001000, loss: 1.095740, loss_shrink_maps: 0.550333, loss_threshold_maps: 0.451444, loss_binary_maps: 0.109329, avg_reader_cost: 2.22501 s, avg_batch_cost: 2.59432 s, avg_samples: 12.5, ips: 4.81823 samples/s, eta: 1:15:18
[2024/07/27 15:25:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:25:27] ppocr INFO: epoch: [1327/1500], global_step: 3980, lr: 0.001000, loss: 1.108275, loss_shrink_maps: 0.565538, loss_threshold_maps: 0.451581, loss_binary_maps: 0.112153, avg_reader_cost: 1.47420 s, avg_batch_cost: 1.65768 s, avg_samples: 9.6, ips: 5.79123 samples/s, eta: 1:15:01
[2024/07/27 15:25:28] ppocr INFO: epoch: [1327/1500], global_step: 3981, lr: 0.001000, loss: 1.108275, loss_shrink_maps: 0.565538, loss_threshold_maps: 0.451581, loss_binary_maps: 0.112153, avg_reader_cost: 0.87465 s, avg_batch_cost: 0.93004 s, avg_samples: 2.9, ips: 3.11814 samples/s, eta: 1:14:52
[2024/07/27 15:25:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:25:38] ppocr INFO: epoch: [1328/1500], global_step: 3984, lr: 0.001000, loss: 1.108275, loss_shrink_maps: 0.565538, loss_threshold_maps: 0.453294, loss_binary_maps: 0.112153, avg_reader_cost: 2.27156 s, avg_batch_cost: 2.64268 s, avg_samples: 12.5, ips: 4.73005 samples/s, eta: 1:14:26
[2024/07/27 15:25:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:25:47] ppocr INFO: epoch: [1329/1500], global_step: 3987, lr: 0.001000, loss: 1.066260, loss_shrink_maps: 0.528523, loss_threshold_maps: 0.423481, loss_binary_maps: 0.105056, avg_reader_cost: 2.31634 s, avg_batch_cost: 2.55916 s, avg_samples: 12.5, ips: 4.88441 samples/s, eta: 1:14:00
[2024/07/27 15:25:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:25:57] ppocr INFO: epoch: [1330/1500], global_step: 3990, lr: 0.001000, loss: 1.066260, loss_shrink_maps: 0.534384, loss_threshold_maps: 0.427288, loss_binary_maps: 0.106226, avg_reader_cost: 2.19386 s, avg_batch_cost: 2.53522 s, avg_samples: 12.5, ips: 4.93053 samples/s, eta: 1:13:34
[2024/07/27 15:25:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:26:07] ppocr INFO: epoch: [1331/1500], global_step: 3993, lr: 0.001000, loss: 1.121674, loss_shrink_maps: 0.557551, loss_threshold_maps: 0.435983, loss_binary_maps: 0.110377, avg_reader_cost: 2.38225 s, avg_batch_cost: 2.64752 s, avg_samples: 12.5, ips: 4.72141 samples/s, eta: 1:13:08
[2024/07/27 15:26:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:26:17] ppocr INFO: epoch: [1332/1500], global_step: 3996, lr: 0.001000, loss: 1.170353, loss_shrink_maps: 0.583288, loss_threshold_maps: 0.464990, loss_binary_maps: 0.115081, avg_reader_cost: 2.21374 s, avg_batch_cost: 2.57855 s, avg_samples: 12.5, ips: 4.84768 samples/s, eta: 1:12:42
[2024/07/27 15:26:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:26:27] ppocr INFO: epoch: [1333/1500], global_step: 3999, lr: 0.001000, loss: 1.188952, loss_shrink_maps: 0.616422, loss_threshold_maps: 0.466980, loss_binary_maps: 0.122935, avg_reader_cost: 2.31317 s, avg_batch_cost: 2.55235 s, avg_samples: 12.5, ips: 4.89745 samples/s, eta: 1:12:16
[2024/07/27 15:26:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:26:35] ppocr INFO: epoch: [1334/1500], global_step: 4000, lr: 0.001000, loss: 1.188952, loss_shrink_maps: 0.616422, loss_threshold_maps: 0.466980, loss_binary_maps: 0.122935, avg_reader_cost: 0.73097 s, avg_batch_cost: 0.83124 s, avg_samples: 4.8, ips: 5.77454 samples/s, eta: 1:12:08
[2024/07/27 15:26:37] ppocr INFO: epoch: [1334/1500], global_step: 4002, lr: 0.001000, loss: 1.151787, loss_shrink_maps: 0.589087, loss_threshold_maps: 0.459683, loss_binary_maps: 0.117197, avg_reader_cost: 1.75509 s, avg_batch_cost: 1.90177 s, avg_samples: 7.7, ips: 4.04887 samples/s, eta: 1:11:51
[2024/07/27 15:26:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:26:47] ppocr INFO: epoch: [1335/1500], global_step: 4005, lr: 0.001000, loss: 1.124742, loss_shrink_maps: 0.558524, loss_threshold_maps: 0.455650, loss_binary_maps: 0.111062, avg_reader_cost: 2.23358 s, avg_batch_cost: 2.59274 s, avg_samples: 12.5, ips: 4.82115 samples/s, eta: 1:11:25
[2024/07/27 15:26:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:26:57] ppocr INFO: epoch: [1336/1500], global_step: 4008, lr: 0.001000, loss: 1.119180, loss_shrink_maps: 0.556900, loss_threshold_maps: 0.455650, loss_binary_maps: 0.110933, avg_reader_cost: 2.40163 s, avg_batch_cost: 2.66285 s, avg_samples: 12.5, ips: 4.69423 samples/s, eta: 1:10:59
[2024/07/27 15:26:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:27:06] ppocr INFO: epoch: [1337/1500], global_step: 4010, lr: 0.001000, loss: 1.119180, loss_shrink_maps: 0.556900, loss_threshold_maps: 0.455650, loss_binary_maps: 0.110933, avg_reader_cost: 1.35103 s, avg_batch_cost: 1.68081 s, avg_samples: 9.6, ips: 5.71152 samples/s, eta: 1:10:41
[2024/07/27 15:27:07] ppocr INFO: epoch: [1337/1500], global_step: 4011, lr: 0.001000, loss: 1.112613, loss_shrink_maps: 0.552571, loss_threshold_maps: 0.453171, loss_binary_maps: 0.109846, avg_reader_cost: 0.88693 s, avg_batch_cost: 0.94200 s, avg_samples: 2.9, ips: 3.07857 samples/s, eta: 1:10:33
[2024/07/27 15:27:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:27:16] ppocr INFO: epoch: [1338/1500], global_step: 4014, lr: 0.001000, loss: 1.081614, loss_shrink_maps: 0.527185, loss_threshold_maps: 0.445548, loss_binary_maps: 0.104826, avg_reader_cost: 2.17761 s, avg_batch_cost: 2.55205 s, avg_samples: 12.5, ips: 4.89802 samples/s, eta: 1:10:07
[2024/07/27 15:27:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:27:26] ppocr INFO: epoch: [1339/1500], global_step: 4017, lr: 0.001000, loss: 1.085667, loss_shrink_maps: 0.530602, loss_threshold_maps: 0.445548, loss_binary_maps: 0.105448, avg_reader_cost: 2.38366 s, avg_batch_cost: 2.63889 s, avg_samples: 12.5, ips: 4.73685 samples/s, eta: 1:09:41
[2024/07/27 15:27:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:27:36] ppocr INFO: epoch: [1340/1500], global_step: 4020, lr: 0.001000, loss: 1.059188, loss_shrink_maps: 0.516768, loss_threshold_maps: 0.445548, loss_binary_maps: 0.102827, avg_reader_cost: 2.17814 s, avg_batch_cost: 2.52312 s, avg_samples: 12.5, ips: 4.95418 samples/s, eta: 1:09:15

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<01:01,  8.17it/s]
eval model::   1%|          | 4/500 [00:00<00:29, 17.02it/s]
eval model::   1%|▏         | 7/500 [00:00<00:25, 19.14it/s]
eval model::   2%|▏         | 9/500 [00:00<00:27, 17.99it/s]
eval model::   2%|▏         | 11/500 [00:00<00:27, 17.65it/s]
eval model::   3%|▎         | 13/500 [00:00<00:26, 18.25it/s]
eval model::   3%|▎         | 16/500 [00:00<00:23, 20.21it/s]
eval model::   4%|▍         | 19/500 [00:00<00:21, 22.07it/s]
eval model::   4%|▍         | 22/500 [00:01<00:21, 22.31it/s]
eval model::   5%|▌         | 25/500 [00:01<00:22, 21.35it/s]
eval model::   6%|▌         | 28/500 [00:01<00:21, 22.17it/s]
eval model::   6%|▌         | 31/500 [00:01<00:25, 18.68it/s]
eval model::   7%|▋         | 34/500 [00:01<00:25, 18.56it/s]
eval model::   7%|▋         | 36/500 [00:01<00:24, 18.87it/s]
eval model::   8%|▊         | 39/500 [00:02<00:25, 18.41it/s]
eval model::   8%|▊         | 42/500 [00:02<00:25, 18.01it/s]
eval model::   9%|▉         | 44/500 [00:02<00:25, 17.91it/s]
eval model::   9%|▉         | 46/500 [00:02<00:27, 16.31it/s]
eval model::  10%|▉         | 49/500 [00:02<00:23, 19.09it/s]
eval model::  10%|█         | 52/500 [00:02<00:23, 18.96it/s]
eval model::  11%|█         | 55/500 [00:02<00:22, 19.57it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:26, 16.57it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:29, 14.95it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:28, 15.22it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:23, 18.77it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:21, 20.18it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:20, 21.09it/s]
eval model::  15%|█▌        | 76/500 [00:04<00:19, 21.75it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:19, 21.45it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:19, 21.53it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:19, 21.35it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:21, 19.34it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:23, 17.14it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:22, 18.07it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:20, 19.93it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:18, 21.42it/s]
eval model::  20%|██        | 102/500 [00:05<00:19, 20.70it/s]
eval model::  21%|██        | 106/500 [00:05<00:16, 23.48it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:16, 23.05it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:17, 21.99it/s]
eval model::  23%|██▎       | 115/500 [00:05<00:18, 20.37it/s]
eval model::  24%|██▎       | 118/500 [00:06<00:18, 20.83it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:18, 20.29it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:19, 18.94it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:19, 18.75it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:18, 19.72it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:21, 17.22it/s]
eval model::  27%|██▋       | 133/500 [00:06<00:21, 17.15it/s]
eval model::  27%|██▋       | 136/500 [00:07<00:18, 19.43it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:18, 19.25it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:17, 20.43it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:17, 20.02it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:19, 18.49it/s]
eval model::  30%|███       | 151/500 [00:07<00:18, 18.38it/s]
eval model::  31%|███       | 155/500 [00:07<00:16, 21.21it/s]
eval model::  32%|███▏      | 158/500 [00:08<00:15, 22.49it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:19, 17.60it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:18, 18.02it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:16, 20.30it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:15, 20.81it/s]
eval model::  34%|███▍      | 172/500 [00:08<00:16, 20.20it/s]
eval model::  35%|███▌      | 175/500 [00:09<00:18, 17.96it/s]
eval model::  36%|███▌      | 178/500 [00:09<00:16, 19.11it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:18, 17.17it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:16, 19.34it/s]
eval model::  37%|███▋      | 187/500 [00:09<00:15, 19.96it/s]
eval model::  38%|███▊      | 190/500 [00:09<00:15, 20.61it/s]
eval model::  39%|███▊      | 193/500 [00:09<00:15, 20.45it/s]
eval model::  39%|███▉      | 196/500 [00:10<00:15, 19.17it/s]
eval model::  40%|███▉      | 199/500 [00:10<00:14, 20.14it/s]
eval model::  40%|████      | 202/500 [00:10<00:14, 20.34it/s]
eval model::  41%|████      | 205/500 [00:10<00:20, 14.55it/s]
eval model::  42%|████▏     | 208/500 [00:10<00:18, 15.82it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:18, 15.97it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.67it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:22, 12.44it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:22, 12.50it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:18, 15.19it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:20, 13.32it/s]
eval model::  45%|████▌     | 225/500 [00:12<00:16, 16.46it/s]
eval model::  45%|████▌     | 227/500 [00:12<00:15, 17.21it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:14, 18.93it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:13, 20.28it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:12, 20.33it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:13, 20.01it/s]
eval model::  48%|████▊     | 242/500 [00:12<00:15, 17.10it/s]
eval model::  49%|████▉     | 245/500 [00:13<00:13, 18.57it/s]
eval model::  50%|████▉     | 248/500 [00:13<00:12, 19.88it/s]
eval model::  50%|█████     | 251/500 [00:13<00:12, 19.37it/s]
eval model::  51%|█████     | 254/500 [00:13<00:11, 20.74it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:11, 21.20it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:10, 22.38it/s]
eval model::  53%|█████▎    | 263/500 [00:13<00:10, 22.13it/s]
eval model::  53%|█████▎    | 266/500 [00:14<00:11, 20.22it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:11, 19.41it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:11, 20.34it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:12, 18.50it/s]
eval model::  55%|█████▌    | 277/500 [00:14<00:12, 18.52it/s]
eval model::  56%|█████▌    | 280/500 [00:14<00:11, 19.85it/s]
eval model::  57%|█████▋    | 283/500 [00:14<00:10, 20.99it/s]
eval model::  57%|█████▋    | 286/500 [00:15<00:18, 11.60it/s]
eval model::  58%|█████▊    | 289/500 [00:15<00:15, 13.88it/s]
eval model::  58%|█████▊    | 292/500 [00:15<00:13, 15.65it/s]
eval model::  59%|█████▉    | 295/500 [00:16<00:15, 13.06it/s]
eval model::  60%|█████▉    | 298/500 [00:16<00:13, 15.27it/s]
eval model::  60%|██████    | 300/500 [00:16<00:12, 15.58it/s]
eval model::  61%|██████    | 303/500 [00:16<00:11, 17.67it/s]
eval model::  61%|██████    | 306/500 [00:16<00:10, 18.32it/s]
eval model::  62%|██████▏   | 309/500 [00:16<00:10, 18.95it/s]
eval model::  62%|██████▏   | 312/500 [00:16<00:09, 19.45it/s]
eval model::  63%|██████▎   | 315/500 [00:16<00:09, 19.14it/s]
eval model::  64%|██████▎   | 318/500 [00:17<00:09, 19.87it/s]
eval model::  64%|██████▍   | 321/500 [00:17<00:08, 20.29it/s]
eval model::  65%|██████▍   | 324/500 [00:17<00:08, 19.67it/s]
eval model::  65%|██████▌   | 327/500 [00:17<00:08, 20.97it/s]
eval model::  66%|██████▌   | 330/500 [00:17<00:08, 20.78it/s]
eval model::  67%|██████▋   | 333/500 [00:17<00:07, 21.26it/s]
eval model::  67%|██████▋   | 336/500 [00:17<00:07, 22.60it/s]
eval model::  68%|██████▊   | 339/500 [00:18<00:07, 21.75it/s]
eval model::  68%|██████▊   | 342/500 [00:18<00:09, 16.77it/s]
eval model::  69%|██████▉   | 345/500 [00:18<00:08, 18.24it/s]
eval model::  70%|██████▉   | 348/500 [00:18<00:08, 18.28it/s]
eval model::  70%|███████   | 351/500 [00:18<00:07, 19.96it/s]
eval model::  71%|███████   | 354/500 [00:18<00:06, 21.93it/s]
eval model::  71%|███████▏  | 357/500 [00:19<00:07, 20.10it/s]
eval model::  72%|███████▏  | 360/500 [00:19<00:06, 20.22it/s]
eval model::  73%|███████▎  | 363/500 [00:19<00:07, 18.30it/s]
eval model::  73%|███████▎  | 365/500 [00:19<00:07, 17.56it/s]
eval model::  73%|███████▎  | 367/500 [00:19<00:08, 16.42it/s]
eval model::  74%|███████▍  | 370/500 [00:19<00:07, 18.47it/s]
eval model::  75%|███████▍  | 373/500 [00:19<00:06, 20.40it/s]
eval model::  75%|███████▌  | 376/500 [00:20<00:05, 21.57it/s]
eval model::  76%|███████▌  | 379/500 [00:20<00:05, 23.10it/s]
eval model::  76%|███████▋  | 382/500 [00:20<00:05, 20.64it/s]
eval model::  77%|███████▋  | 386/500 [00:20<00:07, 14.51it/s]
eval model::  78%|███████▊  | 389/500 [00:20<00:06, 16.88it/s]
eval model::  78%|███████▊  | 392/500 [00:20<00:05, 18.08it/s]
eval model::  79%|███████▉  | 395/500 [00:21<00:05, 19.35it/s]
eval model::  80%|███████▉  | 399/500 [00:21<00:04, 21.42it/s]
eval model::  80%|████████  | 402/500 [00:21<00:04, 20.40it/s]
eval model::  81%|████████  | 405/500 [00:21<00:04, 20.12it/s]
eval model::  82%|████████▏ | 408/500 [00:21<00:04, 20.34it/s]
eval model::  82%|████████▏ | 411/500 [00:21<00:04, 21.01it/s]
eval model::  83%|████████▎ | 414/500 [00:21<00:03, 21.68it/s]
eval model::  83%|████████▎ | 417/500 [00:22<00:04, 20.45it/s]
eval model::  84%|████████▍ | 420/500 [00:22<00:05, 14.37it/s]
eval model::  85%|████████▍ | 423/500 [00:22<00:04, 16.33it/s]
eval model::  85%|████████▌ | 425/500 [00:22<00:05, 14.96it/s]
eval model::  86%|████████▌ | 428/500 [00:22<00:04, 16.99it/s]
eval model::  86%|████████▌ | 431/500 [00:23<00:03, 18.38it/s]
eval model::  87%|████████▋ | 435/500 [00:23<00:02, 21.99it/s]
eval model::  88%|████████▊ | 438/500 [00:23<00:02, 23.55it/s]
eval model::  88%|████████▊ | 441/500 [00:23<00:02, 21.48it/s]
eval model::  89%|████████▉ | 444/500 [00:23<00:02, 23.11it/s]
eval model::  89%|████████▉ | 447/500 [00:23<00:02, 21.35it/s]
eval model::  90%|█████████ | 450/500 [00:23<00:02, 18.96it/s]
eval model::  91%|█████████ | 453/500 [00:24<00:02, 21.16it/s]
eval model::  91%|█████████ | 456/500 [00:24<00:02, 20.46it/s]
eval model::  92%|█████████▏| 459/500 [00:24<00:02, 19.50it/s]
eval model::  92%|█████████▏| 462/500 [00:24<00:02, 16.97it/s]
eval model::  93%|█████████▎| 464/500 [00:24<00:02, 17.33it/s]
eval model::  93%|█████████▎| 466/500 [00:24<00:02, 16.55it/s]
eval model::  94%|█████████▎| 468/500 [00:24<00:01, 16.90it/s]
eval model::  94%|█████████▍| 472/500 [00:25<00:01, 20.11it/s]
eval model::  95%|█████████▌| 475/500 [00:25<00:01, 20.62it/s]
eval model::  96%|█████████▌| 478/500 [00:25<00:00, 22.27it/s]
eval model::  96%|█████████▌| 481/500 [00:25<00:00, 22.20it/s]
eval model::  97%|█████████▋| 484/500 [00:25<00:00, 21.35it/s]
eval model::  97%|█████████▋| 487/500 [00:25<00:00, 21.34it/s]
eval model::  98%|█████████▊| 490/500 [00:25<00:00, 22.61it/s]
eval model::  99%|█████████▊| 493/500 [00:26<00:00, 19.94it/s]
eval model::  99%|█████████▉| 496/500 [00:26<00:00, 19.29it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 22.83it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.96it/s]
[2024/07/27 15:28:02] ppocr INFO: cur metric, precision: 0.7521786492374728, recall: 0.6649012999518537, hmean: 0.705852287247636, fps: 44.85282197265395
[2024/07/27 15:28:02] ppocr INFO: best metric, hmean: 0.7301425661914459, precision: 0.7747163695299838, recall: 0.6904188733750601, fps: 43.582139874688714, best_epoch: 960
[2024/07/27 15:28:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:28:12] ppocr INFO: epoch: [1341/1500], global_step: 4023, lr: 0.001000, loss: 1.076834, loss_shrink_maps: 0.526975, loss_threshold_maps: 0.446613, loss_binary_maps: 0.104891, avg_reader_cost: 2.30687 s, avg_batch_cost: 2.65960 s, avg_samples: 12.5, ips: 4.69996 samples/s, eta: 1:08:49
[2024/07/27 15:28:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:28:22] ppocr INFO: epoch: [1342/1500], global_step: 4026, lr: 0.001000, loss: 1.093821, loss_shrink_maps: 0.549546, loss_threshold_maps: 0.443581, loss_binary_maps: 0.108505, avg_reader_cost: 2.36268 s, avg_batch_cost: 2.61403 s, avg_samples: 12.5, ips: 4.78190 samples/s, eta: 1:08:23
[2024/07/27 15:28:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:28:32] ppocr INFO: epoch: [1343/1500], global_step: 4029, lr: 0.001000, loss: 1.093821, loss_shrink_maps: 0.549546, loss_threshold_maps: 0.439787, loss_binary_maps: 0.108505, avg_reader_cost: 2.36966 s, avg_batch_cost: 2.62480 s, avg_samples: 12.5, ips: 4.76226 samples/s, eta: 1:07:57
[2024/07/27 15:28:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:28:40] ppocr INFO: epoch: [1344/1500], global_step: 4030, lr: 0.001000, loss: 1.093821, loss_shrink_maps: 0.541558, loss_threshold_maps: 0.439787, loss_binary_maps: 0.107006, avg_reader_cost: 0.70130 s, avg_batch_cost: 0.79164 s, avg_samples: 4.8, ips: 6.06336 samples/s, eta: 1:07:48
[2024/07/27 15:28:42] ppocr INFO: epoch: [1344/1500], global_step: 4032, lr: 0.001000, loss: 1.113257, loss_shrink_maps: 0.549546, loss_threshold_maps: 0.447973, loss_binary_maps: 0.108505, avg_reader_cost: 1.67545 s, avg_batch_cost: 1.82256 s, avg_samples: 7.7, ips: 4.22482 samples/s, eta: 1:07:31
[2024/07/27 15:28:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:28:52] ppocr INFO: epoch: [1345/1500], global_step: 4035, lr: 0.001000, loss: 1.134255, loss_shrink_maps: 0.555572, loss_threshold_maps: 0.447973, loss_binary_maps: 0.110535, avg_reader_cost: 2.24970 s, avg_batch_cost: 2.61555 s, avg_samples: 12.5, ips: 4.77910 samples/s, eta: 1:07:05
[2024/07/27 15:28:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:29:02] ppocr INFO: epoch: [1346/1500], global_step: 4038, lr: 0.001000, loss: 1.123406, loss_shrink_maps: 0.549546, loss_threshold_maps: 0.444179, loss_binary_maps: 0.108505, avg_reader_cost: 2.30830 s, avg_batch_cost: 2.56532 s, avg_samples: 12.5, ips: 4.87269 samples/s, eta: 1:06:39
[2024/07/27 15:29:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:29:11] ppocr INFO: epoch: [1347/1500], global_step: 4040, lr: 0.001000, loss: 1.123406, loss_shrink_maps: 0.549546, loss_threshold_maps: 0.444179, loss_binary_maps: 0.108505, avg_reader_cost: 1.52190 s, avg_batch_cost: 1.71936 s, avg_samples: 9.6, ips: 5.58348 samples/s, eta: 1:06:22
[2024/07/27 15:29:12] ppocr INFO: epoch: [1347/1500], global_step: 4041, lr: 0.001000, loss: 1.107413, loss_shrink_maps: 0.541558, loss_threshold_maps: 0.447973, loss_binary_maps: 0.107006, avg_reader_cost: 0.90584 s, avg_batch_cost: 0.96157 s, avg_samples: 2.9, ips: 3.01592 samples/s, eta: 1:06:13
[2024/07/27 15:29:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:29:22] ppocr INFO: epoch: [1348/1500], global_step: 4044, lr: 0.001000, loss: 1.129250, loss_shrink_maps: 0.558302, loss_threshold_maps: 0.464580, loss_binary_maps: 0.111592, avg_reader_cost: 2.46291 s, avg_batch_cost: 2.70827 s, avg_samples: 12.5, ips: 4.61548 samples/s, eta: 1:05:47
[2024/07/27 15:29:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:29:32] ppocr INFO: epoch: [1349/1500], global_step: 4047, lr: 0.001000, loss: 1.123406, loss_shrink_maps: 0.548285, loss_threshold_maps: 0.466198, loss_binary_maps: 0.109483, avg_reader_cost: 2.22761 s, avg_batch_cost: 2.58565 s, avg_samples: 12.5, ips: 4.83437 samples/s, eta: 1:05:21
[2024/07/27 15:29:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:29:42] ppocr INFO: epoch: [1350/1500], global_step: 4050, lr: 0.001000, loss: 1.137400, loss_shrink_maps: 0.569335, loss_threshold_maps: 0.466198, loss_binary_maps: 0.113402, avg_reader_cost: 2.27349 s, avg_batch_cost: 2.63642 s, avg_samples: 12.5, ips: 4.74128 samples/s, eta: 1:04:55
[2024/07/27 15:29:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:29:52] ppocr INFO: epoch: [1351/1500], global_step: 4053, lr: 0.001000, loss: 1.142968, loss_shrink_maps: 0.586973, loss_threshold_maps: 0.456405, loss_binary_maps: 0.117086, avg_reader_cost: 2.18571 s, avg_batch_cost: 2.53784 s, avg_samples: 12.5, ips: 4.92545 samples/s, eta: 1:04:29
[2024/07/27 15:29:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:30:01] ppocr INFO: epoch: [1352/1500], global_step: 4056, lr: 0.001000, loss: 1.134353, loss_shrink_maps: 0.585392, loss_threshold_maps: 0.456405, loss_binary_maps: 0.116945, avg_reader_cost: 2.16304 s, avg_batch_cost: 2.49446 s, avg_samples: 12.5, ips: 5.01111 samples/s, eta: 1:04:03
[2024/07/27 15:30:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:30:10] ppocr INFO: epoch: [1353/1500], global_step: 4059, lr: 0.001000, loss: 1.119951, loss_shrink_maps: 0.567068, loss_threshold_maps: 0.448092, loss_binary_maps: 0.113313, avg_reader_cost: 2.04876 s, avg_batch_cost: 2.32922 s, avg_samples: 12.5, ips: 5.36660 samples/s, eta: 1:03:37
[2024/07/27 15:30:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:30:19] ppocr INFO: epoch: [1354/1500], global_step: 4060, lr: 0.001000, loss: 1.119951, loss_shrink_maps: 0.567068, loss_threshold_maps: 0.448092, loss_binary_maps: 0.113313, avg_reader_cost: 0.69008 s, avg_batch_cost: 0.77583 s, avg_samples: 4.8, ips: 6.18693 samples/s, eta: 1:03:28
[2024/07/27 15:30:20] ppocr INFO: epoch: [1354/1500], global_step: 4062, lr: 0.001000, loss: 1.105432, loss_shrink_maps: 0.550663, loss_threshold_maps: 0.445528, loss_binary_maps: 0.109751, avg_reader_cost: 1.64421 s, avg_batch_cost: 1.79170 s, avg_samples: 7.7, ips: 4.29759 samples/s, eta: 1:03:11
[2024/07/27 15:30:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:30:30] ppocr INFO: epoch: [1355/1500], global_step: 4065, lr: 0.001000, loss: 1.134319, loss_shrink_maps: 0.577209, loss_threshold_maps: 0.446722, loss_binary_maps: 0.115164, avg_reader_cost: 2.25471 s, avg_batch_cost: 2.60420 s, avg_samples: 12.5, ips: 4.79994 samples/s, eta: 1:02:45
[2024/07/27 15:30:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:30:40] ppocr INFO: epoch: [1356/1500], global_step: 4068, lr: 0.001000, loss: 1.134319, loss_shrink_maps: 0.577209, loss_threshold_maps: 0.448092, loss_binary_maps: 0.115164, avg_reader_cost: 2.29239 s, avg_batch_cost: 2.52857 s, avg_samples: 12.5, ips: 4.94351 samples/s, eta: 1:02:19
[2024/07/27 15:30:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:30:49] ppocr INFO: epoch: [1357/1500], global_step: 4070, lr: 0.001000, loss: 1.134319, loss_shrink_maps: 0.577209, loss_threshold_maps: 0.449773, loss_binary_maps: 0.115164, avg_reader_cost: 1.51185 s, avg_batch_cost: 1.71042 s, avg_samples: 9.6, ips: 5.61264 samples/s, eta: 1:02:02
[2024/07/27 15:30:50] ppocr INFO: epoch: [1357/1500], global_step: 4071, lr: 0.001000, loss: 1.134319, loss_shrink_maps: 0.577209, loss_threshold_maps: 0.456789, loss_binary_maps: 0.115164, avg_reader_cost: 0.90213 s, avg_batch_cost: 0.95700 s, avg_samples: 2.9, ips: 3.03030 samples/s, eta: 1:01:53
[2024/07/27 15:30:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:31:00] ppocr INFO: epoch: [1358/1500], global_step: 4074, lr: 0.001000, loss: 1.103323, loss_shrink_maps: 0.548764, loss_threshold_maps: 0.456789, loss_binary_maps: 0.108902, avg_reader_cost: 2.45638 s, avg_batch_cost: 2.71806 s, avg_samples: 12.5, ips: 4.59887 samples/s, eta: 1:01:27
[2024/07/27 15:31:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:31:10] ppocr INFO: epoch: [1359/1500], global_step: 4077, lr: 0.001000, loss: 1.180944, loss_shrink_maps: 0.579874, loss_threshold_maps: 0.473954, loss_binary_maps: 0.115374, avg_reader_cost: 2.32014 s, avg_batch_cost: 2.56086 s, avg_samples: 12.5, ips: 4.88117 samples/s, eta: 1:01:01
[2024/07/27 15:31:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:31:20] ppocr INFO: epoch: [1360/1500], global_step: 4080, lr: 0.001000, loss: 1.194380, loss_shrink_maps: 0.601796, loss_threshold_maps: 0.473954, loss_binary_maps: 0.119985, avg_reader_cost: 2.28766 s, avg_batch_cost: 2.65730 s, avg_samples: 12.5, ips: 4.70402 samples/s, eta: 1:00:35

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<01:01,  8.11it/s]
eval model::   1%|          | 3/500 [00:00<00:34, 14.22it/s]
eval model::   1%|          | 6/500 [00:00<00:26, 18.89it/s]
eval model::   2%|▏         | 8/500 [00:00<00:25, 19.13it/s]
eval model::   2%|▏         | 11/500 [00:00<00:27, 17.72it/s]
eval model::   3%|▎         | 14/500 [00:00<00:25, 18.82it/s]
eval model::   3%|▎         | 17/500 [00:00<00:23, 20.77it/s]
eval model::   4%|▍         | 20/500 [00:01<00:23, 20.43it/s]
eval model::   5%|▍         | 23/500 [00:01<00:21, 21.91it/s]
eval model::   5%|▌         | 26/500 [00:01<00:21, 21.68it/s]
eval model::   6%|▌         | 29/500 [00:01<00:21, 22.07it/s]
eval model::   6%|▋         | 32/500 [00:01<00:23, 19.69it/s]
eval model::   7%|▋         | 35/500 [00:01<00:23, 19.39it/s]
eval model::   8%|▊         | 38/500 [00:01<00:23, 19.86it/s]
eval model::   8%|▊         | 41/500 [00:02<00:23, 19.32it/s]
eval model::   9%|▊         | 43/500 [00:02<00:25, 17.82it/s]
eval model::   9%|▉         | 46/500 [00:02<00:25, 17.63it/s]
eval model::  10%|▉         | 49/500 [00:02<00:23, 18.90it/s]
eval model::  10%|█         | 51/500 [00:02<00:23, 19.01it/s]
eval model::  11%|█         | 54/500 [00:02<00:22, 19.48it/s]
eval model::  11%|█▏        | 57/500 [00:02<00:21, 20.73it/s]
eval model::  12%|█▏        | 60/500 [00:03<00:22, 19.64it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:30, 14.55it/s]
eval model::  13%|█▎        | 64/500 [00:03<00:29, 14.66it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:25, 17.24it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:23, 18.16it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:21, 19.70it/s]
eval model::  15%|█▌        | 76/500 [00:03<00:20, 20.79it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:21, 19.86it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:19, 21.61it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:18, 22.90it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:19, 21.65it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:21, 18.70it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:21, 18.81it/s]
eval model::  19%|█▉        | 96/500 [00:04<00:20, 20.15it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:18, 21.33it/s]
eval model::  20%|██        | 102/500 [00:05<00:20, 19.33it/s]
eval model::  21%|██        | 105/500 [00:05<00:18, 20.92it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:18, 21.77it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:18, 21.27it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:17, 22.43it/s]
eval model::  23%|██▎       | 117/500 [00:05<00:17, 21.93it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:19, 19.17it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:17, 21.11it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:21, 17.81it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:18, 19.66it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:21, 17.32it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:19, 19.02it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:19, 18.95it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:18, 19.12it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:16, 20.92it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:17, 20.32it/s]
eval model::  30%|███       | 151/500 [00:07<00:17, 19.42it/s]
eval model::  31%|███       | 154/500 [00:07<00:16, 21.60it/s]
eval model::  31%|███▏      | 157/500 [00:07<00:14, 23.23it/s]
eval model::  32%|███▏      | 160/500 [00:08<00:18, 18.36it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:17, 19.60it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:16, 20.75it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:18, 18.23it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:17, 18.28it/s]
eval model::  35%|███▍      | 174/500 [00:08<00:19, 16.77it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:18, 17.16it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:17, 18.53it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:19, 16.48it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:17, 18.58it/s]
eval model::  37%|███▋      | 187/500 [00:09<00:16, 19.05it/s]
eval model::  38%|███▊      | 190/500 [00:09<00:15, 20.16it/s]
eval model::  39%|███▊      | 193/500 [00:09<00:14, 21.76it/s]
eval model::  39%|███▉      | 196/500 [00:10<00:15, 19.09it/s]
eval model::  40%|███▉      | 199/500 [00:10<00:14, 20.67it/s]
eval model::  40%|████      | 202/500 [00:10<00:14, 20.03it/s]
eval model::  41%|████      | 205/500 [00:10<00:21, 13.52it/s]
eval model::  42%|████▏     | 208/500 [00:10<00:20, 14.49it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:19, 14.61it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.91it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:21, 13.26it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:21, 13.21it/s]
eval model::  44%|████▍     | 219/500 [00:11<00:19, 14.44it/s]
eval model::  44%|████▍     | 221/500 [00:11<00:22, 12.42it/s]
eval model::  45%|████▍     | 223/500 [00:12<00:20, 13.57it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:17, 15.75it/s]
eval model::  46%|████▌     | 229/500 [00:12<00:15, 17.95it/s]
eval model::  46%|████▋     | 232/500 [00:12<00:13, 19.50it/s]
eval model::  47%|████▋     | 235/500 [00:12<00:14, 18.55it/s]
eval model::  48%|████▊     | 238/500 [00:12<00:13, 19.16it/s]
eval model::  48%|████▊     | 241/500 [00:12<00:13, 19.77it/s]
eval model::  49%|████▉     | 244/500 [00:13<00:15, 16.89it/s]
eval model::  49%|████▉     | 247/500 [00:13<00:13, 18.62it/s]
eval model::  50%|████▉     | 249/500 [00:13<00:13, 18.29it/s]
eval model::  50%|█████     | 251/500 [00:13<00:13, 18.58it/s]
eval model::  51%|█████     | 254/500 [00:13<00:11, 21.18it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:11, 21.95it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:10, 23.26it/s]
eval model::  53%|█████▎    | 263/500 [00:13<00:09, 24.16it/s]
eval model::  53%|█████▎    | 266/500 [00:14<00:10, 21.47it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:11, 19.95it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:11, 20.15it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:12, 18.51it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:11, 19.13it/s]
eval model::  56%|█████▌    | 281/500 [00:14<00:10, 20.63it/s]
eval model::  57%|█████▋    | 284/500 [00:15<00:10, 21.19it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:18, 11.72it/s]
eval model::  58%|█████▊    | 290/500 [00:15<00:14, 14.05it/s]
eval model::  58%|█████▊    | 292/500 [00:15<00:14, 14.81it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:13, 15.67it/s]
eval model::  59%|█████▉    | 296/500 [00:16<00:15, 13.43it/s]
eval model::  60%|█████▉    | 299/500 [00:16<00:12, 16.50it/s]
eval model::  60%|██████    | 301/500 [00:16<00:14, 13.83it/s]
eval model::  61%|██████    | 304/500 [00:16<00:12, 15.21it/s]
eval model::  61%|██████▏   | 307/500 [00:16<00:11, 16.93it/s]
eval model::  62%|██████▏   | 310/500 [00:16<00:10, 18.28it/s]
eval model::  62%|██████▏   | 312/500 [00:16<00:10, 18.08it/s]
eval model::  63%|██████▎   | 315/500 [00:17<00:10, 18.36it/s]
eval model::  64%|██████▎   | 318/500 [00:17<00:08, 20.48it/s]
eval model::  64%|██████▍   | 321/500 [00:17<00:08, 21.31it/s]
eval model::  65%|██████▍   | 324/500 [00:17<00:09, 19.46it/s]
eval model::  65%|██████▌   | 327/500 [00:17<00:08, 20.58it/s]
eval model::  66%|██████▌   | 330/500 [00:17<00:08, 19.45it/s]
eval model::  67%|██████▋   | 333/500 [00:17<00:08, 19.42it/s]
eval model::  67%|██████▋   | 336/500 [00:18<00:08, 19.66it/s]
eval model::  68%|██████▊   | 338/500 [00:18<00:10, 16.05it/s]
eval model::  68%|██████▊   | 340/500 [00:18<00:12, 12.82it/s]
eval model::  69%|██████▊   | 343/500 [00:18<00:10, 15.15it/s]
eval model::  69%|██████▉   | 346/500 [00:18<00:08, 17.29it/s]
eval model::  70%|██████▉   | 348/500 [00:18<00:08, 17.69it/s]
eval model::  70%|███████   | 351/500 [00:19<00:08, 18.04it/s]
eval model::  71%|███████   | 354/500 [00:19<00:07, 20.17it/s]
eval model::  71%|███████▏  | 357/500 [00:19<00:07, 18.03it/s]
eval model::  72%|███████▏  | 359/500 [00:19<00:07, 18.26it/s]
eval model::  72%|███████▏  | 361/500 [00:19<00:08, 16.44it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:08, 16.65it/s]
eval model::  73%|███████▎  | 366/500 [00:20<00:08, 16.39it/s]
eval model::  74%|███████▍  | 369/500 [00:20<00:07, 18.27it/s]
eval model::  74%|███████▍  | 372/500 [00:20<00:07, 17.67it/s]
eval model::  75%|███████▌  | 375/500 [00:20<00:06, 19.15it/s]
eval model::  76%|███████▌  | 379/500 [00:20<00:05, 22.78it/s]
eval model::  76%|███████▋  | 382/500 [00:20<00:05, 22.26it/s]
eval model::  77%|███████▋  | 385/500 [00:20<00:04, 23.08it/s]
eval model::  78%|███████▊  | 388/500 [00:21<00:08, 13.80it/s]
eval model::  78%|███████▊  | 390/500 [00:21<00:07, 14.53it/s]
eval model::  78%|███████▊  | 392/500 [00:21<00:07, 15.36it/s]
eval model::  79%|███████▉  | 395/500 [00:21<00:06, 17.10it/s]
eval model::  80%|███████▉  | 398/500 [00:21<00:05, 18.66it/s]
eval model::  80%|████████  | 401/500 [00:21<00:05, 17.14it/s]
eval model::  81%|████████  | 404/500 [00:22<00:05, 18.51it/s]
eval model::  81%|████████▏ | 407/500 [00:22<00:04, 19.75it/s]
eval model::  82%|████████▏ | 410/500 [00:22<00:04, 21.13it/s]
eval model::  83%|████████▎ | 413/500 [00:22<00:03, 22.07it/s]
eval model::  83%|████████▎ | 416/500 [00:22<00:03, 21.17it/s]
eval model::  84%|████████▍ | 419/500 [00:22<00:04, 19.79it/s]
eval model::  84%|████████▍ | 422/500 [00:23<00:05, 13.83it/s]
eval model::  85%|████████▍ | 424/500 [00:23<00:05, 13.80it/s]
eval model::  85%|████████▌ | 426/500 [00:23<00:05, 14.11it/s]
eval model::  86%|████████▌ | 429/500 [00:23<00:04, 16.58it/s]
eval model::  86%|████████▌ | 431/500 [00:23<00:04, 15.50it/s]
eval model::  87%|████████▋ | 434/500 [00:23<00:03, 18.44it/s]
eval model::  87%|████████▋ | 437/500 [00:23<00:03, 20.03it/s]
eval model::  88%|████████▊ | 440/500 [00:24<00:03, 19.42it/s]
eval model::  89%|████████▊ | 443/500 [00:24<00:02, 20.85it/s]
eval model::  89%|████████▉ | 446/500 [00:24<00:02, 20.27it/s]
eval model::  90%|████████▉ | 449/500 [00:24<00:02, 18.19it/s]
eval model::  90%|█████████ | 452/500 [00:24<00:02, 20.13it/s]
eval model::  91%|█████████ | 455/500 [00:24<00:02, 21.89it/s]
eval model::  92%|█████████▏| 458/500 [00:24<00:02, 20.88it/s]
eval model::  92%|█████████▏| 461/500 [00:25<00:01, 19.54it/s]
eval model::  93%|█████████▎| 464/500 [00:25<00:02, 14.91it/s]
eval model::  93%|█████████▎| 466/500 [00:25<00:02, 15.16it/s]
eval model::  94%|█████████▎| 468/500 [00:25<00:02, 15.76it/s]
eval model::  94%|█████████▍| 472/500 [00:25<00:01, 19.54it/s]
eval model::  95%|█████████▌| 475/500 [00:25<00:01, 19.91it/s]
eval model::  96%|█████████▌| 478/500 [00:26<00:01, 21.69it/s]
eval model::  96%|█████████▌| 481/500 [00:26<00:00, 22.63it/s]
eval model::  97%|█████████▋| 484/500 [00:26<00:00, 23.16it/s]
eval model::  97%|█████████▋| 487/500 [00:26<00:00, 22.53it/s]
eval model::  98%|█████████▊| 490/500 [00:26<00:00, 22.45it/s]
eval model::  99%|█████████▊| 493/500 [00:26<00:00, 20.88it/s]
eval model::  99%|█████████▉| 496/500 [00:26<00:00, 22.29it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 25.57it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.54it/s]
[2024/07/27 15:31:47] ppocr INFO: cur metric, precision: 0.7461333333333333, recall: 0.673567645642754, hmean: 0.707995951417004, fps: 44.495262446689914
[2024/07/27 15:31:47] ppocr INFO: best metric, hmean: 0.7301425661914459, precision: 0.7747163695299838, recall: 0.6904188733750601, fps: 43.582139874688714, best_epoch: 960
[2024/07/27 15:31:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:31:56] ppocr INFO: epoch: [1361/1500], global_step: 4083, lr: 0.001000, loss: 1.180944, loss_shrink_maps: 0.579874, loss_threshold_maps: 0.480018, loss_binary_maps: 0.115374, avg_reader_cost: 2.18653 s, avg_batch_cost: 2.42761 s, avg_samples: 12.5, ips: 5.14909 samples/s, eta: 1:00:09
[2024/07/27 15:31:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:32:05] ppocr INFO: epoch: [1362/1500], global_step: 4086, lr: 0.001000, loss: 1.170079, loss_shrink_maps: 0.571111, loss_threshold_maps: 0.473674, loss_binary_maps: 0.113701, avg_reader_cost: 2.22182 s, avg_batch_cost: 2.57392 s, avg_samples: 12.5, ips: 4.85640 samples/s, eta: 0:59:43
[2024/07/27 15:32:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:32:15] ppocr INFO: epoch: [1363/1500], global_step: 4089, lr: 0.001000, loss: 1.123381, loss_shrink_maps: 0.555612, loss_threshold_maps: 0.449198, loss_binary_maps: 0.110270, avg_reader_cost: 2.33385 s, avg_batch_cost: 2.57087 s, avg_samples: 12.5, ips: 4.86216 samples/s, eta: 0:59:17
[2024/07/27 15:32:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:32:23] ppocr INFO: epoch: [1364/1500], global_step: 4090, lr: 0.001000, loss: 1.123381, loss_shrink_maps: 0.554450, loss_threshold_maps: 0.449198, loss_binary_maps: 0.110270, avg_reader_cost: 0.55496 s, avg_batch_cost: 0.71608 s, avg_samples: 4.8, ips: 6.70321 samples/s, eta: 0:59:08
[2024/07/27 15:32:24] ppocr INFO: epoch: [1364/1500], global_step: 4092, lr: 0.001000, loss: 1.123381, loss_shrink_maps: 0.554450, loss_threshold_maps: 0.449198, loss_binary_maps: 0.110270, avg_reader_cost: 1.52362 s, avg_batch_cost: 1.67021 s, avg_samples: 7.7, ips: 4.61019 samples/s, eta: 0:58:51
[2024/07/27 15:32:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:32:34] ppocr INFO: epoch: [1365/1500], global_step: 4095, lr: 0.001000, loss: 1.123381, loss_shrink_maps: 0.554450, loss_threshold_maps: 0.449198, loss_binary_maps: 0.110270, avg_reader_cost: 2.32915 s, avg_batch_cost: 2.62107 s, avg_samples: 12.5, ips: 4.76904 samples/s, eta: 0:58:25
[2024/07/27 15:32:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:32:44] ppocr INFO: epoch: [1366/1500], global_step: 4098, lr: 0.001000, loss: 1.134361, loss_shrink_maps: 0.555188, loss_threshold_maps: 0.457201, loss_binary_maps: 0.110795, avg_reader_cost: 2.15056 s, avg_batch_cost: 2.50167 s, avg_samples: 12.5, ips: 4.99666 samples/s, eta: 0:57:59
[2024/07/27 15:32:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:32:53] ppocr INFO: epoch: [1367/1500], global_step: 4100, lr: 0.001000, loss: 1.107824, loss_shrink_maps: 0.548862, loss_threshold_maps: 0.452677, loss_binary_maps: 0.109154, avg_reader_cost: 1.35327 s, avg_batch_cost: 1.67135 s, avg_samples: 9.6, ips: 5.74385 samples/s, eta: 0:57:42
[2024/07/27 15:32:54] ppocr INFO: epoch: [1367/1500], global_step: 4101, lr: 0.001000, loss: 1.085856, loss_shrink_maps: 0.542938, loss_threshold_maps: 0.434478, loss_binary_maps: 0.107861, avg_reader_cost: 0.88207 s, avg_batch_cost: 0.93744 s, avg_samples: 2.9, ips: 3.09354 samples/s, eta: 0:57:33
[2024/07/27 15:32:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:33:03] ppocr INFO: epoch: [1368/1500], global_step: 4104, lr: 0.001000, loss: 1.097685, loss_shrink_maps: 0.548862, loss_threshold_maps: 0.452677, loss_binary_maps: 0.109154, avg_reader_cost: 2.22380 s, avg_batch_cost: 2.55437 s, avg_samples: 12.5, ips: 4.89357 samples/s, eta: 0:57:07
[2024/07/27 15:33:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:33:13] ppocr INFO: epoch: [1369/1500], global_step: 4107, lr: 0.001000, loss: 1.124548, loss_shrink_maps: 0.557144, loss_threshold_maps: 0.454408, loss_binary_maps: 0.111158, avg_reader_cost: 2.44103 s, avg_batch_cost: 2.67276 s, avg_samples: 12.5, ips: 4.67680 samples/s, eta: 0:56:41
[2024/07/27 15:33:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:33:23] ppocr INFO: epoch: [1370/1500], global_step: 4110, lr: 0.001000, loss: 1.138470, loss_shrink_maps: 0.568280, loss_threshold_maps: 0.458308, loss_binary_maps: 0.112654, avg_reader_cost: 2.22540 s, avg_batch_cost: 2.59852 s, avg_samples: 12.5, ips: 4.81042 samples/s, eta: 0:56:15
[2024/07/27 15:33:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:33:33] ppocr INFO: epoch: [1371/1500], global_step: 4113, lr: 0.001000, loss: 1.124548, loss_shrink_maps: 0.561016, loss_threshold_maps: 0.454408, loss_binary_maps: 0.111457, avg_reader_cost: 2.42290 s, avg_batch_cost: 2.66644 s, avg_samples: 12.5, ips: 4.68789 samples/s, eta: 0:55:49
[2024/07/27 15:33:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:33:43] ppocr INFO: epoch: [1372/1500], global_step: 4116, lr: 0.001000, loss: 1.138470, loss_shrink_maps: 0.568280, loss_threshold_maps: 0.450067, loss_binary_maps: 0.112654, avg_reader_cost: 2.15672 s, avg_batch_cost: 2.54429 s, avg_samples: 12.5, ips: 4.91297 samples/s, eta: 0:55:23
[2024/07/27 15:33:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:33:53] ppocr INFO: epoch: [1373/1500], global_step: 4119, lr: 0.001000, loss: 1.106847, loss_shrink_maps: 0.557839, loss_threshold_maps: 0.448021, loss_binary_maps: 0.111001, avg_reader_cost: 2.19780 s, avg_batch_cost: 2.56351 s, avg_samples: 12.5, ips: 4.87612 samples/s, eta: 0:54:57
[2024/07/27 15:33:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:34:01] ppocr INFO: epoch: [1374/1500], global_step: 4120, lr: 0.001000, loss: 1.106847, loss_shrink_maps: 0.557839, loss_threshold_maps: 0.448021, loss_binary_maps: 0.111001, avg_reader_cost: 0.70380 s, avg_batch_cost: 0.79621 s, avg_samples: 4.8, ips: 6.02859 samples/s, eta: 0:54:49
[2024/07/27 15:34:03] ppocr INFO: epoch: [1374/1500], global_step: 4122, lr: 0.001000, loss: 1.106847, loss_shrink_maps: 0.553970, loss_threshold_maps: 0.448021, loss_binary_maps: 0.110649, avg_reader_cost: 1.68449 s, avg_batch_cost: 1.83144 s, avg_samples: 7.7, ips: 4.20435 samples/s, eta: 0:54:31
[2024/07/27 15:34:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:34:13] ppocr INFO: epoch: [1375/1500], global_step: 4125, lr: 0.001000, loss: 1.101380, loss_shrink_maps: 0.547288, loss_threshold_maps: 0.440002, loss_binary_maps: 0.109632, avg_reader_cost: 2.21536 s, avg_batch_cost: 2.62372 s, avg_samples: 12.5, ips: 4.76423 samples/s, eta: 0:54:05
[2024/07/27 15:34:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:34:22] ppocr INFO: epoch: [1376/1500], global_step: 4128, lr: 0.001000, loss: 1.093426, loss_shrink_maps: 0.546124, loss_threshold_maps: 0.440002, loss_binary_maps: 0.108823, avg_reader_cost: 2.16203 s, avg_batch_cost: 2.47755 s, avg_samples: 12.5, ips: 5.04531 samples/s, eta: 0:53:39
[2024/07/27 15:34:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:34:31] ppocr INFO: epoch: [1377/1500], global_step: 4130, lr: 0.001000, loss: 1.076703, loss_shrink_maps: 0.530695, loss_threshold_maps: 0.438918, loss_binary_maps: 0.105360, avg_reader_cost: 1.32647 s, avg_batch_cost: 1.63169 s, avg_samples: 9.6, ips: 5.88348 samples/s, eta: 0:53:22
[2024/07/27 15:34:32] ppocr INFO: epoch: [1377/1500], global_step: 4131, lr: 0.001000, loss: 1.069787, loss_shrink_maps: 0.525272, loss_threshold_maps: 0.438918, loss_binary_maps: 0.104547, avg_reader_cost: 0.86194 s, avg_batch_cost: 0.91768 s, avg_samples: 2.9, ips: 3.16015 samples/s, eta: 0:53:13
[2024/07/27 15:34:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:34:42] ppocr INFO: epoch: [1378/1500], global_step: 4134, lr: 0.001000, loss: 1.069787, loss_shrink_maps: 0.525272, loss_threshold_maps: 0.438918, loss_binary_maps: 0.104547, avg_reader_cost: 2.48004 s, avg_batch_cost: 2.73217 s, avg_samples: 12.5, ips: 4.57512 samples/s, eta: 0:52:48
[2024/07/27 15:34:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:34:52] ppocr INFO: epoch: [1379/1500], global_step: 4137, lr: 0.001000, loss: 1.072990, loss_shrink_maps: 0.525272, loss_threshold_maps: 0.442194, loss_binary_maps: 0.104547, avg_reader_cost: 2.18984 s, avg_batch_cost: 2.58745 s, avg_samples: 12.5, ips: 4.83101 samples/s, eta: 0:52:22
[2024/07/27 15:34:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:35:02] ppocr INFO: epoch: [1380/1500], global_step: 4140, lr: 0.001000, loss: 1.072990, loss_shrink_maps: 0.533859, loss_threshold_maps: 0.441113, loss_binary_maps: 0.106055, avg_reader_cost: 2.38861 s, avg_batch_cost: 2.63483 s, avg_samples: 12.5, ips: 4.74414 samples/s, eta: 0:51:56

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:56,  8.77it/s]
eval model::   1%|          | 3/500 [00:00<00:36, 13.79it/s]
eval model::   1%|          | 6/500 [00:00<00:25, 19.27it/s]
eval model::   2%|▏         | 8/500 [00:00<00:27, 18.04it/s]
eval model::   2%|▏         | 11/500 [00:00<00:28, 17.03it/s]
eval model::   3%|▎         | 13/500 [00:00<00:27, 17.78it/s]
eval model::   3%|▎         | 15/500 [00:00<00:27, 17.96it/s]
eval model::   4%|▎         | 18/500 [00:00<00:23, 20.90it/s]
eval model::   4%|▍         | 21/500 [00:01<00:23, 20.69it/s]
eval model::   5%|▍         | 24/500 [00:01<00:21, 22.33it/s]
eval model::   5%|▌         | 27/500 [00:01<00:23, 20.33it/s]
eval model::   6%|▌         | 30/500 [00:01<00:22, 20.85it/s]
eval model::   7%|▋         | 33/500 [00:01<00:23, 19.59it/s]
eval model::   7%|▋         | 36/500 [00:01<00:24, 18.84it/s]
eval model::   8%|▊         | 38/500 [00:02<00:26, 17.70it/s]
eval model::   8%|▊         | 40/500 [00:02<00:26, 17.36it/s]
eval model::   8%|▊         | 42/500 [00:02<00:26, 17.22it/s]
eval model::   9%|▉         | 45/500 [00:02<00:23, 19.12it/s]
eval model::   9%|▉         | 47/500 [00:02<00:26, 17.07it/s]
eval model::  10%|█         | 50/500 [00:02<00:25, 17.57it/s]
eval model::  10%|█         | 52/500 [00:02<00:25, 17.44it/s]
eval model::  11%|█         | 55/500 [00:02<00:23, 18.77it/s]
eval model::  11%|█▏        | 57/500 [00:03<00:23, 18.79it/s]
eval model::  12%|█▏        | 59/500 [00:03<00:27, 16.30it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:30, 14.25it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:30, 14.42it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:24, 17.54it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:22, 19.22it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:21, 19.86it/s]
eval model::  15%|█▌        | 75/500 [00:04<00:22, 18.51it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:21, 19.57it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:21, 19.85it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:21, 19.32it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:22, 18.54it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:23, 17.54it/s]
eval model::  18%|█▊        | 91/500 [00:05<00:24, 17.02it/s]
eval model::  19%|█▉        | 94/500 [00:05<00:21, 18.98it/s]
eval model::  19%|█▉        | 97/500 [00:05<00:19, 20.38it/s]
eval model::  20%|██        | 100/500 [00:05<00:20, 19.68it/s]
eval model::  20%|██        | 102/500 [00:05<00:20, 19.02it/s]
eval model::  21%|██        | 106/500 [00:05<00:17, 22.05it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:17, 22.39it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:18, 20.58it/s]
eval model::  23%|██▎       | 115/500 [00:06<00:19, 20.13it/s]
eval model::  24%|██▎       | 118/500 [00:06<00:17, 21.53it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:19, 19.72it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:21, 17.54it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:21, 17.33it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:20, 17.73it/s]
eval model::  26%|██▌       | 130/500 [00:07<00:23, 15.95it/s]
eval model::  26%|██▋       | 132/500 [00:07<00:24, 15.09it/s]
eval model::  27%|██▋       | 135/500 [00:07<00:21, 16.64it/s]
eval model::  27%|██▋       | 137/500 [00:07<00:20, 17.34it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:20, 17.74it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:18, 18.89it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:18, 19.13it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:19, 18.14it/s]
eval model::  30%|███       | 150/500 [00:08<00:18, 19.16it/s]
eval model::  30%|███       | 152/500 [00:08<00:20, 16.61it/s]
eval model::  31%|███       | 155/500 [00:08<00:17, 19.53it/s]
eval model::  32%|███▏      | 158/500 [00:08<00:15, 21.76it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:22, 15.31it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:19, 16.96it/s]
eval model::  33%|███▎      | 167/500 [00:09<00:18, 18.00it/s]
eval model::  34%|███▍      | 171/500 [00:09<00:16, 19.74it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:19, 16.88it/s]
eval model::  35%|███▌      | 177/500 [00:09<00:17, 18.19it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:17, 18.10it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:21, 15.10it/s]
eval model::  37%|███▋      | 184/500 [00:10<00:18, 16.99it/s]
eval model::  37%|███▋      | 186/500 [00:10<00:17, 17.62it/s]
eval model::  38%|███▊      | 189/500 [00:10<00:16, 18.70it/s]
eval model::  38%|███▊      | 191/500 [00:10<00:16, 18.91it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:15, 19.91it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:14, 20.73it/s]
eval model::  40%|████      | 201/500 [00:10<00:13, 21.51it/s]
eval model::  41%|████      | 204/500 [00:10<00:12, 23.23it/s]
eval model::  41%|████▏     | 207/500 [00:11<00:18, 15.88it/s]
eval model::  42%|████▏     | 209/500 [00:11<00:18, 15.43it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:18, 15.50it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.78it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:20, 14.23it/s]
eval model::  43%|████▎     | 217/500 [00:12<00:20, 13.79it/s]
eval model::  44%|████▍     | 220/500 [00:12<00:17, 16.14it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:20, 13.58it/s]
eval model::  45%|████▌     | 225/500 [00:12<00:17, 16.04it/s]
eval model::  45%|████▌     | 227/500 [00:12<00:17, 15.79it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:14, 18.65it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:14, 18.58it/s]
eval model::  47%|████▋     | 235/500 [00:13<00:14, 18.63it/s]
eval model::  48%|████▊     | 238/500 [00:13<00:12, 20.93it/s]
eval model::  48%|████▊     | 241/500 [00:13<00:12, 21.44it/s]
eval model::  49%|████▉     | 244/500 [00:13<00:14, 18.04it/s]
eval model::  49%|████▉     | 247/500 [00:13<00:13, 19.14it/s]
eval model::  50%|█████     | 250/500 [00:13<00:13, 18.62it/s]
eval model::  51%|█████     | 254/500 [00:13<00:11, 21.55it/s]
eval model::  51%|█████▏    | 257/500 [00:14<00:11, 21.80it/s]
eval model::  52%|█████▏    | 260/500 [00:14<00:10, 23.05it/s]
eval model::  53%|█████▎    | 263/500 [00:14<00:10, 22.34it/s]
eval model::  53%|█████▎    | 266/500 [00:14<00:11, 20.14it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:12, 18.52it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:11, 19.83it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:11, 19.06it/s]
eval model::  55%|█████▌    | 277/500 [00:15<00:11, 19.00it/s]
eval model::  56%|█████▌    | 279/500 [00:15<00:11, 19.01it/s]
eval model::  56%|█████▋    | 282/500 [00:15<00:11, 19.77it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:20, 10.64it/s]
eval model::  58%|█████▊    | 288/500 [00:15<00:16, 12.99it/s]
eval model::  58%|█████▊    | 291/500 [00:16<00:13, 15.73it/s]
eval model::  59%|█████▉    | 294/500 [00:16<00:13, 15.66it/s]
eval model::  59%|█████▉    | 296/500 [00:16<00:15, 13.08it/s]
eval model::  60%|█████▉    | 299/500 [00:16<00:12, 16.00it/s]
eval model::  60%|██████    | 302/500 [00:16<00:12, 15.57it/s]
eval model::  61%|██████    | 304/500 [00:16<00:12, 15.25it/s]
eval model::  61%|██████▏   | 307/500 [00:17<00:11, 17.30it/s]
eval model::  62%|██████▏   | 310/500 [00:17<00:10, 18.88it/s]
eval model::  63%|██████▎   | 313/500 [00:17<00:09, 19.84it/s]
eval model::  63%|██████▎   | 316/500 [00:17<00:09, 18.92it/s]
eval model::  64%|██████▍   | 319/500 [00:17<00:09, 19.95it/s]
eval model::  64%|██████▍   | 322/500 [00:17<00:09, 19.38it/s]
eval model::  65%|██████▍   | 324/500 [00:17<00:09, 19.43it/s]
eval model::  65%|██████▌   | 327/500 [00:18<00:08, 21.00it/s]
eval model::  66%|██████▌   | 330/500 [00:18<00:08, 20.39it/s]
eval model::  67%|██████▋   | 333/500 [00:18<00:07, 21.38it/s]
eval model::  67%|██████▋   | 336/500 [00:18<00:07, 22.47it/s]
eval model::  68%|██████▊   | 339/500 [00:18<00:07, 21.73it/s]
eval model::  68%|██████▊   | 342/500 [00:18<00:10, 15.76it/s]
eval model::  69%|██████▉   | 345/500 [00:19<00:08, 17.66it/s]
eval model::  70%|██████▉   | 348/500 [00:19<00:08, 18.86it/s]
eval model::  70%|███████   | 351/500 [00:19<00:07, 19.23it/s]
eval model::  71%|███████   | 354/500 [00:19<00:07, 20.67it/s]
eval model::  71%|███████▏  | 357/500 [00:19<00:07, 17.94it/s]
eval model::  72%|███████▏  | 360/500 [00:19<00:07, 19.82it/s]
eval model::  73%|███████▎  | 363/500 [00:19<00:07, 17.87it/s]
eval model::  73%|███████▎  | 365/500 [00:20<00:07, 18.28it/s]
eval model::  73%|███████▎  | 367/500 [00:20<00:07, 17.82it/s]
eval model::  74%|███████▍  | 370/500 [00:20<00:06, 19.30it/s]
eval model::  74%|███████▍  | 372/500 [00:20<00:07, 18.10it/s]
eval model::  75%|███████▌  | 375/500 [00:20<00:06, 19.12it/s]
eval model::  76%|███████▌  | 378/500 [00:20<00:05, 21.15it/s]
eval model::  76%|███████▌  | 381/500 [00:20<00:05, 20.24it/s]
eval model::  77%|███████▋  | 385/500 [00:20<00:04, 23.86it/s]
eval model::  78%|███████▊  | 388/500 [00:21<00:08, 13.50it/s]
eval model::  78%|███████▊  | 391/500 [00:21<00:07, 15.30it/s]
eval model::  79%|███████▉  | 394/500 [00:21<00:06, 16.09it/s]
eval model::  79%|███████▉  | 397/500 [00:21<00:05, 17.81it/s]
eval model::  80%|████████  | 400/500 [00:22<00:05, 16.72it/s]
eval model::  80%|████████  | 402/500 [00:22<00:05, 17.04it/s]
eval model::  81%|████████  | 404/500 [00:22<00:05, 17.35it/s]
eval model::  81%|████████▏ | 407/500 [00:22<00:04, 18.66it/s]
eval model::  82%|████████▏ | 410/500 [00:22<00:04, 20.78it/s]
eval model::  83%|████████▎ | 413/500 [00:22<00:04, 20.91it/s]
eval model::  83%|████████▎ | 416/500 [00:22<00:04, 20.73it/s]
eval model::  84%|████████▍ | 419/500 [00:23<00:04, 19.28it/s]
eval model::  84%|████████▍ | 421/500 [00:23<00:05, 13.96it/s]
eval model::  85%|████████▍ | 424/500 [00:23<00:04, 15.72it/s]
eval model::  85%|████████▌ | 426/500 [00:23<00:04, 16.05it/s]
eval model::  86%|████████▌ | 429/500 [00:23<00:03, 18.51it/s]
eval model::  86%|████████▋ | 432/500 [00:23<00:03, 18.31it/s]
eval model::  87%|████████▋ | 435/500 [00:23<00:03, 20.07it/s]
eval model::  88%|████████▊ | 438/500 [00:24<00:02, 20.93it/s]
eval model::  88%|████████▊ | 441/500 [00:24<00:03, 18.36it/s]
eval model::  89%|████████▉ | 444/500 [00:24<00:02, 19.45it/s]
eval model::  89%|████████▉ | 447/500 [00:24<00:02, 20.51it/s]
eval model::  90%|█████████ | 450/500 [00:24<00:02, 18.13it/s]
eval model::  91%|█████████ | 453/500 [00:24<00:02, 19.81it/s]
eval model::  91%|█████████ | 456/500 [00:25<00:02, 19.74it/s]
eval model::  92%|█████████▏| 459/500 [00:25<00:01, 20.78it/s]
eval model::  92%|█████████▏| 462/500 [00:25<00:02, 16.40it/s]
eval model::  93%|█████████▎| 464/500 [00:25<00:02, 16.85it/s]
eval model::  93%|█████████▎| 466/500 [00:25<00:02, 15.13it/s]
eval model::  94%|█████████▎| 468/500 [00:25<00:02, 15.74it/s]
eval model::  94%|█████████▍| 471/500 [00:25<00:01, 18.27it/s]
eval model::  95%|█████████▍| 473/500 [00:26<00:01, 17.57it/s]
eval model::  95%|█████████▌| 475/500 [00:26<00:01, 17.20it/s]
eval model::  96%|█████████▌| 478/500 [00:26<00:01, 18.79it/s]
eval model::  96%|█████████▌| 481/500 [00:26<00:00, 20.44it/s]
eval model::  97%|█████████▋| 484/500 [00:26<00:00, 21.08it/s]
eval model::  97%|█████████▋| 487/500 [00:26<00:00, 20.72it/s]
eval model::  98%|█████████▊| 490/500 [00:26<00:00, 21.67it/s]
eval model::  99%|█████████▊| 493/500 [00:27<00:00, 18.81it/s]
eval model::  99%|█████████▉| 496/500 [00:27<00:00, 20.18it/s]
eval model:: 100%|██████████| 500/500 [00:27<00:00, 23.72it/s]
eval model:: 100%|██████████| 500/500 [00:27<00:00, 18.31it/s]
[2024/07/27 15:35:29] ppocr INFO: cur metric, precision: 0.7505175983436853, recall: 0.6981222917669716, hmean: 0.7233724120728362, fps: 44.24035771970459
[2024/07/27 15:35:29] ppocr INFO: best metric, hmean: 0.7301425661914459, precision: 0.7747163695299838, recall: 0.6904188733750601, fps: 43.582139874688714, best_epoch: 960
[2024/07/27 15:35:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:35:38] ppocr INFO: epoch: [1381/1500], global_step: 4143, lr: 0.001000, loss: 1.076651, loss_shrink_maps: 0.534230, loss_threshold_maps: 0.443033, loss_binary_maps: 0.106690, avg_reader_cost: 2.11704 s, avg_batch_cost: 2.44807 s, avg_samples: 12.5, ips: 5.10607 samples/s, eta: 0:51:30
[2024/07/27 15:35:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:35:48] ppocr INFO: epoch: [1382/1500], global_step: 4146, lr: 0.001000, loss: 1.086060, loss_shrink_maps: 0.539482, loss_threshold_maps: 0.446155, loss_binary_maps: 0.107442, avg_reader_cost: 2.17741 s, avg_batch_cost: 2.49658 s, avg_samples: 12.5, ips: 5.00686 samples/s, eta: 0:51:03
[2024/07/27 15:35:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:35:58] ppocr INFO: epoch: [1383/1500], global_step: 4149, lr: 0.001000, loss: 1.116190, loss_shrink_maps: 0.546283, loss_threshold_maps: 0.450000, loss_binary_maps: 0.108858, avg_reader_cost: 2.42542 s, avg_batch_cost: 2.66418 s, avg_samples: 12.5, ips: 4.69188 samples/s, eta: 0:50:38
[2024/07/27 15:35:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:36:07] ppocr INFO: epoch: [1384/1500], global_step: 4150, lr: 0.001000, loss: 1.116190, loss_shrink_maps: 0.546283, loss_threshold_maps: 0.450000, loss_binary_maps: 0.108858, avg_reader_cost: 0.57450 s, avg_batch_cost: 0.79730 s, avg_samples: 4.8, ips: 6.02030 samples/s, eta: 0:50:29
[2024/07/27 15:36:08] ppocr INFO: epoch: [1384/1500], global_step: 4152, lr: 0.001000, loss: 1.116019, loss_shrink_maps: 0.551963, loss_threshold_maps: 0.444799, loss_binary_maps: 0.110182, avg_reader_cost: 1.68705 s, avg_batch_cost: 1.83459 s, avg_samples: 7.7, ips: 4.19711 samples/s, eta: 0:50:12
[2024/07/27 15:36:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:36:18] ppocr INFO: epoch: [1385/1500], global_step: 4155, lr: 0.001000, loss: 1.093412, loss_shrink_maps: 0.539634, loss_threshold_maps: 0.439031, loss_binary_maps: 0.107364, avg_reader_cost: 2.25388 s, avg_batch_cost: 2.63433 s, avg_samples: 12.5, ips: 4.74504 samples/s, eta: 0:49:46
[2024/07/27 15:36:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:36:28] ppocr INFO: epoch: [1386/1500], global_step: 4158, lr: 0.001000, loss: 1.098653, loss_shrink_maps: 0.539634, loss_threshold_maps: 0.440409, loss_binary_maps: 0.107471, avg_reader_cost: 2.25886 s, avg_batch_cost: 2.49967 s, avg_samples: 12.5, ips: 5.00067 samples/s, eta: 0:49:20
[2024/07/27 15:36:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:36:37] ppocr INFO: epoch: [1387/1500], global_step: 4160, lr: 0.001000, loss: 1.098653, loss_shrink_maps: 0.539634, loss_threshold_maps: 0.440409, loss_binary_maps: 0.107471, avg_reader_cost: 1.32984 s, avg_batch_cost: 1.63964 s, avg_samples: 9.6, ips: 5.85494 samples/s, eta: 0:49:02
[2024/07/27 15:36:37] ppocr INFO: epoch: [1387/1500], global_step: 4161, lr: 0.001000, loss: 1.093412, loss_shrink_maps: 0.535726, loss_threshold_maps: 0.439031, loss_binary_maps: 0.106475, avg_reader_cost: 0.86632 s, avg_batch_cost: 0.92144 s, avg_samples: 2.9, ips: 3.14725 samples/s, eta: 0:48:54
[2024/07/27 15:36:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:36:47] ppocr INFO: epoch: [1388/1500], global_step: 4164, lr: 0.001000, loss: 1.102282, loss_shrink_maps: 0.544678, loss_threshold_maps: 0.442165, loss_binary_maps: 0.108543, avg_reader_cost: 2.21545 s, avg_batch_cost: 2.58871 s, avg_samples: 12.5, ips: 4.82866 samples/s, eta: 0:48:28
[2024/07/27 15:36:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:36:57] ppocr INFO: epoch: [1389/1500], global_step: 4167, lr: 0.001000, loss: 1.098695, loss_shrink_maps: 0.542520, loss_threshold_maps: 0.439031, loss_binary_maps: 0.107980, avg_reader_cost: 2.32135 s, avg_batch_cost: 2.55765 s, avg_samples: 12.5, ips: 4.88731 samples/s, eta: 0:48:02
[2024/07/27 15:36:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:37:07] ppocr INFO: epoch: [1390/1500], global_step: 4170, lr: 0.001000, loss: 1.111392, loss_shrink_maps: 0.555083, loss_threshold_maps: 0.442056, loss_binary_maps: 0.110112, avg_reader_cost: 2.30086 s, avg_batch_cost: 2.67670 s, avg_samples: 12.5, ips: 4.66993 samples/s, eta: 0:47:36
[2024/07/27 15:37:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:37:17] ppocr INFO: epoch: [1391/1500], global_step: 4173, lr: 0.001000, loss: 1.127388, loss_shrink_maps: 0.566232, loss_threshold_maps: 0.446293, loss_binary_maps: 0.112556, avg_reader_cost: 2.39501 s, avg_batch_cost: 2.65336 s, avg_samples: 12.5, ips: 4.71101 samples/s, eta: 0:47:10
[2024/07/27 15:37:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:37:27] ppocr INFO: epoch: [1392/1500], global_step: 4176, lr: 0.001000, loss: 1.137492, loss_shrink_maps: 0.571832, loss_threshold_maps: 0.452297, loss_binary_maps: 0.113836, avg_reader_cost: 2.26192 s, avg_batch_cost: 2.50004 s, avg_samples: 12.5, ips: 4.99992 samples/s, eta: 0:46:44
[2024/07/27 15:37:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:37:37] ppocr INFO: epoch: [1393/1500], global_step: 4179, lr: 0.001000, loss: 1.127778, loss_shrink_maps: 0.571832, loss_threshold_maps: 0.438499, loss_binary_maps: 0.113836, avg_reader_cost: 2.32031 s, avg_batch_cost: 2.55926 s, avg_samples: 12.5, ips: 4.88422 samples/s, eta: 0:46:18
[2024/07/27 15:37:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:37:45] ppocr INFO: epoch: [1394/1500], global_step: 4180, lr: 0.001000, loss: 1.127778, loss_shrink_maps: 0.571832, loss_threshold_maps: 0.442102, loss_binary_maps: 0.113836, avg_reader_cost: 0.56872 s, avg_batch_cost: 0.78129 s, avg_samples: 4.8, ips: 6.14366 samples/s, eta: 0:46:09
[2024/07/27 15:37:46] ppocr INFO: epoch: [1394/1500], global_step: 4182, lr: 0.001000, loss: 1.122814, loss_shrink_maps: 0.556816, loss_threshold_maps: 0.451195, loss_binary_maps: 0.110800, avg_reader_cost: 1.65463 s, avg_batch_cost: 1.80185 s, avg_samples: 7.7, ips: 4.27338 samples/s, eta: 0:45:52
[2024/07/27 15:37:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:37:56] ppocr INFO: epoch: [1395/1500], global_step: 4185, lr: 0.001000, loss: 1.099470, loss_shrink_maps: 0.541203, loss_threshold_maps: 0.443898, loss_binary_maps: 0.107631, avg_reader_cost: 2.31513 s, avg_batch_cost: 2.56169 s, avg_samples: 12.5, ips: 4.87960 samples/s, eta: 0:45:26
[2024/07/27 15:37:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:38:06] ppocr INFO: epoch: [1396/1500], global_step: 4188, lr: 0.001000, loss: 1.088266, loss_shrink_maps: 0.533390, loss_threshold_maps: 0.437886, loss_binary_maps: 0.106277, avg_reader_cost: 2.38906 s, avg_batch_cost: 2.62564 s, avg_samples: 12.5, ips: 4.76075 samples/s, eta: 0:45:00
[2024/07/27 15:38:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:38:15] ppocr INFO: epoch: [1397/1500], global_step: 4190, lr: 0.001000, loss: 1.088266, loss_shrink_maps: 0.536683, loss_threshold_maps: 0.437886, loss_binary_maps: 0.106831, avg_reader_cost: 1.32627 s, avg_batch_cost: 1.63106 s, avg_samples: 9.6, ips: 5.88573 samples/s, eta: 0:44:43
[2024/07/27 15:38:16] ppocr INFO: epoch: [1397/1500], global_step: 4191, lr: 0.001000, loss: 1.088266, loss_shrink_maps: 0.536683, loss_threshold_maps: 0.437886, loss_binary_maps: 0.106831, avg_reader_cost: 0.86187 s, avg_batch_cost: 0.91745 s, avg_samples: 2.9, ips: 3.16092 samples/s, eta: 0:44:34
[2024/07/27 15:38:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:38:26] ppocr INFO: epoch: [1398/1500], global_step: 4194, lr: 0.001000, loss: 1.087199, loss_shrink_maps: 0.539118, loss_threshold_maps: 0.435117, loss_binary_maps: 0.107631, avg_reader_cost: 2.25452 s, avg_batch_cost: 2.59289 s, avg_samples: 12.5, ips: 4.82087 samples/s, eta: 0:44:08
[2024/07/27 15:38:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:38:35] ppocr INFO: epoch: [1399/1500], global_step: 4197, lr: 0.001000, loss: 1.087199, loss_shrink_maps: 0.541692, loss_threshold_maps: 0.448715, loss_binary_maps: 0.108023, avg_reader_cost: 2.22438 s, avg_batch_cost: 2.46078 s, avg_samples: 12.5, ips: 5.07969 samples/s, eta: 0:43:42
[2024/07/27 15:38:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:38:45] ppocr INFO: epoch: [1400/1500], global_step: 4200, lr: 0.001000, loss: 1.119319, loss_shrink_maps: 0.548423, loss_threshold_maps: 0.448715, loss_binary_maps: 0.109147, avg_reader_cost: 2.22274 s, avg_batch_cost: 2.60979 s, avg_samples: 12.5, ips: 4.78966 samples/s, eta: 0:43:16

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:51,  9.65it/s]
eval model::   1%|          | 4/500 [00:00<00:25, 19.74it/s]
eval model::   1%|          | 6/500 [00:00<00:25, 19.00it/s]
eval model::   2%|▏         | 8/500 [00:00<00:30, 16.27it/s]
eval model::   2%|▏         | 11/500 [00:00<00:27, 17.82it/s]
eval model::   3%|▎         | 13/500 [00:00<00:27, 17.60it/s]
eval model::   3%|▎         | 15/500 [00:00<00:27, 17.55it/s]
eval model::   4%|▍         | 19/500 [00:01<00:23, 20.68it/s]
eval model::   4%|▍         | 22/500 [00:01<00:24, 19.23it/s]
eval model::   5%|▌         | 25/500 [00:01<00:24, 19.20it/s]
eval model::   6%|▌         | 28/500 [00:01<00:23, 20.41it/s]
eval model::   6%|▌         | 31/500 [00:01<00:25, 18.21it/s]
eval model::   7%|▋         | 34/500 [00:01<00:25, 18.11it/s]
eval model::   7%|▋         | 37/500 [00:01<00:24, 18.69it/s]
eval model::   8%|▊         | 39/500 [00:02<00:25, 18.12it/s]
eval model::   8%|▊         | 42/500 [00:02<00:26, 17.18it/s]
eval model::   9%|▉         | 44/500 [00:02<00:25, 17.67it/s]
eval model::   9%|▉         | 46/500 [00:02<00:28, 16.15it/s]
eval model::  10%|▉         | 49/500 [00:02<00:23, 19.03it/s]
eval model::  10%|█         | 52/500 [00:02<00:22, 19.57it/s]
eval model::  11%|█         | 55/500 [00:02<00:23, 18.88it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:24, 17.96it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:28, 15.48it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:28, 15.58it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:24, 17.82it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:22, 19.53it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:21, 19.87it/s]
eval model::  15%|█▌        | 75/500 [00:04<00:21, 19.33it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:20, 20.73it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:18, 22.68it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:19, 20.89it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:21, 19.36it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:21, 18.86it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:20, 19.87it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:20, 20.10it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:21, 18.94it/s]
eval model::  20%|██        | 101/500 [00:05<00:21, 18.67it/s]
eval model::  21%|██        | 103/500 [00:05<00:22, 17.47it/s]
eval model::  21%|██        | 106/500 [00:05<00:20, 19.22it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:19, 20.43it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:18, 20.63it/s]
eval model::  23%|██▎       | 115/500 [00:06<00:19, 20.22it/s]
eval model::  24%|██▎       | 118/500 [00:06<00:17, 22.12it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:17, 22.03it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:20, 18.54it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:21, 17.36it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:19, 18.71it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:21, 17.25it/s]
eval model::  27%|██▋       | 133/500 [00:07<00:21, 16.83it/s]
eval model::  27%|██▋       | 136/500 [00:07<00:19, 18.42it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:19, 18.66it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:17, 20.09it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:19, 18.40it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:20, 17.33it/s]
eval model::  30%|███       | 150/500 [00:07<00:17, 19.63it/s]
eval model::  31%|███       | 153/500 [00:08<00:18, 19.03it/s]
eval model::  31%|███       | 156/500 [00:08<00:16, 21.07it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:15, 21.38it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:21, 15.73it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:20, 16.51it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:20, 16.50it/s]
eval model::  34%|███▍      | 170/500 [00:09<00:18, 18.28it/s]
eval model::  34%|███▍      | 172/500 [00:09<00:18, 18.15it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:18, 17.54it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:18, 17.88it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:18, 17.76it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:20, 15.42it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:19, 16.07it/s]
eval model::  37%|███▋      | 186/500 [00:10<00:18, 17.39it/s]
eval model::  38%|███▊      | 189/500 [00:10<00:16, 18.80it/s]
eval model::  38%|███▊      | 192/500 [00:10<00:15, 20.48it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:15, 19.60it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:14, 20.86it/s]
eval model::  40%|████      | 201/500 [00:10<00:13, 21.52it/s]
eval model::  41%|████      | 205/500 [00:11<00:18, 16.32it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:17, 16.84it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:17, 16.64it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:16, 17.63it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:18, 15.36it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:18, 15.04it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:15, 17.55it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:18, 15.05it/s]
eval model::  45%|████▌     | 225/500 [00:12<00:15, 17.78it/s]
eval model::  46%|████▌     | 228/500 [00:12<00:14, 19.01it/s]
eval model::  46%|████▌     | 231/500 [00:12<00:12, 21.14it/s]
eval model::  47%|████▋     | 234/500 [00:12<00:13, 19.60it/s]
eval model::  47%|████▋     | 237/500 [00:12<00:12, 21.18it/s]
eval model::  48%|████▊     | 240/500 [00:12<00:11, 21.73it/s]
eval model::  49%|████▊     | 243/500 [00:13<00:14, 18.32it/s]
eval model::  49%|████▉     | 246/500 [00:13<00:12, 20.68it/s]
eval model::  50%|████▉     | 249/500 [00:13<00:13, 18.82it/s]
eval model::  50%|█████     | 252/500 [00:13<00:12, 19.92it/s]
eval model::  51%|█████     | 255/500 [00:13<00:11, 21.23it/s]
eval model::  52%|█████▏    | 258/500 [00:13<00:11, 21.73it/s]
eval model::  52%|█████▏    | 261/500 [00:13<00:11, 21.57it/s]
eval model::  53%|█████▎    | 264/500 [00:14<00:10, 22.31it/s]
eval model::  53%|█████▎    | 267/500 [00:14<00:11, 19.91it/s]
eval model::  54%|█████▍    | 270/500 [00:14<00:11, 19.46it/s]
eval model::  55%|█████▍    | 273/500 [00:14<00:10, 20.95it/s]
eval model::  55%|█████▌    | 276/500 [00:14<00:12, 18.33it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:11, 19.97it/s]
eval model::  56%|█████▋    | 282/500 [00:15<00:10, 21.16it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:18, 11.69it/s]
eval model::  58%|█████▊    | 288/500 [00:15<00:15, 13.92it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:12, 16.59it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:13, 15.60it/s]
eval model::  59%|█████▉    | 297/500 [00:16<00:14, 14.30it/s]
eval model::  60%|██████    | 300/500 [00:16<00:13, 14.59it/s]
eval model::  60%|██████    | 302/500 [00:16<00:13, 15.19it/s]
eval model::  61%|██████    | 304/500 [00:16<00:12, 15.60it/s]
eval model::  61%|██████    | 306/500 [00:16<00:12, 16.02it/s]
eval model::  62%|██████▏   | 309/500 [00:16<00:11, 16.75it/s]
eval model::  62%|██████▏   | 312/500 [00:17<00:10, 17.59it/s]
eval model::  63%|██████▎   | 315/500 [00:17<00:10, 17.52it/s]
eval model::  64%|██████▎   | 318/500 [00:17<00:09, 18.91it/s]
eval model::  64%|██████▍   | 321/500 [00:17<00:09, 19.01it/s]
eval model::  65%|██████▍   | 323/500 [00:17<00:09, 19.01it/s]
eval model::  65%|██████▌   | 326/500 [00:17<00:08, 20.02it/s]
eval model::  66%|██████▌   | 329/500 [00:17<00:08, 20.16it/s]
eval model::  66%|██████▋   | 332/500 [00:18<00:07, 21.69it/s]
eval model::  67%|██████▋   | 335/500 [00:18<00:07, 22.20it/s]
eval model::  68%|██████▊   | 338/500 [00:18<00:07, 20.26it/s]
eval model::  68%|██████▊   | 341/500 [00:18<00:11, 14.05it/s]
eval model::  69%|██████▉   | 344/500 [00:18<00:09, 16.42it/s]
eval model::  69%|██████▉   | 347/500 [00:18<00:08, 17.47it/s]
eval model::  70%|███████   | 350/500 [00:19<00:08, 18.62it/s]
eval model::  71%|███████   | 353/500 [00:19<00:07, 20.66it/s]
eval model::  71%|███████   | 356/500 [00:19<00:07, 20.39it/s]
eval model::  72%|███████▏  | 359/500 [00:19<00:06, 21.42it/s]
eval model::  72%|███████▏  | 362/500 [00:19<00:06, 20.08it/s]
eval model::  73%|███████▎  | 365/500 [00:19<00:06, 19.76it/s]
eval model::  74%|███████▎  | 368/500 [00:19<00:06, 19.40it/s]
eval model::  74%|███████▍  | 371/500 [00:20<00:06, 19.52it/s]
eval model::  75%|███████▍  | 374/500 [00:20<00:06, 20.57it/s]
eval model::  75%|███████▌  | 377/500 [00:20<00:06, 20.19it/s]
eval model::  76%|███████▌  | 380/500 [00:20<00:06, 18.95it/s]
eval model::  77%|███████▋  | 383/500 [00:20<00:05, 19.94it/s]
eval model::  77%|███████▋  | 386/500 [00:21<00:08, 13.21it/s]
eval model::  78%|███████▊  | 389/500 [00:21<00:07, 15.27it/s]
eval model::  78%|███████▊  | 392/500 [00:21<00:06, 16.78it/s]
eval model::  79%|███████▉  | 394/500 [00:21<00:06, 15.81it/s]
eval model::  79%|███████▉  | 397/500 [00:21<00:06, 17.10it/s]
eval model::  80%|███████▉  | 399/500 [00:21<00:05, 17.15it/s]
eval model::  80%|████████  | 401/500 [00:21<00:06, 16.31it/s]
eval model::  81%|████████  | 404/500 [00:22<00:05, 18.17it/s]
eval model::  81%|████████▏ | 407/500 [00:22<00:04, 19.42it/s]
eval model::  82%|████████▏ | 410/500 [00:22<00:04, 20.52it/s]
eval model::  83%|████████▎ | 413/500 [00:22<00:04, 20.72it/s]
eval model::  83%|████████▎ | 416/500 [00:22<00:04, 19.23it/s]
eval model::  84%|████████▍ | 419/500 [00:22<00:04, 19.03it/s]
eval model::  84%|████████▍ | 421/500 [00:23<00:06, 12.83it/s]
eval model::  85%|████████▍ | 424/500 [00:23<00:05, 14.27it/s]
eval model::  85%|████████▌ | 426/500 [00:23<00:04, 15.25it/s]
eval model::  86%|████████▌ | 429/500 [00:23<00:04, 17.34it/s]
eval model::  86%|████████▌ | 431/500 [00:23<00:04, 15.90it/s]
eval model::  87%|████████▋ | 434/500 [00:23<00:03, 18.88it/s]
eval model::  87%|████████▋ | 437/500 [00:23<00:03, 20.74it/s]
eval model::  88%|████████▊ | 440/500 [00:24<00:03, 19.30it/s]
eval model::  89%|████████▊ | 443/500 [00:24<00:02, 21.13it/s]
eval model::  89%|████████▉ | 446/500 [00:24<00:02, 21.64it/s]
eval model::  90%|████████▉ | 449/500 [00:24<00:02, 19.48it/s]
eval model::  90%|█████████ | 452/500 [00:24<00:02, 21.54it/s]
eval model::  91%|█████████ | 455/500 [00:24<00:01, 23.11it/s]
eval model::  92%|█████████▏| 458/500 [00:24<00:01, 23.23it/s]
eval model::  92%|█████████▏| 461/500 [00:25<00:01, 22.38it/s]
eval model::  93%|█████████▎| 464/500 [00:25<00:02, 17.49it/s]
eval model::  93%|█████████▎| 466/500 [00:25<00:02, 16.20it/s]
eval model::  94%|█████████▎| 468/500 [00:25<00:01, 16.58it/s]
eval model::  94%|█████████▍| 471/500 [00:25<00:01, 19.23it/s]
eval model::  95%|█████████▍| 474/500 [00:25<00:01, 18.17it/s]
eval model::  96%|█████████▌| 478/500 [00:25<00:01, 21.06it/s]
eval model::  96%|█████████▌| 481/500 [00:26<00:00, 22.00it/s]
eval model::  97%|█████████▋| 484/500 [00:26<00:00, 22.43it/s]
eval model::  97%|█████████▋| 487/500 [00:26<00:00, 22.08it/s]
eval model::  98%|█████████▊| 490/500 [00:26<00:00, 23.00it/s]
eval model::  99%|█████████▊| 493/500 [00:26<00:00, 20.77it/s]
eval model::  99%|█████████▉| 496/500 [00:26<00:00, 21.94it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 25.40it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.59it/s]
[2024/07/27 15:39:12] ppocr INFO: cur metric, precision: 0.7654252362423568, recall: 0.6629754453538758, hmean: 0.7105263157894737, fps: 43.790199052224935
[2024/07/27 15:39:12] ppocr INFO: best metric, hmean: 0.7301425661914459, precision: 0.7747163695299838, recall: 0.6904188733750601, fps: 43.582139874688714, best_epoch: 960
[2024/07/27 15:39:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:39:20] ppocr INFO: epoch: [1401/1500], global_step: 4203, lr: 0.001000, loss: 1.136887, loss_shrink_maps: 0.565376, loss_threshold_maps: 0.454899, loss_binary_maps: 0.112859, avg_reader_cost: 2.02366 s, avg_batch_cost: 2.30928 s, avg_samples: 12.5, ips: 5.41295 samples/s, eta: 0:42:50
[2024/07/27 15:39:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:39:30] ppocr INFO: epoch: [1402/1500], global_step: 4206, lr: 0.001000, loss: 1.136887, loss_shrink_maps: 0.574042, loss_threshold_maps: 0.464963, loss_binary_maps: 0.114032, avg_reader_cost: 2.33608 s, avg_batch_cost: 2.59176 s, avg_samples: 12.5, ips: 4.82298 samples/s, eta: 0:42:24
[2024/07/27 15:39:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:39:40] ppocr INFO: epoch: [1403/1500], global_step: 4209, lr: 0.001000, loss: 1.136887, loss_shrink_maps: 0.574042, loss_threshold_maps: 0.462786, loss_binary_maps: 0.114032, avg_reader_cost: 2.16093 s, avg_batch_cost: 2.48166 s, avg_samples: 12.5, ips: 5.03694 samples/s, eta: 0:41:58
[2024/07/27 15:39:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:39:48] ppocr INFO: epoch: [1404/1500], global_step: 4210, lr: 0.001000, loss: 1.136887, loss_shrink_maps: 0.574042, loss_threshold_maps: 0.461296, loss_binary_maps: 0.114032, avg_reader_cost: 0.56807 s, avg_batch_cost: 0.78107 s, avg_samples: 4.8, ips: 6.14543 samples/s, eta: 0:41:49
[2024/07/27 15:39:49] ppocr INFO: epoch: [1404/1500], global_step: 4212, lr: 0.001000, loss: 1.136887, loss_shrink_maps: 0.574042, loss_threshold_maps: 0.461296, loss_binary_maps: 0.114032, avg_reader_cost: 1.65404 s, avg_batch_cost: 1.80101 s, avg_samples: 7.7, ips: 4.27538 samples/s, eta: 0:41:32
[2024/07/27 15:39:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:39:59] ppocr INFO: epoch: [1405/1500], global_step: 4215, lr: 0.001000, loss: 1.136887, loss_shrink_maps: 0.574042, loss_threshold_maps: 0.461296, loss_binary_maps: 0.114032, avg_reader_cost: 2.30198 s, avg_batch_cost: 2.54184 s, avg_samples: 12.5, ips: 4.91770 samples/s, eta: 0:41:06
[2024/07/27 15:40:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:40:09] ppocr INFO: epoch: [1406/1500], global_step: 4218, lr: 0.001000, loss: 1.141885, loss_shrink_maps: 0.574042, loss_threshold_maps: 0.467423, loss_binary_maps: 0.114032, avg_reader_cost: 2.21852 s, avg_batch_cost: 2.59606 s, avg_samples: 12.5, ips: 4.81499 samples/s, eta: 0:40:40
[2024/07/27 15:40:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:40:18] ppocr INFO: epoch: [1407/1500], global_step: 4220, lr: 0.001000, loss: 1.141885, loss_shrink_maps: 0.570637, loss_threshold_maps: 0.467423, loss_binary_maps: 0.114032, avg_reader_cost: 1.31369 s, avg_batch_cost: 1.56302 s, avg_samples: 9.6, ips: 6.14194 samples/s, eta: 0:40:22
[2024/07/27 15:40:18] ppocr INFO: epoch: [1407/1500], global_step: 4221, lr: 0.001000, loss: 1.141885, loss_shrink_maps: 0.570637, loss_threshold_maps: 0.467423, loss_binary_maps: 0.114032, avg_reader_cost: 0.82794 s, avg_batch_cost: 0.88333 s, avg_samples: 2.9, ips: 3.28303 samples/s, eta: 0:40:14
[2024/07/27 15:40:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:40:28] ppocr INFO: epoch: [1408/1500], global_step: 4224, lr: 0.001000, loss: 1.165396, loss_shrink_maps: 0.578912, loss_threshold_maps: 0.470510, loss_binary_maps: 0.115325, avg_reader_cost: 2.12653 s, avg_batch_cost: 2.59168 s, avg_samples: 12.5, ips: 4.82313 samples/s, eta: 0:39:48
[2024/07/27 15:40:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:40:38] ppocr INFO: epoch: [1409/1500], global_step: 4227, lr: 0.001000, loss: 1.165396, loss_shrink_maps: 0.572674, loss_threshold_maps: 0.468613, loss_binary_maps: 0.113076, avg_reader_cost: 2.40064 s, avg_batch_cost: 2.64225 s, avg_samples: 12.5, ips: 4.73082 samples/s, eta: 0:39:22
[2024/07/27 15:40:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:40:48] ppocr INFO: epoch: [1410/1500], global_step: 4230, lr: 0.001000, loss: 1.137699, loss_shrink_maps: 0.564107, loss_threshold_maps: 0.459452, loss_binary_maps: 0.112380, avg_reader_cost: 2.28016 s, avg_batch_cost: 2.68060 s, avg_samples: 12.5, ips: 4.66314 samples/s, eta: 0:38:56
[2024/07/27 15:40:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:40:58] ppocr INFO: epoch: [1411/1500], global_step: 4233, lr: 0.001000, loss: 1.137699, loss_shrink_maps: 0.564406, loss_threshold_maps: 0.463303, loss_binary_maps: 0.112380, avg_reader_cost: 2.36874 s, avg_batch_cost: 2.62840 s, avg_samples: 12.5, ips: 4.75574 samples/s, eta: 0:38:30
[2024/07/27 15:40:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:41:07] ppocr INFO: epoch: [1412/1500], global_step: 4236, lr: 0.001000, loss: 1.121290, loss_shrink_maps: 0.550523, loss_threshold_maps: 0.443717, loss_binary_maps: 0.109464, avg_reader_cost: 2.21711 s, avg_batch_cost: 2.57730 s, avg_samples: 12.5, ips: 4.85004 samples/s, eta: 0:38:04
[2024/07/27 15:41:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:41:17] ppocr INFO: epoch: [1413/1500], global_step: 4239, lr: 0.001000, loss: 1.103602, loss_shrink_maps: 0.550523, loss_threshold_maps: 0.435510, loss_binary_maps: 0.109464, avg_reader_cost: 2.39771 s, avg_batch_cost: 2.63894 s, avg_samples: 12.5, ips: 4.73675 samples/s, eta: 0:37:38
[2024/07/27 15:41:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:41:26] ppocr INFO: epoch: [1414/1500], global_step: 4240, lr: 0.001000, loss: 1.120672, loss_shrink_maps: 0.557501, loss_threshold_maps: 0.439763, loss_binary_maps: 0.110749, avg_reader_cost: 0.70955 s, avg_batch_cost: 0.80321 s, avg_samples: 4.8, ips: 5.97600 samples/s, eta: 0:37:29
[2024/07/27 15:41:27] ppocr INFO: epoch: [1414/1500], global_step: 4242, lr: 0.001000, loss: 1.131062, loss_shrink_maps: 0.568932, loss_threshold_maps: 0.443717, loss_binary_maps: 0.112755, avg_reader_cost: 1.69908 s, avg_batch_cost: 1.84712 s, avg_samples: 7.7, ips: 4.16865 samples/s, eta: 0:37:12
[2024/07/27 15:41:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:41:37] ppocr INFO: epoch: [1415/1500], global_step: 4245, lr: 0.001000, loss: 1.133940, loss_shrink_maps: 0.575836, loss_threshold_maps: 0.447390, loss_binary_maps: 0.114387, avg_reader_cost: 2.17246 s, avg_batch_cost: 2.48820 s, avg_samples: 12.5, ips: 5.02371 samples/s, eta: 0:36:46
[2024/07/27 15:41:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:41:47] ppocr INFO: epoch: [1416/1500], global_step: 4248, lr: 0.001000, loss: 1.133940, loss_shrink_maps: 0.572202, loss_threshold_maps: 0.449558, loss_binary_maps: 0.113856, avg_reader_cost: 2.42763 s, avg_batch_cost: 2.67141 s, avg_samples: 12.5, ips: 4.67918 samples/s, eta: 0:36:20
[2024/07/27 15:41:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:41:56] ppocr INFO: epoch: [1417/1500], global_step: 4250, lr: 0.001000, loss: 1.138337, loss_shrink_maps: 0.572202, loss_threshold_maps: 0.450778, loss_binary_maps: 0.113856, avg_reader_cost: 1.32246 s, avg_batch_cost: 1.64118 s, avg_samples: 9.6, ips: 5.84945 samples/s, eta: 0:36:03
[2024/07/27 15:41:56] ppocr INFO: epoch: [1417/1500], global_step: 4251, lr: 0.001000, loss: 1.138337, loss_shrink_maps: 0.572202, loss_threshold_maps: 0.450778, loss_binary_maps: 0.113856, avg_reader_cost: 0.86661 s, avg_batch_cost: 0.92234 s, avg_samples: 2.9, ips: 3.14418 samples/s, eta: 0:35:54
[2024/07/27 15:41:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:42:06] ppocr INFO: epoch: [1418/1500], global_step: 4254, lr: 0.001000, loss: 1.140927, loss_shrink_maps: 0.576854, loss_threshold_maps: 0.446347, loss_binary_maps: 0.114750, avg_reader_cost: 2.15872 s, avg_batch_cost: 2.51411 s, avg_samples: 12.5, ips: 4.97194 samples/s, eta: 0:35:28
[2024/07/27 15:42:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:42:16] ppocr INFO: epoch: [1419/1500], global_step: 4257, lr: 0.001000, loss: 1.169256, loss_shrink_maps: 0.591681, loss_threshold_maps: 0.453842, loss_binary_maps: 0.117553, avg_reader_cost: 2.21730 s, avg_batch_cost: 2.57745 s, avg_samples: 12.5, ips: 4.84975 samples/s, eta: 0:35:02
[2024/07/27 15:42:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:42:25] ppocr INFO: epoch: [1420/1500], global_step: 4260, lr: 0.001000, loss: 1.155048, loss_shrink_maps: 0.577056, loss_threshold_maps: 0.449558, loss_binary_maps: 0.114750, avg_reader_cost: 2.18198 s, avg_batch_cost: 2.52567 s, avg_samples: 12.5, ips: 4.94918 samples/s, eta: 0:34:36

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:52,  9.42it/s]
eval model::   1%|          | 4/500 [00:00<00:27, 17.82it/s]
eval model::   1%|          | 6/500 [00:00<00:27, 18.21it/s]
eval model::   2%|▏         | 8/500 [00:00<00:29, 16.76it/s]
eval model::   2%|▏         | 11/500 [00:00<00:28, 17.18it/s]
eval model::   3%|▎         | 14/500 [00:00<00:26, 18.35it/s]
eval model::   4%|▎         | 18/500 [00:00<00:21, 22.46it/s]
eval model::   4%|▍         | 21/500 [00:01<00:22, 21.43it/s]
eval model::   5%|▍         | 24/500 [00:01<00:24, 19.20it/s]
eval model::   5%|▌         | 26/500 [00:01<00:26, 18.20it/s]
eval model::   6%|▌         | 29/500 [00:01<00:23, 19.83it/s]
eval model::   6%|▋         | 32/500 [00:01<00:26, 17.58it/s]
eval model::   7%|▋         | 34/500 [00:01<00:29, 16.05it/s]
eval model::   7%|▋         | 36/500 [00:02<00:29, 15.93it/s]
eval model::   8%|▊         | 39/500 [00:02<00:26, 17.66it/s]
eval model::   8%|▊         | 42/500 [00:02<00:26, 17.55it/s]
eval model::   9%|▉         | 45/500 [00:02<00:22, 20.21it/s]
eval model::  10%|▉         | 48/500 [00:02<00:21, 20.89it/s]
eval model::  10%|█         | 51/500 [00:02<00:21, 21.05it/s]
eval model::  11%|█         | 54/500 [00:02<00:21, 20.71it/s]
eval model::  11%|█▏        | 57/500 [00:03<00:21, 20.64it/s]
eval model::  12%|█▏        | 60/500 [00:03<00:22, 19.73it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:29, 14.67it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:23, 18.42it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:21, 19.89it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:21, 19.50it/s]
eval model::  15%|█▌        | 76/500 [00:03<00:19, 21.53it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:19, 22.04it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:17, 23.45it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:18, 22.00it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:21, 19.10it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:23, 17.19it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:23, 17.02it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:21, 19.06it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:18, 21.35it/s]
eval model::  20%|██        | 102/500 [00:05<00:18, 21.91it/s]
eval model::  21%|██        | 106/500 [00:05<00:16, 23.28it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:16, 23.63it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:18, 21.15it/s]
eval model::  23%|██▎       | 115/500 [00:05<00:18, 20.53it/s]
eval model::  24%|██▎       | 118/500 [00:06<00:17, 22.10it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:18, 20.41it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:20, 18.07it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:20, 17.99it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:18, 19.79it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:21, 16.98it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:20, 18.22it/s]
eval model::  27%|██▋       | 137/500 [00:07<00:19, 18.28it/s]
eval model::  28%|██▊       | 140/500 [00:07<00:18, 19.64it/s]
eval model::  29%|██▊       | 143/500 [00:07<00:18, 19.38it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:18, 19.10it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:19, 18.22it/s]
eval model::  30%|███       | 150/500 [00:07<00:18, 19.22it/s]
eval model::  30%|███       | 152/500 [00:07<00:21, 16.31it/s]
eval model::  31%|███       | 155/500 [00:08<00:19, 18.10it/s]
eval model::  32%|███▏      | 158/500 [00:08<00:16, 20.47it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:20, 16.46it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:18, 18.19it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:16, 19.79it/s]
eval model::  34%|███▍      | 170/500 [00:08<00:15, 21.45it/s]
eval model::  35%|███▍      | 173/500 [00:08<00:16, 20.16it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:17, 18.97it/s]
eval model::  36%|███▌      | 178/500 [00:09<00:17, 18.81it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:19, 16.84it/s]
eval model::  36%|███▋      | 182/500 [00:09<00:19, 16.69it/s]
eval model::  37%|███▋      | 185/500 [00:09<00:16, 19.57it/s]
eval model::  38%|███▊      | 188/500 [00:09<00:17, 18.07it/s]
eval model::  38%|███▊      | 190/500 [00:09<00:17, 17.82it/s]
eval model::  39%|███▊      | 193/500 [00:10<00:15, 20.44it/s]
eval model::  39%|███▉      | 196/500 [00:10<00:16, 18.24it/s]
eval model::  40%|███▉      | 199/500 [00:10<00:16, 17.90it/s]
eval model::  40%|████      | 202/500 [00:10<00:15, 19.45it/s]
eval model::  41%|████      | 205/500 [00:10<00:19, 15.09it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:18, 15.73it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:18, 15.86it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:16, 16.89it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:19, 14.49it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:20, 13.94it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:17, 16.11it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:20, 13.47it/s]
eval model::  45%|████▌     | 225/500 [00:12<00:18, 15.25it/s]
eval model::  45%|████▌     | 227/500 [00:12<00:17, 15.71it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:15, 17.10it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:13, 19.13it/s]
eval model::  47%|████▋     | 235/500 [00:12<00:14, 18.04it/s]
eval model::  48%|████▊     | 238/500 [00:12<00:12, 20.76it/s]
eval model::  48%|████▊     | 241/500 [00:12<00:13, 18.59it/s]
eval model::  49%|████▊     | 243/500 [00:13<00:16, 15.16it/s]
eval model::  49%|████▉     | 246/500 [00:13<00:14, 17.11it/s]
eval model::  50%|████▉     | 249/500 [00:13<00:14, 17.72it/s]
eval model::  50%|█████     | 252/500 [00:13<00:12, 19.11it/s]
eval model::  51%|█████     | 255/500 [00:13<00:12, 19.78it/s]
eval model::  52%|█████▏    | 258/500 [00:13<00:13, 18.36it/s]
eval model::  52%|█████▏    | 261/500 [00:14<00:12, 19.65it/s]
eval model::  53%|█████▎    | 264/500 [00:14<00:10, 21.77it/s]
eval model::  53%|█████▎    | 267/500 [00:14<00:10, 22.08it/s]
eval model::  54%|█████▍    | 270/500 [00:14<00:12, 18.66it/s]
eval model::  55%|█████▍    | 273/500 [00:14<00:11, 19.99it/s]
eval model::  55%|█████▌    | 276/500 [00:14<00:12, 17.64it/s]
eval model::  56%|█████▌    | 279/500 [00:15<00:12, 17.94it/s]
eval model::  56%|█████▋    | 282/500 [00:15<00:11, 19.76it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:17, 12.50it/s]
eval model::  58%|█████▊    | 288/500 [00:15<00:14, 14.76it/s]
eval model::  58%|█████▊    | 292/500 [00:15<00:12, 17.00it/s]
eval model::  59%|█████▉    | 295/500 [00:16<00:16, 12.45it/s]
eval model::  60%|█████▉    | 298/500 [00:16<00:14, 13.98it/s]
eval model::  60%|██████    | 300/500 [00:16<00:14, 13.85it/s]
eval model::  61%|██████    | 303/500 [00:16<00:12, 15.29it/s]
eval model::  61%|██████    | 305/500 [00:16<00:13, 14.72it/s]
eval model::  62%|██████▏   | 308/500 [00:17<00:12, 15.75it/s]
eval model::  62%|██████▏   | 311/500 [00:17<00:10, 17.51it/s]
eval model::  63%|██████▎   | 313/500 [00:17<00:10, 17.92it/s]
eval model::  63%|██████▎   | 315/500 [00:17<00:10, 16.88it/s]
eval model::  64%|██████▎   | 318/500 [00:17<00:09, 18.50it/s]
eval model::  64%|██████▍   | 321/500 [00:17<00:09, 18.44it/s]
eval model::  65%|██████▍   | 323/500 [00:17<00:09, 18.40it/s]
eval model::  65%|██████▌   | 326/500 [00:17<00:08, 19.44it/s]
eval model::  66%|██████▌   | 328/500 [00:18<00:08, 19.32it/s]
eval model::  66%|██████▌   | 331/500 [00:18<00:07, 21.35it/s]
eval model::  67%|██████▋   | 335/500 [00:18<00:06, 24.07it/s]
eval model::  68%|██████▊   | 338/500 [00:18<00:07, 20.88it/s]
eval model::  68%|██████▊   | 341/500 [00:18<00:09, 16.87it/s]
eval model::  69%|██████▉   | 344/500 [00:18<00:08, 18.67it/s]
eval model::  69%|██████▉   | 347/500 [00:19<00:08, 18.85it/s]
eval model::  70%|███████   | 351/500 [00:19<00:06, 22.01it/s]
eval model::  71%|███████   | 355/500 [00:19<00:06, 21.67it/s]
eval model::  72%|███████▏  | 358/500 [00:19<00:06, 20.47it/s]
eval model::  72%|███████▏  | 361/500 [00:19<00:07, 17.38it/s]
eval model::  73%|███████▎  | 363/500 [00:19<00:07, 17.34it/s]
eval model::  73%|███████▎  | 365/500 [00:20<00:07, 16.91it/s]
eval model::  73%|███████▎  | 367/500 [00:20<00:07, 16.91it/s]
eval model::  74%|███████▍  | 370/500 [00:20<00:06, 19.31it/s]
eval model::  75%|███████▍  | 373/500 [00:20<00:05, 21.22it/s]
eval model::  75%|███████▌  | 376/500 [00:20<00:05, 21.75it/s]
eval model::  76%|███████▌  | 380/500 [00:20<00:05, 20.41it/s]
eval model::  77%|███████▋  | 383/500 [00:20<00:05, 21.14it/s]
eval model::  77%|███████▋  | 386/500 [00:21<00:08, 12.97it/s]
eval model::  78%|███████▊  | 389/500 [00:21<00:07, 15.34it/s]
eval model::  78%|███████▊  | 392/500 [00:21<00:06, 16.59it/s]
eval model::  79%|███████▉  | 395/500 [00:21<00:06, 17.34it/s]
eval model::  80%|███████▉  | 399/500 [00:21<00:05, 19.58it/s]
eval model::  80%|████████  | 402/500 [00:22<00:05, 17.40it/s]
eval model::  81%|████████  | 404/500 [00:22<00:05, 16.82it/s]
eval model::  81%|████████▏ | 407/500 [00:22<00:05, 18.38it/s]
eval model::  82%|████████▏ | 411/500 [00:22<00:03, 22.58it/s]
eval model::  83%|████████▎ | 414/500 [00:22<00:03, 23.06it/s]
eval model::  83%|████████▎ | 417/500 [00:22<00:03, 20.76it/s]
eval model::  84%|████████▍ | 420/500 [00:23<00:06, 13.22it/s]
eval model::  85%|████████▍ | 423/500 [00:23<00:05, 14.86it/s]
eval model::  85%|████████▌ | 425/500 [00:23<00:05, 14.24it/s]
eval model::  86%|████████▌ | 428/500 [00:23<00:04, 16.82it/s]
eval model::  86%|████████▌ | 431/500 [00:23<00:04, 16.66it/s]
eval model::  87%|████████▋ | 434/500 [00:23<00:03, 19.18it/s]
eval model::  87%|████████▋ | 437/500 [00:23<00:03, 20.98it/s]
eval model::  88%|████████▊ | 440/500 [00:24<00:02, 20.13it/s]
eval model::  89%|████████▊ | 443/500 [00:24<00:02, 21.63it/s]
eval model::  89%|████████▉ | 446/500 [00:24<00:02, 19.44it/s]
eval model::  90%|████████▉ | 449/500 [00:24<00:02, 18.33it/s]
eval model::  90%|█████████ | 452/500 [00:24<00:02, 20.23it/s]
eval model::  91%|█████████ | 455/500 [00:24<00:02, 20.52it/s]
eval model::  92%|█████████▏| 458/500 [00:25<00:01, 21.08it/s]
eval model::  92%|█████████▏| 461/500 [00:25<00:01, 19.66it/s]
eval model::  93%|█████████▎| 464/500 [00:25<00:02, 15.02it/s]
eval model::  93%|█████████▎| 466/500 [00:25<00:02, 15.38it/s]
eval model::  94%|█████████▎| 468/500 [00:25<00:02, 15.45it/s]
eval model::  94%|█████████▍| 471/500 [00:25<00:01, 17.36it/s]
eval model::  95%|█████████▍| 474/500 [00:26<00:01, 16.89it/s]
eval model::  95%|█████████▌| 477/500 [00:26<00:01, 19.56it/s]
eval model::  96%|█████████▌| 480/500 [00:26<00:00, 21.79it/s]
eval model::  97%|█████████▋| 483/500 [00:26<00:00, 22.73it/s]
eval model::  97%|█████████▋| 486/500 [00:26<00:00, 24.34it/s]
eval model::  98%|█████████▊| 489/500 [00:26<00:00, 23.09it/s]
eval model::  98%|█████████▊| 492/500 [00:26<00:00, 20.67it/s]
eval model::  99%|█████████▉| 495/500 [00:26<00:00, 22.27it/s]
eval model:: 100%|█████████▉| 499/500 [00:27<00:00, 26.36it/s]
eval model:: 100%|██████████| 500/500 [00:27<00:00, 18.46it/s]
[2024/07/27 15:42:52] ppocr INFO: cur metric, precision: 0.7767807066741447, recall: 0.6668271545498314, hmean: 0.7176165803108807, fps: 43.03829399948473
[2024/07/27 15:42:52] ppocr INFO: best metric, hmean: 0.7301425661914459, precision: 0.7747163695299838, recall: 0.6904188733750601, fps: 43.582139874688714, best_epoch: 960
[2024/07/27 15:42:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:43:01] ppocr INFO: epoch: [1421/1500], global_step: 4263, lr: 0.001000, loss: 1.127459, loss_shrink_maps: 0.566016, loss_threshold_maps: 0.446776, loss_binary_maps: 0.112957, avg_reader_cost: 2.05178 s, avg_batch_cost: 2.28876 s, avg_samples: 12.5, ips: 5.46148 samples/s, eta: 0:34:10
[2024/07/27 15:43:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:43:10] ppocr INFO: epoch: [1422/1500], global_step: 4266, lr: 0.001000, loss: 1.175043, loss_shrink_maps: 0.590151, loss_threshold_maps: 0.462115, loss_binary_maps: 0.117330, avg_reader_cost: 2.16834 s, avg_batch_cost: 2.53848 s, avg_samples: 12.5, ips: 4.92421 samples/s, eta: 0:33:44
[2024/07/27 15:43:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:43:20] ppocr INFO: epoch: [1423/1500], global_step: 4269, lr: 0.001000, loss: 1.236532, loss_shrink_maps: 0.634415, loss_threshold_maps: 0.467562, loss_binary_maps: 0.126476, avg_reader_cost: 2.21003 s, avg_batch_cost: 2.57471 s, avg_samples: 12.5, ips: 4.85491 samples/s, eta: 0:33:18
[2024/07/27 15:43:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:43:29] ppocr INFO: epoch: [1424/1500], global_step: 4270, lr: 0.001000, loss: 1.222135, loss_shrink_maps: 0.616704, loss_threshold_maps: 0.467562, loss_binary_maps: 0.122746, avg_reader_cost: 0.63105 s, avg_batch_cost: 0.80390 s, avg_samples: 4.8, ips: 5.97089 samples/s, eta: 0:33:10
[2024/07/27 15:43:30] ppocr INFO: epoch: [1424/1500], global_step: 4272, lr: 0.001000, loss: 1.222135, loss_shrink_maps: 0.616704, loss_threshold_maps: 0.462115, loss_binary_maps: 0.122746, avg_reader_cost: 1.69957 s, avg_batch_cost: 1.84714 s, avg_samples: 7.7, ips: 4.16860 samples/s, eta: 0:32:52
[2024/07/27 15:43:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:43:40] ppocr INFO: epoch: [1425/1500], global_step: 4275, lr: 0.001000, loss: 1.170972, loss_shrink_maps: 0.586032, loss_threshold_maps: 0.462115, loss_binary_maps: 0.116635, avg_reader_cost: 2.21828 s, avg_batch_cost: 2.59749 s, avg_samples: 12.5, ips: 4.81235 samples/s, eta: 0:32:26
[2024/07/27 15:43:41] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:43:50] ppocr INFO: epoch: [1426/1500], global_step: 4278, lr: 0.001000, loss: 1.071304, loss_shrink_maps: 0.531075, loss_threshold_maps: 0.445174, loss_binary_maps: 0.105772, avg_reader_cost: 2.26918 s, avg_batch_cost: 2.51496 s, avg_samples: 12.5, ips: 4.97025 samples/s, eta: 0:32:00
[2024/07/27 15:43:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:43:59] ppocr INFO: epoch: [1427/1500], global_step: 4280, lr: 0.001000, loss: 1.119516, loss_shrink_maps: 0.558545, loss_threshold_maps: 0.445174, loss_binary_maps: 0.111204, avg_reader_cost: 1.47631 s, avg_batch_cost: 1.65947 s, avg_samples: 9.6, ips: 5.78497 samples/s, eta: 0:31:43
[2024/07/27 15:43:59] ppocr INFO: epoch: [1427/1500], global_step: 4281, lr: 0.001000, loss: 1.119516, loss_shrink_maps: 0.558545, loss_threshold_maps: 0.445174, loss_binary_maps: 0.111204, avg_reader_cost: 0.87591 s, avg_batch_cost: 0.93155 s, avg_samples: 2.9, ips: 3.11309 samples/s, eta: 0:31:34
[2024/07/27 15:44:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:44:09] ppocr INFO: epoch: [1428/1500], global_step: 4284, lr: 0.001000, loss: 1.088052, loss_shrink_maps: 0.555335, loss_threshold_maps: 0.439419, loss_binary_maps: 0.110427, avg_reader_cost: 2.27234 s, avg_batch_cost: 2.50877 s, avg_samples: 12.5, ips: 4.98252 samples/s, eta: 0:31:08
[2024/07/27 15:44:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:44:19] ppocr INFO: epoch: [1429/1500], global_step: 4287, lr: 0.001000, loss: 1.062987, loss_shrink_maps: 0.531075, loss_threshold_maps: 0.438825, loss_binary_maps: 0.105772, avg_reader_cost: 2.25033 s, avg_batch_cost: 2.62697 s, avg_samples: 12.5, ips: 4.75833 samples/s, eta: 0:30:42
[2024/07/27 15:44:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:44:29] ppocr INFO: epoch: [1430/1500], global_step: 4290, lr: 0.001000, loss: 1.060031, loss_shrink_maps: 0.523524, loss_threshold_maps: 0.438383, loss_binary_maps: 0.104158, avg_reader_cost: 2.34276 s, avg_batch_cost: 2.58313 s, avg_samples: 12.5, ips: 4.83909 samples/s, eta: 0:30:16
[2024/07/27 15:44:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:44:39] ppocr INFO: epoch: [1431/1500], global_step: 4293, lr: 0.001000, loss: 1.048769, loss_shrink_maps: 0.513510, loss_threshold_maps: 0.432705, loss_binary_maps: 0.102235, avg_reader_cost: 2.45115 s, avg_batch_cost: 2.68419 s, avg_samples: 12.5, ips: 4.65689 samples/s, eta: 0:29:51
[2024/07/27 15:44:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:44:49] ppocr INFO: epoch: [1432/1500], global_step: 4296, lr: 0.001000, loss: 1.049280, loss_shrink_maps: 0.514861, loss_threshold_maps: 0.437670, loss_binary_maps: 0.102629, avg_reader_cost: 2.35341 s, avg_batch_cost: 2.58886 s, avg_samples: 12.5, ips: 4.82839 samples/s, eta: 0:29:25
[2024/07/27 15:44:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:44:58] ppocr INFO: epoch: [1433/1500], global_step: 4299, lr: 0.001000, loss: 1.038018, loss_shrink_maps: 0.497276, loss_threshold_maps: 0.437670, loss_binary_maps: 0.098863, avg_reader_cost: 2.08674 s, avg_batch_cost: 2.36035 s, avg_samples: 12.5, ips: 5.29583 samples/s, eta: 0:28:59
[2024/07/27 15:44:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:45:06] ppocr INFO: epoch: [1434/1500], global_step: 4300, lr: 0.001000, loss: 1.038018, loss_shrink_maps: 0.496235, loss_threshold_maps: 0.437670, loss_binary_maps: 0.098624, avg_reader_cost: 0.56994 s, avg_batch_cost: 0.77791 s, avg_samples: 4.8, ips: 6.17040 samples/s, eta: 0:28:50
[2024/07/27 15:45:08] ppocr INFO: epoch: [1434/1500], global_step: 4302, lr: 0.001000, loss: 1.074345, loss_shrink_maps: 0.528287, loss_threshold_maps: 0.437670, loss_binary_maps: 0.104810, avg_reader_cost: 1.64791 s, avg_batch_cost: 1.79517 s, avg_samples: 7.7, ips: 4.28930 samples/s, eta: 0:28:33
[2024/07/27 15:45:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:45:18] ppocr INFO: epoch: [1435/1500], global_step: 4305, lr: 0.001000, loss: 1.077971, loss_shrink_maps: 0.528287, loss_threshold_maps: 0.440207, loss_binary_maps: 0.104810, avg_reader_cost: 2.21392 s, avg_batch_cost: 2.57659 s, avg_samples: 12.5, ips: 4.85137 samples/s, eta: 0:28:07
[2024/07/27 15:45:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:45:28] ppocr INFO: epoch: [1436/1500], global_step: 4308, lr: 0.001000, loss: 1.089524, loss_shrink_maps: 0.549326, loss_threshold_maps: 0.439644, loss_binary_maps: 0.109431, avg_reader_cost: 2.28419 s, avg_batch_cost: 2.66322 s, avg_samples: 12.5, ips: 4.69357 samples/s, eta: 0:27:41
[2024/07/27 15:45:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:45:37] ppocr INFO: epoch: [1437/1500], global_step: 4310, lr: 0.001000, loss: 1.083742, loss_shrink_maps: 0.548644, loss_threshold_maps: 0.437122, loss_binary_maps: 0.109431, avg_reader_cost: 1.46706 s, avg_batch_cost: 1.67440 s, avg_samples: 9.6, ips: 5.73341 samples/s, eta: 0:27:23
[2024/07/27 15:45:38] ppocr INFO: epoch: [1437/1500], global_step: 4311, lr: 0.001000, loss: 1.111999, loss_shrink_maps: 0.558595, loss_threshold_maps: 0.439776, loss_binary_maps: 0.111018, avg_reader_cost: 0.88319 s, avg_batch_cost: 0.93871 s, avg_samples: 2.9, ips: 3.08933 samples/s, eta: 0:27:15
[2024/07/27 15:45:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:45:48] ppocr INFO: epoch: [1438/1500], global_step: 4314, lr: 0.001000, loss: 1.128951, loss_shrink_maps: 0.555322, loss_threshold_maps: 0.447331, loss_binary_maps: 0.110819, avg_reader_cost: 2.34883 s, avg_batch_cost: 2.58416 s, avg_samples: 12.5, ips: 4.83717 samples/s, eta: 0:26:49
[2024/07/27 15:45:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:45:57] ppocr INFO: epoch: [1439/1500], global_step: 4317, lr: 0.001000, loss: 1.128951, loss_shrink_maps: 0.555322, loss_threshold_maps: 0.451383, loss_binary_maps: 0.110819, avg_reader_cost: 2.21371 s, avg_batch_cost: 2.56564 s, avg_samples: 12.5, ips: 4.87209 samples/s, eta: 0:26:23
[2024/07/27 15:45:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:46:06] ppocr INFO: epoch: [1440/1500], global_step: 4320, lr: 0.001000, loss: 1.154817, loss_shrink_maps: 0.569382, loss_threshold_maps: 0.453275, loss_binary_maps: 0.113641, avg_reader_cost: 1.95859 s, avg_batch_cost: 2.21485 s, avg_samples: 12.5, ips: 5.64373 samples/s, eta: 0:25:57

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:58,  8.60it/s]
eval model::   1%|          | 4/500 [00:00<00:26, 18.49it/s]
eval model::   1%|▏         | 7/500 [00:00<00:23, 21.11it/s]
eval model::   2%|▏         | 10/500 [00:00<00:25, 19.33it/s]
eval model::   2%|▏         | 12/500 [00:00<00:25, 19.31it/s]
eval model::   3%|▎         | 14/500 [00:00<00:27, 17.78it/s]
eval model::   3%|▎         | 17/500 [00:00<00:23, 20.52it/s]
eval model::   4%|▍         | 20/500 [00:01<00:25, 18.64it/s]
eval model::   5%|▍         | 23/500 [00:01<00:23, 20.15it/s]
eval model::   5%|▌         | 26/500 [00:01<00:24, 19.20it/s]
eval model::   6%|▌         | 29/500 [00:01<00:24, 19.11it/s]
eval model::   6%|▌         | 31/500 [00:01<00:27, 16.77it/s]
eval model::   7%|▋         | 34/500 [00:01<00:26, 17.29it/s]
eval model::   7%|▋         | 37/500 [00:01<00:24, 18.81it/s]
eval model::   8%|▊         | 39/500 [00:02<00:24, 18.79it/s]
eval model::   8%|▊         | 41/500 [00:02<00:24, 18.73it/s]
eval model::   9%|▊         | 43/500 [00:02<00:28, 15.99it/s]
eval model::   9%|▉         | 46/500 [00:02<00:25, 17.53it/s]
eval model::  10%|▉         | 49/500 [00:02<00:22, 19.93it/s]
eval model::  10%|█         | 52/500 [00:02<00:21, 20.63it/s]
eval model::  11%|█         | 55/500 [00:02<00:19, 22.37it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:22, 19.84it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:27, 16.03it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:26, 16.50it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:22, 19.27it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:21, 19.73it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:20, 20.40it/s]
eval model::  15%|█▌        | 75/500 [00:03<00:20, 21.22it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:20, 20.76it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:18, 22.32it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:19, 21.20it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:22, 18.75it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:23, 17.69it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:24, 16.75it/s]
eval model::  19%|█▉        | 94/500 [00:04<00:21, 18.74it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:21, 19.01it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:20, 19.79it/s]
eval model::  20%|██        | 102/500 [00:05<00:19, 20.23it/s]
eval model::  21%|██        | 105/500 [00:05<00:18, 21.40it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:17, 22.47it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:17, 22.12it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:16, 23.87it/s]
eval model::  23%|██▎       | 117/500 [00:05<00:16, 22.61it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:18, 20.14it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:17, 21.68it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:19, 19.49it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:17, 21.11it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:20, 18.29it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:18, 19.83it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:17, 21.13it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:16, 22.32it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:16, 20.96it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:19, 18.16it/s]
eval model::  30%|███       | 150/500 [00:07<00:17, 20.05it/s]
eval model::  31%|███       | 153/500 [00:07<00:17, 19.36it/s]
eval model::  31%|███       | 156/500 [00:07<00:17, 19.81it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:17, 19.30it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:23, 14.58it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:20, 16.64it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:19, 17.06it/s]
eval model::  34%|███▍      | 170/500 [00:08<00:17, 18.65it/s]
eval model::  34%|███▍      | 172/500 [00:08<00:17, 18.25it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:17, 18.29it/s]
eval model::  35%|███▌      | 177/500 [00:09<00:16, 20.00it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:17, 18.41it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:15, 20.03it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:14, 22.19it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:13, 22.39it/s]
eval model::  38%|███▊      | 192/500 [00:09<00:14, 21.88it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:14, 20.78it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:13, 22.51it/s]
eval model::  40%|████      | 201/500 [00:10<00:13, 22.09it/s]
eval model::  41%|████      | 204/500 [00:10<00:12, 22.77it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:17, 16.36it/s]
eval model::  42%|████▏     | 209/500 [00:10<00:18, 15.78it/s]
eval model::  42%|████▏     | 211/500 [00:10<00:18, 15.44it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.69it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:20, 14.12it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:20, 14.02it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:16, 16.90it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:20, 13.64it/s]
eval model::  45%|████▌     | 226/500 [00:11<00:15, 17.51it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:12, 21.37it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:11, 22.35it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:12, 21.62it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:11, 22.83it/s]
eval model::  48%|████▊     | 242/500 [00:12<00:13, 19.11it/s]
eval model::  49%|████▉     | 245/500 [00:12<00:12, 20.04it/s]
eval model::  50%|████▉     | 248/500 [00:12<00:12, 20.97it/s]
eval model::  50%|█████     | 251/500 [00:13<00:11, 20.91it/s]
eval model::  51%|█████     | 254/500 [00:13<00:11, 22.03it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:10, 22.61it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:10, 22.08it/s]
eval model::  53%|█████▎    | 263/500 [00:13<00:11, 21.01it/s]
eval model::  53%|█████▎    | 266/500 [00:13<00:12, 18.93it/s]
eval model::  54%|█████▍    | 269/500 [00:13<00:12, 18.25it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:11, 19.78it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:13, 17.11it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:11, 18.52it/s]
eval model::  56%|█████▌    | 280/500 [00:14<00:11, 18.55it/s]
eval model::  57%|█████▋    | 283/500 [00:14<00:11, 19.63it/s]
eval model::  57%|█████▋    | 286/500 [00:15<00:16, 12.64it/s]
eval model::  58%|█████▊    | 289/500 [00:15<00:13, 15.34it/s]
eval model::  58%|█████▊    | 292/500 [00:15<00:12, 17.21it/s]
eval model::  59%|█████▉    | 295/500 [00:15<00:14, 13.71it/s]
eval model::  60%|█████▉    | 299/500 [00:15<00:11, 16.86it/s]
eval model::  60%|██████    | 302/500 [00:15<00:11, 17.13it/s]
eval model::  61%|██████    | 305/500 [00:16<00:10, 18.59it/s]
eval model::  62%|██████▏   | 308/500 [00:16<00:09, 19.76it/s]
eval model::  62%|██████▏   | 311/500 [00:16<00:09, 20.68it/s]
eval model::  63%|██████▎   | 314/500 [00:16<00:09, 20.60it/s]
eval model::  63%|██████▎   | 317/500 [00:16<00:08, 21.09it/s]
eval model::  64%|██████▍   | 320/500 [00:16<00:08, 21.67it/s]
eval model::  65%|██████▍   | 323/500 [00:16<00:08, 19.99it/s]
eval model::  65%|██████▌   | 326/500 [00:17<00:07, 21.83it/s]
eval model::  66%|██████▌   | 329/500 [00:17<00:07, 21.38it/s]
eval model::  66%|██████▋   | 332/500 [00:17<00:07, 22.79it/s]
eval model::  67%|██████▋   | 335/500 [00:17<00:06, 24.24it/s]
eval model::  68%|██████▊   | 338/500 [00:17<00:07, 21.72it/s]
eval model::  68%|██████▊   | 341/500 [00:17<00:09, 16.85it/s]
eval model::  69%|██████▉   | 344/500 [00:17<00:08, 19.11it/s]
eval model::  69%|██████▉   | 347/500 [00:18<00:07, 20.07it/s]
eval model::  70%|███████   | 351/500 [00:18<00:06, 22.59it/s]
eval model::  71%|███████   | 354/500 [00:18<00:06, 23.99it/s]
eval model::  71%|███████▏  | 357/500 [00:18<00:06, 21.11it/s]
eval model::  72%|███████▏  | 360/500 [00:18<00:07, 19.94it/s]
eval model::  73%|███████▎  | 363/500 [00:18<00:07, 18.52it/s]
eval model::  73%|███████▎  | 365/500 [00:18<00:07, 18.07it/s]
eval model::  73%|███████▎  | 367/500 [00:19<00:07, 17.24it/s]
eval model::  74%|███████▍  | 370/500 [00:19<00:06, 20.01it/s]
eval model::  75%|███████▍  | 373/500 [00:19<00:05, 21.75it/s]
eval model::  75%|███████▌  | 376/500 [00:19<00:05, 23.77it/s]
eval model::  76%|███████▌  | 379/500 [00:19<00:05, 23.44it/s]
eval model::  76%|███████▋  | 382/500 [00:19<00:06, 19.55it/s]
eval model::  77%|███████▋  | 386/500 [00:20<00:08, 13.53it/s]
eval model::  78%|███████▊  | 390/500 [00:20<00:06, 16.67it/s]
eval model::  79%|███████▊  | 393/500 [00:20<00:05, 17.97it/s]
eval model::  79%|███████▉  | 396/500 [00:20<00:05, 19.40it/s]
eval model::  80%|███████▉  | 399/500 [00:20<00:04, 21.01it/s]
eval model::  80%|████████  | 402/500 [00:20<00:04, 20.49it/s]
eval model::  81%|████████  | 405/500 [00:20<00:04, 22.12it/s]
eval model::  82%|████████▏ | 408/500 [00:21<00:03, 23.06it/s]
eval model::  82%|████████▏ | 411/500 [00:21<00:03, 23.72it/s]
eval model::  83%|████████▎ | 414/500 [00:21<00:03, 23.96it/s]
eval model::  83%|████████▎ | 417/500 [00:21<00:03, 22.26it/s]
eval model::  84%|████████▍ | 420/500 [00:21<00:05, 14.12it/s]
eval model::  85%|████████▍ | 423/500 [00:22<00:04, 16.14it/s]
eval model::  85%|████████▌ | 426/500 [00:22<00:04, 15.62it/s]
eval model::  86%|████████▌ | 430/500 [00:22<00:03, 17.87it/s]
eval model::  87%|████████▋ | 433/500 [00:22<00:03, 18.39it/s]
eval model::  87%|████████▋ | 436/500 [00:22<00:03, 20.67it/s]
eval model::  88%|████████▊ | 439/500 [00:22<00:02, 21.22it/s]
eval model::  88%|████████▊ | 442/500 [00:22<00:02, 20.89it/s]
eval model::  89%|████████▉ | 445/500 [00:23<00:02, 20.95it/s]
eval model::  90%|████████▉ | 448/500 [00:23<00:02, 20.73it/s]
eval model::  90%|█████████ | 451/500 [00:23<00:02, 21.68it/s]
eval model::  91%|█████████ | 454/500 [00:23<00:01, 23.00it/s]
eval model::  91%|█████████▏| 457/500 [00:23<00:01, 23.91it/s]
eval model::  92%|█████████▏| 460/500 [00:23<00:01, 23.39it/s]
eval model::  93%|█████████▎| 463/500 [00:23<00:01, 19.70it/s]
eval model::  93%|█████████▎| 466/500 [00:24<00:01, 18.87it/s]
eval model::  94%|█████████▎| 468/500 [00:24<00:01, 18.41it/s]
eval model::  94%|█████████▍| 471/500 [00:24<00:01, 20.40it/s]
eval model::  95%|█████████▍| 474/500 [00:24<00:01, 19.73it/s]
eval model::  95%|█████████▌| 477/500 [00:24<00:01, 20.87it/s]
eval model::  96%|█████████▌| 480/500 [00:24<00:00, 22.02it/s]
eval model::  97%|█████████▋| 483/500 [00:24<00:00, 21.59it/s]
eval model::  97%|█████████▋| 486/500 [00:25<00:00, 21.15it/s]
eval model::  98%|█████████▊| 489/500 [00:25<00:00, 21.77it/s]
eval model::  98%|█████████▊| 492/500 [00:25<00:00, 18.80it/s]
eval model::  99%|█████████▉| 495/500 [00:25<00:00, 19.82it/s]
eval model:: 100%|█████████▉| 498/500 [00:25<00:00, 21.57it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.47it/s]
[2024/07/27 15:46:32] ppocr INFO: cur metric, precision: 0.7559888579387186, recall: 0.6533461723639865, hmean: 0.7009297520661156, fps: 46.054697463760355
[2024/07/27 15:46:32] ppocr INFO: best metric, hmean: 0.7301425661914459, precision: 0.7747163695299838, recall: 0.6904188733750601, fps: 43.582139874688714, best_epoch: 960
[2024/07/27 15:46:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:46:42] ppocr INFO: epoch: [1441/1500], global_step: 4323, lr: 0.001000, loss: 1.109922, loss_shrink_maps: 0.547962, loss_threshold_maps: 0.446304, loss_binary_maps: 0.109448, avg_reader_cost: 2.59215 s, avg_batch_cost: 2.90663 s, avg_samples: 12.5, ips: 4.30051 samples/s, eta: 0:25:31
[2024/07/27 15:46:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:46:52] ppocr INFO: epoch: [1442/1500], global_step: 4326, lr: 0.001000, loss: 1.109922, loss_shrink_maps: 0.547856, loss_threshold_maps: 0.443782, loss_binary_maps: 0.109376, avg_reader_cost: 2.15283 s, avg_batch_cost: 2.50245 s, avg_samples: 12.5, ips: 4.99511 samples/s, eta: 0:25:05
[2024/07/27 15:46:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:47:02] ppocr INFO: epoch: [1443/1500], global_step: 4329, lr: 0.001000, loss: 1.090972, loss_shrink_maps: 0.529412, loss_threshold_maps: 0.443782, loss_binary_maps: 0.105212, avg_reader_cost: 2.36811 s, avg_batch_cost: 2.61038 s, avg_samples: 12.5, ips: 4.78857 samples/s, eta: 0:24:39
[2024/07/27 15:47:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:47:10] ppocr INFO: epoch: [1444/1500], global_step: 4330, lr: 0.001000, loss: 1.077344, loss_shrink_maps: 0.523760, loss_threshold_maps: 0.445280, loss_binary_maps: 0.104468, avg_reader_cost: 0.66141 s, avg_batch_cost: 0.77607 s, avg_samples: 4.8, ips: 6.18502 samples/s, eta: 0:24:30
[2024/07/27 15:47:12] ppocr INFO: epoch: [1444/1500], global_step: 4332, lr: 0.001000, loss: 1.034157, loss_shrink_maps: 0.511775, loss_threshold_maps: 0.429081, loss_binary_maps: 0.101512, avg_reader_cost: 1.64515 s, avg_batch_cost: 1.79314 s, avg_samples: 7.7, ips: 4.29415 samples/s, eta: 0:24:13
[2024/07/27 15:47:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:47:22] ppocr INFO: epoch: [1445/1500], global_step: 4335, lr: 0.001000, loss: 1.058041, loss_shrink_maps: 0.515863, loss_threshold_maps: 0.434832, loss_binary_maps: 0.102409, avg_reader_cost: 2.36371 s, avg_batch_cost: 2.63240 s, avg_samples: 12.5, ips: 4.74852 samples/s, eta: 0:23:47
[2024/07/27 15:47:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:47:31] ppocr INFO: epoch: [1446/1500], global_step: 4338, lr: 0.001000, loss: 1.065465, loss_shrink_maps: 0.525938, loss_threshold_maps: 0.434066, loss_binary_maps: 0.104354, avg_reader_cost: 2.36626 s, avg_batch_cost: 2.61380 s, avg_samples: 12.5, ips: 4.78231 samples/s, eta: 0:23:21
[2024/07/27 15:47:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:47:41] ppocr INFO: epoch: [1447/1500], global_step: 4340, lr: 0.001000, loss: 1.074230, loss_shrink_maps: 0.532996, loss_threshold_maps: 0.439161, loss_binary_maps: 0.106080, avg_reader_cost: 1.47571 s, avg_batch_cost: 1.65683 s, avg_samples: 9.6, ips: 5.79419 samples/s, eta: 0:23:04
[2024/07/27 15:47:41] ppocr INFO: epoch: [1447/1500], global_step: 4341, lr: 0.001000, loss: 1.065465, loss_shrink_maps: 0.525938, loss_threshold_maps: 0.434066, loss_binary_maps: 0.104354, avg_reader_cost: 0.87473 s, avg_batch_cost: 0.93040 s, avg_samples: 2.9, ips: 3.11693 samples/s, eta: 0:22:55
[2024/07/27 15:47:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:47:51] ppocr INFO: epoch: [1448/1500], global_step: 4344, lr: 0.001000, loss: 1.065465, loss_shrink_maps: 0.525938, loss_threshold_maps: 0.434066, loss_binary_maps: 0.104354, avg_reader_cost: 2.21954 s, avg_batch_cost: 2.45500 s, avg_samples: 12.5, ips: 5.09164 samples/s, eta: 0:22:29
[2024/07/27 15:47:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:48:00] ppocr INFO: epoch: [1449/1500], global_step: 4347, lr: 0.001000, loss: 1.067495, loss_shrink_maps: 0.530936, loss_threshold_maps: 0.430264, loss_binary_maps: 0.105188, avg_reader_cost: 2.17766 s, avg_batch_cost: 2.54258 s, avg_samples: 12.5, ips: 4.91627 samples/s, eta: 0:22:03
[2024/07/27 15:48:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:48:10] ppocr INFO: epoch: [1450/1500], global_step: 4350, lr: 0.001000, loss: 1.092816, loss_shrink_maps: 0.540264, loss_threshold_maps: 0.437783, loss_binary_maps: 0.107070, avg_reader_cost: 2.19432 s, avg_batch_cost: 2.53094 s, avg_samples: 12.5, ips: 4.93888 samples/s, eta: 0:21:37
[2024/07/27 15:48:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:48:20] ppocr INFO: epoch: [1451/1500], global_step: 4353, lr: 0.001000, loss: 1.092816, loss_shrink_maps: 0.550327, loss_threshold_maps: 0.437783, loss_binary_maps: 0.109271, avg_reader_cost: 2.46502 s, avg_batch_cost: 2.70952 s, avg_samples: 12.5, ips: 4.61336 samples/s, eta: 0:21:11
[2024/07/27 15:48:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:48:30] ppocr INFO: epoch: [1452/1500], global_step: 4356, lr: 0.001000, loss: 1.092816, loss_shrink_maps: 0.550327, loss_threshold_maps: 0.437783, loss_binary_maps: 0.109271, avg_reader_cost: 2.38601 s, avg_batch_cost: 2.62727 s, avg_samples: 12.5, ips: 4.75780 samples/s, eta: 0:20:45
[2024/07/27 15:48:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:48:40] ppocr INFO: epoch: [1453/1500], global_step: 4359, lr: 0.001000, loss: 1.112631, loss_shrink_maps: 0.556844, loss_threshold_maps: 0.440220, loss_binary_maps: 0.110968, avg_reader_cost: 2.26557 s, avg_batch_cost: 2.61779 s, avg_samples: 12.5, ips: 4.77502 samples/s, eta: 0:20:19
[2024/07/27 15:48:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:48:48] ppocr INFO: epoch: [1454/1500], global_step: 4360, lr: 0.001000, loss: 1.112631, loss_shrink_maps: 0.556844, loss_threshold_maps: 0.440220, loss_binary_maps: 0.110968, avg_reader_cost: 0.56648 s, avg_batch_cost: 0.79215 s, avg_samples: 4.8, ips: 6.05946 samples/s, eta: 0:20:11
[2024/07/27 15:48:50] ppocr INFO: epoch: [1454/1500], global_step: 4362, lr: 0.001000, loss: 1.125644, loss_shrink_maps: 0.568539, loss_threshold_maps: 0.443386, loss_binary_maps: 0.112903, avg_reader_cost: 1.67691 s, avg_batch_cost: 1.82451 s, avg_samples: 7.7, ips: 4.22030 samples/s, eta: 0:19:53
[2024/07/27 15:48:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:48:59] ppocr INFO: epoch: [1455/1500], global_step: 4365, lr: 0.001000, loss: 1.125644, loss_shrink_maps: 0.568864, loss_threshold_maps: 0.446876, loss_binary_maps: 0.113381, avg_reader_cost: 2.28791 s, avg_batch_cost: 2.52633 s, avg_samples: 12.5, ips: 4.94788 samples/s, eta: 0:19:27
[2024/07/27 15:49:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:49:09] ppocr INFO: epoch: [1456/1500], global_step: 4368, lr: 0.001000, loss: 1.157894, loss_shrink_maps: 0.594250, loss_threshold_maps: 0.448855, loss_binary_maps: 0.117942, avg_reader_cost: 2.26035 s, avg_batch_cost: 2.50622 s, avg_samples: 12.5, ips: 4.98760 samples/s, eta: 0:19:01
[2024/07/27 15:49:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:49:18] ppocr INFO: epoch: [1457/1500], global_step: 4370, lr: 0.001000, loss: 1.199100, loss_shrink_maps: 0.611210, loss_threshold_maps: 0.449991, loss_binary_maps: 0.121439, avg_reader_cost: 1.38790 s, avg_batch_cost: 1.62446 s, avg_samples: 9.6, ips: 5.90966 samples/s, eta: 0:18:44
[2024/07/27 15:49:19] ppocr INFO: epoch: [1457/1500], global_step: 4371, lr: 0.001000, loss: 1.199100, loss_shrink_maps: 0.611210, loss_threshold_maps: 0.450961, loss_binary_maps: 0.121439, avg_reader_cost: 0.85919 s, avg_batch_cost: 0.91474 s, avg_samples: 2.9, ips: 3.17031 samples/s, eta: 0:18:35
[2024/07/27 15:49:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:49:29] ppocr INFO: epoch: [1458/1500], global_step: 4374, lr: 0.001000, loss: 1.199151, loss_shrink_maps: 0.611210, loss_threshold_maps: 0.456777, loss_binary_maps: 0.121439, avg_reader_cost: 2.28635 s, avg_batch_cost: 2.66028 s, avg_samples: 12.5, ips: 4.69875 samples/s, eta: 0:18:10
[2024/07/27 15:49:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:49:39] ppocr INFO: epoch: [1459/1500], global_step: 4377, lr: 0.001000, loss: 1.192717, loss_shrink_maps: 0.611022, loss_threshold_maps: 0.466844, loss_binary_maps: 0.121267, avg_reader_cost: 2.24470 s, avg_batch_cost: 2.61736 s, avg_samples: 12.5, ips: 4.77580 samples/s, eta: 0:17:44
[2024/07/27 15:49:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:49:48] ppocr INFO: epoch: [1460/1500], global_step: 4380, lr: 0.001000, loss: 1.162829, loss_shrink_maps: 0.583481, loss_threshold_maps: 0.461217, loss_binary_maps: 0.115829, avg_reader_cost: 2.23945 s, avg_batch_cost: 2.60977 s, avg_samples: 12.5, ips: 4.78970 samples/s, eta: 0:17:18

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<01:03,  7.83it/s]
eval model::   1%|          | 3/500 [00:00<00:37, 13.37it/s]
eval model::   1%|          | 6/500 [00:00<00:29, 16.50it/s]
eval model::   2%|▏         | 8/500 [00:00<00:29, 16.50it/s]
eval model::   2%|▏         | 11/500 [00:00<00:33, 14.67it/s]
eval model::   3%|▎         | 13/500 [00:00<00:31, 15.53it/s]
eval model::   3%|▎         | 15/500 [00:00<00:31, 15.48it/s]
eval model::   4%|▎         | 18/500 [00:01<00:25, 18.77it/s]
eval model::   4%|▍         | 20/500 [00:01<00:26, 17.93it/s]
eval model::   5%|▍         | 23/500 [00:01<00:24, 19.69it/s]
eval model::   5%|▌         | 26/500 [00:01<00:24, 19.25it/s]
eval model::   6%|▌         | 29/500 [00:01<00:22, 21.12it/s]
eval model::   6%|▋         | 32/500 [00:01<00:24, 18.78it/s]
eval model::   7%|▋         | 34/500 [00:01<00:24, 19.01it/s]
eval model::   7%|▋         | 37/500 [00:02<00:22, 20.91it/s]
eval model::   8%|▊         | 40/500 [00:02<00:25, 18.17it/s]
eval model::   8%|▊         | 42/500 [00:02<00:26, 17.28it/s]
eval model::   9%|▉         | 44/500 [00:02<00:26, 17.50it/s]
eval model::   9%|▉         | 46/500 [00:02<00:26, 17.16it/s]
eval model::  10%|▉         | 49/500 [00:02<00:24, 18.71it/s]
eval model::  10%|█         | 52/500 [00:02<00:23, 19.46it/s]
eval model::  11%|█         | 55/500 [00:03<00:21, 20.34it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:23, 18.46it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:27, 15.95it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:27, 15.82it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:24, 18.07it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:20, 21.44it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:19, 21.85it/s]
eval model::  15%|█▌        | 76/500 [00:04<00:19, 21.52it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:19, 21.16it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:18, 22.22it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:19, 20.99it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:20, 19.84it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:22, 17.90it/s]
eval model::  19%|█▊        | 93/500 [00:05<00:23, 17.35it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:20, 19.37it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:20, 19.62it/s]
eval model::  20%|██        | 102/500 [00:05<00:21, 18.54it/s]
eval model::  21%|██        | 105/500 [00:05<00:20, 19.61it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:20, 18.83it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:20, 19.20it/s]
eval model::  23%|██▎       | 114/500 [00:06<00:18, 21.18it/s]
eval model::  23%|██▎       | 117/500 [00:06<00:18, 20.81it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:18, 20.99it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:17, 21.67it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:19, 18.88it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:18, 20.35it/s]
eval model::  26%|██▋       | 132/500 [00:07<00:20, 17.90it/s]
eval model::  27%|██▋       | 135/500 [00:07<00:18, 20.00it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:17, 20.35it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:18, 19.83it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:17, 20.01it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:20, 16.98it/s]
eval model::  30%|███       | 150/500 [00:07<00:18, 18.49it/s]
eval model::  30%|███       | 152/500 [00:08<00:20, 17.30it/s]
eval model::  31%|███       | 155/500 [00:08<00:17, 19.18it/s]
eval model::  32%|███▏      | 158/500 [00:08<00:15, 21.47it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:20, 16.46it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:19, 17.05it/s]
eval model::  33%|███▎      | 165/500 [00:08<00:19, 17.42it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:18, 17.93it/s]
eval model::  34%|███▍      | 170/500 [00:09<00:16, 19.68it/s]
eval model::  35%|███▍      | 173/500 [00:09<00:16, 19.89it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:18, 17.56it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:16, 19.87it/s]
eval model::  36%|███▋      | 182/500 [00:09<00:17, 18.03it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:15, 19.95it/s]
eval model::  38%|███▊      | 189/500 [00:10<00:15, 19.84it/s]
eval model::  38%|███▊      | 192/500 [00:10<00:15, 20.04it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:16, 18.43it/s]
eval model::  39%|███▉      | 197/500 [00:10<00:16, 18.05it/s]
eval model::  40%|████      | 200/500 [00:10<00:15, 19.32it/s]
eval model::  41%|████      | 203/500 [00:10<00:13, 21.23it/s]
eval model::  41%|████      | 206/500 [00:11<00:19, 14.96it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:20, 14.58it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:20, 13.98it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.55it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:21, 13.45it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:21, 12.91it/s]
eval model::  44%|████▍     | 220/500 [00:12<00:18, 15.08it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:21, 13.14it/s]
eval model::  45%|████▌     | 225/500 [00:12<00:17, 15.34it/s]
eval model::  46%|████▌     | 228/500 [00:12<00:16, 16.06it/s]
eval model::  46%|████▌     | 231/500 [00:12<00:14, 18.72it/s]
eval model::  47%|████▋     | 234/500 [00:12<00:14, 18.05it/s]
eval model::  47%|████▋     | 237/500 [00:12<00:13, 19.14it/s]
eval model::  48%|████▊     | 240/500 [00:13<00:13, 18.83it/s]
eval model::  48%|████▊     | 242/500 [00:13<00:16, 16.02it/s]
eval model::  49%|████▉     | 245/500 [00:13<00:14, 17.87it/s]
eval model::  49%|████▉     | 247/500 [00:13<00:14, 17.44it/s]
eval model::  50%|████▉     | 249/500 [00:13<00:14, 17.33it/s]
eval model::  50%|█████     | 252/500 [00:13<00:12, 19.13it/s]
eval model::  51%|█████     | 255/500 [00:13<00:12, 20.31it/s]
eval model::  52%|█████▏    | 258/500 [00:14<00:11, 21.47it/s]
eval model::  52%|█████▏    | 261/500 [00:14<00:10, 21.87it/s]
eval model::  53%|█████▎    | 264/500 [00:14<00:10, 22.20it/s]
eval model::  53%|█████▎    | 267/500 [00:14<00:10, 21.62it/s]
eval model::  54%|█████▍    | 270/500 [00:14<00:11, 20.15it/s]
eval model::  55%|█████▍    | 273/500 [00:14<00:10, 21.29it/s]
eval model::  55%|█████▌    | 276/500 [00:14<00:12, 18.32it/s]
eval model::  56%|█████▌    | 279/500 [00:15<00:12, 18.36it/s]
eval model::  56%|█████▋    | 282/500 [00:15<00:10, 20.21it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:17, 12.41it/s]
eval model::  58%|█████▊    | 288/500 [00:15<00:14, 14.66it/s]
eval model::  58%|█████▊    | 292/500 [00:15<00:11, 17.36it/s]
eval model::  59%|█████▉    | 295/500 [00:16<00:14, 13.77it/s]
eval model::  60%|█████▉    | 298/500 [00:16<00:12, 16.11it/s]
eval model::  60%|██████    | 301/500 [00:16<00:13, 14.92it/s]
eval model::  61%|██████    | 304/500 [00:16<00:12, 16.12it/s]
eval model::  61%|██████▏   | 307/500 [00:16<00:10, 17.82it/s]
eval model::  62%|██████▏   | 310/500 [00:17<00:10, 17.94it/s]
eval model::  63%|██████▎   | 313/500 [00:17<00:09, 19.03it/s]
eval model::  63%|██████▎   | 316/500 [00:17<00:10, 17.93it/s]
eval model::  64%|██████▍   | 319/500 [00:17<00:09, 19.45it/s]
eval model::  64%|██████▍   | 322/500 [00:17<00:09, 18.62it/s]
eval model::  65%|██████▌   | 325/500 [00:17<00:08, 20.75it/s]
eval model::  66%|██████▌   | 328/500 [00:18<00:08, 20.15it/s]
eval model::  66%|██████▌   | 331/500 [00:18<00:08, 20.43it/s]
eval model::  67%|██████▋   | 334/500 [00:18<00:07, 22.32it/s]
eval model::  67%|██████▋   | 337/500 [00:18<00:07, 21.44it/s]
eval model::  68%|██████▊   | 340/500 [00:18<00:09, 16.08it/s]
eval model::  69%|██████▊   | 343/500 [00:18<00:08, 18.07it/s]
eval model::  69%|██████▉   | 346/500 [00:18<00:08, 19.21it/s]
eval model::  70%|██████▉   | 349/500 [00:19<00:07, 20.50it/s]
eval model::  70%|███████   | 352/500 [00:19<00:07, 20.16it/s]
eval model::  71%|███████   | 355/500 [00:19<00:07, 18.62it/s]
eval model::  71%|███████▏  | 357/500 [00:19<00:07, 18.73it/s]
eval model::  72%|███████▏  | 360/500 [00:19<00:07, 19.25it/s]
eval model::  72%|███████▏  | 362/500 [00:19<00:07, 17.42it/s]
eval model::  73%|███████▎  | 364/500 [00:20<00:09, 15.03it/s]
eval model::  73%|███████▎  | 366/500 [00:20<00:09, 13.42it/s]
eval model::  74%|███████▎  | 368/500 [00:20<00:09, 14.17it/s]
eval model::  74%|███████▍  | 370/500 [00:20<00:08, 15.02it/s]
eval model::  74%|███████▍  | 372/500 [00:20<00:08, 14.87it/s]
eval model::  75%|███████▌  | 375/500 [00:20<00:07, 17.07it/s]
eval model::  76%|███████▌  | 379/500 [00:20<00:05, 20.54it/s]
eval model::  76%|███████▋  | 382/500 [00:21<00:06, 18.37it/s]
eval model::  77%|███████▋  | 386/500 [00:21<00:08, 14.00it/s]
eval model::  78%|███████▊  | 389/500 [00:21<00:06, 16.22it/s]
eval model::  78%|███████▊  | 392/500 [00:21<00:06, 16.76it/s]
eval model::  79%|███████▉  | 394/500 [00:21<00:06, 17.05it/s]
eval model::  79%|███████▉  | 396/500 [00:21<00:05, 17.37it/s]
eval model::  80%|███████▉  | 399/500 [00:22<00:05, 18.69it/s]
eval model::  80%|████████  | 401/500 [00:22<00:05, 16.53it/s]
eval model::  81%|████████  | 404/500 [00:22<00:05, 18.42it/s]
eval model::  81%|████████▏ | 407/500 [00:22<00:04, 19.42it/s]
eval model::  82%|████████▏ | 410/500 [00:22<00:04, 20.88it/s]
eval model::  83%|████████▎ | 413/500 [00:22<00:04, 20.42it/s]
eval model::  83%|████████▎ | 416/500 [00:22<00:04, 19.34it/s]
eval model::  84%|████████▍ | 419/500 [00:23<00:04, 19.73it/s]
eval model::  84%|████████▍ | 422/500 [00:23<00:05, 13.31it/s]
eval model::  85%|████████▍ | 424/500 [00:23<00:05, 13.29it/s]
eval model::  85%|████████▌ | 426/500 [00:23<00:05, 13.95it/s]
eval model::  86%|████████▌ | 429/500 [00:23<00:04, 16.60it/s]
eval model::  86%|████████▌ | 431/500 [00:24<00:04, 15.85it/s]
eval model::  87%|████████▋ | 434/500 [00:24<00:03, 18.46it/s]
eval model::  87%|████████▋ | 437/500 [00:24<00:03, 19.45it/s]
eval model::  88%|████████▊ | 440/500 [00:24<00:03, 17.42it/s]
eval model::  89%|████████▉ | 444/500 [00:24<00:02, 20.00it/s]
eval model::  89%|████████▉ | 447/500 [00:24<00:02, 21.57it/s]
eval model::  90%|█████████ | 450/500 [00:24<00:02, 20.26it/s]
eval model::  91%|█████████ | 453/500 [00:25<00:02, 21.12it/s]
eval model::  91%|█████████ | 456/500 [00:25<00:01, 22.17it/s]
eval model::  92%|█████████▏| 459/500 [00:25<00:01, 23.51it/s]
eval model::  92%|█████████▏| 462/500 [00:25<00:02, 18.24it/s]
eval model::  93%|█████████▎| 465/500 [00:25<00:02, 16.71it/s]
eval model::  94%|█████████▎| 468/500 [00:25<00:01, 18.25it/s]
eval model::  94%|█████████▍| 471/500 [00:25<00:01, 19.97it/s]
eval model::  95%|█████████▍| 474/500 [00:26<00:01, 18.09it/s]
eval model::  95%|█████████▌| 477/500 [00:26<00:01, 19.81it/s]
eval model::  96%|█████████▌| 480/500 [00:26<00:00, 20.52it/s]
eval model::  97%|█████████▋| 483/500 [00:26<00:00, 21.71it/s]
eval model::  97%|█████████▋| 486/500 [00:26<00:00, 21.94it/s]
eval model::  98%|█████████▊| 489/500 [00:26<00:00, 23.47it/s]
eval model::  98%|█████████▊| 492/500 [00:26<00:00, 21.15it/s]
eval model::  99%|█████████▉| 495/500 [00:27<00:00, 22.41it/s]
eval model:: 100%|█████████▉| 498/500 [00:27<00:00, 22.60it/s]
eval model:: 100%|██████████| 500/500 [00:27<00:00, 18.30it/s]
[2024/07/27 15:50:16] ppocr INFO: cur metric, precision: 0.7353383458646616, recall: 0.7063071738083775, hmean: 0.7205304518664046, fps: 44.423570433645146
[2024/07/27 15:50:16] ppocr INFO: best metric, hmean: 0.7301425661914459, precision: 0.7747163695299838, recall: 0.6904188733750601, fps: 43.582139874688714, best_epoch: 960
[2024/07/27 15:50:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:50:25] ppocr INFO: epoch: [1461/1500], global_step: 4383, lr: 0.001000, loss: 1.159218, loss_shrink_maps: 0.575348, loss_threshold_maps: 0.463041, loss_binary_maps: 0.114751, avg_reader_cost: 2.17716 s, avg_batch_cost: 2.41548 s, avg_samples: 12.5, ips: 5.17497 samples/s, eta: 0:16:52
[2024/07/27 15:50:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:50:34] ppocr INFO: epoch: [1462/1500], global_step: 4386, lr: 0.001000, loss: 1.152912, loss_shrink_maps: 0.568585, loss_threshold_maps: 0.463041, loss_binary_maps: 0.113044, avg_reader_cost: 2.17646 s, avg_batch_cost: 2.53557 s, avg_samples: 12.5, ips: 4.92986 samples/s, eta: 0:16:26
[2024/07/27 15:50:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:50:44] ppocr INFO: epoch: [1463/1500], global_step: 4389, lr: 0.001000, loss: 1.152912, loss_shrink_maps: 0.568585, loss_threshold_maps: 0.461217, loss_binary_maps: 0.113044, avg_reader_cost: 2.39268 s, avg_batch_cost: 2.63753 s, avg_samples: 12.5, ips: 4.73929 samples/s, eta: 0:16:00
[2024/07/27 15:50:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:50:53] ppocr INFO: epoch: [1464/1500], global_step: 4390, lr: 0.001000, loss: 1.145163, loss_shrink_maps: 0.568585, loss_threshold_maps: 0.458312, loss_binary_maps: 0.113044, avg_reader_cost: 0.57731 s, avg_batch_cost: 0.79078 s, avg_samples: 4.8, ips: 6.06996 samples/s, eta: 0:15:51
[2024/07/27 15:50:54] ppocr INFO: epoch: [1464/1500], global_step: 4392, lr: 0.001000, loss: 1.150990, loss_shrink_maps: 0.572432, loss_threshold_maps: 0.458312, loss_binary_maps: 0.113932, avg_reader_cost: 1.67364 s, avg_batch_cost: 1.82049 s, avg_samples: 7.7, ips: 4.22963 samples/s, eta: 0:15:34
[2024/07/27 15:50:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:51:04] ppocr INFO: epoch: [1465/1500], global_step: 4395, lr: 0.001000, loss: 1.126365, loss_shrink_maps: 0.560901, loss_threshold_maps: 0.441190, loss_binary_maps: 0.111555, avg_reader_cost: 2.26333 s, avg_batch_cost: 2.63218 s, avg_samples: 12.5, ips: 4.74891 samples/s, eta: 0:15:08
[2024/07/27 15:51:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:51:14] ppocr INFO: epoch: [1466/1500], global_step: 4398, lr: 0.001000, loss: 1.085751, loss_shrink_maps: 0.535426, loss_threshold_maps: 0.436581, loss_binary_maps: 0.106351, avg_reader_cost: 2.42361 s, avg_batch_cost: 2.66496 s, avg_samples: 12.5, ips: 4.69050 samples/s, eta: 0:14:42
[2024/07/27 15:51:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:51:24] ppocr INFO: epoch: [1467/1500], global_step: 4400, lr: 0.001000, loss: 1.085751, loss_shrink_maps: 0.535893, loss_threshold_maps: 0.433094, loss_binary_maps: 0.106424, avg_reader_cost: 1.47897 s, avg_batch_cost: 1.67841 s, avg_samples: 9.6, ips: 5.71971 samples/s, eta: 0:14:25
[2024/07/27 15:51:24] ppocr INFO: epoch: [1467/1500], global_step: 4401, lr: 0.001000, loss: 1.085751, loss_shrink_maps: 0.535893, loss_threshold_maps: 0.435226, loss_binary_maps: 0.106424, avg_reader_cost: 0.88554 s, avg_batch_cost: 0.94071 s, avg_samples: 2.9, ips: 3.08277 samples/s, eta: 0:14:16
[2024/07/27 15:51:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:51:34] ppocr INFO: epoch: [1468/1500], global_step: 4404, lr: 0.001000, loss: 1.108399, loss_shrink_maps: 0.560901, loss_threshold_maps: 0.441073, loss_binary_maps: 0.111555, avg_reader_cost: 2.24074 s, avg_batch_cost: 2.58260 s, avg_samples: 12.5, ips: 4.84009 samples/s, eta: 0:13:50
[2024/07/27 15:51:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:51:44] ppocr INFO: epoch: [1469/1500], global_step: 4407, lr: 0.001000, loss: 1.131456, loss_shrink_maps: 0.577222, loss_threshold_maps: 0.435226, loss_binary_maps: 0.114862, avg_reader_cost: 2.31231 s, avg_batch_cost: 2.56861 s, avg_samples: 12.5, ips: 4.86644 samples/s, eta: 0:13:24
[2024/07/27 15:51:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:51:54] ppocr INFO: epoch: [1470/1500], global_step: 4410, lr: 0.001000, loss: 1.108399, loss_shrink_maps: 0.564992, loss_threshold_maps: 0.435226, loss_binary_maps: 0.112418, avg_reader_cost: 2.36236 s, avg_batch_cost: 2.59605 s, avg_samples: 12.5, ips: 4.81502 samples/s, eta: 0:12:58
[2024/07/27 15:51:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:52:04] ppocr INFO: epoch: [1471/1500], global_step: 4413, lr: 0.001000, loss: 1.105065, loss_shrink_maps: 0.555929, loss_threshold_maps: 0.435226, loss_binary_maps: 0.110700, avg_reader_cost: 2.16678 s, avg_batch_cost: 2.49253 s, avg_samples: 12.5, ips: 5.01499 samples/s, eta: 0:12:32
[2024/07/27 15:52:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:52:14] ppocr INFO: epoch: [1472/1500], global_step: 4416, lr: 0.001000, loss: 1.081304, loss_shrink_maps: 0.542917, loss_threshold_maps: 0.443319, loss_binary_maps: 0.107862, avg_reader_cost: 2.40075 s, avg_batch_cost: 2.63831 s, avg_samples: 12.5, ips: 4.73788 samples/s, eta: 0:12:06
[2024/07/27 15:52:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:52:23] ppocr INFO: epoch: [1473/1500], global_step: 4419, lr: 0.001000, loss: 1.076476, loss_shrink_maps: 0.547686, loss_threshold_maps: 0.435155, loss_binary_maps: 0.109238, avg_reader_cost: 2.25072 s, avg_batch_cost: 2.55568 s, avg_samples: 12.5, ips: 4.89106 samples/s, eta: 0:11:40
[2024/07/27 15:52:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:52:32] ppocr INFO: epoch: [1474/1500], global_step: 4420, lr: 0.001000, loss: 1.100618, loss_shrink_maps: 0.555929, loss_threshold_maps: 0.443319, loss_binary_maps: 0.110700, avg_reader_cost: 0.68686 s, avg_batch_cost: 0.77878 s, avg_samples: 4.8, ips: 6.16350 samples/s, eta: 0:11:32
[2024/07/27 15:52:33] ppocr INFO: epoch: [1474/1500], global_step: 4422, lr: 0.001000, loss: 1.105858, loss_shrink_maps: 0.555929, loss_threshold_maps: 0.445283, loss_binary_maps: 0.110700, avg_reader_cost: 1.64925 s, avg_batch_cost: 1.79613 s, avg_samples: 7.7, ips: 4.28700 samples/s, eta: 0:11:14
[2024/07/27 15:52:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:52:43] ppocr INFO: epoch: [1475/1500], global_step: 4425, lr: 0.001000, loss: 1.105858, loss_shrink_maps: 0.555929, loss_threshold_maps: 0.438288, loss_binary_maps: 0.110700, avg_reader_cost: 2.20863 s, avg_batch_cost: 2.57593 s, avg_samples: 12.5, ips: 4.85262 samples/s, eta: 0:10:48
[2024/07/27 15:52:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:52:52] ppocr INFO: epoch: [1476/1500], global_step: 4428, lr: 0.001000, loss: 1.113841, loss_shrink_maps: 0.559592, loss_threshold_maps: 0.443411, loss_binary_maps: 0.111490, avg_reader_cost: 2.15489 s, avg_batch_cost: 2.50619 s, avg_samples: 12.5, ips: 4.98764 samples/s, eta: 0:10:22
[2024/07/27 15:52:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:53:02] ppocr INFO: epoch: [1477/1500], global_step: 4430, lr: 0.001000, loss: 1.113841, loss_shrink_maps: 0.557529, loss_threshold_maps: 0.443411, loss_binary_maps: 0.111029, avg_reader_cost: 1.35169 s, avg_batch_cost: 1.65931 s, avg_samples: 9.6, ips: 5.78553 samples/s, eta: 0:10:05
[2024/07/27 15:53:02] ppocr INFO: epoch: [1477/1500], global_step: 4431, lr: 0.001000, loss: 1.120709, loss_shrink_maps: 0.565212, loss_threshold_maps: 0.445967, loss_binary_maps: 0.112633, avg_reader_cost: 0.87633 s, avg_batch_cost: 0.93129 s, avg_samples: 2.9, ips: 3.11395 samples/s, eta: 0:09:56
[2024/07/27 15:53:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:53:12] ppocr INFO: epoch: [1478/1500], global_step: 4434, lr: 0.001000, loss: 1.120132, loss_shrink_maps: 0.566748, loss_threshold_maps: 0.443411, loss_binary_maps: 0.112827, avg_reader_cost: 2.35066 s, avg_batch_cost: 2.59827 s, avg_samples: 12.5, ips: 4.81090 samples/s, eta: 0:09:30
[2024/07/27 15:53:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:53:22] ppocr INFO: epoch: [1479/1500], global_step: 4437, lr: 0.001000, loss: 1.129094, loss_shrink_maps: 0.566748, loss_threshold_maps: 0.443411, loss_binary_maps: 0.112827, avg_reader_cost: 2.14598 s, avg_batch_cost: 2.47923 s, avg_samples: 12.5, ips: 5.04188 samples/s, eta: 0:09:04
[2024/07/27 15:53:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:53:32] ppocr INFO: epoch: [1480/1500], global_step: 4440, lr: 0.001000, loss: 1.143530, loss_shrink_maps: 0.569638, loss_threshold_maps: 0.445967, loss_binary_maps: 0.113489, avg_reader_cost: 2.25668 s, avg_batch_cost: 2.62888 s, avg_samples: 12.5, ips: 4.75487 samples/s, eta: 0:08:39

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:58,  8.59it/s]
eval model::   1%|          | 3/500 [00:00<00:33, 14.74it/s]
eval model::   1%|          | 6/500 [00:00<00:26, 18.70it/s]
eval model::   2%|▏         | 8/500 [00:00<00:26, 18.27it/s]
eval model::   2%|▏         | 11/500 [00:00<00:27, 17.89it/s]
eval model::   3%|▎         | 14/500 [00:00<00:26, 18.26it/s]
eval model::   3%|▎         | 17/500 [00:00<00:23, 20.64it/s]
eval model::   4%|▍         | 20/500 [00:01<00:23, 20.77it/s]
eval model::   5%|▍         | 23/500 [00:01<00:21, 22.14it/s]
eval model::   5%|▌         | 26/500 [00:01<00:21, 22.37it/s]
eval model::   6%|▌         | 29/500 [00:01<00:20, 23.09it/s]
eval model::   6%|▋         | 32/500 [00:01<00:22, 21.23it/s]
eval model::   7%|▋         | 35/500 [00:01<00:22, 20.46it/s]
eval model::   8%|▊         | 38/500 [00:01<00:21, 21.64it/s]
eval model::   8%|▊         | 41/500 [00:02<00:22, 20.24it/s]
eval model::   9%|▉         | 44/500 [00:02<00:25, 17.91it/s]
eval model::   9%|▉         | 46/500 [00:02<00:27, 16.80it/s]
eval model::  10%|▉         | 49/500 [00:02<00:23, 19.47it/s]
eval model::  10%|█         | 52/500 [00:02<00:22, 20.32it/s]
eval model::  11%|█         | 55/500 [00:02<00:20, 21.22it/s]
eval model::  12%|█▏        | 58/500 [00:02<00:22, 19.49it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:27, 15.76it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:27, 15.72it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:21, 20.17it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:20, 21.34it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:19, 21.48it/s]
eval model::  15%|█▌        | 76/500 [00:03<00:19, 22.19it/s]
eval model::  16%|█▌        | 79/500 [00:03<00:19, 21.63it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:18, 22.46it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:18, 22.42it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:20, 20.26it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:21, 18.95it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:22, 18.33it/s]
eval model::  19%|█▉        | 96/500 [00:04<00:19, 20.77it/s]
eval model::  20%|█▉        | 99/500 [00:04<00:19, 20.99it/s]
eval model::  20%|██        | 102/500 [00:05<00:19, 20.46it/s]
eval model::  21%|██        | 105/500 [00:05<00:17, 22.23it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:17, 21.97it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:19, 19.65it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:18, 21.42it/s]
eval model::  23%|██▎       | 117/500 [00:05<00:19, 19.79it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:20, 18.15it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:18, 20.19it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:21, 17.49it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:20, 18.28it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:20, 17.65it/s]
eval model::  27%|██▋       | 133/500 [00:06<00:20, 17.61it/s]
eval model::  27%|██▋       | 136/500 [00:06<00:19, 18.82it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:17, 20.59it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:16, 21.60it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:18, 18.92it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:19, 17.90it/s]
eval model::  30%|███       | 150/500 [00:07<00:18, 18.99it/s]
eval model::  30%|███       | 152/500 [00:07<00:19, 18.23it/s]
eval model::  31%|███       | 155/500 [00:07<00:17, 20.24it/s]
eval model::  32%|███▏      | 158/500 [00:07<00:15, 22.64it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:23, 14.65it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:20, 16.48it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:18, 17.56it/s]
eval model::  34%|███▍      | 170/500 [00:08<00:18, 18.12it/s]
eval model::  35%|███▍      | 173/500 [00:08<00:18, 17.63it/s]
eval model::  35%|███▌      | 175/500 [00:09<00:20, 16.07it/s]
eval model::  35%|███▌      | 177/500 [00:09<00:19, 16.75it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:18, 16.97it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:17, 18.21it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:15, 19.77it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:15, 19.71it/s]
eval model::  38%|███▊      | 192/500 [00:09<00:15, 19.47it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:15, 19.77it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:14, 20.56it/s]
eval model::  40%|████      | 201/500 [00:10<00:15, 19.55it/s]
eval model::  41%|████      | 205/500 [00:10<00:21, 13.58it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:19, 14.63it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:19, 14.96it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:17, 16.49it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:19, 14.93it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:19, 14.69it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:16, 17.01it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:18, 14.94it/s]
eval model::  45%|████▌     | 225/500 [00:12<00:15, 17.81it/s]
eval model::  46%|████▌     | 228/500 [00:12<00:13, 19.84it/s]
eval model::  46%|████▌     | 231/500 [00:12<00:12, 22.25it/s]
eval model::  47%|████▋     | 234/500 [00:12<00:13, 20.28it/s]
eval model::  47%|████▋     | 237/500 [00:12<00:12, 21.43it/s]
eval model::  48%|████▊     | 240/500 [00:12<00:11, 21.91it/s]
eval model::  49%|████▊     | 243/500 [00:12<00:14, 17.50it/s]
eval model::  49%|████▉     | 246/500 [00:13<00:12, 19.64it/s]
eval model::  50%|████▉     | 249/500 [00:13<00:13, 19.22it/s]
eval model::  50%|█████     | 252/500 [00:13<00:11, 21.24it/s]
eval model::  51%|█████     | 255/500 [00:13<00:10, 23.01it/s]
eval model::  52%|█████▏    | 258/500 [00:13<00:10, 24.03it/s]
eval model::  52%|█████▏    | 261/500 [00:13<00:09, 25.09it/s]
eval model::  53%|█████▎    | 264/500 [00:13<00:10, 21.92it/s]
eval model::  53%|█████▎    | 267/500 [00:13<00:10, 21.94it/s]
eval model::  54%|█████▍    | 270/500 [00:14<00:11, 19.85it/s]
eval model::  55%|█████▍    | 273/500 [00:14<00:10, 20.93it/s]
eval model::  55%|█████▌    | 276/500 [00:14<00:11, 19.15it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:11, 19.49it/s]
eval model::  56%|█████▋    | 282/500 [00:14<00:10, 20.63it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:17, 12.48it/s]
eval model::  58%|█████▊    | 288/500 [00:15<00:14, 14.72it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:12, 16.97it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:12, 17.10it/s]
eval model::  59%|█████▉    | 297/500 [00:15<00:13, 14.78it/s]
eval model::  60%|██████    | 300/500 [00:15<00:12, 16.60it/s]
eval model::  61%|██████    | 303/500 [00:16<00:10, 18.38it/s]
eval model::  61%|██████    | 306/500 [00:16<00:10, 18.29it/s]
eval model::  62%|██████▏   | 309/500 [00:16<00:10, 17.91it/s]
eval model::  62%|██████▏   | 312/500 [00:16<00:10, 18.42it/s]
eval model::  63%|██████▎   | 315/500 [00:16<00:09, 19.22it/s]
eval model::  64%|██████▎   | 318/500 [00:16<00:08, 21.04it/s]
eval model::  64%|██████▍   | 321/500 [00:16<00:08, 21.21it/s]
eval model::  65%|██████▍   | 324/500 [00:17<00:08, 20.36it/s]
eval model::  65%|██████▌   | 327/500 [00:17<00:07, 21.93it/s]
eval model::  66%|██████▌   | 330/500 [00:17<00:08, 21.10it/s]
eval model::  67%|██████▋   | 333/500 [00:17<00:07, 22.38it/s]
eval model::  67%|██████▋   | 336/500 [00:17<00:07, 22.49it/s]
eval model::  68%|██████▊   | 339/500 [00:17<00:08, 19.96it/s]
eval model::  68%|██████▊   | 342/500 [00:18<00:10, 15.57it/s]
eval model::  69%|██████▉   | 346/500 [00:18<00:08, 18.25it/s]
eval model::  70%|██████▉   | 349/500 [00:18<00:07, 18.97it/s]
eval model::  70%|███████   | 352/500 [00:18<00:07, 20.46it/s]
eval model::  71%|███████   | 355/500 [00:18<00:07, 19.73it/s]
eval model::  72%|███████▏  | 358/500 [00:18<00:07, 20.05it/s]
eval model::  72%|███████▏  | 361/500 [00:19<00:07, 18.15it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:08, 16.97it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:08, 16.03it/s]
eval model::  74%|███████▍  | 369/500 [00:19<00:07, 18.16it/s]
eval model::  74%|███████▍  | 372/500 [00:19<00:07, 17.80it/s]
eval model::  75%|███████▌  | 375/500 [00:19<00:06, 20.23it/s]
eval model::  76%|███████▌  | 379/500 [00:19<00:05, 22.59it/s]
eval model::  76%|███████▋  | 382/500 [00:20<00:05, 20.50it/s]
eval model::  77%|███████▋  | 386/500 [00:20<00:07, 14.81it/s]
eval model::  78%|███████▊  | 390/500 [00:20<00:06, 17.85it/s]
eval model::  79%|███████▊  | 393/500 [00:20<00:05, 18.29it/s]
eval model::  79%|███████▉  | 396/500 [00:20<00:05, 17.74it/s]
eval model::  80%|███████▉  | 399/500 [00:21<00:05, 18.87it/s]
eval model::  80%|████████  | 402/500 [00:21<00:05, 19.02it/s]
eval model::  81%|████████  | 405/500 [00:21<00:04, 19.41it/s]
eval model::  82%|████████▏ | 408/500 [00:21<00:04, 20.43it/s]
eval model::  82%|████████▏ | 411/500 [00:21<00:04, 22.02it/s]
eval model::  83%|████████▎ | 414/500 [00:21<00:03, 22.43it/s]
eval model::  83%|████████▎ | 417/500 [00:21<00:03, 22.59it/s]
eval model::  84%|████████▍ | 420/500 [00:22<00:05, 14.87it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:05, 15.52it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:04, 15.32it/s]
eval model::  85%|████████▌ | 427/500 [00:22<00:04, 18.02it/s]
eval model::  86%|████████▌ | 430/500 [00:22<00:03, 20.19it/s]
eval model::  87%|████████▋ | 433/500 [00:22<00:03, 20.80it/s]
eval model::  87%|████████▋ | 436/500 [00:22<00:02, 22.51it/s]
eval model::  88%|████████▊ | 439/500 [00:23<00:02, 23.00it/s]
eval model::  88%|████████▊ | 442/500 [00:23<00:02, 22.22it/s]
eval model::  89%|████████▉ | 445/500 [00:23<00:02, 23.66it/s]
eval model::  90%|████████▉ | 448/500 [00:23<00:02, 22.85it/s]
eval model::  90%|█████████ | 451/500 [00:23<00:02, 21.68it/s]
eval model::  91%|█████████ | 454/500 [00:23<00:02, 22.26it/s]
eval model::  91%|█████████▏| 457/500 [00:23<00:01, 21.61it/s]
eval model::  92%|█████████▏| 460/500 [00:24<00:01, 21.38it/s]
eval model::  93%|█████████▎| 463/500 [00:24<00:02, 15.84it/s]
eval model::  93%|█████████▎| 465/500 [00:24<00:02, 15.50it/s]
eval model::  93%|█████████▎| 467/500 [00:24<00:02, 16.23it/s]
eval model::  94%|█████████▍| 470/500 [00:24<00:01, 18.59it/s]
eval model::  95%|█████████▍| 473/500 [00:24<00:01, 20.10it/s]
eval model::  95%|█████████▌| 476/500 [00:25<00:01, 20.75it/s]
eval model::  96%|█████████▌| 480/500 [00:25<00:00, 22.24it/s]
eval model::  97%|█████████▋| 483/500 [00:25<00:00, 21.47it/s]
eval model::  97%|█████████▋| 486/500 [00:25<00:00, 21.55it/s]
eval model::  98%|█████████▊| 489/500 [00:25<00:00, 21.95it/s]
eval model::  98%|█████████▊| 492/500 [00:25<00:00, 19.45it/s]
eval model::  99%|█████████▉| 495/500 [00:25<00:00, 19.74it/s]
eval model:: 100%|█████████▉| 499/500 [00:26<00:00, 23.09it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 19.16it/s]
[2024/07/27 15:53:58] ppocr INFO: cur metric, precision: 0.736388140161725, recall: 0.6576793452094367, hmean: 0.6948118006103765, fps: 46.03030457737212
[2024/07/27 15:53:58] ppocr INFO: best metric, hmean: 0.7301425661914459, precision: 0.7747163695299838, recall: 0.6904188733750601, fps: 43.582139874688714, best_epoch: 960
[2024/07/27 15:53:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:54:07] ppocr INFO: epoch: [1481/1500], global_step: 4443, lr: 0.001000, loss: 1.157223, loss_shrink_maps: 0.574434, loss_threshold_maps: 0.453570, loss_binary_maps: 0.114386, avg_reader_cost: 2.18118 s, avg_batch_cost: 2.53440 s, avg_samples: 12.5, ips: 4.93213 samples/s, eta: 0:08:13
[2024/07/27 15:54:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:54:17] ppocr INFO: epoch: [1482/1500], global_step: 4446, lr: 0.001000, loss: 1.143530, loss_shrink_maps: 0.566748, loss_threshold_maps: 0.445871, loss_binary_maps: 0.112870, avg_reader_cost: 2.23788 s, avg_batch_cost: 2.63370 s, avg_samples: 12.5, ips: 4.74617 samples/s, eta: 0:07:47
[2024/07/27 15:54:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:54:26] ppocr INFO: epoch: [1483/1500], global_step: 4449, lr: 0.001000, loss: 1.124606, loss_shrink_maps: 0.558903, loss_threshold_maps: 0.453004, loss_binary_maps: 0.111426, avg_reader_cost: 2.12139 s, avg_batch_cost: 2.41358 s, avg_samples: 12.5, ips: 5.17903 samples/s, eta: 0:07:21
[2024/07/27 15:54:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:54:35] ppocr INFO: epoch: [1484/1500], global_step: 4450, lr: 0.001000, loss: 1.124061, loss_shrink_maps: 0.558903, loss_threshold_maps: 0.453756, loss_binary_maps: 0.111426, avg_reader_cost: 0.70738 s, avg_batch_cost: 0.79817 s, avg_samples: 4.8, ips: 6.01376 samples/s, eta: 0:07:12
[2024/07/27 15:54:36] ppocr INFO: epoch: [1484/1500], global_step: 4452, lr: 0.001000, loss: 1.081774, loss_shrink_maps: 0.551739, loss_threshold_maps: 0.433245, loss_binary_maps: 0.110069, avg_reader_cost: 1.68827 s, avg_batch_cost: 1.83519 s, avg_samples: 7.7, ips: 4.19575 samples/s, eta: 0:06:55
[2024/07/27 15:54:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:54:46] ppocr INFO: epoch: [1485/1500], global_step: 4455, lr: 0.001000, loss: 1.073048, loss_shrink_maps: 0.543356, loss_threshold_maps: 0.438135, loss_binary_maps: 0.107950, avg_reader_cost: 2.32079 s, avg_batch_cost: 2.55774 s, avg_samples: 12.5, ips: 4.88712 samples/s, eta: 0:06:29
[2024/07/27 15:54:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:54:56] ppocr INFO: epoch: [1486/1500], global_step: 4458, lr: 0.001000, loss: 1.089019, loss_shrink_maps: 0.551421, loss_threshold_maps: 0.444445, loss_binary_maps: 0.109369, avg_reader_cost: 2.19417 s, avg_batch_cost: 2.55783 s, avg_samples: 12.5, ips: 4.88696 samples/s, eta: 0:06:03
[2024/07/27 15:54:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:55:05] ppocr INFO: epoch: [1487/1500], global_step: 4460, lr: 0.001000, loss: 1.073048, loss_shrink_maps: 0.545561, loss_threshold_maps: 0.434070, loss_binary_maps: 0.108116, avg_reader_cost: 1.48606 s, avg_batch_cost: 1.67783 s, avg_samples: 9.6, ips: 5.72167 samples/s, eta: 0:05:45
[2024/07/27 15:55:05] ppocr INFO: epoch: [1487/1500], global_step: 4461, lr: 0.001000, loss: 1.073048, loss_shrink_maps: 0.545561, loss_threshold_maps: 0.434070, loss_binary_maps: 0.108116, avg_reader_cost: 0.88491 s, avg_batch_cost: 0.94073 s, avg_samples: 2.9, ips: 3.08270 samples/s, eta: 0:05:37
[2024/07/27 15:55:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:55:15] ppocr INFO: epoch: [1488/1500], global_step: 4464, lr: 0.001000, loss: 1.089019, loss_shrink_maps: 0.550814, loss_threshold_maps: 0.440764, loss_binary_maps: 0.109153, avg_reader_cost: 2.29179 s, avg_batch_cost: 2.53243 s, avg_samples: 12.5, ips: 4.93596 samples/s, eta: 0:05:11
[2024/07/27 15:55:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:55:24] ppocr INFO: epoch: [1489/1500], global_step: 4467, lr: 0.001000, loss: 1.089019, loss_shrink_maps: 0.551570, loss_threshold_maps: 0.440764, loss_binary_maps: 0.109153, avg_reader_cost: 2.11378 s, avg_batch_cost: 2.42574 s, avg_samples: 12.5, ips: 5.15306 samples/s, eta: 0:04:45
[2024/07/27 15:55:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:55:34] ppocr INFO: epoch: [1490/1500], global_step: 4470, lr: 0.001000, loss: 1.098371, loss_shrink_maps: 0.551570, loss_threshold_maps: 0.446725, loss_binary_maps: 0.109153, avg_reader_cost: 2.42468 s, avg_batch_cost: 2.68455 s, avg_samples: 12.5, ips: 4.65627 samples/s, eta: 0:04:19
[2024/07/27 15:55:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:55:44] ppocr INFO: epoch: [1491/1500], global_step: 4473, lr: 0.001000, loss: 1.125745, loss_shrink_maps: 0.561838, loss_threshold_maps: 0.452581, loss_binary_maps: 0.111672, avg_reader_cost: 2.20117 s, avg_batch_cost: 2.55604 s, avg_samples: 12.5, ips: 4.89037 samples/s, eta: 0:03:53
[2024/07/27 15:55:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:55:54] ppocr INFO: epoch: [1492/1500], global_step: 4476, lr: 0.001000, loss: 1.162724, loss_shrink_maps: 0.573531, loss_threshold_maps: 0.457851, loss_binary_maps: 0.114240, avg_reader_cost: 2.30940 s, avg_batch_cost: 2.55310 s, avg_samples: 12.5, ips: 4.89602 samples/s, eta: 0:03:27
[2024/07/27 15:55:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:56:04] ppocr INFO: epoch: [1493/1500], global_step: 4479, lr: 0.001000, loss: 1.097078, loss_shrink_maps: 0.553248, loss_threshold_maps: 0.433422, loss_binary_maps: 0.109728, avg_reader_cost: 2.39364 s, avg_batch_cost: 2.63584 s, avg_samples: 12.5, ips: 4.74233 samples/s, eta: 0:03:01
[2024/07/27 15:56:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:56:12] ppocr INFO: epoch: [1494/1500], global_step: 4480, lr: 0.001000, loss: 1.097078, loss_shrink_maps: 0.553248, loss_threshold_maps: 0.433422, loss_binary_maps: 0.109728, avg_reader_cost: 0.56462 s, avg_batch_cost: 0.77386 s, avg_samples: 4.8, ips: 6.20263 samples/s, eta: 0:02:52
[2024/07/27 15:56:14] ppocr INFO: epoch: [1494/1500], global_step: 4482, lr: 0.001000, loss: 1.079382, loss_shrink_maps: 0.547297, loss_threshold_maps: 0.432049, loss_binary_maps: 0.108899, avg_reader_cost: 1.64118 s, avg_batch_cost: 1.78930 s, avg_samples: 7.7, ips: 4.30336 samples/s, eta: 0:02:35
[2024/07/27 15:56:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:56:23] ppocr INFO: epoch: [1495/1500], global_step: 4485, lr: 0.001000, loss: 1.099958, loss_shrink_maps: 0.557210, loss_threshold_maps: 0.438506, loss_binary_maps: 0.110208, avg_reader_cost: 2.17019 s, avg_batch_cost: 2.53162 s, avg_samples: 12.5, ips: 4.93754 samples/s, eta: 0:02:09
[2024/07/27 15:56:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:56:33] ppocr INFO: epoch: [1496/1500], global_step: 4488, lr: 0.001000, loss: 1.079382, loss_shrink_maps: 0.538719, loss_threshold_maps: 0.435981, loss_binary_maps: 0.106546, avg_reader_cost: 2.35863 s, avg_batch_cost: 2.59805 s, avg_samples: 12.5, ips: 4.81130 samples/s, eta: 0:01:43
[2024/07/27 15:56:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:56:43] ppocr INFO: epoch: [1497/1500], global_step: 4490, lr: 0.001000, loss: 1.075620, loss_shrink_maps: 0.538719, loss_threshold_maps: 0.427958, loss_binary_maps: 0.106546, avg_reader_cost: 1.47471 s, avg_batch_cost: 1.65681 s, avg_samples: 9.6, ips: 5.79428 samples/s, eta: 0:01:26
[2024/07/27 15:56:43] ppocr INFO: epoch: [1497/1500], global_step: 4491, lr: 0.001000, loss: 1.087519, loss_shrink_maps: 0.557210, loss_threshold_maps: 0.435981, loss_binary_maps: 0.110208, avg_reader_cost: 0.87474 s, avg_batch_cost: 0.93000 s, avg_samples: 2.9, ips: 3.11829 samples/s, eta: 0:01:17
[2024/07/27 15:56:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:56:52] ppocr INFO: epoch: [1498/1500], global_step: 4494, lr: 0.001000, loss: 1.075620, loss_shrink_maps: 0.526379, loss_threshold_maps: 0.435981, loss_binary_maps: 0.103872, avg_reader_cost: 2.15745 s, avg_batch_cost: 2.45796 s, avg_samples: 12.5, ips: 5.08551 samples/s, eta: 0:00:51
[2024/07/27 15:56:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:57:03] ppocr INFO: epoch: [1499/1500], global_step: 4497, lr: 0.001000, loss: 1.098361, loss_shrink_maps: 0.539089, loss_threshold_maps: 0.443743, loss_binary_maps: 0.107239, avg_reader_cost: 2.38678 s, avg_batch_cost: 2.62759 s, avg_samples: 12.5, ips: 4.75722 samples/s, eta: 0:00:25
[2024/07/27 15:57:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:57:12] ppocr INFO: epoch: [1500/1500], global_step: 4500, lr: 0.001000, loss: 1.114262, loss_shrink_maps: 0.553107, loss_threshold_maps: 0.445255, loss_binary_maps: 0.110493, avg_reader_cost: 2.37340 s, avg_batch_cost: 2.62435 s, avg_samples: 12.5, ips: 4.76308 samples/s, eta: 0:00:00

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:50,  9.96it/s]
eval model::   1%|          | 3/500 [00:00<00:31, 15.71it/s]
eval model::   1%|          | 6/500 [00:00<00:24, 19.93it/s]
eval model::   2%|▏         | 8/500 [00:00<00:28, 17.26it/s]
eval model::   2%|▏         | 10/500 [00:00<00:27, 17.52it/s]
eval model::   2%|▏         | 12/500 [00:00<00:30, 15.83it/s]
eval model::   3%|▎         | 14/500 [00:00<00:30, 15.68it/s]
eval model::   3%|▎         | 17/500 [00:00<00:25, 19.09it/s]
eval model::   4%|▍         | 19/500 [00:01<00:25, 18.84it/s]
eval model::   4%|▍         | 21/500 [00:01<00:26, 18.21it/s]
eval model::   5%|▍         | 23/500 [00:01<00:26, 18.02it/s]
eval model::   5%|▌         | 25/500 [00:01<00:27, 17.57it/s]
eval model::   6%|▌         | 28/500 [00:01<00:25, 18.70it/s]
eval model::   6%|▌         | 31/500 [00:01<00:25, 18.51it/s]
eval model::   7%|▋         | 33/500 [00:01<00:25, 18.60it/s]
eval model::   7%|▋         | 35/500 [00:02<00:29, 15.79it/s]
eval model::   8%|▊         | 38/500 [00:02<00:27, 16.60it/s]
eval model::   8%|▊         | 40/500 [00:02<00:27, 16.83it/s]
eval model::   8%|▊         | 42/500 [00:02<00:26, 17.01it/s]
eval model::   9%|▉         | 45/500 [00:02<00:23, 19.66it/s]
eval model::  10%|▉         | 48/500 [00:02<00:22, 19.90it/s]
eval model::  10%|█         | 51/500 [00:02<00:21, 20.77it/s]
eval model::  11%|█         | 54/500 [00:02<00:20, 21.74it/s]
eval model::  11%|█▏        | 57/500 [00:03<00:20, 21.76it/s]
eval model::  12%|█▏        | 60/500 [00:03<00:21, 20.69it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:28, 15.10it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:26, 16.53it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:22, 18.93it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:20, 21.21it/s]
eval model::  15%|█▌        | 75/500 [00:04<00:19, 21.30it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:19, 22.12it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:17, 23.97it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:18, 23.00it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:19, 20.66it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:22, 18.26it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:21, 18.68it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:19, 20.26it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:19, 20.64it/s]
eval model::  20%|██        | 102/500 [00:05<00:19, 20.15it/s]
eval model::  21%|██        | 105/500 [00:05<00:17, 22.15it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:17, 22.76it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:19, 19.90it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:18, 20.51it/s]
eval model::  23%|██▎       | 117/500 [00:06<00:21, 17.94it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:21, 17.89it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:19, 19.17it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:21, 17.54it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:20, 17.91it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:22, 16.49it/s]
eval model::  26%|██▋       | 132/500 [00:07<00:24, 14.88it/s]
eval model::  27%|██▋       | 135/500 [00:07<00:22, 16.20it/s]
eval model::  27%|██▋       | 137/500 [00:07<00:21, 17.00it/s]
eval model::  28%|██▊       | 140/500 [00:07<00:20, 17.96it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:20, 17.69it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:19, 18.12it/s]
eval model::  29%|██▉       | 146/500 [00:07<00:21, 16.64it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:21, 16.11it/s]
eval model::  30%|███       | 150/500 [00:08<00:20, 16.95it/s]
eval model::  30%|███       | 152/500 [00:08<00:20, 16.85it/s]
eval model::  31%|███       | 155/500 [00:08<00:17, 19.79it/s]
eval model::  32%|███▏      | 158/500 [00:08<00:15, 21.50it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:22, 15.36it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:20, 16.07it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:18, 18.13it/s]
eval model::  34%|███▍      | 169/500 [00:09<00:18, 18.19it/s]
eval model::  34%|███▍      | 171/500 [00:09<00:19, 17.24it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:20, 15.83it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:20, 15.96it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:18, 17.29it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:20, 15.52it/s]
eval model::  37%|███▋      | 183/500 [00:10<00:20, 15.63it/s]
eval model::  37%|███▋      | 186/500 [00:10<00:17, 17.53it/s]
eval model::  38%|███▊      | 189/500 [00:10<00:16, 19.08it/s]
eval model::  38%|███▊      | 191/500 [00:10<00:16, 19.25it/s]
eval model::  39%|███▉      | 194/500 [00:10<00:14, 21.51it/s]
eval model::  39%|███▉      | 197/500 [00:10<00:15, 19.09it/s]
eval model::  40%|████      | 200/500 [00:10<00:14, 20.70it/s]
eval model::  41%|████      | 203/500 [00:10<00:13, 21.52it/s]
eval model::  41%|████      | 206/500 [00:11<00:20, 14.30it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:20, 14.55it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:20, 13.93it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:19, 14.84it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:21, 13.42it/s]
eval model::  43%|████▎     | 217/500 [00:12<00:22, 12.55it/s]
eval model::  44%|████▍     | 220/500 [00:12<00:19, 14.43it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:23, 11.82it/s]
eval model::  45%|████▌     | 225/500 [00:12<00:19, 13.87it/s]
eval model::  45%|████▌     | 227/500 [00:12<00:18, 14.73it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:16, 16.55it/s]
eval model::  47%|████▋     | 233/500 [00:13<00:15, 17.79it/s]
eval model::  47%|████▋     | 235/500 [00:13<00:14, 18.20it/s]
eval model::  48%|████▊     | 238/500 [00:13<00:13, 19.85it/s]
eval model::  48%|████▊     | 241/500 [00:13<00:13, 19.32it/s]
eval model::  49%|████▊     | 243/500 [00:13<00:15, 16.99it/s]
eval model::  49%|████▉     | 246/500 [00:13<00:13, 19.32it/s]
eval model::  50%|████▉     | 249/500 [00:13<00:13, 18.77it/s]
eval model::  50%|█████     | 251/500 [00:14<00:13, 19.00it/s]
eval model::  51%|█████     | 254/500 [00:14<00:12, 19.33it/s]
eval model::  51%|█████     | 256/500 [00:14<00:12, 19.04it/s]
eval model::  52%|█████▏    | 260/500 [00:14<00:10, 22.97it/s]
eval model::  53%|█████▎    | 263/500 [00:14<00:10, 22.20it/s]
eval model::  53%|█████▎    | 266/500 [00:14<00:11, 19.56it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:12, 17.99it/s]
eval model::  54%|█████▍    | 272/500 [00:15<00:12, 18.07it/s]
eval model::  55%|█████▌    | 275/500 [00:15<00:12, 17.61it/s]
eval model::  56%|█████▌    | 278/500 [00:15<00:11, 19.67it/s]
eval model::  56%|█████▌    | 281/500 [00:15<00:10, 21.41it/s]
eval model::  57%|█████▋    | 284/500 [00:15<00:09, 22.39it/s]
eval model::  57%|█████▋    | 287/500 [00:16<00:19, 11.10it/s]
eval model::  58%|█████▊    | 290/500 [00:16<00:16, 12.96it/s]
eval model::  58%|█████▊    | 292/500 [00:16<00:16, 12.38it/s]
eval model::  59%|█████▉    | 294/500 [00:16<00:15, 13.14it/s]
eval model::  59%|█████▉    | 296/500 [00:16<00:17, 11.34it/s]
eval model::  60%|█████▉    | 299/500 [00:17<00:14, 13.69it/s]
eval model::  60%|██████    | 301/500 [00:17<00:15, 12.82it/s]
eval model::  61%|██████    | 304/500 [00:17<00:13, 14.55it/s]
eval model::  61%|██████▏   | 307/500 [00:17<00:11, 16.39it/s]
eval model::  62%|██████▏   | 309/500 [00:17<00:11, 16.06it/s]
eval model::  62%|██████▏   | 312/500 [00:17<00:10, 17.65it/s]
eval model::  63%|██████▎   | 315/500 [00:18<00:11, 16.66it/s]
eval model::  64%|██████▎   | 318/500 [00:18<00:09, 18.62it/s]
eval model::  64%|██████▍   | 321/500 [00:18<00:09, 19.41it/s]
eval model::  65%|██████▍   | 324/500 [00:18<00:08, 20.45it/s]
eval model::  65%|██████▌   | 327/500 [00:18<00:08, 21.56it/s]
eval model::  66%|██████▌   | 330/500 [00:18<00:07, 21.32it/s]
eval model::  67%|██████▋   | 333/500 [00:18<00:07, 21.09it/s]
eval model::  67%|██████▋   | 336/500 [00:18<00:07, 22.53it/s]
eval model::  68%|██████▊   | 339/500 [00:19<00:07, 20.84it/s]
eval model::  68%|██████▊   | 342/500 [00:19<00:10, 15.70it/s]
eval model::  69%|██████▉   | 345/500 [00:19<00:09, 16.93it/s]
eval model::  69%|██████▉   | 347/500 [00:19<00:09, 16.90it/s]
eval model::  70%|███████   | 350/500 [00:19<00:08, 18.74it/s]
eval model::  71%|███████   | 353/500 [00:19<00:07, 19.58it/s]
eval model::  71%|███████   | 356/500 [00:20<00:07, 18.11it/s]
eval model::  72%|███████▏  | 359/500 [00:20<00:07, 19.48it/s]
eval model::  72%|███████▏  | 362/500 [00:20<00:08, 16.95it/s]
eval model::  73%|███████▎  | 364/500 [00:20<00:08, 15.85it/s]
eval model::  73%|███████▎  | 366/500 [00:20<00:08, 14.93it/s]
eval model::  74%|███████▍  | 369/500 [00:20<00:07, 16.92it/s]
eval model::  74%|███████▍  | 372/500 [00:21<00:07, 17.29it/s]
eval model::  75%|███████▌  | 375/500 [00:21<00:06, 18.58it/s]
eval model::  76%|███████▌  | 379/500 [00:21<00:05, 21.82it/s]
eval model::  76%|███████▋  | 382/500 [00:21<00:06, 18.81it/s]
eval model::  77%|███████▋  | 385/500 [00:21<00:05, 19.81it/s]
eval model::  78%|███████▊  | 388/500 [00:22<00:09, 11.54it/s]
eval model::  78%|███████▊  | 391/500 [00:22<00:08, 13.48it/s]
eval model::  79%|███████▉  | 394/500 [00:22<00:07, 15.12it/s]
eval model::  79%|███████▉  | 397/500 [00:22<00:05, 17.67it/s]
eval model::  80%|████████  | 400/500 [00:22<00:05, 17.70it/s]
eval model::  81%|████████  | 403/500 [00:22<00:05, 18.01it/s]
eval model::  81%|████████  | 406/500 [00:23<00:04, 20.14it/s]
eval model::  82%|████████▏ | 409/500 [00:23<00:04, 21.17it/s]
eval model::  82%|████████▏ | 412/500 [00:23<00:04, 21.83it/s]
eval model::  83%|████████▎ | 415/500 [00:23<00:03, 21.45it/s]
eval model::  84%|████████▎ | 418/500 [00:23<00:04, 18.83it/s]
eval model::  84%|████████▍ | 421/500 [00:24<00:06, 12.85it/s]
eval model::  85%|████████▍ | 424/500 [00:24<00:05, 13.11it/s]
eval model::  85%|████████▌ | 426/500 [00:24<00:05, 13.83it/s]
eval model::  86%|████████▌ | 429/500 [00:24<00:04, 16.61it/s]
eval model::  86%|████████▌ | 431/500 [00:24<00:04, 15.71it/s]
eval model::  87%|████████▋ | 434/500 [00:24<00:03, 18.20it/s]
eval model::  88%|████████▊ | 438/500 [00:24<00:02, 21.58it/s]
eval model::  88%|████████▊ | 441/500 [00:25<00:02, 20.33it/s]
eval model::  89%|████████▉ | 444/500 [00:25<00:02, 21.53it/s]
eval model::  89%|████████▉ | 447/500 [00:25<00:02, 23.34it/s]
eval model::  90%|█████████ | 450/500 [00:25<00:02, 20.19it/s]
eval model::  91%|█████████ | 453/500 [00:25<00:02, 20.76it/s]
eval model::  91%|█████████ | 456/500 [00:25<00:02, 20.18it/s]
eval model::  92%|█████████▏| 459/500 [00:25<00:01, 21.04it/s]
eval model::  92%|█████████▏| 462/500 [00:26<00:02, 15.85it/s]
eval model::  93%|█████████▎| 464/500 [00:26<00:02, 16.13it/s]
eval model::  93%|█████████▎| 466/500 [00:26<00:02, 16.18it/s]
eval model::  94%|█████████▍| 469/500 [00:26<00:01, 18.37it/s]
eval model::  94%|█████████▍| 472/500 [00:26<00:01, 20.16it/s]
eval model::  95%|█████████▌| 475/500 [00:26<00:01, 22.30it/s]
eval model::  96%|█████████▌| 479/500 [00:26<00:00, 26.10it/s]
eval model::  96%|█████████▋| 482/500 [00:27<00:00, 26.71it/s]
eval model::  97%|█████████▋| 486/500 [00:27<00:00, 28.01it/s]
eval model::  98%|█████████▊| 490/500 [00:27<00:00, 30.80it/s]
eval model::  99%|█████████▉| 494/500 [00:27<00:00, 27.59it/s]
eval model:: 100%|█████████▉| 498/500 [00:27<00:00, 29.52it/s]
eval model:: 100%|██████████| 500/500 [00:27<00:00, 18.13it/s]
[2024/07/27 15:57:40] ppocr INFO: cur metric, precision: 0.7100445324096981, recall: 0.6909003370245547, hmean: 0.7003416300634455, fps: 44.518711926072115
[2024/07/27 15:57:40] ppocr INFO: best metric, hmean: 0.7301425661914459, precision: 0.7747163695299838, recall: 0.6904188733750601, fps: 43.582139874688714, best_epoch: 960
[2024/07/27 15:57:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 15:57:40] ppocr INFO: best metric, hmean: 0.7301425661914459, precision: 0.7747163695299838, recall: 0.6904188733750601, fps: 43.582139874688714, best_epoch: 960
I0727 15:57:42.215958  3063 tcp_store.cc:289] receive shutdown event and so quit from MasterDaemon run loop
[2024/07/27 21:45:51] ppocr INFO: Architecture : 
[2024/07/27 21:45:51] ppocr INFO:     Backbone : 
[2024/07/27 21:45:51] ppocr INFO:         model_name : large
[2024/07/27 21:45:51] ppocr INFO:         name : MobileNetV3
[2024/07/27 21:45:51] ppocr INFO:         scale : 0.5
[2024/07/27 21:45:51] ppocr INFO:     Head : 
[2024/07/27 21:45:51] ppocr INFO:         k : 50
[2024/07/27 21:45:51] ppocr INFO:         name : DBHead
[2024/07/27 21:45:51] ppocr INFO:     Neck : 
[2024/07/27 21:45:51] ppocr INFO:         name : DBFPN
[2024/07/27 21:45:51] ppocr INFO:         out_channels : 256
[2024/07/27 21:45:51] ppocr INFO:     Transform : None
[2024/07/27 21:45:51] ppocr INFO:     algorithm : DB
[2024/07/27 21:45:51] ppocr INFO:     model_type : det
[2024/07/27 21:45:51] ppocr INFO: Eval : 
[2024/07/27 21:45:51] ppocr INFO:     dataset : 
[2024/07/27 21:45:51] ppocr INFO:         data_dir : /datasets/icdar2015/text_localization/
[2024/07/27 21:45:51] ppocr INFO:         label_file_list : ['/datasets/icdar2015/text_localization/test_icdar2015_label.txt']
[2024/07/27 21:45:51] ppocr INFO:         name : SimpleDataSet
[2024/07/27 21:45:51] ppocr INFO:         transforms : 
[2024/07/27 21:45:51] ppocr INFO:             DecodeImage : 
[2024/07/27 21:45:51] ppocr INFO:                 channel_first : False
[2024/07/27 21:45:51] ppocr INFO:                 img_mode : BGR
[2024/07/27 21:45:51] ppocr INFO:             DetLabelEncode : None
[2024/07/27 21:45:51] ppocr INFO:             DetResizeForTest : 
[2024/07/27 21:45:51] ppocr INFO:                 image_shape : [736, 1280]
[2024/07/27 21:45:51] ppocr INFO:             NormalizeImage : 
[2024/07/27 21:45:51] ppocr INFO:                 mean : [0.485, 0.456, 0.406]
[2024/07/27 21:45:51] ppocr INFO:                 order : hwc
[2024/07/27 21:45:51] ppocr INFO:                 scale : 1./255.
[2024/07/27 21:45:51] ppocr INFO:                 std : [0.229, 0.224, 0.225]
[2024/07/27 21:45:51] ppocr INFO:             ToCHWImage : None
[2024/07/27 21:45:51] ppocr INFO:             KeepKeys : 
[2024/07/27 21:45:51] ppocr INFO:                 keep_keys : ['image', 'shape', 'polys', 'ignore_tags']
[2024/07/27 21:45:51] ppocr INFO:     loader : 
[2024/07/27 21:45:51] ppocr INFO:         batch_size_per_card : 1
[2024/07/27 21:45:51] ppocr INFO:         drop_last : False
[2024/07/27 21:45:51] ppocr INFO:         num_workers : 0
[2024/07/27 21:45:51] ppocr INFO:         shuffle : False
[2024/07/27 21:45:51] ppocr INFO:         use_shared_memory : False
[2024/07/27 21:45:51] ppocr INFO: Global : 
[2024/07/27 21:45:51] ppocr INFO:     cal_metric_during_train : False
[2024/07/27 21:45:51] ppocr INFO:     checkpoints : None
[2024/07/27 21:45:51] ppocr INFO:     distributed : True
[2024/07/27 21:45:51] ppocr INFO:     epoch_num : 1500
[2024/07/27 21:45:51] ppocr INFO:     eval_batch_step : [0, 60]
[2024/07/27 21:45:51] ppocr INFO:     infer_img : doc/imgs_en/img_10.jpg
[2024/07/27 21:45:51] ppocr INFO:     log_smooth_window : 20
[2024/07/27 21:45:51] ppocr INFO:     pretrained_model : ./pretrain_models/MobileNetV3_large_x0_5_pretrained
[2024/07/27 21:45:51] ppocr INFO:     print_batch_step : 10
[2024/07/27 21:45:51] ppocr INFO:     save_epoch_step : 1200
[2024/07/27 21:45:51] ppocr INFO:     save_inference_dir : None
[2024/07/27 21:45:51] ppocr INFO:     save_model_dir : ./output/db_mv3/
[2024/07/27 21:45:51] ppocr INFO:     save_res_path : ./output/det_db/predicts_db.txt
[2024/07/27 21:45:51] ppocr INFO:     use_gpu : True
[2024/07/27 21:45:51] ppocr INFO:     use_visualdl : False
[2024/07/27 21:45:51] ppocr INFO:     use_xpu : False
[2024/07/27 21:45:51] ppocr INFO: Loss : 
[2024/07/27 21:45:51] ppocr INFO:     alpha : 5
[2024/07/27 21:45:51] ppocr INFO:     balance_loss : True
[2024/07/27 21:45:51] ppocr INFO:     beta : 10
[2024/07/27 21:45:51] ppocr INFO:     main_loss_type : DiceLoss
[2024/07/27 21:45:51] ppocr INFO:     name : DBLoss
[2024/07/27 21:45:51] ppocr INFO:     ohem_ratio : 3
[2024/07/27 21:45:51] ppocr INFO: Metric : 
[2024/07/27 21:45:51] ppocr INFO:     main_indicator : hmean
[2024/07/27 21:45:51] ppocr INFO:     name : DetMetric
[2024/07/27 21:45:51] ppocr INFO: Optimizer : 
[2024/07/27 21:45:51] ppocr INFO:     beta1 : 0.9
[2024/07/27 21:45:51] ppocr INFO:     beta2 : 0.999
[2024/07/27 21:45:51] ppocr INFO:     lr : 
[2024/07/27 21:45:51] ppocr INFO:         learning_rate : 0.001
[2024/07/27 21:45:51] ppocr INFO:     name : Adam
[2024/07/27 21:45:51] ppocr INFO:     regularizer : 
[2024/07/27 21:45:51] ppocr INFO:         factor : 0
[2024/07/27 21:45:51] ppocr INFO:         name : L2
[2024/07/27 21:45:51] ppocr INFO: PostProcess : 
[2024/07/27 21:45:51] ppocr INFO:     box_thresh : 0.6
[2024/07/27 21:45:51] ppocr INFO:     max_candidates : 1000
[2024/07/27 21:45:51] ppocr INFO:     name : DBPostProcess
[2024/07/27 21:45:51] ppocr INFO:     thresh : 0.3
[2024/07/27 21:45:51] ppocr INFO:     unclip_ratio : 1.5
[2024/07/27 21:45:51] ppocr INFO: Train : 
[2024/07/27 21:45:51] ppocr INFO:     dataset : 
[2024/07/27 21:45:51] ppocr INFO:         data_dir : /datasets/icdar2015/text_localization/
[2024/07/27 21:45:51] ppocr INFO:         label_file_list : ['/datasets/icdar2015/text_localization/train_icdar2015_label.txt']
[2024/07/27 21:45:51] ppocr INFO:         name : SimpleDataSet
[2024/07/27 21:45:51] ppocr INFO:         ratio_list : [1.0]
[2024/07/27 21:45:51] ppocr INFO:         transforms : 
[2024/07/27 21:45:51] ppocr INFO:             DecodeImage : 
[2024/07/27 21:45:51] ppocr INFO:                 channel_first : False
[2024/07/27 21:45:51] ppocr INFO:                 img_mode : BGR
[2024/07/27 21:45:51] ppocr INFO:             DetLabelEncode : None
[2024/07/27 21:45:51] ppocr INFO:             IaaAugment : 
[2024/07/27 21:45:51] ppocr INFO:                 augmenter_args : 
[2024/07/27 21:45:51] ppocr INFO:                     args : 
[2024/07/27 21:45:51] ppocr INFO:                         p : 0.5
[2024/07/27 21:45:51] ppocr INFO:                     type : Fliplr
[2024/07/27 21:45:51] ppocr INFO:                     args : 
[2024/07/27 21:45:51] ppocr INFO:                         rotate : [-10, 10]
[2024/07/27 21:45:51] ppocr INFO:                     type : Affine
[2024/07/27 21:45:51] ppocr INFO:                     args : 
[2024/07/27 21:45:51] ppocr INFO:                         size : [0.5, 3]
[2024/07/27 21:45:51] ppocr INFO:                     type : Resize
[2024/07/27 21:45:51] ppocr INFO:             EastRandomCropData : 
[2024/07/27 21:45:51] ppocr INFO:                 keep_ratio : True
[2024/07/27 21:45:51] ppocr INFO:                 max_tries : 50
[2024/07/27 21:45:51] ppocr INFO:                 size : [640, 640]
[2024/07/27 21:45:51] ppocr INFO:             MakeBorderMap : 
[2024/07/27 21:45:51] ppocr INFO:                 shrink_ratio : 0.4
[2024/07/27 21:45:51] ppocr INFO:                 thresh_max : 0.7
[2024/07/27 21:45:51] ppocr INFO:                 thresh_min : 0.3
[2024/07/27 21:45:51] ppocr INFO:             MakeShrinkMap : 
[2024/07/27 21:45:51] ppocr INFO:                 min_text_size : 8
[2024/07/27 21:45:51] ppocr INFO:                 shrink_ratio : 0.4
[2024/07/27 21:45:51] ppocr INFO:             NormalizeImage : 
[2024/07/27 21:45:51] ppocr INFO:                 mean : [0.485, 0.456, 0.406]
[2024/07/27 21:45:51] ppocr INFO:                 order : hwc
[2024/07/27 21:45:51] ppocr INFO:                 scale : 1./255.
[2024/07/27 21:45:51] ppocr INFO:                 std : [0.229, 0.224, 0.225]
[2024/07/27 21:45:51] ppocr INFO:             ToCHWImage : None
[2024/07/27 21:45:51] ppocr INFO:             KeepKeys : 
[2024/07/27 21:45:51] ppocr INFO:                 keep_keys : ['image', 'threshold_map', 'threshold_mask', 'shrink_map', 'shrink_mask']
[2024/07/27 21:45:51] ppocr INFO:     loader : 
[2024/07/27 21:45:51] ppocr INFO:         batch_size_per_card : 48
[2024/07/27 21:45:51] ppocr INFO:         drop_last : False
[2024/07/27 21:45:51] ppocr INFO:         num_workers : 8
[2024/07/27 21:45:51] ppocr INFO:         shuffle : True
[2024/07/27 21:45:51] ppocr INFO:         use_shared_memory : False
[2024/07/27 21:45:51] ppocr INFO: profiler_options : None
[2024/07/27 21:45:51] ppocr INFO: train with paddle 2.5.2 and device Place(gpu:0)
======================= Modified FLAGS detected =======================
FLAGS(name='FLAGS_cudnn_batchnorm_spatial_persistent', current_value=True, default_value=False)
FLAGS(name='FLAGS_selected_gpus', current_value='0', default_value='')
=======================================================================
I0727 21:45:51.167779   256 tcp_utils.cc:181] The server starts to listen on IP_ANY:49703
I0727 21:45:51.167958   256 tcp_utils.cc:130] Successfully connected to 127.0.0.1:49703
I0727 21:45:54.286273   256 process_group_nccl.cc:120] ProcessGroupNCCL pg_timeout_ 1800000
[2024/07/27 21:45:54] ppocr INFO: Initialize indexs of datasets:['/datasets/icdar2015/text_localization/train_icdar2015_label.txt']
[2024/07/27 21:45:54] ppocr INFO: Initialize indexs of datasets:['/datasets/icdar2015/text_localization/test_icdar2015_label.txt']
W0727 21:45:54.298504   256 gpu_resources.cc:119] Please NOTE: device: 0, GPU Compute Capability: 90.2, Driver API Version: 50724.2, Runtime API Version: 50724.2
[2024/07/27 21:45:55] ppocr INFO: load pretrain successful from ./pretrain_models/MobileNetV3_large_x0_5_pretrained
[2024/07/27 21:45:55] ppocr INFO: train dataloader has 3 iters
[2024/07/27 21:45:55] ppocr INFO: valid dataloader has 500 iters
[2024/07/27 21:45:55] ppocr INFO: During the training process, after the 0th iteration, an evaluation is run every 60 iterations
[2024/07/27 21:46:19] ppocr INFO: epoch: [1/1500], global_step: 3, lr: 0.001000, loss: 9.253895, loss_shrink_maps: 4.917219, loss_threshold_maps: 3.397514, loss_binary_maps: 0.984065, avg_reader_cost: 6.24634 s, avg_batch_cost: 6.90953 s, avg_samples: 12.5, ips: 1.80909 samples/s, eta: 1 day, 4:46:13
[2024/07/27 21:46:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 21:46:30] ppocr INFO: epoch: [2/1500], global_step: 6, lr: 0.001000, loss: 8.548260, loss_shrink_maps: 4.876904, loss_threshold_maps: 2.668770, loss_binary_maps: 0.979144, avg_reader_cost: 2.69399 s, avg_batch_cost: 2.99949 s, avg_samples: 12.5, ips: 4.16737 samples/s, eta: 20:36:58
[2024/07/27 21:46:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 21:46:42] ppocr INFO: epoch: [3/1500], global_step: 9, lr: 0.001000, loss: 7.702368, loss_shrink_maps: 4.852952, loss_threshold_maps: 1.932015, loss_binary_maps: 0.974952, avg_reader_cost: 2.82204 s, avg_batch_cost: 3.06487 s, avg_samples: 12.5, ips: 4.07847 samples/s, eta: 17:58:59
[2024/07/27 21:46:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 21:46:51] ppocr INFO: epoch: [4/1500], global_step: 10, lr: 0.001000, loss: 7.638932, loss_shrink_maps: 4.844220, loss_threshold_maps: 1.839804, loss_binary_maps: 0.971855, avg_reader_cost: 0.71370 s, avg_batch_cost: 0.87119 s, avg_samples: 4.8, ips: 5.50971 samples/s, eta: 17:16:04
[2024/07/27 21:46:53] ppocr INFO: epoch: [4/1500], global_step: 12, lr: 0.001000, loss: 7.301230, loss_shrink_maps: 4.834607, loss_threshold_maps: 1.516090, loss_binary_maps: 0.968031, avg_reader_cost: 1.83293 s, avg_batch_cost: 1.97747 s, avg_samples: 7.7, ips: 3.89386 samples/s, eta: 16:26:16
[2024/07/27 21:46:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 21:47:03] ppocr INFO: epoch: [5/1500], global_step: 15, lr: 0.001000, loss: 7.025673, loss_shrink_maps: 4.815832, loss_threshold_maps: 1.282615, loss_binary_maps: 0.963583, avg_reader_cost: 2.61890 s, avg_batch_cost: 2.85575 s, avg_samples: 12.5, ips: 4.37713 samples/s, eta: 15:30:48
[2024/07/27 21:47:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 21:47:14] ppocr INFO: epoch: [6/1500], global_step: 18, lr: 0.001000, loss: 7.002416, loss_shrink_maps: 4.797278, loss_threshold_maps: 1.202436, loss_binary_maps: 0.962072, avg_reader_cost: 2.65636 s, avg_batch_cost: 2.91135 s, avg_samples: 12.5, ips: 4.29354 samples/s, eta: 14:55:58
[2024/07/27 21:47:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 21:47:25] ppocr INFO: epoch: [7/1500], global_step: 20, lr: 0.001000, loss: 6.967031, loss_shrink_maps: 4.785719, loss_threshold_maps: 1.179879, loss_binary_maps: 0.959428, avg_reader_cost: 1.73273 s, avg_batch_cost: 1.91064 s, avg_samples: 9.6, ips: 5.02450 samples/s, eta: 14:37:20
[2024/07/27 21:47:25] ppocr INFO: epoch: [7/1500], global_step: 21, lr: 0.001000, loss: 6.919442, loss_shrink_maps: 4.782249, loss_threshold_maps: 1.174124, loss_binary_maps: 0.956609, avg_reader_cost: 1.00083 s, avg_batch_cost: 1.05568 s, avg_samples: 2.9, ips: 2.74705 samples/s, eta: 14:32:54
[2024/07/27 21:47:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 21:47:37] ppocr INFO: epoch: [8/1500], global_step: 24, lr: 0.001000, loss: 6.837163, loss_shrink_maps: 4.745248, loss_threshold_maps: 1.147013, loss_binary_maps: 0.947830, avg_reader_cost: 2.64389 s, avg_batch_cost: 2.91765 s, avg_samples: 12.5, ips: 4.28427 samples/s, eta: 14:13:58
[2024/07/27 21:47:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 21:47:48] ppocr INFO: epoch: [9/1500], global_step: 27, lr: 0.001000, loss: 6.719752, loss_shrink_maps: 4.652148, loss_threshold_maps: 1.122574, loss_binary_maps: 0.926876, avg_reader_cost: 2.75281 s, avg_batch_cost: 2.99654 s, avg_samples: 12.5, ips: 4.17148 samples/s, eta: 14:01:18
[2024/07/27 21:47:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 21:47:59] ppocr INFO: epoch: [10/1500], global_step: 30, lr: 0.001000, loss: 6.576698, loss_shrink_maps: 4.599428, loss_threshold_maps: 1.099971, loss_binary_maps: 0.887527, avg_reader_cost: 2.82482 s, avg_batch_cost: 3.07601 s, avg_samples: 12.5, ips: 4.06370 samples/s, eta: 13:53:03
[2024/07/27 21:48:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 21:48:10] ppocr INFO: epoch: [11/1500], global_step: 33, lr: 0.001000, loss: 6.473350, loss_shrink_maps: 4.528748, loss_threshold_maps: 1.060250, loss_binary_maps: 0.855419, avg_reader_cost: 2.74335 s, avg_batch_cost: 2.97632 s, avg_samples: 12.5, ips: 4.19982 samples/s, eta: 13:43:58
[2024/07/27 21:48:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 21:48:21] ppocr INFO: epoch: [12/1500], global_step: 36, lr: 0.001000, loss: 6.312004, loss_shrink_maps: 4.467349, loss_threshold_maps: 1.008221, loss_binary_maps: 0.814581, avg_reader_cost: 2.62160 s, avg_batch_cost: 2.97805 s, avg_samples: 12.5, ips: 4.19738 samples/s, eta: 13:36:20
[2024/07/27 21:48:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 21:48:33] ppocr INFO: epoch: [13/1500], global_step: 39, lr: 0.001000, loss: 5.777366, loss_shrink_maps: 4.126498, loss_threshold_maps: 0.981692, loss_binary_maps: 0.709848, avg_reader_cost: 2.72811 s, avg_batch_cost: 2.97097 s, avg_samples: 12.5, ips: 4.20739 samples/s, eta: 13:29:40
[2024/07/27 21:48:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 21:48:42] ppocr INFO: epoch: [14/1500], global_step: 40, lr: 0.001000, loss: 5.732084, loss_shrink_maps: 4.110692, loss_threshold_maps: 0.965224, loss_binary_maps: 0.697947, avg_reader_cost: 0.71389 s, avg_batch_cost: 0.86119 s, avg_samples: 4.8, ips: 5.57366 samples/s, eta: 13:25:15
[2024/07/27 21:48:43] ppocr INFO: epoch: [14/1500], global_step: 42, lr: 0.001000, loss: 5.605818, loss_shrink_maps: 4.004832, loss_threshold_maps: 0.955461, loss_binary_maps: 0.671300, avg_reader_cost: 1.81467 s, avg_batch_cost: 1.96145 s, avg_samples: 7.7, ips: 3.92567 samples/s, eta: 13:21:16
[2024/07/27 21:48:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 21:48:54] ppocr INFO: epoch: [15/1500], global_step: 45, lr: 0.001000, loss: 5.437328, loss_shrink_maps: 3.837244, loss_threshold_maps: 0.937092, loss_binary_maps: 0.636082, avg_reader_cost: 2.76506 s, avg_batch_cost: 3.01747 s, avg_samples: 12.5, ips: 4.14255 samples/s, eta: 13:17:08
[2024/07/27 21:48:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 21:49:06] ppocr INFO: epoch: [16/1500], global_step: 48, lr: 0.001000, loss: 5.305352, loss_shrink_maps: 3.746127, loss_threshold_maps: 0.928468, loss_binary_maps: 0.606087, avg_reader_cost: 2.67295 s, avg_batch_cost: 2.97316 s, avg_samples: 12.5, ips: 4.20428 samples/s, eta: 13:12:46
[2024/07/27 21:49:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 21:49:16] ppocr INFO: epoch: [17/1500], global_step: 50, lr: 0.001000, loss: 5.051848, loss_shrink_maps: 3.586887, loss_threshold_maps: 0.924119, loss_binary_maps: 0.557438, avg_reader_cost: 1.61005 s, avg_batch_cost: 1.86066 s, avg_samples: 9.6, ips: 5.15946 samples/s, eta: 13:08:19
[2024/07/27 21:49:16] ppocr INFO: epoch: [17/1500], global_step: 51, lr: 0.001000, loss: 4.901994, loss_shrink_maps: 3.467603, loss_threshold_maps: 0.922105, loss_binary_maps: 0.534717, avg_reader_cost: 0.97582 s, avg_batch_cost: 1.03054 s, avg_samples: 2.9, ips: 2.81406 samples/s, eta: 13:07:40
[2024/07/27 21:49:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 21:49:28] ppocr INFO: epoch: [18/1500], global_step: 54, lr: 0.001000, loss: 4.738723, loss_shrink_maps: 3.276343, loss_threshold_maps: 0.912072, loss_binary_maps: 0.507635, avg_reader_cost: 2.73928 s, avg_batch_cost: 3.00075 s, avg_samples: 12.5, ips: 4.16563 samples/s, eta: 13:04:35
[2024/07/27 21:49:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 21:49:39] ppocr INFO: epoch: [19/1500], global_step: 57, lr: 0.001000, loss: 4.423630, loss_shrink_maps: 3.062579, loss_threshold_maps: 0.903388, loss_binary_maps: 0.465144, avg_reader_cost: 2.60720 s, avg_batch_cost: 2.88348 s, avg_samples: 12.5, ips: 4.33504 samples/s, eta: 13:00:15
[2024/07/27 21:49:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 21:49:50] ppocr INFO: epoch: [20/1500], global_step: 60, lr: 0.001000, loss: 4.260386, loss_shrink_maps: 2.934451, loss_threshold_maps: 0.893398, loss_binary_maps: 0.455492, avg_reader_cost: 2.70225 s, avg_batch_cost: 3.02137 s, avg_samples: 12.5, ips: 4.13720 samples/s, eta: 12:58:00

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:54,  9.22it/s]
eval model::   1%|          | 4/500 [00:00<00:27, 17.90it/s]
eval model::   1%|▏         | 7/500 [00:00<00:25, 19.06it/s]
eval model::   2%|▏         | 10/500 [00:00<00:23, 20.73it/s]
eval model::   3%|▎         | 13/500 [00:00<00:25, 19.03it/s]
eval model::   3%|▎         | 16/500 [00:00<00:23, 20.72it/s]
eval model::   4%|▍         | 19/500 [00:00<00:21, 21.97it/s]
eval model::   4%|▍         | 22/500 [00:01<00:20, 22.93it/s]
eval model::   5%|▌         | 25/500 [00:01<00:22, 21.08it/s]
eval model::   6%|▌         | 28/500 [00:01<00:21, 21.80it/s]
eval model::   6%|▌         | 31/500 [00:01<00:22, 20.84it/s]
eval model::   7%|▋         | 34/500 [00:01<00:20, 22.36it/s]
eval model::   7%|▋         | 37/500 [00:01<00:21, 21.42it/s]
eval model::   8%|▊         | 40/500 [00:01<00:23, 19.31it/s]
eval model::   9%|▊         | 43/500 [00:02<00:23, 19.25it/s]
eval model::   9%|▉         | 45/500 [00:02<00:23, 19.01it/s]
eval model::  10%|▉         | 48/500 [00:02<00:21, 20.70it/s]
eval model::  10%|█         | 51/500 [00:02<00:21, 20.84it/s]
eval model::  11%|█         | 54/500 [00:02<00:22, 20.11it/s]
eval model::  11%|█▏        | 57/500 [00:02<00:25, 17.67it/s]
eval model::  12%|█▏        | 59/500 [00:02<00:24, 17.97it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:26, 16.82it/s]
eval model::  13%|█▎        | 64/500 [00:03<00:23, 18.33it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:24, 18.05it/s]
eval model::  14%|█▎        | 68/500 [00:03<00:23, 18.49it/s]
eval model::  14%|█▍        | 71/500 [00:03<00:22, 19.16it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:22, 19.08it/s]
eval model::  15%|█▌        | 76/500 [00:03<00:20, 20.71it/s]
eval model::  16%|█▌        | 79/500 [00:03<00:20, 20.78it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:19, 21.72it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:17, 23.49it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:17, 24.15it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:16, 24.35it/s]
eval model::  19%|█▉        | 94/500 [00:04<00:17, 23.74it/s]
eval model::  19%|█▉        | 97/500 [00:04<00:16, 23.94it/s]
eval model::  20%|██        | 100/500 [00:04<00:17, 23.37it/s]
eval model::  21%|██        | 103/500 [00:04<00:16, 24.43it/s]
eval model::  21%|██        | 106/500 [00:05<00:17, 23.11it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:15, 24.68it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:16, 23.68it/s]
eval model::  23%|██▎       | 115/500 [00:05<00:16, 22.93it/s]
eval model::  24%|██▎       | 118/500 [00:05<00:17, 21.97it/s]
eval model::  24%|██▍       | 121/500 [00:05<00:16, 22.63it/s]
eval model::  25%|██▍       | 124/500 [00:05<00:16, 22.17it/s]
eval model::  25%|██▌       | 127/500 [00:06<00:15, 23.71it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:17, 21.15it/s]
eval model::  27%|██▋       | 134/500 [00:06<00:16, 22.47it/s]
eval model::  27%|██▋       | 137/500 [00:06<00:17, 21.04it/s]
eval model::  28%|██▊       | 140/500 [00:06<00:18, 19.75it/s]
eval model::  29%|██▊       | 143/500 [00:06<00:18, 19.43it/s]
eval model::  29%|██▉       | 146/500 [00:06<00:17, 20.74it/s]
eval model::  30%|██▉       | 149/500 [00:07<00:17, 20.22it/s]
eval model::  30%|███       | 152/500 [00:07<00:18, 19.01it/s]
eval model::  31%|███       | 155/500 [00:07<00:17, 19.41it/s]
eval model::  31%|███▏      | 157/500 [00:07<00:17, 19.53it/s]
eval model::  32%|███▏      | 159/500 [00:07<00:17, 19.07it/s]
eval model::  32%|███▏      | 161/500 [00:07<00:18, 18.30it/s]
eval model::  33%|███▎      | 164/500 [00:07<00:17, 19.58it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:17, 19.37it/s]
eval model::  34%|███▍      | 170/500 [00:08<00:15, 20.99it/s]
eval model::  35%|███▍      | 173/500 [00:08<00:15, 20.52it/s]
eval model::  35%|███▌      | 176/500 [00:08<00:16, 20.07it/s]
eval model::  36%|███▌      | 179/500 [00:08<00:15, 21.04it/s]
eval model::  36%|███▋      | 182/500 [00:08<00:15, 20.67it/s]
eval model::  37%|███▋      | 186/500 [00:08<00:14, 21.87it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:14, 21.30it/s]
eval model::  38%|███▊      | 192/500 [00:09<00:14, 21.92it/s]
eval model::  39%|███▉      | 195/500 [00:09<00:15, 19.91it/s]
eval model::  40%|███▉      | 198/500 [00:09<00:14, 20.93it/s]
eval model::  40%|████      | 201/500 [00:09<00:15, 19.62it/s]
eval model::  41%|████      | 204/500 [00:10<00:19, 15.18it/s]
eval model::  41%|████      | 206/500 [00:10<00:23, 12.33it/s]
eval model::  42%|████▏     | 208/500 [00:10<00:21, 13.30it/s]
eval model::  42%|████▏     | 211/500 [00:10<00:17, 16.25it/s]
eval model::  43%|████▎     | 214/500 [00:10<00:15, 19.03it/s]
eval model::  43%|████▎     | 217/500 [00:10<00:14, 19.09it/s]
eval model::  44%|████▍     | 221/500 [00:10<00:13, 21.25it/s]
eval model::  45%|████▍     | 224/500 [00:11<00:13, 21.13it/s]
eval model::  45%|████▌     | 227/500 [00:11<00:13, 20.96it/s]
eval model::  46%|████▌     | 230/500 [00:11<00:12, 20.78it/s]
eval model::  47%|████▋     | 233/500 [00:11<00:12, 21.22it/s]
eval model::  47%|████▋     | 236/500 [00:11<00:12, 20.56it/s]
eval model::  48%|████▊     | 239/500 [00:11<00:13, 19.53it/s]
eval model::  48%|████▊     | 242/500 [00:11<00:13, 19.41it/s]
eval model::  49%|████▉     | 245/500 [00:12<00:12, 20.91it/s]
eval model::  50%|████▉     | 248/500 [00:12<00:11, 21.51it/s]
eval model::  50%|█████     | 251/500 [00:12<00:12, 20.20it/s]
eval model::  51%|█████     | 254/500 [00:12<00:12, 19.56it/s]
eval model::  51%|█████     | 256/500 [00:12<00:13, 18.18it/s]
eval model::  52%|█████▏    | 259/500 [00:12<00:12, 19.93it/s]
eval model::  52%|█████▏    | 262/500 [00:12<00:12, 19.20it/s]
eval model::  53%|█████▎    | 265/500 [00:13<00:12, 19.29it/s]
eval model::  54%|█████▎    | 268/500 [00:13<00:10, 21.28it/s]
eval model::  54%|█████▍    | 271/500 [00:13<00:10, 21.67it/s]
eval model::  55%|█████▍    | 274/500 [00:13<00:10, 21.56it/s]
eval model::  55%|█████▌    | 277/500 [00:13<00:10, 21.59it/s]
eval model::  56%|█████▌    | 280/500 [00:13<00:09, 22.55it/s]
eval model::  57%|█████▋    | 283/500 [00:13<00:09, 21.75it/s]
eval model::  57%|█████▋    | 286/500 [00:14<00:10, 19.89it/s]
eval model::  58%|█████▊    | 289/500 [00:14<00:09, 21.72it/s]
eval model::  58%|█████▊    | 292/500 [00:14<00:09, 22.69it/s]
eval model::  59%|█████▉    | 295/500 [00:14<00:10, 19.62it/s]
eval model::  60%|█████▉    | 298/500 [00:14<00:09, 20.50it/s]
eval model::  60%|██████    | 301/500 [00:14<00:09, 21.12it/s]
eval model::  61%|██████    | 304/500 [00:14<00:08, 23.08it/s]
eval model::  61%|██████▏   | 307/500 [00:15<00:09, 21.37it/s]
eval model::  62%|██████▏   | 310/500 [00:15<00:08, 21.84it/s]
eval model::  63%|██████▎   | 313/500 [00:15<00:09, 20.74it/s]
eval model::  63%|██████▎   | 316/500 [00:15<00:08, 20.93it/s]
eval model::  64%|██████▍   | 319/500 [00:15<00:09, 19.53it/s]
eval model::  64%|██████▍   | 322/500 [00:15<00:09, 18.33it/s]
eval model::  65%|██████▍   | 324/500 [00:15<00:09, 18.35it/s]
eval model::  65%|██████▌   | 327/500 [00:16<00:08, 19.53it/s]
eval model::  66%|██████▌   | 329/500 [00:16<00:09, 18.96it/s]
eval model::  66%|██████▋   | 332/500 [00:16<00:08, 20.01it/s]
eval model::  67%|██████▋   | 335/500 [00:16<00:07, 20.88it/s]
eval model::  68%|██████▊   | 338/500 [00:16<00:08, 19.50it/s]
eval model::  68%|██████▊   | 340/500 [00:16<00:08, 17.83it/s]
eval model::  69%|██████▊   | 343/500 [00:16<00:07, 19.64it/s]
eval model::  69%|██████▉   | 346/500 [00:17<00:07, 19.45it/s]
eval model::  70%|██████▉   | 348/500 [00:17<00:08, 18.68it/s]
eval model::  70%|███████   | 351/500 [00:17<00:07, 19.19it/s]
eval model::  71%|███████   | 353/500 [00:17<00:07, 19.29it/s]
eval model::  71%|███████   | 355/500 [00:17<00:08, 17.94it/s]
eval model::  71%|███████▏  | 357/500 [00:17<00:08, 17.50it/s]
eval model::  72%|███████▏  | 360/500 [00:17<00:07, 19.46it/s]
eval model::  72%|███████▏  | 362/500 [00:17<00:07, 19.06it/s]
eval model::  73%|███████▎  | 364/500 [00:18<00:08, 15.75it/s]
eval model::  73%|███████▎  | 367/500 [00:18<00:07, 18.48it/s]
eval model::  74%|███████▍  | 370/500 [00:18<00:06, 21.12it/s]
eval model::  75%|███████▍  | 373/500 [00:18<00:06, 20.33it/s]
eval model::  75%|███████▌  | 376/500 [00:18<00:06, 18.80it/s]
eval model::  76%|███████▌  | 379/500 [00:18<00:06, 19.60it/s]
eval model::  76%|███████▋  | 382/500 [00:19<00:06, 18.36it/s]
eval model::  77%|███████▋  | 385/500 [00:19<00:05, 19.69it/s]
eval model::  78%|███████▊  | 388/500 [00:19<00:05, 19.65it/s]
eval model::  78%|███████▊  | 391/500 [00:19<00:05, 20.27it/s]
eval model::  79%|███████▉  | 394/500 [00:19<00:05, 19.77it/s]
eval model::  79%|███████▉  | 397/500 [00:19<00:05, 20.40it/s]
eval model::  80%|████████  | 400/500 [00:19<00:05, 19.57it/s]
eval model::  81%|████████  | 403/500 [00:20<00:04, 19.57it/s]
eval model::  81%|████████  | 405/500 [00:20<00:04, 19.18it/s]
eval model::  81%|████████▏ | 407/500 [00:20<00:04, 19.23it/s]
eval model::  82%|████████▏ | 410/500 [00:20<00:04, 19.18it/s]
eval model::  82%|████████▏ | 412/500 [00:20<00:04, 19.19it/s]
eval model::  83%|████████▎ | 415/500 [00:20<00:04, 20.43it/s]
eval model::  84%|████████▎ | 418/500 [00:20<00:04, 19.81it/s]
eval model::  84%|████████▍ | 420/500 [00:20<00:04, 18.78it/s]
eval model::  85%|████████▍ | 423/500 [00:21<00:03, 20.48it/s]
eval model::  85%|████████▌ | 426/500 [00:21<00:03, 18.79it/s]
eval model::  86%|████████▌ | 429/500 [00:21<00:03, 21.03it/s]
eval model::  86%|████████▋ | 432/500 [00:21<00:03, 21.33it/s]
eval model::  87%|████████▋ | 435/500 [00:21<00:03, 21.48it/s]
eval model::  88%|████████▊ | 438/500 [00:21<00:02, 21.56it/s]
eval model::  88%|████████▊ | 441/500 [00:21<00:02, 21.71it/s]
eval model::  89%|████████▉ | 444/500 [00:22<00:02, 21.69it/s]
eval model::  89%|████████▉ | 447/500 [00:22<00:02, 21.90it/s]
eval model::  90%|█████████ | 450/500 [00:22<00:02, 21.65it/s]
eval model::  91%|█████████ | 453/500 [00:22<00:02, 21.07it/s]
eval model::  91%|█████████ | 456/500 [00:22<00:02, 20.78it/s]
eval model::  92%|█████████▏| 459/500 [00:22<00:02, 19.79it/s]
eval model::  92%|█████████▏| 462/500 [00:22<00:01, 19.44it/s]
eval model::  93%|█████████▎| 464/500 [00:23<00:01, 19.43it/s]
eval model::  93%|█████████▎| 466/500 [00:23<00:01, 19.28it/s]
eval model::  94%|█████████▎| 468/500 [00:23<00:01, 18.60it/s]
eval model::  94%|█████████▍| 471/500 [00:23<00:01, 20.58it/s]
eval model::  95%|█████████▍| 474/500 [00:23<00:01, 19.98it/s]
eval model::  95%|█████████▌| 477/500 [00:23<00:01, 19.11it/s]
eval model::  96%|█████████▌| 480/500 [00:23<00:01, 19.85it/s]
eval model::  97%|█████████▋| 483/500 [00:24<00:00, 19.79it/s]
eval model::  97%|█████████▋| 485/500 [00:24<00:00, 19.78it/s]
eval model::  98%|█████████▊| 488/500 [00:24<00:00, 20.63it/s]
eval model::  98%|█████████▊| 491/500 [00:24<00:00, 20.34it/s]
eval model::  99%|█████████▉| 494/500 [00:24<00:00, 20.42it/s]
eval model::  99%|█████████▉| 497/500 [00:24<00:00, 21.70it/s]
eval model:: 100%|██████████| 500/500 [00:24<00:00, 21.15it/s]
eval model:: 100%|██████████| 500/500 [00:24<00:00, 20.16it/s]
[2024/07/27 21:50:15] ppocr INFO: cur metric, precision: 0.5124481327800829, recall: 0.1189215214251324, hmean: 0.1930441578741696, fps: 45.79878372750227
[2024/07/27 21:50:15] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/27 21:50:15] ppocr INFO: best metric, hmean: 0.1930441578741696, precision: 0.5124481327800829, recall: 0.1189215214251324, fps: 45.79878372750227, best_epoch: 20
[2024/07/27 21:50:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 21:53:51] ppocr INFO: Architecture : 
[2024/07/27 21:53:51] ppocr INFO:     Backbone : 
[2024/07/27 21:53:51] ppocr INFO:         model_name : large
[2024/07/27 21:53:51] ppocr INFO:         name : MobileNetV3
[2024/07/27 21:53:51] ppocr INFO:         scale : 0.5
[2024/07/27 21:53:51] ppocr INFO:     Head : 
[2024/07/27 21:53:51] ppocr INFO:         k : 50
[2024/07/27 21:53:51] ppocr INFO:         name : DBHead
[2024/07/27 21:53:51] ppocr INFO:     Neck : 
[2024/07/27 21:53:51] ppocr INFO:         name : DBFPN
[2024/07/27 21:53:51] ppocr INFO:         out_channels : 256
[2024/07/27 21:53:51] ppocr INFO:     Transform : None
[2024/07/27 21:53:51] ppocr INFO:     algorithm : DB
[2024/07/27 21:53:51] ppocr INFO:     model_type : det
[2024/07/27 21:53:51] ppocr INFO: Eval : 
[2024/07/27 21:53:51] ppocr INFO:     dataset : 
[2024/07/27 21:53:51] ppocr INFO:         data_dir : /datasets/icdar2015/text_localization/
[2024/07/27 21:53:51] ppocr INFO:         label_file_list : ['/datasets/icdar2015/text_localization/test_icdar2015_label.txt']
[2024/07/27 21:53:51] ppocr INFO:         name : SimpleDataSet
[2024/07/27 21:53:51] ppocr INFO:         transforms : 
[2024/07/27 21:53:51] ppocr INFO:             DecodeImage : 
[2024/07/27 21:53:51] ppocr INFO:                 channel_first : False
[2024/07/27 21:53:51] ppocr INFO:                 img_mode : BGR
[2024/07/27 21:53:51] ppocr INFO:             DetLabelEncode : None
[2024/07/27 21:53:51] ppocr INFO:             DetResizeForTest : 
[2024/07/27 21:53:51] ppocr INFO:                 image_shape : [736, 1280]
[2024/07/27 21:53:51] ppocr INFO:             NormalizeImage : 
[2024/07/27 21:53:51] ppocr INFO:                 mean : [0.485, 0.456, 0.406]
[2024/07/27 21:53:51] ppocr INFO:                 order : hwc
[2024/07/27 21:53:51] ppocr INFO:                 scale : 1./255.
[2024/07/27 21:53:51] ppocr INFO:                 std : [0.229, 0.224, 0.225]
[2024/07/27 21:53:51] ppocr INFO:             ToCHWImage : None
[2024/07/27 21:53:51] ppocr INFO:             KeepKeys : 
[2024/07/27 21:53:51] ppocr INFO:                 keep_keys : ['image', 'shape', 'polys', 'ignore_tags']
[2024/07/27 21:53:51] ppocr INFO:     loader : 
[2024/07/27 21:53:51] ppocr INFO:         batch_size_per_card : 1
[2024/07/27 21:53:51] ppocr INFO:         drop_last : False
[2024/07/27 21:53:51] ppocr INFO:         num_workers : 0
[2024/07/27 21:53:51] ppocr INFO:         shuffle : False
[2024/07/27 21:53:51] ppocr INFO:         use_shared_memory : False
[2024/07/27 21:53:51] ppocr INFO: Global : 
[2024/07/27 21:53:51] ppocr INFO:     cal_metric_during_train : False
[2024/07/27 21:53:51] ppocr INFO:     checkpoints : None
[2024/07/27 21:53:51] ppocr INFO:     distributed : True
[2024/07/27 21:53:51] ppocr INFO:     epoch_num : 200
[2024/07/27 21:53:51] ppocr INFO:     eval_batch_step : [0, 60]
[2024/07/27 21:53:51] ppocr INFO:     infer_img : doc/imgs_en/img_10.jpg
[2024/07/27 21:53:51] ppocr INFO:     log_smooth_window : 20
[2024/07/27 21:53:51] ppocr INFO:     pretrained_model : ./pretrain_models/MobileNetV3_large_x0_5_pretrained
[2024/07/27 21:53:51] ppocr INFO:     print_batch_step : 10
[2024/07/27 21:53:51] ppocr INFO:     save_epoch_step : 1200
[2024/07/27 21:53:51] ppocr INFO:     save_inference_dir : None
[2024/07/27 21:53:51] ppocr INFO:     save_model_dir : ./output/db_mv3/
[2024/07/27 21:53:51] ppocr INFO:     save_res_path : ./output/det_db/predicts_db.txt
[2024/07/27 21:53:51] ppocr INFO:     use_gpu : True
[2024/07/27 21:53:51] ppocr INFO:     use_visualdl : False
[2024/07/27 21:53:51] ppocr INFO:     use_xpu : False
[2024/07/27 21:53:51] ppocr INFO: Loss : 
[2024/07/27 21:53:51] ppocr INFO:     alpha : 5
[2024/07/27 21:53:51] ppocr INFO:     balance_loss : True
[2024/07/27 21:53:51] ppocr INFO:     beta : 10
[2024/07/27 21:53:51] ppocr INFO:     main_loss_type : DiceLoss
[2024/07/27 21:53:51] ppocr INFO:     name : DBLoss
[2024/07/27 21:53:51] ppocr INFO:     ohem_ratio : 3
[2024/07/27 21:53:51] ppocr INFO: Metric : 
[2024/07/27 21:53:51] ppocr INFO:     main_indicator : hmean
[2024/07/27 21:53:51] ppocr INFO:     name : DetMetric
[2024/07/27 21:53:51] ppocr INFO: Optimizer : 
[2024/07/27 21:53:51] ppocr INFO:     beta1 : 0.9
[2024/07/27 21:53:51] ppocr INFO:     beta2 : 0.999
[2024/07/27 21:53:51] ppocr INFO:     lr : 
[2024/07/27 21:53:51] ppocr INFO:         learning_rate : 0.001
[2024/07/27 21:53:51] ppocr INFO:     name : Adam
[2024/07/27 21:53:51] ppocr INFO:     regularizer : 
[2024/07/27 21:53:51] ppocr INFO:         factor : 0
[2024/07/27 21:53:51] ppocr INFO:         name : L2
[2024/07/27 21:53:51] ppocr INFO: PostProcess : 
[2024/07/27 21:53:51] ppocr INFO:     box_thresh : 0.6
[2024/07/27 21:53:51] ppocr INFO:     max_candidates : 1000
[2024/07/27 21:53:51] ppocr INFO:     name : DBPostProcess
[2024/07/27 21:53:51] ppocr INFO:     thresh : 0.3
[2024/07/27 21:53:51] ppocr INFO:     unclip_ratio : 1.5
[2024/07/27 21:53:51] ppocr INFO: Train : 
[2024/07/27 21:53:51] ppocr INFO:     dataset : 
[2024/07/27 21:53:51] ppocr INFO:         data_dir : /datasets/icdar2015/text_localization/
[2024/07/27 21:53:51] ppocr INFO:         label_file_list : ['/datasets/icdar2015/text_localization/train_icdar2015_label.txt']
[2024/07/27 21:53:51] ppocr INFO:         name : SimpleDataSet
[2024/07/27 21:53:51] ppocr INFO:         ratio_list : [1.0]
[2024/07/27 21:53:51] ppocr INFO:         transforms : 
[2024/07/27 21:53:51] ppocr INFO:             DecodeImage : 
[2024/07/27 21:53:51] ppocr INFO:                 channel_first : False
[2024/07/27 21:53:51] ppocr INFO:                 img_mode : BGR
[2024/07/27 21:53:51] ppocr INFO:             DetLabelEncode : None
[2024/07/27 21:53:51] ppocr INFO:             IaaAugment : 
[2024/07/27 21:53:51] ppocr INFO:                 augmenter_args : 
[2024/07/27 21:53:51] ppocr INFO:                     args : 
[2024/07/27 21:53:51] ppocr INFO:                         p : 0.5
[2024/07/27 21:53:51] ppocr INFO:                     type : Fliplr
[2024/07/27 21:53:51] ppocr INFO:                     args : 
[2024/07/27 21:53:51] ppocr INFO:                         rotate : [-10, 10]
[2024/07/27 21:53:51] ppocr INFO:                     type : Affine
[2024/07/27 21:53:51] ppocr INFO:                     args : 
[2024/07/27 21:53:51] ppocr INFO:                         size : [0.5, 3]
[2024/07/27 21:53:51] ppocr INFO:                     type : Resize
[2024/07/27 21:53:51] ppocr INFO:             EastRandomCropData : 
[2024/07/27 21:53:51] ppocr INFO:                 keep_ratio : True
[2024/07/27 21:53:51] ppocr INFO:                 max_tries : 50
[2024/07/27 21:53:51] ppocr INFO:                 size : [640, 640]
[2024/07/27 21:53:51] ppocr INFO:             MakeBorderMap : 
[2024/07/27 21:53:51] ppocr INFO:                 shrink_ratio : 0.4
[2024/07/27 21:53:51] ppocr INFO:                 thresh_max : 0.7
[2024/07/27 21:53:51] ppocr INFO:                 thresh_min : 0.3
[2024/07/27 21:53:51] ppocr INFO:             MakeShrinkMap : 
[2024/07/27 21:53:51] ppocr INFO:                 min_text_size : 8
[2024/07/27 21:53:51] ppocr INFO:                 shrink_ratio : 0.4
[2024/07/27 21:53:51] ppocr INFO:             NormalizeImage : 
[2024/07/27 21:53:51] ppocr INFO:                 mean : [0.485, 0.456, 0.406]
[2024/07/27 21:53:51] ppocr INFO:                 order : hwc
[2024/07/27 21:53:51] ppocr INFO:                 scale : 1./255.
[2024/07/27 21:53:51] ppocr INFO:                 std : [0.229, 0.224, 0.225]
[2024/07/27 21:53:51] ppocr INFO:             ToCHWImage : None
[2024/07/27 21:53:51] ppocr INFO:             KeepKeys : 
[2024/07/27 21:53:51] ppocr INFO:                 keep_keys : ['image', 'threshold_map', 'threshold_mask', 'shrink_map', 'shrink_mask']
[2024/07/27 21:53:51] ppocr INFO:     loader : 
[2024/07/27 21:53:51] ppocr INFO:         batch_size_per_card : 48
[2024/07/27 21:53:51] ppocr INFO:         drop_last : False
[2024/07/27 21:53:51] ppocr INFO:         num_workers : 8
[2024/07/27 21:53:51] ppocr INFO:         shuffle : True
[2024/07/27 21:53:51] ppocr INFO:         use_shared_memory : False
[2024/07/27 21:53:51] ppocr INFO: profiler_options : None
[2024/07/27 21:53:51] ppocr INFO: train with paddle 2.5.2 and device Place(gpu:0)
======================= Modified FLAGS detected =======================
FLAGS(name='FLAGS_selected_gpus', current_value='0', default_value='')
FLAGS(name='FLAGS_cudnn_batchnorm_spatial_persistent', current_value=True, default_value=False)
=======================================================================
I0727 21:53:51.832775 33061 tcp_utils.cc:181] The server starts to listen on IP_ANY:49894
I0727 21:53:51.832955 33061 tcp_utils.cc:130] Successfully connected to 127.0.0.1:49894
I0727 21:53:54.952153 33061 process_group_nccl.cc:120] ProcessGroupNCCL pg_timeout_ 1800000
[2024/07/27 21:53:54] ppocr INFO: Initialize indexs of datasets:['/datasets/icdar2015/text_localization/train_icdar2015_label.txt']
[2024/07/27 21:53:54] ppocr INFO: Initialize indexs of datasets:['/datasets/icdar2015/text_localization/test_icdar2015_label.txt']
W0727 21:53:54.962349 33061 gpu_resources.cc:119] Please NOTE: device: 0, GPU Compute Capability: 90.2, Driver API Version: 50724.2, Runtime API Version: 50724.2
[2024/07/27 21:53:56] ppocr INFO: load pretrain successful from ./pretrain_models/MobileNetV3_large_x0_5_pretrained
[2024/07/27 21:53:56] ppocr INFO: train dataloader has 3 iters
[2024/07/27 21:53:56] ppocr INFO: valid dataloader has 500 iters
[2024/07/27 21:53:56] ppocr INFO: During the training process, after the 0th iteration, an evaluation is run every 60 iterations
[2024/07/27 21:54:20] ppocr INFO: epoch: [1/200], global_step: 3, lr: 0.001000, loss: 9.229576, loss_shrink_maps: 4.929691, loss_threshold_maps: 3.358860, loss_binary_maps: 0.988369, avg_reader_cost: 6.09062 s, avg_batch_cost: 6.95484 s, avg_samples: 12.5, ips: 1.79731 samples/s, eta: 3:50:40
[2024/07/27 21:54:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 21:54:30] ppocr INFO: epoch: [2/200], global_step: 6, lr: 0.001000, loss: 8.496460, loss_shrink_maps: 4.870972, loss_threshold_maps: 2.625417, loss_binary_maps: 0.978406, avg_reader_cost: 2.45144 s, avg_batch_cost: 2.73668 s, avg_samples: 12.5, ips: 4.56757 samples/s, eta: 2:39:54
[2024/07/27 21:54:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 21:54:41] ppocr INFO: epoch: [3/200], global_step: 9, lr: 0.001000, loss: 7.642319, loss_shrink_maps: 4.851714, loss_threshold_maps: 1.814742, loss_binary_maps: 0.975864, avg_reader_cost: 2.72504 s, avg_batch_cost: 2.96752 s, avg_samples: 12.5, ips: 4.21228 samples/s, eta: 2:18:32
[2024/07/27 21:54:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 21:54:51] ppocr INFO: epoch: [4/200], global_step: 10, lr: 0.001000, loss: 7.458685, loss_shrink_maps: 4.852083, loss_threshold_maps: 1.637156, loss_binary_maps: 0.975520, avg_reader_cost: 0.80442 s, avg_batch_cost: 0.90679 s, avg_samples: 4.8, ips: 5.29342 samples/s, eta: 2:13:23
[2024/07/27 21:54:53] ppocr INFO: epoch: [4/200], global_step: 12, lr: 0.001000, loss: 7.204020, loss_shrink_maps: 4.849706, loss_threshold_maps: 1.382877, loss_binary_maps: 0.974764, avg_reader_cost: 1.90450 s, avg_batch_cost: 2.05016 s, avg_samples: 7.7, ips: 3.75580 samples/s, eta: 2:07:31
[2024/07/27 21:54:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 21:55:04] ppocr INFO: epoch: [5/200], global_step: 15, lr: 0.001000, loss: 7.079520, loss_shrink_maps: 4.842486, loss_threshold_maps: 1.268342, loss_binary_maps: 0.972995, avg_reader_cost: 2.69280 s, avg_batch_cost: 3.05492 s, avg_samples: 12.5, ips: 4.09176 samples/s, eta: 2:01:21
[2024/07/27 21:55:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 21:55:16] ppocr INFO: epoch: [6/200], global_step: 18, lr: 0.001000, loss: 6.991670, loss_shrink_maps: 4.836794, loss_threshold_maps: 1.191212, loss_binary_maps: 0.971500, avg_reader_cost: 2.63384 s, avg_batch_cost: 2.95434 s, avg_samples: 12.5, ips: 4.23107 samples/s, eta: 1:56:32
[2024/07/27 21:55:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 21:55:26] ppocr INFO: epoch: [7/200], global_step: 20, lr: 0.001000, loss: 6.974210, loss_shrink_maps: 4.820456, loss_threshold_maps: 1.172662, loss_binary_maps: 0.968736, avg_reader_cost: 1.62935 s, avg_batch_cost: 1.90411 s, avg_samples: 9.6, ips: 5.04173 samples/s, eta: 1:53:43
[2024/07/27 21:55:27] ppocr INFO: epoch: [7/200], global_step: 21, lr: 0.001000, loss: 6.927090, loss_shrink_maps: 4.794438, loss_threshold_maps: 1.166469, loss_binary_maps: 0.962212, avg_reader_cost: 0.99757 s, avg_batch_cost: 1.05228 s, avg_samples: 2.9, ips: 2.75591 samples/s, eta: 1:52:57
[2024/07/27 21:55:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 21:55:38] ppocr INFO: epoch: [8/200], global_step: 24, lr: 0.001000, loss: 6.816076, loss_shrink_maps: 4.727366, loss_threshold_maps: 1.147285, loss_binary_maps: 0.946213, avg_reader_cost: 2.71356 s, avg_batch_cost: 3.06665 s, avg_samples: 12.5, ips: 4.07611 samples/s, eta: 1:50:35
[2024/07/27 21:55:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 21:55:49] ppocr INFO: epoch: [9/200], global_step: 27, lr: 0.001000, loss: 6.643856, loss_shrink_maps: 4.625044, loss_threshold_maps: 1.124174, loss_binary_maps: 0.913743, avg_reader_cost: 2.68396 s, avg_batch_cost: 2.94215 s, avg_samples: 12.5, ips: 4.24860 samples/s, eta: 1:48:11
[2024/07/27 21:55:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 21:56:00] ppocr INFO: epoch: [10/200], global_step: 30, lr: 0.001000, loss: 6.507645, loss_shrink_maps: 4.530808, loss_threshold_maps: 1.082063, loss_binary_maps: 0.873636, avg_reader_cost: 2.67332 s, avg_batch_cost: 3.05944 s, avg_samples: 12.5, ips: 4.08572 samples/s, eta: 1:46:33
[2024/07/27 21:56:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 21:56:11] ppocr INFO: epoch: [11/200], global_step: 33, lr: 0.001000, loss: 6.339798, loss_shrink_maps: 4.463856, loss_threshold_maps: 1.058580, loss_binary_maps: 0.817362, avg_reader_cost: 2.77563 s, avg_batch_cost: 3.00958 s, avg_samples: 12.5, ips: 4.15340 samples/s, eta: 1:44:58
[2024/07/27 21:56:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 21:56:23] ppocr INFO: epoch: [12/200], global_step: 36, lr: 0.001000, loss: 6.005182, loss_shrink_maps: 4.290333, loss_threshold_maps: 0.979189, loss_binary_maps: 0.735661, avg_reader_cost: 2.73807 s, avg_batch_cost: 2.97514 s, avg_samples: 12.5, ips: 4.20148 samples/s, eta: 1:43:29
[2024/07/27 21:56:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 21:56:34] ppocr INFO: epoch: [13/200], global_step: 39, lr: 0.001000, loss: 5.733318, loss_shrink_maps: 4.100464, loss_threshold_maps: 0.947641, loss_binary_maps: 0.704538, avg_reader_cost: 2.82796 s, avg_batch_cost: 3.09998 s, avg_samples: 12.5, ips: 4.03228 samples/s, eta: 1:42:27
[2024/07/27 21:56:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 21:56:44] ppocr INFO: epoch: [14/200], global_step: 40, lr: 0.001000, loss: 5.650106, loss_shrink_maps: 4.015239, loss_threshold_maps: 0.944673, loss_binary_maps: 0.685875, avg_reader_cost: 0.82993 s, avg_batch_cost: 0.92379 s, avg_samples: 4.8, ips: 5.19600 samples/s, eta: 1:41:52
[2024/07/27 21:56:45] ppocr INFO: epoch: [14/200], global_step: 42, lr: 0.001000, loss: 5.449510, loss_shrink_maps: 3.883929, loss_threshold_maps: 0.926358, loss_binary_maps: 0.654370, avg_reader_cost: 1.93932 s, avg_batch_cost: 2.08489 s, avg_samples: 7.7, ips: 3.69325 samples/s, eta: 1:41:17
[2024/07/27 21:56:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 21:56:56] ppocr INFO: epoch: [15/200], global_step: 45, lr: 0.001000, loss: 5.201267, loss_shrink_maps: 3.699982, loss_threshold_maps: 0.898391, loss_binary_maps: 0.604805, avg_reader_cost: 2.63027 s, avg_batch_cost: 2.94674 s, avg_samples: 12.5, ips: 4.24198 samples/s, eta: 1:40:05
[2024/07/27 21:56:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 21:57:08] ppocr INFO: epoch: [16/200], global_step: 48, lr: 0.001000, loss: 4.751304, loss_shrink_maps: 3.388081, loss_threshold_maps: 0.884234, loss_binary_maps: 0.509737, avg_reader_cost: 2.74585 s, avg_batch_cost: 2.98926 s, avg_samples: 12.5, ips: 4.18164 samples/s, eta: 1:39:03
[2024/07/27 21:57:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 21:57:18] ppocr INFO: epoch: [17/200], global_step: 50, lr: 0.001000, loss: 4.610830, loss_shrink_maps: 3.255782, loss_threshold_maps: 0.879374, loss_binary_maps: 0.462134, avg_reader_cost: 1.64568 s, avg_batch_cost: 1.87156 s, avg_samples: 9.6, ips: 5.12942 samples/s, eta: 1:38:10
[2024/07/27 21:57:19] ppocr INFO: epoch: [17/200], global_step: 51, lr: 0.001000, loss: 4.538922, loss_shrink_maps: 3.192554, loss_threshold_maps: 0.876552, loss_binary_maps: 0.460564, avg_reader_cost: 0.98137 s, avg_batch_cost: 1.03611 s, avg_samples: 2.9, ips: 2.79894 samples/s, eta: 1:37:56
[2024/07/27 21:57:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 21:57:30] ppocr INFO: epoch: [18/200], global_step: 54, lr: 0.001000, loss: 4.296102, loss_shrink_maps: 2.981039, loss_threshold_maps: 0.876552, loss_binary_maps: 0.440266, avg_reader_cost: 2.74358 s, avg_batch_cost: 3.09119 s, avg_samples: 12.5, ips: 4.04375 samples/s, eta: 1:37:11
[2024/07/27 21:57:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 21:57:42] ppocr INFO: epoch: [19/200], global_step: 57, lr: 0.001000, loss: 4.100919, loss_shrink_maps: 2.765110, loss_threshold_maps: 0.879374, loss_binary_maps: 0.438362, avg_reader_cost: 2.78483 s, avg_batch_cost: 3.01724 s, avg_samples: 12.5, ips: 4.14286 samples/s, eta: 1:36:22
[2024/07/27 21:57:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 21:57:53] ppocr INFO: epoch: [20/200], global_step: 60, lr: 0.001000, loss: 3.940533, loss_shrink_maps: 2.656322, loss_threshold_maps: 0.870747, loss_binary_maps: 0.407147, avg_reader_cost: 2.78431 s, avg_batch_cost: 3.02102 s, avg_samples: 12.5, ips: 4.13768 samples/s, eta: 1:35:34

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:52,  9.52it/s]
eval model::   1%|          | 4/500 [00:00<00:26, 18.64it/s]
eval model::   1%|          | 6/500 [00:00<00:26, 18.58it/s]
eval model::   2%|▏         | 9/500 [00:00<00:23, 20.67it/s]
eval model::   2%|▏         | 12/500 [00:00<00:22, 21.42it/s]
eval model::   3%|▎         | 15/500 [00:00<00:20, 23.70it/s]
eval model::   4%|▍         | 19/500 [00:00<00:18, 25.40it/s]
eval model::   4%|▍         | 22/500 [00:00<00:19, 25.15it/s]
eval model::   5%|▌         | 25/500 [00:01<00:18, 26.27it/s]
eval model::   6%|▌         | 28/500 [00:01<00:18, 25.79it/s]
eval model::   6%|▌         | 31/500 [00:01<00:22, 20.46it/s]
eval model::   7%|▋         | 34/500 [00:01<00:23, 20.22it/s]
eval model::   7%|▋         | 37/500 [00:01<00:22, 20.93it/s]
eval model::   8%|▊         | 40/500 [00:01<00:23, 19.51it/s]
eval model::   9%|▊         | 43/500 [00:02<00:25, 18.17it/s]
eval model::   9%|▉         | 46/500 [00:02<00:24, 18.50it/s]
eval model::  10%|█         | 50/500 [00:02<00:20, 21.79it/s]
eval model::  11%|█         | 53/500 [00:02<00:19, 22.39it/s]
eval model::  11%|█         | 56/500 [00:02<00:20, 21.34it/s]
eval model::  12%|█▏        | 59/500 [00:02<00:19, 22.58it/s]
eval model::  12%|█▏        | 62/500 [00:02<00:20, 21.24it/s]
eval model::  13%|█▎        | 65/500 [00:03<00:19, 22.36it/s]
eval model::  14%|█▎        | 68/500 [00:03<00:18, 23.09it/s]
eval model::  14%|█▍        | 71/500 [00:03<00:21, 20.34it/s]
eval model::  15%|█▍        | 74/500 [00:03<00:21, 19.59it/s]
eval model::  15%|█▌        | 77/500 [00:03<00:20, 20.47it/s]
eval model::  16%|█▌        | 81/500 [00:03<00:17, 23.70it/s]
eval model::  17%|█▋        | 84/500 [00:03<00:18, 22.77it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:17, 23.22it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:18, 21.68it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:18, 21.61it/s]
eval model::  19%|█▉        | 96/500 [00:04<00:18, 21.44it/s]
eval model::  20%|█▉        | 99/500 [00:04<00:18, 21.16it/s]
eval model::  20%|██        | 102/500 [00:04<00:21, 18.94it/s]
eval model::  21%|██        | 105/500 [00:04<00:18, 21.01it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:18, 21.15it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:18, 20.75it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:17, 21.45it/s]
eval model::  23%|██▎       | 117/500 [00:05<00:18, 20.58it/s]
eval model::  24%|██▍       | 120/500 [00:05<00:22, 16.80it/s]
eval model::  25%|██▍       | 123/500 [00:05<00:19, 19.30it/s]
eval model::  25%|██▌       | 126/500 [00:05<00:18, 19.86it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:18, 20.61it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:18, 20.07it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:17, 20.37it/s]
eval model::  28%|██▊       | 138/500 [00:06<00:16, 21.74it/s]
eval model::  28%|██▊       | 141/500 [00:06<00:16, 21.16it/s]
eval model::  29%|██▉       | 144/500 [00:06<00:16, 21.65it/s]
eval model::  29%|██▉       | 147/500 [00:06<00:16, 21.67it/s]
eval model::  30%|███       | 150/500 [00:07<00:16, 21.84it/s]
eval model::  31%|███       | 153/500 [00:07<00:16, 21.16it/s]
eval model::  31%|███       | 156/500 [00:07<00:17, 19.96it/s]
eval model::  32%|███▏      | 159/500 [00:07<00:18, 18.50it/s]
eval model::  32%|███▏      | 161/500 [00:07<00:19, 17.25it/s]
eval model::  33%|███▎      | 163/500 [00:07<00:20, 16.40it/s]
eval model::  33%|███▎      | 165/500 [00:07<00:20, 16.69it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:19, 16.96it/s]
eval model::  34%|███▍      | 170/500 [00:08<00:17, 18.81it/s]
eval model::  34%|███▍      | 172/500 [00:08<00:17, 18.65it/s]
eval model::  35%|███▍      | 174/500 [00:08<00:19, 16.81it/s]
eval model::  35%|███▌      | 177/500 [00:08<00:17, 18.12it/s]
eval model::  36%|███▌      | 180/500 [00:08<00:17, 18.51it/s]
eval model::  37%|███▋      | 183/500 [00:08<00:15, 20.19it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:14, 21.72it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:15, 20.65it/s]
eval model::  38%|███▊      | 192/500 [00:09<00:15, 20.01it/s]
eval model::  39%|███▉      | 195/500 [00:09<00:15, 19.30it/s]
eval model::  40%|███▉      | 198/500 [00:09<00:15, 20.04it/s]
eval model::  40%|████      | 201/500 [00:09<00:15, 19.85it/s]
eval model::  41%|████      | 204/500 [00:10<00:18, 15.99it/s]
eval model::  41%|████      | 206/500 [00:10<00:23, 12.46it/s]
eval model::  42%|████▏     | 208/500 [00:10<00:21, 13.70it/s]
eval model::  42%|████▏     | 210/500 [00:10<00:19, 14.61it/s]
eval model::  43%|████▎     | 213/500 [00:10<00:16, 17.51it/s]
eval model::  43%|████▎     | 215/500 [00:10<00:18, 15.18it/s]
eval model::  43%|████▎     | 217/500 [00:10<00:18, 15.59it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:15, 18.55it/s]
eval model::  45%|████▍     | 223/500 [00:11<00:14, 18.64it/s]
eval model::  45%|████▌     | 226/500 [00:11<00:13, 20.18it/s]
eval model::  46%|████▌     | 229/500 [00:11<00:12, 22.24it/s]
eval model::  46%|████▋     | 232/500 [00:11<00:11, 22.60it/s]
eval model::  47%|████▋     | 235/500 [00:11<00:11, 22.32it/s]
eval model::  48%|████▊     | 238/500 [00:11<00:11, 23.54it/s]
eval model::  48%|████▊     | 241/500 [00:12<00:12, 21.55it/s]
eval model::  49%|████▉     | 244/500 [00:12<00:12, 21.22it/s]
eval model::  49%|████▉     | 247/500 [00:12<00:12, 19.82it/s]
eval model::  50%|█████     | 250/500 [00:12<00:13, 17.97it/s]
eval model::  50%|█████     | 252/500 [00:12<00:13, 18.01it/s]
eval model::  51%|█████     | 255/500 [00:12<00:12, 19.68it/s]
eval model::  52%|█████▏    | 258/500 [00:12<00:11, 21.42it/s]
eval model::  52%|█████▏    | 261/500 [00:13<00:11, 21.23it/s]
eval model::  53%|█████▎    | 264/500 [00:13<00:11, 19.86it/s]
eval model::  53%|█████▎    | 267/500 [00:13<00:11, 20.55it/s]
eval model::  54%|█████▍    | 270/500 [00:13<00:10, 21.09it/s]
eval model::  55%|█████▍    | 273/500 [00:13<00:10, 21.08it/s]
eval model::  55%|█████▌    | 276/500 [00:13<00:10, 21.94it/s]
eval model::  56%|█████▌    | 279/500 [00:13<00:10, 21.65it/s]
eval model::  56%|█████▋    | 282/500 [00:14<00:09, 21.85it/s]
eval model::  57%|█████▋    | 285/500 [00:14<00:12, 17.03it/s]
eval model::  58%|█████▊    | 288/500 [00:14<00:10, 19.29it/s]
eval model::  58%|█████▊    | 291/500 [00:14<00:10, 19.91it/s]
eval model::  59%|█████▉    | 294/500 [00:14<00:10, 18.97it/s]
eval model::  60%|█████▉    | 298/500 [00:14<00:09, 22.00it/s]
eval model::  60%|██████    | 301/500 [00:15<00:09, 21.13it/s]
eval model::  61%|██████    | 304/500 [00:15<00:08, 21.94it/s]
eval model::  61%|██████▏   | 307/500 [00:15<00:08, 22.34it/s]
eval model::  62%|██████▏   | 310/500 [00:15<00:09, 20.68it/s]
eval model::  63%|██████▎   | 313/500 [00:15<00:09, 20.14it/s]
eval model::  63%|██████▎   | 316/500 [00:15<00:09, 19.00it/s]
eval model::  64%|██████▍   | 319/500 [00:15<00:09, 20.02it/s]
eval model::  64%|██████▍   | 322/500 [00:16<00:09, 19.64it/s]
eval model::  65%|██████▌   | 325/500 [00:16<00:08, 20.23it/s]
eval model::  66%|██████▌   | 328/500 [00:16<00:09, 18.45it/s]
eval model::  66%|██████▌   | 331/500 [00:16<00:08, 19.46it/s]
eval model::  67%|██████▋   | 334/500 [00:16<00:07, 20.78it/s]
eval model::  67%|██████▋   | 337/500 [00:16<00:08, 20.36it/s]
eval model::  68%|██████▊   | 340/500 [00:17<00:08, 18.47it/s]
eval model::  69%|██████▊   | 343/500 [00:17<00:07, 20.10it/s]
eval model::  69%|██████▉   | 346/500 [00:17<00:07, 19.85it/s]
eval model::  70%|██████▉   | 349/500 [00:17<00:07, 20.98it/s]
eval model::  70%|███████   | 352/500 [00:17<00:07, 20.48it/s]
eval model::  71%|███████   | 355/500 [00:17<00:08, 18.12it/s]
eval model::  71%|███████▏  | 357/500 [00:17<00:07, 18.38it/s]
eval model::  72%|███████▏  | 360/500 [00:17<00:06, 20.08it/s]
eval model::  73%|███████▎  | 363/500 [00:18<00:07, 18.94it/s]
eval model::  73%|███████▎  | 365/500 [00:18<00:07, 17.53it/s]
eval model::  73%|███████▎  | 367/500 [00:18<00:07, 16.96it/s]
eval model::  74%|███████▍  | 370/500 [00:18<00:07, 18.43it/s]
eval model::  75%|███████▍  | 373/500 [00:18<00:06, 20.35it/s]
eval model::  75%|███████▌  | 376/500 [00:18<00:06, 20.25it/s]
eval model::  76%|███████▌  | 379/500 [00:18<00:05, 21.54it/s]
eval model::  76%|███████▋  | 382/500 [00:19<00:05, 21.84it/s]
eval model::  77%|███████▋  | 385/500 [00:19<00:05, 19.89it/s]
eval model::  78%|███████▊  | 388/500 [00:19<00:06, 17.08it/s]
eval model::  78%|███████▊  | 391/500 [00:19<00:05, 18.63it/s]
eval model::  79%|███████▉  | 394/500 [00:19<00:05, 18.93it/s]
eval model::  79%|███████▉  | 397/500 [00:19<00:05, 20.45it/s]
eval model::  80%|████████  | 400/500 [00:20<00:04, 20.75it/s]
eval model::  81%|████████  | 403/500 [00:20<00:04, 21.37it/s]
eval model::  81%|████████  | 406/500 [00:20<00:04, 20.44it/s]
eval model::  82%|████████▏ | 409/500 [00:20<00:04, 19.23it/s]
eval model::  82%|████████▏ | 411/500 [00:20<00:05, 16.53it/s]
eval model::  83%|████████▎ | 414/500 [00:20<00:04, 18.43it/s]
eval model::  83%|████████▎ | 416/500 [00:20<00:04, 17.15it/s]
eval model::  84%|████████▎ | 418/500 [00:21<00:04, 17.64it/s]
eval model::  84%|████████▍ | 420/500 [00:21<00:04, 16.77it/s]
eval model::  84%|████████▍ | 422/500 [00:21<00:04, 17.48it/s]
eval model::  85%|████████▌ | 425/500 [00:21<00:04, 18.42it/s]
eval model::  86%|████████▌ | 429/500 [00:21<00:03, 20.85it/s]
eval model::  86%|████████▋ | 432/500 [00:21<00:03, 18.82it/s]
eval model::  87%|████████▋ | 435/500 [00:21<00:03, 19.92it/s]
eval model::  88%|████████▊ | 438/500 [00:22<00:03, 18.78it/s]
eval model::  88%|████████▊ | 440/500 [00:22<00:03, 17.83it/s]
eval model::  89%|████████▊ | 443/500 [00:22<00:02, 19.76it/s]
eval model::  89%|████████▉ | 446/500 [00:22<00:02, 19.02it/s]
eval model::  90%|████████▉ | 449/500 [00:22<00:02, 19.41it/s]
eval model::  90%|█████████ | 452/500 [00:22<00:02, 20.35it/s]
eval model::  91%|█████████ | 455/500 [00:22<00:02, 21.10it/s]
eval model::  92%|█████████▏| 458/500 [00:23<00:02, 20.54it/s]
eval model::  92%|█████████▏| 461/500 [00:23<00:01, 19.66it/s]
eval model::  93%|█████████▎| 463/500 [00:23<00:01, 19.32it/s]
eval model::  93%|█████████▎| 465/500 [00:23<00:02, 16.45it/s]
eval model::  94%|█████████▎| 468/500 [00:23<00:01, 18.09it/s]
eval model::  94%|█████████▍| 471/500 [00:23<00:01, 20.47it/s]
eval model::  95%|█████████▍| 474/500 [00:23<00:01, 20.67it/s]
eval model::  95%|█████████▌| 477/500 [00:24<00:01, 19.97it/s]
eval model::  96%|█████████▌| 480/500 [00:24<00:00, 20.22it/s]
eval model::  97%|█████████▋| 483/500 [00:24<00:00, 20.84it/s]
eval model::  97%|█████████▋| 486/500 [00:24<00:00, 20.35it/s]
eval model::  98%|█████████▊| 489/500 [00:24<00:00, 20.25it/s]
eval model::  98%|█████████▊| 492/500 [00:24<00:00, 19.09it/s]
eval model::  99%|█████████▉| 495/500 [00:24<00:00, 20.91it/s]
eval model:: 100%|█████████▉| 498/500 [00:25<00:00, 21.35it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.84it/s]
[2024/07/27 21:58:18] ppocr INFO: cur metric, precision: 0.39039039039039036, recall: 0.18777082330284064, hmean: 0.2535760728218466, fps: 44.81229986038038
[2024/07/27 21:58:18] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/27 21:58:18] ppocr INFO: best metric, hmean: 0.2535760728218466, precision: 0.39039039039039036, recall: 0.18777082330284064, fps: 44.81229986038038, best_epoch: 20
[2024/07/27 21:58:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 21:58:27] ppocr INFO: epoch: [21/200], global_step: 63, lr: 0.001000, loss: 3.815191, loss_shrink_maps: 2.574999, loss_threshold_maps: 0.866314, loss_binary_maps: 0.391925, avg_reader_cost: 1.97186 s, avg_batch_cost: 2.36125 s, avg_samples: 12.5, ips: 5.29380 samples/s, eta: 1:33:52
[2024/07/27 21:58:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 21:58:36] ppocr INFO: epoch: [22/200], global_step: 66, lr: 0.001000, loss: 3.759151, loss_shrink_maps: 2.515826, loss_threshold_maps: 0.863853, loss_binary_maps: 0.383742, avg_reader_cost: 2.05722 s, avg_batch_cost: 2.28605 s, avg_samples: 12.5, ips: 5.46794 samples/s, eta: 1:32:11
[2024/07/27 21:58:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 21:58:45] ppocr INFO: epoch: [23/200], global_step: 69, lr: 0.001000, loss: 3.717141, loss_shrink_maps: 2.431194, loss_threshold_maps: 0.860433, loss_binary_maps: 0.379031, avg_reader_cost: 1.92484 s, avg_batch_cost: 2.25099 s, avg_samples: 12.5, ips: 5.55310 samples/s, eta: 1:30:34
[2024/07/27 21:58:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 21:58:52] ppocr INFO: epoch: [24/200], global_step: 70, lr: 0.001000, loss: 3.687388, loss_shrink_maps: 2.416166, loss_threshold_maps: 0.857288, loss_binary_maps: 0.379031, avg_reader_cost: 0.60436 s, avg_batch_cost: 0.69816 s, avg_samples: 4.8, ips: 6.87520 samples/s, eta: 1:29:59
[2024/07/27 21:58:54] ppocr INFO: epoch: [24/200], global_step: 72, lr: 0.001000, loss: 3.534711, loss_shrink_maps: 2.330003, loss_threshold_maps: 0.857288, loss_binary_maps: 0.367913, avg_reader_cost: 1.48835 s, avg_batch_cost: 1.63475 s, avg_samples: 7.7, ips: 4.71021 samples/s, eta: 1:29:09
[2024/07/27 21:58:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 21:59:02] ppocr INFO: epoch: [25/200], global_step: 75, lr: 0.001000, loss: 3.495447, loss_shrink_maps: 2.274729, loss_threshold_maps: 0.859638, loss_binary_maps: 0.360350, avg_reader_cost: 1.79242 s, avg_batch_cost: 2.03285 s, avg_samples: 12.5, ips: 6.14900 samples/s, eta: 1:27:28
[2024/07/27 21:59:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 21:59:10] ppocr INFO: epoch: [26/200], global_step: 78, lr: 0.001000, loss: 3.362247, loss_shrink_maps: 2.179928, loss_threshold_maps: 0.837498, loss_binary_maps: 0.346018, avg_reader_cost: 2.02780 s, avg_batch_cost: 2.26702 s, avg_samples: 12.5, ips: 5.51384 samples/s, eta: 1:26:09
[2024/07/27 21:59:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 21:59:19] ppocr INFO: epoch: [27/200], global_step: 80, lr: 0.001000, loss: 3.276426, loss_shrink_maps: 2.083727, loss_threshold_maps: 0.836040, loss_binary_maps: 0.341723, avg_reader_cost: 1.29228 s, avg_batch_cost: 1.54865 s, avg_samples: 9.6, ips: 6.19893 samples/s, eta: 1:25:21
[2024/07/27 21:59:20] ppocr INFO: epoch: [27/200], global_step: 81, lr: 0.001000, loss: 3.217188, loss_shrink_maps: 2.067664, loss_threshold_maps: 0.836040, loss_binary_maps: 0.338815, avg_reader_cost: 0.82039 s, avg_batch_cost: 0.87530 s, avg_samples: 2.9, ips: 3.31316 samples/s, eta: 1:25:04
[2024/07/27 21:59:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 21:59:29] ppocr INFO: epoch: [28/200], global_step: 84, lr: 0.001000, loss: 3.169574, loss_shrink_maps: 1.980419, loss_threshold_maps: 0.831208, loss_binary_maps: 0.335330, avg_reader_cost: 2.02628 s, avg_batch_cost: 2.27625 s, avg_samples: 12.5, ips: 5.49149 samples/s, eta: 1:23:53
[2024/07/27 21:59:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 21:59:38] ppocr INFO: epoch: [29/200], global_step: 87, lr: 0.001000, loss: 3.097114, loss_shrink_maps: 1.921586, loss_threshold_maps: 0.837005, loss_binary_maps: 0.331543, avg_reader_cost: 2.08156 s, avg_batch_cost: 2.31322 s, avg_samples: 12.5, ips: 5.40373 samples/s, eta: 1:22:48
[2024/07/27 21:59:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 21:59:47] ppocr INFO: epoch: [30/200], global_step: 90, lr: 0.001000, loss: 3.049055, loss_shrink_maps: 1.868632, loss_threshold_maps: 0.837005, loss_binary_maps: 0.324984, avg_reader_cost: 2.04234 s, avg_batch_cost: 2.33335 s, avg_samples: 12.5, ips: 5.35709 samples/s, eta: 1:21:47
[2024/07/27 21:59:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 21:59:56] ppocr INFO: epoch: [31/200], global_step: 93, lr: 0.001000, loss: 2.890193, loss_shrink_maps: 1.806192, loss_threshold_maps: 0.822674, loss_binary_maps: 0.310852, avg_reader_cost: 1.98783 s, avg_batch_cost: 2.34485 s, avg_samples: 12.5, ips: 5.33084 samples/s, eta: 1:20:48
[2024/07/27 21:59:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:00:04] ppocr INFO: epoch: [32/200], global_step: 96, lr: 0.001000, loss: 2.820556, loss_shrink_maps: 1.771541, loss_threshold_maps: 0.810131, loss_binary_maps: 0.296296, avg_reader_cost: 1.98435 s, avg_batch_cost: 2.31518 s, avg_samples: 12.5, ips: 5.39914 samples/s, eta: 1:19:50
[2024/07/27 22:00:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:00:13] ppocr INFO: epoch: [33/200], global_step: 99, lr: 0.001000, loss: 2.937835, loss_shrink_maps: 1.811715, loss_threshold_maps: 0.815104, loss_binary_maps: 0.318851, avg_reader_cost: 1.89265 s, avg_batch_cost: 2.17797 s, avg_samples: 12.5, ips: 5.73929 samples/s, eta: 1:18:48
[2024/07/27 22:00:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:00:20] ppocr INFO: epoch: [34/200], global_step: 100, lr: 0.001000, loss: 2.960209, loss_shrink_maps: 1.835134, loss_threshold_maps: 0.815104, loss_binary_maps: 0.323584, avg_reader_cost: 0.49864 s, avg_batch_cost: 0.67689 s, avg_samples: 4.8, ips: 7.09121 samples/s, eta: 1:18:25
[2024/07/27 22:00:22] ppocr INFO: epoch: [34/200], global_step: 102, lr: 0.001000, loss: 2.960209, loss_shrink_maps: 1.835134, loss_threshold_maps: 0.815104, loss_binary_maps: 0.326258, avg_reader_cost: 1.44521 s, avg_batch_cost: 1.58990 s, avg_samples: 7.7, ips: 4.84306 samples/s, eta: 1:17:52
[2024/07/27 22:00:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:00:30] ppocr INFO: epoch: [35/200], global_step: 105, lr: 0.001000, loss: 2.943514, loss_shrink_maps: 1.811715, loss_threshold_maps: 0.810787, loss_binary_maps: 0.323121, avg_reader_cost: 1.94600 s, avg_batch_cost: 2.27375 s, avg_samples: 12.5, ips: 5.49752 samples/s, eta: 1:16:58
[2024/07/27 22:00:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:00:39] ppocr INFO: epoch: [36/200], global_step: 108, lr: 0.001000, loss: 2.699596, loss_shrink_maps: 1.617056, loss_threshold_maps: 0.800176, loss_binary_maps: 0.289466, avg_reader_cost: 1.97172 s, avg_batch_cost: 2.29633 s, avg_samples: 12.5, ips: 5.44348 samples/s, eta: 1:16:07
[2024/07/27 22:00:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:00:47] ppocr INFO: epoch: [37/200], global_step: 110, lr: 0.001000, loss: 2.687146, loss_shrink_maps: 1.605089, loss_threshold_maps: 0.804020, loss_binary_maps: 0.289181, avg_reader_cost: 1.25157 s, avg_batch_cost: 1.42869 s, avg_samples: 9.6, ips: 6.71943 samples/s, eta: 1:15:30
[2024/07/27 22:00:48] ppocr INFO: epoch: [37/200], global_step: 111, lr: 0.001000, loss: 2.699596, loss_shrink_maps: 1.617056, loss_threshold_maps: 0.807920, loss_binary_maps: 0.292439, avg_reader_cost: 0.75997 s, avg_batch_cost: 0.81472 s, avg_samples: 2.9, ips: 3.55951 samples/s, eta: 1:15:16
[2024/07/27 22:00:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:00:56] ppocr INFO: epoch: [38/200], global_step: 114, lr: 0.001000, loss: 2.699596, loss_shrink_maps: 1.617056, loss_threshold_maps: 0.804020, loss_binary_maps: 0.292439, avg_reader_cost: 1.85583 s, avg_batch_cost: 2.12509 s, avg_samples: 12.5, ips: 5.88210 samples/s, eta: 1:14:20
[2024/07/27 22:00:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:01:05] ppocr INFO: epoch: [39/200], global_step: 117, lr: 0.001000, loss: 2.699596, loss_shrink_maps: 1.617056, loss_threshold_maps: 0.804594, loss_binary_maps: 0.292439, avg_reader_cost: 2.06713 s, avg_batch_cost: 2.30512 s, avg_samples: 12.5, ips: 5.42271 samples/s, eta: 1:13:34
[2024/07/27 22:01:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:01:14] ppocr INFO: epoch: [40/200], global_step: 120, lr: 0.001000, loss: 2.699596, loss_shrink_maps: 1.609539, loss_threshold_maps: 0.798075, loss_binary_maps: 0.293217, avg_reader_cost: 1.94482 s, avg_batch_cost: 2.29720 s, avg_samples: 12.5, ips: 5.44141 samples/s, eta: 1:12:49

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 2/500 [00:00<00:39, 12.61it/s]
eval model::   1%|          | 5/500 [00:00<00:25, 19.74it/s]
eval model::   2%|▏         | 8/500 [00:00<00:24, 19.88it/s]
eval model::   2%|▏         | 11/500 [00:00<00:24, 19.94it/s]
eval model::   3%|▎         | 14/500 [00:00<00:25, 19.04it/s]
eval model::   3%|▎         | 17/500 [00:00<00:24, 19.66it/s]
eval model::   4%|▍         | 20/500 [00:01<00:25, 18.74it/s]
eval model::   5%|▍         | 23/500 [00:01<00:23, 20.48it/s]
eval model::   5%|▌         | 26/500 [00:01<00:21, 21.67it/s]
eval model::   6%|▌         | 29/500 [00:01<00:21, 22.12it/s]
eval model::   6%|▋         | 32/500 [00:01<00:22, 20.71it/s]
eval model::   7%|▋         | 35/500 [00:01<00:22, 20.27it/s]
eval model::   8%|▊         | 38/500 [00:01<00:24, 19.20it/s]
eval model::   8%|▊         | 40/500 [00:02<00:24, 18.92it/s]
eval model::   8%|▊         | 42/500 [00:02<00:24, 18.91it/s]
eval model::   9%|▉         | 45/500 [00:02<00:22, 20.30it/s]
eval model::  10%|▉         | 48/500 [00:02<00:23, 19.40it/s]
eval model::  10%|█         | 51/500 [00:02<00:21, 20.86it/s]
eval model::  11%|█         | 54/500 [00:02<00:23, 19.19it/s]
eval model::  11%|█         | 56/500 [00:02<00:23, 18.58it/s]
eval model::  12%|█▏        | 59/500 [00:03<00:23, 18.44it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:26, 16.38it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:27, 15.70it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:23, 18.14it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:22, 19.17it/s]
eval model::  14%|█▍        | 71/500 [00:03<00:23, 18.47it/s]
eval model::  15%|█▍        | 74/500 [00:03<00:20, 20.93it/s]
eval model::  15%|█▌        | 77/500 [00:03<00:19, 21.19it/s]
eval model::  16%|█▌        | 80/500 [00:04<00:18, 22.64it/s]
eval model::  17%|█▋        | 83/500 [00:04<00:18, 22.06it/s]
eval model::  17%|█▋        | 86/500 [00:04<00:19, 21.17it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:19, 21.25it/s]
eval model::  18%|█▊        | 92/500 [00:04<00:20, 19.79it/s]
eval model::  19%|█▉        | 95/500 [00:04<00:20, 19.76it/s]
eval model::  20%|█▉        | 98/500 [00:04<00:19, 20.89it/s]
eval model::  20%|██        | 101/500 [00:05<00:20, 19.08it/s]
eval model::  21%|██        | 104/500 [00:05<00:19, 20.35it/s]
eval model::  21%|██▏       | 107/500 [00:05<00:20, 19.38it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:20, 18.82it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:20, 18.76it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:18, 20.71it/s]
eval model::  23%|██▎       | 117/500 [00:05<00:19, 19.79it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:21, 18.02it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:19, 19.42it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:19, 18.77it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:18, 20.54it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:21, 17.46it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:19, 18.89it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:17, 20.25it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:18, 19.43it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:18, 19.29it/s]
eval model::  29%|██▉       | 146/500 [00:07<00:18, 19.23it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:19, 18.24it/s]
eval model::  30%|███       | 150/500 [00:07<00:19, 18.35it/s]
eval model::  30%|███       | 152/500 [00:07<00:18, 18.41it/s]
eval model::  31%|███       | 156/500 [00:07<00:15, 22.47it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:14, 23.40it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:16, 20.52it/s]
eval model::  33%|███▎      | 165/500 [00:08<00:16, 20.70it/s]
eval model::  34%|███▎      | 168/500 [00:08<00:16, 20.63it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:16, 20.00it/s]
eval model::  35%|███▍      | 174/500 [00:08<00:16, 19.31it/s]
eval model::  35%|███▌      | 176/500 [00:08<00:17, 18.46it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:16, 19.50it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:17, 17.97it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:15, 19.83it/s]
eval model::  37%|███▋      | 187/500 [00:09<00:15, 20.70it/s]
eval model::  38%|███▊      | 190/500 [00:09<00:15, 20.48it/s]
eval model::  39%|███▊      | 193/500 [00:09<00:14, 20.98it/s]
eval model::  39%|███▉      | 196/500 [00:09<00:14, 20.52it/s]
eval model::  40%|███▉      | 199/500 [00:10<00:13, 21.90it/s]
eval model::  40%|████      | 202/500 [00:10<00:14, 21.18it/s]
eval model::  41%|████      | 205/500 [00:10<00:21, 13.94it/s]
eval model::  42%|████▏     | 208/500 [00:10<00:19, 14.63it/s]
eval model::  42%|████▏     | 210/500 [00:10<00:18, 15.36it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:17, 16.48it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:19, 14.67it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:20, 14.06it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:17, 16.16it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:17, 16.14it/s]
eval model::  45%|████▌     | 225/500 [00:11<00:15, 17.75it/s]
eval model::  46%|████▌     | 228/500 [00:11<00:14, 19.28it/s]
eval model::  46%|████▌     | 231/500 [00:12<00:12, 20.87it/s]
eval model::  47%|████▋     | 234/500 [00:12<00:12, 20.56it/s]
eval model::  47%|████▋     | 237/500 [00:12<00:12, 20.49it/s]
eval model::  48%|████▊     | 240/500 [00:12<00:12, 21.44it/s]
eval model::  49%|████▊     | 243/500 [00:12<00:12, 20.05it/s]
eval model::  49%|████▉     | 246/500 [00:12<00:11, 21.54it/s]
eval model::  50%|████▉     | 249/500 [00:12<00:11, 21.95it/s]
eval model::  50%|█████     | 252/500 [00:13<00:12, 19.63it/s]
eval model::  51%|█████     | 255/500 [00:13<00:11, 20.58it/s]
eval model::  52%|█████▏    | 258/500 [00:13<00:12, 19.38it/s]
eval model::  52%|█████▏    | 261/500 [00:13<00:11, 20.57it/s]
eval model::  53%|█████▎    | 264/500 [00:13<00:12, 19.09it/s]
eval model::  53%|█████▎    | 267/500 [00:13<00:12, 18.90it/s]
eval model::  54%|█████▍    | 269/500 [00:13<00:12, 18.08it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:12, 17.86it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:12, 17.85it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:11, 19.97it/s]
eval model::  56%|█████▌    | 281/500 [00:14<00:11, 19.01it/s]
eval model::  57%|█████▋    | 284/500 [00:14<00:10, 20.19it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:13, 15.69it/s]
eval model::  58%|█████▊    | 290/500 [00:15<00:11, 17.92it/s]
eval model::  59%|█████▊    | 293/500 [00:15<00:10, 18.88it/s]
eval model::  59%|█████▉    | 296/500 [00:15<00:11, 17.12it/s]
eval model::  60%|█████▉    | 299/500 [00:15<00:10, 19.58it/s]
eval model::  60%|██████    | 302/500 [00:15<00:11, 16.95it/s]
eval model::  61%|██████    | 304/500 [00:15<00:11, 16.71it/s]
eval model::  61%|██████▏   | 307/500 [00:16<00:10, 18.41it/s]
eval model::  62%|██████▏   | 309/500 [00:16<00:10, 18.51it/s]
eval model::  62%|██████▏   | 312/500 [00:16<00:09, 20.02it/s]
eval model::  63%|██████▎   | 315/500 [00:16<00:09, 20.26it/s]
eval model::  64%|██████▎   | 318/500 [00:16<00:08, 20.44it/s]
eval model::  64%|██████▍   | 321/500 [00:16<00:08, 20.27it/s]
eval model::  65%|██████▍   | 324/500 [00:16<00:08, 19.67it/s]
eval model::  65%|██████▌   | 327/500 [00:17<00:08, 20.62it/s]
eval model::  66%|██████▌   | 330/500 [00:17<00:08, 20.27it/s]
eval model::  67%|██████▋   | 333/500 [00:17<00:08, 20.78it/s]
eval model::  67%|██████▋   | 336/500 [00:17<00:07, 22.09it/s]
eval model::  68%|██████▊   | 339/500 [00:17<00:07, 20.74it/s]
eval model::  68%|██████▊   | 342/500 [00:17<00:09, 17.05it/s]
eval model::  69%|██████▉   | 345/500 [00:17<00:08, 19.06it/s]
eval model::  70%|██████▉   | 348/500 [00:18<00:07, 20.63it/s]
eval model::  70%|███████   | 351/500 [00:18<00:06, 21.43it/s]
eval model::  71%|███████   | 354/500 [00:18<00:06, 23.00it/s]
eval model::  71%|███████▏  | 357/500 [00:18<00:07, 20.20it/s]
eval model::  72%|███████▏  | 360/500 [00:18<00:07, 19.41it/s]
eval model::  73%|███████▎  | 363/500 [00:18<00:07, 18.26it/s]
eval model::  73%|███████▎  | 365/500 [00:19<00:07, 17.43it/s]
eval model::  73%|███████▎  | 367/500 [00:19<00:07, 16.69it/s]
eval model::  74%|███████▍  | 370/500 [00:19<00:06, 18.85it/s]
eval model::  74%|███████▍  | 372/500 [00:19<00:06, 18.88it/s]
eval model::  75%|███████▌  | 375/500 [00:19<00:06, 19.50it/s]
eval model::  76%|███████▌  | 378/500 [00:19<00:06, 19.90it/s]
eval model::  76%|███████▌  | 381/500 [00:19<00:05, 20.96it/s]
eval model::  77%|███████▋  | 384/500 [00:19<00:05, 22.81it/s]
eval model::  77%|███████▋  | 387/500 [00:20<00:06, 17.16it/s]
eval model::  78%|███████▊  | 390/500 [00:20<00:06, 18.33it/s]
eval model::  79%|███████▊  | 393/500 [00:20<00:05, 20.13it/s]
eval model::  79%|███████▉  | 396/500 [00:20<00:05, 19.75it/s]
eval model::  80%|███████▉  | 399/500 [00:20<00:05, 19.10it/s]
eval model::  80%|████████  | 402/500 [00:20<00:04, 19.67it/s]
eval model::  81%|████████  | 405/500 [00:21<00:04, 19.75it/s]
eval model::  82%|████████▏ | 408/500 [00:21<00:04, 20.34it/s]
eval model::  82%|████████▏ | 411/500 [00:21<00:04, 20.79it/s]
eval model::  83%|████████▎ | 414/500 [00:21<00:04, 20.60it/s]
eval model::  83%|████████▎ | 417/500 [00:21<00:04, 19.59it/s]
eval model::  84%|████████▍ | 419/500 [00:21<00:04, 18.92it/s]
eval model::  84%|████████▍ | 421/500 [00:21<00:04, 17.45it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:04, 17.78it/s]
eval model::  85%|████████▌ | 427/500 [00:22<00:03, 19.91it/s]
eval model::  86%|████████▌ | 430/500 [00:22<00:03, 21.36it/s]
eval model::  87%|████████▋ | 433/500 [00:22<00:03, 22.12it/s]
eval model::  87%|████████▋ | 436/500 [00:22<00:02, 23.39it/s]
eval model::  88%|████████▊ | 439/500 [00:22<00:02, 24.00it/s]
eval model::  88%|████████▊ | 442/500 [00:22<00:02, 22.88it/s]
eval model::  89%|████████▉ | 445/500 [00:22<00:02, 21.87it/s]
eval model::  90%|████████▉ | 448/500 [00:23<00:02, 20.29it/s]
eval model::  90%|█████████ | 451/500 [00:23<00:02, 19.69it/s]
eval model::  91%|█████████ | 454/500 [00:23<00:02, 20.31it/s]
eval model::  91%|█████████▏| 457/500 [00:23<00:02, 20.57it/s]
eval model::  92%|█████████▏| 460/500 [00:23<00:01, 21.83it/s]
eval model::  93%|█████████▎| 463/500 [00:23<00:02, 18.02it/s]
eval model::  93%|█████████▎| 465/500 [00:24<00:02, 15.48it/s]
eval model::  94%|█████████▎| 468/500 [00:24<00:01, 17.24it/s]
eval model::  94%|█████████▍| 471/500 [00:24<00:01, 18.82it/s]
eval model::  95%|█████████▍| 474/500 [00:24<00:01, 19.19it/s]
eval model::  95%|█████████▌| 477/500 [00:24<00:01, 21.58it/s]
eval model::  96%|█████████▌| 480/500 [00:24<00:00, 21.79it/s]
eval model::  97%|█████████▋| 483/500 [00:24<00:00, 22.13it/s]
eval model::  97%|█████████▋| 486/500 [00:25<00:00, 19.46it/s]
eval model::  98%|█████████▊| 489/500 [00:25<00:00, 20.66it/s]
eval model::  98%|█████████▊| 492/500 [00:25<00:00, 21.04it/s]
eval model::  99%|█████████▉| 495/500 [00:25<00:00, 21.78it/s]
eval model:: 100%|█████████▉| 498/500 [00:25<00:00, 23.32it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.52it/s]
[2024/07/27 22:01:39] ppocr INFO: cur metric, precision: 0.40350877192982454, recall: 0.2989889263360616, hmean: 0.3434734513274336, fps: 42.62244172103327
[2024/07/27 22:01:39] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/27 22:01:39] ppocr INFO: best metric, hmean: 0.3434734513274336, precision: 0.40350877192982454, recall: 0.2989889263360616, fps: 42.62244172103327, best_epoch: 40
[2024/07/27 22:01:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:01:47] ppocr INFO: epoch: [41/200], global_step: 123, lr: 0.001000, loss: 2.686909, loss_shrink_maps: 1.589560, loss_threshold_maps: 0.800308, loss_binary_maps: 0.293217, avg_reader_cost: 1.85827 s, avg_batch_cost: 2.13788 s, avg_samples: 12.5, ips: 5.84691 samples/s, eta: 1:11:59
[2024/07/27 22:01:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:01:56] ppocr INFO: epoch: [42/200], global_step: 126, lr: 0.001000, loss: 2.686909, loss_shrink_maps: 1.589560, loss_threshold_maps: 0.798075, loss_binary_maps: 0.295679, avg_reader_cost: 1.96262 s, avg_batch_cost: 2.30770 s, avg_samples: 12.5, ips: 5.41666 samples/s, eta: 1:11:16
[2024/07/27 22:01:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:02:05] ppocr INFO: epoch: [43/200], global_step: 129, lr: 0.001000, loss: 2.702756, loss_shrink_maps: 1.601358, loss_threshold_maps: 0.800624, loss_binary_maps: 0.300171, avg_reader_cost: 2.08082 s, avg_batch_cost: 2.31087 s, avg_samples: 12.5, ips: 5.40921 samples/s, eta: 1:10:35
[2024/07/27 22:02:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:02:12] ppocr INFO: epoch: [44/200], global_step: 130, lr: 0.001000, loss: 2.702756, loss_shrink_maps: 1.601358, loss_threshold_maps: 0.798075, loss_binary_maps: 0.300171, avg_reader_cost: 0.51735 s, avg_batch_cost: 0.64906 s, avg_samples: 4.8, ips: 7.39526 samples/s, eta: 1:10:17
[2024/07/27 22:02:14] ppocr INFO: epoch: [44/200], global_step: 132, lr: 0.001000, loss: 2.702756, loss_shrink_maps: 1.601484, loss_threshold_maps: 0.793968, loss_binary_maps: 0.302684, avg_reader_cost: 1.38974 s, avg_batch_cost: 1.53570 s, avg_samples: 7.7, ips: 5.01402 samples/s, eta: 1:09:50
[2024/07/27 22:02:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:02:22] ppocr INFO: epoch: [45/200], global_step: 135, lr: 0.001000, loss: 2.645467, loss_shrink_maps: 1.565739, loss_threshold_maps: 0.787574, loss_binary_maps: 0.292013, avg_reader_cost: 1.96921 s, avg_batch_cost: 2.30193 s, avg_samples: 12.5, ips: 5.43023 samples/s, eta: 1:09:09
[2024/07/27 22:02:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:02:31] ppocr INFO: epoch: [46/200], global_step: 138, lr: 0.001000, loss: 2.681845, loss_shrink_maps: 1.588754, loss_threshold_maps: 0.790676, loss_binary_maps: 0.295679, avg_reader_cost: 1.98367 s, avg_batch_cost: 2.32041 s, avg_samples: 12.5, ips: 5.38698 samples/s, eta: 1:08:31
[2024/07/27 22:02:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:02:40] ppocr INFO: epoch: [47/200], global_step: 140, lr: 0.001000, loss: 2.675375, loss_shrink_maps: 1.588293, loss_threshold_maps: 0.787574, loss_binary_maps: 0.297899, avg_reader_cost: 1.28952 s, avg_batch_cost: 1.46464 s, avg_samples: 9.6, ips: 6.55450 samples/s, eta: 1:08:03
[2024/07/27 22:02:40] ppocr INFO: epoch: [47/200], global_step: 141, lr: 0.001000, loss: 2.675375, loss_shrink_maps: 1.588293, loss_threshold_maps: 0.783192, loss_binary_maps: 0.297899, avg_reader_cost: 0.77789 s, avg_batch_cost: 0.83292 s, avg_samples: 2.9, ips: 3.48174 samples/s, eta: 1:07:52
[2024/07/27 22:02:41] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:02:49] ppocr INFO: epoch: [48/200], global_step: 144, lr: 0.001000, loss: 2.675375, loss_shrink_maps: 1.588293, loss_threshold_maps: 0.783192, loss_binary_maps: 0.298296, avg_reader_cost: 2.03986 s, avg_batch_cost: 2.34260 s, avg_samples: 12.5, ips: 5.33595 samples/s, eta: 1:07:15
[2024/07/27 22:02:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:02:58] ppocr INFO: epoch: [49/200], global_step: 147, lr: 0.001000, loss: 2.640125, loss_shrink_maps: 1.567560, loss_threshold_maps: 0.782926, loss_binary_maps: 0.294233, avg_reader_cost: 2.02971 s, avg_batch_cost: 2.27097 s, avg_samples: 12.5, ips: 5.50426 samples/s, eta: 1:06:37
[2024/07/27 22:02:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:03:07] ppocr INFO: epoch: [50/200], global_step: 150, lr: 0.001000, loss: 2.573725, loss_shrink_maps: 1.527524, loss_threshold_maps: 0.779611, loss_binary_maps: 0.283983, avg_reader_cost: 1.89948 s, avg_batch_cost: 2.17270 s, avg_samples: 12.5, ips: 5.75322 samples/s, eta: 1:05:56
[2024/07/27 22:03:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:03:15] ppocr INFO: epoch: [51/200], global_step: 153, lr: 0.001000, loss: 2.519914, loss_shrink_maps: 1.463194, loss_threshold_maps: 0.779611, loss_binary_maps: 0.274130, avg_reader_cost: 1.83674 s, avg_batch_cost: 2.09512 s, avg_samples: 12.5, ips: 5.96625 samples/s, eta: 1:05:14
[2024/07/27 22:03:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:03:24] ppocr INFO: epoch: [52/200], global_step: 156, lr: 0.001000, loss: 2.525271, loss_shrink_maps: 1.463194, loss_threshold_maps: 0.783825, loss_binary_maps: 0.274130, avg_reader_cost: 2.06537 s, avg_batch_cost: 2.29834 s, avg_samples: 12.5, ips: 5.43871 samples/s, eta: 1:04:38
[2024/07/27 22:03:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:03:33] ppocr INFO: epoch: [53/200], global_step: 159, lr: 0.001000, loss: 2.491115, loss_shrink_maps: 1.444094, loss_threshold_maps: 0.781400, loss_binary_maps: 0.271911, avg_reader_cost: 1.98110 s, avg_batch_cost: 2.27007 s, avg_samples: 12.5, ips: 5.50644 samples/s, eta: 1:04:02
[2024/07/27 22:03:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:03:40] ppocr INFO: epoch: [54/200], global_step: 160, lr: 0.001000, loss: 2.491115, loss_shrink_maps: 1.444094, loss_threshold_maps: 0.781400, loss_binary_maps: 0.271911, avg_reader_cost: 0.59896 s, avg_batch_cost: 0.69374 s, avg_samples: 4.8, ips: 6.91906 samples/s, eta: 1:03:49
[2024/07/27 22:03:42] ppocr INFO: epoch: [54/200], global_step: 162, lr: 0.001000, loss: 2.504121, loss_shrink_maps: 1.455217, loss_threshold_maps: 0.781400, loss_binary_maps: 0.274130, avg_reader_cost: 1.47897 s, avg_batch_cost: 1.62501 s, avg_samples: 7.7, ips: 4.73844 samples/s, eta: 1:03:28
[2024/07/27 22:03:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:03:50] ppocr INFO: epoch: [55/200], global_step: 165, lr: 0.001000, loss: 2.488252, loss_shrink_maps: 1.444094, loss_threshold_maps: 0.770367, loss_binary_maps: 0.272686, avg_reader_cost: 1.96025 s, avg_batch_cost: 2.27803 s, avg_samples: 12.5, ips: 5.48721 samples/s, eta: 1:02:53
[2024/07/27 22:03:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:03:59] ppocr INFO: epoch: [56/200], global_step: 168, lr: 0.001000, loss: 2.501258, loss_shrink_maps: 1.457934, loss_threshold_maps: 0.777779, loss_binary_maps: 0.275746, avg_reader_cost: 1.98856 s, avg_batch_cost: 2.27074 s, avg_samples: 12.5, ips: 5.50482 samples/s, eta: 1:02:19
[2024/07/27 22:04:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:04:08] ppocr INFO: epoch: [57/200], global_step: 170, lr: 0.001000, loss: 2.525271, loss_shrink_maps: 1.472741, loss_threshold_maps: 0.783142, loss_binary_maps: 0.276680, avg_reader_cost: 1.30511 s, avg_batch_cost: 1.48144 s, avg_samples: 9.6, ips: 6.48017 samples/s, eta: 1:01:55
[2024/07/27 22:04:08] ppocr INFO: epoch: [57/200], global_step: 171, lr: 0.001000, loss: 2.511354, loss_shrink_maps: 1.457934, loss_threshold_maps: 0.779521, loss_binary_maps: 0.276680, avg_reader_cost: 0.78639 s, avg_batch_cost: 0.84102 s, avg_samples: 2.9, ips: 3.44820 samples/s, eta: 1:01:46
[2024/07/27 22:04:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:04:17] ppocr INFO: epoch: [58/200], global_step: 174, lr: 0.001000, loss: 2.501111, loss_shrink_maps: 1.457934, loss_threshold_maps: 0.774532, loss_binary_maps: 0.276680, avg_reader_cost: 1.98187 s, avg_batch_cost: 2.30327 s, avg_samples: 12.5, ips: 5.42706 samples/s, eta: 1:01:13
[2024/07/27 22:04:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:04:26] ppocr INFO: epoch: [59/200], global_step: 177, lr: 0.001000, loss: 2.501111, loss_shrink_maps: 1.446010, loss_threshold_maps: 0.773697, loss_binary_maps: 0.276236, avg_reader_cost: 1.98645 s, avg_batch_cost: 2.33017 s, avg_samples: 12.5, ips: 5.36441 samples/s, eta: 1:00:41
[2024/07/27 22:04:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:04:35] ppocr INFO: epoch: [60/200], global_step: 180, lr: 0.001000, loss: 2.451399, loss_shrink_maps: 1.420337, loss_threshold_maps: 0.771193, loss_binary_maps: 0.270160, avg_reader_cost: 2.14910 s, avg_batch_cost: 2.38429 s, avg_samples: 12.5, ips: 5.24266 samples/s, eta: 1:00:11

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:50,  9.79it/s]
eval model::   1%|          | 3/500 [00:00<00:35, 14.14it/s]
eval model::   1%|          | 6/500 [00:00<00:24, 20.33it/s]
eval model::   2%|▏         | 9/500 [00:00<00:23, 21.32it/s]
eval model::   2%|▏         | 12/500 [00:00<00:24, 19.71it/s]
eval model::   3%|▎         | 14/500 [00:00<00:25, 19.35it/s]
eval model::   3%|▎         | 17/500 [00:00<00:24, 19.80it/s]
eval model::   4%|▍         | 19/500 [00:01<00:25, 18.53it/s]
eval model::   4%|▍         | 21/500 [00:01<00:27, 17.42it/s]
eval model::   5%|▍         | 24/500 [00:01<00:24, 19.64it/s]
eval model::   5%|▌         | 27/500 [00:01<00:22, 20.99it/s]
eval model::   6%|▌         | 30/500 [00:01<00:22, 21.19it/s]
eval model::   7%|▋         | 33/500 [00:01<00:23, 19.55it/s]
eval model::   7%|▋         | 35/500 [00:01<00:24, 18.91it/s]
eval model::   8%|▊         | 38/500 [00:01<00:23, 19.75it/s]
eval model::   8%|▊         | 40/500 [00:02<00:23, 19.66it/s]
eval model::   8%|▊         | 42/500 [00:02<00:24, 18.74it/s]
eval model::   9%|▉         | 44/500 [00:02<00:24, 18.84it/s]
eval model::   9%|▉         | 46/500 [00:02<00:24, 18.22it/s]
eval model::  10%|▉         | 49/500 [00:02<00:21, 20.64it/s]
eval model::  10%|█         | 52/500 [00:02<00:20, 21.55it/s]
eval model::  11%|█         | 55/500 [00:02<00:20, 22.20it/s]
eval model::  12%|█▏        | 58/500 [00:02<00:21, 20.24it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:23, 18.99it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:25, 17.34it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:22, 19.19it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:18, 22.81it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:19, 22.35it/s]
eval model::  15%|█▌        | 76/500 [00:03<00:18, 22.70it/s]
eval model::  16%|█▌        | 79/500 [00:03<00:18, 22.79it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:17, 24.10it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:17, 23.87it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:18, 22.64it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:20, 20.16it/s]
eval model::  19%|█▉        | 94/500 [00:04<00:20, 19.59it/s]
eval model::  19%|█▉        | 97/500 [00:04<00:19, 20.80it/s]
eval model::  20%|██        | 100/500 [00:04<00:19, 20.01it/s]
eval model::  21%|██        | 103/500 [00:05<00:18, 21.86it/s]
eval model::  21%|██        | 106/500 [00:05<00:17, 21.96it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:17, 22.40it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:18, 21.31it/s]
eval model::  23%|██▎       | 115/500 [00:05<00:20, 19.22it/s]
eval model::  24%|██▎       | 118/500 [00:05<00:19, 19.38it/s]
eval model::  24%|██▍       | 120/500 [00:05<00:20, 18.42it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:18, 20.42it/s]
eval model::  25%|██▌       | 127/500 [00:06<00:17, 20.78it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:19, 19.39it/s]
eval model::  27%|██▋       | 133/500 [00:06<00:17, 21.06it/s]
eval model::  27%|██▋       | 136/500 [00:06<00:17, 20.89it/s]
eval model::  28%|██▊       | 139/500 [00:06<00:18, 19.90it/s]
eval model::  28%|██▊       | 142/500 [00:06<00:17, 20.99it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:16, 21.92it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:15, 22.51it/s]
eval model::  30%|███       | 151/500 [00:07<00:16, 21.69it/s]
eval model::  31%|███       | 155/500 [00:07<00:14, 24.28it/s]
eval model::  32%|███▏      | 158/500 [00:07<00:16, 20.94it/s]
eval model::  32%|███▏      | 161/500 [00:07<00:17, 19.07it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:16, 20.42it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:15, 21.47it/s]
eval model::  34%|███▍      | 170/500 [00:08<00:15, 21.95it/s]
eval model::  35%|███▍      | 173/500 [00:08<00:15, 20.60it/s]
eval model::  35%|███▌      | 176/500 [00:08<00:17, 18.80it/s]
eval model::  36%|███▌      | 179/500 [00:08<00:15, 20.72it/s]
eval model::  36%|███▋      | 182/500 [00:08<00:15, 20.05it/s]
eval model::  37%|███▋      | 185/500 [00:08<00:14, 22.02it/s]
eval model::  38%|███▊      | 188/500 [00:09<00:15, 20.33it/s]
eval model::  38%|███▊      | 191/500 [00:09<00:15, 20.48it/s]
eval model::  39%|███▉      | 195/500 [00:09<00:13, 22.44it/s]
eval model::  40%|███▉      | 198/500 [00:09<00:13, 22.67it/s]
eval model::  40%|████      | 201/500 [00:09<00:14, 21.04it/s]
eval model::  41%|████      | 204/500 [00:09<00:13, 22.70it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:20, 14.21it/s]
eval model::  42%|████▏     | 209/500 [00:10<00:19, 14.88it/s]
eval model::  42%|████▏     | 211/500 [00:10<00:18, 15.66it/s]
eval model::  43%|████▎     | 214/500 [00:10<00:15, 18.22it/s]
eval model::  43%|████▎     | 217/500 [00:10<00:19, 14.80it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:16, 17.09it/s]
eval model::  45%|████▍     | 223/500 [00:11<00:15, 17.63it/s]
eval model::  45%|████▌     | 226/500 [00:11<00:13, 19.70it/s]
eval model::  46%|████▌     | 229/500 [00:11<00:12, 21.86it/s]
eval model::  46%|████▋     | 232/500 [00:11<00:11, 23.61it/s]
eval model::  47%|████▋     | 235/500 [00:11<00:11, 22.88it/s]
eval model::  48%|████▊     | 238/500 [00:11<00:11, 23.53it/s]
eval model::  48%|████▊     | 241/500 [00:11<00:10, 24.41it/s]
eval model::  49%|████▉     | 244/500 [00:12<00:11, 22.26it/s]
eval model::  49%|████▉     | 247/500 [00:12<00:11, 22.58it/s]
eval model::  50%|█████     | 250/500 [00:12<00:11, 21.26it/s]
eval model::  51%|█████     | 253/500 [00:12<00:10, 22.85it/s]
eval model::  51%|█████     | 256/500 [00:12<00:10, 24.08it/s]
eval model::  52%|█████▏    | 259/500 [00:12<00:10, 23.62it/s]
eval model::  52%|█████▏    | 262/500 [00:12<00:10, 22.02it/s]
eval model::  53%|█████▎    | 265/500 [00:12<00:11, 21.01it/s]
eval model::  54%|█████▎    | 268/500 [00:13<00:10, 21.35it/s]
eval model::  54%|█████▍    | 271/500 [00:13<00:11, 20.41it/s]
eval model::  55%|█████▍    | 274/500 [00:13<00:11, 20.46it/s]
eval model::  55%|█████▌    | 277/500 [00:13<00:10, 20.41it/s]
eval model::  56%|█████▌    | 280/500 [00:13<00:10, 20.94it/s]
eval model::  57%|█████▋    | 283/500 [00:13<00:10, 20.87it/s]
eval model::  57%|█████▋    | 286/500 [00:14<00:14, 14.29it/s]
eval model::  58%|█████▊    | 288/500 [00:14<00:13, 15.19it/s]
eval model::  58%|█████▊    | 291/500 [00:14<00:11, 17.82it/s]
eval model::  59%|█████▉    | 294/500 [00:14<00:11, 18.66it/s]
eval model::  59%|█████▉    | 297/500 [00:14<00:10, 19.21it/s]
eval model::  60%|██████    | 300/500 [00:14<00:11, 17.82it/s]
eval model::  61%|██████    | 303/500 [00:15<00:10, 19.29it/s]
eval model::  61%|██████    | 306/500 [00:15<00:09, 20.14it/s]
eval model::  62%|██████▏   | 309/500 [00:15<00:08, 21.97it/s]
eval model::  62%|██████▏   | 312/500 [00:15<00:08, 21.92it/s]
eval model::  63%|██████▎   | 315/500 [00:15<00:08, 21.81it/s]
eval model::  64%|██████▎   | 318/500 [00:15<00:07, 23.56it/s]
eval model::  64%|██████▍   | 321/500 [00:15<00:07, 23.98it/s]
eval model::  65%|██████▍   | 324/500 [00:15<00:07, 22.66it/s]
eval model::  65%|██████▌   | 327/500 [00:16<00:07, 23.62it/s]
eval model::  66%|██████▌   | 330/500 [00:16<00:07, 22.06it/s]
eval model::  67%|██████▋   | 333/500 [00:16<00:07, 21.76it/s]
eval model::  67%|██████▋   | 336/500 [00:16<00:07, 21.14it/s]
eval model::  68%|██████▊   | 339/500 [00:16<00:07, 21.25it/s]
eval model::  68%|██████▊   | 342/500 [00:16<00:08, 18.48it/s]
eval model::  69%|██████▉   | 345/500 [00:16<00:07, 20.44it/s]
eval model::  70%|██████▉   | 348/500 [00:17<00:06, 22.41it/s]
eval model::  70%|███████   | 351/500 [00:17<00:06, 21.80it/s]
eval model::  71%|███████   | 354/500 [00:17<00:06, 22.47it/s]
eval model::  71%|███████▏  | 357/500 [00:17<00:06, 20.64it/s]
eval model::  72%|███████▏  | 360/500 [00:17<00:07, 19.93it/s]
eval model::  73%|███████▎  | 363/500 [00:17<00:07, 18.38it/s]
eval model::  73%|███████▎  | 365/500 [00:17<00:07, 17.96it/s]
eval model::  73%|███████▎  | 367/500 [00:18<00:07, 16.67it/s]
eval model::  74%|███████▍  | 370/500 [00:18<00:06, 19.62it/s]
eval model::  75%|███████▍  | 373/500 [00:18<00:06, 20.41it/s]
eval model::  75%|███████▌  | 376/500 [00:18<00:05, 22.72it/s]
eval model::  76%|███████▌  | 379/500 [00:18<00:05, 22.84it/s]
eval model::  76%|███████▋  | 382/500 [00:18<00:05, 21.41it/s]
eval model::  77%|███████▋  | 385/500 [00:18<00:05, 20.74it/s]
eval model::  78%|███████▊  | 388/500 [00:19<00:07, 15.70it/s]
eval model::  78%|███████▊  | 391/500 [00:19<00:06, 17.59it/s]
eval model::  79%|███████▉  | 394/500 [00:19<00:05, 18.89it/s]
eval model::  79%|███████▉  | 397/500 [00:19<00:05, 20.32it/s]
eval model::  80%|████████  | 400/500 [00:19<00:04, 20.57it/s]
eval model::  81%|████████  | 403/500 [00:19<00:04, 22.18it/s]
eval model::  81%|████████  | 406/500 [00:19<00:03, 23.52it/s]
eval model::  82%|████████▏ | 410/500 [00:20<00:03, 25.29it/s]
eval model::  83%|████████▎ | 413/500 [00:20<00:03, 24.70it/s]
eval model::  83%|████████▎ | 416/500 [00:20<00:03, 21.43it/s]
eval model::  84%|████████▍ | 419/500 [00:20<00:03, 20.63it/s]
eval model::  84%|████████▍ | 422/500 [00:20<00:03, 19.78it/s]
eval model::  85%|████████▌ | 425/500 [00:20<00:04, 18.59it/s]
eval model::  86%|████████▌ | 428/500 [00:21<00:03, 20.46it/s]
eval model::  86%|████████▌ | 431/500 [00:21<00:03, 21.99it/s]
eval model::  87%|████████▋ | 434/500 [00:21<00:03, 21.09it/s]
eval model::  87%|████████▋ | 437/500 [00:21<00:02, 21.24it/s]
eval model::  88%|████████▊ | 440/500 [00:21<00:03, 19.44it/s]
eval model::  89%|████████▉ | 444/500 [00:21<00:02, 22.70it/s]
eval model::  89%|████████▉ | 447/500 [00:21<00:02, 22.46it/s]
eval model::  90%|█████████ | 450/500 [00:22<00:02, 21.79it/s]
eval model::  91%|█████████ | 453/500 [00:22<00:02, 21.51it/s]
eval model::  91%|█████████ | 456/500 [00:22<00:02, 19.67it/s]
eval model::  92%|█████████▏| 459/500 [00:22<00:02, 20.45it/s]
eval model::  92%|█████████▏| 462/500 [00:22<00:02, 18.08it/s]
eval model::  93%|█████████▎| 464/500 [00:22<00:02, 17.50it/s]
eval model::  93%|█████████▎| 466/500 [00:22<00:02, 16.52it/s]
eval model::  94%|█████████▎| 468/500 [00:23<00:01, 17.08it/s]
eval model::  94%|█████████▍| 471/500 [00:23<00:01, 18.86it/s]
eval model::  95%|█████████▍| 474/500 [00:23<00:01, 18.49it/s]
eval model::  95%|█████████▌| 477/500 [00:23<00:01, 19.45it/s]
eval model::  96%|█████████▌| 479/500 [00:23<00:01, 19.40it/s]
eval model::  96%|█████████▋| 482/500 [00:23<00:00, 20.06it/s]
eval model::  97%|█████████▋| 485/500 [00:23<00:00, 21.14it/s]
eval model::  98%|█████████▊| 488/500 [00:24<00:00, 19.05it/s]
eval model::  98%|█████████▊| 491/500 [00:24<00:00, 19.88it/s]
eval model::  99%|█████████▉| 494/500 [00:24<00:00, 20.65it/s]
eval model::  99%|█████████▉| 497/500 [00:24<00:00, 21.17it/s]
eval model:: 100%|██████████| 500/500 [00:24<00:00, 22.54it/s]
eval model:: 100%|██████████| 500/500 [00:24<00:00, 20.36it/s]
[2024/07/27 22:05:00] ppocr INFO: cur metric, precision: 0.5563583815028902, recall: 0.37072701011073667, hmean: 0.44495810459404805, fps: 45.25903068570792
[2024/07/27 22:05:00] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/27 22:05:00] ppocr INFO: best metric, hmean: 0.44495810459404805, precision: 0.5563583815028902, recall: 0.37072701011073667, fps: 45.25903068570792, best_epoch: 60
[2024/07/27 22:05:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:05:09] ppocr INFO: epoch: [61/200], global_step: 183, lr: 0.001000, loss: 2.476644, loss_shrink_maps: 1.435521, loss_threshold_maps: 0.774654, loss_binary_maps: 0.273857, avg_reader_cost: 2.18337 s, avg_batch_cost: 2.50866 s, avg_samples: 12.5, ips: 4.98274 samples/s, eta: 0:59:43
[2024/07/27 22:05:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:05:18] ppocr INFO: epoch: [62/200], global_step: 186, lr: 0.001000, loss: 2.486739, loss_shrink_maps: 1.435521, loss_threshold_maps: 0.776781, loss_binary_maps: 0.274253, avg_reader_cost: 1.95192 s, avg_batch_cost: 2.28184 s, avg_samples: 12.5, ips: 5.47803 samples/s, eta: 0:59:11
[2024/07/27 22:05:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:05:26] ppocr INFO: epoch: [63/200], global_step: 189, lr: 0.001000, loss: 2.404141, loss_shrink_maps: 1.391876, loss_threshold_maps: 0.762153, loss_binary_maps: 0.268770, avg_reader_cost: 1.92758 s, avg_batch_cost: 2.22952 s, avg_samples: 12.5, ips: 5.60659 samples/s, eta: 0:58:38
[2024/07/27 22:05:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:05:34] ppocr INFO: epoch: [64/200], global_step: 190, lr: 0.001000, loss: 2.404141, loss_shrink_maps: 1.391876, loss_threshold_maps: 0.762153, loss_binary_maps: 0.268770, avg_reader_cost: 0.57087 s, avg_batch_cost: 0.68590 s, avg_samples: 4.8, ips: 6.99806 samples/s, eta: 0:58:25
[2024/07/27 22:05:35] ppocr INFO: epoch: [64/200], global_step: 192, lr: 0.001000, loss: 2.468278, loss_shrink_maps: 1.426937, loss_threshold_maps: 0.766311, loss_binary_maps: 0.272572, avg_reader_cost: 1.46327 s, avg_batch_cost: 1.60905 s, avg_samples: 7.7, ips: 4.78543 samples/s, eta: 0:58:06
[2024/07/27 22:05:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:05:43] ppocr INFO: epoch: [65/200], global_step: 195, lr: 0.001000, loss: 2.434873, loss_shrink_maps: 1.417364, loss_threshold_maps: 0.762153, loss_binary_maps: 0.271147, avg_reader_cost: 1.83815 s, avg_batch_cost: 2.07877 s, avg_samples: 12.5, ips: 6.01316 samples/s, eta: 0:57:30
[2024/07/27 22:05:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:05:52] ppocr INFO: epoch: [66/200], global_step: 198, lr: 0.001000, loss: 2.468278, loss_shrink_maps: 1.426937, loss_threshold_maps: 0.766311, loss_binary_maps: 0.272572, avg_reader_cost: 1.93143 s, avg_batch_cost: 2.26698 s, avg_samples: 12.5, ips: 5.51394 samples/s, eta: 0:56:59
[2024/07/27 22:05:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:06:01] ppocr INFO: epoch: [67/200], global_step: 200, lr: 0.001000, loss: 2.468278, loss_shrink_maps: 1.426937, loss_threshold_maps: 0.753095, loss_binary_maps: 0.272572, avg_reader_cost: 1.20835 s, avg_batch_cost: 1.48565 s, avg_samples: 9.6, ips: 6.46180 samples/s, eta: 0:56:38
[2024/07/27 22:06:01] ppocr INFO: epoch: [67/200], global_step: 201, lr: 0.001000, loss: 2.468278, loss_shrink_maps: 1.426937, loss_threshold_maps: 0.753095, loss_binary_maps: 0.272572, avg_reader_cost: 0.78837 s, avg_batch_cost: 0.84329 s, avg_samples: 2.9, ips: 3.43893 samples/s, eta: 0:56:29
[2024/07/27 22:06:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:06:10] ppocr INFO: epoch: [68/200], global_step: 204, lr: 0.001000, loss: 2.338977, loss_shrink_maps: 1.317709, loss_threshold_maps: 0.754752, loss_binary_maps: 0.251377, avg_reader_cost: 2.11115 s, avg_batch_cost: 2.35500 s, avg_samples: 12.5, ips: 5.30786 samples/s, eta: 0:56:00
[2024/07/27 22:06:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:06:19] ppocr INFO: epoch: [69/200], global_step: 207, lr: 0.001000, loss: 2.389712, loss_shrink_maps: 1.369361, loss_threshold_maps: 0.743948, loss_binary_maps: 0.263245, avg_reader_cost: 1.96632 s, avg_batch_cost: 2.29387 s, avg_samples: 12.5, ips: 5.44930 samples/s, eta: 0:55:30
[2024/07/27 22:06:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:06:28] ppocr INFO: epoch: [70/200], global_step: 210, lr: 0.001000, loss: 2.389712, loss_shrink_maps: 1.360695, loss_threshold_maps: 0.760145, loss_binary_maps: 0.262218, avg_reader_cost: 1.92477 s, avg_batch_cost: 2.24011 s, avg_samples: 12.5, ips: 5.58008 samples/s, eta: 0:54:58
[2024/07/27 22:06:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:06:36] ppocr INFO: epoch: [71/200], global_step: 213, lr: 0.001000, loss: 2.338977, loss_shrink_maps: 1.317709, loss_threshold_maps: 0.760145, loss_binary_maps: 0.250822, avg_reader_cost: 1.91137 s, avg_batch_cost: 2.21000 s, avg_samples: 12.5, ips: 5.65610 samples/s, eta: 0:54:27
[2024/07/27 22:06:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:06:45] ppocr INFO: epoch: [72/200], global_step: 216, lr: 0.001000, loss: 2.247943, loss_shrink_maps: 1.270615, loss_threshold_maps: 0.739267, loss_binary_maps: 0.243297, avg_reader_cost: 2.04814 s, avg_batch_cost: 2.28285 s, avg_samples: 12.5, ips: 5.47562 samples/s, eta: 0:53:57
[2024/07/27 22:06:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:06:54] ppocr INFO: epoch: [73/200], global_step: 219, lr: 0.001000, loss: 2.247943, loss_shrink_maps: 1.275753, loss_threshold_maps: 0.739267, loss_binary_maps: 0.243719, avg_reader_cost: 2.06836 s, avg_batch_cost: 2.30364 s, avg_samples: 12.5, ips: 5.42620 samples/s, eta: 0:53:28
[2024/07/27 22:06:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:07:01] ppocr INFO: epoch: [74/200], global_step: 220, lr: 0.001000, loss: 2.247943, loss_shrink_maps: 1.275753, loss_threshold_maps: 0.739267, loss_binary_maps: 0.243719, avg_reader_cost: 0.48067 s, avg_batch_cost: 0.69366 s, avg_samples: 4.8, ips: 6.91977 samples/s, eta: 0:53:17
[2024/07/27 22:07:03] ppocr INFO: epoch: [74/200], global_step: 222, lr: 0.001000, loss: 2.205292, loss_shrink_maps: 1.247208, loss_threshold_maps: 0.731227, loss_binary_maps: 0.241733, avg_reader_cost: 1.47853 s, avg_batch_cost: 1.62412 s, avg_samples: 7.7, ips: 4.74102 samples/s, eta: 0:52:59
[2024/07/27 22:07:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:07:12] ppocr INFO: epoch: [75/200], global_step: 225, lr: 0.001000, loss: 2.205292, loss_shrink_maps: 1.247208, loss_threshold_maps: 0.729604, loss_binary_maps: 0.241733, avg_reader_cost: 2.03301 s, avg_batch_cost: 2.27789 s, avg_samples: 12.5, ips: 5.48754 samples/s, eta: 0:52:30
[2024/07/27 22:07:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:07:21] ppocr INFO: epoch: [76/200], global_step: 228, lr: 0.001000, loss: 2.222640, loss_shrink_maps: 1.254155, loss_threshold_maps: 0.732510, loss_binary_maps: 0.243139, avg_reader_cost: 1.98527 s, avg_batch_cost: 2.29278 s, avg_samples: 12.5, ips: 5.45189 samples/s, eta: 0:52:01
[2024/07/27 22:07:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:07:29] ppocr INFO: epoch: [77/200], global_step: 230, lr: 0.001000, loss: 2.259202, loss_shrink_maps: 1.276727, loss_threshold_maps: 0.732510, loss_binary_maps: 0.247955, avg_reader_cost: 1.16023 s, avg_batch_cost: 1.46011 s, avg_samples: 9.6, ips: 6.57483 samples/s, eta: 0:51:41
[2024/07/27 22:07:29] ppocr INFO: epoch: [77/200], global_step: 231, lr: 0.001000, loss: 2.259202, loss_shrink_maps: 1.276727, loss_threshold_maps: 0.732510, loss_binary_maps: 0.247955, avg_reader_cost: 0.77546 s, avg_batch_cost: 0.83016 s, avg_samples: 2.9, ips: 3.49329 samples/s, eta: 0:51:32
[2024/07/27 22:07:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:07:38] ppocr INFO: epoch: [78/200], global_step: 234, lr: 0.001000, loss: 2.336891, loss_shrink_maps: 1.335312, loss_threshold_maps: 0.747950, loss_binary_maps: 0.258113, avg_reader_cost: 2.04770 s, avg_batch_cost: 2.29762 s, avg_samples: 12.5, ips: 5.44041 samples/s, eta: 0:51:04
[2024/07/27 22:07:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:07:47] ppocr INFO: epoch: [79/200], global_step: 237, lr: 0.001000, loss: 2.338432, loss_shrink_maps: 1.335312, loss_threshold_maps: 0.754063, loss_binary_maps: 0.258113, avg_reader_cost: 1.95611 s, avg_batch_cost: 2.26612 s, avg_samples: 12.5, ips: 5.51605 samples/s, eta: 0:50:35
[2024/07/27 22:07:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:07:56] ppocr INFO: epoch: [80/200], global_step: 240, lr: 0.001000, loss: 2.358754, loss_shrink_maps: 1.340635, loss_threshold_maps: 0.754063, loss_binary_maps: 0.258968, avg_reader_cost: 1.97658 s, avg_batch_cost: 2.29167 s, avg_samples: 12.5, ips: 5.45453 samples/s, eta: 0:50:07

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<01:02,  8.02it/s]
eval model::   1%|          | 4/500 [00:00<00:28, 17.17it/s]
eval model::   1%|          | 6/500 [00:00<00:31, 15.46it/s]
eval model::   2%|▏         | 9/500 [00:00<00:26, 18.23it/s]
eval model::   2%|▏         | 11/500 [00:00<00:29, 16.52it/s]
eval model::   3%|▎         | 13/500 [00:00<00:28, 17.12it/s]
eval model::   3%|▎         | 15/500 [00:00<00:27, 17.69it/s]
eval model::   4%|▎         | 18/500 [00:01<00:24, 19.90it/s]
eval model::   4%|▍         | 21/500 [00:01<00:29, 16.32it/s]
eval model::   5%|▍         | 23/500 [00:01<00:27, 17.06it/s]
eval model::   5%|▌         | 26/500 [00:01<00:26, 18.18it/s]
eval model::   6%|▌         | 29/500 [00:01<00:23, 19.68it/s]
eval model::   6%|▋         | 32/500 [00:01<00:25, 18.20it/s]
eval model::   7%|▋         | 34/500 [00:01<00:25, 18.51it/s]
eval model::   7%|▋         | 36/500 [00:02<00:25, 18.49it/s]
eval model::   8%|▊         | 39/500 [00:02<00:25, 17.78it/s]
eval model::   8%|▊         | 42/500 [00:02<00:25, 17.74it/s]
eval model::   9%|▉         | 45/500 [00:02<00:22, 20.04it/s]
eval model::  10%|▉         | 48/500 [00:02<00:23, 19.39it/s]
eval model::  10%|█         | 52/500 [00:02<00:21, 20.89it/s]
eval model::  11%|█         | 55/500 [00:02<00:20, 21.55it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:21, 20.63it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:26, 16.29it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:26, 16.77it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:20, 20.63it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:19, 22.38it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:19, 21.78it/s]
eval model::  15%|█▌        | 76/500 [00:03<00:18, 22.58it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:18, 22.31it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:19, 21.69it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:19, 20.95it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:20, 20.32it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:20, 20.04it/s]
eval model::  19%|█▉        | 94/500 [00:04<00:19, 20.71it/s]
eval model::  19%|█▉        | 97/500 [00:05<00:18, 21.61it/s]
eval model::  20%|██        | 100/500 [00:05<00:20, 19.63it/s]
eval model::  21%|██        | 103/500 [00:05<00:19, 20.34it/s]
eval model::  21%|██        | 106/500 [00:05<00:19, 20.17it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:18, 20.92it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:20, 19.16it/s]
eval model::  23%|██▎       | 115/500 [00:05<00:20, 19.07it/s]
eval model::  24%|██▎       | 118/500 [00:06<00:19, 19.65it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:23, 16.38it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:19, 18.91it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:19, 18.73it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:18, 19.93it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:18, 19.43it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:18, 20.19it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:18, 19.98it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:18, 19.08it/s]
eval model::  29%|██▊       | 143/500 [00:07<00:18, 18.96it/s]
eval model::  29%|██▉       | 146/500 [00:07<00:16, 21.04it/s]
eval model::  30%|██▉       | 149/500 [00:07<00:16, 20.98it/s]
eval model::  30%|███       | 152/500 [00:07<00:18, 18.60it/s]
eval model::  31%|███       | 155/500 [00:07<00:16, 20.77it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:15, 22.41it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:16, 20.21it/s]
eval model::  33%|███▎      | 165/500 [00:08<00:16, 20.11it/s]
eval model::  34%|███▎      | 168/500 [00:08<00:15, 21.17it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:15, 20.86it/s]
eval model::  35%|███▍      | 174/500 [00:08<00:17, 18.99it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:16, 19.11it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:15, 20.60it/s]
eval model::  36%|███▋      | 182/500 [00:09<00:15, 20.09it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:13, 22.91it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:13, 22.87it/s]
eval model::  38%|███▊      | 192/500 [00:09<00:14, 21.11it/s]
eval model::  39%|███▉      | 195/500 [00:09<00:14, 20.93it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:13, 22.15it/s]
eval model::  40%|████      | 201/500 [00:10<00:13, 21.42it/s]
eval model::  41%|████      | 204/500 [00:10<00:13, 21.67it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:21, 13.57it/s]
eval model::  42%|████▏     | 209/500 [00:10<00:21, 13.69it/s]
eval model::  42%|████▏     | 212/500 [00:10<00:18, 15.77it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:18, 15.20it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:18, 15.13it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:16, 17.29it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:16, 17.08it/s]
eval model::  45%|████▌     | 225/500 [00:11<00:14, 19.19it/s]
eval model::  46%|████▌     | 228/500 [00:11<00:13, 20.16it/s]
eval model::  46%|████▌     | 231/500 [00:11<00:12, 21.35it/s]
eval model::  47%|████▋     | 234/500 [00:12<00:12, 21.73it/s]
eval model::  47%|████▋     | 237/500 [00:12<00:12, 21.00it/s]
eval model::  48%|████▊     | 240/500 [00:12<00:12, 21.53it/s]
eval model::  49%|████▊     | 243/500 [00:12<00:13, 19.76it/s]
eval model::  49%|████▉     | 246/500 [00:12<00:11, 21.66it/s]
eval model::  50%|████▉     | 249/500 [00:12<00:11, 21.90it/s]
eval model::  50%|█████     | 252/500 [00:12<00:11, 21.62it/s]
eval model::  51%|█████     | 255/500 [00:13<00:11, 21.25it/s]
eval model::  52%|█████▏    | 258/500 [00:13<00:11, 20.23it/s]
eval model::  52%|█████▏    | 261/500 [00:13<00:11, 20.34it/s]
eval model::  53%|█████▎    | 264/500 [00:13<00:11, 19.69it/s]
eval model::  53%|█████▎    | 267/500 [00:13<00:11, 20.64it/s]
eval model::  54%|█████▍    | 270/500 [00:13<00:10, 21.76it/s]
eval model::  55%|█████▍    | 273/500 [00:13<00:11, 20.22it/s]
eval model::  55%|█████▌    | 276/500 [00:14<00:11, 20.08it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:10, 20.32it/s]
eval model::  56%|█████▋    | 282/500 [00:14<00:10, 21.28it/s]
eval model::  57%|█████▋    | 285/500 [00:14<00:14, 15.06it/s]
eval model::  58%|█████▊    | 288/500 [00:14<00:12, 17.20it/s]
eval model::  58%|█████▊    | 291/500 [00:14<00:10, 19.23it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:11, 17.82it/s]
eval model::  59%|█████▉    | 297/500 [00:15<00:11, 18.33it/s]
eval model::  60%|██████    | 300/500 [00:15<00:10, 18.99it/s]
eval model::  61%|██████    | 303/500 [00:15<00:09, 20.23it/s]
eval model::  61%|██████    | 306/500 [00:15<00:09, 20.03it/s]
eval model::  62%|██████▏   | 309/500 [00:15<00:09, 20.80it/s]
eval model::  62%|██████▏   | 312/500 [00:16<00:08, 20.96it/s]
eval model::  63%|██████▎   | 315/500 [00:16<00:08, 20.71it/s]
eval model::  64%|██████▎   | 318/500 [00:16<00:08, 22.13it/s]
eval model::  64%|██████▍   | 321/500 [00:16<00:07, 22.59it/s]
eval model::  65%|██████▍   | 324/500 [00:16<00:07, 22.71it/s]
eval model::  65%|██████▌   | 327/500 [00:16<00:07, 22.87it/s]
eval model::  66%|██████▌   | 330/500 [00:16<00:08, 21.21it/s]
eval model::  67%|██████▋   | 333/500 [00:16<00:07, 20.99it/s]
eval model::  67%|██████▋   | 336/500 [00:17<00:08, 18.89it/s]
eval model::  68%|██████▊   | 338/500 [00:17<00:08, 18.66it/s]
eval model::  68%|██████▊   | 340/500 [00:17<00:10, 15.80it/s]
eval model::  69%|██████▊   | 343/500 [00:17<00:08, 17.93it/s]
eval model::  69%|██████▉   | 346/500 [00:17<00:07, 19.37it/s]
eval model::  70%|██████▉   | 349/500 [00:17<00:07, 20.20it/s]
eval model::  70%|███████   | 352/500 [00:17<00:07, 20.83it/s]
eval model::  71%|███████   | 355/500 [00:18<00:07, 19.92it/s]
eval model::  72%|███████▏  | 358/500 [00:18<00:06, 20.29it/s]
eval model::  72%|███████▏  | 361/500 [00:18<00:07, 19.35it/s]
eval model::  73%|███████▎  | 364/500 [00:18<00:07, 18.39it/s]
eval model::  73%|███████▎  | 366/500 [00:18<00:07, 18.66it/s]
eval model::  74%|███████▍  | 369/500 [00:18<00:06, 19.34it/s]
eval model::  74%|███████▍  | 372/500 [00:19<00:06, 20.05it/s]
eval model::  75%|███████▌  | 375/500 [00:19<00:06, 20.52it/s]
eval model::  76%|███████▌  | 378/500 [00:19<00:05, 21.00it/s]
eval model::  76%|███████▌  | 381/500 [00:19<00:06, 19.22it/s]
eval model::  77%|███████▋  | 384/500 [00:19<00:05, 19.73it/s]
eval model::  77%|███████▋  | 387/500 [00:19<00:07, 14.54it/s]
eval model::  78%|███████▊  | 390/500 [00:20<00:06, 16.54it/s]
eval model::  79%|███████▊  | 393/500 [00:20<00:05, 18.96it/s]
eval model::  79%|███████▉  | 396/500 [00:20<00:05, 19.36it/s]
eval model::  80%|███████▉  | 399/500 [00:20<00:04, 20.21it/s]
eval model::  80%|████████  | 402/500 [00:20<00:04, 20.97it/s]
eval model::  81%|████████  | 405/500 [00:20<00:04, 22.86it/s]
eval model::  82%|████████▏ | 408/500 [00:20<00:04, 22.76it/s]
eval model::  82%|████████▏ | 411/500 [00:20<00:04, 21.99it/s]
eval model::  83%|████████▎ | 414/500 [00:21<00:04, 20.59it/s]
eval model::  83%|████████▎ | 417/500 [00:21<00:04, 20.37it/s]
eval model::  84%|████████▍ | 420/500 [00:21<00:04, 17.03it/s]
eval model::  84%|████████▍ | 422/500 [00:21<00:04, 17.07it/s]
eval model::  85%|████████▌ | 425/500 [00:21<00:04, 17.70it/s]
eval model::  86%|████████▌ | 428/500 [00:21<00:03, 19.75it/s]
eval model::  86%|████████▌ | 431/500 [00:22<00:03, 21.47it/s]
eval model::  87%|████████▋ | 435/500 [00:22<00:02, 24.25it/s]
eval model::  88%|████████▊ | 438/500 [00:22<00:02, 24.42it/s]
eval model::  88%|████████▊ | 441/500 [00:22<00:02, 20.99it/s]
eval model::  89%|████████▉ | 444/500 [00:22<00:02, 21.63it/s]
eval model::  89%|████████▉ | 447/500 [00:22<00:02, 20.54it/s]
eval model::  90%|█████████ | 450/500 [00:22<00:02, 18.33it/s]
eval model::  90%|█████████ | 452/500 [00:23<00:02, 18.49it/s]
eval model::  91%|█████████ | 455/500 [00:23<00:02, 19.11it/s]
eval model::  92%|█████████▏| 458/500 [00:23<00:02, 20.65it/s]
eval model::  92%|█████████▏| 461/500 [00:23<00:01, 20.09it/s]
eval model::  93%|█████████▎| 464/500 [00:23<00:01, 18.81it/s]
eval model::  93%|█████████▎| 466/500 [00:23<00:02, 16.85it/s]
eval model::  94%|█████████▍| 470/500 [00:23<00:01, 20.90it/s]
eval model::  95%|█████████▍| 473/500 [00:24<00:01, 21.52it/s]
eval model::  95%|█████████▌| 476/500 [00:24<00:01, 22.33it/s]
eval model::  96%|█████████▌| 479/500 [00:24<00:00, 22.02it/s]
eval model::  96%|█████████▋| 482/500 [00:24<00:00, 21.24it/s]
eval model::  97%|█████████▋| 485/500 [00:24<00:00, 22.39it/s]
eval model::  98%|█████████▊| 488/500 [00:24<00:00, 20.62it/s]
eval model::  98%|█████████▊| 491/500 [00:24<00:00, 21.10it/s]
eval model::  99%|█████████▉| 494/500 [00:25<00:00, 21.39it/s]
eval model::  99%|█████████▉| 497/500 [00:25<00:00, 21.10it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 22.35it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.72it/s]
[2024/07/27 22:08:21] ppocr INFO: cur metric, precision: 0.5277777777777778, recall: 0.3750601829561868, hmean: 0.4385026737967915, fps: 44.05197083622204
[2024/07/27 22:08:21] ppocr INFO: best metric, hmean: 0.44495810459404805, precision: 0.5563583815028902, recall: 0.37072701011073667, fps: 45.25903068570792, best_epoch: 60
[2024/07/27 22:08:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:08:30] ppocr INFO: epoch: [81/200], global_step: 243, lr: 0.001000, loss: 2.376284, loss_shrink_maps: 1.348319, loss_threshold_maps: 0.751474, loss_binary_maps: 0.262278, avg_reader_cost: 2.03740 s, avg_batch_cost: 2.27635 s, avg_samples: 12.5, ips: 5.49124 samples/s, eta: 0:49:38
[2024/07/27 22:08:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:08:38] ppocr INFO: epoch: [82/200], global_step: 246, lr: 0.001000, loss: 2.376284, loss_shrink_maps: 1.348319, loss_threshold_maps: 0.751474, loss_binary_maps: 0.262278, avg_reader_cost: 2.05953 s, avg_batch_cost: 2.30200 s, avg_samples: 12.5, ips: 5.43006 samples/s, eta: 0:49:10
[2024/07/27 22:08:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:08:47] ppocr INFO: epoch: [83/200], global_step: 249, lr: 0.001000, loss: 2.376284, loss_shrink_maps: 1.348010, loss_threshold_maps: 0.750550, loss_binary_maps: 0.262278, avg_reader_cost: 2.05671 s, avg_batch_cost: 2.29445 s, avg_samples: 12.5, ips: 5.44792 samples/s, eta: 0:48:42
[2024/07/27 22:08:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:08:55] ppocr INFO: epoch: [84/200], global_step: 250, lr: 0.001000, loss: 2.366037, loss_shrink_maps: 1.348010, loss_threshold_maps: 0.749952, loss_binary_maps: 0.261978, avg_reader_cost: 0.51147 s, avg_batch_cost: 0.69139 s, avg_samples: 4.8, ips: 6.94250 samples/s, eta: 0:48:32
[2024/07/27 22:08:56] ppocr INFO: epoch: [84/200], global_step: 252, lr: 0.001000, loss: 2.343424, loss_shrink_maps: 1.327846, loss_threshold_maps: 0.746466, loss_binary_maps: 0.256837, avg_reader_cost: 1.47380 s, avg_batch_cost: 1.61823 s, avg_samples: 7.7, ips: 4.75828 samples/s, eta: 0:48:15
[2024/07/27 22:08:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:09:06] ppocr INFO: epoch: [85/200], global_step: 255, lr: 0.001000, loss: 2.329880, loss_shrink_maps: 1.322611, loss_threshold_maps: 0.745561, loss_binary_maps: 0.257634, avg_reader_cost: 2.10968 s, avg_batch_cost: 2.46220 s, avg_samples: 12.5, ips: 5.07675 samples/s, eta: 0:47:49
[2024/07/27 22:09:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:09:15] ppocr INFO: epoch: [86/200], global_step: 258, lr: 0.001000, loss: 2.304705, loss_shrink_maps: 1.310108, loss_threshold_maps: 0.743890, loss_binary_maps: 0.252861, avg_reader_cost: 1.99943 s, avg_batch_cost: 2.33484 s, avg_samples: 12.5, ips: 5.35369 samples/s, eta: 0:47:22
[2024/07/27 22:09:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:09:23] ppocr INFO: epoch: [87/200], global_step: 260, lr: 0.001000, loss: 2.280252, loss_shrink_maps: 1.300411, loss_threshold_maps: 0.734825, loss_binary_maps: 0.250523, avg_reader_cost: 1.25871 s, avg_batch_cost: 1.43703 s, avg_samples: 9.6, ips: 6.68045 samples/s, eta: 0:47:03
[2024/07/27 22:09:23] ppocr INFO: epoch: [87/200], global_step: 261, lr: 0.001000, loss: 2.265597, loss_shrink_maps: 1.284865, loss_threshold_maps: 0.726352, loss_binary_maps: 0.244958, avg_reader_cost: 0.76421 s, avg_batch_cost: 0.81884 s, avg_samples: 2.9, ips: 3.54161 samples/s, eta: 0:46:54
[2024/07/27 22:09:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:09:32] ppocr INFO: epoch: [88/200], global_step: 264, lr: 0.001000, loss: 2.287727, loss_shrink_maps: 1.319392, loss_threshold_maps: 0.726352, loss_binary_maps: 0.258351, avg_reader_cost: 2.08918 s, avg_batch_cost: 2.32441 s, avg_samples: 12.5, ips: 5.37770 samples/s, eta: 0:46:27
[2024/07/27 22:09:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:09:41] ppocr INFO: epoch: [89/200], global_step: 267, lr: 0.001000, loss: 2.322932, loss_shrink_maps: 1.329088, loss_threshold_maps: 0.743418, loss_binary_maps: 0.260860, avg_reader_cost: 1.92351 s, avg_batch_cost: 2.23920 s, avg_samples: 12.5, ips: 5.58236 samples/s, eta: 0:45:59
[2024/07/27 22:09:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:09:50] ppocr INFO: epoch: [90/200], global_step: 270, lr: 0.001000, loss: 2.322932, loss_shrink_maps: 1.329088, loss_threshold_maps: 0.734985, loss_binary_maps: 0.260860, avg_reader_cost: 1.99451 s, avg_batch_cost: 2.29539 s, avg_samples: 12.5, ips: 5.44570 samples/s, eta: 0:45:32
[2024/07/27 22:09:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:09:58] ppocr INFO: epoch: [91/200], global_step: 273, lr: 0.001000, loss: 2.298479, loss_shrink_maps: 1.319392, loss_threshold_maps: 0.744611, loss_binary_maps: 0.258522, avg_reader_cost: 1.88123 s, avg_batch_cost: 2.14871 s, avg_samples: 12.5, ips: 5.81743 samples/s, eta: 0:45:03
[2024/07/27 22:09:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:10:07] ppocr INFO: epoch: [92/200], global_step: 276, lr: 0.001000, loss: 2.307649, loss_shrink_maps: 1.319392, loss_threshold_maps: 0.737086, loss_binary_maps: 0.258589, avg_reader_cost: 2.05392 s, avg_batch_cost: 2.29102 s, avg_samples: 12.5, ips: 5.45608 samples/s, eta: 0:44:36
[2024/07/27 22:10:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:10:16] ppocr INFO: epoch: [93/200], global_step: 279, lr: 0.001000, loss: 2.307649, loss_shrink_maps: 1.317192, loss_threshold_maps: 0.742302, loss_binary_maps: 0.258589, avg_reader_cost: 2.03677 s, avg_batch_cost: 2.27488 s, avg_samples: 12.5, ips: 5.49479 samples/s, eta: 0:44:09
[2024/07/27 22:10:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:10:23] ppocr INFO: epoch: [94/200], global_step: 280, lr: 0.001000, loss: 2.296897, loss_shrink_maps: 1.305717, loss_threshold_maps: 0.739750, loss_binary_maps: 0.254575, avg_reader_cost: 0.51654 s, avg_batch_cost: 0.69028 s, avg_samples: 4.8, ips: 6.95367 samples/s, eta: 0:43:59
[2024/07/27 22:10:25] ppocr INFO: epoch: [94/200], global_step: 282, lr: 0.001000, loss: 2.296897, loss_shrink_maps: 1.305717, loss_threshold_maps: 0.739750, loss_binary_maps: 0.254575, avg_reader_cost: 1.47200 s, avg_batch_cost: 1.61811 s, avg_samples: 7.7, ips: 4.75865 samples/s, eta: 0:43:42
[2024/07/27 22:10:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:10:34] ppocr INFO: epoch: [95/200], global_step: 285, lr: 0.001000, loss: 2.295036, loss_shrink_maps: 1.291200, loss_threshold_maps: 0.739750, loss_binary_maps: 0.250812, avg_reader_cost: 2.10601 s, avg_batch_cost: 2.35206 s, avg_samples: 12.5, ips: 5.31449 samples/s, eta: 0:43:16
[2024/07/27 22:10:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:10:43] ppocr INFO: epoch: [96/200], global_step: 288, lr: 0.001000, loss: 2.217992, loss_shrink_maps: 1.242790, loss_threshold_maps: 0.734700, loss_binary_maps: 0.242426, avg_reader_cost: 2.02186 s, avg_batch_cost: 2.27145 s, avg_samples: 12.5, ips: 5.50310 samples/s, eta: 0:42:49
[2024/07/27 22:10:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:10:51] ppocr INFO: epoch: [97/200], global_step: 290, lr: 0.001000, loss: 2.201778, loss_shrink_maps: 1.232859, loss_threshold_maps: 0.730113, loss_binary_maps: 0.241598, avg_reader_cost: 1.26379 s, avg_batch_cost: 1.44707 s, avg_samples: 9.6, ips: 6.63407 samples/s, eta: 0:42:31
[2024/07/27 22:10:51] ppocr INFO: epoch: [97/200], global_step: 291, lr: 0.001000, loss: 2.192500, loss_shrink_maps: 1.223696, loss_threshold_maps: 0.725847, loss_binary_maps: 0.240677, avg_reader_cost: 0.76914 s, avg_batch_cost: 0.82380 s, avg_samples: 2.9, ips: 3.52026 samples/s, eta: 0:42:22
[2024/07/27 22:10:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:11:00] ppocr INFO: epoch: [98/200], global_step: 294, lr: 0.001000, loss: 2.168750, loss_shrink_maps: 1.223696, loss_threshold_maps: 0.723445, loss_binary_maps: 0.240677, avg_reader_cost: 2.09867 s, avg_batch_cost: 2.32945 s, avg_samples: 12.5, ips: 5.36607 samples/s, eta: 0:41:56
[2024/07/27 22:11:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:11:09] ppocr INFO: epoch: [99/200], global_step: 297, lr: 0.001000, loss: 2.182751, loss_shrink_maps: 1.229448, loss_threshold_maps: 0.723445, loss_binary_maps: 0.241570, avg_reader_cost: 2.04250 s, avg_batch_cost: 2.27954 s, avg_samples: 12.5, ips: 5.48357 samples/s, eta: 0:41:30
[2024/07/27 22:11:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:11:18] ppocr INFO: epoch: [100/200], global_step: 300, lr: 0.001000, loss: 2.172809, loss_shrink_maps: 1.219480, loss_threshold_maps: 0.716738, loss_binary_maps: 0.239635, avg_reader_cost: 2.07210 s, avg_batch_cost: 2.31348 s, avg_samples: 12.5, ips: 5.40311 samples/s, eta: 0:41:04

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:51,  9.60it/s]
eval model::   1%|          | 4/500 [00:00<00:26, 18.72it/s]
eval model::   1%|          | 6/500 [00:00<00:27, 17.78it/s]
eval model::   2%|▏         | 9/500 [00:00<00:25, 18.92it/s]
eval model::   2%|▏         | 11/500 [00:00<00:27, 17.76it/s]
eval model::   3%|▎         | 13/500 [00:00<00:28, 17.25it/s]
eval model::   3%|▎         | 16/500 [00:00<00:25, 18.89it/s]
eval model::   4%|▍         | 19/500 [00:01<00:25, 18.97it/s]
eval model::   4%|▍         | 21/500 [00:01<00:25, 18.62it/s]
eval model::   5%|▍         | 24/500 [00:01<00:23, 20.04it/s]
eval model::   5%|▌         | 26/500 [00:01<00:23, 19.76it/s]
eval model::   6%|▌         | 29/500 [00:01<00:23, 20.09it/s]
eval model::   6%|▌         | 31/500 [00:01<00:25, 18.08it/s]
eval model::   7%|▋         | 34/500 [00:01<00:26, 17.70it/s]
eval model::   7%|▋         | 37/500 [00:01<00:23, 19.52it/s]
eval model::   8%|▊         | 39/500 [00:02<00:26, 17.26it/s]
eval model::   8%|▊         | 41/500 [00:02<00:26, 17.65it/s]
eval model::   9%|▊         | 43/500 [00:02<00:26, 17.06it/s]
eval model::   9%|▉         | 46/500 [00:02<00:26, 17.39it/s]
eval model::  10%|▉         | 49/500 [00:02<00:22, 19.90it/s]
eval model::  10%|█         | 52/500 [00:02<00:23, 19.41it/s]
eval model::  11%|█         | 55/500 [00:02<00:20, 21.28it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:21, 20.17it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:25, 17.55it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:26, 16.76it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:21, 19.98it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:21, 20.20it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:22, 18.77it/s]
eval model::  15%|█▌        | 76/500 [00:04<00:21, 19.95it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:21, 19.70it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:20, 20.05it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:20, 20.42it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:21, 18.81it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:24, 16.95it/s]
eval model::  18%|█▊        | 92/500 [00:04<00:23, 17.50it/s]
eval model::  19%|█▉        | 94/500 [00:05<00:24, 16.77it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:24, 16.74it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:21, 18.65it/s]
eval model::  20%|██        | 101/500 [00:05<00:21, 18.58it/s]
eval model::  21%|██        | 103/500 [00:05<00:21, 18.87it/s]
eval model::  21%|██        | 106/500 [00:05<00:19, 19.83it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:18, 21.03it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:18, 20.67it/s]
eval model::  23%|██▎       | 115/500 [00:06<00:17, 22.58it/s]
eval model::  24%|██▍       | 119/500 [00:06<00:15, 24.14it/s]
eval model::  24%|██▍       | 122/500 [00:06<00:16, 22.42it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:16, 22.55it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:16, 22.69it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:16, 22.19it/s]
eval model::  27%|██▋       | 134/500 [00:06<00:16, 22.60it/s]
eval model::  27%|██▋       | 137/500 [00:07<00:17, 20.99it/s]
eval model::  28%|██▊       | 140/500 [00:07<00:17, 20.35it/s]
eval model::  29%|██▊       | 143/500 [00:07<00:17, 20.56it/s]
eval model::  29%|██▉       | 146/500 [00:07<00:16, 21.68it/s]
eval model::  30%|██▉       | 149/500 [00:07<00:16, 20.78it/s]
eval model::  30%|███       | 152/500 [00:07<00:17, 19.39it/s]
eval model::  31%|███       | 155/500 [00:07<00:16, 20.65it/s]
eval model::  32%|███▏      | 158/500 [00:08<00:15, 22.49it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:18, 17.84it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:18, 17.93it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:17, 19.15it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:17, 19.07it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:17, 18.74it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:19, 16.67it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:19, 16.76it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:16, 19.08it/s]
eval model::  36%|███▋      | 182/500 [00:09<00:17, 17.70it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:15, 20.87it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:14, 21.38it/s]
eval model::  38%|███▊      | 192/500 [00:09<00:14, 21.88it/s]
eval model::  39%|███▉      | 195/500 [00:09<00:13, 21.83it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:13, 21.89it/s]
eval model::  40%|████      | 201/500 [00:10<00:13, 22.42it/s]
eval model::  41%|████      | 204/500 [00:10<00:13, 22.69it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:19, 15.27it/s]
eval model::  42%|████▏     | 209/500 [00:10<00:18, 15.55it/s]
eval model::  42%|████▏     | 211/500 [00:10<00:18, 15.86it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:17, 16.30it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:18, 15.21it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:19, 14.73it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:16, 16.72it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:16, 16.38it/s]
eval model::  45%|████▌     | 226/500 [00:11<00:13, 20.03it/s]
eval model::  46%|████▌     | 229/500 [00:11<00:12, 20.87it/s]
eval model::  46%|████▋     | 232/500 [00:12<00:12, 21.79it/s]
eval model::  47%|████▋     | 235/500 [00:12<00:12, 21.42it/s]
eval model::  48%|████▊     | 238/500 [00:12<00:11, 22.13it/s]
eval model::  48%|████▊     | 241/500 [00:12<00:11, 22.25it/s]
eval model::  49%|████▉     | 244/500 [00:12<00:12, 19.99it/s]
eval model::  49%|████▉     | 247/500 [00:12<00:11, 21.29it/s]
eval model::  50%|█████     | 250/500 [00:12<00:12, 19.99it/s]
eval model::  51%|█████     | 253/500 [00:13<00:11, 20.90it/s]
eval model::  51%|█████     | 256/500 [00:13<00:11, 22.03it/s]
eval model::  52%|█████▏    | 259/500 [00:13<00:10, 22.66it/s]
eval model::  52%|█████▏    | 262/500 [00:13<00:11, 20.75it/s]
eval model::  53%|█████▎    | 265/500 [00:13<00:11, 21.15it/s]
eval model::  54%|█████▎    | 268/500 [00:13<00:11, 20.31it/s]
eval model::  54%|█████▍    | 271/500 [00:13<00:11, 20.40it/s]
eval model::  55%|█████▍    | 274/500 [00:14<00:11, 20.30it/s]
eval model::  55%|█████▌    | 277/500 [00:14<00:11, 18.99it/s]
eval model::  56%|█████▌    | 280/500 [00:14<00:11, 19.82it/s]
eval model::  57%|█████▋    | 283/500 [00:14<00:10, 21.35it/s]
eval model::  57%|█████▋    | 286/500 [00:14<00:14, 14.76it/s]
eval model::  58%|█████▊    | 289/500 [00:14<00:12, 16.78it/s]
eval model::  58%|█████▊    | 292/500 [00:15<00:10, 19.08it/s]
eval model::  59%|█████▉    | 295/500 [00:15<00:12, 16.21it/s]
eval model::  60%|█████▉    | 298/500 [00:15<00:11, 18.02it/s]
eval model::  60%|██████    | 301/500 [00:15<00:10, 18.77it/s]
eval model::  61%|██████    | 304/500 [00:15<00:09, 19.69it/s]
eval model::  61%|██████▏   | 307/500 [00:15<00:08, 21.83it/s]
eval model::  62%|██████▏   | 310/500 [00:15<00:08, 21.37it/s]
eval model::  63%|██████▎   | 313/500 [00:16<00:08, 21.65it/s]
eval model::  63%|██████▎   | 316/500 [00:16<00:08, 20.95it/s]
eval model::  64%|██████▍   | 319/500 [00:16<00:08, 21.86it/s]
eval model::  64%|██████▍   | 322/500 [00:16<00:08, 21.03it/s]
eval model::  65%|██████▌   | 325/500 [00:16<00:07, 22.66it/s]
eval model::  66%|██████▌   | 328/500 [00:16<00:07, 22.74it/s]
eval model::  66%|██████▌   | 331/500 [00:16<00:07, 22.30it/s]
eval model::  67%|██████▋   | 334/500 [00:17<00:07, 22.78it/s]
eval model::  67%|██████▋   | 337/500 [00:17<00:06, 23.34it/s]
eval model::  68%|██████▊   | 340/500 [00:17<00:09, 17.37it/s]
eval model::  69%|██████▊   | 343/500 [00:17<00:08, 18.87it/s]
eval model::  69%|██████▉   | 346/500 [00:17<00:07, 20.50it/s]
eval model::  70%|██████▉   | 349/500 [00:17<00:06, 21.98it/s]
eval model::  70%|███████   | 352/500 [00:17<00:06, 21.28it/s]
eval model::  71%|███████   | 355/500 [00:18<00:06, 21.69it/s]
eval model::  72%|███████▏  | 358/500 [00:18<00:06, 21.24it/s]
eval model::  72%|███████▏  | 361/500 [00:18<00:07, 19.42it/s]
eval model::  73%|███████▎  | 364/500 [00:18<00:07, 17.78it/s]
eval model::  73%|███████▎  | 366/500 [00:18<00:07, 18.10it/s]
eval model::  74%|███████▍  | 369/500 [00:18<00:06, 18.93it/s]
eval model::  74%|███████▍  | 372/500 [00:19<00:06, 19.13it/s]
eval model::  75%|███████▌  | 375/500 [00:19<00:06, 19.49it/s]
eval model::  76%|███████▌  | 378/500 [00:19<00:06, 19.37it/s]
eval model::  76%|███████▌  | 380/500 [00:19<00:06, 18.43it/s]
eval model::  77%|███████▋  | 383/500 [00:19<00:05, 20.37it/s]
eval model::  77%|███████▋  | 386/500 [00:19<00:08, 14.11it/s]
eval model::  78%|███████▊  | 389/500 [00:20<00:06, 16.62it/s]
eval model::  78%|███████▊  | 392/500 [00:20<00:06, 17.82it/s]
eval model::  79%|███████▉  | 395/500 [00:20<00:05, 18.10it/s]
eval model::  80%|███████▉  | 398/500 [00:20<00:05, 19.28it/s]
eval model::  80%|████████  | 401/500 [00:20<00:05, 18.82it/s]
eval model::  81%|████████  | 404/500 [00:20<00:04, 20.06it/s]
eval model::  81%|████████▏ | 407/500 [00:20<00:04, 20.69it/s]
eval model::  82%|████████▏ | 410/500 [00:21<00:04, 21.48it/s]
eval model::  83%|████████▎ | 413/500 [00:21<00:03, 22.62it/s]
eval model::  83%|████████▎ | 416/500 [00:21<00:03, 22.01it/s]
eval model::  84%|████████▍ | 419/500 [00:21<00:03, 20.50it/s]
eval model::  84%|████████▍ | 422/500 [00:21<00:04, 17.70it/s]
eval model::  85%|████████▍ | 424/500 [00:21<00:04, 16.89it/s]
eval model::  85%|████████▌ | 426/500 [00:21<00:04, 17.31it/s]
eval model::  86%|████████▌ | 429/500 [00:22<00:03, 19.66it/s]
eval model::  86%|████████▋ | 432/500 [00:22<00:03, 20.25it/s]
eval model::  87%|████████▋ | 435/500 [00:22<00:02, 22.42it/s]
eval model::  88%|████████▊ | 439/500 [00:22<00:02, 24.55it/s]
eval model::  88%|████████▊ | 442/500 [00:22<00:02, 22.80it/s]
eval model::  89%|████████▉ | 445/500 [00:22<00:02, 21.28it/s]
eval model::  90%|████████▉ | 448/500 [00:22<00:02, 19.79it/s]
eval model::  90%|█████████ | 451/500 [00:23<00:02, 19.01it/s]
eval model::  91%|█████████ | 454/500 [00:23<00:02, 19.49it/s]
eval model::  91%|█████████▏| 457/500 [00:23<00:02, 20.63it/s]
eval model::  92%|█████████▏| 460/500 [00:23<00:01, 20.22it/s]
eval model::  93%|█████████▎| 463/500 [00:23<00:01, 18.79it/s]
eval model::  93%|█████████▎| 465/500 [00:23<00:02, 17.20it/s]
eval model::  94%|█████████▎| 468/500 [00:23<00:01, 19.94it/s]
eval model::  94%|█████████▍| 471/500 [00:24<00:01, 20.92it/s]
eval model::  95%|█████████▍| 474/500 [00:24<00:01, 19.38it/s]
eval model::  96%|█████████▌| 478/500 [00:24<00:01, 21.93it/s]
eval model::  96%|█████████▌| 481/500 [00:24<00:00, 21.02it/s]
eval model::  97%|█████████▋| 484/500 [00:24<00:00, 22.34it/s]
eval model::  97%|█████████▋| 487/500 [00:24<00:00, 19.86it/s]
eval model::  98%|█████████▊| 490/500 [00:24<00:00, 19.79it/s]
eval model::  99%|█████████▊| 493/500 [00:25<00:00, 20.20it/s]
eval model::  99%|█████████▉| 496/500 [00:25<00:00, 20.33it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 24.00it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.69it/s]
[2024/07/27 22:11:43] ppocr INFO: cur metric, precision: 0.6292935839274141, recall: 0.46750120365912373, hmean: 0.53646408839779, fps: 44.39734099314374
[2024/07/27 22:11:43] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/27 22:11:43] ppocr INFO: best metric, hmean: 0.53646408839779, precision: 0.6292935839274141, recall: 0.46750120365912373, fps: 44.39734099314374, best_epoch: 100
[2024/07/27 22:11:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:11:52] ppocr INFO: epoch: [101/200], global_step: 303, lr: 0.001000, loss: 2.172809, loss_shrink_maps: 1.219480, loss_threshold_maps: 0.708619, loss_binary_maps: 0.239635, avg_reader_cost: 2.02600 s, avg_batch_cost: 2.32198 s, avg_samples: 12.5, ips: 5.38334 samples/s, eta: 0:40:37
[2024/07/27 22:11:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:12:01] ppocr INFO: epoch: [102/200], global_step: 306, lr: 0.001000, loss: 2.172809, loss_shrink_maps: 1.219480, loss_threshold_maps: 0.708619, loss_binary_maps: 0.239635, avg_reader_cost: 1.91633 s, avg_batch_cost: 2.24814 s, avg_samples: 12.5, ips: 5.56016 samples/s, eta: 0:40:11
[2024/07/27 22:12:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:12:09] ppocr INFO: epoch: [103/200], global_step: 309, lr: 0.001000, loss: 2.205022, loss_shrink_maps: 1.244131, loss_threshold_maps: 0.720319, loss_binary_maps: 0.243798, avg_reader_cost: 1.90660 s, avg_batch_cost: 2.21577 s, avg_samples: 12.5, ips: 5.64139 samples/s, eta: 0:39:44
[2024/07/27 22:12:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:12:16] ppocr INFO: epoch: [104/200], global_step: 310, lr: 0.001000, loss: 2.196520, loss_shrink_maps: 1.244131, loss_threshold_maps: 0.716738, loss_binary_maps: 0.243798, avg_reader_cost: 0.56600 s, avg_batch_cost: 0.65757 s, avg_samples: 4.8, ips: 7.29956 samples/s, eta: 0:39:34
[2024/07/27 22:12:18] ppocr INFO: epoch: [104/200], global_step: 312, lr: 0.001000, loss: 2.196520, loss_shrink_maps: 1.244131, loss_threshold_maps: 0.708619, loss_binary_maps: 0.243798, avg_reader_cost: 1.40663 s, avg_batch_cost: 1.55229 s, avg_samples: 7.7, ips: 4.96040 samples/s, eta: 0:39:17
[2024/07/27 22:12:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:12:27] ppocr INFO: epoch: [105/200], global_step: 315, lr: 0.001000, loss: 2.192318, loss_shrink_maps: 1.238769, loss_threshold_maps: 0.716738, loss_binary_maps: 0.241872, avg_reader_cost: 1.99608 s, avg_batch_cost: 2.32730 s, avg_samples: 12.5, ips: 5.37102 samples/s, eta: 0:38:51
[2024/07/27 22:12:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:12:36] ppocr INFO: epoch: [106/200], global_step: 318, lr: 0.001000, loss: 2.220697, loss_shrink_maps: 1.250815, loss_threshold_maps: 0.712011, loss_binary_maps: 0.243587, avg_reader_cost: 1.93402 s, avg_batch_cost: 2.29378 s, avg_samples: 12.5, ips: 5.44951 samples/s, eta: 0:38:25
[2024/07/27 22:12:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:12:44] ppocr INFO: epoch: [107/200], global_step: 320, lr: 0.001000, loss: 2.175532, loss_shrink_maps: 1.229056, loss_threshold_maps: 0.705954, loss_binary_maps: 0.238388, avg_reader_cost: 1.27896 s, avg_batch_cost: 1.46114 s, avg_samples: 9.6, ips: 6.57022 samples/s, eta: 0:38:07
[2024/07/27 22:12:45] ppocr INFO: epoch: [107/200], global_step: 321, lr: 0.001000, loss: 2.131506, loss_shrink_maps: 1.196719, loss_threshold_maps: 0.701453, loss_binary_maps: 0.232799, avg_reader_cost: 0.77627 s, avg_batch_cost: 0.83113 s, avg_samples: 2.9, ips: 3.48922 samples/s, eta: 0:37:59
[2024/07/27 22:12:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:12:53] ppocr INFO: epoch: [108/200], global_step: 324, lr: 0.001000, loss: 2.131506, loss_shrink_maps: 1.196719, loss_threshold_maps: 0.702912, loss_binary_maps: 0.232799, avg_reader_cost: 1.98673 s, avg_batch_cost: 2.31885 s, avg_samples: 12.5, ips: 5.39061 samples/s, eta: 0:37:34
[2024/07/27 22:12:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:13:02] ppocr INFO: epoch: [109/200], global_step: 327, lr: 0.001000, loss: 2.131506, loss_shrink_maps: 1.196719, loss_threshold_maps: 0.704368, loss_binary_maps: 0.232799, avg_reader_cost: 1.98090 s, avg_batch_cost: 2.31706 s, avg_samples: 12.5, ips: 5.39477 samples/s, eta: 0:37:08
[2024/07/27 22:13:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:13:11] ppocr INFO: epoch: [110/200], global_step: 330, lr: 0.001000, loss: 2.131506, loss_shrink_maps: 1.196719, loss_threshold_maps: 0.704368, loss_binary_maps: 0.232799, avg_reader_cost: 1.97763 s, avg_batch_cost: 2.29848 s, avg_samples: 12.5, ips: 5.43837 samples/s, eta: 0:36:42
[2024/07/27 22:13:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:13:20] ppocr INFO: epoch: [111/200], global_step: 333, lr: 0.001000, loss: 2.158812, loss_shrink_maps: 1.206896, loss_threshold_maps: 0.707410, loss_binary_maps: 0.236259, avg_reader_cost: 1.91322 s, avg_batch_cost: 2.21251 s, avg_samples: 12.5, ips: 5.64970 samples/s, eta: 0:36:16
[2024/07/27 22:13:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:13:29] ppocr INFO: epoch: [112/200], global_step: 336, lr: 0.001000, loss: 2.210091, loss_shrink_maps: 1.235815, loss_threshold_maps: 0.712437, loss_binary_maps: 0.242636, avg_reader_cost: 2.05178 s, avg_batch_cost: 2.28857 s, avg_samples: 12.5, ips: 5.46193 samples/s, eta: 0:35:50
[2024/07/27 22:13:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:13:37] ppocr INFO: epoch: [113/200], global_step: 339, lr: 0.001000, loss: 2.158617, loss_shrink_maps: 1.218481, loss_threshold_maps: 0.709671, loss_binary_maps: 0.238910, avg_reader_cost: 1.93528 s, avg_batch_cost: 2.24355 s, avg_samples: 12.5, ips: 5.57154 samples/s, eta: 0:35:24
[2024/07/27 22:13:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:13:45] ppocr INFO: epoch: [114/200], global_step: 340, lr: 0.001000, loss: 2.210091, loss_shrink_maps: 1.235815, loss_threshold_maps: 0.717644, loss_binary_maps: 0.242636, avg_reader_cost: 0.59371 s, avg_batch_cost: 0.68554 s, avg_samples: 4.8, ips: 7.00173 samples/s, eta: 0:35:15
[2024/07/27 22:13:46] ppocr INFO: epoch: [114/200], global_step: 342, lr: 0.001000, loss: 2.222370, loss_shrink_maps: 1.242715, loss_threshold_maps: 0.724032, loss_binary_maps: 0.242795, avg_reader_cost: 1.46252 s, avg_batch_cost: 1.60837 s, avg_samples: 7.7, ips: 4.78746 samples/s, eta: 0:34:59
[2024/07/27 22:13:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:13:55] ppocr INFO: epoch: [115/200], global_step: 345, lr: 0.001000, loss: 2.231946, loss_shrink_maps: 1.242715, loss_threshold_maps: 0.737449, loss_binary_maps: 0.242795, avg_reader_cost: 1.93988 s, avg_batch_cost: 2.22056 s, avg_samples: 12.5, ips: 5.62920 samples/s, eta: 0:34:33
[2024/07/27 22:13:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:14:03] ppocr INFO: epoch: [116/200], global_step: 348, lr: 0.001000, loss: 2.199857, loss_shrink_maps: 1.230602, loss_threshold_maps: 0.730326, loss_binary_maps: 0.241382, avg_reader_cost: 2.05120 s, avg_batch_cost: 2.28463 s, avg_samples: 12.5, ips: 5.47135 samples/s, eta: 0:34:07
[2024/07/27 22:14:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:14:12] ppocr INFO: epoch: [117/200], global_step: 350, lr: 0.001000, loss: 2.199857, loss_shrink_maps: 1.230602, loss_threshold_maps: 0.730326, loss_binary_maps: 0.241382, avg_reader_cost: 1.20606 s, avg_batch_cost: 1.47673 s, avg_samples: 9.6, ips: 6.50084 samples/s, eta: 0:33:50
[2024/07/27 22:14:12] ppocr INFO: epoch: [117/200], global_step: 351, lr: 0.001000, loss: 2.211081, loss_shrink_maps: 1.236590, loss_threshold_maps: 0.730326, loss_binary_maps: 0.241858, avg_reader_cost: 0.78402 s, avg_batch_cost: 0.83878 s, avg_samples: 2.9, ips: 3.45741 samples/s, eta: 0:33:42
[2024/07/27 22:14:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:14:21] ppocr INFO: epoch: [118/200], global_step: 354, lr: 0.001000, loss: 2.173842, loss_shrink_maps: 1.208823, loss_threshold_maps: 0.709816, loss_binary_maps: 0.237041, avg_reader_cost: 1.96808 s, avg_batch_cost: 2.20382 s, avg_samples: 12.5, ips: 5.67196 samples/s, eta: 0:33:16
[2024/07/27 22:14:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:14:30] ppocr INFO: epoch: [119/200], global_step: 357, lr: 0.001000, loss: 2.150344, loss_shrink_maps: 1.199298, loss_threshold_maps: 0.702440, loss_binary_maps: 0.235386, avg_reader_cost: 2.09110 s, avg_batch_cost: 2.32727 s, avg_samples: 12.5, ips: 5.37110 samples/s, eta: 0:32:51
[2024/07/27 22:14:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:14:39] ppocr INFO: epoch: [120/200], global_step: 360, lr: 0.001000, loss: 2.173842, loss_shrink_maps: 1.204172, loss_threshold_maps: 0.707359, loss_binary_maps: 0.236642, avg_reader_cost: 2.00218 s, avg_batch_cost: 2.33041 s, avg_samples: 12.5, ips: 5.36386 samples/s, eta: 0:32:26

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:53,  9.31it/s]
eval model::   1%|          | 4/500 [00:00<00:30, 16.18it/s]
eval model::   1%|          | 6/500 [00:00<00:33, 14.90it/s]
eval model::   2%|▏         | 9/500 [00:00<00:26, 18.55it/s]
eval model::   2%|▏         | 11/500 [00:00<00:28, 17.08it/s]
eval model::   3%|▎         | 14/500 [00:00<00:25, 18.74it/s]
eval model::   3%|▎         | 17/500 [00:00<00:24, 19.82it/s]
eval model::   4%|▍         | 19/500 [00:01<00:24, 19.32it/s]
eval model::   4%|▍         | 21/500 [00:01<00:25, 19.03it/s]
eval model::   5%|▍         | 24/500 [00:01<00:23, 20.53it/s]
eval model::   5%|▌         | 27/500 [00:01<00:22, 21.32it/s]
eval model::   6%|▌         | 30/500 [00:01<00:21, 21.95it/s]
eval model::   7%|▋         | 33/500 [00:01<00:22, 21.21it/s]
eval model::   7%|▋         | 36/500 [00:01<00:22, 20.30it/s]
eval model::   8%|▊         | 39/500 [00:02<00:24, 18.68it/s]
eval model::   8%|▊         | 42/500 [00:02<00:26, 17.51it/s]
eval model::   9%|▉         | 45/500 [00:02<00:24, 18.93it/s]
eval model::   9%|▉         | 47/500 [00:02<00:25, 18.01it/s]
eval model::  10%|█         | 50/500 [00:02<00:21, 20.56it/s]
eval model::  11%|█         | 53/500 [00:02<00:20, 22.29it/s]
eval model::  11%|█▏        | 57/500 [00:02<00:17, 25.15it/s]
eval model::  12%|█▏        | 60/500 [00:03<00:19, 22.11it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:25, 17.31it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:22, 19.34it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:20, 20.88it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:20, 21.06it/s]
eval model::  15%|█▌        | 75/500 [00:03<00:20, 20.90it/s]
eval model::  16%|█▌        | 78/500 [00:03<00:20, 21.07it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:18, 22.65it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:17, 23.86it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:17, 24.14it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:19, 20.92it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:21, 19.33it/s]
eval model::  19%|█▉        | 96/500 [00:04<00:19, 20.59it/s]
eval model::  20%|█▉        | 99/500 [00:04<00:18, 21.93it/s]
eval model::  20%|██        | 102/500 [00:05<00:18, 21.02it/s]
eval model::  21%|██        | 105/500 [00:05<00:17, 22.12it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:17, 22.74it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:17, 22.32it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:16, 23.81it/s]
eval model::  23%|██▎       | 117/500 [00:05<00:16, 23.13it/s]
eval model::  24%|██▍       | 120/500 [00:05<00:20, 18.55it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:18, 19.99it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:19, 19.20it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:19, 19.39it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:19, 18.75it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:18, 19.59it/s]
eval model::  28%|██▊       | 138/500 [00:06<00:18, 20.04it/s]
eval model::  28%|██▊       | 141/500 [00:06<00:18, 19.36it/s]
eval model::  29%|██▊       | 143/500 [00:07<00:18, 19.16it/s]
eval model::  29%|██▉       | 146/500 [00:07<00:17, 20.39it/s]
eval model::  30%|██▉       | 149/500 [00:07<00:18, 18.73it/s]
eval model::  30%|███       | 151/500 [00:07<00:19, 17.85it/s]
eval model::  31%|███       | 155/500 [00:07<00:16, 21.22it/s]
eval model::  32%|███▏      | 158/500 [00:07<00:15, 22.55it/s]
eval model::  32%|███▏      | 161/500 [00:07<00:17, 18.87it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:17, 19.13it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:16, 20.43it/s]
eval model::  34%|███▍      | 170/500 [00:08<00:16, 20.32it/s]
eval model::  35%|███▍      | 173/500 [00:08<00:17, 19.11it/s]
eval model::  35%|███▌      | 175/500 [00:08<00:18, 17.79it/s]
eval model::  36%|███▌      | 178/500 [00:08<00:15, 20.17it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:18, 17.09it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:16, 19.21it/s]
eval model::  37%|███▋      | 187/500 [00:09<00:15, 19.79it/s]
eval model::  38%|███▊      | 190/500 [00:09<00:14, 21.69it/s]
eval model::  39%|███▉      | 194/500 [00:09<00:12, 25.14it/s]
eval model::  39%|███▉      | 197/500 [00:09<00:13, 23.21it/s]
eval model::  40%|████      | 200/500 [00:09<00:12, 23.39it/s]
eval model::  41%|████      | 203/500 [00:09<00:12, 24.17it/s]
eval model::  41%|████      | 206/500 [00:10<00:16, 17.77it/s]
eval model::  42%|████▏     | 209/500 [00:10<00:16, 17.40it/s]
eval model::  42%|████▏     | 211/500 [00:10<00:16, 17.26it/s]
eval model::  43%|████▎     | 214/500 [00:10<00:15, 19.05it/s]
eval model::  43%|████▎     | 217/500 [00:10<00:17, 15.81it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:16, 17.28it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:17, 15.68it/s]
eval model::  45%|████▌     | 225/500 [00:11<00:14, 18.49it/s]
eval model::  46%|████▌     | 229/500 [00:11<00:12, 22.15it/s]
eval model::  47%|████▋     | 233/500 [00:11<00:10, 25.44it/s]
eval model::  47%|████▋     | 236/500 [00:11<00:10, 25.92it/s]
eval model::  48%|████▊     | 240/500 [00:11<00:09, 27.94it/s]
eval model::  49%|████▊     | 243/500 [00:11<00:10, 23.65it/s]
eval model::  49%|████▉     | 246/500 [00:12<00:10, 24.03it/s]
eval model::  50%|████▉     | 249/500 [00:12<00:11, 21.42it/s]
eval model::  50%|█████     | 252/500 [00:12<00:12, 19.91it/s]
eval model::  51%|█████     | 255/500 [00:12<00:12, 20.27it/s]
eval model::  52%|█████▏    | 258/500 [00:12<00:11, 21.17it/s]
eval model::  52%|█████▏    | 261/500 [00:12<00:12, 19.49it/s]
eval model::  53%|█████▎    | 264/500 [00:13<00:12, 18.81it/s]
eval model::  53%|█████▎    | 267/500 [00:13<00:12, 18.70it/s]
eval model::  54%|█████▍    | 270/500 [00:13<00:11, 19.71it/s]
eval model::  55%|█████▍    | 273/500 [00:13<00:12, 18.81it/s]
eval model::  55%|█████▌    | 275/500 [00:13<00:11, 18.82it/s]
eval model::  56%|█████▌    | 278/500 [00:13<00:10, 20.98it/s]
eval model::  56%|█████▌    | 281/500 [00:13<00:11, 19.64it/s]
eval model::  57%|█████▋    | 284/500 [00:14<00:11, 19.47it/s]
eval model::  57%|█████▋    | 286/500 [00:14<00:17, 12.07it/s]
eval model::  58%|█████▊    | 289/500 [00:14<00:14, 14.28it/s]
eval model::  58%|█████▊    | 292/500 [00:14<00:12, 16.30it/s]
eval model::  59%|█████▉    | 294/500 [00:14<00:13, 15.40it/s]
eval model::  59%|█████▉    | 296/500 [00:15<00:13, 14.77it/s]
eval model::  60%|█████▉    | 299/500 [00:15<00:11, 17.65it/s]
eval model::  60%|██████    | 301/500 [00:15<00:11, 16.87it/s]
eval model::  61%|██████    | 304/500 [00:15<00:10, 18.62it/s]
eval model::  61%|██████▏   | 307/500 [00:15<00:09, 20.22it/s]
eval model::  62%|██████▏   | 310/500 [00:15<00:09, 19.74it/s]
eval model::  63%|██████▎   | 313/500 [00:15<00:08, 21.48it/s]
eval model::  63%|██████▎   | 316/500 [00:15<00:08, 21.65it/s]
eval model::  64%|██████▍   | 320/500 [00:16<00:07, 24.61it/s]
eval model::  65%|██████▍   | 323/500 [00:16<00:07, 23.98it/s]
eval model::  65%|██████▌   | 326/500 [00:16<00:06, 25.16it/s]
eval model::  66%|██████▌   | 329/500 [00:16<00:06, 24.44it/s]
eval model::  66%|██████▋   | 332/500 [00:16<00:07, 23.76it/s]
eval model::  67%|██████▋   | 335/500 [00:16<00:07, 22.39it/s]
eval model::  68%|██████▊   | 338/500 [00:16<00:08, 20.13it/s]
eval model::  68%|██████▊   | 341/500 [00:17<00:09, 16.11it/s]
eval model::  69%|██████▉   | 344/500 [00:17<00:08, 18.10it/s]
eval model::  69%|██████▉   | 347/500 [00:17<00:07, 19.71it/s]
eval model::  70%|███████   | 350/500 [00:17<00:07, 21.31it/s]
eval model::  71%|███████   | 353/500 [00:17<00:06, 21.66it/s]
eval model::  71%|███████   | 356/500 [00:17<00:07, 20.14it/s]
eval model::  72%|███████▏  | 359/500 [00:17<00:06, 20.82it/s]
eval model::  72%|███████▏  | 362/500 [00:18<00:06, 21.08it/s]
eval model::  73%|███████▎  | 365/500 [00:18<00:07, 18.93it/s]
eval model::  73%|███████▎  | 367/500 [00:18<00:07, 18.58it/s]
eval model::  74%|███████▍  | 370/500 [00:18<00:06, 20.45it/s]
eval model::  75%|███████▍  | 373/500 [00:18<00:05, 21.94it/s]
eval model::  75%|███████▌  | 376/500 [00:18<00:05, 22.61it/s]
eval model::  76%|███████▌  | 380/500 [00:18<00:05, 22.73it/s]
eval model::  77%|███████▋  | 383/500 [00:19<00:04, 24.11it/s]
eval model::  77%|███████▋  | 386/500 [00:19<00:07, 16.03it/s]
eval model::  78%|███████▊  | 389/500 [00:19<00:06, 16.92it/s]
eval model::  78%|███████▊  | 391/500 [00:19<00:06, 17.34it/s]
eval model::  79%|███████▉  | 394/500 [00:19<00:05, 18.96it/s]
eval model::  79%|███████▉  | 397/500 [00:19<00:05, 18.20it/s]
eval model::  80%|████████  | 400/500 [00:20<00:05, 17.64it/s]
eval model::  80%|████████  | 402/500 [00:20<00:05, 17.78it/s]
eval model::  81%|████████  | 405/500 [00:20<00:04, 19.12it/s]
eval model::  82%|████████▏ | 408/500 [00:20<00:04, 19.80it/s]
eval model::  82%|████████▏ | 411/500 [00:20<00:04, 21.29it/s]
eval model::  83%|████████▎ | 414/500 [00:20<00:03, 21.89it/s]
eval model::  83%|████████▎ | 417/500 [00:20<00:04, 19.67it/s]
eval model::  84%|████████▍ | 420/500 [00:21<00:04, 16.19it/s]
eval model::  84%|████████▍ | 422/500 [00:21<00:04, 16.67it/s]
eval model::  85%|████████▍ | 424/500 [00:21<00:04, 16.69it/s]
eval model::  85%|████████▌ | 426/500 [00:21<00:04, 17.33it/s]
eval model::  86%|████████▌ | 429/500 [00:21<00:03, 19.32it/s]
eval model::  86%|████████▋ | 432/500 [00:21<00:03, 19.98it/s]
eval model::  87%|████████▋ | 435/500 [00:21<00:02, 22.40it/s]
eval model::  88%|████████▊ | 439/500 [00:22<00:02, 24.11it/s]
eval model::  88%|████████▊ | 442/500 [00:22<00:02, 23.24it/s]
eval model::  89%|████████▉ | 445/500 [00:22<00:02, 23.79it/s]
eval model::  90%|████████▉ | 448/500 [00:22<00:02, 22.23it/s]
eval model::  90%|█████████ | 451/500 [00:22<00:02, 22.22it/s]
eval model::  91%|█████████ | 454/500 [00:22<00:02, 22.74it/s]
eval model::  91%|█████████▏| 457/500 [00:22<00:01, 21.53it/s]
eval model::  92%|█████████▏| 460/500 [00:23<00:01, 21.51it/s]
eval model::  93%|█████████▎| 463/500 [00:23<00:01, 18.90it/s]
eval model::  93%|█████████▎| 465/500 [00:23<00:02, 17.48it/s]
eval model::  94%|█████████▎| 468/500 [00:23<00:01, 20.16it/s]
eval model::  94%|█████████▍| 471/500 [00:23<00:01, 21.37it/s]
eval model::  95%|█████████▍| 474/500 [00:23<00:01, 21.34it/s]
eval model::  95%|█████████▌| 477/500 [00:23<00:01, 22.66it/s]
eval model::  96%|█████████▌| 480/500 [00:23<00:00, 21.44it/s]
eval model::  97%|█████████▋| 483/500 [00:24<00:00, 21.26it/s]
eval model::  97%|█████████▋| 486/500 [00:24<00:00, 18.51it/s]
eval model::  98%|█████████▊| 489/500 [00:24<00:00, 19.43it/s]
eval model::  98%|█████████▊| 492/500 [00:24<00:00, 19.03it/s]
eval model::  99%|█████████▉| 494/500 [00:24<00:00, 19.09it/s]
eval model::  99%|█████████▉| 496/500 [00:24<00:00, 17.45it/s]
eval model:: 100%|█████████▉| 499/500 [00:25<00:00, 19.40it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.95it/s]
[2024/07/27 22:15:04] ppocr INFO: cur metric, precision: 0.6161482461945731, recall: 0.44824265767934524, hmean: 0.5189520624303233, fps: 44.57960630621576
[2024/07/27 22:15:04] ppocr INFO: best metric, hmean: 0.53646408839779, precision: 0.6292935839274141, recall: 0.46750120365912373, fps: 44.39734099314374, best_epoch: 100
[2024/07/27 22:15:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:15:13] ppocr INFO: epoch: [121/200], global_step: 363, lr: 0.001000, loss: 2.134604, loss_shrink_maps: 1.193905, loss_threshold_maps: 0.701676, loss_binary_maps: 0.234044, avg_reader_cost: 2.05242 s, avg_batch_cost: 2.45056 s, avg_samples: 12.5, ips: 5.10088 samples/s, eta: 0:32:02
[2024/07/27 22:15:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:15:22] ppocr INFO: epoch: [122/200], global_step: 366, lr: 0.001000, loss: 2.095627, loss_shrink_maps: 1.186588, loss_threshold_maps: 0.691609, loss_binary_maps: 0.232759, avg_reader_cost: 2.13331 s, avg_batch_cost: 2.40283 s, avg_samples: 12.5, ips: 5.20219 samples/s, eta: 0:31:37
[2024/07/27 22:15:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:15:31] ppocr INFO: epoch: [123/200], global_step: 369, lr: 0.001000, loss: 2.086906, loss_shrink_maps: 1.176191, loss_threshold_maps: 0.691609, loss_binary_maps: 0.231042, avg_reader_cost: 2.05665 s, avg_batch_cost: 2.30199 s, avg_samples: 12.5, ips: 5.43008 samples/s, eta: 0:31:12
[2024/07/27 22:15:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:15:38] ppocr INFO: epoch: [124/200], global_step: 370, lr: 0.001000, loss: 2.095627, loss_shrink_maps: 1.186588, loss_threshold_maps: 0.701676, loss_binary_maps: 0.232759, avg_reader_cost: 0.55933 s, avg_batch_cost: 0.67368 s, avg_samples: 4.8, ips: 7.12504 samples/s, eta: 0:31:03
[2024/07/27 22:15:39] ppocr INFO: epoch: [124/200], global_step: 372, lr: 0.001000, loss: 2.104721, loss_shrink_maps: 1.191354, loss_threshold_maps: 0.715045, loss_binary_maps: 0.233582, avg_reader_cost: 1.43897 s, avg_batch_cost: 1.58497 s, avg_samples: 7.7, ips: 4.85814 samples/s, eta: 0:30:47
[2024/07/27 22:15:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:15:48] ppocr INFO: epoch: [125/200], global_step: 375, lr: 0.001000, loss: 2.099714, loss_shrink_maps: 1.186588, loss_threshold_maps: 0.715045, loss_binary_maps: 0.233241, avg_reader_cost: 2.11499 s, avg_batch_cost: 2.35121 s, avg_samples: 12.5, ips: 5.31641 samples/s, eta: 0:30:22
[2024/07/27 22:15:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:15:57] ppocr INFO: epoch: [126/200], global_step: 378, lr: 0.001000, loss: 2.224692, loss_shrink_maps: 1.224488, loss_threshold_maps: 0.724158, loss_binary_maps: 0.240271, avg_reader_cost: 2.03396 s, avg_batch_cost: 2.27851 s, avg_samples: 12.5, ips: 5.48603 samples/s, eta: 0:29:57
[2024/07/27 22:15:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:16:06] ppocr INFO: epoch: [127/200], global_step: 380, lr: 0.001000, loss: 2.151284, loss_shrink_maps: 1.197394, loss_threshold_maps: 0.724158, loss_binary_maps: 0.235433, avg_reader_cost: 1.29820 s, avg_batch_cost: 1.51545 s, avg_samples: 9.6, ips: 6.33476 samples/s, eta: 0:29:40
[2024/07/27 22:16:06] ppocr INFO: epoch: [127/200], global_step: 381, lr: 0.001000, loss: 2.151284, loss_shrink_maps: 1.197394, loss_threshold_maps: 0.724158, loss_binary_maps: 0.235433, avg_reader_cost: 0.80388 s, avg_batch_cost: 0.85923 s, avg_samples: 2.9, ips: 3.37513 samples/s, eta: 0:29:32
[2024/07/27 22:16:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:16:15] ppocr INFO: epoch: [128/200], global_step: 384, lr: 0.001000, loss: 2.195812, loss_shrink_maps: 1.208332, loss_threshold_maps: 0.739546, loss_binary_maps: 0.236986, avg_reader_cost: 2.08420 s, avg_batch_cost: 2.32751 s, avg_samples: 12.5, ips: 5.37055 samples/s, eta: 0:29:07
[2024/07/27 22:16:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:16:24] ppocr INFO: epoch: [129/200], global_step: 387, lr: 0.001000, loss: 2.142969, loss_shrink_maps: 1.182796, loss_threshold_maps: 0.724852, loss_binary_maps: 0.231942, avg_reader_cost: 2.04837 s, avg_batch_cost: 2.28556 s, avg_samples: 12.5, ips: 5.46912 samples/s, eta: 0:28:42
[2024/07/27 22:16:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:16:33] ppocr INFO: epoch: [130/200], global_step: 390, lr: 0.001000, loss: 2.197293, loss_shrink_maps: 1.221663, loss_threshold_maps: 0.731829, loss_binary_maps: 0.240455, avg_reader_cost: 2.07701 s, avg_batch_cost: 2.32226 s, avg_samples: 12.5, ips: 5.38269 samples/s, eta: 0:28:17
[2024/07/27 22:16:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:16:41] ppocr INFO: epoch: [131/200], global_step: 393, lr: 0.001000, loss: 2.142969, loss_shrink_maps: 1.182796, loss_threshold_maps: 0.721552, loss_binary_maps: 0.231942, avg_reader_cost: 1.98886 s, avg_batch_cost: 2.30223 s, avg_samples: 12.5, ips: 5.42953 samples/s, eta: 0:27:52
[2024/07/27 22:16:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:16:50] ppocr INFO: epoch: [132/200], global_step: 396, lr: 0.001000, loss: 2.142969, loss_shrink_maps: 1.182796, loss_threshold_maps: 0.721552, loss_binary_maps: 0.231942, avg_reader_cost: 1.96920 s, avg_batch_cost: 2.20135 s, avg_samples: 12.5, ips: 5.67834 samples/s, eta: 0:27:27
[2024/07/27 22:16:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:16:59] ppocr INFO: epoch: [133/200], global_step: 399, lr: 0.001000, loss: 2.101796, loss_shrink_maps: 1.156158, loss_threshold_maps: 0.714566, loss_binary_maps: 0.226480, avg_reader_cost: 2.02910 s, avg_batch_cost: 2.28148 s, avg_samples: 12.5, ips: 5.47890 samples/s, eta: 0:27:02
[2024/07/27 22:17:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:17:06] ppocr INFO: epoch: [134/200], global_step: 400, lr: 0.001000, loss: 2.101796, loss_shrink_maps: 1.156158, loss_threshold_maps: 0.711366, loss_binary_maps: 0.226480, avg_reader_cost: 0.50148 s, avg_batch_cost: 0.69385 s, avg_samples: 4.8, ips: 6.91795 samples/s, eta: 0:26:53
[2024/07/27 22:17:08] ppocr INFO: epoch: [134/200], global_step: 402, lr: 0.001000, loss: 2.125088, loss_shrink_maps: 1.182234, loss_threshold_maps: 0.711366, loss_binary_maps: 0.232935, avg_reader_cost: 1.47886 s, avg_batch_cost: 1.62471 s, avg_samples: 7.7, ips: 4.73932 samples/s, eta: 0:26:37
[2024/07/27 22:17:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:17:16] ppocr INFO: epoch: [135/200], global_step: 405, lr: 0.001000, loss: 2.143667, loss_shrink_maps: 1.209676, loss_threshold_maps: 0.712340, loss_binary_maps: 0.236780, avg_reader_cost: 2.03124 s, avg_batch_cost: 2.32807 s, avg_samples: 12.5, ips: 5.36926 samples/s, eta: 0:26:13
[2024/07/27 22:17:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:17:25] ppocr INFO: epoch: [136/200], global_step: 408, lr: 0.001000, loss: 2.138917, loss_shrink_maps: 1.198724, loss_threshold_maps: 0.711015, loss_binary_maps: 0.236036, avg_reader_cost: 2.02462 s, avg_batch_cost: 2.31735 s, avg_samples: 12.5, ips: 5.39409 samples/s, eta: 0:25:48
[2024/07/27 22:17:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:17:34] ppocr INFO: epoch: [137/200], global_step: 410, lr: 0.001000, loss: 2.138917, loss_shrink_maps: 1.205141, loss_threshold_maps: 0.705501, loss_binary_maps: 0.237309, avg_reader_cost: 1.30369 s, avg_batch_cost: 1.49317 s, avg_samples: 9.6, ips: 6.42927 samples/s, eta: 0:25:31
[2024/07/27 22:17:34] ppocr INFO: epoch: [137/200], global_step: 411, lr: 0.001000, loss: 2.128541, loss_shrink_maps: 1.198724, loss_threshold_maps: 0.699788, loss_binary_maps: 0.235911, avg_reader_cost: 0.79290 s, avg_batch_cost: 0.84718 s, avg_samples: 2.9, ips: 3.42312 samples/s, eta: 0:25:23
[2024/07/27 22:17:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:17:43] ppocr INFO: epoch: [138/200], global_step: 414, lr: 0.001000, loss: 2.138917, loss_shrink_maps: 1.205141, loss_threshold_maps: 0.705501, loss_binary_maps: 0.237309, avg_reader_cost: 2.04564 s, avg_batch_cost: 2.28284 s, avg_samples: 12.5, ips: 5.47563 samples/s, eta: 0:24:59
[2024/07/27 22:17:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:17:52] ppocr INFO: epoch: [139/200], global_step: 417, lr: 0.001000, loss: 2.138917, loss_shrink_maps: 1.205141, loss_threshold_maps: 0.699989, loss_binary_maps: 0.237309, avg_reader_cost: 2.05131 s, avg_batch_cost: 2.29623 s, avg_samples: 12.5, ips: 5.44370 samples/s, eta: 0:24:34
[2024/07/27 22:17:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:18:01] ppocr INFO: epoch: [140/200], global_step: 420, lr: 0.001000, loss: 2.128541, loss_shrink_maps: 1.198724, loss_threshold_maps: 0.698762, loss_binary_maps: 0.235911, avg_reader_cost: 1.97901 s, avg_batch_cost: 2.31510 s, avg_samples: 12.5, ips: 5.39934 samples/s, eta: 0:24:09

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:58,  8.57it/s]
eval model::   1%|          | 3/500 [00:00<00:35, 14.13it/s]
eval model::   1%|          | 6/500 [00:00<00:28, 17.61it/s]
eval model::   2%|▏         | 9/500 [00:00<00:23, 20.52it/s]
eval model::   2%|▏         | 12/500 [00:00<00:25, 19.33it/s]
eval model::   3%|▎         | 14/500 [00:00<00:27, 17.99it/s]
eval model::   3%|▎         | 17/500 [00:00<00:23, 20.61it/s]
eval model::   4%|▍         | 20/500 [00:01<00:25, 18.57it/s]
eval model::   5%|▍         | 23/500 [00:01<00:23, 20.72it/s]
eval model::   5%|▌         | 26/500 [00:01<00:22, 21.39it/s]
eval model::   6%|▌         | 29/500 [00:01<00:21, 21.87it/s]
eval model::   6%|▋         | 32/500 [00:01<00:24, 19.20it/s]
eval model::   7%|▋         | 35/500 [00:01<00:25, 18.08it/s]
eval model::   8%|▊         | 38/500 [00:01<00:24, 18.86it/s]
eval model::   8%|▊         | 40/500 [00:02<00:25, 18.27it/s]
eval model::   8%|▊         | 42/500 [00:02<00:25, 18.01it/s]
eval model::   9%|▉         | 45/500 [00:02<00:22, 19.98it/s]
eval model::  10%|▉         | 48/500 [00:02<00:22, 19.89it/s]
eval model::  10%|█         | 51/500 [00:02<00:21, 21.03it/s]
eval model::  11%|█         | 54/500 [00:02<00:20, 21.45it/s]
eval model::  11%|█▏        | 57/500 [00:02<00:21, 20.48it/s]
eval model::  12%|█▏        | 60/500 [00:03<00:21, 20.61it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:25, 17.01it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:22, 19.49it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:19, 21.90it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:21, 20.05it/s]
eval model::  15%|█▌        | 76/500 [00:03<00:20, 21.05it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:20, 20.34it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:19, 21.37it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:20, 19.91it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:21, 19.13it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:23, 17.74it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:21, 18.81it/s]
eval model::  19%|█▉        | 96/500 [00:04<00:20, 19.41it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:19, 20.35it/s]
eval model::  20%|██        | 102/500 [00:05<00:19, 20.02it/s]
eval model::  21%|██        | 105/500 [00:05<00:18, 20.93it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:20, 19.14it/s]
eval model::  22%|██▏       | 110/500 [00:05<00:20, 19.30it/s]
eval model::  23%|██▎       | 113/500 [00:05<00:19, 19.36it/s]
eval model::  23%|██▎       | 116/500 [00:05<00:18, 20.47it/s]
eval model::  24%|██▍       | 119/500 [00:06<00:19, 20.01it/s]
eval model::  24%|██▍       | 122/500 [00:06<00:18, 20.76it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:20, 18.33it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:19, 18.99it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:20, 18.19it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:20, 18.35it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:18, 20.21it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:17, 20.77it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:19, 18.89it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:17, 19.95it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:18, 18.84it/s]
eval model::  30%|███       | 150/500 [00:07<00:17, 20.18it/s]
eval model::  31%|███       | 153/500 [00:07<00:17, 19.28it/s]
eval model::  31%|███       | 156/500 [00:07<00:16, 20.62it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:16, 20.22it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:19, 17.62it/s]
eval model::  33%|███▎      | 165/500 [00:08<00:17, 19.23it/s]
eval model::  34%|███▎      | 168/500 [00:08<00:17, 18.83it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:16, 19.38it/s]
eval model::  35%|███▍      | 174/500 [00:08<00:17, 18.36it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:17, 18.58it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:15, 20.55it/s]
eval model::  36%|███▋      | 182/500 [00:09<00:17, 17.68it/s]
eval model::  37%|███▋      | 185/500 [00:09<00:15, 19.89it/s]
eval model::  38%|███▊      | 188/500 [00:09<00:16, 19.24it/s]
eval model::  38%|███▊      | 191/500 [00:09<00:15, 20.15it/s]
eval model::  39%|███▉      | 194/500 [00:09<00:13, 22.15it/s]
eval model::  39%|███▉      | 197/500 [00:10<00:14, 21.00it/s]
eval model::  40%|████      | 200/500 [00:10<00:14, 20.73it/s]
eval model::  41%|████      | 203/500 [00:10<00:14, 20.04it/s]
eval model::  41%|████      | 206/500 [00:10<00:19, 15.12it/s]
eval model::  42%|████▏     | 208/500 [00:10<00:19, 15.00it/s]
eval model::  42%|████▏     | 210/500 [00:10<00:19, 14.52it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.75it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:19, 14.77it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:20, 14.11it/s]
eval model::  44%|████▍     | 219/500 [00:11<00:18, 14.95it/s]
eval model::  44%|████▍     | 221/500 [00:11<00:19, 14.43it/s]
eval model::  45%|████▍     | 223/500 [00:11<00:19, 14.56it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:17, 16.03it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:13, 20.51it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:12, 22.17it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:12, 21.85it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:11, 23.24it/s]
eval model::  48%|████▊     | 242/500 [00:12<00:12, 20.12it/s]
eval model::  49%|████▉     | 245/500 [00:12<00:11, 22.07it/s]
eval model::  50%|████▉     | 248/500 [00:12<00:11, 21.65it/s]
eval model::  50%|█████     | 251/500 [00:13<00:12, 19.67it/s]
eval model::  51%|█████     | 254/500 [00:13<00:12, 20.29it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:11, 21.20it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:12, 19.79it/s]
eval model::  53%|█████▎    | 263/500 [00:13<00:11, 20.47it/s]
eval model::  53%|█████▎    | 266/500 [00:13<00:12, 19.19it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:11, 19.76it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:12, 18.88it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:12, 17.94it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:11, 18.79it/s]
eval model::  56%|█████▌    | 281/500 [00:14<00:10, 20.15it/s]
eval model::  57%|█████▋    | 284/500 [00:14<00:10, 20.49it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:16, 13.17it/s]
eval model::  58%|█████▊    | 290/500 [00:15<00:13, 15.51it/s]
eval model::  59%|█████▊    | 293/500 [00:15<00:12, 16.93it/s]
eval model::  59%|█████▉    | 296/500 [00:15<00:13, 15.68it/s]
eval model::  60%|█████▉    | 299/500 [00:15<00:11, 17.31it/s]
eval model::  60%|██████    | 301/500 [00:15<00:11, 16.59it/s]
eval model::  61%|██████    | 304/500 [00:16<00:10, 18.50it/s]
eval model::  61%|██████▏   | 307/500 [00:16<00:09, 20.07it/s]
eval model::  62%|██████▏   | 310/500 [00:16<00:09, 20.19it/s]
eval model::  63%|██████▎   | 313/500 [00:16<00:09, 19.67it/s]
eval model::  63%|██████▎   | 316/500 [00:16<00:09, 18.53it/s]
eval model::  64%|██████▎   | 318/500 [00:16<00:09, 18.70it/s]
eval model::  64%|██████▍   | 321/500 [00:16<00:09, 19.72it/s]
eval model::  65%|██████▍   | 324/500 [00:17<00:08, 21.21it/s]
eval model::  66%|██████▌   | 328/500 [00:17<00:07, 23.03it/s]
eval model::  66%|██████▌   | 331/500 [00:17<00:07, 23.30it/s]
eval model::  67%|██████▋   | 334/500 [00:17<00:06, 23.95it/s]
eval model::  67%|██████▋   | 337/500 [00:17<00:07, 21.56it/s]
eval model::  68%|██████▊   | 340/500 [00:17<00:09, 16.13it/s]
eval model::  69%|██████▊   | 343/500 [00:18<00:08, 18.25it/s]
eval model::  69%|██████▉   | 346/500 [00:18<00:07, 19.80it/s]
eval model::  70%|██████▉   | 349/500 [00:18<00:06, 21.70it/s]
eval model::  70%|███████   | 352/500 [00:18<00:06, 21.88it/s]
eval model::  71%|███████   | 355/500 [00:18<00:06, 20.90it/s]
eval model::  72%|███████▏  | 358/500 [00:18<00:06, 20.42it/s]
eval model::  72%|███████▏  | 361/500 [00:18<00:06, 20.00it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:07, 19.15it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:07, 18.76it/s]
eval model::  74%|███████▍  | 369/500 [00:19<00:06, 20.08it/s]
eval model::  74%|███████▍  | 372/500 [00:19<00:06, 20.75it/s]
eval model::  75%|███████▌  | 375/500 [00:19<00:05, 21.51it/s]
eval model::  76%|███████▌  | 378/500 [00:19<00:05, 23.31it/s]
eval model::  76%|███████▌  | 381/500 [00:19<00:05, 21.82it/s]
eval model::  77%|███████▋  | 384/500 [00:19<00:05, 22.50it/s]
eval model::  77%|███████▋  | 387/500 [00:20<00:07, 14.51it/s]
eval model::  78%|███████▊  | 390/500 [00:20<00:06, 16.21it/s]
eval model::  79%|███████▊  | 393/500 [00:20<00:06, 17.76it/s]
eval model::  79%|███████▉  | 396/500 [00:20<00:05, 17.85it/s]
eval model::  80%|███████▉  | 399/500 [00:20<00:05, 19.51it/s]
eval model::  80%|████████  | 402/500 [00:20<00:04, 20.69it/s]
eval model::  81%|████████  | 405/500 [00:21<00:04, 20.59it/s]
eval model::  82%|████████▏ | 408/500 [00:21<00:04, 20.94it/s]
eval model::  82%|████████▏ | 411/500 [00:21<00:04, 22.20it/s]
eval model::  83%|████████▎ | 414/500 [00:21<00:03, 23.22it/s]
eval model::  83%|████████▎ | 417/500 [00:21<00:03, 20.94it/s]
eval model::  84%|████████▍ | 420/500 [00:21<00:04, 17.54it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:04, 16.84it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:04, 16.49it/s]
eval model::  85%|████████▌ | 426/500 [00:22<00:04, 16.17it/s]
eval model::  86%|████████▌ | 429/500 [00:22<00:03, 18.94it/s]
eval model::  86%|████████▋ | 432/500 [00:22<00:03, 20.05it/s]
eval model::  87%|████████▋ | 435/500 [00:22<00:03, 21.35it/s]
eval model::  88%|████████▊ | 438/500 [00:22<00:02, 22.40it/s]
eval model::  88%|████████▊ | 441/500 [00:22<00:02, 20.58it/s]
eval model::  89%|████████▉ | 445/500 [00:23<00:02, 23.80it/s]
eval model::  90%|████████▉ | 448/500 [00:23<00:02, 22.02it/s]
eval model::  90%|█████████ | 451/500 [00:23<00:02, 22.14it/s]
eval model::  91%|█████████ | 454/500 [00:23<00:02, 22.63it/s]
eval model::  91%|█████████▏| 457/500 [00:23<00:01, 22.09it/s]
eval model::  92%|█████████▏| 460/500 [00:23<00:01, 20.32it/s]
eval model::  93%|█████████▎| 463/500 [00:23<00:01, 18.63it/s]
eval model::  93%|█████████▎| 465/500 [00:24<00:01, 17.51it/s]
eval model::  94%|█████████▎| 468/500 [00:24<00:01, 20.20it/s]
eval model::  94%|█████████▍| 471/500 [00:24<00:01, 20.22it/s]
eval model::  95%|█████████▍| 474/500 [00:24<00:01, 19.99it/s]
eval model::  95%|█████████▌| 477/500 [00:24<00:01, 21.04it/s]
eval model::  96%|█████████▌| 480/500 [00:24<00:00, 20.42it/s]
eval model::  97%|█████████▋| 483/500 [00:24<00:00, 20.79it/s]
eval model::  97%|█████████▋| 486/500 [00:25<00:00, 19.23it/s]
eval model::  98%|█████████▊| 489/500 [00:25<00:00, 19.84it/s]
eval model::  98%|█████████▊| 492/500 [00:25<00:00, 19.65it/s]
eval model::  99%|█████████▉| 494/500 [00:25<00:00, 19.70it/s]
eval model::  99%|█████████▉| 497/500 [00:25<00:00, 21.61it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 23.45it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.42it/s]
[2024/07/27 22:18:26] ppocr INFO: cur metric, precision: 0.626733921815889, recall: 0.4785748675974964, hmean: 0.5427245427245426, fps: 45.12310625519069
[2024/07/27 22:18:26] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/27 22:18:26] ppocr INFO: best metric, hmean: 0.5427245427245426, precision: 0.626733921815889, recall: 0.4785748675974964, fps: 45.12310625519069, best_epoch: 140
[2024/07/27 22:18:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:18:35] ppocr INFO: epoch: [141/200], global_step: 423, lr: 0.001000, loss: 2.091997, loss_shrink_maps: 1.169733, loss_threshold_maps: 0.697332, loss_binary_maps: 0.227208, avg_reader_cost: 1.92406 s, avg_batch_cost: 2.21693 s, avg_samples: 12.5, ips: 5.63843 samples/s, eta: 0:23:44
[2024/07/27 22:18:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:18:43] ppocr INFO: epoch: [142/200], global_step: 426, lr: 0.001000, loss: 2.020028, loss_shrink_maps: 1.132895, loss_threshold_maps: 0.697332, loss_binary_maps: 0.221490, avg_reader_cost: 1.95655 s, avg_batch_cost: 2.28403 s, avg_samples: 12.5, ips: 5.47279 samples/s, eta: 0:23:20
[2024/07/27 22:18:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:18:52] ppocr INFO: epoch: [143/200], global_step: 429, lr: 0.001000, loss: 2.014629, loss_shrink_maps: 1.119787, loss_threshold_maps: 0.695922, loss_binary_maps: 0.219113, avg_reader_cost: 2.06504 s, avg_batch_cost: 2.30856 s, avg_samples: 12.5, ips: 5.41463 samples/s, eta: 0:22:55
[2024/07/27 22:18:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:19:00] ppocr INFO: epoch: [144/200], global_step: 430, lr: 0.001000, loss: 2.014629, loss_shrink_maps: 1.119787, loss_threshold_maps: 0.698625, loss_binary_maps: 0.219113, avg_reader_cost: 0.61506 s, avg_batch_cost: 0.72519 s, avg_samples: 4.8, ips: 6.61891 samples/s, eta: 0:22:47
[2024/07/27 22:19:01] ppocr INFO: epoch: [144/200], global_step: 432, lr: 0.001000, loss: 2.014629, loss_shrink_maps: 1.119951, loss_threshold_maps: 0.698963, loss_binary_maps: 0.219344, avg_reader_cost: 1.54169 s, avg_batch_cost: 1.68763 s, avg_samples: 7.7, ips: 4.56260 samples/s, eta: 0:22:31
[2024/07/27 22:19:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:19:10] ppocr INFO: epoch: [145/200], global_step: 435, lr: 0.001000, loss: 2.014629, loss_shrink_maps: 1.108208, loss_threshold_maps: 0.698625, loss_binary_maps: 0.218034, avg_reader_cost: 1.97033 s, avg_batch_cost: 2.25726 s, avg_samples: 12.5, ips: 5.53768 samples/s, eta: 0:22:06
[2024/07/27 22:19:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:19:19] ppocr INFO: epoch: [146/200], global_step: 438, lr: 0.001000, loss: 2.014629, loss_shrink_maps: 1.119951, loss_threshold_maps: 0.693791, loss_binary_maps: 0.219689, avg_reader_cost: 2.05332 s, avg_batch_cost: 2.29158 s, avg_samples: 12.5, ips: 5.45475 samples/s, eta: 0:21:42
[2024/07/27 22:19:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:19:27] ppocr INFO: epoch: [147/200], global_step: 440, lr: 0.001000, loss: 2.014629, loss_shrink_maps: 1.119951, loss_threshold_maps: 0.691908, loss_binary_maps: 0.219689, avg_reader_cost: 1.25057 s, avg_batch_cost: 1.46316 s, avg_samples: 9.6, ips: 6.56114 samples/s, eta: 0:21:25
[2024/07/27 22:19:28] ppocr INFO: epoch: [147/200], global_step: 441, lr: 0.001000, loss: 2.009224, loss_shrink_maps: 1.106200, loss_threshold_maps: 0.691908, loss_binary_maps: 0.218034, avg_reader_cost: 0.77734 s, avg_batch_cost: 0.83220 s, avg_samples: 2.9, ips: 3.48475 samples/s, eta: 0:21:17
[2024/07/27 22:19:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:19:37] ppocr INFO: epoch: [148/200], global_step: 444, lr: 0.001000, loss: 2.020643, loss_shrink_maps: 1.121112, loss_threshold_maps: 0.698496, loss_binary_maps: 0.219689, avg_reader_cost: 2.05334 s, avg_batch_cost: 2.30310 s, avg_samples: 12.5, ips: 5.42747 samples/s, eta: 0:20:53
[2024/07/27 22:19:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:19:46] ppocr INFO: epoch: [149/200], global_step: 447, lr: 0.001000, loss: 2.019398, loss_shrink_maps: 1.109533, loss_threshold_maps: 0.686176, loss_binary_maps: 0.218123, avg_reader_cost: 1.96977 s, avg_batch_cost: 2.32016 s, avg_samples: 12.5, ips: 5.38755 samples/s, eta: 0:20:28
[2024/07/27 22:19:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:19:55] ppocr INFO: epoch: [150/200], global_step: 450, lr: 0.001000, loss: 1.990251, loss_shrink_maps: 1.106200, loss_threshold_maps: 0.681204, loss_binary_maps: 0.217778, avg_reader_cost: 1.99860 s, avg_batch_cost: 2.35627 s, avg_samples: 12.5, ips: 5.30499 samples/s, eta: 0:20:04
[2024/07/27 22:19:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:20:03] ppocr INFO: epoch: [151/200], global_step: 453, lr: 0.001000, loss: 2.037508, loss_shrink_maps: 1.124197, loss_threshold_maps: 0.691908, loss_binary_maps: 0.220995, avg_reader_cost: 2.08931 s, avg_batch_cost: 2.32716 s, avg_samples: 12.5, ips: 5.37136 samples/s, eta: 0:19:40
[2024/07/27 22:20:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:20:12] ppocr INFO: epoch: [152/200], global_step: 456, lr: 0.001000, loss: 2.037508, loss_shrink_maps: 1.122864, loss_threshold_maps: 0.688345, loss_binary_maps: 0.220524, avg_reader_cost: 1.92636 s, avg_batch_cost: 2.24863 s, avg_samples: 12.5, ips: 5.55894 samples/s, eta: 0:19:15
[2024/07/27 22:20:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:20:21] ppocr INFO: epoch: [153/200], global_step: 459, lr: 0.001000, loss: 2.037508, loss_shrink_maps: 1.122864, loss_threshold_maps: 0.675927, loss_binary_maps: 0.221016, avg_reader_cost: 1.95283 s, avg_batch_cost: 2.26011 s, avg_samples: 12.5, ips: 5.53070 samples/s, eta: 0:18:51
[2024/07/27 22:20:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:20:28] ppocr INFO: epoch: [154/200], global_step: 460, lr: 0.001000, loss: 2.049054, loss_shrink_maps: 1.136366, loss_threshold_maps: 0.686794, loss_binary_maps: 0.223396, avg_reader_cost: 0.56766 s, avg_batch_cost: 0.67116 s, avg_samples: 4.8, ips: 7.15179 samples/s, eta: 0:18:42
[2024/07/27 22:20:30] ppocr INFO: epoch: [154/200], global_step: 462, lr: 0.001000, loss: 2.037508, loss_shrink_maps: 1.122864, loss_threshold_maps: 0.671995, loss_binary_maps: 0.221016, avg_reader_cost: 1.43373 s, avg_batch_cost: 1.57994 s, avg_samples: 7.7, ips: 4.87359 samples/s, eta: 0:18:26
[2024/07/27 22:20:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:20:38] ppocr INFO: epoch: [155/200], global_step: 465, lr: 0.001000, loss: 2.042624, loss_shrink_maps: 1.136366, loss_threshold_maps: 0.678756, loss_binary_maps: 0.223396, avg_reader_cost: 1.93189 s, avg_batch_cost: 2.23612 s, avg_samples: 12.5, ips: 5.59003 samples/s, eta: 0:18:01
[2024/07/27 22:20:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:20:47] ppocr INFO: epoch: [156/200], global_step: 468, lr: 0.001000, loss: 2.004381, loss_shrink_maps: 1.092220, loss_threshold_maps: 0.687916, loss_binary_maps: 0.215938, avg_reader_cost: 2.00737 s, avg_batch_cost: 2.32849 s, avg_samples: 12.5, ips: 5.36829 samples/s, eta: 0:17:37
[2024/07/27 22:20:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:20:55] ppocr INFO: epoch: [157/200], global_step: 470, lr: 0.001000, loss: 1.998597, loss_shrink_maps: 1.075380, loss_threshold_maps: 0.679151, loss_binary_maps: 0.212161, avg_reader_cost: 1.24648 s, avg_batch_cost: 1.42936 s, avg_samples: 9.6, ips: 6.71632 samples/s, eta: 0:17:21
[2024/07/27 22:20:56] ppocr INFO: epoch: [157/200], global_step: 471, lr: 0.001000, loss: 1.957718, loss_shrink_maps: 1.057285, loss_threshold_maps: 0.676322, loss_binary_maps: 0.208341, avg_reader_cost: 0.76021 s, avg_batch_cost: 0.81500 s, avg_samples: 2.9, ips: 3.55827 samples/s, eta: 0:17:13
[2024/07/27 22:20:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:21:05] ppocr INFO: epoch: [158/200], global_step: 474, lr: 0.001000, loss: 1.892291, loss_shrink_maps: 1.019810, loss_threshold_maps: 0.671712, loss_binary_maps: 0.200997, avg_reader_cost: 2.05023 s, avg_batch_cost: 2.30658 s, avg_samples: 12.5, ips: 5.41927 samples/s, eta: 0:16:48
[2024/07/27 22:21:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:21:14] ppocr INFO: epoch: [159/200], global_step: 477, lr: 0.001000, loss: 1.998597, loss_shrink_maps: 1.075380, loss_threshold_maps: 0.679151, loss_binary_maps: 0.212161, avg_reader_cost: 2.08102 s, avg_batch_cost: 2.34034 s, avg_samples: 12.5, ips: 5.34109 samples/s, eta: 0:16:24
[2024/07/27 22:21:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:21:23] ppocr INFO: epoch: [160/200], global_step: 480, lr: 0.001000, loss: 1.938916, loss_shrink_maps: 1.057683, loss_threshold_maps: 0.674261, loss_binary_maps: 0.208804, avg_reader_cost: 2.00280 s, avg_batch_cost: 2.23572 s, avg_samples: 12.5, ips: 5.59104 samples/s, eta: 0:16:00

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:56,  8.91it/s]
eval model::   1%|          | 4/500 [00:00<00:31, 15.98it/s]
eval model::   1%|          | 6/500 [00:00<00:30, 16.20it/s]
eval model::   2%|▏         | 9/500 [00:00<00:25, 18.92it/s]
eval model::   2%|▏         | 11/500 [00:00<00:26, 18.59it/s]
eval model::   3%|▎         | 13/500 [00:00<00:25, 18.76it/s]
eval model::   3%|▎         | 15/500 [00:00<00:26, 18.40it/s]
eval model::   4%|▎         | 18/500 [00:00<00:22, 21.68it/s]
eval model::   4%|▍         | 21/500 [00:01<00:23, 20.55it/s]
eval model::   5%|▍         | 24/500 [00:01<00:21, 22.21it/s]
eval model::   5%|▌         | 27/500 [00:01<00:21, 22.09it/s]
eval model::   6%|▌         | 30/500 [00:01<00:20, 22.42it/s]
eval model::   7%|▋         | 33/500 [00:01<00:22, 21.22it/s]
eval model::   7%|▋         | 36/500 [00:01<00:23, 19.74it/s]
eval model::   8%|▊         | 39/500 [00:02<00:25, 17.87it/s]
eval model::   8%|▊         | 42/500 [00:02<00:24, 18.78it/s]
eval model::   9%|▉         | 45/500 [00:02<00:23, 19.64it/s]
eval model::  10%|▉         | 48/500 [00:02<00:22, 19.84it/s]
eval model::  10%|█         | 51/500 [00:02<00:21, 21.00it/s]
eval model::  11%|█         | 54/500 [00:02<00:20, 21.60it/s]
eval model::  11%|█▏        | 57/500 [00:02<00:20, 21.45it/s]
eval model::  12%|█▏        | 60/500 [00:03<00:21, 20.66it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:26, 16.62it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:23, 18.69it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:20, 21.28it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:20, 20.67it/s]
eval model::  15%|█▌        | 76/500 [00:03<00:20, 21.18it/s]
eval model::  16%|█▌        | 79/500 [00:03<00:19, 21.59it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:18, 22.92it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:18, 22.21it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:19, 20.61it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:22, 17.99it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:22, 18.23it/s]
eval model::  19%|█▉        | 96/500 [00:04<00:21, 19.09it/s]
eval model::  20%|█▉        | 99/500 [00:04<00:19, 20.35it/s]
eval model::  20%|██        | 102/500 [00:05<00:20, 19.59it/s]
eval model::  21%|██        | 106/500 [00:05<00:17, 22.38it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:16, 23.03it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:16, 23.17it/s]
eval model::  23%|██▎       | 115/500 [00:05<00:16, 23.57it/s]
eval model::  24%|██▎       | 118/500 [00:05<00:16, 23.53it/s]
eval model::  24%|██▍       | 121/500 [00:05<00:17, 21.28it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:18, 20.31it/s]
eval model::  25%|██▌       | 127/500 [00:06<00:18, 20.41it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:18, 19.76it/s]
eval model::  27%|██▋       | 133/500 [00:06<00:17, 20.56it/s]
eval model::  27%|██▋       | 136/500 [00:06<00:18, 19.83it/s]
eval model::  28%|██▊       | 139/500 [00:06<00:18, 19.29it/s]
eval model::  28%|██▊       | 142/500 [00:06<00:17, 20.27it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:16, 20.91it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:19, 18.24it/s]
eval model::  30%|███       | 151/500 [00:07<00:19, 17.79it/s]
eval model::  31%|███       | 154/500 [00:07<00:17, 20.10it/s]
eval model::  31%|███▏      | 157/500 [00:07<00:15, 21.70it/s]
eval model::  32%|███▏      | 160/500 [00:08<00:20, 16.69it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:19, 16.92it/s]
eval model::  33%|███▎      | 165/500 [00:08<00:19, 17.22it/s]
eval model::  34%|███▎      | 168/500 [00:08<00:18, 18.29it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:17, 18.29it/s]
eval model::  35%|███▍      | 174/500 [00:08<00:20, 15.86it/s]
eval model::  35%|███▌      | 176/500 [00:08<00:20, 16.17it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:17, 18.37it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:18, 17.57it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:16, 19.67it/s]
eval model::  37%|███▋      | 187/500 [00:09<00:15, 19.63it/s]
eval model::  38%|███▊      | 190/500 [00:09<00:14, 20.74it/s]
eval model::  39%|███▊      | 193/500 [00:09<00:14, 21.30it/s]
eval model::  39%|███▉      | 196/500 [00:09<00:14, 21.16it/s]
eval model::  40%|███▉      | 199/500 [00:10<00:13, 22.04it/s]
eval model::  40%|████      | 202/500 [00:10<00:13, 22.30it/s]
eval model::  41%|████      | 205/500 [00:10<00:19, 14.82it/s]
eval model::  42%|████▏     | 208/500 [00:10<00:18, 15.59it/s]
eval model::  42%|████▏     | 210/500 [00:10<00:18, 15.54it/s]
eval model::  43%|████▎     | 213/500 [00:10<00:17, 16.79it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:17, 15.94it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:18, 15.71it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:15, 18.04it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:17, 15.58it/s]
eval model::  45%|████▌     | 225/500 [00:11<00:15, 18.24it/s]
eval model::  46%|████▌     | 228/500 [00:11<00:13, 20.08it/s]
eval model::  46%|████▋     | 232/500 [00:11<00:12, 22.33it/s]
eval model::  47%|████▋     | 235/500 [00:12<00:11, 22.15it/s]
eval model::  48%|████▊     | 238/500 [00:12<00:11, 23.31it/s]
eval model::  48%|████▊     | 241/500 [00:12<00:10, 23.59it/s]
eval model::  49%|████▉     | 244/500 [00:12<00:12, 20.28it/s]
eval model::  49%|████▉     | 247/500 [00:12<00:12, 21.06it/s]
eval model::  50%|█████     | 250/500 [00:12<00:13, 18.89it/s]
eval model::  51%|█████     | 253/500 [00:12<00:12, 19.93it/s]
eval model::  51%|█████     | 256/500 [00:13<00:12, 20.00it/s]
eval model::  52%|█████▏    | 259/500 [00:13<00:11, 21.17it/s]
eval model::  52%|█████▏    | 262/500 [00:13<00:11, 20.86it/s]
eval model::  53%|█████▎    | 265/500 [00:13<00:12, 19.57it/s]
eval model::  54%|█████▎    | 268/500 [00:13<00:11, 19.66it/s]
eval model::  54%|█████▍    | 270/500 [00:13<00:11, 19.28it/s]
eval model::  55%|█████▍    | 273/500 [00:13<00:10, 20.91it/s]
eval model::  55%|█████▌    | 276/500 [00:14<00:12, 18.12it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:11, 18.78it/s]
eval model::  56%|█████▋    | 282/500 [00:14<00:10, 20.15it/s]
eval model::  57%|█████▋    | 285/500 [00:14<00:16, 13.00it/s]
eval model::  58%|█████▊    | 288/500 [00:14<00:13, 15.18it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:11, 17.67it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:12, 17.02it/s]
eval model::  59%|█████▉    | 297/500 [00:15<00:12, 16.57it/s]
eval model::  60%|██████    | 300/500 [00:15<00:12, 15.94it/s]
eval model::  60%|██████    | 302/500 [00:15<00:11, 16.61it/s]
eval model::  61%|██████    | 304/500 [00:15<00:11, 17.23it/s]
eval model::  61%|██████▏   | 307/500 [00:15<00:10, 18.83it/s]
eval model::  62%|██████▏   | 310/500 [00:16<00:09, 19.58it/s]
eval model::  63%|██████▎   | 313/500 [00:16<00:09, 20.73it/s]
eval model::  63%|██████▎   | 316/500 [00:16<00:08, 21.57it/s]
eval model::  64%|██████▍   | 319/500 [00:16<00:08, 22.27it/s]
eval model::  64%|██████▍   | 322/500 [00:16<00:09, 19.37it/s]
eval model::  65%|██████▌   | 325/500 [00:16<00:08, 19.94it/s]
eval model::  66%|██████▌   | 328/500 [00:16<00:08, 19.78it/s]
eval model::  66%|██████▌   | 331/500 [00:17<00:08, 20.17it/s]
eval model::  67%|██████▋   | 334/500 [00:17<00:07, 20.84it/s]
eval model::  67%|██████▋   | 337/500 [00:17<00:07, 20.50it/s]
eval model::  68%|██████▊   | 340/500 [00:17<00:10, 15.22it/s]
eval model::  69%|██████▊   | 343/500 [00:17<00:09, 17.01it/s]
eval model::  69%|██████▉   | 346/500 [00:17<00:08, 17.98it/s]
eval model::  70%|██████▉   | 349/500 [00:18<00:07, 19.04it/s]
eval model::  70%|███████   | 352/500 [00:18<00:07, 20.05it/s]
eval model::  71%|███████   | 355/500 [00:18<00:07, 19.81it/s]
eval model::  72%|███████▏  | 358/500 [00:18<00:06, 20.68it/s]
eval model::  72%|███████▏  | 361/500 [00:18<00:07, 19.23it/s]
eval model::  73%|███████▎  | 364/500 [00:18<00:07, 18.59it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:07, 18.35it/s]
eval model::  74%|███████▍  | 369/500 [00:19<00:06, 19.56it/s]
eval model::  74%|███████▍  | 372/500 [00:19<00:06, 19.69it/s]
eval model::  75%|███████▌  | 375/500 [00:19<00:05, 21.19it/s]
eval model::  76%|███████▌  | 379/500 [00:19<00:05, 23.58it/s]
eval model::  76%|███████▋  | 382/500 [00:19<00:05, 22.35it/s]
eval model::  77%|███████▋  | 385/500 [00:19<00:04, 23.95it/s]
eval model::  78%|███████▊  | 388/500 [00:20<00:06, 16.33it/s]
eval model::  78%|███████▊  | 391/500 [00:20<00:06, 17.40it/s]
eval model::  79%|███████▉  | 394/500 [00:20<00:05, 19.06it/s]
eval model::  79%|███████▉  | 397/500 [00:20<00:05, 20.01it/s]
eval model::  80%|████████  | 400/500 [00:20<00:05, 19.64it/s]
eval model::  81%|████████  | 403/500 [00:20<00:04, 20.24it/s]
eval model::  81%|████████  | 406/500 [00:20<00:04, 22.14it/s]
eval model::  82%|████████▏ | 409/500 [00:21<00:03, 23.32it/s]
eval model::  82%|████████▏ | 412/500 [00:21<00:03, 23.83it/s]
eval model::  83%|████████▎ | 415/500 [00:21<00:03, 23.30it/s]
eval model::  84%|████████▎ | 418/500 [00:21<00:04, 20.28it/s]
eval model::  84%|████████▍ | 421/500 [00:21<00:04, 16.42it/s]
eval model::  85%|████████▍ | 424/500 [00:21<00:04, 16.39it/s]
eval model::  85%|████████▌ | 426/500 [00:22<00:04, 16.80it/s]
eval model::  86%|████████▌ | 429/500 [00:22<00:03, 19.30it/s]
eval model::  86%|████████▋ | 432/500 [00:22<00:03, 20.54it/s]
eval model::  87%|████████▋ | 435/500 [00:22<00:02, 21.97it/s]
eval model::  88%|████████▊ | 438/500 [00:22<00:02, 23.39it/s]
eval model::  88%|████████▊ | 441/500 [00:22<00:02, 21.45it/s]
eval model::  89%|████████▉ | 445/500 [00:22<00:02, 24.44it/s]
eval model::  90%|████████▉ | 448/500 [00:22<00:02, 22.09it/s]
eval model::  90%|█████████ | 451/500 [00:23<00:02, 21.40it/s]
eval model::  91%|█████████ | 454/500 [00:23<00:02, 21.41it/s]
eval model::  91%|█████████▏| 457/500 [00:23<00:02, 21.47it/s]
eval model::  92%|█████████▏| 460/500 [00:23<00:01, 21.29it/s]
eval model::  93%|█████████▎| 463/500 [00:23<00:01, 20.69it/s]
eval model::  93%|█████████▎| 466/500 [00:23<00:01, 18.90it/s]
eval model::  94%|█████████▎| 468/500 [00:23<00:01, 18.84it/s]
eval model::  94%|█████████▍| 471/500 [00:24<00:01, 19.73it/s]
eval model::  95%|█████████▍| 474/500 [00:24<00:01, 19.47it/s]
eval model::  95%|█████████▌| 477/500 [00:24<00:01, 21.50it/s]
eval model::  96%|█████████▌| 480/500 [00:24<00:00, 20.29it/s]
eval model::  97%|█████████▋| 483/500 [00:24<00:00, 20.88it/s]
eval model::  97%|█████████▋| 486/500 [00:24<00:00, 18.96it/s]
eval model::  98%|█████████▊| 489/500 [00:25<00:00, 19.88it/s]
eval model::  98%|█████████▊| 492/500 [00:25<00:00, 20.01it/s]
eval model::  99%|█████████▉| 495/500 [00:25<00:00, 20.91it/s]
eval model:: 100%|█████████▉| 498/500 [00:25<00:00, 21.97it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.58it/s]
[2024/07/27 22:21:48] ppocr INFO: cur metric, precision: 0.6211849192100538, recall: 0.4997592681752528, hmean: 0.5538954108858057, fps: 44.66914332049495
[2024/07/27 22:21:48] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/27 22:21:48] ppocr INFO: best metric, hmean: 0.5538954108858057, precision: 0.6211849192100538, recall: 0.4997592681752528, fps: 44.66914332049495, best_epoch: 160
[2024/07/27 22:21:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:21:57] ppocr INFO: epoch: [161/200], global_step: 483, lr: 0.001000, loss: 2.026045, loss_shrink_maps: 1.096957, loss_threshold_maps: 0.679151, loss_binary_maps: 0.216394, avg_reader_cost: 2.09292 s, avg_batch_cost: 2.36493 s, avg_samples: 12.5, ips: 5.28558 samples/s, eta: 0:15:36
[2024/07/27 22:21:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:22:06] ppocr INFO: epoch: [162/200], global_step: 486, lr: 0.001000, loss: 2.026045, loss_shrink_maps: 1.107234, loss_threshold_maps: 0.676682, loss_binary_maps: 0.216394, avg_reader_cost: 1.96183 s, avg_batch_cost: 2.29362 s, avg_samples: 12.5, ips: 5.44989 samples/s, eta: 0:15:11
[2024/07/27 22:22:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:22:15] ppocr INFO: epoch: [163/200], global_step: 489, lr: 0.001000, loss: 2.068678, loss_shrink_maps: 1.155963, loss_threshold_maps: 0.689893, loss_binary_maps: 0.223927, avg_reader_cost: 2.14688 s, avg_batch_cost: 2.38163 s, avg_samples: 12.5, ips: 5.24851 samples/s, eta: 0:14:47
[2024/07/27 22:22:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:22:23] ppocr INFO: epoch: [164/200], global_step: 490, lr: 0.001000, loss: 2.068678, loss_shrink_maps: 1.155963, loss_threshold_maps: 0.697520, loss_binary_maps: 0.223927, avg_reader_cost: 0.60308 s, avg_batch_cost: 0.70091 s, avg_samples: 4.8, ips: 6.84828 samples/s, eta: 0:14:39
[2024/07/27 22:22:24] ppocr INFO: epoch: [164/200], global_step: 492, lr: 0.001000, loss: 2.094341, loss_shrink_maps: 1.177125, loss_threshold_maps: 0.705811, loss_binary_maps: 0.230152, avg_reader_cost: 1.49290 s, avg_batch_cost: 1.63838 s, avg_samples: 7.7, ips: 4.69975 samples/s, eta: 0:14:23
[2024/07/27 22:22:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:22:33] ppocr INFO: epoch: [165/200], global_step: 495, lr: 0.001000, loss: 2.077588, loss_shrink_maps: 1.176212, loss_threshold_maps: 0.705811, loss_binary_maps: 0.227966, avg_reader_cost: 1.94791 s, avg_batch_cost: 2.27319 s, avg_samples: 12.5, ips: 5.49887 samples/s, eta: 0:13:59
[2024/07/27 22:22:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:22:41] ppocr INFO: epoch: [166/200], global_step: 498, lr: 0.001000, loss: 2.077588, loss_shrink_maps: 1.156793, loss_threshold_maps: 0.709362, loss_binary_maps: 0.223290, avg_reader_cost: 1.90824 s, avg_batch_cost: 2.18329 s, avg_samples: 12.5, ips: 5.72531 samples/s, eta: 0:13:35
[2024/07/27 22:22:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:22:50] ppocr INFO: epoch: [167/200], global_step: 500, lr: 0.001000, loss: 2.099170, loss_shrink_maps: 1.177125, loss_threshold_maps: 0.715999, loss_binary_maps: 0.227966, avg_reader_cost: 1.26484 s, avg_batch_cost: 1.44616 s, avg_samples: 9.6, ips: 6.63828 samples/s, eta: 0:13:18
[2024/07/27 22:22:50] ppocr INFO: epoch: [167/200], global_step: 501, lr: 0.001000, loss: 2.099170, loss_shrink_maps: 1.177125, loss_threshold_maps: 0.715999, loss_binary_maps: 0.227966, avg_reader_cost: 0.76901 s, avg_batch_cost: 0.82368 s, avg_samples: 2.9, ips: 3.52079 samples/s, eta: 0:13:10
[2024/07/27 22:22:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:22:59] ppocr INFO: epoch: [168/200], global_step: 504, lr: 0.001000, loss: 2.132762, loss_shrink_maps: 1.201308, loss_threshold_maps: 0.709362, loss_binary_maps: 0.231321, avg_reader_cost: 1.90536 s, avg_batch_cost: 2.19930 s, avg_samples: 12.5, ips: 5.68363 samples/s, eta: 0:12:46
[2024/07/27 22:22:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:23:08] ppocr INFO: epoch: [169/200], global_step: 507, lr: 0.001000, loss: 2.132762, loss_shrink_maps: 1.201308, loss_threshold_maps: 0.709362, loss_binary_maps: 0.231321, avg_reader_cost: 2.08089 s, avg_batch_cost: 2.32197 s, avg_samples: 12.5, ips: 5.38335 samples/s, eta: 0:12:22
[2024/07/27 22:23:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:23:16] ppocr INFO: epoch: [170/200], global_step: 510, lr: 0.001000, loss: 2.122355, loss_shrink_maps: 1.169995, loss_threshold_maps: 0.712078, loss_binary_maps: 0.226268, avg_reader_cost: 1.95128 s, avg_batch_cost: 2.27062 s, avg_samples: 12.5, ips: 5.50510 samples/s, eta: 0:11:58
[2024/07/27 22:23:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:23:25] ppocr INFO: epoch: [171/200], global_step: 513, lr: 0.001000, loss: 2.059783, loss_shrink_maps: 1.112161, loss_threshold_maps: 0.712078, loss_binary_maps: 0.217531, avg_reader_cost: 2.08331 s, avg_batch_cost: 2.31989 s, avg_samples: 12.5, ips: 5.38818 samples/s, eta: 0:11:34
[2024/07/27 22:23:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:23:34] ppocr INFO: epoch: [172/200], global_step: 516, lr: 0.001000, loss: 2.059783, loss_shrink_maps: 1.109411, loss_threshold_maps: 0.703526, loss_binary_maps: 0.217531, avg_reader_cost: 1.98614 s, avg_batch_cost: 2.31844 s, avg_samples: 12.5, ips: 5.39155 samples/s, eta: 0:11:10
[2024/07/27 22:23:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:23:43] ppocr INFO: epoch: [173/200], global_step: 519, lr: 0.001000, loss: 2.093375, loss_shrink_maps: 1.167740, loss_threshold_maps: 0.703526, loss_binary_maps: 0.228204, avg_reader_cost: 2.07345 s, avg_batch_cost: 2.30818 s, avg_samples: 12.5, ips: 5.41552 samples/s, eta: 0:10:46
[2024/07/27 22:23:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:23:50] ppocr INFO: epoch: [174/200], global_step: 520, lr: 0.001000, loss: 2.093375, loss_shrink_maps: 1.167740, loss_threshold_maps: 0.711872, loss_binary_maps: 0.228204, avg_reader_cost: 0.57906 s, avg_batch_cost: 0.68262 s, avg_samples: 4.8, ips: 7.03172 samples/s, eta: 0:10:37
[2024/07/27 22:23:52] ppocr INFO: epoch: [174/200], global_step: 522, lr: 0.001000, loss: 2.064622, loss_shrink_maps: 1.123928, loss_threshold_maps: 0.719744, loss_binary_maps: 0.220662, avg_reader_cost: 1.45651 s, avg_batch_cost: 1.60231 s, avg_samples: 7.7, ips: 4.80555 samples/s, eta: 0:10:21
[2024/07/27 22:23:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:24:01] ppocr INFO: epoch: [175/200], global_step: 525, lr: 0.001000, loss: 2.025248, loss_shrink_maps: 1.120012, loss_threshold_maps: 0.704031, loss_binary_maps: 0.220306, avg_reader_cost: 1.92213 s, avg_batch_cost: 2.25320 s, avg_samples: 12.5, ips: 5.54766 samples/s, eta: 0:09:57
[2024/07/27 22:24:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:24:10] ppocr INFO: epoch: [176/200], global_step: 528, lr: 0.001000, loss: 2.025248, loss_shrink_maps: 1.120012, loss_threshold_maps: 0.717097, loss_binary_maps: 0.220306, avg_reader_cost: 1.99408 s, avg_batch_cost: 2.32725 s, avg_samples: 12.5, ips: 5.37116 samples/s, eta: 0:09:33
[2024/07/27 22:24:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:24:18] ppocr INFO: epoch: [177/200], global_step: 530, lr: 0.001000, loss: 2.063033, loss_shrink_maps: 1.134035, loss_threshold_maps: 0.720370, loss_binary_maps: 0.223289, avg_reader_cost: 1.16989 s, avg_batch_cost: 1.41263 s, avg_samples: 9.6, ips: 6.79582 samples/s, eta: 0:09:17
[2024/07/27 22:24:18] ppocr INFO: epoch: [177/200], global_step: 531, lr: 0.001000, loss: 2.041609, loss_shrink_maps: 1.134035, loss_threshold_maps: 0.717097, loss_binary_maps: 0.223289, avg_reader_cost: 0.75170 s, avg_batch_cost: 0.80645 s, avg_samples: 2.9, ips: 3.59603 samples/s, eta: 0:09:09
[2024/07/27 22:24:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:24:27] ppocr INFO: epoch: [178/200], global_step: 534, lr: 0.001000, loss: 2.077015, loss_shrink_maps: 1.138540, loss_threshold_maps: 0.711412, loss_binary_maps: 0.223819, avg_reader_cost: 1.95086 s, avg_batch_cost: 2.27684 s, avg_samples: 12.5, ips: 5.49007 samples/s, eta: 0:08:45
[2024/07/27 22:24:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:24:35] ppocr INFO: epoch: [179/200], global_step: 537, lr: 0.001000, loss: 2.043035, loss_shrink_maps: 1.134035, loss_threshold_maps: 0.697942, loss_binary_maps: 0.223289, avg_reader_cost: 1.89266 s, avg_batch_cost: 2.14173 s, avg_samples: 12.5, ips: 5.83642 samples/s, eta: 0:08:21
[2024/07/27 22:24:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:24:44] ppocr INFO: epoch: [180/200], global_step: 540, lr: 0.001000, loss: 2.026674, loss_shrink_maps: 1.129997, loss_threshold_maps: 0.694686, loss_binary_maps: 0.222091, avg_reader_cost: 1.96314 s, avg_batch_cost: 2.27863 s, avg_samples: 12.5, ips: 5.48576 samples/s, eta: 0:07:57

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 2/500 [00:00<00:36, 13.73it/s]
eval model::   1%|          | 5/500 [00:00<00:24, 20.25it/s]
eval model::   2%|▏         | 8/500 [00:00<00:24, 20.21it/s]
eval model::   2%|▏         | 11/500 [00:00<00:25, 18.98it/s]
eval model::   3%|▎         | 13/500 [00:00<00:25, 18.99it/s]
eval model::   3%|▎         | 16/500 [00:00<00:23, 20.78it/s]
eval model::   4%|▍         | 19/500 [00:00<00:21, 22.09it/s]
eval model::   4%|▍         | 22/500 [00:01<00:23, 20.57it/s]
eval model::   5%|▌         | 25/500 [00:01<00:22, 21.49it/s]
eval model::   6%|▌         | 28/500 [00:01<00:22, 20.95it/s]
eval model::   6%|▌         | 31/500 [00:01<00:24, 19.15it/s]
eval model::   7%|▋         | 34/500 [00:01<00:24, 19.40it/s]
eval model::   7%|▋         | 37/500 [00:01<00:21, 21.42it/s]
eval model::   8%|▊         | 40/500 [00:02<00:25, 18.10it/s]
eval model::   8%|▊         | 42/500 [00:02<00:26, 17.45it/s]
eval model::   9%|▉         | 45/500 [00:02<00:24, 18.47it/s]
eval model::   9%|▉         | 47/500 [00:02<00:28, 16.09it/s]
eval model::  10%|█         | 50/500 [00:02<00:25, 17.93it/s]
eval model::  11%|█         | 53/500 [00:02<00:23, 19.17it/s]
eval model::  11%|█         | 56/500 [00:02<00:21, 20.87it/s]
eval model::  12%|█▏        | 59/500 [00:03<00:21, 20.15it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:25, 17.37it/s]
eval model::  13%|█▎        | 64/500 [00:03<00:26, 16.68it/s]
eval model::  14%|█▎        | 68/500 [00:03<00:21, 20.56it/s]
eval model::  14%|█▍        | 71/500 [00:03<00:19, 21.66it/s]
eval model::  15%|█▍        | 74/500 [00:03<00:19, 21.44it/s]
eval model::  15%|█▌        | 77/500 [00:03<00:20, 20.32it/s]
eval model::  16%|█▌        | 80/500 [00:04<00:18, 22.24it/s]
eval model::  17%|█▋        | 83/500 [00:04<00:18, 23.16it/s]
eval model::  17%|█▋        | 86/500 [00:04<00:19, 21.71it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:20, 19.86it/s]
eval model::  18%|█▊        | 92/500 [00:04<00:22, 17.74it/s]
eval model::  19%|█▉        | 94/500 [00:04<00:23, 17.56it/s]
eval model::  19%|█▉        | 97/500 [00:04<00:20, 19.29it/s]
eval model::  20%|██        | 100/500 [00:05<00:20, 19.26it/s]
eval model::  21%|██        | 103/500 [00:05<00:19, 20.06it/s]
eval model::  21%|██        | 106/500 [00:05<00:18, 21.65it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:18, 20.99it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:18, 20.66it/s]
eval model::  23%|██▎       | 115/500 [00:05<00:17, 21.52it/s]
eval model::  24%|██▎       | 118/500 [00:05<00:17, 22.07it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:17, 21.87it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:17, 21.79it/s]
eval model::  25%|██▌       | 127/500 [00:06<00:16, 22.59it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:17, 21.04it/s]
eval model::  27%|██▋       | 133/500 [00:06<00:18, 19.74it/s]
eval model::  27%|██▋       | 136/500 [00:06<00:17, 20.86it/s]
eval model::  28%|██▊       | 139/500 [00:06<00:16, 22.47it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:16, 21.58it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:16, 22.03it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:16, 21.14it/s]
eval model::  30%|███       | 151/500 [00:07<00:17, 19.42it/s]
eval model::  31%|███       | 155/500 [00:07<00:15, 22.30it/s]
eval model::  32%|███▏      | 158/500 [00:07<00:15, 22.40it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:19, 17.81it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:19, 17.31it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:17, 18.92it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:17, 18.71it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:18, 18.15it/s]
eval model::  35%|███▍      | 174/500 [00:08<00:19, 16.36it/s]
eval model::  35%|███▌      | 176/500 [00:08<00:19, 16.93it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:16, 19.80it/s]
eval model::  36%|███▋      | 182/500 [00:09<00:17, 18.53it/s]
eval model::  37%|███▋      | 185/500 [00:09<00:15, 20.83it/s]
eval model::  38%|███▊      | 188/500 [00:09<00:15, 19.65it/s]
eval model::  38%|███▊      | 191/500 [00:09<00:14, 21.11it/s]
eval model::  39%|███▉      | 194/500 [00:09<00:13, 22.55it/s]
eval model::  39%|███▉      | 197/500 [00:09<00:15, 19.14it/s]
eval model::  40%|████      | 200/500 [00:10<00:14, 20.13it/s]
eval model::  41%|████      | 203/500 [00:10<00:14, 20.17it/s]
eval model::  41%|████      | 206/500 [00:10<00:22, 13.33it/s]
eval model::  42%|████▏     | 208/500 [00:10<00:21, 13.52it/s]
eval model::  42%|████▏     | 210/500 [00:10<00:20, 14.48it/s]
eval model::  43%|████▎     | 213/500 [00:10<00:18, 15.77it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:19, 14.82it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:19, 14.70it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:16, 16.80it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:18, 14.76it/s]
eval model::  45%|████▌     | 225/500 [00:11<00:15, 17.80it/s]
eval model::  45%|████▌     | 227/500 [00:11<00:15, 17.47it/s]
eval model::  46%|████▌     | 231/500 [00:11<00:12, 21.62it/s]
eval model::  47%|████▋     | 234/500 [00:12<00:12, 21.41it/s]
eval model::  47%|████▋     | 237/500 [00:12<00:11, 22.42it/s]
eval model::  48%|████▊     | 240/500 [00:12<00:11, 23.09it/s]
eval model::  49%|████▊     | 243/500 [00:12<00:12, 20.31it/s]
eval model::  49%|████▉     | 246/500 [00:12<00:12, 20.98it/s]
eval model::  50%|████▉     | 249/500 [00:12<00:12, 19.76it/s]
eval model::  50%|█████     | 252/500 [00:13<00:13, 18.11it/s]
eval model::  51%|█████     | 255/500 [00:13<00:12, 19.97it/s]
eval model::  52%|█████▏    | 258/500 [00:13<00:11, 20.90it/s]
eval model::  52%|█████▏    | 261/500 [00:13<00:10, 22.31it/s]
eval model::  53%|█████▎    | 264/500 [00:13<00:11, 20.33it/s]
eval model::  53%|█████▎    | 267/500 [00:13<00:12, 19.36it/s]
eval model::  54%|█████▍    | 270/500 [00:13<00:11, 20.33it/s]
eval model::  55%|█████▍    | 273/500 [00:14<00:11, 19.43it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:12, 17.62it/s]
eval model::  55%|█████▌    | 277/500 [00:14<00:12, 17.90it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:12, 17.97it/s]
eval model::  56%|█████▋    | 282/500 [00:14<00:11, 19.18it/s]
eval model::  57%|█████▋    | 285/500 [00:14<00:16, 13.08it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:15, 14.19it/s]
eval model::  58%|█████▊    | 290/500 [00:15<00:12, 17.12it/s]
eval model::  59%|█████▊    | 293/500 [00:15<00:11, 17.96it/s]
eval model::  59%|█████▉    | 296/500 [00:15<00:13, 15.25it/s]
eval model::  60%|█████▉    | 299/500 [00:15<00:11, 17.67it/s]
eval model::  60%|██████    | 302/500 [00:15<00:10, 18.24it/s]
eval model::  61%|██████    | 305/500 [00:15<00:10, 18.93it/s]
eval model::  62%|██████▏   | 308/500 [00:16<00:09, 19.58it/s]
eval model::  62%|██████▏   | 311/500 [00:16<00:08, 21.16it/s]
eval model::  63%|██████▎   | 314/500 [00:16<00:08, 21.23it/s]
eval model::  63%|██████▎   | 317/500 [00:16<00:08, 20.35it/s]
eval model::  64%|██████▍   | 320/500 [00:16<00:08, 21.09it/s]
eval model::  65%|██████▍   | 323/500 [00:16<00:09, 18.60it/s]
eval model::  65%|██████▌   | 326/500 [00:16<00:09, 18.99it/s]
eval model::  66%|██████▌   | 329/500 [00:17<00:08, 19.80it/s]
eval model::  66%|██████▋   | 332/500 [00:17<00:08, 20.02it/s]
eval model::  67%|██████▋   | 335/500 [00:17<00:07, 20.78it/s]
eval model::  68%|██████▊   | 338/500 [00:17<00:08, 18.59it/s]
eval model::  68%|██████▊   | 340/500 [00:17<00:10, 15.52it/s]
eval model::  69%|██████▊   | 343/500 [00:17<00:09, 16.75it/s]
eval model::  69%|██████▉   | 346/500 [00:18<00:08, 18.62it/s]
eval model::  70%|██████▉   | 349/500 [00:18<00:07, 20.95it/s]
eval model::  70%|███████   | 352/500 [00:18<00:06, 22.59it/s]
eval model::  71%|███████   | 355/500 [00:18<00:06, 21.95it/s]
eval model::  72%|███████▏  | 358/500 [00:18<00:06, 21.31it/s]
eval model::  72%|███████▏  | 361/500 [00:18<00:07, 18.76it/s]
eval model::  73%|███████▎  | 364/500 [00:18<00:07, 17.81it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:07, 17.93it/s]
eval model::  74%|███████▍  | 369/500 [00:19<00:06, 19.06it/s]
eval model::  74%|███████▍  | 371/500 [00:19<00:06, 18.73it/s]
eval model::  75%|███████▍  | 373/500 [00:19<00:06, 18.79it/s]
eval model::  75%|███████▌  | 375/500 [00:19<00:06, 18.85it/s]
eval model::  76%|███████▌  | 379/500 [00:19<00:05, 22.56it/s]
eval model::  76%|███████▋  | 382/500 [00:19<00:05, 21.86it/s]
eval model::  77%|███████▋  | 385/500 [00:19<00:04, 23.75it/s]
eval model::  78%|███████▊  | 388/500 [00:20<00:07, 14.95it/s]
eval model::  78%|███████▊  | 391/500 [00:20<00:06, 16.66it/s]
eval model::  79%|███████▉  | 394/500 [00:20<00:05, 17.76it/s]
eval model::  79%|███████▉  | 397/500 [00:20<00:05, 20.17it/s]
eval model::  80%|████████  | 400/500 [00:20<00:05, 19.70it/s]
eval model::  81%|████████  | 403/500 [00:20<00:04, 20.04it/s]
eval model::  81%|████████  | 406/500 [00:21<00:04, 20.36it/s]
eval model::  82%|████████▏ | 409/500 [00:21<00:04, 21.08it/s]
eval model::  82%|████████▏ | 412/500 [00:21<00:04, 21.83it/s]
eval model::  83%|████████▎ | 415/500 [00:21<00:04, 20.50it/s]
eval model::  84%|████████▎ | 418/500 [00:21<00:04, 17.61it/s]
eval model::  84%|████████▍ | 420/500 [00:21<00:05, 15.42it/s]
eval model::  85%|████████▍ | 423/500 [00:22<00:04, 17.58it/s]
eval model::  85%|████████▌ | 425/500 [00:22<00:04, 17.22it/s]
eval model::  86%|████████▌ | 429/500 [00:22<00:03, 21.43it/s]
eval model::  86%|████████▋ | 432/500 [00:22<00:02, 22.95it/s]
eval model::  87%|████████▋ | 435/500 [00:22<00:02, 23.20it/s]
eval model::  88%|████████▊ | 438/500 [00:22<00:02, 23.60it/s]
eval model::  88%|████████▊ | 441/500 [00:22<00:02, 21.37it/s]
eval model::  89%|████████▉ | 444/500 [00:22<00:02, 22.33it/s]
eval model::  89%|████████▉ | 447/500 [00:23<00:02, 21.67it/s]
eval model::  90%|█████████ | 450/500 [00:23<00:02, 19.44it/s]
eval model::  91%|█████████ | 453/500 [00:23<00:02, 21.05it/s]
eval model::  91%|█████████ | 456/500 [00:23<00:02, 20.11it/s]
eval model::  92%|█████████▏| 459/500 [00:23<00:02, 19.60it/s]
eval model::  92%|█████████▏| 462/500 [00:23<00:02, 17.30it/s]
eval model::  93%|█████████▎| 464/500 [00:24<00:02, 17.73it/s]
eval model::  93%|█████████▎| 466/500 [00:24<00:02, 16.81it/s]
eval model::  94%|█████████▍| 469/500 [00:24<00:01, 18.27it/s]
eval model::  94%|█████████▍| 472/500 [00:24<00:01, 20.34it/s]
eval model::  95%|█████████▌| 475/500 [00:24<00:01, 19.01it/s]
eval model::  96%|█████████▌| 478/500 [00:24<00:01, 20.64it/s]
eval model::  96%|█████████▌| 481/500 [00:24<00:00, 20.58it/s]
eval model::  97%|█████████▋| 484/500 [00:25<00:00, 19.94it/s]
eval model::  97%|█████████▋| 487/500 [00:25<00:00, 20.21it/s]
eval model::  98%|█████████▊| 490/500 [00:25<00:00, 21.09it/s]
eval model::  99%|█████████▊| 493/500 [00:25<00:00, 21.26it/s]
eval model::  99%|█████████▉| 496/500 [00:25<00:00, 21.35it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 24.55it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.43it/s]
[2024/07/27 22:25:10] ppocr INFO: cur metric, precision: 0.5274551214361141, recall: 0.4809821858449687, hmean: 0.5031478217073785, fps: 45.19470696923418
[2024/07/27 22:25:10] ppocr INFO: best metric, hmean: 0.5538954108858057, precision: 0.6211849192100538, recall: 0.4997592681752528, fps: 44.66914332049495, best_epoch: 160
[2024/07/27 22:25:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:25:18] ppocr INFO: epoch: [181/200], global_step: 543, lr: 0.001000, loss: 2.008845, loss_shrink_maps: 1.114730, loss_threshold_maps: 0.690093, loss_binary_maps: 0.219198, avg_reader_cost: 2.09595 s, avg_batch_cost: 2.34531 s, avg_samples: 12.5, ips: 5.32979 samples/s, eta: 0:07:33
[2024/07/27 22:25:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:25:27] ppocr INFO: epoch: [182/200], global_step: 546, lr: 0.001000, loss: 2.020774, loss_shrink_maps: 1.132464, loss_threshold_maps: 0.698757, loss_binary_maps: 0.222621, avg_reader_cost: 2.09485 s, avg_batch_cost: 2.32606 s, avg_samples: 12.5, ips: 5.37389 samples/s, eta: 0:07:09
[2024/07/27 22:25:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:25:36] ppocr INFO: epoch: [183/200], global_step: 549, lr: 0.001000, loss: 2.043035, loss_shrink_maps: 1.132464, loss_threshold_maps: 0.698757, loss_binary_maps: 0.222719, avg_reader_cost: 2.06089 s, avg_batch_cost: 2.35818 s, avg_samples: 12.5, ips: 5.30070 samples/s, eta: 0:06:45
[2024/07/27 22:25:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:25:44] ppocr INFO: epoch: [184/200], global_step: 550, lr: 0.001000, loss: 2.020774, loss_shrink_maps: 1.130535, loss_threshold_maps: 0.695501, loss_binary_maps: 0.222534, avg_reader_cost: 0.59239 s, avg_batch_cost: 0.69066 s, avg_samples: 4.8, ips: 6.94992 samples/s, eta: 0:06:37
[2024/07/27 22:25:45] ppocr INFO: epoch: [184/200], global_step: 552, lr: 0.001000, loss: 2.019041, loss_shrink_maps: 1.126233, loss_threshold_maps: 0.698757, loss_binary_maps: 0.221347, avg_reader_cost: 1.47251 s, avg_batch_cost: 1.61833 s, avg_samples: 7.7, ips: 4.75800 samples/s, eta: 0:06:21
[2024/07/27 22:25:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:25:54] ppocr INFO: epoch: [185/200], global_step: 555, lr: 0.001000, loss: 2.030306, loss_shrink_maps: 1.130535, loss_threshold_maps: 0.704585, loss_binary_maps: 0.222534, avg_reader_cost: 1.94302 s, avg_batch_cost: 2.27417 s, avg_samples: 12.5, ips: 5.49651 samples/s, eta: 0:05:57
[2024/07/27 22:25:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:26:03] ppocr INFO: epoch: [186/200], global_step: 558, lr: 0.001000, loss: 2.004916, loss_shrink_maps: 1.119634, loss_threshold_maps: 0.704585, loss_binary_maps: 0.219458, avg_reader_cost: 2.04005 s, avg_batch_cost: 2.27776 s, avg_samples: 12.5, ips: 5.48785 samples/s, eta: 0:05:33
[2024/07/27 22:26:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:26:11] ppocr INFO: epoch: [187/200], global_step: 560, lr: 0.001000, loss: 1.984022, loss_shrink_maps: 1.087133, loss_threshold_maps: 0.680735, loss_binary_maps: 0.213094, avg_reader_cost: 1.30853 s, avg_batch_cost: 1.48869 s, avg_samples: 9.6, ips: 6.44863 samples/s, eta: 0:05:17
[2024/07/27 22:26:11] ppocr INFO: epoch: [187/200], global_step: 561, lr: 0.001000, loss: 1.938969, loss_shrink_maps: 1.050831, loss_threshold_maps: 0.680735, loss_binary_maps: 0.206616, avg_reader_cost: 0.78994 s, avg_batch_cost: 0.84485 s, avg_samples: 2.9, ips: 3.43258 samples/s, eta: 0:05:10
[2024/07/27 22:26:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:26:20] ppocr INFO: epoch: [188/200], global_step: 564, lr: 0.001000, loss: 1.978387, loss_shrink_maps: 1.107205, loss_threshold_maps: 0.680735, loss_binary_maps: 0.217414, avg_reader_cost: 2.07852 s, avg_batch_cost: 2.30984 s, avg_samples: 12.5, ips: 5.41164 samples/s, eta: 0:04:46
[2024/07/27 22:26:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:26:29] ppocr INFO: epoch: [189/200], global_step: 567, lr: 0.001000, loss: 1.899540, loss_shrink_maps: 1.045873, loss_threshold_maps: 0.670293, loss_binary_maps: 0.207009, avg_reader_cost: 2.10936 s, avg_batch_cost: 2.37833 s, avg_samples: 12.5, ips: 5.25578 samples/s, eta: 0:04:22
[2024/07/27 22:26:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:26:38] ppocr INFO: epoch: [190/200], global_step: 570, lr: 0.001000, loss: 1.840078, loss_shrink_maps: 0.987809, loss_threshold_maps: 0.662224, loss_binary_maps: 0.195373, avg_reader_cost: 1.95736 s, avg_batch_cost: 2.19507 s, avg_samples: 12.5, ips: 5.69457 samples/s, eta: 0:03:58
[2024/07/27 22:26:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:26:47] ppocr INFO: epoch: [191/200], global_step: 573, lr: 0.001000, loss: 1.840078, loss_shrink_maps: 0.989315, loss_threshold_maps: 0.656896, loss_binary_maps: 0.195621, avg_reader_cost: 1.96730 s, avg_batch_cost: 2.29948 s, avg_samples: 12.5, ips: 5.43601 samples/s, eta: 0:03:34
[2024/07/27 22:26:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:26:56] ppocr INFO: epoch: [192/200], global_step: 576, lr: 0.001000, loss: 1.847817, loss_shrink_maps: 0.998742, loss_threshold_maps: 0.654539, loss_binary_maps: 0.196654, avg_reader_cost: 1.95646 s, avg_batch_cost: 2.27081 s, avg_samples: 12.5, ips: 5.50466 samples/s, eta: 0:03:10
[2024/07/27 22:26:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:27:04] ppocr INFO: epoch: [193/200], global_step: 579, lr: 0.001000, loss: 1.853898, loss_shrink_maps: 1.014466, loss_threshold_maps: 0.648581, loss_binary_maps: 0.199154, avg_reader_cost: 2.04867 s, avg_batch_cost: 2.29260 s, avg_samples: 12.5, ips: 5.45232 samples/s, eta: 0:02:46
[2024/07/27 22:27:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:27:12] ppocr INFO: epoch: [194/200], global_step: 580, lr: 0.001000, loss: 1.853898, loss_shrink_maps: 1.014466, loss_threshold_maps: 0.642842, loss_binary_maps: 0.199148, avg_reader_cost: 0.58383 s, avg_batch_cost: 0.70260 s, avg_samples: 4.8, ips: 6.83173 samples/s, eta: 0:02:38
[2024/07/27 22:27:13] ppocr INFO: epoch: [194/200], global_step: 582, lr: 0.001000, loss: 1.853898, loss_shrink_maps: 1.011716, loss_threshold_maps: 0.648581, loss_binary_maps: 0.198874, avg_reader_cost: 1.49720 s, avg_batch_cost: 1.64370 s, avg_samples: 7.7, ips: 4.68454 samples/s, eta: 0:02:22
[2024/07/27 22:27:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:27:22] ppocr INFO: epoch: [195/200], global_step: 585, lr: 0.001000, loss: 1.853898, loss_shrink_maps: 1.011716, loss_threshold_maps: 0.637831, loss_binary_maps: 0.198874, avg_reader_cost: 1.98771 s, avg_batch_cost: 2.28213 s, avg_samples: 12.5, ips: 5.47733 samples/s, eta: 0:01:59
[2024/07/27 22:27:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:27:31] ppocr INFO: epoch: [196/200], global_step: 588, lr: 0.001000, loss: 1.874290, loss_shrink_maps: 1.021738, loss_threshold_maps: 0.642842, loss_binary_maps: 0.201374, avg_reader_cost: 1.98950 s, avg_batch_cost: 2.22595 s, avg_samples: 12.5, ips: 5.61558 samples/s, eta: 0:01:35
[2024/07/27 22:27:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:27:39] ppocr INFO: epoch: [197/200], global_step: 590, lr: 0.001000, loss: 1.871492, loss_shrink_maps: 1.011716, loss_threshold_maps: 0.637831, loss_binary_maps: 0.198874, avg_reader_cost: 1.22666 s, avg_batch_cost: 1.49422 s, avg_samples: 9.6, ips: 6.42477 samples/s, eta: 0:01:19
[2024/07/27 22:27:39] ppocr INFO: epoch: [197/200], global_step: 591, lr: 0.001000, loss: 1.890849, loss_shrink_maps: 1.011716, loss_threshold_maps: 0.637831, loss_binary_maps: 0.199103, avg_reader_cost: 0.79278 s, avg_batch_cost: 0.84755 s, avg_samples: 2.9, ips: 3.42162 samples/s, eta: 0:01:11
[2024/07/27 22:27:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:27:48] ppocr INFO: epoch: [198/200], global_step: 594, lr: 0.001000, loss: 1.903474, loss_shrink_maps: 1.045835, loss_threshold_maps: 0.643664, loss_binary_maps: 0.206490, avg_reader_cost: 2.04018 s, avg_batch_cost: 2.27059 s, avg_samples: 12.5, ips: 5.50518 samples/s, eta: 0:00:47
[2024/07/27 22:27:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:27:58] ppocr INFO: epoch: [199/200], global_step: 597, lr: 0.001000, loss: 1.896935, loss_shrink_maps: 1.039654, loss_threshold_maps: 0.641583, loss_binary_maps: 0.204891, avg_reader_cost: 2.16844 s, avg_batch_cost: 2.43775 s, avg_samples: 12.5, ips: 5.12768 samples/s, eta: 0:00:23
[2024/07/27 22:27:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:28:07] ppocr INFO: epoch: [200/200], global_step: 600, lr: 0.001000, loss: 1.898665, loss_shrink_maps: 1.039654, loss_threshold_maps: 0.654584, loss_binary_maps: 0.204891, avg_reader_cost: 2.02174 s, avg_batch_cost: 2.26389 s, avg_samples: 12.5, ips: 5.52146 samples/s, eta: 0:00:00

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 2/500 [00:00<00:38, 12.99it/s]
eval model::   1%|          | 5/500 [00:00<00:26, 18.82it/s]
eval model::   2%|▏         | 8/500 [00:00<00:24, 19.79it/s]
eval model::   2%|▏         | 11/500 [00:00<00:26, 18.71it/s]
eval model::   3%|▎         | 13/500 [00:00<00:26, 18.65it/s]
eval model::   3%|▎         | 16/500 [00:00<00:24, 19.58it/s]
eval model::   4%|▍         | 19/500 [00:00<00:24, 19.92it/s]
eval model::   4%|▍         | 22/500 [00:01<00:22, 21.06it/s]
eval model::   5%|▌         | 25/500 [00:01<00:24, 19.57it/s]
eval model::   6%|▌         | 28/500 [00:01<00:23, 20.25it/s]
eval model::   6%|▌         | 31/500 [00:01<00:23, 20.20it/s]
eval model::   7%|▋         | 34/500 [00:01<00:23, 20.02it/s]
eval model::   7%|▋         | 37/500 [00:01<00:21, 21.56it/s]
eval model::   8%|▊         | 40/500 [00:02<00:25, 18.28it/s]
eval model::   8%|▊         | 42/500 [00:02<00:25, 17.99it/s]
eval model::   9%|▉         | 45/500 [00:02<00:23, 19.27it/s]
eval model::   9%|▉         | 47/500 [00:02<00:24, 18.78it/s]
eval model::  10%|█         | 50/500 [00:02<00:21, 20.89it/s]
eval model::  11%|█         | 53/500 [00:02<00:23, 19.14it/s]
eval model::  11%|█         | 56/500 [00:02<00:22, 19.72it/s]
eval model::  12%|█▏        | 59/500 [00:03<00:24, 18.26it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:26, 16.65it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:27, 15.71it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:23, 18.10it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:21, 20.25it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:20, 20.86it/s]
eval model::  15%|█▌        | 75/500 [00:03<00:21, 20.23it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:21, 20.09it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:19, 22.05it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:19, 21.64it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:20, 20.27it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:22, 18.56it/s]
eval model::  18%|█▊        | 92/500 [00:04<00:22, 18.46it/s]
eval model::  19%|█▉        | 94/500 [00:04<00:22, 18.23it/s]
eval model::  19%|█▉        | 97/500 [00:04<00:20, 20.11it/s]
eval model::  20%|██        | 100/500 [00:05<00:19, 20.85it/s]
eval model::  21%|██        | 103/500 [00:05<00:18, 22.02it/s]
eval model::  21%|██        | 106/500 [00:05<00:16, 23.36it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:18, 21.49it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:19, 19.97it/s]
eval model::  23%|██▎       | 115/500 [00:05<00:19, 20.08it/s]
eval model::  24%|██▎       | 118/500 [00:05<00:18, 20.33it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:20, 18.87it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:20, 18.12it/s]
eval model::  25%|██▌       | 127/500 [00:06<00:19, 19.00it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:20, 18.34it/s]
eval model::  27%|██▋       | 133/500 [00:06<00:18, 19.83it/s]
eval model::  27%|██▋       | 136/500 [00:06<00:17, 20.76it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:18, 19.17it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:18, 19.58it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:18, 18.72it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:20, 17.34it/s]
eval model::  30%|███       | 150/500 [00:07<00:18, 18.68it/s]
eval model::  30%|███       | 152/500 [00:07<00:20, 16.84it/s]
eval model::  31%|███       | 155/500 [00:07<00:18, 18.77it/s]
eval model::  32%|███▏      | 158/500 [00:08<00:18, 18.97it/s]
eval model::  32%|███▏      | 160/500 [00:08<00:21, 16.17it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:19, 17.46it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:17, 19.02it/s]
eval model::  34%|███▎      | 168/500 [00:08<00:17, 18.68it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:18, 17.67it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:23, 14.08it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:22, 14.39it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:19, 16.46it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:20, 15.34it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:17, 17.69it/s]
eval model::  37%|███▋      | 187/500 [00:09<00:16, 19.16it/s]
eval model::  38%|███▊      | 190/500 [00:10<00:15, 20.31it/s]
eval model::  39%|███▊      | 193/500 [00:10<00:14, 21.43it/s]
eval model::  39%|███▉      | 196/500 [00:10<00:16, 18.10it/s]
eval model::  40%|███▉      | 199/500 [00:10<00:15, 19.18it/s]
eval model::  40%|████      | 202/500 [00:10<00:14, 21.09it/s]
eval model::  41%|████      | 205/500 [00:11<00:22, 13.33it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:20, 14.42it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:20, 14.42it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.89it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:19, 14.80it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:19, 14.50it/s]
eval model::  44%|████▍     | 219/500 [00:11<00:18, 15.17it/s]
eval model::  44%|████▍     | 221/500 [00:12<00:19, 14.54it/s]
eval model::  45%|████▍     | 224/500 [00:12<00:15, 17.47it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:15, 17.90it/s]
eval model::  46%|████▌     | 229/500 [00:12<00:13, 20.77it/s]
eval model::  46%|████▋     | 232/500 [00:12<00:11, 22.95it/s]
eval model::  47%|████▋     | 235/500 [00:12<00:11, 22.21it/s]
eval model::  48%|████▊     | 238/500 [00:12<00:11, 22.87it/s]
eval model::  48%|████▊     | 241/500 [00:12<00:11, 21.98it/s]
eval model::  49%|████▉     | 244/500 [00:13<00:12, 20.44it/s]
eval model::  49%|████▉     | 247/500 [00:13<00:12, 21.06it/s]
eval model::  50%|█████     | 250/500 [00:13<00:12, 19.73it/s]
eval model::  51%|█████     | 253/500 [00:13<00:12, 20.42it/s]
eval model::  51%|█████     | 256/500 [00:13<00:11, 21.34it/s]
eval model::  52%|█████▏    | 259/500 [00:13<00:10, 22.65it/s]
eval model::  52%|█████▏    | 262/500 [00:13<00:10, 22.35it/s]
eval model::  53%|█████▎    | 265/500 [00:14<00:11, 19.84it/s]
eval model::  54%|█████▎    | 268/500 [00:14<00:11, 19.40it/s]
eval model::  54%|█████▍    | 270/500 [00:14<00:11, 19.20it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:12, 17.61it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:13, 16.89it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:11, 19.10it/s]
eval model::  56%|█████▌    | 281/500 [00:14<00:10, 20.56it/s]
eval model::  57%|█████▋    | 284/500 [00:15<00:10, 21.17it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:17, 12.42it/s]
eval model::  58%|█████▊    | 290/500 [00:15<00:14, 14.59it/s]
eval model::  58%|█████▊    | 292/500 [00:15<00:13, 15.30it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:12, 16.14it/s]
eval model::  59%|█████▉    | 296/500 [00:15<00:13, 15.12it/s]
eval model::  60%|█████▉    | 299/500 [00:16<00:11, 17.64it/s]
eval model::  60%|██████    | 301/500 [00:16<00:12, 15.95it/s]
eval model::  61%|██████    | 304/500 [00:16<00:11, 16.52it/s]
eval model::  61%|██████▏   | 307/500 [00:16<00:10, 18.36it/s]
eval model::  62%|██████▏   | 310/500 [00:16<00:09, 20.39it/s]
eval model::  63%|██████▎   | 313/500 [00:16<00:08, 21.89it/s]
eval model::  63%|██████▎   | 316/500 [00:16<00:08, 20.78it/s]
eval model::  64%|██████▍   | 319/500 [00:17<00:08, 21.71it/s]
eval model::  64%|██████▍   | 322/500 [00:17<00:08, 20.95it/s]
eval model::  65%|██████▌   | 325/500 [00:17<00:07, 22.75it/s]
eval model::  66%|██████▌   | 328/500 [00:17<00:08, 20.97it/s]
eval model::  66%|██████▌   | 331/500 [00:17<00:08, 21.00it/s]
eval model::  67%|██████▋   | 334/500 [00:17<00:07, 22.86it/s]
eval model::  67%|██████▋   | 337/500 [00:17<00:08, 19.46it/s]
eval model::  68%|██████▊   | 340/500 [00:18<00:10, 15.17it/s]
eval model::  68%|██████▊   | 342/500 [00:18<00:09, 15.97it/s]
eval model::  69%|██████▉   | 345/500 [00:18<00:08, 17.88it/s]
eval model::  70%|██████▉   | 348/500 [00:18<00:07, 19.78it/s]
eval model::  70%|███████   | 351/500 [00:18<00:06, 21.30it/s]
eval model::  71%|███████   | 354/500 [00:18<00:06, 22.91it/s]
eval model::  71%|███████▏  | 357/500 [00:18<00:06, 22.10it/s]
eval model::  72%|███████▏  | 360/500 [00:19<00:06, 22.12it/s]
eval model::  73%|███████▎  | 363/500 [00:19<00:06, 20.98it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:07, 18.13it/s]
eval model::  74%|███████▍  | 369/500 [00:19<00:06, 20.19it/s]
eval model::  74%|███████▍  | 372/500 [00:19<00:06, 19.53it/s]
eval model::  75%|███████▌  | 375/500 [00:19<00:05, 21.26it/s]
eval model::  76%|███████▌  | 378/500 [00:20<00:05, 22.50it/s]
eval model::  76%|███████▌  | 381/500 [00:20<00:05, 21.18it/s]
eval model::  77%|███████▋  | 384/500 [00:20<00:05, 22.86it/s]
eval model::  77%|███████▋  | 387/500 [00:20<00:07, 15.82it/s]
eval model::  78%|███████▊  | 390/500 [00:20<00:06, 18.01it/s]
eval model::  79%|███████▊  | 393/500 [00:20<00:05, 19.27it/s]
eval model::  79%|███████▉  | 396/500 [00:20<00:05, 20.65it/s]
eval model::  80%|███████▉  | 399/500 [00:21<00:04, 21.94it/s]
eval model::  80%|████████  | 402/500 [00:21<00:04, 19.81it/s]
eval model::  81%|████████  | 405/500 [00:21<00:04, 21.69it/s]
eval model::  82%|████████▏ | 408/500 [00:21<00:04, 22.80it/s]
eval model::  82%|████████▏ | 411/500 [00:21<00:03, 24.41it/s]
eval model::  83%|████████▎ | 414/500 [00:21<00:04, 19.91it/s]
eval model::  83%|████████▎ | 417/500 [00:21<00:04, 19.36it/s]
eval model::  84%|████████▍ | 420/500 [00:22<00:04, 16.32it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:04, 16.28it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:04, 15.29it/s]
eval model::  85%|████████▌ | 427/500 [00:22<00:04, 17.32it/s]
eval model::  86%|████████▌ | 430/500 [00:22<00:03, 19.33it/s]
eval model::  87%|████████▋ | 433/500 [00:22<00:03, 20.41it/s]
eval model::  87%|████████▋ | 436/500 [00:23<00:03, 21.26it/s]
eval model::  88%|████████▊ | 439/500 [00:23<00:02, 23.17it/s]
eval model::  88%|████████▊ | 442/500 [00:23<00:02, 21.18it/s]
eval model::  89%|████████▉ | 446/500 [00:23<00:02, 23.25it/s]
eval model::  90%|████████▉ | 449/500 [00:23<00:02, 21.90it/s]
eval model::  90%|█████████ | 452/500 [00:23<00:02, 23.51it/s]
eval model::  91%|█████████ | 455/500 [00:23<00:01, 22.89it/s]
eval model::  92%|█████████▏| 458/500 [00:23<00:01, 21.86it/s]
eval model::  92%|█████████▏| 461/500 [00:24<00:01, 21.28it/s]
eval model::  93%|█████████▎| 464/500 [00:24<00:01, 18.34it/s]
eval model::  93%|█████████▎| 466/500 [00:24<00:01, 17.10it/s]
eval model::  94%|█████████▎| 468/500 [00:24<00:01, 17.38it/s]
eval model::  94%|█████████▍| 471/500 [00:24<00:01, 19.58it/s]
eval model::  95%|█████████▍| 474/500 [00:24<00:01, 19.32it/s]
eval model::  95%|█████████▌| 476/500 [00:24<00:01, 19.21it/s]
eval model::  96%|█████████▌| 479/500 [00:25<00:00, 21.51it/s]
eval model::  96%|█████████▋| 482/500 [00:25<00:00, 20.65it/s]
eval model::  97%|█████████▋| 485/500 [00:25<00:00, 21.22it/s]
eval model::  98%|█████████▊| 488/500 [00:25<00:00, 20.61it/s]
eval model::  98%|█████████▊| 491/500 [00:25<00:00, 20.67it/s]
eval model::  99%|█████████▉| 494/500 [00:25<00:00, 21.29it/s]
eval model::  99%|█████████▉| 497/500 [00:25<00:00, 22.26it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 22.37it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 19.19it/s]
[2024/07/27 22:28:33] ppocr INFO: cur metric, precision: 0.64, recall: 0.523832450649976, hmean: 0.5761186126555468, fps: 44.45321715372161
[2024/07/27 22:28:33] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/27 22:28:33] ppocr INFO: best metric, hmean: 0.5761186126555468, precision: 0.64, recall: 0.523832450649976, fps: 44.45321715372161, best_epoch: 200
[2024/07/27 22:28:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:28:33] ppocr INFO: best metric, hmean: 0.5761186126555468, precision: 0.64, recall: 0.523832450649976, fps: 44.45321715372161, best_epoch: 200
I0727 22:28:35.282444 33267 tcp_store.cc:289] receive shutdown event and so quit from MasterDaemon run loop
[2024/07/27 22:42:58] ppocr INFO: Architecture : 
[2024/07/27 22:42:58] ppocr INFO:     Backbone : 
[2024/07/27 22:42:58] ppocr INFO:         model_name : large
[2024/07/27 22:42:58] ppocr INFO:         name : MobileNetV3
[2024/07/27 22:42:58] ppocr INFO:         scale : 0.5
[2024/07/27 22:42:58] ppocr INFO:     Head : 
[2024/07/27 22:42:58] ppocr INFO:         k : 50
[2024/07/27 22:42:58] ppocr INFO:         name : DBHead
[2024/07/27 22:42:58] ppocr INFO:     Neck : 
[2024/07/27 22:42:58] ppocr INFO:         name : DBFPN
[2024/07/27 22:42:58] ppocr INFO:         out_channels : 256
[2024/07/27 22:42:58] ppocr INFO:     Transform : None
[2024/07/27 22:42:58] ppocr INFO:     algorithm : DB
[2024/07/27 22:42:58] ppocr INFO:     model_type : det
[2024/07/27 22:42:58] ppocr INFO: Eval : 
[2024/07/27 22:42:58] ppocr INFO:     dataset : 
[2024/07/27 22:42:58] ppocr INFO:         data_dir : /datasets/icdar2015/text_localization/
[2024/07/27 22:42:58] ppocr INFO:         label_file_list : ['/datasets/icdar2015/text_localization/test_icdar2015_label.txt']
[2024/07/27 22:42:58] ppocr INFO:         name : SimpleDataSet
[2024/07/27 22:42:58] ppocr INFO:         transforms : 
[2024/07/27 22:42:58] ppocr INFO:             DecodeImage : 
[2024/07/27 22:42:58] ppocr INFO:                 channel_first : False
[2024/07/27 22:42:58] ppocr INFO:                 img_mode : BGR
[2024/07/27 22:42:58] ppocr INFO:             DetLabelEncode : None
[2024/07/27 22:42:58] ppocr INFO:             DetResizeForTest : 
[2024/07/27 22:42:58] ppocr INFO:                 image_shape : [736, 1280]
[2024/07/27 22:42:58] ppocr INFO:             NormalizeImage : 
[2024/07/27 22:42:58] ppocr INFO:                 mean : [0.485, 0.456, 0.406]
[2024/07/27 22:42:58] ppocr INFO:                 order : hwc
[2024/07/27 22:42:58] ppocr INFO:                 scale : 1./255.
[2024/07/27 22:42:58] ppocr INFO:                 std : [0.229, 0.224, 0.225]
[2024/07/27 22:42:58] ppocr INFO:             ToCHWImage : None
[2024/07/27 22:42:58] ppocr INFO:             KeepKeys : 
[2024/07/27 22:42:58] ppocr INFO:                 keep_keys : ['image', 'shape', 'polys', 'ignore_tags']
[2024/07/27 22:42:58] ppocr INFO:     loader : 
[2024/07/27 22:42:58] ppocr INFO:         batch_size_per_card : 1
[2024/07/27 22:42:58] ppocr INFO:         drop_last : False
[2024/07/27 22:42:58] ppocr INFO:         num_workers : 0
[2024/07/27 22:42:58] ppocr INFO:         shuffle : False
[2024/07/27 22:42:58] ppocr INFO:         use_shared_memory : True
[2024/07/27 22:42:58] ppocr INFO: Global : 
[2024/07/27 22:42:58] ppocr INFO:     cal_metric_during_train : False
[2024/07/27 22:42:58] ppocr INFO:     checkpoints : None
[2024/07/27 22:42:58] ppocr INFO:     distributed : True
[2024/07/27 22:42:58] ppocr INFO:     epoch_num : 200
[2024/07/27 22:42:58] ppocr INFO:     eval_batch_step : [0, 60]
[2024/07/27 22:42:58] ppocr INFO:     infer_img : doc/imgs_en/img_10.jpg
[2024/07/27 22:42:58] ppocr INFO:     log_smooth_window : 20
[2024/07/27 22:42:58] ppocr INFO:     pretrained_model : ./pretrain_models/MobileNetV3_large_x0_5_pretrained
[2024/07/27 22:42:58] ppocr INFO:     print_batch_step : 10
[2024/07/27 22:42:58] ppocr INFO:     save_epoch_step : 1200
[2024/07/27 22:42:58] ppocr INFO:     save_inference_dir : None
[2024/07/27 22:42:58] ppocr INFO:     save_model_dir : ./output/db_mv3/
[2024/07/27 22:42:58] ppocr INFO:     save_res_path : ./output/det_db/predicts_db.txt
[2024/07/27 22:42:58] ppocr INFO:     use_gpu : True
[2024/07/27 22:42:58] ppocr INFO:     use_visualdl : False
[2024/07/27 22:42:58] ppocr INFO:     use_xpu : False
[2024/07/27 22:42:58] ppocr INFO: Loss : 
[2024/07/27 22:42:58] ppocr INFO:     alpha : 5
[2024/07/27 22:42:58] ppocr INFO:     balance_loss : True
[2024/07/27 22:42:58] ppocr INFO:     beta : 10
[2024/07/27 22:42:58] ppocr INFO:     main_loss_type : DiceLoss
[2024/07/27 22:42:58] ppocr INFO:     name : DBLoss
[2024/07/27 22:42:58] ppocr INFO:     ohem_ratio : 3
[2024/07/27 22:42:58] ppocr INFO: Metric : 
[2024/07/27 22:42:58] ppocr INFO:     main_indicator : hmean
[2024/07/27 22:42:58] ppocr INFO:     name : DetMetric
[2024/07/27 22:42:58] ppocr INFO: Optimizer : 
[2024/07/27 22:42:58] ppocr INFO:     beta1 : 0.9
[2024/07/27 22:42:58] ppocr INFO:     beta2 : 0.999
[2024/07/27 22:42:58] ppocr INFO:     lr : 
[2024/07/27 22:42:58] ppocr INFO:         learning_rate : 0.001
[2024/07/27 22:42:58] ppocr INFO:     name : Adam
[2024/07/27 22:42:58] ppocr INFO:     regularizer : 
[2024/07/27 22:42:58] ppocr INFO:         factor : 0
[2024/07/27 22:42:58] ppocr INFO:         name : L2
[2024/07/27 22:42:58] ppocr INFO: PostProcess : 
[2024/07/27 22:42:58] ppocr INFO:     box_thresh : 0.6
[2024/07/27 22:42:58] ppocr INFO:     max_candidates : 1000
[2024/07/27 22:42:58] ppocr INFO:     name : DBPostProcess
[2024/07/27 22:42:58] ppocr INFO:     thresh : 0.3
[2024/07/27 22:42:58] ppocr INFO:     unclip_ratio : 1.5
[2024/07/27 22:42:58] ppocr INFO: Train : 
[2024/07/27 22:42:58] ppocr INFO:     dataset : 
[2024/07/27 22:42:58] ppocr INFO:         data_dir : /datasets/icdar2015/text_localization/
[2024/07/27 22:42:58] ppocr INFO:         label_file_list : ['/datasets/icdar2015/text_localization/train_icdar2015_label.txt']
[2024/07/27 22:42:58] ppocr INFO:         name : SimpleDataSet
[2024/07/27 22:42:58] ppocr INFO:         ratio_list : [1.0]
[2024/07/27 22:42:58] ppocr INFO:         transforms : 
[2024/07/27 22:42:58] ppocr INFO:             DecodeImage : 
[2024/07/27 22:42:58] ppocr INFO:                 channel_first : False
[2024/07/27 22:42:58] ppocr INFO:                 img_mode : BGR
[2024/07/27 22:42:58] ppocr INFO:             DetLabelEncode : None
[2024/07/27 22:42:58] ppocr INFO:             IaaAugment : 
[2024/07/27 22:42:58] ppocr INFO:                 augmenter_args : 
[2024/07/27 22:42:58] ppocr INFO:                     args : 
[2024/07/27 22:42:58] ppocr INFO:                         p : 0.5
[2024/07/27 22:42:58] ppocr INFO:                     type : Fliplr
[2024/07/27 22:42:58] ppocr INFO:                     args : 
[2024/07/27 22:42:58] ppocr INFO:                         rotate : [-10, 10]
[2024/07/27 22:42:58] ppocr INFO:                     type : Affine
[2024/07/27 22:42:58] ppocr INFO:                     args : 
[2024/07/27 22:42:58] ppocr INFO:                         size : [0.5, 3]
[2024/07/27 22:42:58] ppocr INFO:                     type : Resize
[2024/07/27 22:42:58] ppocr INFO:             EastRandomCropData : 
[2024/07/27 22:42:58] ppocr INFO:                 keep_ratio : True
[2024/07/27 22:42:58] ppocr INFO:                 max_tries : 50
[2024/07/27 22:42:58] ppocr INFO:                 size : [640, 640]
[2024/07/27 22:42:58] ppocr INFO:             MakeBorderMap : 
[2024/07/27 22:42:58] ppocr INFO:                 shrink_ratio : 0.4
[2024/07/27 22:42:58] ppocr INFO:                 thresh_max : 0.7
[2024/07/27 22:42:58] ppocr INFO:                 thresh_min : 0.3
[2024/07/27 22:42:58] ppocr INFO:             MakeShrinkMap : 
[2024/07/27 22:42:58] ppocr INFO:                 min_text_size : 8
[2024/07/27 22:42:58] ppocr INFO:                 shrink_ratio : 0.4
[2024/07/27 22:42:58] ppocr INFO:             NormalizeImage : 
[2024/07/27 22:42:58] ppocr INFO:                 mean : [0.485, 0.456, 0.406]
[2024/07/27 22:42:58] ppocr INFO:                 order : hwc
[2024/07/27 22:42:58] ppocr INFO:                 scale : 1./255.
[2024/07/27 22:42:58] ppocr INFO:                 std : [0.229, 0.224, 0.225]
[2024/07/27 22:42:58] ppocr INFO:             ToCHWImage : None
[2024/07/27 22:42:58] ppocr INFO:             KeepKeys : 
[2024/07/27 22:42:58] ppocr INFO:                 keep_keys : ['image', 'threshold_map', 'threshold_mask', 'shrink_map', 'shrink_mask']
[2024/07/27 22:42:58] ppocr INFO:     loader : 
[2024/07/27 22:42:58] ppocr INFO:         batch_size_per_card : 48
[2024/07/27 22:42:58] ppocr INFO:         drop_last : False
[2024/07/27 22:42:58] ppocr INFO:         num_workers : 8
[2024/07/27 22:42:58] ppocr INFO:         shuffle : True
[2024/07/27 22:42:58] ppocr INFO:         use_shared_memory : True
[2024/07/27 22:42:58] ppocr INFO: profiler_options : None
[2024/07/27 22:42:58] ppocr INFO: train with paddle 2.5.2 and device Place(gpu:0)
======================= Modified FLAGS detected =======================
FLAGS(name='FLAGS_cudnn_batchnorm_spatial_persistent', current_value=True, default_value=False)
FLAGS(name='FLAGS_selected_gpus', current_value='0', default_value='')
=======================================================================
I0727 22:42:58.989707 113003 tcp_utils.cc:181] The server starts to listen on IP_ANY:49759
I0727 22:42:58.989928 113003 tcp_utils.cc:130] Successfully connected to 127.0.0.1:49759
I0727 22:43:02.121116 113003 process_group_nccl.cc:120] ProcessGroupNCCL pg_timeout_ 1800000
[2024/07/27 22:43:02] ppocr INFO: Initialize indexs of datasets:['/datasets/icdar2015/text_localization/train_icdar2015_label.txt']
[2024/07/27 22:43:02] ppocr INFO: Initialize indexs of datasets:['/datasets/icdar2015/text_localization/test_icdar2015_label.txt']
W0727 22:43:02.131742 113003 gpu_resources.cc:119] Please NOTE: device: 0, GPU Compute Capability: 90.2, Driver API Version: 50724.2, Runtime API Version: 50724.2
[2024/07/27 22:43:03] ppocr INFO: load pretrain successful from ./pretrain_models/MobileNetV3_large_x0_5_pretrained
[2024/07/27 22:43:03] ppocr INFO: train dataloader has 3 iters
[2024/07/27 22:43:03] ppocr INFO: valid dataloader has 500 iters
[2024/07/27 22:43:03] ppocr INFO: During the training process, after the 0th iteration, an evaluation is run every 60 iterations
[2024/07/27 22:43:25] ppocr INFO: epoch: [1/200], global_step: 3, lr: 0.001000, loss: 9.214807, loss_shrink_maps: 4.916750, loss_threshold_maps: 3.360262, loss_binary_maps: 0.986084, avg_reader_cost: 5.91051 s, avg_batch_cost: 6.47016 s, avg_samples: 12.5, ips: 1.93195 samples/s, eta: 3:34:35
[2024/07/27 22:43:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:43:35] ppocr INFO: epoch: [2/200], global_step: 6, lr: 0.001000, loss: 8.570575, loss_shrink_maps: 4.882092, loss_threshold_maps: 2.684278, loss_binary_maps: 0.980060, avg_reader_cost: 2.19937 s, avg_batch_cost: 2.45303 s, avg_samples: 12.5, ips: 5.09574 samples/s, eta: 2:27:13
[2024/07/27 22:43:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:43:44] ppocr INFO: epoch: [3/200], global_step: 9, lr: 0.001000, loss: 7.533838, loss_shrink_maps: 4.869375, loss_threshold_maps: 1.728939, loss_binary_maps: 0.976358, avg_reader_cost: 2.21259 s, avg_batch_cost: 2.46653 s, avg_samples: 12.5, ips: 5.06784 samples/s, eta: 2:04:39
[2024/07/27 22:43:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:43:52] ppocr INFO: epoch: [4/200], global_step: 10, lr: 0.001000, loss: 7.373862, loss_shrink_maps: 4.863960, loss_threshold_maps: 1.554715, loss_binary_maps: 0.975603, avg_reader_cost: 0.65914 s, avg_batch_cost: 0.76651 s, avg_samples: 4.8, ips: 6.26217 samples/s, eta: 1:59:32
[2024/07/27 22:43:54] ppocr INFO: epoch: [4/200], global_step: 12, lr: 0.001000, loss: 7.168330, loss_shrink_maps: 4.846024, loss_threshold_maps: 1.328768, loss_binary_maps: 0.973122, avg_reader_cost: 1.62417 s, avg_batch_cost: 1.76965 s, avg_samples: 7.7, ips: 4.35114 samples/s, eta: 1:53:43
[2024/07/27 22:43:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:44:03] ppocr INFO: epoch: [5/200], global_step: 15, lr: 0.001000, loss: 7.008501, loss_shrink_maps: 4.828668, loss_threshold_maps: 1.210941, loss_binary_maps: 0.968892, avg_reader_cost: 2.16547 s, avg_batch_cost: 2.42070 s, avg_samples: 12.5, ips: 5.16380 samples/s, eta: 1:46:15
[2024/07/27 22:44:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:44:13] ppocr INFO: epoch: [6/200], global_step: 18, lr: 0.001000, loss: 6.914212, loss_shrink_maps: 4.804575, loss_threshold_maps: 1.175695, loss_binary_maps: 0.960891, avg_reader_cost: 2.20976 s, avg_batch_cost: 2.44414 s, avg_samples: 12.5, ips: 5.11427 samples/s, eta: 1:41:15
[2024/07/27 22:44:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:44:22] ppocr INFO: epoch: [7/200], global_step: 20, lr: 0.001000, loss: 6.899466, loss_shrink_maps: 4.789934, loss_threshold_maps: 1.159795, loss_binary_maps: 0.957565, avg_reader_cost: 1.42358 s, avg_batch_cost: 1.61871 s, avg_samples: 9.6, ips: 5.93064 samples/s, eta: 1:38:38
[2024/07/27 22:44:22] ppocr INFO: epoch: [7/200], global_step: 21, lr: 0.001000, loss: 6.893832, loss_shrink_maps: 4.782106, loss_threshold_maps: 1.156187, loss_binary_maps: 0.954628, avg_reader_cost: 0.85498 s, avg_batch_cost: 0.90957 s, avg_samples: 2.9, ips: 3.18834 samples/s, eta: 1:37:57
[2024/07/27 22:44:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:44:32] ppocr INFO: epoch: [8/200], global_step: 24, lr: 0.001000, loss: 6.845388, loss_shrink_maps: 4.729246, loss_threshold_maps: 1.149984, loss_binary_maps: 0.944536, avg_reader_cost: 2.24741 s, avg_batch_cost: 2.48039 s, avg_samples: 12.5, ips: 5.03953 samples/s, eta: 1:35:11
[2024/07/27 22:44:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:44:41] ppocr INFO: epoch: [9/200], global_step: 27, lr: 0.001000, loss: 6.694258, loss_shrink_maps: 4.660166, loss_threshold_maps: 1.138932, loss_binary_maps: 0.908647, avg_reader_cost: 2.22664 s, avg_batch_cost: 2.46920 s, avg_samples: 12.5, ips: 5.06236 samples/s, eta: 1:32:54
[2024/07/27 22:44:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:44:51] ppocr INFO: epoch: [10/200], global_step: 30, lr: 0.001000, loss: 6.531146, loss_shrink_maps: 4.529896, loss_threshold_maps: 1.125738, loss_binary_maps: 0.865667, avg_reader_cost: 2.26021 s, avg_batch_cost: 2.48888 s, avg_samples: 12.5, ips: 5.02235 samples/s, eta: 1:31:03
[2024/07/27 22:44:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:45:01] ppocr INFO: epoch: [11/200], global_step: 33, lr: 0.001000, loss: 6.322057, loss_shrink_maps: 4.430686, loss_threshold_maps: 1.048806, loss_binary_maps: 0.843624, avg_reader_cost: 2.21925 s, avg_batch_cost: 2.47654 s, avg_samples: 12.5, ips: 5.04737 samples/s, eta: 1:29:26
[2024/07/27 22:45:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:45:10] ppocr INFO: epoch: [12/200], global_step: 36, lr: 0.001000, loss: 6.145428, loss_shrink_maps: 4.311808, loss_threshold_maps: 1.027968, loss_binary_maps: 0.814468, avg_reader_cost: 2.23134 s, avg_batch_cost: 2.47325 s, avg_samples: 12.5, ips: 5.05409 samples/s, eta: 1:28:00
[2024/07/27 22:45:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:45:20] ppocr INFO: epoch: [13/200], global_step: 39, lr: 0.001000, loss: 6.056415, loss_shrink_maps: 4.239466, loss_threshold_maps: 1.003157, loss_binary_maps: 0.804386, avg_reader_cost: 2.21343 s, avg_batch_cost: 2.53628 s, avg_samples: 12.5, ips: 4.92848 samples/s, eta: 1:26:53
[2024/07/27 22:45:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:45:28] ppocr INFO: epoch: [14/200], global_step: 40, lr: 0.001000, loss: 6.046594, loss_shrink_maps: 4.228755, loss_threshold_maps: 1.001732, loss_binary_maps: 0.799174, avg_reader_cost: 0.66909 s, avg_batch_cost: 0.75137 s, avg_samples: 4.8, ips: 6.38836 samples/s, eta: 1:26:19
[2024/07/27 22:45:29] ppocr INFO: epoch: [14/200], global_step: 42, lr: 0.001000, loss: 5.909098, loss_shrink_maps: 4.161334, loss_threshold_maps: 0.991109, loss_binary_maps: 0.784112, avg_reader_cost: 1.59409 s, avg_batch_cost: 1.73946 s, avg_samples: 7.7, ips: 4.42665 samples/s, eta: 1:25:46
[2024/07/27 22:45:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:45:39] ppocr INFO: epoch: [15/200], global_step: 45, lr: 0.001000, loss: 5.858473, loss_shrink_maps: 4.120656, loss_threshold_maps: 0.956674, loss_binary_maps: 0.777182, avg_reader_cost: 2.23659 s, avg_batch_cost: 2.46398 s, avg_samples: 12.5, ips: 5.07309 samples/s, eta: 1:24:41
[2024/07/27 22:45:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:45:49] ppocr INFO: epoch: [16/200], global_step: 48, lr: 0.001000, loss: 5.770984, loss_shrink_maps: 4.018530, loss_threshold_maps: 0.946972, loss_binary_maps: 0.772211, avg_reader_cost: 2.26151 s, avg_batch_cost: 2.48939 s, avg_samples: 12.5, ips: 5.02131 samples/s, eta: 1:23:44
[2024/07/27 22:45:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:45:57] ppocr INFO: epoch: [17/200], global_step: 50, lr: 0.001000, loss: 5.704740, loss_shrink_maps: 3.992442, loss_threshold_maps: 0.943107, loss_binary_maps: 0.770535, avg_reader_cost: 1.39153 s, avg_batch_cost: 1.56482 s, avg_samples: 9.6, ips: 6.13489 samples/s, eta: 1:22:57
[2024/07/27 22:45:58] ppocr INFO: epoch: [17/200], global_step: 51, lr: 0.001000, loss: 5.664546, loss_shrink_maps: 3.985991, loss_threshold_maps: 0.935127, loss_binary_maps: 0.769916, avg_reader_cost: 0.82804 s, avg_batch_cost: 0.88298 s, avg_samples: 2.9, ips: 3.28432 samples/s, eta: 1:22:46
[2024/07/27 22:45:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:46:07] ppocr INFO: epoch: [18/200], global_step: 54, lr: 0.001000, loss: 5.645924, loss_shrink_maps: 3.967980, loss_threshold_maps: 0.927544, loss_binary_maps: 0.765515, avg_reader_cost: 2.13611 s, avg_batch_cost: 2.41966 s, avg_samples: 12.5, ips: 5.16602 samples/s, eta: 1:21:49
[2024/07/27 22:46:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:46:17] ppocr INFO: epoch: [19/200], global_step: 57, lr: 0.001000, loss: 5.603149, loss_shrink_maps: 3.930323, loss_threshold_maps: 0.923530, loss_binary_maps: 0.756731, avg_reader_cost: 2.24925 s, avg_batch_cost: 2.49127 s, avg_samples: 12.5, ips: 5.01752 samples/s, eta: 1:21:02
[2024/07/27 22:46:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:46:26] ppocr INFO: epoch: [20/200], global_step: 60, lr: 0.001000, loss: 5.505049, loss_shrink_maps: 3.870460, loss_threshold_maps: 0.910711, loss_binary_maps: 0.742010, avg_reader_cost: 2.23889 s, avg_batch_cost: 2.48992 s, avg_samples: 12.5, ips: 5.02025 samples/s, eta: 1:20:18

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:54,  9.13it/s]
eval model::   1%|          | 3/500 [00:00<00:35, 13.92it/s]
eval model::   1%|          | 6/500 [00:00<00:25, 19.36it/s]
eval model::   2%|▏         | 10/500 [00:00<00:20, 23.87it/s]
eval model::   3%|▎         | 13/500 [00:00<00:21, 22.36it/s]
eval model::   3%|▎         | 16/500 [00:00<00:20, 23.88it/s]
eval model::   4%|▍         | 19/500 [00:00<00:19, 24.62it/s]
eval model::   4%|▍         | 22/500 [00:00<00:18, 25.25it/s]
eval model::   5%|▌         | 25/500 [00:01<00:19, 23.96it/s]
eval model::   6%|▌         | 28/500 [00:01<00:19, 24.46it/s]
eval model::   6%|▌         | 31/500 [00:01<00:20, 22.89it/s]
eval model::   7%|▋         | 34/500 [00:01<00:19, 23.83it/s]
eval model::   8%|▊         | 38/500 [00:01<00:17, 25.90it/s]
eval model::   8%|▊         | 41/500 [00:01<00:18, 24.68it/s]
eval model::   9%|▉         | 44/500 [00:01<00:19, 23.56it/s]
eval model::   9%|▉         | 47/500 [00:02<00:20, 21.82it/s]
eval model::  10%|█         | 50/500 [00:02<00:20, 22.39it/s]
eval model::  11%|█         | 53/500 [00:02<00:20, 21.66it/s]
eval model::  11%|█         | 56/500 [00:02<00:20, 21.34it/s]
eval model::  12%|█▏        | 59/500 [00:02<00:21, 20.57it/s]
eval model::  12%|█▏        | 62/500 [00:02<00:23, 18.99it/s]
eval model::  13%|█▎        | 64/500 [00:02<00:22, 18.98it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:22, 19.17it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:21, 20.50it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:19, 21.82it/s]
eval model::  15%|█▌        | 75/500 [00:03<00:21, 19.79it/s]
eval model::  16%|█▌        | 78/500 [00:03<00:22, 19.07it/s]
eval model::  16%|█▌        | 80/500 [00:03<00:22, 18.55it/s]
eval model::  16%|█▋        | 82/500 [00:03<00:23, 18.09it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:26, 15.60it/s]
eval model::  17%|█▋        | 86/500 [00:04<00:27, 15.31it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:25, 16.27it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:25, 16.06it/s]
eval model::  18%|█▊        | 92/500 [00:04<00:24, 16.88it/s]
eval model::  19%|█▉        | 94/500 [00:04<00:25, 15.87it/s]
eval model::  19%|█▉        | 96/500 [00:04<00:26, 15.51it/s]
eval model::  20%|█▉        | 98/500 [00:04<00:24, 16.18it/s]
eval model::  20%|██        | 100/500 [00:05<00:24, 16.00it/s]
eval model::  20%|██        | 102/500 [00:05<00:24, 16.27it/s]
eval model::  21%|██        | 104/500 [00:05<00:23, 17.05it/s]
eval model::  21%|██▏       | 107/500 [00:05<00:23, 17.06it/s]
eval model::  22%|██▏       | 110/500 [00:05<00:22, 17.71it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:22, 17.62it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:21, 17.89it/s]
eval model::  23%|██▎       | 116/500 [00:05<00:21, 17.75it/s]
eval model::  24%|██▎       | 118/500 [00:06<00:21, 17.56it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:23, 16.08it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:20, 18.73it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:20, 18.60it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:18, 20.06it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:19, 18.45it/s]
eval model::  27%|██▋       | 134/500 [00:06<00:17, 20.34it/s]
eval model::  27%|██▋       | 137/500 [00:06<00:16, 21.72it/s]
eval model::  28%|██▊       | 140/500 [00:07<00:16, 21.54it/s]
eval model::  29%|██▊       | 143/500 [00:07<00:15, 22.60it/s]
eval model::  29%|██▉       | 146/500 [00:07<00:17, 20.75it/s]
eval model::  30%|██▉       | 149/500 [00:07<00:16, 20.70it/s]
eval model::  30%|███       | 152/500 [00:07<00:19, 17.83it/s]
eval model::  31%|███       | 155/500 [00:07<00:18, 18.61it/s]
eval model::  32%|███▏      | 158/500 [00:08<00:18, 18.69it/s]
eval model::  32%|███▏      | 160/500 [00:08<00:17, 18.94it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:17, 18.86it/s]
eval model::  33%|███▎      | 165/500 [00:08<00:16, 19.76it/s]
eval model::  34%|███▎      | 168/500 [00:08<00:16, 19.95it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:16, 20.19it/s]
eval model::  35%|███▍      | 174/500 [00:08<00:17, 18.45it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:17, 18.56it/s]
eval model::  36%|███▌      | 178/500 [00:09<00:17, 18.82it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:20, 15.77it/s]
eval model::  36%|███▋      | 182/500 [00:09<00:20, 15.73it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:19, 16.54it/s]
eval model::  37%|███▋      | 187/500 [00:09<00:16, 19.11it/s]
eval model::  38%|███▊      | 190/500 [00:09<00:15, 19.85it/s]
eval model::  39%|███▊      | 193/500 [00:09<00:14, 20.67it/s]
eval model::  39%|███▉      | 196/500 [00:10<00:18, 16.40it/s]
eval model::  40%|███▉      | 199/500 [00:10<00:16, 18.23it/s]
eval model::  40%|████      | 201/500 [00:10<00:16, 18.23it/s]
eval model::  41%|████      | 204/500 [00:10<00:15, 19.66it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:20, 14.03it/s]
eval model::  42%|████▏     | 209/500 [00:11<00:20, 14.35it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:19, 14.99it/s]
eval model::  43%|████▎     | 214/500 [00:11<00:16, 17.08it/s]
eval model::  43%|████▎     | 216/500 [00:11<00:17, 16.12it/s]
eval model::  44%|████▎     | 218/500 [00:11<00:18, 15.17it/s]
eval model::  44%|████▍     | 221/500 [00:11<00:16, 17.39it/s]
eval model::  45%|████▍     | 224/500 [00:11<00:13, 19.95it/s]
eval model::  45%|████▌     | 227/500 [00:11<00:13, 20.18it/s]
eval model::  46%|████▌     | 231/500 [00:12<00:11, 22.80it/s]
eval model::  47%|████▋     | 234/500 [00:12<00:11, 22.18it/s]
eval model::  47%|████▋     | 237/500 [00:12<00:12, 21.91it/s]
eval model::  48%|████▊     | 240/500 [00:12<00:11, 22.69it/s]
eval model::  49%|████▊     | 243/500 [00:12<00:12, 20.07it/s]
eval model::  49%|████▉     | 246/500 [00:12<00:13, 18.32it/s]
eval model::  50%|████▉     | 249/500 [00:12<00:12, 19.67it/s]
eval model::  50%|█████     | 252/500 [00:13<00:11, 20.84it/s]
eval model::  51%|█████     | 255/500 [00:13<00:12, 20.27it/s]
eval model::  52%|█████▏    | 258/500 [00:13<00:11, 21.85it/s]
eval model::  52%|█████▏    | 261/500 [00:13<00:11, 20.49it/s]
eval model::  53%|█████▎    | 264/500 [00:13<00:12, 19.52it/s]
eval model::  53%|█████▎    | 267/500 [00:13<00:11, 20.11it/s]
eval model::  54%|█████▍    | 270/500 [00:13<00:10, 21.00it/s]
eval model::  55%|█████▍    | 273/500 [00:14<00:12, 18.72it/s]
eval model::  55%|█████▌    | 276/500 [00:14<00:11, 19.35it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:10, 20.69it/s]
eval model::  56%|█████▋    | 282/500 [00:14<00:09, 21.84it/s]
eval model::  57%|█████▋    | 285/500 [00:14<00:14, 14.50it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:14, 14.93it/s]
eval model::  58%|█████▊    | 290/500 [00:15<00:12, 16.84it/s]
eval model::  59%|█████▊    | 293/500 [00:15<00:11, 18.55it/s]
eval model::  59%|█████▉    | 296/500 [00:15<00:11, 18.22it/s]
eval model::  60%|█████▉    | 299/500 [00:15<00:10, 20.09it/s]
eval model::  60%|██████    | 302/500 [00:15<00:11, 17.83it/s]
eval model::  61%|██████    | 305/500 [00:15<00:10, 19.28it/s]
eval model::  62%|██████▏   | 308/500 [00:16<00:09, 19.20it/s]
eval model::  62%|██████▏   | 311/500 [00:16<00:10, 17.81it/s]
eval model::  63%|██████▎   | 315/500 [00:16<00:09, 20.32it/s]
eval model::  64%|██████▎   | 318/500 [00:16<00:08, 21.53it/s]
eval model::  64%|██████▍   | 321/500 [00:16<00:08, 22.23it/s]
eval model::  65%|██████▍   | 324/500 [00:16<00:08, 19.89it/s]
eval model::  65%|██████▌   | 327/500 [00:17<00:08, 19.59it/s]
eval model::  66%|██████▌   | 330/500 [00:17<00:08, 19.86it/s]
eval model::  67%|██████▋   | 333/500 [00:17<00:08, 19.47it/s]
eval model::  67%|██████▋   | 335/500 [00:17<00:08, 19.39it/s]
eval model::  67%|██████▋   | 337/500 [00:17<00:08, 19.08it/s]
eval model::  68%|██████▊   | 340/500 [00:17<00:09, 17.12it/s]
eval model::  69%|██████▊   | 343/500 [00:17<00:07, 19.83it/s]
eval model::  69%|██████▉   | 346/500 [00:18<00:07, 20.30it/s]
eval model::  70%|██████▉   | 349/500 [00:18<00:06, 22.00it/s]
eval model::  70%|███████   | 352/500 [00:18<00:07, 20.80it/s]
eval model::  71%|███████   | 355/500 [00:18<00:07, 19.68it/s]
eval model::  72%|███████▏  | 358/500 [00:18<00:07, 20.20it/s]
eval model::  72%|███████▏  | 361/500 [00:18<00:07, 18.86it/s]
eval model::  73%|███████▎  | 364/500 [00:18<00:07, 17.28it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:07, 17.31it/s]
eval model::  74%|███████▍  | 369/500 [00:19<00:07, 18.31it/s]
eval model::  74%|███████▍  | 372/500 [00:19<00:06, 20.02it/s]
eval model::  75%|███████▌  | 375/500 [00:19<00:05, 21.36it/s]
eval model::  76%|███████▌  | 378/500 [00:19<00:05, 21.54it/s]
eval model::  76%|███████▌  | 381/500 [00:19<00:05, 20.79it/s]
eval model::  77%|███████▋  | 384/500 [00:19<00:06, 18.79it/s]
eval model::  77%|███████▋  | 386/500 [00:20<00:07, 14.93it/s]
eval model::  78%|███████▊  | 389/500 [00:20<00:06, 17.36it/s]
eval model::  78%|███████▊  | 392/500 [00:20<00:05, 18.23it/s]
eval model::  79%|███████▉  | 395/500 [00:20<00:05, 19.73it/s]
eval model::  80%|███████▉  | 399/500 [00:20<00:04, 21.91it/s]
eval model::  80%|████████  | 402/500 [00:20<00:04, 20.00it/s]
eval model::  81%|████████  | 405/500 [00:21<00:05, 17.53it/s]
eval model::  81%|████████▏ | 407/500 [00:21<00:05, 17.84it/s]
eval model::  82%|████████▏ | 409/500 [00:21<00:05, 18.04it/s]
eval model::  82%|████████▏ | 412/500 [00:21<00:04, 19.68it/s]
eval model::  83%|████████▎ | 415/500 [00:21<00:04, 19.37it/s]
eval model::  83%|████████▎ | 417/500 [00:21<00:04, 19.03it/s]
eval model::  84%|████████▍ | 419/500 [00:21<00:04, 17.90it/s]
eval model::  84%|████████▍ | 421/500 [00:22<00:05, 14.97it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:04, 16.60it/s]
eval model::  85%|████████▌ | 426/500 [00:22<00:04, 16.54it/s]
eval model::  86%|████████▌ | 429/500 [00:22<00:03, 19.29it/s]
eval model::  86%|████████▋ | 432/500 [00:22<00:03, 20.97it/s]
eval model::  87%|████████▋ | 435/500 [00:22<00:02, 21.87it/s]
eval model::  88%|████████▊ | 438/500 [00:22<00:02, 21.21it/s]
eval model::  88%|████████▊ | 441/500 [00:23<00:02, 20.47it/s]
eval model::  89%|████████▉ | 444/500 [00:23<00:03, 18.01it/s]
eval model::  89%|████████▉ | 446/500 [00:23<00:02, 18.30it/s]
eval model::  90%|████████▉ | 448/500 [00:23<00:02, 18.11it/s]
eval model::  90%|█████████ | 450/500 [00:23<00:03, 16.41it/s]
eval model::  91%|█████████ | 453/500 [00:23<00:02, 18.82it/s]
eval model::  91%|█████████ | 455/500 [00:23<00:02, 18.72it/s]
eval model::  92%|█████████▏| 458/500 [00:23<00:02, 20.40it/s]
eval model::  92%|█████████▏| 461/500 [00:24<00:02, 19.05it/s]
eval model::  93%|█████████▎| 463/500 [00:24<00:02, 18.11it/s]
eval model::  93%|█████████▎| 465/500 [00:24<00:02, 15.52it/s]
eval model::  93%|█████████▎| 467/500 [00:24<00:02, 15.86it/s]
eval model::  94%|█████████▍| 470/500 [00:24<00:01, 17.98it/s]
eval model::  95%|█████████▍| 473/500 [00:24<00:01, 19.78it/s]
eval model::  95%|█████████▌| 476/500 [00:24<00:01, 21.12it/s]
eval model::  96%|█████████▌| 479/500 [00:25<00:01, 20.38it/s]
eval model::  96%|█████████▋| 482/500 [00:25<00:00, 20.98it/s]
eval model::  97%|█████████▋| 485/500 [00:25<00:00, 20.12it/s]
eval model::  98%|█████████▊| 488/500 [00:25<00:00, 20.43it/s]
eval model::  98%|█████████▊| 491/500 [00:25<00:00, 20.99it/s]
eval model::  99%|█████████▉| 494/500 [00:25<00:00, 20.93it/s]
eval model:: 100%|█████████▉| 498/500 [00:25<00:00, 23.85it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.24it/s]
[2024/07/27 22:46:52] ppocr INFO: cur metric, precision: 0.24829931972789115, recall: 0.10544053923928744, hmean: 0.1480229807367354, fps: 43.48616482293093
[2024/07/27 22:46:52] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/27 22:46:52] ppocr INFO: best metric, hmean: 0.1480229807367354, precision: 0.24829931972789115, recall: 0.10544053923928744, fps: 43.48616482293093, best_epoch: 20
[2024/07/27 22:46:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:46:59] ppocr INFO: epoch: [21/200], global_step: 63, lr: 0.001000, loss: 5.505049, loss_shrink_maps: 3.839820, loss_threshold_maps: 0.907937, loss_binary_maps: 0.734553, avg_reader_cost: 1.52471 s, avg_batch_cost: 1.75283 s, avg_samples: 12.5, ips: 7.13133 samples/s, eta: 1:18:32
[2024/07/27 22:47:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:47:06] ppocr INFO: epoch: [22/200], global_step: 66, lr: 0.001000, loss: 5.377532, loss_shrink_maps: 3.783771, loss_threshold_maps: 0.895779, loss_binary_maps: 0.722096, avg_reader_cost: 1.48309 s, avg_batch_cost: 1.71845 s, avg_samples: 12.5, ips: 7.27401 samples/s, eta: 1:16:52
[2024/07/27 22:47:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:47:13] ppocr INFO: epoch: [23/200], global_step: 69, lr: 0.001000, loss: 5.345214, loss_shrink_maps: 3.742182, loss_threshold_maps: 0.890608, loss_binary_maps: 0.715718, avg_reader_cost: 1.55623 s, avg_batch_cost: 1.78387 s, avg_samples: 12.5, ips: 7.00724 samples/s, eta: 1:15:24
[2024/07/27 22:47:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:47:19] ppocr INFO: epoch: [24/200], global_step: 70, lr: 0.001000, loss: 5.337322, loss_shrink_maps: 3.716169, loss_threshold_maps: 0.884578, loss_binary_maps: 0.711641, avg_reader_cost: 0.41462 s, avg_batch_cost: 0.51374 s, avg_samples: 4.8, ips: 9.34331 samples/s, eta: 1:14:50
[2024/07/27 22:47:21] ppocr INFO: epoch: [24/200], global_step: 72, lr: 0.001000, loss: 5.254516, loss_shrink_maps: 3.685966, loss_threshold_maps: 0.889641, loss_binary_maps: 0.685602, avg_reader_cost: 1.11829 s, avg_batch_cost: 1.26359 s, avg_samples: 7.7, ips: 6.09375 samples/s, eta: 1:14:01
[2024/07/27 22:47:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:47:28] ppocr INFO: epoch: [25/200], global_step: 75, lr: 0.001000, loss: 4.940720, loss_shrink_maps: 3.451328, loss_threshold_maps: 0.881492, loss_binary_maps: 0.624661, avg_reader_cost: 1.52731 s, avg_batch_cost: 1.76516 s, avg_samples: 12.5, ips: 7.08153 samples/s, eta: 1:12:43
[2024/07/27 22:47:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:47:35] ppocr INFO: epoch: [26/200], global_step: 78, lr: 0.001000, loss: 4.479806, loss_shrink_maps: 3.078111, loss_threshold_maps: 0.881152, loss_binary_maps: 0.484190, avg_reader_cost: 1.52129 s, avg_batch_cost: 1.74938 s, avg_samples: 12.5, ips: 7.14540 samples/s, eta: 1:11:28
[2024/07/27 22:47:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:47:42] ppocr INFO: epoch: [27/200], global_step: 80, lr: 0.001000, loss: 4.252490, loss_shrink_maps: 2.906988, loss_threshold_maps: 0.875854, loss_binary_maps: 0.455888, avg_reader_cost: 0.99958 s, avg_batch_cost: 1.20560 s, avg_samples: 9.6, ips: 7.96282 samples/s, eta: 1:10:43
[2024/07/27 22:47:42] ppocr INFO: epoch: [27/200], global_step: 81, lr: 0.001000, loss: 4.135272, loss_shrink_maps: 2.848414, loss_threshold_maps: 0.875854, loss_binary_maps: 0.433059, avg_reader_cost: 0.64839 s, avg_batch_cost: 0.70292 s, avg_samples: 2.9, ips: 4.12563 samples/s, eta: 1:10:28
[2024/07/27 22:47:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:47:50] ppocr INFO: epoch: [28/200], global_step: 84, lr: 0.001000, loss: 3.745096, loss_shrink_maps: 2.444026, loss_threshold_maps: 0.875854, loss_binary_maps: 0.393227, avg_reader_cost: 1.52780 s, avg_batch_cost: 1.77324 s, avg_samples: 12.5, ips: 7.04925 samples/s, eta: 1:09:22
[2024/07/27 22:47:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:47:57] ppocr INFO: epoch: [29/200], global_step: 87, lr: 0.001000, loss: 3.616979, loss_shrink_maps: 2.386529, loss_threshold_maps: 0.862485, loss_binary_maps: 0.382117, avg_reader_cost: 1.47401 s, avg_batch_cost: 1.71926 s, avg_samples: 12.5, ips: 7.27055 samples/s, eta: 1:08:17
[2024/07/27 22:47:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:48:04] ppocr INFO: epoch: [30/200], global_step: 90, lr: 0.001000, loss: 3.505298, loss_shrink_maps: 2.245906, loss_threshold_maps: 0.859193, loss_binary_maps: 0.366507, avg_reader_cost: 1.52742 s, avg_batch_cost: 1.76028 s, avg_samples: 12.5, ips: 7.10112 samples/s, eta: 1:07:17
[2024/07/27 22:48:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:48:11] ppocr INFO: epoch: [31/200], global_step: 93, lr: 0.001000, loss: 3.254544, loss_shrink_maps: 2.043609, loss_threshold_maps: 0.856357, loss_binary_maps: 0.357178, avg_reader_cost: 1.53910 s, avg_batch_cost: 1.78167 s, avg_samples: 12.5, ips: 7.01588 samples/s, eta: 1:06:21
[2024/07/27 22:48:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:48:18] ppocr INFO: epoch: [32/200], global_step: 96, lr: 0.001000, loss: 3.195118, loss_shrink_maps: 1.996416, loss_threshold_maps: 0.853605, loss_binary_maps: 0.343086, avg_reader_cost: 1.50221 s, avg_batch_cost: 1.75357 s, avg_samples: 12.5, ips: 7.12831 samples/s, eta: 1:05:25
[2024/07/27 22:48:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:48:25] ppocr INFO: epoch: [33/200], global_step: 99, lr: 0.001000, loss: 3.086817, loss_shrink_maps: 1.926239, loss_threshold_maps: 0.852091, loss_binary_maps: 0.326914, avg_reader_cost: 1.53598 s, avg_batch_cost: 1.78495 s, avg_samples: 12.5, ips: 7.00299 samples/s, eta: 1:04:34
[2024/07/27 22:48:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:48:31] ppocr INFO: epoch: [34/200], global_step: 100, lr: 0.001000, loss: 3.065157, loss_shrink_maps: 1.900544, loss_threshold_maps: 0.852091, loss_binary_maps: 0.334777, avg_reader_cost: 0.43806 s, avg_batch_cost: 0.52071 s, avg_samples: 4.8, ips: 9.21826 samples/s, eta: 1:04:14
[2024/07/27 22:48:32] ppocr INFO: epoch: [34/200], global_step: 102, lr: 0.001000, loss: 3.065157, loss_shrink_maps: 1.900544, loss_threshold_maps: 0.852091, loss_binary_maps: 0.334777, avg_reader_cost: 1.13277 s, avg_batch_cost: 1.27818 s, avg_samples: 7.7, ips: 6.02418 samples/s, eta: 1:03:45
[2024/07/27 22:48:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:48:40] ppocr INFO: epoch: [35/200], global_step: 105, lr: 0.001000, loss: 3.006904, loss_shrink_maps: 1.865479, loss_threshold_maps: 0.850413, loss_binary_maps: 0.326914, avg_reader_cost: 1.59253 s, avg_batch_cost: 1.82038 s, avg_samples: 12.5, ips: 6.86670 samples/s, eta: 1:03:00
[2024/07/27 22:48:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:48:47] ppocr INFO: epoch: [36/200], global_step: 108, lr: 0.001000, loss: 2.906699, loss_shrink_maps: 1.779342, loss_threshold_maps: 0.821863, loss_binary_maps: 0.317935, avg_reader_cost: 1.55139 s, avg_batch_cost: 1.79944 s, avg_samples: 12.5, ips: 6.94661 samples/s, eta: 1:02:14
[2024/07/27 22:48:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:48:54] ppocr INFO: epoch: [37/200], global_step: 110, lr: 0.001000, loss: 2.919498, loss_shrink_maps: 1.795053, loss_threshold_maps: 0.816314, loss_binary_maps: 0.326311, avg_reader_cost: 0.94947 s, avg_batch_cost: 1.12302 s, avg_samples: 9.6, ips: 8.54836 samples/s, eta: 1:01:42
[2024/07/27 22:48:54] ppocr INFO: epoch: [37/200], global_step: 111, lr: 0.001000, loss: 2.906699, loss_shrink_maps: 1.772016, loss_threshold_maps: 0.809464, loss_binary_maps: 0.326867, avg_reader_cost: 0.60726 s, avg_batch_cost: 0.66211 s, avg_samples: 2.9, ips: 4.37995 samples/s, eta: 1:01:30
[2024/07/27 22:48:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:49:02] ppocr INFO: epoch: [38/200], global_step: 114, lr: 0.001000, loss: 2.885542, loss_shrink_maps: 1.732742, loss_threshold_maps: 0.809225, loss_binary_maps: 0.314286, avg_reader_cost: 1.55380 s, avg_batch_cost: 1.80288 s, avg_samples: 12.5, ips: 6.93335 samples/s, eta: 1:00:48
[2024/07/27 22:49:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:49:09] ppocr INFO: epoch: [39/200], global_step: 117, lr: 0.001000, loss: 2.893923, loss_shrink_maps: 1.739032, loss_threshold_maps: 0.809225, loss_binary_maps: 0.318491, avg_reader_cost: 1.50148 s, avg_batch_cost: 1.73438 s, avg_samples: 12.5, ips: 7.20719 samples/s, eta: 1:00:04
[2024/07/27 22:49:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:49:16] ppocr INFO: epoch: [40/200], global_step: 120, lr: 0.001000, loss: 2.862408, loss_shrink_maps: 1.709872, loss_threshold_maps: 0.810934, loss_binary_maps: 0.314286, avg_reader_cost: 1.51645 s, avg_batch_cost: 1.76897 s, avg_samples: 12.5, ips: 7.06624 samples/s, eta: 0:59:22

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:54,  9.23it/s]
eval model::   1%|          | 4/500 [00:00<00:30, 16.28it/s]
eval model::   1%|▏         | 7/500 [00:00<00:23, 20.90it/s]
eval model::   2%|▏         | 10/500 [00:00<00:26, 18.73it/s]
eval model::   3%|▎         | 13/500 [00:00<00:26, 18.54it/s]
eval model::   3%|▎         | 15/500 [00:00<00:25, 18.81it/s]
eval model::   4%|▎         | 18/500 [00:00<00:22, 21.00it/s]
eval model::   4%|▍         | 21/500 [00:01<00:25, 19.11it/s]
eval model::   5%|▍         | 24/500 [00:01<00:24, 19.80it/s]
eval model::   5%|▌         | 27/500 [00:01<00:23, 20.39it/s]
eval model::   6%|▌         | 30/500 [00:01<00:23, 20.08it/s]
eval model::   7%|▋         | 33/500 [00:01<00:22, 20.62it/s]
eval model::   7%|▋         | 36/500 [00:01<00:23, 19.81it/s]
eval model::   8%|▊         | 39/500 [00:02<00:24, 18.98it/s]
eval model::   8%|▊         | 42/500 [00:02<00:22, 20.34it/s]
eval model::   9%|▉         | 45/500 [00:02<00:22, 20.13it/s]
eval model::  10%|▉         | 48/500 [00:02<00:24, 18.55it/s]
eval model::  10%|█         | 51/500 [00:02<00:23, 19.29it/s]
eval model::  11%|█         | 54/500 [00:02<00:22, 19.83it/s]
eval model::  11%|█▏        | 57/500 [00:02<00:22, 20.12it/s]
eval model::  12%|█▏        | 60/500 [00:03<00:21, 20.86it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:23, 18.56it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:19, 22.20it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:19, 22.29it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:21, 19.53it/s]
eval model::  15%|█▌        | 76/500 [00:03<00:20, 21.02it/s]
eval model::  16%|█▌        | 79/500 [00:03<00:21, 20.04it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:20, 20.54it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:20, 20.57it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:19, 20.78it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:20, 20.30it/s]
eval model::  19%|█▉        | 94/500 [00:04<00:19, 21.17it/s]
eval model::  19%|█▉        | 97/500 [00:04<00:19, 21.21it/s]
eval model::  20%|██        | 100/500 [00:05<00:21, 18.74it/s]
eval model::  21%|██        | 103/500 [00:05<00:20, 19.32it/s]
eval model::  21%|██        | 106/500 [00:05<00:19, 20.64it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:18, 21.57it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:19, 20.13it/s]
eval model::  23%|██▎       | 115/500 [00:05<00:17, 21.93it/s]
eval model::  24%|██▎       | 118/500 [00:05<00:17, 22.37it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:19, 19.82it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:17, 21.59it/s]
eval model::  25%|██▌       | 127/500 [00:06<00:17, 21.93it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:18, 20.32it/s]
eval model::  27%|██▋       | 134/500 [00:06<00:16, 22.56it/s]
eval model::  27%|██▋       | 137/500 [00:06<00:16, 21.82it/s]
eval model::  28%|██▊       | 140/500 [00:06<00:16, 21.40it/s]
eval model::  29%|██▊       | 143/500 [00:07<00:16, 21.40it/s]
eval model::  29%|██▉       | 146/500 [00:07<00:16, 21.12it/s]
eval model::  30%|██▉       | 149/500 [00:07<00:17, 19.86it/s]
eval model::  30%|███       | 152/500 [00:07<00:18, 19.05it/s]
eval model::  31%|███       | 156/500 [00:07<00:15, 22.11it/s]
eval model::  32%|███▏      | 159/500 [00:07<00:16, 20.27it/s]
eval model::  32%|███▏      | 162/500 [00:07<00:17, 19.22it/s]
eval model::  33%|███▎      | 165/500 [00:08<00:16, 20.04it/s]
eval model::  34%|███▎      | 168/500 [00:08<00:16, 20.28it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:15, 21.58it/s]
eval model::  35%|███▍      | 174/500 [00:08<00:14, 21.75it/s]
eval model::  35%|███▌      | 177/500 [00:08<00:14, 22.48it/s]
eval model::  36%|███▌      | 180/500 [00:08<00:15, 21.01it/s]
eval model::  37%|███▋      | 183/500 [00:08<00:14, 21.83it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:14, 22.31it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:14, 21.80it/s]
eval model::  38%|███▊      | 192/500 [00:09<00:14, 21.10it/s]
eval model::  39%|███▉      | 195/500 [00:09<00:15, 19.37it/s]
eval model::  40%|███▉      | 198/500 [00:09<00:14, 20.33it/s]
eval model::  40%|████      | 201/500 [00:09<00:15, 19.54it/s]
eval model::  41%|████      | 204/500 [00:09<00:14, 20.85it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:19, 15.03it/s]
eval model::  42%|████▏     | 209/500 [00:10<00:18, 15.44it/s]
eval model::  42%|████▏     | 211/500 [00:10<00:17, 16.28it/s]
eval model::  43%|████▎     | 213/500 [00:10<00:17, 16.69it/s]
eval model::  43%|████▎     | 215/500 [00:10<00:18, 15.56it/s]
eval model::  43%|████▎     | 217/500 [00:10<00:19, 14.84it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:16, 17.34it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:17, 16.31it/s]
eval model::  45%|████▌     | 225/500 [00:11<00:14, 18.49it/s]
eval model::  45%|████▌     | 227/500 [00:11<00:14, 18.45it/s]
eval model::  46%|████▌     | 231/500 [00:11<00:12, 22.13it/s]
eval model::  47%|████▋     | 234/500 [00:11<00:12, 21.45it/s]
eval model::  47%|████▋     | 237/500 [00:11<00:11, 23.11it/s]
eval model::  48%|████▊     | 240/500 [00:11<00:11, 22.81it/s]
eval model::  49%|████▊     | 243/500 [00:12<00:12, 20.79it/s]
eval model::  49%|████▉     | 246/500 [00:12<00:11, 21.76it/s]
eval model::  50%|████▉     | 249/500 [00:12<00:11, 20.96it/s]
eval model::  50%|█████     | 252/500 [00:12<00:11, 21.41it/s]
eval model::  51%|█████     | 255/500 [00:12<00:11, 21.43it/s]
eval model::  52%|█████▏    | 258/500 [00:12<00:10, 22.17it/s]
eval model::  52%|█████▏    | 261/500 [00:12<00:10, 21.94it/s]
eval model::  53%|█████▎    | 264/500 [00:13<00:11, 21.17it/s]
eval model::  53%|█████▎    | 267/500 [00:13<00:11, 20.71it/s]
eval model::  54%|█████▍    | 270/500 [00:13<00:11, 20.88it/s]
eval model::  55%|█████▍    | 273/500 [00:13<00:11, 20.20it/s]
eval model::  55%|█████▌    | 276/500 [00:13<00:11, 19.12it/s]
eval model::  56%|█████▌    | 279/500 [00:13<00:11, 19.97it/s]
eval model::  56%|█████▋    | 282/500 [00:13<00:10, 21.10it/s]
eval model::  57%|█████▋    | 285/500 [00:14<00:14, 14.82it/s]
eval model::  58%|█████▊    | 288/500 [00:14<00:12, 17.21it/s]
eval model::  58%|█████▊    | 291/500 [00:14<00:11, 18.92it/s]
eval model::  59%|█████▉    | 294/500 [00:14<00:10, 18.78it/s]
eval model::  59%|█████▉    | 297/500 [00:14<00:10, 18.47it/s]
eval model::  60%|██████    | 300/500 [00:15<00:10, 19.14it/s]
eval model::  61%|██████    | 303/500 [00:15<00:09, 19.95it/s]
eval model::  61%|██████    | 306/500 [00:15<00:09, 21.28it/s]
eval model::  62%|██████▏   | 309/500 [00:15<00:08, 21.94it/s]
eval model::  62%|██████▏   | 312/500 [00:15<00:08, 20.91it/s]
eval model::  63%|██████▎   | 315/500 [00:15<00:09, 20.36it/s]
eval model::  64%|██████▍   | 319/500 [00:15<00:07, 23.14it/s]
eval model::  64%|██████▍   | 322/500 [00:16<00:08, 21.77it/s]
eval model::  65%|██████▌   | 325/500 [00:16<00:07, 22.91it/s]
eval model::  66%|██████▌   | 328/500 [00:16<00:08, 21.14it/s]
eval model::  66%|██████▌   | 331/500 [00:16<00:07, 21.43it/s]
eval model::  67%|██████▋   | 334/500 [00:16<00:07, 22.09it/s]
eval model::  67%|██████▋   | 337/500 [00:16<00:08, 20.37it/s]
eval model::  68%|██████▊   | 340/500 [00:16<00:08, 18.26it/s]
eval model::  69%|██████▊   | 343/500 [00:17<00:08, 19.44it/s]
eval model::  69%|██████▉   | 346/500 [00:17<00:07, 20.86it/s]
eval model::  70%|██████▉   | 349/500 [00:17<00:06, 22.53it/s]
eval model::  70%|███████   | 352/500 [00:17<00:06, 21.98it/s]
eval model::  71%|███████   | 355/500 [00:17<00:07, 20.12it/s]
eval model::  72%|███████▏  | 358/500 [00:17<00:06, 21.06it/s]
eval model::  72%|███████▏  | 361/500 [00:17<00:07, 18.81it/s]
eval model::  73%|███████▎  | 364/500 [00:18<00:07, 19.01it/s]
eval model::  73%|███████▎  | 367/500 [00:18<00:06, 20.26it/s]
eval model::  74%|███████▍  | 370/500 [00:18<00:06, 21.29it/s]
eval model::  75%|███████▍  | 373/500 [00:18<00:06, 20.95it/s]
eval model::  75%|███████▌  | 376/500 [00:18<00:05, 20.95it/s]
eval model::  76%|███████▌  | 379/500 [00:18<00:05, 22.52it/s]
eval model::  76%|███████▋  | 382/500 [00:18<00:05, 20.97it/s]
eval model::  77%|███████▋  | 385/500 [00:19<00:05, 21.62it/s]
eval model::  78%|███████▊  | 388/500 [00:19<00:07, 16.00it/s]
eval model::  78%|███████▊  | 391/500 [00:19<00:05, 18.25it/s]
eval model::  79%|███████▉  | 394/500 [00:19<00:05, 19.54it/s]
eval model::  79%|███████▉  | 397/500 [00:19<00:05, 20.18it/s]
eval model::  80%|████████  | 400/500 [00:19<00:04, 20.89it/s]
eval model::  81%|████████  | 403/500 [00:20<00:04, 20.81it/s]
eval model::  81%|████████  | 406/500 [00:20<00:04, 21.81it/s]
eval model::  82%|████████▏ | 409/500 [00:20<00:04, 22.43it/s]
eval model::  82%|████████▏ | 412/500 [00:20<00:03, 22.26it/s]
eval model::  83%|████████▎ | 415/500 [00:20<00:04, 20.27it/s]
eval model::  84%|████████▎ | 418/500 [00:20<00:04, 20.13it/s]
eval model::  84%|████████▍ | 421/500 [00:20<00:04, 18.15it/s]
eval model::  85%|████████▍ | 424/500 [00:21<00:03, 20.03it/s]
eval model::  85%|████████▌ | 427/500 [00:21<00:03, 21.46it/s]
eval model::  86%|████████▌ | 430/500 [00:21<00:03, 21.67it/s]
eval model::  87%|████████▋ | 433/500 [00:21<00:03, 21.84it/s]
eval model::  87%|████████▋ | 436/500 [00:21<00:02, 21.69it/s]
eval model::  88%|████████▊ | 439/500 [00:21<00:02, 20.81it/s]
eval model::  88%|████████▊ | 442/500 [00:21<00:02, 19.50it/s]
eval model::  89%|████████▉ | 445/500 [00:22<00:02, 20.20it/s]
eval model::  90%|████████▉ | 448/500 [00:22<00:02, 19.62it/s]
eval model::  90%|█████████ | 450/500 [00:22<00:02, 19.52it/s]
eval model::  90%|█████████ | 452/500 [00:22<00:02, 19.56it/s]
eval model::  91%|█████████ | 454/500 [00:22<00:02, 18.64it/s]
eval model::  91%|█████████ | 456/500 [00:22<00:02, 18.08it/s]
eval model::  92%|█████████▏| 459/500 [00:22<00:02, 19.34it/s]
eval model::  92%|█████████▏| 461/500 [00:22<00:02, 18.54it/s]
eval model::  93%|█████████▎| 463/500 [00:23<00:02, 16.25it/s]
eval model::  93%|█████████▎| 465/500 [00:23<00:02, 15.50it/s]
eval model::  94%|█████████▍| 469/500 [00:23<00:01, 20.49it/s]
eval model::  94%|█████████▍| 472/500 [00:23<00:01, 20.24it/s]
eval model::  95%|█████████▌| 475/500 [00:23<00:01, 20.88it/s]
eval model::  96%|█████████▌| 478/500 [00:23<00:01, 19.62it/s]
eval model::  96%|█████████▌| 481/500 [00:23<00:00, 19.32it/s]
eval model::  97%|█████████▋| 484/500 [00:24<00:00, 19.62it/s]
eval model::  97%|█████████▋| 486/500 [00:24<00:00, 17.61it/s]
eval model::  98%|█████████▊| 489/500 [00:24<00:00, 18.68it/s]
eval model::  98%|█████████▊| 492/500 [00:24<00:00, 19.41it/s]
eval model::  99%|█████████▉| 494/500 [00:24<00:00, 19.53it/s]
eval model::  99%|█████████▉| 497/500 [00:24<00:00, 20.43it/s]
eval model:: 100%|██████████| 500/500 [00:24<00:00, 19.76it/s]
eval model:: 100%|██████████| 500/500 [00:24<00:00, 20.06it/s]
[2024/07/27 22:49:41] ppocr INFO: cur metric, precision: 0.5393634840871022, recall: 0.3100625902744343, hmean: 0.3937633751146439, fps: 44.630790084791506
[2024/07/27 22:49:41] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/27 22:49:41] ppocr INFO: best metric, hmean: 0.3937633751146439, precision: 0.5393634840871022, recall: 0.3100625902744343, fps: 44.630790084791506, best_epoch: 40
[2024/07/27 22:49:41] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:49:48] ppocr INFO: epoch: [41/200], global_step: 123, lr: 0.001000, loss: 2.862408, loss_shrink_maps: 1.709872, loss_threshold_maps: 0.813570, loss_binary_maps: 0.314286, avg_reader_cost: 1.62067 s, avg_batch_cost: 1.85751 s, avg_samples: 12.5, ips: 6.72945 samples/s, eta: 0:58:46
[2024/07/27 22:49:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:49:55] ppocr INFO: epoch: [42/200], global_step: 126, lr: 0.001000, loss: 2.869300, loss_shrink_maps: 1.729180, loss_threshold_maps: 0.808999, loss_binary_maps: 0.316458, avg_reader_cost: 1.52557 s, avg_batch_cost: 1.75411 s, avg_samples: 12.5, ips: 7.12614 samples/s, eta: 0:58:06
[2024/07/27 22:49:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:50:02] ppocr INFO: epoch: [43/200], global_step: 129, lr: 0.001000, loss: 2.830234, loss_shrink_maps: 1.671033, loss_threshold_maps: 0.810151, loss_binary_maps: 0.308717, avg_reader_cost: 1.52352 s, avg_batch_cost: 1.76403 s, avg_samples: 12.5, ips: 7.08603 samples/s, eta: 0:57:28
[2024/07/27 22:50:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:50:08] ppocr INFO: epoch: [44/200], global_step: 130, lr: 0.001000, loss: 2.839770, loss_shrink_maps: 1.671033, loss_threshold_maps: 0.810151, loss_binary_maps: 0.308717, avg_reader_cost: 0.40375 s, avg_batch_cost: 0.50481 s, avg_samples: 4.8, ips: 9.50862 samples/s, eta: 0:57:13
[2024/07/27 22:50:09] ppocr INFO: epoch: [44/200], global_step: 132, lr: 0.001000, loss: 2.809932, loss_shrink_maps: 1.666877, loss_threshold_maps: 0.813570, loss_binary_maps: 0.305741, avg_reader_cost: 1.10099 s, avg_batch_cost: 1.24700 s, avg_samples: 7.7, ips: 6.17481 samples/s, eta: 0:56:50
[2024/07/27 22:50:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:50:17] ppocr INFO: epoch: [45/200], global_step: 135, lr: 0.001000, loss: 2.809932, loss_shrink_maps: 1.666569, loss_threshold_maps: 0.802419, loss_binary_maps: 0.309405, avg_reader_cost: 1.58990 s, avg_batch_cost: 1.85139 s, avg_samples: 12.5, ips: 6.75169 samples/s, eta: 0:56:17
[2024/07/27 22:50:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:50:25] ppocr INFO: epoch: [46/200], global_step: 138, lr: 0.001000, loss: 2.809932, loss_shrink_maps: 1.666569, loss_threshold_maps: 0.798631, loss_binary_maps: 0.311316, avg_reader_cost: 1.58776 s, avg_batch_cost: 1.87653 s, avg_samples: 12.5, ips: 6.66123 samples/s, eta: 0:55:45
[2024/07/27 22:50:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:50:31] ppocr INFO: epoch: [47/200], global_step: 140, lr: 0.001000, loss: 2.768803, loss_shrink_maps: 1.657803, loss_threshold_maps: 0.795032, loss_binary_maps: 0.310408, avg_reader_cost: 0.96872 s, avg_batch_cost: 1.14691 s, avg_samples: 9.6, ips: 8.37032 samples/s, eta: 0:55:21
[2024/07/27 22:50:32] ppocr INFO: epoch: [47/200], global_step: 141, lr: 0.001000, loss: 2.732636, loss_shrink_maps: 1.634427, loss_threshold_maps: 0.795032, loss_binary_maps: 0.307809, avg_reader_cost: 0.61918 s, avg_batch_cost: 0.67399 s, avg_samples: 2.9, ips: 4.30271 samples/s, eta: 0:55:12
[2024/07/27 22:50:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:50:39] ppocr INFO: epoch: [48/200], global_step: 144, lr: 0.001000, loss: 2.732636, loss_shrink_maps: 1.621741, loss_threshold_maps: 0.798631, loss_binary_maps: 0.307968, avg_reader_cost: 1.52144 s, avg_batch_cost: 1.75838 s, avg_samples: 12.5, ips: 7.10881 samples/s, eta: 0:54:37
[2024/07/27 22:50:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:50:46] ppocr INFO: epoch: [49/200], global_step: 147, lr: 0.001000, loss: 2.732636, loss_shrink_maps: 1.621741, loss_threshold_maps: 0.800555, loss_binary_maps: 0.307968, avg_reader_cost: 1.51935 s, avg_batch_cost: 1.74741 s, avg_samples: 12.5, ips: 7.15342 samples/s, eta: 0:54:03
[2024/07/27 22:50:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:50:53] ppocr INFO: epoch: [50/200], global_step: 150, lr: 0.001000, loss: 2.715534, loss_shrink_maps: 1.605607, loss_threshold_maps: 0.800555, loss_binary_maps: 0.303728, avg_reader_cost: 1.50337 s, avg_batch_cost: 1.74390 s, avg_samples: 12.5, ips: 7.16782 samples/s, eta: 0:53:30
[2024/07/27 22:50:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:51:01] ppocr INFO: epoch: [51/200], global_step: 153, lr: 0.001000, loss: 2.715534, loss_shrink_maps: 1.609823, loss_threshold_maps: 0.800555, loss_binary_maps: 0.299896, avg_reader_cost: 1.53812 s, avg_batch_cost: 1.80544 s, avg_samples: 12.5, ips: 6.92353 samples/s, eta: 0:52:58
[2024/07/27 22:51:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:51:08] ppocr INFO: epoch: [52/200], global_step: 156, lr: 0.001000, loss: 2.705464, loss_shrink_maps: 1.598361, loss_threshold_maps: 0.795059, loss_binary_maps: 0.299510, avg_reader_cost: 1.53632 s, avg_batch_cost: 1.79338 s, avg_samples: 12.5, ips: 6.97007 samples/s, eta: 0:52:27
[2024/07/27 22:51:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:51:15] ppocr INFO: epoch: [53/200], global_step: 159, lr: 0.001000, loss: 2.715534, loss_shrink_maps: 1.609823, loss_threshold_maps: 0.795059, loss_binary_maps: 0.299896, avg_reader_cost: 1.61396 s, avg_batch_cost: 1.84249 s, avg_samples: 12.5, ips: 6.78429 samples/s, eta: 0:51:58
[2024/07/27 22:51:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:51:21] ppocr INFO: epoch: [54/200], global_step: 160, lr: 0.001000, loss: 2.731385, loss_shrink_maps: 1.627869, loss_threshold_maps: 0.800207, loss_binary_maps: 0.303681, avg_reader_cost: 0.43579 s, avg_batch_cost: 0.51777 s, avg_samples: 4.8, ips: 9.27048 samples/s, eta: 0:51:46
[2024/07/27 22:51:22] ppocr INFO: epoch: [54/200], global_step: 162, lr: 0.001000, loss: 2.762898, loss_shrink_maps: 1.652004, loss_threshold_maps: 0.791260, loss_binary_maps: 0.308412, avg_reader_cost: 1.12716 s, avg_batch_cost: 1.27283 s, avg_samples: 7.7, ips: 6.04951 samples/s, eta: 0:51:28
[2024/07/27 22:51:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:51:30] ppocr INFO: epoch: [55/200], global_step: 165, lr: 0.001000, loss: 2.760427, loss_shrink_maps: 1.661858, loss_threshold_maps: 0.791260, loss_binary_maps: 0.308412, avg_reader_cost: 1.66984 s, avg_batch_cost: 1.91678 s, avg_samples: 12.5, ips: 6.52135 samples/s, eta: 0:51:02
[2024/07/27 22:51:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:51:37] ppocr INFO: epoch: [56/200], global_step: 168, lr: 0.001000, loss: 2.781625, loss_shrink_maps: 1.661858, loss_threshold_maps: 0.791260, loss_binary_maps: 0.308412, avg_reader_cost: 1.57910 s, avg_batch_cost: 1.80785 s, avg_samples: 12.5, ips: 6.91430 samples/s, eta: 0:50:33
[2024/07/27 22:51:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:51:44] ppocr INFO: epoch: [57/200], global_step: 170, lr: 0.001000, loss: 2.800550, loss_shrink_maps: 1.682599, loss_threshold_maps: 0.796997, loss_binary_maps: 0.311142, avg_reader_cost: 0.91268 s, avg_batch_cost: 1.09156 s, avg_samples: 9.6, ips: 8.79477 samples/s, eta: 0:50:11
[2024/07/27 22:51:45] ppocr INFO: epoch: [57/200], global_step: 171, lr: 0.001000, loss: 2.819092, loss_shrink_maps: 1.699608, loss_threshold_maps: 0.800025, loss_binary_maps: 0.314334, avg_reader_cost: 0.59134 s, avg_batch_cost: 0.64630 s, avg_samples: 2.9, ips: 4.48706 samples/s, eta: 0:50:02
[2024/07/27 22:51:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:51:52] ppocr INFO: epoch: [58/200], global_step: 174, lr: 0.001000, loss: 2.819092, loss_shrink_maps: 1.699608, loss_threshold_maps: 0.800025, loss_binary_maps: 0.314334, avg_reader_cost: 1.51062 s, avg_batch_cost: 1.75703 s, avg_samples: 12.5, ips: 7.11427 samples/s, eta: 0:49:33
[2024/07/27 22:51:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:51:59] ppocr INFO: epoch: [59/200], global_step: 177, lr: 0.001000, loss: 2.807053, loss_shrink_maps: 1.682599, loss_threshold_maps: 0.800688, loss_binary_maps: 0.317258, avg_reader_cost: 1.59035 s, avg_batch_cost: 1.81844 s, avg_samples: 12.5, ips: 6.87403 samples/s, eta: 0:49:05
[2024/07/27 22:52:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:52:06] ppocr INFO: epoch: [60/200], global_step: 180, lr: 0.001000, loss: 2.781625, loss_shrink_maps: 1.645051, loss_threshold_maps: 0.797596, loss_binary_maps: 0.312184, avg_reader_cost: 1.57216 s, avg_batch_cost: 1.87187 s, avg_samples: 12.5, ips: 6.67782 samples/s, eta: 0:48:39

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:53,  9.25it/s]
eval model::   1%|          | 4/500 [00:00<00:25, 19.37it/s]
eval model::   1%|          | 6/500 [00:00<00:25, 19.58it/s]
eval model::   2%|▏         | 9/500 [00:00<00:22, 21.82it/s]
eval model::   2%|▏         | 12/500 [00:00<00:22, 22.10it/s]
eval model::   3%|▎         | 15/500 [00:00<00:22, 21.39it/s]
eval model::   4%|▎         | 18/500 [00:00<00:21, 22.14it/s]
eval model::   4%|▍         | 21/500 [00:01<00:25, 18.62it/s]
eval model::   5%|▍         | 24/500 [00:01<00:23, 20.04it/s]
eval model::   5%|▌         | 27/500 [00:01<00:22, 20.79it/s]
eval model::   6%|▌         | 30/500 [00:01<00:20, 22.53it/s]
eval model::   7%|▋         | 33/500 [00:01<00:21, 22.06it/s]
eval model::   7%|▋         | 36/500 [00:01<00:23, 19.51it/s]
eval model::   8%|▊         | 39/500 [00:01<00:24, 18.78it/s]
eval model::   8%|▊         | 42/500 [00:02<00:23, 19.23it/s]
eval model::   9%|▉         | 45/500 [00:02<00:23, 19.76it/s]
eval model::  10%|▉         | 48/500 [00:02<00:22, 20.41it/s]
eval model::  10%|█         | 51/500 [00:02<00:22, 20.31it/s]
eval model::  11%|█         | 54/500 [00:02<00:22, 19.71it/s]
eval model::  11%|█         | 56/500 [00:02<00:24, 18.24it/s]
eval model::  12%|█▏        | 59/500 [00:02<00:22, 19.20it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:24, 17.60it/s]
eval model::  13%|█▎        | 64/500 [00:03<00:22, 19.02it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:20, 21.14it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:20, 20.62it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:21, 19.75it/s]
eval model::  15%|█▌        | 76/500 [00:03<00:19, 21.23it/s]
eval model::  16%|█▌        | 79/500 [00:03<00:20, 20.10it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:23, 17.84it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:21, 19.05it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:23, 17.43it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:23, 17.59it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:23, 17.78it/s]
eval model::  19%|█▉        | 94/500 [00:04<00:21, 19.23it/s]
eval model::  19%|█▉        | 97/500 [00:04<00:18, 21.28it/s]
eval model::  20%|██        | 100/500 [00:05<00:20, 19.14it/s]
eval model::  21%|██        | 103/500 [00:05<00:18, 20.97it/s]
eval model::  21%|██        | 106/500 [00:05<00:19, 20.53it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:19, 19.61it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:19, 20.15it/s]
eval model::  23%|██▎       | 115/500 [00:05<00:19, 20.08it/s]
eval model::  24%|██▎       | 118/500 [00:05<00:17, 21.32it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:17, 21.20it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:20, 18.11it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:21, 17.78it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:19, 18.98it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:20, 17.94it/s]
eval model::  27%|██▋       | 134/500 [00:06<00:19, 19.06it/s]
eval model::  27%|██▋       | 136/500 [00:06<00:18, 19.22it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:17, 21.14it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:15, 22.47it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:15, 22.62it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:16, 21.18it/s]
eval model::  30%|███       | 151/500 [00:07<00:18, 19.30it/s]
eval model::  31%|███       | 154/500 [00:07<00:16, 20.96it/s]
eval model::  31%|███▏      | 157/500 [00:07<00:15, 21.92it/s]
eval model::  32%|███▏      | 160/500 [00:08<00:16, 20.05it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:16, 20.40it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:15, 20.94it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:17, 18.63it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:17, 18.63it/s]
eval model::  35%|███▍      | 174/500 [00:08<00:17, 19.04it/s]
eval model::  35%|███▌      | 176/500 [00:08<00:17, 18.96it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:15, 20.37it/s]
eval model::  36%|███▋      | 182/500 [00:09<00:17, 17.81it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:17, 18.25it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:17, 18.10it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:15, 19.68it/s]
eval model::  38%|███▊      | 192/500 [00:09<00:15, 19.58it/s]
eval model::  39%|███▉      | 194/500 [00:09<00:15, 19.47it/s]
eval model::  39%|███▉      | 196/500 [00:10<00:17, 16.94it/s]
eval model::  40%|███▉      | 199/500 [00:10<00:16, 18.45it/s]
eval model::  40%|████      | 201/500 [00:10<00:17, 17.09it/s]
eval model::  41%|████      | 204/500 [00:10<00:14, 19.92it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:22, 12.79it/s]
eval model::  42%|████▏     | 210/500 [00:10<00:21, 13.54it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.40it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:19, 14.75it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:18, 15.28it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:15, 18.19it/s]
eval model::  45%|████▍     | 223/500 [00:11<00:15, 18.41it/s]
eval model::  45%|████▌     | 226/500 [00:11<00:14, 18.55it/s]
eval model::  46%|████▌     | 229/500 [00:11<00:13, 20.43it/s]
eval model::  46%|████▋     | 232/500 [00:12<00:12, 21.85it/s]
eval model::  47%|████▋     | 235/500 [00:12<00:12, 21.97it/s]
eval model::  48%|████▊     | 238/500 [00:12<00:11, 22.77it/s]
eval model::  48%|████▊     | 241/500 [00:12<00:12, 21.19it/s]
eval model::  49%|████▉     | 244/500 [00:12<00:13, 19.66it/s]
eval model::  49%|████▉     | 247/500 [00:12<00:12, 19.84it/s]
eval model::  50%|█████     | 250/500 [00:12<00:13, 18.33it/s]
eval model::  51%|█████     | 253/500 [00:13<00:12, 20.41it/s]
eval model::  51%|█████     | 256/500 [00:13<00:12, 19.83it/s]
eval model::  52%|█████▏    | 259/500 [00:13<00:12, 19.75it/s]
eval model::  52%|█████▏    | 262/500 [00:13<00:12, 19.04it/s]
eval model::  53%|█████▎    | 264/500 [00:13<00:12, 18.31it/s]
eval model::  53%|█████▎    | 267/500 [00:13<00:12, 19.19it/s]
eval model::  54%|█████▍    | 270/500 [00:13<00:10, 21.11it/s]
eval model::  55%|█████▍    | 273/500 [00:14<00:10, 21.23it/s]
eval model::  55%|█████▌    | 276/500 [00:14<00:10, 22.20it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:10, 21.18it/s]
eval model::  56%|█████▋    | 282/500 [00:14<00:10, 20.76it/s]
eval model::  57%|█████▋    | 285/500 [00:14<00:13, 16.32it/s]
eval model::  58%|█████▊    | 288/500 [00:14<00:11, 18.42it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:10, 20.40it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:11, 18.14it/s]
eval model::  59%|█████▉    | 297/500 [00:15<00:10, 19.03it/s]
eval model::  60%|██████    | 300/500 [00:15<00:09, 20.02it/s]
eval model::  61%|██████    | 303/500 [00:15<00:09, 20.67it/s]
eval model::  61%|██████    | 306/500 [00:15<00:09, 20.29it/s]
eval model::  62%|██████▏   | 309/500 [00:15<00:08, 22.15it/s]
eval model::  62%|██████▏   | 312/500 [00:15<00:07, 23.69it/s]
eval model::  63%|██████▎   | 315/500 [00:16<00:08, 22.04it/s]
eval model::  64%|██████▎   | 318/500 [00:16<00:08, 20.53it/s]
eval model::  64%|██████▍   | 321/500 [00:16<00:08, 20.41it/s]
eval model::  65%|██████▍   | 324/500 [00:16<00:08, 20.32it/s]
eval model::  65%|██████▌   | 327/500 [00:16<00:08, 20.36it/s]
eval model::  66%|██████▌   | 330/500 [00:16<00:09, 18.84it/s]
eval model::  66%|██████▋   | 332/500 [00:17<00:09, 17.03it/s]
eval model::  67%|██████▋   | 335/500 [00:17<00:09, 17.68it/s]
eval model::  67%|██████▋   | 337/500 [00:17<00:09, 17.63it/s]
eval model::  68%|██████▊   | 340/500 [00:17<00:09, 17.22it/s]
eval model::  69%|██████▊   | 343/500 [00:17<00:08, 18.94it/s]
eval model::  69%|██████▉   | 346/500 [00:17<00:07, 20.49it/s]
eval model::  70%|██████▉   | 349/500 [00:17<00:07, 20.36it/s]
eval model::  70%|███████   | 352/500 [00:18<00:07, 20.91it/s]
eval model::  71%|███████   | 355/500 [00:18<00:07, 19.40it/s]
eval model::  72%|███████▏  | 358/500 [00:18<00:06, 20.33it/s]
eval model::  72%|███████▏  | 361/500 [00:18<00:06, 20.34it/s]
eval model::  73%|███████▎  | 364/500 [00:18<00:07, 19.24it/s]
eval model::  73%|███████▎  | 367/500 [00:18<00:06, 20.06it/s]
eval model::  74%|███████▍  | 370/500 [00:19<00:06, 20.49it/s]
eval model::  75%|███████▍  | 373/500 [00:19<00:06, 19.56it/s]
eval model::  75%|███████▌  | 375/500 [00:19<00:06, 18.95it/s]
eval model::  76%|███████▌  | 378/500 [00:19<00:06, 19.52it/s]
eval model::  76%|███████▌  | 380/500 [00:19<00:06, 18.27it/s]
eval model::  77%|███████▋  | 383/500 [00:19<00:05, 20.28it/s]
eval model::  77%|███████▋  | 386/500 [00:19<00:07, 15.23it/s]
eval model::  78%|███████▊  | 389/500 [00:20<00:06, 17.68it/s]
eval model::  78%|███████▊  | 392/500 [00:20<00:05, 18.81it/s]
eval model::  79%|███████▉  | 395/500 [00:20<00:05, 17.73it/s]
eval model::  80%|███████▉  | 398/500 [00:20<00:05, 20.00it/s]
eval model::  80%|████████  | 401/500 [00:20<00:05, 19.02it/s]
eval model::  81%|████████  | 404/500 [00:20<00:04, 20.08it/s]
eval model::  81%|████████▏ | 407/500 [00:20<00:04, 21.49it/s]
eval model::  82%|████████▏ | 410/500 [00:21<00:04, 22.36it/s]
eval model::  83%|████████▎ | 413/500 [00:21<00:03, 22.25it/s]
eval model::  83%|████████▎ | 416/500 [00:21<00:03, 21.61it/s]
eval model::  84%|████████▍ | 419/500 [00:21<00:04, 19.25it/s]
eval model::  84%|████████▍ | 422/500 [00:21<00:04, 17.55it/s]
eval model::  85%|████████▌ | 425/500 [00:21<00:03, 19.35it/s]
eval model::  86%|████████▌ | 429/500 [00:21<00:03, 22.68it/s]
eval model::  86%|████████▋ | 432/500 [00:22<00:03, 21.56it/s]
eval model::  87%|████████▋ | 435/500 [00:22<00:03, 18.72it/s]
eval model::  88%|████████▊ | 438/500 [00:22<00:03, 18.14it/s]
eval model::  88%|████████▊ | 440/500 [00:22<00:03, 16.71it/s]
eval model::  89%|████████▊ | 443/500 [00:22<00:03, 18.61it/s]
eval model::  89%|████████▉ | 445/500 [00:22<00:03, 18.15it/s]
eval model::  90%|████████▉ | 448/500 [00:23<00:02, 17.79it/s]
eval model::  90%|█████████ | 450/500 [00:23<00:02, 18.10it/s]
eval model::  91%|█████████ | 453/500 [00:23<00:02, 18.91it/s]
eval model::  91%|█████████ | 456/500 [00:23<00:02, 20.97it/s]
eval model::  92%|█████████▏| 459/500 [00:23<00:01, 21.64it/s]
eval model::  92%|█████████▏| 462/500 [00:23<00:02, 18.73it/s]
eval model::  93%|█████████▎| 464/500 [00:23<00:01, 18.56it/s]
eval model::  93%|█████████▎| 466/500 [00:24<00:02, 15.93it/s]
eval model::  94%|█████████▍| 469/500 [00:24<00:01, 18.48it/s]
eval model::  94%|█████████▍| 472/500 [00:24<00:01, 19.37it/s]
eval model::  95%|█████████▌| 475/500 [00:24<00:01, 19.55it/s]
eval model::  96%|█████████▌| 478/500 [00:24<00:01, 21.71it/s]
eval model::  96%|█████████▌| 481/500 [00:24<00:00, 20.65it/s]
eval model::  97%|█████████▋| 484/500 [00:24<00:00, 19.45it/s]
eval model::  97%|█████████▋| 487/500 [00:25<00:00, 19.29it/s]
eval model::  98%|█████████▊| 490/500 [00:25<00:00, 20.90it/s]
eval model::  99%|█████████▊| 493/500 [00:25<00:00, 21.10it/s]
eval model::  99%|█████████▉| 496/500 [00:25<00:00, 20.82it/s]
eval model:: 100%|█████████▉| 499/500 [00:25<00:00, 21.98it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.48it/s]
[2024/07/27 22:52:32] ppocr INFO: cur metric, precision: 0.4856674856674857, recall: 0.2855079441502167, hmean: 0.35961188599151006, fps: 43.48894500728973
[2024/07/27 22:52:32] ppocr INFO: best metric, hmean: 0.3937633751146439, precision: 0.5393634840871022, recall: 0.3100625902744343, fps: 44.630790084791506, best_epoch: 40
[2024/07/27 22:52:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:52:39] ppocr INFO: epoch: [61/200], global_step: 183, lr: 0.001000, loss: 2.761134, loss_shrink_maps: 1.634458, loss_threshold_maps: 0.800688, loss_binary_maps: 0.310566, avg_reader_cost: 1.58068 s, avg_batch_cost: 1.80799 s, avg_samples: 12.5, ips: 6.91377 samples/s, eta: 0:48:12
[2024/07/27 22:52:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:52:46] ppocr INFO: epoch: [62/200], global_step: 186, lr: 0.001000, loss: 2.714184, loss_shrink_maps: 1.619299, loss_threshold_maps: 0.791485, loss_binary_maps: 0.303286, avg_reader_cost: 1.55529 s, avg_batch_cost: 1.78367 s, avg_samples: 12.5, ips: 7.00802 samples/s, eta: 0:47:45
[2024/07/27 22:52:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:52:54] ppocr INFO: epoch: [63/200], global_step: 189, lr: 0.001000, loss: 2.730275, loss_shrink_maps: 1.628531, loss_threshold_maps: 0.799263, loss_binary_maps: 0.310433, avg_reader_cost: 1.53843 s, avg_batch_cost: 1.77103 s, avg_samples: 12.5, ips: 7.05805 samples/s, eta: 0:47:17
[2024/07/27 22:52:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:53:00] ppocr INFO: epoch: [64/200], global_step: 190, lr: 0.001000, loss: 2.714184, loss_shrink_maps: 1.619299, loss_threshold_maps: 0.791485, loss_binary_maps: 0.309302, avg_reader_cost: 0.44466 s, avg_batch_cost: 0.54140 s, avg_samples: 4.8, ips: 8.86592 samples/s, eta: 0:47:07
[2024/07/27 22:53:01] ppocr INFO: epoch: [64/200], global_step: 192, lr: 0.001000, loss: 2.710151, loss_shrink_maps: 1.610044, loss_threshold_maps: 0.787534, loss_binary_maps: 0.303536, avg_reader_cost: 1.17561 s, avg_batch_cost: 1.32213 s, avg_samples: 7.7, ips: 5.82391 samples/s, eta: 0:46:52
[2024/07/27 22:53:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:53:09] ppocr INFO: epoch: [65/200], global_step: 195, lr: 0.001000, loss: 2.688580, loss_shrink_maps: 1.610044, loss_threshold_maps: 0.784868, loss_binary_maps: 0.303536, avg_reader_cost: 1.62918 s, avg_batch_cost: 1.85743 s, avg_samples: 12.5, ips: 6.72973 samples/s, eta: 0:46:27
[2024/07/27 22:53:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:53:16] ppocr INFO: epoch: [66/200], global_step: 198, lr: 0.001000, loss: 2.672901, loss_shrink_maps: 1.591697, loss_threshold_maps: 0.787440, loss_binary_maps: 0.301946, avg_reader_cost: 1.49447 s, avg_batch_cost: 1.72595 s, avg_samples: 12.5, ips: 7.24241 samples/s, eta: 0:46:00
[2024/07/27 22:53:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:53:23] ppocr INFO: epoch: [67/200], global_step: 200, lr: 0.001000, loss: 2.664440, loss_shrink_maps: 1.578102, loss_threshold_maps: 0.784868, loss_binary_maps: 0.297335, avg_reader_cost: 1.05292 s, avg_batch_cost: 1.23388 s, avg_samples: 9.6, ips: 7.78034 samples/s, eta: 0:45:43
[2024/07/27 22:53:24] ppocr INFO: epoch: [67/200], global_step: 201, lr: 0.001000, loss: 2.672901, loss_shrink_maps: 1.591697, loss_threshold_maps: 0.787440, loss_binary_maps: 0.301946, avg_reader_cost: 0.66316 s, avg_batch_cost: 0.71743 s, avg_samples: 2.9, ips: 4.04223 samples/s, eta: 0:45:37
[2024/07/27 22:53:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:53:31] ppocr INFO: epoch: [68/200], global_step: 204, lr: 0.001000, loss: 2.669932, loss_shrink_maps: 1.578102, loss_threshold_maps: 0.784868, loss_binary_maps: 0.301946, avg_reader_cost: 1.56376 s, avg_batch_cost: 1.85209 s, avg_samples: 12.5, ips: 6.74912 samples/s, eta: 0:45:12
[2024/07/27 22:53:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:53:38] ppocr INFO: epoch: [69/200], global_step: 207, lr: 0.001000, loss: 2.669932, loss_shrink_maps: 1.578102, loss_threshold_maps: 0.783410, loss_binary_maps: 0.301946, avg_reader_cost: 1.50533 s, avg_batch_cost: 1.73707 s, avg_samples: 12.5, ips: 7.19604 samples/s, eta: 0:44:46
[2024/07/27 22:53:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:53:46] ppocr INFO: epoch: [70/200], global_step: 210, lr: 0.001000, loss: 2.641843, loss_shrink_maps: 1.557222, loss_threshold_maps: 0.785152, loss_binary_maps: 0.293117, avg_reader_cost: 1.56459 s, avg_batch_cost: 1.81472 s, avg_samples: 12.5, ips: 6.88810 samples/s, eta: 0:44:21
[2024/07/27 22:53:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:53:53] ppocr INFO: epoch: [71/200], global_step: 213, lr: 0.001000, loss: 2.580212, loss_shrink_maps: 1.527909, loss_threshold_maps: 0.775341, loss_binary_maps: 0.286117, avg_reader_cost: 1.52201 s, avg_batch_cost: 1.75511 s, avg_samples: 12.5, ips: 7.12205 samples/s, eta: 0:43:55
[2024/07/27 22:53:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:54:00] ppocr INFO: epoch: [72/200], global_step: 216, lr: 0.001000, loss: 2.527924, loss_shrink_maps: 1.483813, loss_threshold_maps: 0.774889, loss_binary_maps: 0.286094, avg_reader_cost: 1.52074 s, avg_batch_cost: 1.74992 s, avg_samples: 12.5, ips: 7.14319 samples/s, eta: 0:43:29
[2024/07/27 22:54:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:54:07] ppocr INFO: epoch: [73/200], global_step: 219, lr: 0.001000, loss: 2.538662, loss_shrink_maps: 1.483813, loss_threshold_maps: 0.778675, loss_binary_maps: 0.286094, avg_reader_cost: 1.52922 s, avg_batch_cost: 1.75886 s, avg_samples: 12.5, ips: 7.10690 samples/s, eta: 0:43:04
[2024/07/27 22:54:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:54:13] ppocr INFO: epoch: [74/200], global_step: 220, lr: 0.001000, loss: 2.538662, loss_shrink_maps: 1.483813, loss_threshold_maps: 0.778675, loss_binary_maps: 0.286094, avg_reader_cost: 0.42019 s, avg_batch_cost: 0.50402 s, avg_samples: 4.8, ips: 9.52340 samples/s, eta: 0:42:54
[2024/07/27 22:54:14] ppocr INFO: epoch: [74/200], global_step: 222, lr: 0.001000, loss: 2.528662, loss_shrink_maps: 1.483128, loss_threshold_maps: 0.775469, loss_binary_maps: 0.286094, avg_reader_cost: 1.09905 s, avg_batch_cost: 1.24455 s, avg_samples: 7.7, ips: 6.18697 samples/s, eta: 0:42:39
[2024/07/27 22:54:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:54:22] ppocr INFO: epoch: [75/200], global_step: 225, lr: 0.001000, loss: 2.511218, loss_shrink_maps: 1.454382, loss_threshold_maps: 0.775469, loss_binary_maps: 0.284236, avg_reader_cost: 1.52484 s, avg_batch_cost: 1.75410 s, avg_samples: 12.5, ips: 7.12616 samples/s, eta: 0:42:14
[2024/07/27 22:54:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:54:29] ppocr INFO: epoch: [76/200], global_step: 228, lr: 0.001000, loss: 2.489786, loss_shrink_maps: 1.436770, loss_threshold_maps: 0.770664, loss_binary_maps: 0.278647, avg_reader_cost: 1.54290 s, avg_batch_cost: 1.79447 s, avg_samples: 12.5, ips: 6.96584 samples/s, eta: 0:41:50
[2024/07/27 22:54:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:54:35] ppocr INFO: epoch: [77/200], global_step: 230, lr: 0.001000, loss: 2.489786, loss_shrink_maps: 1.436770, loss_threshold_maps: 0.770664, loss_binary_maps: 0.278647, avg_reader_cost: 0.93753 s, avg_batch_cost: 1.11063 s, avg_samples: 9.6, ips: 8.64377 samples/s, eta: 0:41:33
[2024/07/27 22:54:36] ppocr INFO: epoch: [77/200], global_step: 231, lr: 0.001000, loss: 2.489786, loss_shrink_maps: 1.436770, loss_threshold_maps: 0.766299, loss_binary_maps: 0.278647, avg_reader_cost: 0.60096 s, avg_batch_cost: 0.65599 s, avg_samples: 2.9, ips: 4.42082 samples/s, eta: 0:41:26
[2024/07/27 22:54:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:54:43] ppocr INFO: epoch: [78/200], global_step: 234, lr: 0.001000, loss: 2.461014, loss_shrink_maps: 1.422646, loss_threshold_maps: 0.770664, loss_binary_maps: 0.275255, avg_reader_cost: 1.52691 s, avg_batch_cost: 1.77804 s, avg_samples: 12.5, ips: 7.03021 samples/s, eta: 0:41:02
[2024/07/27 22:54:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:54:50] ppocr INFO: epoch: [79/200], global_step: 237, lr: 0.001000, loss: 2.447735, loss_shrink_maps: 1.422646, loss_threshold_maps: 0.763517, loss_binary_maps: 0.275255, avg_reader_cost: 1.53971 s, avg_batch_cost: 1.76882 s, avg_samples: 12.5, ips: 7.06686 samples/s, eta: 0:40:38
[2024/07/27 22:54:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:54:58] ppocr INFO: epoch: [80/200], global_step: 240, lr: 0.001000, loss: 2.426032, loss_shrink_maps: 1.415533, loss_threshold_maps: 0.755503, loss_binary_maps: 0.274593, avg_reader_cost: 1.53347 s, avg_batch_cost: 1.80495 s, avg_samples: 12.5, ips: 6.92542 samples/s, eta: 0:40:14

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 2/500 [00:00<00:37, 13.21it/s]
eval model::   1%|          | 5/500 [00:00<00:26, 18.62it/s]
eval model::   1%|▏         | 7/500 [00:00<00:26, 18.90it/s]
eval model::   2%|▏         | 10/500 [00:00<00:24, 19.94it/s]
eval model::   3%|▎         | 13/500 [00:00<00:25, 19.42it/s]
eval model::   3%|▎         | 15/500 [00:00<00:27, 17.80it/s]
eval model::   4%|▎         | 18/500 [00:00<00:23, 20.22it/s]
eval model::   4%|▍         | 21/500 [00:01<00:24, 19.74it/s]
eval model::   5%|▍         | 24/500 [00:01<00:23, 20.36it/s]
eval model::   5%|▌         | 27/500 [00:01<00:23, 19.80it/s]
eval model::   6%|▌         | 30/500 [00:01<00:23, 20.34it/s]
eval model::   7%|▋         | 33/500 [00:01<00:23, 19.46it/s]
eval model::   7%|▋         | 35/500 [00:01<00:24, 18.68it/s]
eval model::   8%|▊         | 38/500 [00:01<00:25, 18.18it/s]
eval model::   8%|▊         | 41/500 [00:02<00:23, 19.68it/s]
eval model::   9%|▉         | 44/500 [00:02<00:21, 20.94it/s]
eval model::   9%|▉         | 47/500 [00:02<00:21, 20.88it/s]
eval model::  10%|█         | 51/500 [00:02<00:19, 23.44it/s]
eval model::  11%|█         | 54/500 [00:02<00:19, 22.66it/s]
eval model::  11%|█▏        | 57/500 [00:02<00:20, 21.81it/s]
eval model::  12%|█▏        | 60/500 [00:03<00:22, 19.30it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:27, 16.09it/s]
eval model::  13%|█▎        | 64/500 [00:03<00:26, 16.44it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:23, 18.53it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:23, 18.48it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:21, 19.56it/s]
eval model::  15%|█▌        | 75/500 [00:03<00:21, 19.65it/s]
eval model::  15%|█▌        | 77/500 [00:03<00:22, 18.48it/s]
eval model::  16%|█▌        | 80/500 [00:04<00:20, 20.75it/s]
eval model::  17%|█▋        | 83/500 [00:04<00:20, 20.62it/s]
eval model::  17%|█▋        | 86/500 [00:04<00:20, 20.15it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:21, 19.38it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:21, 19.47it/s]
eval model::  19%|█▉        | 94/500 [00:04<00:19, 20.50it/s]
eval model::  19%|█▉        | 97/500 [00:04<00:18, 21.53it/s]
eval model::  20%|██        | 100/500 [00:05<00:18, 21.89it/s]
eval model::  21%|██        | 104/500 [00:05<00:17, 22.75it/s]
eval model::  21%|██▏       | 107/500 [00:05<00:16, 23.33it/s]
eval model::  22%|██▏       | 110/500 [00:05<00:18, 21.54it/s]
eval model::  23%|██▎       | 113/500 [00:05<00:16, 23.08it/s]
eval model::  23%|██▎       | 116/500 [00:05<00:17, 22.16it/s]
eval model::  24%|██▍       | 119/500 [00:05<00:18, 20.90it/s]
eval model::  24%|██▍       | 122/500 [00:06<00:19, 19.59it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:20, 18.44it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:19, 19.48it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:19, 18.59it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:20, 18.09it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:18, 20.26it/s]
eval model::  28%|██▊       | 138/500 [00:06<00:16, 21.95it/s]
eval model::  28%|██▊       | 141/500 [00:06<00:15, 23.09it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:16, 21.62it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:17, 20.26it/s]
eval model::  30%|███       | 150/500 [00:07<00:16, 21.62it/s]
eval model::  31%|███       | 153/500 [00:07<00:16, 20.57it/s]
eval model::  31%|███       | 156/500 [00:07<00:16, 21.38it/s]
eval model::  32%|███▏      | 159/500 [00:07<00:16, 20.77it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:17, 19.75it/s]
eval model::  33%|███▎      | 165/500 [00:08<00:16, 20.71it/s]
eval model::  34%|███▎      | 168/500 [00:08<00:15, 21.00it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:15, 21.35it/s]
eval model::  35%|███▍      | 174/500 [00:08<00:15, 20.52it/s]
eval model::  35%|███▌      | 177/500 [00:08<00:14, 21.77it/s]
eval model::  36%|███▌      | 180/500 [00:08<00:15, 20.31it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:15, 21.11it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:14, 21.08it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:14, 21.14it/s]
eval model::  38%|███▊      | 192/500 [00:09<00:15, 20.36it/s]
eval model::  39%|███▉      | 195/500 [00:09<00:17, 17.83it/s]
eval model::  39%|███▉      | 197/500 [00:09<00:17, 17.46it/s]
eval model::  40%|████      | 200/500 [00:09<00:15, 19.27it/s]
eval model::  41%|████      | 203/500 [00:10<00:14, 20.39it/s]
eval model::  41%|████      | 206/500 [00:10<00:21, 13.87it/s]
eval model::  42%|████▏     | 208/500 [00:10<00:21, 13.84it/s]
eval model::  42%|████▏     | 210/500 [00:10<00:20, 14.19it/s]
eval model::  43%|████▎     | 213/500 [00:10<00:18, 15.35it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:19, 14.56it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:19, 14.31it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:17, 16.23it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:18, 15.35it/s]
eval model::  45%|████▌     | 225/500 [00:11<00:14, 18.35it/s]
eval model::  46%|████▌     | 228/500 [00:11<00:13, 19.59it/s]
eval model::  46%|████▌     | 231/500 [00:11<00:12, 21.62it/s]
eval model::  47%|████▋     | 234/500 [00:11<00:12, 20.95it/s]
eval model::  47%|████▋     | 237/500 [00:12<00:11, 23.02it/s]
eval model::  48%|████▊     | 241/500 [00:12<00:10, 25.14it/s]
eval model::  49%|████▉     | 244/500 [00:12<00:11, 22.50it/s]
eval model::  50%|████▉     | 248/500 [00:12<00:10, 24.78it/s]
eval model::  50%|█████     | 251/500 [00:12<00:10, 22.77it/s]
eval model::  51%|█████     | 254/500 [00:12<00:10, 24.21it/s]
eval model::  51%|█████▏    | 257/500 [00:12<00:09, 25.09it/s]
eval model::  52%|█████▏    | 261/500 [00:13<00:08, 26.69it/s]
eval model::  53%|█████▎    | 264/500 [00:13<00:11, 20.71it/s]
eval model::  53%|█████▎    | 267/500 [00:13<00:11, 20.82it/s]
eval model::  54%|█████▍    | 270/500 [00:13<00:10, 22.67it/s]
eval model::  55%|█████▍    | 273/500 [00:13<00:11, 19.43it/s]
eval model::  55%|█████▌    | 276/500 [00:13<00:11, 19.39it/s]
eval model::  56%|█████▌    | 279/500 [00:13<00:11, 20.04it/s]
eval model::  56%|█████▋    | 282/500 [00:14<00:10, 20.36it/s]
eval model::  57%|█████▋    | 285/500 [00:14<00:14, 14.36it/s]
eval model::  58%|█████▊    | 288/500 [00:14<00:12, 16.86it/s]
eval model::  58%|█████▊    | 291/500 [00:14<00:10, 19.03it/s]
eval model::  59%|█████▉    | 294/500 [00:14<00:12, 17.15it/s]
eval model::  59%|█████▉    | 297/500 [00:15<00:12, 16.42it/s]
eval model::  60%|██████    | 300/500 [00:15<00:12, 16.00it/s]
eval model::  60%|██████    | 302/500 [00:15<00:11, 16.55it/s]
eval model::  61%|██████    | 304/500 [00:15<00:11, 17.12it/s]
eval model::  61%|██████▏   | 307/500 [00:15<00:09, 19.34it/s]
eval model::  62%|██████▏   | 310/500 [00:15<00:09, 19.46it/s]
eval model::  63%|██████▎   | 313/500 [00:15<00:09, 19.26it/s]
eval model::  63%|██████▎   | 315/500 [00:16<00:09, 19.17it/s]
eval model::  64%|██████▎   | 318/500 [00:16<00:09, 19.86it/s]
eval model::  64%|██████▍   | 321/500 [00:16<00:08, 21.52it/s]
eval model::  65%|██████▍   | 324/500 [00:16<00:08, 21.05it/s]
eval model::  65%|██████▌   | 327/500 [00:16<00:08, 21.38it/s]
eval model::  66%|██████▌   | 330/500 [00:16<00:08, 20.70it/s]
eval model::  67%|██████▋   | 333/500 [00:16<00:08, 20.39it/s]
eval model::  67%|██████▋   | 336/500 [00:17<00:08, 18.92it/s]
eval model::  68%|██████▊   | 338/500 [00:17<00:08, 18.91it/s]
eval model::  68%|██████▊   | 340/500 [00:17<00:10, 15.41it/s]
eval model::  69%|██████▊   | 343/500 [00:17<00:09, 17.36it/s]
eval model::  69%|██████▉   | 346/500 [00:17<00:07, 19.69it/s]
eval model::  70%|██████▉   | 349/500 [00:17<00:07, 20.79it/s]
eval model::  70%|███████   | 352/500 [00:17<00:07, 19.56it/s]
eval model::  71%|███████   | 355/500 [00:18<00:07, 18.49it/s]
eval model::  71%|███████▏  | 357/500 [00:18<00:07, 18.10it/s]
eval model::  72%|███████▏  | 359/500 [00:18<00:08, 17.58it/s]
eval model::  72%|███████▏  | 361/500 [00:18<00:07, 17.44it/s]
eval model::  73%|███████▎  | 364/500 [00:18<00:07, 17.14it/s]
eval model::  73%|███████▎  | 367/500 [00:18<00:07, 18.51it/s]
eval model::  74%|███████▍  | 369/500 [00:18<00:07, 18.44it/s]
eval model::  74%|███████▍  | 372/500 [00:19<00:06, 19.45it/s]
eval model::  75%|███████▌  | 375/500 [00:19<00:06, 19.66it/s]
eval model::  76%|███████▌  | 378/500 [00:19<00:05, 20.93it/s]
eval model::  76%|███████▌  | 381/500 [00:19<00:05, 20.03it/s]
eval model::  77%|███████▋  | 384/500 [00:19<00:05, 20.49it/s]
eval model::  77%|███████▋  | 387/500 [00:19<00:07, 15.12it/s]
eval model::  78%|███████▊  | 390/500 [00:20<00:06, 17.74it/s]
eval model::  79%|███████▊  | 393/500 [00:20<00:05, 19.56it/s]
eval model::  79%|███████▉  | 396/500 [00:20<00:05, 19.56it/s]
eval model::  80%|███████▉  | 399/500 [00:20<00:04, 20.61it/s]
eval model::  80%|████████  | 402/500 [00:20<00:04, 20.64it/s]
eval model::  81%|████████  | 405/500 [00:20<00:04, 22.67it/s]
eval model::  82%|████████▏ | 408/500 [00:20<00:04, 22.93it/s]
eval model::  82%|████████▏ | 411/500 [00:20<00:04, 21.33it/s]
eval model::  83%|████████▎ | 414/500 [00:21<00:04, 20.47it/s]
eval model::  83%|████████▎ | 417/500 [00:21<00:04, 18.94it/s]
eval model::  84%|████████▍ | 420/500 [00:21<00:04, 17.27it/s]
eval model::  85%|████████▍ | 423/500 [00:21<00:04, 18.69it/s]
eval model::  85%|████████▌ | 425/500 [00:21<00:04, 18.36it/s]
eval model::  86%|████████▌ | 429/500 [00:21<00:03, 22.61it/s]
eval model::  86%|████████▋ | 432/500 [00:21<00:02, 24.33it/s]
eval model::  87%|████████▋ | 436/500 [00:22<00:02, 27.66it/s]
eval model::  88%|████████▊ | 439/500 [00:22<00:02, 25.55it/s]
eval model::  88%|████████▊ | 442/500 [00:22<00:02, 23.23it/s]
eval model::  89%|████████▉ | 445/500 [00:22<00:02, 22.61it/s]
eval model::  90%|████████▉ | 448/500 [00:22<00:02, 20.76it/s]
eval model::  90%|█████████ | 451/500 [00:22<00:02, 22.10it/s]
eval model::  91%|█████████ | 454/500 [00:22<00:01, 23.40it/s]
eval model::  91%|█████████▏| 457/500 [00:23<00:01, 24.04it/s]
eval model::  92%|█████████▏| 460/500 [00:23<00:01, 23.65it/s]
eval model::  93%|█████████▎| 463/500 [00:23<00:01, 21.55it/s]
eval model::  93%|█████████▎| 466/500 [00:23<00:01, 19.64it/s]
eval model::  94%|█████████▍| 469/500 [00:23<00:01, 21.87it/s]
eval model::  94%|█████████▍| 472/500 [00:23<00:01, 21.29it/s]
eval model::  95%|█████████▌| 475/500 [00:23<00:01, 22.70it/s]
eval model::  96%|█████████▌| 478/500 [00:24<00:00, 22.55it/s]
eval model::  96%|█████████▌| 481/500 [00:24<00:00, 24.06it/s]
eval model::  97%|█████████▋| 484/500 [00:24<00:00, 24.24it/s]
eval model::  97%|█████████▋| 487/500 [00:24<00:00, 21.32it/s]
eval model::  98%|█████████▊| 490/500 [00:24<00:00, 20.50it/s]
eval model::  99%|█████████▊| 493/500 [00:24<00:00, 20.85it/s]
eval model::  99%|█████████▉| 496/500 [00:24<00:00, 20.57it/s]
eval model:: 100%|█████████▉| 499/500 [00:25<00:00, 20.13it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.92it/s]
[2024/07/27 22:55:23] ppocr INFO: cur metric, precision: 0.5894511760513186, recall: 0.39817043813192105, hmean: 0.47528735632183905, fps: 45.44820460204594
[2024/07/27 22:55:23] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/27 22:55:23] ppocr INFO: best metric, hmean: 0.47528735632183905, precision: 0.5894511760513186, recall: 0.39817043813192105, fps: 45.44820460204594, best_epoch: 80
[2024/07/27 22:55:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:55:30] ppocr INFO: epoch: [81/200], global_step: 243, lr: 0.001000, loss: 2.413708, loss_shrink_maps: 1.393320, loss_threshold_maps: 0.762523, loss_binary_maps: 0.270839, avg_reader_cost: 1.65188 s, avg_batch_cost: 1.93480 s, avg_samples: 12.5, ips: 6.46061 samples/s, eta: 0:39:53
[2024/07/27 22:55:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:55:38] ppocr INFO: epoch: [82/200], global_step: 246, lr: 0.001000, loss: 2.407914, loss_shrink_maps: 1.384549, loss_threshold_maps: 0.738498, loss_binary_maps: 0.268179, avg_reader_cost: 1.52385 s, avg_batch_cost: 1.76864 s, avg_samples: 12.5, ips: 7.06757 samples/s, eta: 0:39:29
[2024/07/27 22:55:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:55:45] ppocr INFO: epoch: [83/200], global_step: 249, lr: 0.001000, loss: 2.401487, loss_shrink_maps: 1.370736, loss_threshold_maps: 0.746446, loss_binary_maps: 0.267107, avg_reader_cost: 1.49902 s, avg_batch_cost: 1.73194 s, avg_samples: 12.5, ips: 7.21734 samples/s, eta: 0:39:05
[2024/07/27 22:55:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:55:51] ppocr INFO: epoch: [84/200], global_step: 250, lr: 0.001000, loss: 2.413314, loss_shrink_maps: 1.384549, loss_threshold_maps: 0.755885, loss_binary_maps: 0.268179, avg_reader_cost: 0.38855 s, avg_batch_cost: 0.55387 s, avg_samples: 4.8, ips: 8.66622 samples/s, eta: 0:38:57
[2024/07/27 22:55:52] ppocr INFO: epoch: [84/200], global_step: 252, lr: 0.001000, loss: 2.380627, loss_shrink_maps: 1.354594, loss_threshold_maps: 0.755885, loss_binary_maps: 0.265598, avg_reader_cost: 1.19909 s, avg_batch_cost: 1.34490 s, avg_samples: 7.7, ips: 5.72535 samples/s, eta: 0:38:44
[2024/07/27 22:55:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:56:00] ppocr INFO: epoch: [85/200], global_step: 255, lr: 0.001000, loss: 2.380627, loss_shrink_maps: 1.365031, loss_threshold_maps: 0.746446, loss_binary_maps: 0.266738, avg_reader_cost: 1.65561 s, avg_batch_cost: 1.88336 s, avg_samples: 12.5, ips: 6.63706 samples/s, eta: 0:38:22
[2024/07/27 22:56:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:56:07] ppocr INFO: epoch: [86/200], global_step: 258, lr: 0.001000, loss: 2.358946, loss_shrink_maps: 1.354594, loss_threshold_maps: 0.752293, loss_binary_maps: 0.265027, avg_reader_cost: 1.53284 s, avg_batch_cost: 1.76277 s, avg_samples: 12.5, ips: 7.09111 samples/s, eta: 0:37:59
[2024/07/27 22:56:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:56:14] ppocr INFO: epoch: [87/200], global_step: 260, lr: 0.001000, loss: 2.358946, loss_shrink_maps: 1.354594, loss_threshold_maps: 0.752293, loss_binary_maps: 0.265027, avg_reader_cost: 0.91586 s, avg_batch_cost: 1.14909 s, avg_samples: 9.6, ips: 8.35442 samples/s, eta: 0:37:43
[2024/07/27 22:56:15] ppocr INFO: epoch: [87/200], global_step: 261, lr: 0.001000, loss: 2.358946, loss_shrink_maps: 1.365031, loss_threshold_maps: 0.752293, loss_binary_maps: 0.266738, avg_reader_cost: 0.62055 s, avg_batch_cost: 0.67539 s, avg_samples: 2.9, ips: 4.29384 samples/s, eta: 0:37:37
[2024/07/27 22:56:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:56:22] ppocr INFO: epoch: [88/200], global_step: 264, lr: 0.001000, loss: 2.344645, loss_shrink_maps: 1.353956, loss_threshold_maps: 0.752293, loss_binary_maps: 0.265027, avg_reader_cost: 1.55293 s, avg_batch_cost: 1.79349 s, avg_samples: 12.5, ips: 6.96967 samples/s, eta: 0:37:14
[2024/07/27 22:56:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:56:30] ppocr INFO: epoch: [89/200], global_step: 267, lr: 0.001000, loss: 2.347100, loss_shrink_maps: 1.353956, loss_threshold_maps: 0.740899, loss_binary_maps: 0.265027, avg_reader_cost: 1.62962 s, avg_batch_cost: 1.89718 s, avg_samples: 12.5, ips: 6.58874 samples/s, eta: 0:36:53
[2024/07/27 22:56:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:56:37] ppocr INFO: epoch: [90/200], global_step: 270, lr: 0.001000, loss: 2.347100, loss_shrink_maps: 1.350423, loss_threshold_maps: 0.742010, loss_binary_maps: 0.264234, avg_reader_cost: 1.54797 s, avg_batch_cost: 1.77743 s, avg_samples: 12.5, ips: 7.03263 samples/s, eta: 0:36:30
[2024/07/27 22:56:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:56:44] ppocr INFO: epoch: [91/200], global_step: 273, lr: 0.001000, loss: 2.384087, loss_shrink_maps: 1.377540, loss_threshold_maps: 0.738346, loss_binary_maps: 0.269044, avg_reader_cost: 1.58510 s, avg_batch_cost: 1.81392 s, avg_samples: 12.5, ips: 6.89114 samples/s, eta: 0:36:08
[2024/07/27 22:56:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:56:52] ppocr INFO: epoch: [92/200], global_step: 276, lr: 0.001000, loss: 2.357289, loss_shrink_maps: 1.325421, loss_threshold_maps: 0.742010, loss_binary_maps: 0.261328, avg_reader_cost: 1.76000 s, avg_batch_cost: 1.98832 s, avg_samples: 12.5, ips: 6.28671 samples/s, eta: 0:35:48
[2024/07/27 22:56:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:57:00] ppocr INFO: epoch: [93/200], global_step: 279, lr: 0.001000, loss: 2.375874, loss_shrink_maps: 1.357206, loss_threshold_maps: 0.742010, loss_binary_maps: 0.268044, avg_reader_cost: 1.54059 s, avg_batch_cost: 1.77125 s, avg_samples: 12.5, ips: 7.05717 samples/s, eta: 0:35:26
[2024/07/27 22:57:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:57:06] ppocr INFO: epoch: [94/200], global_step: 280, lr: 0.001000, loss: 2.357289, loss_shrink_maps: 1.325421, loss_threshold_maps: 0.742010, loss_binary_maps: 0.261328, avg_reader_cost: 0.40670 s, avg_batch_cost: 0.51694 s, avg_samples: 4.8, ips: 9.28549 samples/s, eta: 0:35:18
[2024/07/27 22:57:07] ppocr INFO: epoch: [94/200], global_step: 282, lr: 0.001000, loss: 2.303834, loss_shrink_maps: 1.307159, loss_threshold_maps: 0.737994, loss_binary_maps: 0.257220, avg_reader_cost: 1.12606 s, avg_batch_cost: 1.27107 s, avg_samples: 7.7, ips: 6.05788 samples/s, eta: 0:35:04
[2024/07/27 22:57:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:57:14] ppocr INFO: epoch: [95/200], global_step: 285, lr: 0.001000, loss: 2.311686, loss_shrink_maps: 1.303561, loss_threshold_maps: 0.737994, loss_binary_maps: 0.256632, avg_reader_cost: 1.54104 s, avg_batch_cost: 1.78521 s, avg_samples: 12.5, ips: 7.00199 samples/s, eta: 0:34:42
[2024/07/27 22:57:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:57:22] ppocr INFO: epoch: [96/200], global_step: 288, lr: 0.001000, loss: 2.311686, loss_shrink_maps: 1.303561, loss_threshold_maps: 0.737994, loss_binary_maps: 0.256632, avg_reader_cost: 1.56378 s, avg_batch_cost: 1.83825 s, avg_samples: 12.5, ips: 6.79993 samples/s, eta: 0:34:20
[2024/07/27 22:57:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:57:29] ppocr INFO: epoch: [97/200], global_step: 290, lr: 0.001000, loss: 2.234694, loss_shrink_maps: 1.275660, loss_threshold_maps: 0.732614, loss_binary_maps: 0.251646, avg_reader_cost: 0.92867 s, avg_batch_cost: 1.10644 s, avg_samples: 9.6, ips: 8.67646 samples/s, eta: 0:34:05
[2024/07/27 22:57:29] ppocr INFO: epoch: [97/200], global_step: 291, lr: 0.001000, loss: 2.234694, loss_shrink_maps: 1.273227, loss_threshold_maps: 0.732614, loss_binary_maps: 0.249761, avg_reader_cost: 0.59887 s, avg_batch_cost: 0.65388 s, avg_samples: 2.9, ips: 4.43509 samples/s, eta: 0:33:58
[2024/07/27 22:57:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:57:36] ppocr INFO: epoch: [98/200], global_step: 294, lr: 0.001000, loss: 2.229774, loss_shrink_maps: 1.275477, loss_threshold_maps: 0.739655, loss_binary_maps: 0.250321, avg_reader_cost: 1.55785 s, avg_batch_cost: 1.81880 s, avg_samples: 12.5, ips: 6.87266 samples/s, eta: 0:33:37
[2024/07/27 22:57:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:57:44] ppocr INFO: epoch: [99/200], global_step: 297, lr: 0.001000, loss: 2.229774, loss_shrink_maps: 1.275477, loss_threshold_maps: 0.739655, loss_binary_maps: 0.250321, avg_reader_cost: 1.51688 s, avg_batch_cost: 1.75537 s, avg_samples: 12.5, ips: 7.12102 samples/s, eta: 0:33:15
[2024/07/27 22:57:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:57:51] ppocr INFO: epoch: [100/200], global_step: 300, lr: 0.001000, loss: 2.217878, loss_shrink_maps: 1.250502, loss_threshold_maps: 0.739655, loss_binary_maps: 0.245927, avg_reader_cost: 1.63054 s, avg_batch_cost: 1.88173 s, avg_samples: 12.5, ips: 6.64281 samples/s, eta: 0:32:54

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:58,  8.52it/s]
eval model::   1%|          | 4/500 [00:00<00:29, 17.02it/s]
eval model::   1%|▏         | 7/500 [00:00<00:26, 18.85it/s]
eval model::   2%|▏         | 9/500 [00:00<00:30, 15.90it/s]
eval model::   2%|▏         | 11/500 [00:00<00:33, 14.55it/s]
eval model::   3%|▎         | 13/500 [00:00<00:30, 15.72it/s]
eval model::   3%|▎         | 15/500 [00:00<00:29, 16.46it/s]
eval model::   4%|▎         | 18/500 [00:01<00:25, 19.10it/s]
eval model::   4%|▍         | 20/500 [00:01<00:27, 17.41it/s]
eval model::   5%|▍         | 23/500 [00:01<00:23, 20.37it/s]
eval model::   5%|▌         | 26/500 [00:01<00:22, 21.12it/s]
eval model::   6%|▌         | 29/500 [00:01<00:20, 23.03it/s]
eval model::   6%|▋         | 32/500 [00:01<00:20, 22.73it/s]
eval model::   7%|▋         | 35/500 [00:01<00:21, 21.97it/s]
eval model::   8%|▊         | 38/500 [00:01<00:21, 21.01it/s]
eval model::   8%|▊         | 41/500 [00:02<00:22, 20.26it/s]
eval model::   9%|▉         | 44/500 [00:02<00:24, 18.53it/s]
eval model::   9%|▉         | 46/500 [00:02<00:26, 17.08it/s]
eval model::  10%|█         | 50/500 [00:02<00:22, 19.61it/s]
eval model::  10%|█         | 52/500 [00:02<00:23, 19.25it/s]
eval model::  11%|█         | 55/500 [00:02<00:21, 21.12it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:23, 19.03it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:24, 17.78it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:25, 17.08it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:22, 19.68it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:20, 21.38it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:19, 22.28it/s]
eval model::  15%|█▌        | 75/500 [00:03<00:20, 20.88it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:20, 20.57it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:20, 20.94it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:20, 20.41it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:21, 19.17it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:22, 18.49it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:22, 18.50it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:23, 17.56it/s]
eval model::  19%|█▉        | 95/500 [00:04<00:22, 17.91it/s]
eval model::  20%|█▉        | 98/500 [00:05<00:20, 19.22it/s]
eval model::  20%|██        | 100/500 [00:05<00:21, 18.65it/s]
eval model::  21%|██        | 103/500 [00:05<00:18, 20.91it/s]
eval model::  21%|██        | 106/500 [00:05<00:17, 22.53it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:18, 20.68it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:20, 18.94it/s]
eval model::  23%|██▎       | 115/500 [00:05<00:18, 20.58it/s]
eval model::  24%|██▎       | 118/500 [00:06<00:17, 21.41it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:20, 18.78it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:18, 20.33it/s]
eval model::  25%|██▌       | 127/500 [00:06<00:18, 20.58it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:21, 16.95it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:21, 17.24it/s]
eval model::  27%|██▋       | 135/500 [00:07<00:19, 18.59it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:18, 19.48it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:18, 19.92it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:17, 20.32it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:16, 20.95it/s]
eval model::  30%|███       | 150/500 [00:07<00:16, 21.30it/s]
eval model::  31%|███       | 153/500 [00:07<00:16, 21.08it/s]
eval model::  31%|███       | 156/500 [00:07<00:15, 22.74it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:15, 21.45it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:20, 16.40it/s]
eval model::  33%|███▎      | 165/500 [00:08<00:18, 17.64it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:18, 18.06it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:18, 18.28it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:17, 18.42it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:18, 17.36it/s]
eval model::  35%|███▌      | 177/500 [00:09<00:17, 18.87it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:18, 17.78it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:16, 19.75it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:14, 21.16it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:14, 21.13it/s]
eval model::  38%|███▊      | 192/500 [00:09<00:15, 19.75it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:17, 17.45it/s]
eval model::  39%|███▉      | 197/500 [00:10<00:17, 17.42it/s]
eval model::  40%|████      | 200/500 [00:10<00:15, 19.10it/s]
eval model::  41%|████      | 203/500 [00:10<00:15, 19.53it/s]
eval model::  41%|████      | 206/500 [00:10<00:21, 13.47it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:21, 13.71it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:20, 14.24it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.62it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:19, 14.31it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:21, 13.32it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:18, 15.51it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:18, 15.37it/s]
eval model::  45%|████▌     | 225/500 [00:12<00:15, 17.93it/s]
eval model::  46%|████▌     | 228/500 [00:12<00:14, 19.40it/s]
eval model::  46%|████▌     | 231/500 [00:12<00:12, 21.18it/s]
eval model::  47%|████▋     | 234/500 [00:12<00:12, 21.01it/s]
eval model::  47%|████▋     | 237/500 [00:12<00:12, 21.80it/s]
eval model::  48%|████▊     | 240/500 [00:12<00:11, 23.01it/s]
eval model::  49%|████▊     | 243/500 [00:12<00:12, 20.55it/s]
eval model::  49%|████▉     | 246/500 [00:12<00:11, 22.42it/s]
eval model::  50%|████▉     | 249/500 [00:13<00:11, 21.85it/s]
eval model::  50%|█████     | 252/500 [00:13<00:12, 19.14it/s]
eval model::  51%|█████     | 255/500 [00:13<00:11, 21.13it/s]
eval model::  52%|█████▏    | 258/500 [00:13<00:10, 22.28it/s]
eval model::  52%|█████▏    | 261/500 [00:13<00:11, 20.08it/s]
eval model::  53%|█████▎    | 264/500 [00:13<00:12, 18.17it/s]
eval model::  53%|█████▎    | 266/500 [00:14<00:12, 18.45it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:11, 19.29it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:11, 20.25it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:11, 20.32it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:10, 21.40it/s]
eval model::  56%|█████▌    | 281/500 [00:14<00:09, 22.02it/s]
eval model::  57%|█████▋    | 284/500 [00:14<00:09, 22.87it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:12, 16.44it/s]
eval model::  58%|█████▊    | 290/500 [00:15<00:11, 18.86it/s]
eval model::  59%|█████▊    | 293/500 [00:15<00:10, 19.44it/s]
eval model::  59%|█████▉    | 296/500 [00:15<00:11, 17.02it/s]
eval model::  60%|█████▉    | 299/500 [00:15<00:10, 18.79it/s]
eval model::  60%|██████    | 302/500 [00:15<00:11, 17.73it/s]
eval model::  61%|██████    | 305/500 [00:16<00:10, 18.61it/s]
eval model::  62%|██████▏   | 308/500 [00:16<00:10, 19.02it/s]
eval model::  62%|██████▏   | 311/500 [00:16<00:09, 19.61it/s]
eval model::  63%|██████▎   | 314/500 [00:16<00:09, 20.06it/s]
eval model::  63%|██████▎   | 317/500 [00:16<00:08, 21.31it/s]
eval model::  64%|██████▍   | 320/500 [00:16<00:07, 22.59it/s]
eval model::  65%|██████▍   | 323/500 [00:16<00:08, 20.82it/s]
eval model::  65%|██████▌   | 326/500 [00:17<00:07, 22.08it/s]
eval model::  66%|██████▌   | 329/500 [00:17<00:08, 21.14it/s]
eval model::  66%|██████▋   | 332/500 [00:17<00:07, 22.78it/s]
eval model::  67%|██████▋   | 335/500 [00:17<00:07, 22.78it/s]
eval model::  68%|██████▊   | 338/500 [00:17<00:07, 21.43it/s]
eval model::  68%|██████▊   | 341/500 [00:17<00:09, 16.99it/s]
eval model::  69%|██████▉   | 344/500 [00:17<00:08, 19.41it/s]
eval model::  70%|██████▉   | 348/500 [00:18<00:06, 22.29it/s]
eval model::  70%|███████   | 351/500 [00:18<00:06, 21.69it/s]
eval model::  71%|███████   | 355/500 [00:18<00:06, 21.90it/s]
eval model::  72%|███████▏  | 358/500 [00:18<00:06, 21.79it/s]
eval model::  72%|███████▏  | 361/500 [00:18<00:06, 21.75it/s]
eval model::  73%|███████▎  | 364/500 [00:18<00:06, 20.50it/s]
eval model::  73%|███████▎  | 367/500 [00:19<00:06, 19.33it/s]
eval model::  74%|███████▍  | 370/500 [00:19<00:06, 20.85it/s]
eval model::  75%|███████▍  | 373/500 [00:19<00:06, 20.45it/s]
eval model::  75%|███████▌  | 376/500 [00:19<00:06, 20.63it/s]
eval model::  76%|███████▌  | 379/500 [00:19<00:05, 21.35it/s]
eval model::  76%|███████▋  | 382/500 [00:19<00:05, 22.04it/s]
eval model::  77%|███████▋  | 385/500 [00:19<00:05, 20.75it/s]
eval model::  78%|███████▊  | 388/500 [00:20<00:07, 14.22it/s]
eval model::  78%|███████▊  | 391/500 [00:20<00:06, 16.29it/s]
eval model::  79%|███████▊  | 393/500 [00:20<00:06, 16.86it/s]
eval model::  79%|███████▉  | 395/500 [00:20<00:06, 17.09it/s]
eval model::  79%|███████▉  | 397/500 [00:20<00:05, 17.63it/s]
eval model::  80%|████████  | 400/500 [00:20<00:05, 18.00it/s]
eval model::  81%|████████  | 404/500 [00:20<00:04, 20.89it/s]
eval model::  81%|████████▏ | 407/500 [00:21<00:04, 22.41it/s]
eval model::  82%|████████▏ | 411/500 [00:21<00:03, 24.11it/s]
eval model::  83%|████████▎ | 414/500 [00:21<00:03, 25.29it/s]
eval model::  83%|████████▎ | 417/500 [00:21<00:03, 22.43it/s]
eval model::  84%|████████▍ | 420/500 [00:21<00:04, 18.54it/s]
eval model::  85%|████████▍ | 423/500 [00:21<00:03, 19.34it/s]
eval model::  85%|████████▌ | 426/500 [00:22<00:03, 18.93it/s]
eval model::  86%|████████▌ | 429/500 [00:22<00:03, 20.33it/s]
eval model::  86%|████████▋ | 432/500 [00:22<00:03, 19.86it/s]
eval model::  87%|████████▋ | 435/500 [00:22<00:03, 21.31it/s]
eval model::  88%|████████▊ | 438/500 [00:22<00:02, 21.25it/s]
eval model::  88%|████████▊ | 441/500 [00:22<00:02, 19.78it/s]
eval model::  89%|████████▉ | 444/500 [00:22<00:02, 21.06it/s]
eval model::  89%|████████▉ | 447/500 [00:23<00:02, 20.79it/s]
eval model::  90%|█████████ | 450/500 [00:23<00:02, 20.79it/s]
eval model::  91%|█████████ | 453/500 [00:23<00:02, 22.03it/s]
eval model::  91%|█████████ | 456/500 [00:23<00:02, 21.68it/s]
eval model::  92%|█████████▏| 459/500 [00:23<00:01, 21.27it/s]
eval model::  92%|█████████▏| 462/500 [00:23<00:02, 18.18it/s]
eval model::  93%|█████████▎| 465/500 [00:23<00:02, 16.90it/s]
eval model::  94%|█████████▎| 468/500 [00:24<00:01, 17.70it/s]
eval model::  94%|█████████▍| 471/500 [00:24<00:01, 18.77it/s]
eval model::  95%|█████████▍| 474/500 [00:24<00:01, 18.68it/s]
eval model::  95%|█████████▌| 477/500 [00:24<00:01, 20.99it/s]
eval model::  96%|█████████▌| 480/500 [00:24<00:00, 21.26it/s]
eval model::  97%|█████████▋| 483/500 [00:24<00:00, 21.84it/s]
eval model::  97%|█████████▋| 486/500 [00:25<00:00, 19.36it/s]
eval model::  98%|█████████▊| 489/500 [00:25<00:00, 20.08it/s]
eval model::  98%|█████████▊| 492/500 [00:25<00:00, 20.84it/s]
eval model::  99%|█████████▉| 495/500 [00:25<00:00, 21.41it/s]
eval model:: 100%|█████████▉| 499/500 [00:25<00:00, 23.28it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.54it/s]
[2024/07/27 22:58:17] ppocr INFO: cur metric, precision: 0.5856142584341184, recall: 0.44294655753490614, hmean: 0.5043859649122808, fps: 45.04990682412584
[2024/07/27 22:58:17] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/27 22:58:17] ppocr INFO: best metric, hmean: 0.5043859649122808, precision: 0.5856142584341184, recall: 0.44294655753490614, fps: 45.04990682412584, best_epoch: 100
[2024/07/27 22:58:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:58:24] ppocr INFO: epoch: [101/200], global_step: 303, lr: 0.001000, loss: 2.185793, loss_shrink_maps: 1.230610, loss_threshold_maps: 0.724084, loss_binary_maps: 0.242696, avg_reader_cost: 1.63002 s, avg_batch_cost: 1.92717 s, avg_samples: 12.5, ips: 6.48620 samples/s, eta: 0:32:34
[2024/07/27 22:58:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:58:32] ppocr INFO: epoch: [102/200], global_step: 306, lr: 0.001000, loss: 2.214250, loss_shrink_maps: 1.243780, loss_threshold_maps: 0.738014, loss_binary_maps: 0.244770, avg_reader_cost: 1.55592 s, avg_batch_cost: 1.78454 s, avg_samples: 12.5, ips: 7.00461 samples/s, eta: 0:32:12
[2024/07/27 22:58:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:58:39] ppocr INFO: epoch: [103/200], global_step: 309, lr: 0.001000, loss: 2.214250, loss_shrink_maps: 1.247642, loss_threshold_maps: 0.733562, loss_binary_maps: 0.245231, avg_reader_cost: 1.49417 s, avg_batch_cost: 1.73004 s, avg_samples: 12.5, ips: 7.22526 samples/s, eta: 0:31:50
[2024/07/27 22:58:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:58:45] ppocr INFO: epoch: [104/200], global_step: 310, lr: 0.001000, loss: 2.214250, loss_shrink_maps: 1.247642, loss_threshold_maps: 0.738014, loss_binary_maps: 0.245231, avg_reader_cost: 0.41476 s, avg_batch_cost: 0.52622 s, avg_samples: 4.8, ips: 9.12167 samples/s, eta: 0:31:43
[2024/07/27 22:58:46] ppocr INFO: epoch: [104/200], global_step: 312, lr: 0.001000, loss: 2.199984, loss_shrink_maps: 1.237943, loss_threshold_maps: 0.735469, loss_binary_maps: 0.243349, avg_reader_cost: 1.14355 s, avg_batch_cost: 1.28896 s, avg_samples: 7.7, ips: 5.97382 samples/s, eta: 0:31:29
[2024/07/27 22:58:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:58:54] ppocr INFO: epoch: [105/200], global_step: 315, lr: 0.001000, loss: 2.175625, loss_shrink_maps: 1.217362, loss_threshold_maps: 0.725882, loss_binary_maps: 0.240560, avg_reader_cost: 1.52159 s, avg_batch_cost: 1.75023 s, avg_samples: 12.5, ips: 7.14191 samples/s, eta: 0:31:08
[2024/07/27 22:58:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:59:01] ppocr INFO: epoch: [106/200], global_step: 318, lr: 0.001000, loss: 2.147609, loss_shrink_maps: 1.197535, loss_threshold_maps: 0.715122, loss_binary_maps: 0.236154, avg_reader_cost: 1.52172 s, avg_batch_cost: 1.75422 s, avg_samples: 12.5, ips: 7.12566 samples/s, eta: 0:30:46
[2024/07/27 22:59:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:59:08] ppocr INFO: epoch: [107/200], global_step: 320, lr: 0.001000, loss: 2.147609, loss_shrink_maps: 1.197535, loss_threshold_maps: 0.719279, loss_binary_maps: 0.236154, avg_reader_cost: 0.95338 s, avg_batch_cost: 1.13005 s, avg_samples: 9.6, ips: 8.49519 samples/s, eta: 0:30:31
[2024/07/27 22:59:08] ppocr INFO: epoch: [107/200], global_step: 321, lr: 0.001000, loss: 2.130305, loss_shrink_maps: 1.184942, loss_threshold_maps: 0.719279, loss_binary_maps: 0.233893, avg_reader_cost: 0.61133 s, avg_batch_cost: 0.66560 s, avg_samples: 2.9, ips: 4.35699 samples/s, eta: 0:30:25
[2024/07/27 22:59:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:59:15] ppocr INFO: epoch: [108/200], global_step: 324, lr: 0.001000, loss: 2.189816, loss_shrink_maps: 1.218327, loss_threshold_maps: 0.730540, loss_binary_maps: 0.239622, avg_reader_cost: 1.51711 s, avg_batch_cost: 1.76710 s, avg_samples: 12.5, ips: 7.07373 samples/s, eta: 0:30:04
[2024/07/27 22:59:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:59:23] ppocr INFO: epoch: [109/200], global_step: 327, lr: 0.001000, loss: 2.157946, loss_shrink_maps: 1.200234, loss_threshold_maps: 0.723937, loss_binary_maps: 0.236510, avg_reader_cost: 1.55515 s, avg_batch_cost: 1.80805 s, avg_samples: 12.5, ips: 6.91352 samples/s, eta: 0:29:43
[2024/07/27 22:59:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:59:30] ppocr INFO: epoch: [110/200], global_step: 330, lr: 0.001000, loss: 2.197896, loss_shrink_maps: 1.224333, loss_threshold_maps: 0.722624, loss_binary_maps: 0.239998, avg_reader_cost: 1.53404 s, avg_batch_cost: 1.78330 s, avg_samples: 12.5, ips: 7.00947 samples/s, eta: 0:29:22
[2024/07/27 22:59:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:59:37] ppocr INFO: epoch: [111/200], global_step: 333, lr: 0.001000, loss: 2.197896, loss_shrink_maps: 1.224333, loss_threshold_maps: 0.722624, loss_binary_maps: 0.239998, avg_reader_cost: 1.53841 s, avg_batch_cost: 1.76621 s, avg_samples: 12.5, ips: 7.07731 samples/s, eta: 0:29:01
[2024/07/27 22:59:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:59:45] ppocr INFO: epoch: [112/200], global_step: 336, lr: 0.001000, loss: 2.221738, loss_shrink_maps: 1.242462, loss_threshold_maps: 0.732319, loss_binary_maps: 0.245337, avg_reader_cost: 1.53690 s, avg_batch_cost: 1.76895 s, avg_samples: 12.5, ips: 7.06634 samples/s, eta: 0:28:40
[2024/07/27 22:59:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:59:52] ppocr INFO: epoch: [113/200], global_step: 339, lr: 0.001000, loss: 2.225064, loss_shrink_maps: 1.249877, loss_threshold_maps: 0.733288, loss_binary_maps: 0.247279, avg_reader_cost: 1.52740 s, avg_batch_cost: 1.76416 s, avg_samples: 12.5, ips: 7.08552 samples/s, eta: 0:28:19
[2024/07/27 22:59:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 22:59:58] ppocr INFO: epoch: [114/200], global_step: 340, lr: 0.001000, loss: 2.221738, loss_shrink_maps: 1.247350, loss_threshold_maps: 0.732319, loss_binary_maps: 0.246126, avg_reader_cost: 0.42210 s, avg_batch_cost: 0.50710 s, avg_samples: 4.8, ips: 9.46566 samples/s, eta: 0:28:11
[2024/07/27 22:59:59] ppocr INFO: epoch: [114/200], global_step: 342, lr: 0.001000, loss: 2.218864, loss_shrink_maps: 1.247350, loss_threshold_maps: 0.731368, loss_binary_maps: 0.246126, avg_reader_cost: 1.10577 s, avg_batch_cost: 1.25164 s, avg_samples: 7.7, ips: 6.15191 samples/s, eta: 0:27:58
[2024/07/27 23:00:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:00:07] ppocr INFO: epoch: [115/200], global_step: 345, lr: 0.001000, loss: 2.242110, loss_shrink_maps: 1.258454, loss_threshold_maps: 0.732136, loss_binary_maps: 0.248720, avg_reader_cost: 1.52538 s, avg_batch_cost: 1.75324 s, avg_samples: 12.5, ips: 7.12965 samples/s, eta: 0:27:37
[2024/07/27 23:00:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:00:14] ppocr INFO: epoch: [116/200], global_step: 348, lr: 0.001000, loss: 2.242110, loss_shrink_maps: 1.258454, loss_threshold_maps: 0.732136, loss_binary_maps: 0.248720, avg_reader_cost: 1.49899 s, avg_batch_cost: 1.73589 s, avg_samples: 12.5, ips: 7.20094 samples/s, eta: 0:27:15
[2024/07/27 23:00:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:00:20] ppocr INFO: epoch: [117/200], global_step: 350, lr: 0.001000, loss: 2.269278, loss_shrink_maps: 1.277204, loss_threshold_maps: 0.736985, loss_binary_maps: 0.252209, avg_reader_cost: 0.92103 s, avg_batch_cost: 1.10182 s, avg_samples: 9.6, ips: 8.71286 samples/s, eta: 0:27:01
[2024/07/27 23:00:21] ppocr INFO: epoch: [117/200], global_step: 351, lr: 0.001000, loss: 2.294173, loss_shrink_maps: 1.302214, loss_threshold_maps: 0.740341, loss_binary_maps: 0.256901, avg_reader_cost: 0.59673 s, avg_batch_cost: 0.65141 s, avg_samples: 2.9, ips: 4.45191 samples/s, eta: 0:26:55
[2024/07/27 23:00:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:00:28] ppocr INFO: epoch: [118/200], global_step: 354, lr: 0.001000, loss: 2.269278, loss_shrink_maps: 1.277204, loss_threshold_maps: 0.732534, loss_binary_maps: 0.252209, avg_reader_cost: 1.56508 s, avg_batch_cost: 1.80991 s, avg_samples: 12.5, ips: 6.90643 samples/s, eta: 0:26:34
[2024/07/27 23:00:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:00:36] ppocr INFO: epoch: [119/200], global_step: 357, lr: 0.001000, loss: 2.236965, loss_shrink_maps: 1.263318, loss_threshold_maps: 0.730353, loss_binary_maps: 0.249615, avg_reader_cost: 1.59956 s, avg_batch_cost: 1.82829 s, avg_samples: 12.5, ips: 6.83701 samples/s, eta: 0:26:14
[2024/07/27 23:00:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:00:43] ppocr INFO: epoch: [120/200], global_step: 360, lr: 0.001000, loss: 2.178655, loss_shrink_maps: 1.223585, loss_threshold_maps: 0.726326, loss_binary_maps: 0.241688, avg_reader_cost: 1.50602 s, avg_batch_cost: 1.74843 s, avg_samples: 12.5, ips: 7.14929 samples/s, eta: 0:25:53

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:53,  9.39it/s]
eval model::   1%|          | 4/500 [00:00<00:28, 17.38it/s]
eval model::   1%|▏         | 7/500 [00:00<00:24, 20.02it/s]
eval model::   2%|▏         | 10/500 [00:00<00:22, 21.53it/s]
eval model::   3%|▎         | 13/500 [00:00<00:23, 20.56it/s]
eval model::   3%|▎         | 16/500 [00:00<00:21, 22.25it/s]
eval model::   4%|▍         | 19/500 [00:00<00:22, 21.46it/s]
eval model::   4%|▍         | 22/500 [00:01<00:21, 22.38it/s]
eval model::   5%|▌         | 25/500 [00:01<00:21, 22.48it/s]
eval model::   6%|▌         | 28/500 [00:01<00:20, 23.03it/s]
eval model::   6%|▌         | 31/500 [00:01<00:24, 19.50it/s]
eval model::   7%|▋         | 34/500 [00:01<00:24, 18.96it/s]
eval model::   8%|▊         | 38/500 [00:01<00:21, 21.34it/s]
eval model::   8%|▊         | 41/500 [00:01<00:20, 21.88it/s]
eval model::   9%|▉         | 44/500 [00:02<00:21, 21.66it/s]
eval model::   9%|▉         | 47/500 [00:02<00:21, 20.76it/s]
eval model::  10%|█         | 50/500 [00:02<00:22, 19.84it/s]
eval model::  11%|█         | 53/500 [00:02<00:20, 21.54it/s]
eval model::  11%|█         | 56/500 [00:02<00:22, 19.91it/s]
eval model::  12%|█▏        | 59/500 [00:02<00:23, 19.05it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:25, 16.98it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:25, 16.92it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:22, 19.20it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:20, 20.83it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:18, 22.54it/s]
eval model::  15%|█▌        | 75/500 [00:03<00:19, 21.85it/s]
eval model::  16%|█▌        | 78/500 [00:03<00:19, 21.62it/s]
eval model::  16%|█▌        | 81/500 [00:03<00:19, 21.96it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:20, 20.35it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:20, 19.94it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:22, 17.91it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:22, 18.35it/s]
eval model::  19%|█▉        | 96/500 [00:04<00:20, 19.91it/s]
eval model::  20%|█▉        | 99/500 [00:04<00:19, 20.67it/s]
eval model::  20%|██        | 102/500 [00:05<00:20, 19.53it/s]
eval model::  21%|██        | 105/500 [00:05<00:19, 20.23it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:19, 20.50it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:18, 21.38it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:18, 21.38it/s]
eval model::  23%|██▎       | 117/500 [00:05<00:18, 20.50it/s]
eval model::  24%|██▍       | 120/500 [00:05<00:19, 19.11it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:17, 21.13it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:19, 19.39it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:18, 19.78it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:21, 16.84it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:19, 18.28it/s]
eval model::  28%|██▊       | 138/500 [00:06<00:18, 19.68it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:18, 19.45it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:17, 20.44it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:18, 18.81it/s]
eval model::  30%|███       | 150/500 [00:07<00:17, 19.76it/s]
eval model::  31%|███       | 153/500 [00:07<00:19, 17.98it/s]
eval model::  31%|███       | 156/500 [00:07<00:17, 20.18it/s]
eval model::  32%|███▏      | 159/500 [00:07<00:17, 19.87it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:18, 17.90it/s]
eval model::  33%|███▎      | 165/500 [00:08<00:17, 19.37it/s]
eval model::  34%|███▎      | 168/500 [00:08<00:16, 20.28it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:16, 19.78it/s]
eval model::  35%|███▍      | 174/500 [00:08<00:17, 18.35it/s]
eval model::  35%|███▌      | 177/500 [00:08<00:16, 19.82it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:18, 17.29it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:16, 18.77it/s]
eval model::  37%|███▋      | 187/500 [00:09<00:14, 21.63it/s]
eval model::  38%|███▊      | 190/500 [00:09<00:13, 22.62it/s]
eval model::  39%|███▊      | 193/500 [00:09<00:12, 24.26it/s]
eval model::  39%|███▉      | 196/500 [00:09<00:13, 22.14it/s]
eval model::  40%|███▉      | 199/500 [00:09<00:13, 21.97it/s]
eval model::  40%|████      | 202/500 [00:10<00:13, 22.34it/s]
eval model::  41%|████      | 205/500 [00:10<00:23, 12.75it/s]
eval model::  42%|████▏     | 208/500 [00:10<00:20, 14.05it/s]
eval model::  42%|████▏     | 210/500 [00:10<00:19, 15.00it/s]
eval model::  43%|████▎     | 213/500 [00:10<00:17, 16.85it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:18, 15.57it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:18, 15.53it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:15, 17.85it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:16, 16.48it/s]
eval model::  45%|████▌     | 226/500 [00:11<00:13, 20.38it/s]
eval model::  46%|████▌     | 230/500 [00:11<00:11, 23.78it/s]
eval model::  47%|████▋     | 233/500 [00:11<00:10, 25.21it/s]
eval model::  47%|████▋     | 236/500 [00:11<00:11, 23.60it/s]
eval model::  48%|████▊     | 240/500 [00:12<00:09, 26.15it/s]
eval model::  49%|████▊     | 243/500 [00:12<00:12, 21.28it/s]
eval model::  49%|████▉     | 246/500 [00:12<00:11, 21.81it/s]
eval model::  50%|████▉     | 249/500 [00:12<00:12, 20.05it/s]
eval model::  50%|█████     | 252/500 [00:12<00:12, 19.80it/s]
eval model::  51%|█████     | 255/500 [00:12<00:12, 20.26it/s]
eval model::  52%|█████▏    | 258/500 [00:13<00:11, 20.55it/s]
eval model::  52%|█████▏    | 261/500 [00:13<00:11, 20.80it/s]
eval model::  53%|█████▎    | 264/500 [00:13<00:12, 18.49it/s]
eval model::  53%|█████▎    | 266/500 [00:13<00:12, 18.74it/s]
eval model::  54%|█████▍    | 269/500 [00:13<00:11, 20.20it/s]
eval model::  54%|█████▍    | 272/500 [00:13<00:11, 20.10it/s]
eval model::  55%|█████▌    | 275/500 [00:13<00:11, 19.23it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:10, 20.47it/s]
eval model::  56%|█████▌    | 281/500 [00:14<00:10, 20.59it/s]
eval model::  57%|█████▋    | 284/500 [00:14<00:09, 21.86it/s]
eval model::  57%|█████▋    | 287/500 [00:14<00:14, 14.86it/s]
eval model::  58%|█████▊    | 290/500 [00:14<00:12, 16.71it/s]
eval model::  59%|█████▊    | 293/500 [00:14<00:11, 17.66it/s]
eval model::  59%|█████▉    | 295/500 [00:15<00:12, 15.85it/s]
eval model::  60%|█████▉    | 298/500 [00:15<00:10, 18.62it/s]
eval model::  60%|██████    | 301/500 [00:15<00:11, 17.45it/s]
eval model::  61%|██████    | 304/500 [00:15<00:10, 18.53it/s]
eval model::  61%|██████▏   | 307/500 [00:15<00:09, 20.06it/s]
eval model::  62%|██████▏   | 310/500 [00:15<00:08, 21.58it/s]
eval model::  63%|██████▎   | 313/500 [00:15<00:08, 22.59it/s]
eval model::  63%|██████▎   | 316/500 [00:16<00:08, 22.92it/s]
eval model::  64%|██████▍   | 319/500 [00:16<00:07, 22.97it/s]
eval model::  64%|██████▍   | 322/500 [00:16<00:07, 22.46it/s]
eval model::  65%|██████▌   | 325/500 [00:16<00:07, 23.76it/s]
eval model::  66%|██████▌   | 328/500 [00:16<00:07, 23.02it/s]
eval model::  66%|██████▌   | 331/500 [00:16<00:07, 23.41it/s]
eval model::  67%|██████▋   | 334/500 [00:16<00:07, 21.87it/s]
eval model::  67%|██████▋   | 337/500 [00:16<00:07, 21.55it/s]
eval model::  68%|██████▊   | 340/500 [00:17<00:09, 16.84it/s]
eval model::  69%|██████▊   | 343/500 [00:17<00:08, 17.94it/s]
eval model::  69%|██████▉   | 347/500 [00:17<00:07, 21.02it/s]
eval model::  70%|███████   | 350/500 [00:17<00:06, 22.44it/s]
eval model::  71%|███████   | 353/500 [00:17<00:07, 20.95it/s]
eval model::  71%|███████   | 356/500 [00:17<00:07, 19.99it/s]
eval model::  72%|███████▏  | 359/500 [00:18<00:07, 19.94it/s]
eval model::  72%|███████▏  | 362/500 [00:18<00:07, 19.05it/s]
eval model::  73%|███████▎  | 364/500 [00:18<00:07, 19.20it/s]
eval model::  73%|███████▎  | 366/500 [00:18<00:07, 18.75it/s]
eval model::  74%|███████▍  | 369/500 [00:18<00:06, 19.81it/s]
eval model::  74%|███████▍  | 372/500 [00:18<00:06, 20.17it/s]
eval model::  75%|███████▌  | 375/500 [00:18<00:06, 19.24it/s]
eval model::  76%|███████▌  | 379/500 [00:19<00:05, 21.67it/s]
eval model::  76%|███████▋  | 382/500 [00:19<00:05, 20.88it/s]
eval model::  77%|███████▋  | 385/500 [00:19<00:05, 21.41it/s]
eval model::  78%|███████▊  | 388/500 [00:19<00:07, 14.61it/s]
eval model::  78%|███████▊  | 391/500 [00:19<00:06, 16.59it/s]
eval model::  79%|███████▉  | 394/500 [00:20<00:06, 17.54it/s]
eval model::  79%|███████▉  | 397/500 [00:20<00:05, 19.06it/s]
eval model::  80%|████████  | 400/500 [00:20<00:05, 19.10it/s]
eval model::  81%|████████  | 404/500 [00:20<00:04, 21.34it/s]
eval model::  81%|████████▏ | 407/500 [00:20<00:04, 22.15it/s]
eval model::  82%|████████▏ | 410/500 [00:20<00:03, 22.95it/s]
eval model::  83%|████████▎ | 413/500 [00:20<00:03, 23.06it/s]
eval model::  83%|████████▎ | 416/500 [00:21<00:04, 20.26it/s]
eval model::  84%|████████▍ | 419/500 [00:21<00:04, 19.10it/s]
eval model::  84%|████████▍ | 421/500 [00:21<00:04, 16.16it/s]
eval model::  85%|████████▍ | 424/500 [00:21<00:04, 17.31it/s]
eval model::  85%|████████▌ | 426/500 [00:21<00:04, 17.55it/s]
eval model::  86%|████████▌ | 430/500 [00:21<00:03, 20.41it/s]
eval model::  87%|████████▋ | 434/500 [00:21<00:02, 23.14it/s]
eval model::  88%|████████▊ | 438/500 [00:22<00:02, 25.55it/s]
eval model::  88%|████████▊ | 441/500 [00:22<00:02, 23.93it/s]
eval model::  89%|████████▉ | 444/500 [00:22<00:02, 24.27it/s]
eval model::  89%|████████▉ | 447/500 [00:22<00:02, 22.43it/s]
eval model::  90%|█████████ | 450/500 [00:22<00:02, 19.60it/s]
eval model::  91%|█████████ | 453/500 [00:22<00:02, 21.64it/s]
eval model::  91%|█████████ | 456/500 [00:22<00:01, 23.28it/s]
eval model::  92%|█████████▏| 459/500 [00:23<00:01, 23.15it/s]
eval model::  92%|█████████▏| 462/500 [00:23<00:01, 19.43it/s]
eval model::  93%|█████████▎| 465/500 [00:23<00:02, 17.11it/s]
eval model::  94%|█████████▎| 468/500 [00:23<00:01, 19.44it/s]
eval model::  94%|█████████▍| 471/500 [00:23<00:01, 21.56it/s]
eval model::  95%|█████████▍| 474/500 [00:23<00:01, 19.75it/s]
eval model::  95%|█████████▌| 477/500 [00:23<00:01, 21.29it/s]
eval model::  96%|█████████▌| 480/500 [00:24<00:00, 21.66it/s]
eval model::  97%|█████████▋| 483/500 [00:24<00:00, 22.73it/s]
eval model::  97%|█████████▋| 486/500 [00:24<00:00, 20.82it/s]
eval model::  98%|█████████▊| 489/500 [00:24<00:00, 20.01it/s]
eval model::  98%|█████████▊| 492/500 [00:24<00:00, 19.44it/s]
eval model::  99%|█████████▉| 495/500 [00:24<00:00, 20.97it/s]
eval model:: 100%|█████████▉| 498/500 [00:24<00:00, 21.69it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.98it/s]
[2024/07/27 23:01:08] ppocr INFO: cur metric, precision: 0.5815423514538559, recall: 0.44294655753490614, hmean: 0.5028696365127083, fps: 45.57850161614825
[2024/07/27 23:01:08] ppocr INFO: best metric, hmean: 0.5043859649122808, precision: 0.5856142584341184, recall: 0.44294655753490614, fps: 45.04990682412584, best_epoch: 100
[2024/07/27 23:01:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:01:16] ppocr INFO: epoch: [121/200], global_step: 363, lr: 0.001000, loss: 2.213460, loss_shrink_maps: 1.236552, loss_threshold_maps: 0.730914, loss_binary_maps: 0.243339, avg_reader_cost: 1.70998 s, avg_batch_cost: 2.04573 s, avg_samples: 12.5, ips: 6.11029 samples/s, eta: 0:25:35
[2024/07/27 23:01:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:01:23] ppocr INFO: epoch: [122/200], global_step: 366, lr: 0.001000, loss: 2.152224, loss_shrink_maps: 1.190393, loss_threshold_maps: 0.730914, loss_binary_maps: 0.234547, avg_reader_cost: 1.58023 s, avg_batch_cost: 1.85969 s, avg_samples: 12.5, ips: 6.72155 samples/s, eta: 0:25:15
[2024/07/27 23:01:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:01:31] ppocr INFO: epoch: [123/200], global_step: 369, lr: 0.001000, loss: 2.168348, loss_shrink_maps: 1.201017, loss_threshold_maps: 0.727720, loss_binary_maps: 0.236881, avg_reader_cost: 1.60513 s, avg_batch_cost: 1.91723 s, avg_samples: 12.5, ips: 6.51983 samples/s, eta: 0:24:55
[2024/07/27 23:01:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:01:37] ppocr INFO: epoch: [124/200], global_step: 370, lr: 0.001000, loss: 2.168348, loss_shrink_maps: 1.201017, loss_threshold_maps: 0.723115, loss_binary_maps: 0.236881, avg_reader_cost: 0.41731 s, avg_batch_cost: 0.54049 s, avg_samples: 4.8, ips: 8.88086 samples/s, eta: 0:24:48
[2024/07/27 23:01:39] ppocr INFO: epoch: [124/200], global_step: 372, lr: 0.001000, loss: 2.152224, loss_shrink_maps: 1.190393, loss_threshold_maps: 0.727720, loss_binary_maps: 0.234547, avg_reader_cost: 1.17227 s, avg_batch_cost: 1.31821 s, avg_samples: 7.7, ips: 5.84125 samples/s, eta: 0:24:35
[2024/07/27 23:01:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:01:47] ppocr INFO: epoch: [125/200], global_step: 375, lr: 0.001000, loss: 2.152224, loss_shrink_maps: 1.190393, loss_threshold_maps: 0.728498, loss_binary_maps: 0.234547, avg_reader_cost: 1.59900 s, avg_batch_cost: 1.87353 s, avg_samples: 12.5, ips: 6.67191 samples/s, eta: 0:24:15
[2024/07/27 23:01:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:01:54] ppocr INFO: epoch: [126/200], global_step: 378, lr: 0.001000, loss: 2.176328, loss_shrink_maps: 1.216590, loss_threshold_maps: 0.732689, loss_binary_maps: 0.239838, avg_reader_cost: 1.69288 s, avg_batch_cost: 1.95990 s, avg_samples: 12.5, ips: 6.37786 samples/s, eta: 0:23:56
[2024/07/27 23:01:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:02:02] ppocr INFO: epoch: [127/200], global_step: 380, lr: 0.001000, loss: 2.168875, loss_shrink_maps: 1.201586, loss_threshold_maps: 0.732446, loss_binary_maps: 0.237319, avg_reader_cost: 0.95560 s, avg_batch_cost: 1.18922 s, avg_samples: 9.6, ips: 8.07249 samples/s, eta: 0:23:42
[2024/07/27 23:02:02] ppocr INFO: epoch: [127/200], global_step: 381, lr: 0.001000, loss: 2.160896, loss_shrink_maps: 1.190962, loss_threshold_maps: 0.728498, loss_binary_maps: 0.234984, avg_reader_cost: 0.64018 s, avg_batch_cost: 0.69531 s, avg_samples: 2.9, ips: 4.17082 samples/s, eta: 0:23:36
[2024/07/27 23:02:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:02:09] ppocr INFO: epoch: [128/200], global_step: 384, lr: 0.001000, loss: 2.086622, loss_shrink_maps: 1.133772, loss_threshold_maps: 0.710940, loss_binary_maps: 0.223760, avg_reader_cost: 1.53329 s, avg_batch_cost: 1.76612 s, avg_samples: 12.5, ips: 7.07764 samples/s, eta: 0:23:16
[2024/07/27 23:02:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:02:17] ppocr INFO: epoch: [129/200], global_step: 387, lr: 0.001000, loss: 2.096550, loss_shrink_maps: 1.150425, loss_threshold_maps: 0.716556, loss_binary_maps: 0.227402, avg_reader_cost: 1.58849 s, avg_batch_cost: 1.81618 s, avg_samples: 12.5, ips: 6.88259 samples/s, eta: 0:22:56
[2024/07/27 23:02:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:02:24] ppocr INFO: epoch: [130/200], global_step: 390, lr: 0.001000, loss: 2.067268, loss_shrink_maps: 1.123976, loss_threshold_maps: 0.716392, loss_binary_maps: 0.221751, avg_reader_cost: 1.50634 s, avg_batch_cost: 1.74037 s, avg_samples: 12.5, ips: 7.18238 samples/s, eta: 0:22:35
[2024/07/27 23:02:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:02:31] ppocr INFO: epoch: [131/200], global_step: 393, lr: 0.001000, loss: 2.080692, loss_shrink_maps: 1.140625, loss_threshold_maps: 0.710406, loss_binary_maps: 0.224914, avg_reader_cost: 1.51455 s, avg_batch_cost: 1.75457 s, avg_samples: 12.5, ips: 7.12426 samples/s, eta: 0:22:15
[2024/07/27 23:02:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:02:39] ppocr INFO: epoch: [132/200], global_step: 396, lr: 0.001000, loss: 2.080692, loss_shrink_maps: 1.140625, loss_threshold_maps: 0.707744, loss_binary_maps: 0.224914, avg_reader_cost: 1.52774 s, avg_batch_cost: 1.76182 s, avg_samples: 12.5, ips: 7.09495 samples/s, eta: 0:21:55
[2024/07/27 23:02:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:02:46] ppocr INFO: epoch: [133/200], global_step: 399, lr: 0.001000, loss: 2.080692, loss_shrink_maps: 1.140625, loss_threshold_maps: 0.707744, loss_binary_maps: 0.224914, avg_reader_cost: 1.51926 s, avg_batch_cost: 1.77549 s, avg_samples: 12.5, ips: 7.04031 samples/s, eta: 0:21:35
[2024/07/27 23:02:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:02:52] ppocr INFO: epoch: [134/200], global_step: 400, lr: 0.001000, loss: 2.089626, loss_shrink_maps: 1.168801, loss_threshold_maps: 0.707744, loss_binary_maps: 0.231537, avg_reader_cost: 0.42619 s, avg_batch_cost: 0.50859 s, avg_samples: 4.8, ips: 9.43792 samples/s, eta: 0:21:27
[2024/07/27 23:02:54] ppocr INFO: epoch: [134/200], global_step: 402, lr: 0.001000, loss: 2.127810, loss_shrink_maps: 1.200623, loss_threshold_maps: 0.710406, loss_binary_maps: 0.237930, avg_reader_cost: 1.10935 s, avg_batch_cost: 1.25430 s, avg_samples: 7.7, ips: 6.13887 samples/s, eta: 0:21:14
[2024/07/27 23:02:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:03:01] ppocr INFO: epoch: [135/200], global_step: 405, lr: 0.001000, loss: 2.169436, loss_shrink_maps: 1.214572, loss_threshold_maps: 0.707890, loss_binary_maps: 0.239936, avg_reader_cost: 1.54027 s, avg_batch_cost: 1.77018 s, avg_samples: 12.5, ips: 7.06143 samples/s, eta: 0:20:54
[2024/07/27 23:03:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:03:08] ppocr INFO: epoch: [136/200], global_step: 408, lr: 0.001000, loss: 2.098882, loss_shrink_maps: 1.176453, loss_threshold_maps: 0.703069, loss_binary_maps: 0.233009, avg_reader_cost: 1.56243 s, avg_batch_cost: 1.81447 s, avg_samples: 12.5, ips: 6.88907 samples/s, eta: 0:20:34
[2024/07/27 23:03:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:03:15] ppocr INFO: epoch: [137/200], global_step: 410, lr: 0.001000, loss: 2.169436, loss_shrink_maps: 1.206882, loss_threshold_maps: 0.707890, loss_binary_maps: 0.238847, avg_reader_cost: 0.91552 s, avg_batch_cost: 1.09026 s, avg_samples: 9.6, ips: 8.80527 samples/s, eta: 0:20:21
[2024/07/27 23:03:15] ppocr INFO: epoch: [137/200], global_step: 411, lr: 0.001000, loss: 2.197238, loss_shrink_maps: 1.206882, loss_threshold_maps: 0.712019, loss_binary_maps: 0.238847, avg_reader_cost: 0.59078 s, avg_batch_cost: 0.64654 s, avg_samples: 2.9, ips: 4.48544 samples/s, eta: 0:20:14
[2024/07/27 23:03:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:03:23] ppocr INFO: epoch: [138/200], global_step: 414, lr: 0.001000, loss: 2.177958, loss_shrink_maps: 1.206882, loss_threshold_maps: 0.709918, loss_binary_maps: 0.238847, avg_reader_cost: 1.55297 s, avg_batch_cost: 1.78316 s, avg_samples: 12.5, ips: 7.01003 samples/s, eta: 0:19:54
[2024/07/27 23:03:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:03:31] ppocr INFO: epoch: [139/200], global_step: 417, lr: 0.001000, loss: 2.127338, loss_shrink_maps: 1.182712, loss_threshold_maps: 0.700869, loss_binary_maps: 0.233925, avg_reader_cost: 1.63359 s, avg_batch_cost: 1.86354 s, avg_samples: 12.5, ips: 6.70765 samples/s, eta: 0:19:35
[2024/07/27 23:03:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:03:38] ppocr INFO: epoch: [140/200], global_step: 420, lr: 0.001000, loss: 2.102644, loss_shrink_maps: 1.150294, loss_threshold_maps: 0.696212, loss_binary_maps: 0.227707, avg_reader_cost: 1.54799 s, avg_batch_cost: 1.81040 s, avg_samples: 12.5, ips: 6.90456 samples/s, eta: 0:19:15

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<01:07,  7.44it/s]
eval model::   1%|          | 4/500 [00:00<00:32, 15.28it/s]
eval model::   1%|          | 6/500 [00:00<00:30, 16.39it/s]
eval model::   2%|▏         | 8/500 [00:00<00:30, 16.06it/s]
eval model::   2%|▏         | 11/500 [00:00<00:28, 17.12it/s]
eval model::   3%|▎         | 13/500 [00:00<00:30, 16.19it/s]
eval model::   3%|▎         | 15/500 [00:00<00:29, 16.35it/s]
eval model::   4%|▎         | 18/500 [00:01<00:25, 18.67it/s]
eval model::   4%|▍         | 20/500 [00:01<00:27, 17.18it/s]
eval model::   4%|▍         | 22/500 [00:01<00:27, 17.56it/s]
eval model::   5%|▌         | 25/500 [00:01<00:24, 19.18it/s]
eval model::   5%|▌         | 27/500 [00:01<00:24, 19.10it/s]
eval model::   6%|▌         | 30/500 [00:01<00:21, 21.53it/s]
eval model::   7%|▋         | 33/500 [00:01<00:26, 17.46it/s]
eval model::   7%|▋         | 35/500 [00:02<00:26, 17.26it/s]
eval model::   8%|▊         | 38/500 [00:02<00:24, 18.53it/s]
eval model::   8%|▊         | 40/500 [00:02<00:26, 17.63it/s]
eval model::   9%|▊         | 43/500 [00:02<00:24, 18.54it/s]
eval model::   9%|▉         | 46/500 [00:02<00:25, 17.52it/s]
eval model::  10%|▉         | 49/500 [00:02<00:22, 19.80it/s]
eval model::  10%|█         | 52/500 [00:02<00:22, 20.22it/s]
eval model::  11%|█         | 55/500 [00:03<00:21, 20.69it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:21, 20.29it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:23, 18.77it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:24, 17.86it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:22, 18.98it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:21, 20.18it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:21, 20.17it/s]
eval model::  15%|█▌        | 75/500 [00:04<00:20, 20.31it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:20, 20.43it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:19, 21.94it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:20, 20.59it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:21, 19.24it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:21, 19.17it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:21, 19.09it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:19, 20.39it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:19, 21.01it/s]
eval model::  20%|██        | 102/500 [00:05<00:20, 19.29it/s]
eval model::  21%|██        | 105/500 [00:05<00:18, 21.36it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:18, 20.72it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:19, 20.39it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:19, 20.23it/s]
eval model::  23%|██▎       | 117/500 [00:06<00:19, 19.71it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:20, 18.23it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:19, 19.59it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:19, 19.50it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:18, 20.20it/s]
eval model::  27%|██▋       | 133/500 [00:06<00:17, 21.49it/s]
eval model::  27%|██▋       | 136/500 [00:07<00:16, 21.59it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:17, 20.60it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:17, 20.18it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:16, 21.18it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:16, 21.46it/s]
eval model::  30%|███       | 151/500 [00:07<00:17, 20.39it/s]
eval model::  31%|███       | 155/500 [00:07<00:14, 23.06it/s]
eval model::  32%|███▏      | 158/500 [00:08<00:15, 21.90it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:17, 19.09it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:17, 18.95it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:16, 20.44it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:16, 20.16it/s]
eval model::  34%|███▍      | 172/500 [00:08<00:16, 20.44it/s]
eval model::  35%|███▌      | 175/500 [00:08<00:16, 19.53it/s]
eval model::  36%|███▌      | 178/500 [00:09<00:15, 20.93it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:17, 18.32it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:15, 19.94it/s]
eval model::  37%|███▋      | 187/500 [00:09<00:16, 19.43it/s]
eval model::  38%|███▊      | 190/500 [00:09<00:15, 19.80it/s]
eval model::  39%|███▊      | 193/500 [00:09<00:13, 21.99it/s]
eval model::  39%|███▉      | 196/500 [00:10<00:15, 19.80it/s]
eval model::  40%|███▉      | 199/500 [00:10<00:14, 20.12it/s]
eval model::  40%|████      | 202/500 [00:10<00:14, 20.75it/s]
eval model::  41%|████      | 205/500 [00:10<00:20, 14.10it/s]
eval model::  42%|████▏     | 208/500 [00:10<00:19, 15.06it/s]
eval model::  42%|████▏     | 210/500 [00:10<00:18, 15.42it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:17, 16.69it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:18, 15.17it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:19, 14.53it/s]
eval model::  44%|████▍     | 219/500 [00:11<00:18, 15.25it/s]
eval model::  44%|████▍     | 221/500 [00:11<00:17, 15.51it/s]
eval model::  45%|████▍     | 224/500 [00:11<00:15, 17.90it/s]
eval model::  45%|████▌     | 226/500 [00:11<00:15, 17.28it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:13, 20.60it/s]
eval model::  47%|████▋     | 234/500 [00:12<00:12, 21.97it/s]
eval model::  47%|████▋     | 237/500 [00:12<00:12, 21.18it/s]
eval model::  48%|████▊     | 240/500 [00:12<00:11, 22.55it/s]
eval model::  49%|████▊     | 243/500 [00:12<00:12, 21.32it/s]
eval model::  49%|████▉     | 246/500 [00:12<00:11, 23.03it/s]
eval model::  50%|████▉     | 249/500 [00:12<00:10, 23.71it/s]
eval model::  50%|█████     | 252/500 [00:13<00:10, 22.59it/s]
eval model::  51%|█████     | 255/500 [00:13<00:11, 20.81it/s]
eval model::  52%|█████▏    | 258/500 [00:13<00:11, 21.35it/s]
eval model::  52%|█████▏    | 261/500 [00:13<00:11, 20.64it/s]
eval model::  53%|█████▎    | 264/500 [00:13<00:12, 19.02it/s]
eval model::  53%|█████▎    | 267/500 [00:13<00:12, 19.28it/s]
eval model::  54%|█████▍    | 269/500 [00:13<00:12, 19.01it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:12, 18.74it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:12, 18.47it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:11, 19.84it/s]
eval model::  56%|█████▌    | 281/500 [00:14<00:10, 20.80it/s]
eval model::  57%|█████▋    | 284/500 [00:14<00:10, 21.28it/s]
eval model::  57%|█████▋    | 287/500 [00:14<00:13, 15.88it/s]
eval model::  58%|█████▊    | 290/500 [00:15<00:11, 18.32it/s]
eval model::  59%|█████▊    | 293/500 [00:15<00:11, 18.61it/s]
eval model::  59%|█████▉    | 296/500 [00:15<00:12, 16.83it/s]
eval model::  60%|█████▉    | 299/500 [00:15<00:11, 18.01it/s]
eval model::  60%|██████    | 301/500 [00:15<00:12, 16.20it/s]
eval model::  61%|██████    | 304/500 [00:15<00:11, 17.66it/s]
eval model::  61%|██████    | 306/500 [00:15<00:10, 18.06it/s]
eval model::  62%|██████▏   | 308/500 [00:16<00:10, 18.35it/s]
eval model::  62%|██████▏   | 311/500 [00:16<00:09, 19.46it/s]
eval model::  63%|██████▎   | 313/500 [00:16<00:09, 19.02it/s]
eval model::  63%|██████▎   | 315/500 [00:16<00:09, 18.81it/s]
eval model::  64%|██████▎   | 318/500 [00:16<00:09, 19.70it/s]
eval model::  64%|██████▍   | 321/500 [00:16<00:08, 21.01it/s]
eval model::  65%|██████▍   | 324/500 [00:16<00:08, 19.89it/s]
eval model::  65%|██████▌   | 327/500 [00:16<00:08, 21.29it/s]
eval model::  66%|██████▌   | 330/500 [00:17<00:08, 20.50it/s]
eval model::  67%|██████▋   | 333/500 [00:17<00:07, 21.27it/s]
eval model::  67%|██████▋   | 336/500 [00:17<00:07, 22.69it/s]
eval model::  68%|██████▊   | 339/500 [00:17<00:07, 20.49it/s]
eval model::  68%|██████▊   | 342/500 [00:17<00:09, 17.07it/s]
eval model::  69%|██████▉   | 345/500 [00:17<00:08, 18.20it/s]
eval model::  70%|██████▉   | 348/500 [00:18<00:07, 19.59it/s]
eval model::  70%|███████   | 351/500 [00:18<00:07, 21.19it/s]
eval model::  71%|███████   | 354/500 [00:18<00:06, 23.12it/s]
eval model::  71%|███████▏  | 357/500 [00:18<00:06, 22.15it/s]
eval model::  72%|███████▏  | 360/500 [00:18<00:06, 22.14it/s]
eval model::  73%|███████▎  | 363/500 [00:18<00:06, 20.35it/s]
eval model::  73%|███████▎  | 366/500 [00:18<00:07, 18.40it/s]
eval model::  74%|███████▎  | 368/500 [00:19<00:07, 18.60it/s]
eval model::  74%|███████▍  | 371/500 [00:19<00:06, 19.79it/s]
eval model::  75%|███████▍  | 374/500 [00:19<00:06, 21.00it/s]
eval model::  75%|███████▌  | 377/500 [00:19<00:06, 20.31it/s]
eval model::  76%|███████▌  | 380/500 [00:19<00:05, 20.46it/s]
eval model::  77%|███████▋  | 383/500 [00:19<00:05, 22.60it/s]
eval model::  77%|███████▋  | 386/500 [00:20<00:08, 13.39it/s]
eval model::  78%|███████▊  | 389/500 [00:20<00:07, 14.96it/s]
eval model::  78%|███████▊  | 391/500 [00:20<00:06, 15.81it/s]
eval model::  79%|███████▊  | 393/500 [00:20<00:06, 16.58it/s]
eval model::  79%|███████▉  | 395/500 [00:20<00:06, 15.99it/s]
eval model::  80%|███████▉  | 398/500 [00:20<00:05, 18.08it/s]
eval model::  80%|████████  | 400/500 [00:20<00:05, 17.35it/s]
eval model::  81%|████████  | 403/500 [00:21<00:05, 19.27it/s]
eval model::  81%|████████  | 406/500 [00:21<00:04, 21.01it/s]
eval model::  82%|████████▏ | 409/500 [00:21<00:04, 22.55it/s]
eval model::  82%|████████▏ | 412/500 [00:21<00:03, 23.28it/s]
eval model::  83%|████████▎ | 415/500 [00:21<00:03, 23.11it/s]
eval model::  84%|████████▎ | 418/500 [00:21<00:04, 19.82it/s]
eval model::  84%|████████▍ | 421/500 [00:21<00:04, 16.62it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:04, 17.17it/s]
eval model::  85%|████████▌ | 427/500 [00:22<00:03, 18.63it/s]
eval model::  86%|████████▌ | 430/500 [00:22<00:03, 20.64it/s]
eval model::  87%|████████▋ | 433/500 [00:22<00:03, 21.28it/s]
eval model::  87%|████████▋ | 436/500 [00:22<00:02, 22.29it/s]
eval model::  88%|████████▊ | 439/500 [00:22<00:02, 21.65it/s]
eval model::  88%|████████▊ | 442/500 [00:22<00:02, 21.19it/s]
eval model::  89%|████████▉ | 445/500 [00:23<00:02, 22.82it/s]
eval model::  90%|████████▉ | 448/500 [00:23<00:02, 22.15it/s]
eval model::  90%|█████████ | 451/500 [00:23<00:02, 22.98it/s]
eval model::  91%|█████████ | 454/500 [00:23<00:02, 21.68it/s]
eval model::  91%|█████████▏| 457/500 [00:23<00:01, 22.57it/s]
eval model::  92%|█████████▏| 460/500 [00:23<00:01, 22.45it/s]
eval model::  93%|█████████▎| 463/500 [00:23<00:01, 19.45it/s]
eval model::  93%|█████████▎| 466/500 [00:24<00:01, 18.37it/s]
eval model::  94%|█████████▍| 469/500 [00:24<00:01, 19.71it/s]
eval model::  94%|█████████▍| 472/500 [00:24<00:01, 20.69it/s]
eval model::  95%|█████████▌| 475/500 [00:24<00:01, 21.49it/s]
eval model::  96%|█████████▌| 478/500 [00:24<00:01, 20.46it/s]
eval model::  96%|█████████▌| 481/500 [00:24<00:00, 20.71it/s]
eval model::  97%|█████████▋| 484/500 [00:24<00:00, 19.86it/s]
eval model::  97%|█████████▋| 487/500 [00:25<00:00, 20.57it/s]
eval model::  98%|█████████▊| 490/500 [00:25<00:00, 20.92it/s]
eval model::  99%|█████████▊| 493/500 [00:25<00:00, 22.64it/s]
eval model::  99%|█████████▉| 496/500 [00:25<00:00, 21.85it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 23.80it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.54it/s]
[2024/07/27 23:04:04] ppocr INFO: cur metric, precision: 0.6235216819973719, recall: 0.45690900337024554, hmean: 0.5273687135315366, fps: 43.184167661199886
[2024/07/27 23:04:04] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/27 23:04:04] ppocr INFO: best metric, hmean: 0.5273687135315366, precision: 0.6235216819973719, recall: 0.45690900337024554, fps: 43.184167661199886, best_epoch: 140
[2024/07/27 23:04:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:04:11] ppocr INFO: epoch: [141/200], global_step: 423, lr: 0.001000, loss: 2.076569, loss_shrink_maps: 1.139908, loss_threshold_maps: 0.694255, loss_binary_maps: 0.225985, avg_reader_cost: 1.52826 s, avg_batch_cost: 1.75656 s, avg_samples: 12.5, ips: 7.11617 samples/s, eta: 0:18:55
[2024/07/27 23:04:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:04:18] ppocr INFO: epoch: [142/200], global_step: 426, lr: 0.001000, loss: 2.116404, loss_shrink_maps: 1.159950, loss_threshold_maps: 0.705348, loss_binary_maps: 0.229507, avg_reader_cost: 1.55965 s, avg_batch_cost: 1.82088 s, avg_samples: 12.5, ips: 6.86482 samples/s, eta: 0:18:35
[2024/07/27 23:04:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:04:25] ppocr INFO: epoch: [143/200], global_step: 429, lr: 0.001000, loss: 2.111426, loss_shrink_maps: 1.149564, loss_threshold_maps: 0.695294, loss_binary_maps: 0.227452, avg_reader_cost: 1.53023 s, avg_batch_cost: 1.76587 s, avg_samples: 12.5, ips: 7.07866 samples/s, eta: 0:18:16
[2024/07/27 23:04:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:04:32] ppocr INFO: epoch: [144/200], global_step: 430, lr: 0.001000, loss: 2.111426, loss_shrink_maps: 1.149564, loss_threshold_maps: 0.695294, loss_binary_maps: 0.227452, avg_reader_cost: 0.45434 s, avg_batch_cost: 0.53725 s, avg_samples: 4.8, ips: 8.93432 samples/s, eta: 0:18:09
[2024/07/27 23:04:33] ppocr INFO: epoch: [144/200], global_step: 432, lr: 0.001000, loss: 2.111426, loss_shrink_maps: 1.149564, loss_threshold_maps: 0.695294, loss_binary_maps: 0.227452, avg_reader_cost: 1.16589 s, avg_batch_cost: 1.31119 s, avg_samples: 7.7, ips: 5.87253 samples/s, eta: 0:17:56
[2024/07/27 23:04:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:04:41] ppocr INFO: epoch: [145/200], global_step: 435, lr: 0.001000, loss: 2.120217, loss_shrink_maps: 1.162835, loss_threshold_maps: 0.702988, loss_binary_maps: 0.230165, avg_reader_cost: 1.60424 s, avg_batch_cost: 1.85870 s, avg_samples: 12.5, ips: 6.72512 samples/s, eta: 0:17:37
[2024/07/27 23:04:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:04:48] ppocr INFO: epoch: [146/200], global_step: 438, lr: 0.001000, loss: 2.120217, loss_shrink_maps: 1.165676, loss_threshold_maps: 0.702988, loss_binary_maps: 0.230361, avg_reader_cost: 1.54840 s, avg_batch_cost: 1.77635 s, avg_samples: 12.5, ips: 7.03692 samples/s, eta: 0:17:17
[2024/07/27 23:04:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:04:55] ppocr INFO: epoch: [147/200], global_step: 440, lr: 0.001000, loss: 2.120217, loss_shrink_maps: 1.165676, loss_threshold_maps: 0.702920, loss_binary_maps: 0.230361, avg_reader_cost: 0.91030 s, avg_batch_cost: 1.08727 s, avg_samples: 9.6, ips: 8.82947 samples/s, eta: 0:17:03
[2024/07/27 23:04:55] ppocr INFO: epoch: [147/200], global_step: 441, lr: 0.001000, loss: 2.125292, loss_shrink_maps: 1.176672, loss_threshold_maps: 0.702920, loss_binary_maps: 0.232231, avg_reader_cost: 0.58978 s, avg_batch_cost: 0.64473 s, avg_samples: 2.9, ips: 4.49801 samples/s, eta: 0:16:57
[2024/07/27 23:04:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:05:03] ppocr INFO: epoch: [148/200], global_step: 444, lr: 0.001000, loss: 2.125292, loss_shrink_maps: 1.176672, loss_threshold_maps: 0.706232, loss_binary_maps: 0.232231, avg_reader_cost: 1.60725 s, avg_batch_cost: 1.83510 s, avg_samples: 12.5, ips: 6.81161 samples/s, eta: 0:16:37
[2024/07/27 23:05:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:05:10] ppocr INFO: epoch: [149/200], global_step: 447, lr: 0.001000, loss: 2.120217, loss_shrink_maps: 1.165676, loss_threshold_maps: 0.706232, loss_binary_maps: 0.230361, avg_reader_cost: 1.51991 s, avg_batch_cost: 1.79839 s, avg_samples: 12.5, ips: 6.95065 samples/s, eta: 0:16:18
[2024/07/27 23:05:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:05:18] ppocr INFO: epoch: [150/200], global_step: 450, lr: 0.001000, loss: 2.099400, loss_shrink_maps: 1.164243, loss_threshold_maps: 0.694440, loss_binary_maps: 0.230361, avg_reader_cost: 1.55149 s, avg_batch_cost: 1.81126 s, avg_samples: 12.5, ips: 6.90129 samples/s, eta: 0:15:58
[2024/07/27 23:05:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:05:25] ppocr INFO: epoch: [151/200], global_step: 453, lr: 0.001000, loss: 2.081555, loss_shrink_maps: 1.159127, loss_threshold_maps: 0.694440, loss_binary_maps: 0.229965, avg_reader_cost: 1.55123 s, avg_batch_cost: 1.81836 s, avg_samples: 12.5, ips: 6.87432 samples/s, eta: 0:15:39
[2024/07/27 23:05:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:05:33] ppocr INFO: epoch: [152/200], global_step: 456, lr: 0.001000, loss: 2.079210, loss_shrink_maps: 1.141551, loss_threshold_maps: 0.700328, loss_binary_maps: 0.226050, avg_reader_cost: 1.53525 s, avg_batch_cost: 1.77076 s, avg_samples: 12.5, ips: 7.05911 samples/s, eta: 0:15:19
[2024/07/27 23:05:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:05:40] ppocr INFO: epoch: [153/200], global_step: 459, lr: 0.001000, loss: 2.079210, loss_shrink_maps: 1.141551, loss_threshold_maps: 0.703724, loss_binary_maps: 0.226050, avg_reader_cost: 1.56226 s, avg_batch_cost: 1.79081 s, avg_samples: 12.5, ips: 6.98009 samples/s, eta: 0:15:00
[2024/07/27 23:05:41] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:05:46] ppocr INFO: epoch: [154/200], global_step: 460, lr: 0.001000, loss: 2.079210, loss_shrink_maps: 1.141551, loss_threshold_maps: 0.714844, loss_binary_maps: 0.226050, avg_reader_cost: 0.42766 s, avg_batch_cost: 0.52092 s, avg_samples: 4.8, ips: 9.21452 samples/s, eta: 0:14:53
[2024/07/27 23:05:48] ppocr INFO: epoch: [154/200], global_step: 462, lr: 0.001000, loss: 2.069539, loss_shrink_maps: 1.126239, loss_threshold_maps: 0.706014, loss_binary_maps: 0.223105, avg_reader_cost: 1.13294 s, avg_batch_cost: 1.27843 s, avg_samples: 7.7, ips: 6.02302 samples/s, eta: 0:14:40
[2024/07/27 23:05:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:05:55] ppocr INFO: epoch: [155/200], global_step: 465, lr: 0.001000, loss: 2.079210, loss_shrink_maps: 1.150874, loss_threshold_maps: 0.696841, loss_binary_maps: 0.226874, avg_reader_cost: 1.52026 s, avg_batch_cost: 1.76413 s, avg_samples: 12.5, ips: 7.08564 samples/s, eta: 0:14:20
[2024/07/27 23:05:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:06:03] ppocr INFO: epoch: [156/200], global_step: 468, lr: 0.001000, loss: 2.070642, loss_shrink_maps: 1.135562, loss_threshold_maps: 0.696841, loss_binary_maps: 0.223929, avg_reader_cost: 1.58963 s, avg_batch_cost: 1.82674 s, avg_samples: 12.5, ips: 6.84279 samples/s, eta: 0:14:01
[2024/07/27 23:06:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:06:10] ppocr INFO: epoch: [157/200], global_step: 470, lr: 0.001000, loss: 2.062628, loss_shrink_maps: 1.123772, loss_threshold_maps: 0.700937, loss_binary_maps: 0.222851, avg_reader_cost: 0.96214 s, avg_batch_cost: 1.15260 s, avg_samples: 9.6, ips: 8.32897 samples/s, eta: 0:13:48
[2024/07/27 23:06:10] ppocr INFO: epoch: [157/200], global_step: 471, lr: 0.001000, loss: 2.062628, loss_shrink_maps: 1.123772, loss_threshold_maps: 0.700937, loss_binary_maps: 0.222851, avg_reader_cost: 0.62194 s, avg_batch_cost: 0.67697 s, avg_samples: 2.9, ips: 4.28380 samples/s, eta: 0:13:42
[2024/07/27 23:06:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:06:18] ppocr INFO: epoch: [158/200], global_step: 474, lr: 0.001000, loss: 2.052772, loss_shrink_maps: 1.135562, loss_threshold_maps: 0.696841, loss_binary_maps: 0.223929, avg_reader_cost: 1.58952 s, avg_batch_cost: 1.81813 s, avg_samples: 12.5, ips: 6.87521 samples/s, eta: 0:13:22
[2024/07/27 23:06:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:06:25] ppocr INFO: epoch: [159/200], global_step: 477, lr: 0.001000, loss: 2.052772, loss_shrink_maps: 1.135562, loss_threshold_maps: 0.693281, loss_binary_maps: 0.223929, avg_reader_cost: 1.56108 s, avg_batch_cost: 1.78961 s, avg_samples: 12.5, ips: 6.98476 samples/s, eta: 0:13:03
[2024/07/27 23:06:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:06:33] ppocr INFO: epoch: [160/200], global_step: 480, lr: 0.001000, loss: 2.019316, loss_shrink_maps: 1.106678, loss_threshold_maps: 0.691907, loss_binary_maps: 0.219128, avg_reader_cost: 1.50864 s, avg_batch_cost: 1.75720 s, avg_samples: 12.5, ips: 7.11359 samples/s, eta: 0:12:43

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 2/500 [00:00<00:35, 13.99it/s]
eval model::   1%|          | 5/500 [00:00<00:27, 17.97it/s]
eval model::   2%|▏         | 8/500 [00:00<00:27, 17.89it/s]
eval model::   2%|▏         | 10/500 [00:00<00:26, 18.42it/s]
eval model::   2%|▏         | 12/500 [00:00<00:27, 17.43it/s]
eval model::   3%|▎         | 14/500 [00:00<00:28, 16.85it/s]
eval model::   3%|▎         | 17/500 [00:00<00:26, 18.17it/s]
eval model::   4%|▍         | 19/500 [00:01<00:26, 18.20it/s]
eval model::   4%|▍         | 21/500 [00:01<00:25, 18.53it/s]
eval model::   5%|▍         | 24/500 [00:01<00:23, 20.17it/s]
eval model::   5%|▌         | 27/500 [00:01<00:23, 20.25it/s]
eval model::   6%|▌         | 30/500 [00:01<00:25, 18.76it/s]
eval model::   7%|▋         | 33/500 [00:01<00:23, 20.00it/s]
eval model::   7%|▋         | 36/500 [00:01<00:24, 19.18it/s]
eval model::   8%|▊         | 38/500 [00:02<00:24, 18.64it/s]
eval model::   8%|▊         | 40/500 [00:02<00:26, 17.11it/s]
eval model::   9%|▊         | 43/500 [00:02<00:24, 18.88it/s]
eval model::   9%|▉         | 46/500 [00:02<00:22, 19.89it/s]
eval model::  10%|▉         | 49/500 [00:02<00:20, 21.59it/s]
eval model::  10%|█         | 52/500 [00:02<00:21, 20.64it/s]
eval model::  11%|█         | 55/500 [00:02<00:23, 18.71it/s]
eval model::  11%|█▏        | 57/500 [00:03<00:25, 17.70it/s]
eval model::  12%|█▏        | 59/500 [00:03<00:26, 16.94it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:30, 14.42it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:33, 13.16it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:27, 15.62it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:23, 17.98it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:21, 19.66it/s]
eval model::  15%|█▌        | 75/500 [00:04<00:22, 19.24it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:20, 20.29it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:20, 20.25it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:21, 19.50it/s]
eval model::  17%|█▋        | 86/500 [00:04<00:21, 19.45it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:22, 17.99it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:26, 15.34it/s]
eval model::  18%|█▊        | 92/500 [00:05<00:25, 15.85it/s]
eval model::  19%|█▉        | 94/500 [00:05<00:25, 15.92it/s]
eval model::  19%|█▉        | 97/500 [00:05<00:22, 17.79it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:22, 17.94it/s]
eval model::  20%|██        | 101/500 [00:05<00:21, 18.21it/s]
eval model::  21%|██        | 104/500 [00:05<00:18, 20.91it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:16, 23.97it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:17, 22.43it/s]
eval model::  23%|██▎       | 114/500 [00:06<00:18, 20.89it/s]
eval model::  23%|██▎       | 117/500 [00:06<00:18, 20.77it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:16, 22.96it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:17, 22.09it/s]
eval model::  25%|██▌       | 127/500 [00:06<00:16, 22.43it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:17, 20.87it/s]
eval model::  27%|██▋       | 133/500 [00:06<00:16, 22.21it/s]
eval model::  27%|██▋       | 136/500 [00:07<00:15, 23.08it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:17, 20.85it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:17, 20.29it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:16, 21.85it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:17, 19.59it/s]
eval model::  30%|███       | 151/500 [00:07<00:20, 17.14it/s]
eval model::  31%|███       | 155/500 [00:08<00:17, 20.05it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:15, 21.69it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:17, 19.56it/s]
eval model::  33%|███▎      | 165/500 [00:08<00:18, 18.59it/s]
eval model::  34%|███▎      | 168/500 [00:08<00:16, 19.69it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:16, 19.59it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:18, 18.01it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:18, 17.31it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:17, 18.81it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:20, 15.43it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:17, 17.77it/s]
eval model::  37%|███▋      | 187/500 [00:09<00:15, 19.73it/s]
eval model::  38%|███▊      | 190/500 [00:09<00:15, 20.37it/s]
eval model::  39%|███▊      | 193/500 [00:10<00:14, 21.19it/s]
eval model::  39%|███▉      | 196/500 [00:10<00:15, 19.71it/s]
eval model::  40%|███▉      | 199/500 [00:10<00:14, 21.35it/s]
eval model::  40%|████      | 202/500 [00:10<00:13, 22.79it/s]
eval model::  41%|████      | 205/500 [00:10<00:20, 14.39it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:18, 15.39it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:18, 15.66it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:17, 16.32it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:19, 14.62it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:20, 13.84it/s]
eval model::  44%|████▍     | 219/500 [00:11<00:18, 15.00it/s]
eval model::  44%|████▍     | 221/500 [00:11<00:18, 14.69it/s]
eval model::  45%|████▍     | 224/500 [00:12<00:16, 17.18it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:16, 16.98it/s]
eval model::  46%|████▌     | 229/500 [00:12<00:14, 19.16it/s]
eval model::  46%|████▋     | 232/500 [00:12<00:13, 20.16it/s]
eval model::  47%|████▋     | 235/500 [00:12<00:13, 20.37it/s]
eval model::  48%|████▊     | 238/500 [00:12<00:14, 18.20it/s]
eval model::  48%|████▊     | 240/500 [00:12<00:14, 18.40it/s]
eval model::  48%|████▊     | 242/500 [00:13<00:15, 16.33it/s]
eval model::  49%|████▉     | 245/500 [00:13<00:13, 18.58it/s]
eval model::  50%|████▉     | 248/500 [00:13<00:13, 19.21it/s]
eval model::  50%|█████     | 250/500 [00:13<00:13, 19.14it/s]
eval model::  51%|█████     | 253/500 [00:13<00:11, 21.33it/s]
eval model::  51%|█████     | 256/500 [00:13<00:11, 21.78it/s]
eval model::  52%|█████▏    | 259/500 [00:13<00:10, 23.46it/s]
eval model::  52%|█████▏    | 262/500 [00:13<00:10, 22.86it/s]
eval model::  53%|█████▎    | 265/500 [00:14<00:11, 21.23it/s]
eval model::  54%|█████▎    | 268/500 [00:14<00:10, 21.35it/s]
eval model::  54%|█████▍    | 271/500 [00:14<00:10, 22.37it/s]
eval model::  55%|█████▍    | 274/500 [00:14<00:10, 21.94it/s]
eval model::  55%|█████▌    | 277/500 [00:14<00:11, 19.72it/s]
eval model::  56%|█████▌    | 280/500 [00:14<00:11, 19.21it/s]
eval model::  57%|█████▋    | 283/500 [00:14<00:10, 20.21it/s]
eval model::  57%|█████▋    | 286/500 [00:15<00:15, 14.17it/s]
eval model::  58%|█████▊    | 289/500 [00:15<00:13, 15.94it/s]
eval model::  58%|█████▊    | 292/500 [00:15<00:12, 17.13it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:12, 16.66it/s]
eval model::  59%|█████▉    | 296/500 [00:15<00:12, 15.74it/s]
eval model::  60%|█████▉    | 299/500 [00:15<00:11, 17.44it/s]
eval model::  60%|██████    | 301/500 [00:16<00:12, 16.08it/s]
eval model::  61%|██████    | 304/500 [00:16<00:10, 17.99it/s]
eval model::  61%|██████    | 306/500 [00:16<00:10, 18.36it/s]
eval model::  62%|██████▏   | 308/500 [00:16<00:10, 18.73it/s]
eval model::  62%|██████▏   | 311/500 [00:16<00:09, 19.73it/s]
eval model::  63%|██████▎   | 314/500 [00:16<00:09, 19.81it/s]
eval model::  63%|██████▎   | 316/500 [00:16<00:09, 19.78it/s]
eval model::  64%|██████▍   | 319/500 [00:16<00:08, 21.71it/s]
eval model::  64%|██████▍   | 322/500 [00:17<00:08, 21.43it/s]
eval model::  65%|██████▌   | 325/500 [00:17<00:07, 22.38it/s]
eval model::  66%|██████▌   | 328/500 [00:17<00:08, 21.38it/s]
eval model::  66%|██████▌   | 331/500 [00:17<00:08, 19.02it/s]
eval model::  67%|██████▋   | 334/500 [00:17<00:08, 20.62it/s]
eval model::  67%|██████▋   | 337/500 [00:17<00:08, 19.12it/s]
eval model::  68%|██████▊   | 340/500 [00:18<00:09, 16.79it/s]
eval model::  69%|██████▊   | 343/500 [00:18<00:08, 19.04it/s]
eval model::  69%|██████▉   | 346/500 [00:18<00:07, 20.86it/s]
eval model::  70%|██████▉   | 349/500 [00:18<00:06, 22.95it/s]
eval model::  70%|███████   | 352/500 [00:18<00:06, 22.92it/s]
eval model::  71%|███████   | 355/500 [00:18<00:06, 22.25it/s]
eval model::  72%|███████▏  | 358/500 [00:18<00:06, 21.88it/s]
eval model::  72%|███████▏  | 361/500 [00:19<00:07, 19.27it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:06, 19.50it/s]
eval model::  73%|███████▎  | 367/500 [00:19<00:07, 18.51it/s]
eval model::  74%|███████▍  | 370/500 [00:19<00:06, 19.32it/s]
eval model::  74%|███████▍  | 372/500 [00:19<00:06, 18.95it/s]
eval model::  75%|███████▌  | 375/500 [00:19<00:06, 20.72it/s]
eval model::  76%|███████▌  | 378/500 [00:19<00:05, 22.20it/s]
eval model::  76%|███████▌  | 381/500 [00:20<00:05, 21.41it/s]
eval model::  77%|███████▋  | 385/500 [00:20<00:04, 24.64it/s]
eval model::  78%|███████▊  | 388/500 [00:20<00:06, 16.73it/s]
eval model::  78%|███████▊  | 391/500 [00:20<00:05, 18.33it/s]
eval model::  79%|███████▉  | 394/500 [00:20<00:05, 18.54it/s]
eval model::  79%|███████▉  | 397/500 [00:20<00:05, 19.90it/s]
eval model::  80%|████████  | 400/500 [00:21<00:05, 19.81it/s]
eval model::  81%|████████  | 403/500 [00:21<00:04, 20.17it/s]
eval model::  81%|████████  | 406/500 [00:21<00:04, 20.41it/s]
eval model::  82%|████████▏ | 409/500 [00:21<00:04, 20.26it/s]
eval model::  82%|████████▏ | 412/500 [00:21<00:04, 21.08it/s]
eval model::  83%|████████▎ | 415/500 [00:21<00:04, 18.98it/s]
eval model::  83%|████████▎ | 417/500 [00:21<00:04, 18.08it/s]
eval model::  84%|████████▍ | 419/500 [00:22<00:04, 17.38it/s]
eval model::  84%|████████▍ | 421/500 [00:22<00:05, 15.42it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:05, 15.11it/s]
eval model::  85%|████████▌ | 426/500 [00:22<00:04, 15.31it/s]
eval model::  86%|████████▌ | 429/500 [00:22<00:03, 18.06it/s]
eval model::  86%|████████▌ | 431/500 [00:22<00:03, 18.03it/s]
eval model::  87%|████████▋ | 434/500 [00:22<00:03, 20.40it/s]
eval model::  87%|████████▋ | 437/500 [00:23<00:02, 21.33it/s]
eval model::  88%|████████▊ | 440/500 [00:23<00:03, 19.37it/s]
eval model::  89%|████████▊ | 443/500 [00:23<00:02, 21.08it/s]
eval model::  89%|████████▉ | 446/500 [00:23<00:02, 22.35it/s]
eval model::  90%|████████▉ | 449/500 [00:23<00:02, 22.08it/s]
eval model::  90%|█████████ | 452/500 [00:23<00:02, 23.86it/s]
eval model::  91%|█████████ | 455/500 [00:23<00:01, 23.77it/s]
eval model::  92%|█████████▏| 458/500 [00:23<00:01, 23.32it/s]
eval model::  92%|█████████▏| 461/500 [00:24<00:01, 19.50it/s]
eval model::  93%|█████████▎| 464/500 [00:24<00:02, 17.23it/s]
eval model::  93%|█████████▎| 466/500 [00:24<00:02, 16.30it/s]
eval model::  94%|█████████▍| 469/500 [00:24<00:01, 17.70it/s]
eval model::  94%|█████████▍| 472/500 [00:24<00:01, 18.62it/s]
eval model::  95%|█████████▍| 474/500 [00:24<00:01, 18.39it/s]
eval model::  95%|█████████▌| 477/500 [00:25<00:01, 20.86it/s]
eval model::  96%|█████████▌| 480/500 [00:25<00:00, 21.18it/s]
eval model::  97%|█████████▋| 483/500 [00:25<00:00, 22.79it/s]
eval model::  97%|█████████▋| 486/500 [00:25<00:00, 20.82it/s]
eval model::  98%|█████████▊| 489/500 [00:25<00:00, 22.44it/s]
eval model::  98%|█████████▊| 492/500 [00:25<00:00, 21.69it/s]
eval model::  99%|█████████▉| 495/500 [00:25<00:00, 21.83it/s]
eval model:: 100%|█████████▉| 498/500 [00:25<00:00, 23.39it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 19.20it/s]
[2024/07/27 23:06:59] ppocr INFO: cur metric, precision: 0.6209476309226932, recall: 0.4795377948964853, hmean: 0.541157294213529, fps: 43.06713264514292
[2024/07/27 23:06:59] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/27 23:06:59] ppocr INFO: best metric, hmean: 0.541157294213529, precision: 0.6209476309226932, recall: 0.4795377948964853, fps: 43.06713264514292, best_epoch: 160
[2024/07/27 23:06:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:07:06] ppocr INFO: epoch: [161/200], global_step: 483, lr: 0.001000, loss: 2.030277, loss_shrink_maps: 1.116061, loss_threshold_maps: 0.693239, loss_binary_maps: 0.219373, avg_reader_cost: 1.53273 s, avg_batch_cost: 1.76126 s, avg_samples: 12.5, ips: 7.09720 samples/s, eta: 0:12:24
[2024/07/27 23:07:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:07:13] ppocr INFO: epoch: [162/200], global_step: 486, lr: 0.001000, loss: 2.015708, loss_shrink_maps: 1.088892, loss_threshold_maps: 0.699955, loss_binary_maps: 0.216192, avg_reader_cost: 1.53602 s, avg_batch_cost: 1.76495 s, avg_samples: 12.5, ips: 7.08237 samples/s, eta: 0:12:05
[2024/07/27 23:07:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:07:21] ppocr INFO: epoch: [163/200], global_step: 489, lr: 0.001000, loss: 2.082448, loss_shrink_maps: 1.164285, loss_threshold_maps: 0.695617, loss_binary_maps: 0.230191, avg_reader_cost: 1.51454 s, avg_batch_cost: 1.74586 s, avg_samples: 12.5, ips: 7.15981 samples/s, eta: 0:11:45
[2024/07/27 23:07:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:07:27] ppocr INFO: epoch: [164/200], global_step: 490, lr: 0.001000, loss: 2.082448, loss_shrink_maps: 1.164285, loss_threshold_maps: 0.695617, loss_binary_maps: 0.230191, avg_reader_cost: 0.49301 s, avg_batch_cost: 0.57578 s, avg_samples: 4.8, ips: 8.33647 samples/s, eta: 0:11:39
[2024/07/27 23:07:29] ppocr INFO: epoch: [164/200], global_step: 492, lr: 0.001000, loss: 2.077806, loss_shrink_maps: 1.150864, loss_threshold_maps: 0.699921, loss_binary_maps: 0.228432, avg_reader_cost: 1.24271 s, avg_batch_cost: 1.38854 s, avg_samples: 7.7, ips: 5.54538 samples/s, eta: 0:11:26
[2024/07/27 23:07:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:07:36] ppocr INFO: epoch: [165/200], global_step: 495, lr: 0.001000, loss: 2.088863, loss_shrink_maps: 1.178305, loss_threshold_maps: 0.704076, loss_binary_maps: 0.233030, avg_reader_cost: 1.53940 s, avg_batch_cost: 1.77474 s, avg_samples: 12.5, ips: 7.04329 samples/s, eta: 0:11:07
[2024/07/27 23:07:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:07:44] ppocr INFO: epoch: [166/200], global_step: 498, lr: 0.001000, loss: 2.088863, loss_shrink_maps: 1.178305, loss_threshold_maps: 0.708893, loss_binary_maps: 0.233030, avg_reader_cost: 1.55748 s, avg_batch_cost: 1.78713 s, avg_samples: 12.5, ips: 6.99446 samples/s, eta: 0:10:48
[2024/07/27 23:07:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:07:51] ppocr INFO: epoch: [167/200], global_step: 500, lr: 0.001000, loss: 2.089289, loss_shrink_maps: 1.178305, loss_threshold_maps: 0.713383, loss_binary_maps: 0.233030, avg_reader_cost: 0.94304 s, avg_batch_cost: 1.21969 s, avg_samples: 9.6, ips: 7.87086 samples/s, eta: 0:10:35
[2024/07/27 23:07:52] ppocr INFO: epoch: [167/200], global_step: 501, lr: 0.001000, loss: 2.089289, loss_shrink_maps: 1.162200, loss_threshold_maps: 0.713383, loss_binary_maps: 0.230363, avg_reader_cost: 0.65550 s, avg_batch_cost: 0.71033 s, avg_samples: 2.9, ips: 4.08259 samples/s, eta: 0:10:29
[2024/07/27 23:07:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:07:59] ppocr INFO: epoch: [168/200], global_step: 504, lr: 0.001000, loss: 2.084648, loss_shrink_maps: 1.150864, loss_threshold_maps: 0.704076, loss_binary_maps: 0.228432, avg_reader_cost: 1.51149 s, avg_batch_cost: 1.74998 s, avg_samples: 12.5, ips: 7.14294 samples/s, eta: 0:10:09
[2024/07/27 23:08:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:08:06] ppocr INFO: epoch: [169/200], global_step: 507, lr: 0.001000, loss: 2.077806, loss_shrink_maps: 1.138263, loss_threshold_maps: 0.719916, loss_binary_maps: 0.225929, avg_reader_cost: 1.55574 s, avg_batch_cost: 1.80623 s, avg_samples: 12.5, ips: 6.92051 samples/s, eta: 0:09:50
[2024/07/27 23:08:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:08:14] ppocr INFO: epoch: [170/200], global_step: 510, lr: 0.001000, loss: 2.084648, loss_shrink_maps: 1.138263, loss_threshold_maps: 0.724181, loss_binary_maps: 0.225929, avg_reader_cost: 1.54360 s, avg_batch_cost: 1.78494 s, avg_samples: 12.5, ips: 7.00302 samples/s, eta: 0:09:31
[2024/07/27 23:08:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:08:21] ppocr INFO: epoch: [171/200], global_step: 513, lr: 0.001000, loss: 1.980146, loss_shrink_maps: 1.068848, loss_threshold_maps: 0.718118, loss_binary_maps: 0.211059, avg_reader_cost: 1.54792 s, avg_batch_cost: 1.80027 s, avg_samples: 12.5, ips: 6.94342 samples/s, eta: 0:09:11
[2024/07/27 23:08:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:08:29] ppocr INFO: epoch: [172/200], global_step: 516, lr: 0.001000, loss: 2.026310, loss_shrink_maps: 1.084986, loss_threshold_maps: 0.718118, loss_binary_maps: 0.215327, avg_reader_cost: 1.55493 s, avg_batch_cost: 1.78252 s, avg_samples: 12.5, ips: 7.01254 samples/s, eta: 0:08:52
[2024/07/27 23:08:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:08:36] ppocr INFO: epoch: [173/200], global_step: 519, lr: 0.001000, loss: 2.002848, loss_shrink_maps: 1.084986, loss_threshold_maps: 0.697548, loss_binary_maps: 0.215327, avg_reader_cost: 1.52313 s, avg_batch_cost: 1.78278 s, avg_samples: 12.5, ips: 7.01153 samples/s, eta: 0:08:33
[2024/07/27 23:08:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:08:42] ppocr INFO: epoch: [174/200], global_step: 520, lr: 0.001000, loss: 2.002848, loss_shrink_maps: 1.084986, loss_threshold_maps: 0.690937, loss_binary_maps: 0.215327, avg_reader_cost: 0.41620 s, avg_batch_cost: 0.50765 s, avg_samples: 4.8, ips: 9.45536 samples/s, eta: 0:08:26
[2024/07/27 23:08:44] ppocr INFO: epoch: [174/200], global_step: 522, lr: 0.001000, loss: 2.002848, loss_shrink_maps: 1.084986, loss_threshold_maps: 0.690937, loss_binary_maps: 0.215327, avg_reader_cost: 1.10672 s, avg_batch_cost: 1.25281 s, avg_samples: 7.7, ips: 6.14620 samples/s, eta: 0:08:14
[2024/07/27 23:08:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:08:51] ppocr INFO: epoch: [175/200], global_step: 525, lr: 0.001000, loss: 2.002848, loss_shrink_maps: 1.084986, loss_threshold_maps: 0.690937, loss_binary_maps: 0.215327, avg_reader_cost: 1.51593 s, avg_batch_cost: 1.74470 s, avg_samples: 12.5, ips: 7.16457 samples/s, eta: 0:07:55
[2024/07/27 23:08:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:08:58] ppocr INFO: epoch: [176/200], global_step: 528, lr: 0.001000, loss: 1.985734, loss_shrink_maps: 1.084986, loss_threshold_maps: 0.675032, loss_binary_maps: 0.215327, avg_reader_cost: 1.51594 s, avg_batch_cost: 1.74797 s, avg_samples: 12.5, ips: 7.15117 samples/s, eta: 0:07:35
[2024/07/27 23:09:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:09:06] ppocr INFO: epoch: [177/200], global_step: 530, lr: 0.001000, loss: 1.971131, loss_shrink_maps: 1.068848, loss_threshold_maps: 0.675032, loss_binary_maps: 0.211059, avg_reader_cost: 0.93692 s, avg_batch_cost: 1.13560 s, avg_samples: 9.6, ips: 8.45371 samples/s, eta: 0:07:22
[2024/07/27 23:09:06] ppocr INFO: epoch: [177/200], global_step: 531, lr: 0.001000, loss: 1.985734, loss_shrink_maps: 1.084986, loss_threshold_maps: 0.681511, loss_binary_maps: 0.215327, avg_reader_cost: 0.61386 s, avg_batch_cost: 0.66850 s, avg_samples: 2.9, ips: 4.33806 samples/s, eta: 0:07:16
[2024/07/27 23:09:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:09:14] ppocr INFO: epoch: [178/200], global_step: 534, lr: 0.001000, loss: 2.010606, loss_shrink_maps: 1.101970, loss_threshold_maps: 0.691136, loss_binary_maps: 0.218362, avg_reader_cost: 1.55916 s, avg_batch_cost: 1.78906 s, avg_samples: 12.5, ips: 6.98690 samples/s, eta: 0:06:57
[2024/07/27 23:09:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:09:21] ppocr INFO: epoch: [179/200], global_step: 537, lr: 0.001000, loss: 2.010606, loss_shrink_maps: 1.115043, loss_threshold_maps: 0.691154, loss_binary_maps: 0.221028, avg_reader_cost: 1.50758 s, avg_batch_cost: 1.74273 s, avg_samples: 12.5, ips: 7.17264 samples/s, eta: 0:06:38
[2024/07/27 23:09:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:09:28] ppocr INFO: epoch: [180/200], global_step: 540, lr: 0.001000, loss: 2.040858, loss_shrink_maps: 1.122413, loss_threshold_maps: 0.700011, loss_binary_maps: 0.223115, avg_reader_cost: 1.52262 s, avg_batch_cost: 1.75982 s, avg_samples: 12.5, ips: 7.10301 samples/s, eta: 0:06:19

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:58,  8.54it/s]
eval model::   1%|          | 4/500 [00:00<00:30, 16.43it/s]
eval model::   1%|          | 6/500 [00:00<00:28, 17.13it/s]
eval model::   2%|▏         | 9/500 [00:00<00:25, 18.96it/s]
eval model::   2%|▏         | 11/500 [00:00<00:27, 18.06it/s]
eval model::   3%|▎         | 14/500 [00:00<00:25, 19.08it/s]
eval model::   3%|▎         | 17/500 [00:00<00:22, 21.37it/s]
eval model::   4%|▍         | 20/500 [00:01<00:24, 19.50it/s]
eval model::   5%|▍         | 23/500 [00:01<00:22, 21.63it/s]
eval model::   5%|▌         | 26/500 [00:01<00:22, 21.33it/s]
eval model::   6%|▌         | 29/500 [00:01<00:22, 21.36it/s]
eval model::   6%|▋         | 32/500 [00:01<00:22, 20.92it/s]
eval model::   7%|▋         | 35/500 [00:01<00:23, 19.61it/s]
eval model::   8%|▊         | 38/500 [00:01<00:22, 20.66it/s]
eval model::   8%|▊         | 41/500 [00:02<00:23, 19.77it/s]
eval model::   9%|▉         | 44/500 [00:02<00:23, 19.35it/s]
eval model::   9%|▉         | 46/500 [00:02<00:23, 19.30it/s]
eval model::  10%|▉         | 49/500 [00:02<00:21, 21.22it/s]
eval model::  10%|█         | 52/500 [00:02<00:21, 20.39it/s]
eval model::  11%|█         | 55/500 [00:02<00:22, 19.92it/s]
eval model::  12%|█▏        | 58/500 [00:02<00:23, 18.76it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:25, 17.48it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:28, 15.50it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:24, 18.07it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:21, 20.15it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:19, 21.43it/s]
eval model::  15%|█▌        | 75/500 [00:03<00:20, 21.02it/s]
eval model::  16%|█▌        | 78/500 [00:03<00:19, 21.68it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:21, 19.91it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:20, 20.57it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:22, 18.73it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:23, 17.39it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:23, 17.16it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:23, 17.56it/s]
eval model::  19%|█▉        | 96/500 [00:04<00:20, 19.64it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:18, 22.13it/s]
eval model::  20%|██        | 102/500 [00:05<00:19, 20.90it/s]
eval model::  21%|██        | 106/500 [00:05<00:16, 23.30it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:16, 23.36it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:17, 21.62it/s]
eval model::  23%|██▎       | 115/500 [00:05<00:17, 21.61it/s]
eval model::  24%|██▎       | 118/500 [00:05<00:18, 21.01it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:20, 18.77it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:20, 18.76it/s]
eval model::  25%|██▌       | 127/500 [00:06<00:18, 20.27it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:19, 19.20it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:19, 19.36it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:18, 20.04it/s]
eval model::  28%|██▊       | 138/500 [00:06<00:17, 20.21it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:18, 19.45it/s]
eval model::  29%|██▊       | 143/500 [00:07<00:19, 18.17it/s]
eval model::  29%|██▉       | 146/500 [00:07<00:17, 19.68it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:19, 18.11it/s]
eval model::  30%|███       | 151/500 [00:07<00:20, 17.44it/s]
eval model::  31%|███       | 155/500 [00:07<00:16, 20.41it/s]
eval model::  32%|███▏      | 158/500 [00:08<00:16, 20.20it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:18, 17.89it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:17, 19.41it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:16, 19.99it/s]
eval model::  34%|███▍      | 170/500 [00:08<00:15, 21.56it/s]
eval model::  35%|███▍      | 173/500 [00:08<00:15, 21.58it/s]
eval model::  35%|███▌      | 176/500 [00:08<00:18, 17.74it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:16, 19.32it/s]
eval model::  36%|███▋      | 182/500 [00:09<00:19, 16.49it/s]
eval model::  37%|███▋      | 185/500 [00:09<00:17, 18.29it/s]
eval model::  38%|███▊      | 188/500 [00:09<00:16, 18.38it/s]
eval model::  38%|███▊      | 191/500 [00:09<00:15, 19.55it/s]
eval model::  39%|███▉      | 194/500 [00:09<00:14, 21.51it/s]
eval model::  39%|███▉      | 197/500 [00:10<00:14, 20.42it/s]
eval model::  40%|████      | 200/500 [00:10<00:14, 20.08it/s]
eval model::  41%|████      | 203/500 [00:10<00:14, 20.76it/s]
eval model::  41%|████      | 206/500 [00:10<00:20, 14.61it/s]
eval model::  42%|████▏     | 208/500 [00:10<00:19, 14.85it/s]
eval model::  42%|████▏     | 210/500 [00:10<00:19, 15.25it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:17, 16.02it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:20, 14.16it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:19, 14.28it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:16, 16.58it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:17, 15.72it/s]
eval model::  45%|████▌     | 226/500 [00:11<00:14, 18.97it/s]
eval model::  46%|████▌     | 229/500 [00:11<00:12, 21.13it/s]
eval model::  46%|████▋     | 232/500 [00:12<00:11, 22.74it/s]
eval model::  47%|████▋     | 235/500 [00:12<00:12, 21.79it/s]
eval model::  48%|████▊     | 238/500 [00:12<00:11, 22.27it/s]
eval model::  48%|████▊     | 241/500 [00:12<00:11, 22.33it/s]
eval model::  49%|████▉     | 244/500 [00:12<00:12, 20.61it/s]
eval model::  49%|████▉     | 247/500 [00:12<00:11, 21.99it/s]
eval model::  50%|█████     | 250/500 [00:12<00:12, 20.20it/s]
eval model::  51%|█████     | 253/500 [00:13<00:12, 20.49it/s]
eval model::  51%|█████     | 256/500 [00:13<00:11, 20.85it/s]
eval model::  52%|█████▏    | 259/500 [00:13<00:12, 19.66it/s]
eval model::  52%|█████▏    | 262/500 [00:13<00:11, 20.38it/s]
eval model::  53%|█████▎    | 265/500 [00:13<00:12, 18.50it/s]
eval model::  53%|█████▎    | 267/500 [00:13<00:12, 18.75it/s]
eval model::  54%|█████▍    | 270/500 [00:13<00:11, 20.89it/s]
eval model::  55%|█████▍    | 273/500 [00:14<00:11, 19.74it/s]
eval model::  55%|█████▌    | 276/500 [00:14<00:11, 19.43it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:11, 19.50it/s]
eval model::  56%|█████▋    | 282/500 [00:14<00:10, 21.24it/s]
eval model::  57%|█████▋    | 285/500 [00:14<00:14, 14.91it/s]
eval model::  58%|█████▊    | 288/500 [00:14<00:12, 17.19it/s]
eval model::  58%|█████▊    | 292/500 [00:15<00:10, 20.14it/s]
eval model::  59%|█████▉    | 295/500 [00:15<00:12, 16.51it/s]
eval model::  60%|█████▉    | 298/500 [00:15<00:11, 18.36it/s]
eval model::  60%|██████    | 301/500 [00:15<00:11, 17.66it/s]
eval model::  61%|██████    | 304/500 [00:15<00:10, 18.96it/s]
eval model::  61%|██████▏   | 307/500 [00:15<00:09, 20.48it/s]
eval model::  62%|██████▏   | 310/500 [00:16<00:09, 20.99it/s]
eval model::  63%|██████▎   | 313/500 [00:16<00:08, 21.61it/s]
eval model::  63%|██████▎   | 316/500 [00:16<00:08, 20.82it/s]
eval model::  64%|██████▍   | 319/500 [00:16<00:08, 21.80it/s]
eval model::  64%|██████▍   | 322/500 [00:16<00:08, 20.38it/s]
eval model::  65%|██████▌   | 325/500 [00:16<00:08, 21.59it/s]
eval model::  66%|██████▌   | 328/500 [00:16<00:08, 19.72it/s]
eval model::  66%|██████▌   | 331/500 [00:17<00:08, 19.49it/s]
eval model::  67%|██████▋   | 334/500 [00:17<00:08, 20.36it/s]
eval model::  67%|██████▋   | 337/500 [00:17<00:08, 18.50it/s]
eval model::  68%|██████▊   | 339/500 [00:17<00:08, 18.66it/s]
eval model::  68%|██████▊   | 341/500 [00:17<00:09, 16.15it/s]
eval model::  69%|██████▉   | 345/500 [00:17<00:07, 20.35it/s]
eval model::  70%|██████▉   | 348/500 [00:17<00:07, 21.53it/s]
eval model::  70%|███████   | 351/500 [00:18<00:07, 19.31it/s]
eval model::  71%|███████   | 354/500 [00:18<00:07, 20.55it/s]
eval model::  71%|███████▏  | 357/500 [00:18<00:07, 18.11it/s]
eval model::  72%|███████▏  | 360/500 [00:18<00:07, 18.72it/s]
eval model::  72%|███████▏  | 362/500 [00:18<00:07, 18.09it/s]
eval model::  73%|███████▎  | 364/500 [00:18<00:07, 17.77it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:07, 17.54it/s]
eval model::  74%|███████▎  | 368/500 [00:19<00:07, 18.04it/s]
eval model::  74%|███████▍  | 371/500 [00:19<00:06, 19.28it/s]
eval model::  75%|███████▍  | 373/500 [00:19<00:06, 19.14it/s]
eval model::  75%|███████▌  | 376/500 [00:19<00:05, 21.62it/s]
eval model::  76%|███████▌  | 379/500 [00:19<00:05, 23.49it/s]
eval model::  76%|███████▋  | 382/500 [00:19<00:05, 22.54it/s]
eval model::  77%|███████▋  | 385/500 [00:19<00:05, 22.76it/s]
eval model::  78%|███████▊  | 388/500 [00:20<00:07, 14.74it/s]
eval model::  78%|███████▊  | 390/500 [00:20<00:07, 15.62it/s]
eval model::  79%|███████▊  | 393/500 [00:20<00:06, 17.49it/s]
eval model::  79%|███████▉  | 396/500 [00:20<00:05, 19.15it/s]
eval model::  80%|███████▉  | 399/500 [00:20<00:05, 19.03it/s]
eval model::  80%|████████  | 402/500 [00:20<00:04, 19.73it/s]
eval model::  81%|████████  | 405/500 [00:20<00:04, 21.42it/s]
eval model::  82%|████████▏ | 408/500 [00:21<00:04, 22.86it/s]
eval model::  82%|████████▏ | 411/500 [00:21<00:03, 23.05it/s]
eval model::  83%|████████▎ | 414/500 [00:21<00:03, 22.73it/s]
eval model::  83%|████████▎ | 417/500 [00:21<00:04, 19.81it/s]
eval model::  84%|████████▍ | 420/500 [00:21<00:04, 16.04it/s]
eval model::  84%|████████▍ | 422/500 [00:21<00:04, 16.46it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:04, 15.63it/s]
eval model::  85%|████████▌ | 427/500 [00:22<00:04, 17.75it/s]
eval model::  86%|████████▌ | 430/500 [00:22<00:03, 18.87it/s]
eval model::  86%|████████▋ | 432/500 [00:22<00:03, 18.86it/s]
eval model::  87%|████████▋ | 435/500 [00:22<00:03, 20.62it/s]
eval model::  88%|████████▊ | 438/500 [00:22<00:02, 22.04it/s]
eval model::  88%|████████▊ | 441/500 [00:22<00:02, 20.60it/s]
eval model::  89%|████████▉ | 444/500 [00:22<00:02, 22.65it/s]
eval model::  89%|████████▉ | 447/500 [00:23<00:02, 22.49it/s]
eval model::  90%|█████████ | 450/500 [00:23<00:02, 22.01it/s]
eval model::  91%|█████████ | 453/500 [00:23<00:02, 21.25it/s]
eval model::  91%|█████████ | 456/500 [00:23<00:02, 21.41it/s]
eval model::  92%|█████████▏| 459/500 [00:23<00:02, 19.86it/s]
eval model::  92%|█████████▏| 462/500 [00:23<00:02, 17.03it/s]
eval model::  93%|█████████▎| 464/500 [00:24<00:02, 17.41it/s]
eval model::  93%|█████████▎| 466/500 [00:24<00:02, 16.41it/s]
eval model::  94%|█████████▍| 469/500 [00:24<00:01, 18.83it/s]
eval model::  94%|█████████▍| 472/500 [00:24<00:01, 20.76it/s]
eval model::  95%|█████████▌| 475/500 [00:24<00:01, 20.91it/s]
eval model::  96%|█████████▌| 478/500 [00:24<00:00, 22.47it/s]
eval model::  96%|█████████▌| 481/500 [00:24<00:00, 22.09it/s]
eval model::  97%|█████████▋| 484/500 [00:24<00:00, 23.57it/s]
eval model::  97%|█████████▋| 487/500 [00:25<00:00, 21.55it/s]
eval model::  98%|█████████▊| 490/500 [00:25<00:00, 22.78it/s]
eval model::  99%|█████████▊| 493/500 [00:25<00:00, 20.50it/s]
eval model::  99%|█████████▉| 496/500 [00:25<00:00, 19.82it/s]
eval model:: 100%|█████████▉| 499/500 [00:25<00:00, 20.72it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.44it/s]
[2024/07/27 23:09:54] ppocr INFO: cur metric, precision: 0.631233595800525, recall: 0.4631680308136736, hmean: 0.5342960288808665, fps: 44.052735179340345
[2024/07/27 23:09:54] ppocr INFO: best metric, hmean: 0.541157294213529, precision: 0.6209476309226932, recall: 0.4795377948964853, fps: 43.06713264514292, best_epoch: 160
[2024/07/27 23:09:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:10:01] ppocr INFO: epoch: [181/200], global_step: 543, lr: 0.001000, loss: 2.060701, loss_shrink_maps: 1.144028, loss_threshold_maps: 0.700011, loss_binary_maps: 0.226812, avg_reader_cost: 1.61978 s, avg_batch_cost: 1.88149 s, avg_samples: 12.5, ips: 6.64366 samples/s, eta: 0:06:00
[2024/07/27 23:10:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:10:10] ppocr INFO: epoch: [182/200], global_step: 546, lr: 0.001000, loss: 2.105980, loss_shrink_maps: 1.159122, loss_threshold_maps: 0.703757, loss_binary_maps: 0.229680, avg_reader_cost: 1.76060 s, avg_batch_cost: 1.98873 s, avg_samples: 12.5, ips: 6.28541 samples/s, eta: 0:05:41
[2024/07/27 23:10:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:10:17] ppocr INFO: epoch: [183/200], global_step: 549, lr: 0.001000, loss: 2.105980, loss_shrink_maps: 1.159122, loss_threshold_maps: 0.701947, loss_binary_maps: 0.229680, avg_reader_cost: 1.53881 s, avg_batch_cost: 1.77107 s, avg_samples: 12.5, ips: 7.05790 samples/s, eta: 0:05:22
[2024/07/27 23:10:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:10:23] ppocr INFO: epoch: [184/200], global_step: 550, lr: 0.001000, loss: 2.105980, loss_shrink_maps: 1.159122, loss_threshold_maps: 0.700871, loss_binary_maps: 0.229680, avg_reader_cost: 0.47212 s, avg_batch_cost: 0.55503 s, avg_samples: 4.8, ips: 8.64814 samples/s, eta: 0:05:15
[2024/07/27 23:10:25] ppocr INFO: epoch: [184/200], global_step: 552, lr: 0.001000, loss: 2.094718, loss_shrink_maps: 1.144028, loss_threshold_maps: 0.697024, loss_binary_maps: 0.226812, avg_reader_cost: 1.20185 s, avg_batch_cost: 1.34822 s, avg_samples: 7.7, ips: 5.71122 samples/s, eta: 0:05:03
[2024/07/27 23:10:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:10:32] ppocr INFO: epoch: [185/200], global_step: 555, lr: 0.001000, loss: 2.094718, loss_shrink_maps: 1.146756, loss_threshold_maps: 0.695385, loss_binary_maps: 0.227475, avg_reader_cost: 1.52994 s, avg_batch_cost: 1.77593 s, avg_samples: 12.5, ips: 7.03858 samples/s, eta: 0:04:44
[2024/07/27 23:10:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:10:40] ppocr INFO: epoch: [186/200], global_step: 558, lr: 0.001000, loss: 2.041999, loss_shrink_maps: 1.134851, loss_threshold_maps: 0.686480, loss_binary_maps: 0.224880, avg_reader_cost: 1.48691 s, avg_batch_cost: 1.73906 s, avg_samples: 12.5, ips: 7.18780 samples/s, eta: 0:04:25
[2024/07/27 23:10:41] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:10:47] ppocr INFO: epoch: [187/200], global_step: 560, lr: 0.001000, loss: 2.041999, loss_shrink_maps: 1.134851, loss_threshold_maps: 0.684250, loss_binary_maps: 0.224870, avg_reader_cost: 0.95499 s, avg_batch_cost: 1.13456 s, avg_samples: 9.6, ips: 8.46145 samples/s, eta: 0:04:12
[2024/07/27 23:10:47] ppocr INFO: epoch: [187/200], global_step: 561, lr: 0.001000, loss: 2.037408, loss_shrink_maps: 1.118221, loss_threshold_maps: 0.676694, loss_binary_maps: 0.220766, avg_reader_cost: 0.61301 s, avg_batch_cost: 0.66773 s, avg_samples: 2.9, ips: 4.34304 samples/s, eta: 0:04:06
[2024/07/27 23:10:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:10:55] ppocr INFO: epoch: [188/200], global_step: 564, lr: 0.001000, loss: 2.025835, loss_shrink_maps: 1.094532, loss_threshold_maps: 0.666873, loss_binary_maps: 0.216250, avg_reader_cost: 1.52412 s, avg_batch_cost: 1.75209 s, avg_samples: 12.5, ips: 7.13434 samples/s, eta: 0:03:47
[2024/07/27 23:10:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:11:02] ppocr INFO: epoch: [189/200], global_step: 567, lr: 0.001000, loss: 2.025835, loss_shrink_maps: 1.108146, loss_threshold_maps: 0.670617, loss_binary_maps: 0.220369, avg_reader_cost: 1.49374 s, avg_batch_cost: 1.72451 s, avg_samples: 12.5, ips: 7.24845 samples/s, eta: 0:03:28
[2024/07/27 23:11:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:11:10] ppocr INFO: epoch: [190/200], global_step: 570, lr: 0.001000, loss: 2.025835, loss_shrink_maps: 1.098069, loss_threshold_maps: 0.675949, loss_binary_maps: 0.217134, avg_reader_cost: 1.55210 s, avg_batch_cost: 1.80174 s, avg_samples: 12.5, ips: 6.93775 samples/s, eta: 0:03:09
[2024/07/27 23:11:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:11:17] ppocr INFO: epoch: [191/200], global_step: 573, lr: 0.001000, loss: 2.010429, loss_shrink_maps: 1.089128, loss_threshold_maps: 0.675949, loss_binary_maps: 0.215853, avg_reader_cost: 1.56327 s, avg_batch_cost: 1.81619 s, avg_samples: 12.5, ips: 6.88254 samples/s, eta: 0:02:50
[2024/07/27 23:11:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:11:25] ppocr INFO: epoch: [192/200], global_step: 576, lr: 0.001000, loss: 1.922496, loss_shrink_maps: 1.045724, loss_threshold_maps: 0.677107, loss_binary_maps: 0.207013, avg_reader_cost: 1.57581 s, avg_batch_cost: 1.80454 s, avg_samples: 12.5, ips: 6.92699 samples/s, eta: 0:02:31
[2024/07/27 23:11:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:11:33] ppocr INFO: epoch: [193/200], global_step: 579, lr: 0.001000, loss: 1.948941, loss_shrink_maps: 1.049438, loss_threshold_maps: 0.681881, loss_binary_maps: 0.207093, avg_reader_cost: 1.59984 s, avg_batch_cost: 1.83015 s, avg_samples: 12.5, ips: 6.83003 samples/s, eta: 0:02:12
[2024/07/27 23:11:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:11:39] ppocr INFO: epoch: [194/200], global_step: 580, lr: 0.001000, loss: 1.922496, loss_shrink_maps: 1.034084, loss_threshold_maps: 0.678076, loss_binary_maps: 0.203306, avg_reader_cost: 0.40172 s, avg_batch_cost: 0.52188 s, avg_samples: 4.8, ips: 9.19754 samples/s, eta: 0:02:06
[2024/07/27 23:11:40] ppocr INFO: epoch: [194/200], global_step: 582, lr: 0.001000, loss: 1.975362, loss_shrink_maps: 1.057069, loss_threshold_maps: 0.686071, loss_binary_maps: 0.209770, avg_reader_cost: 1.13540 s, avg_batch_cost: 1.28105 s, avg_samples: 7.7, ips: 6.01067 samples/s, eta: 0:01:53
[2024/07/27 23:11:41] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:11:48] ppocr INFO: epoch: [195/200], global_step: 585, lr: 0.001000, loss: 1.975362, loss_shrink_maps: 1.069529, loss_threshold_maps: 0.681881, loss_binary_maps: 0.213768, avg_reader_cost: 1.51876 s, avg_batch_cost: 1.77673 s, avg_samples: 12.5, ips: 7.03541 samples/s, eta: 0:01:34
[2024/07/27 23:11:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:11:55] ppocr INFO: epoch: [196/200], global_step: 588, lr: 0.001000, loss: 1.980742, loss_shrink_maps: 1.069529, loss_threshold_maps: 0.688508, loss_binary_maps: 0.213768, avg_reader_cost: 1.54117 s, avg_batch_cost: 1.79298 s, avg_samples: 12.5, ips: 6.97163 samples/s, eta: 0:01:15
[2024/07/27 23:11:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:12:02] ppocr INFO: epoch: [197/200], global_step: 590, lr: 0.001000, loss: 1.984796, loss_shrink_maps: 1.072904, loss_threshold_maps: 0.684661, loss_binary_maps: 0.214244, avg_reader_cost: 0.91438 s, avg_batch_cost: 1.08761 s, avg_samples: 9.6, ips: 8.82668 samples/s, eta: 0:01:02
[2024/07/27 23:12:02] ppocr INFO: epoch: [197/200], global_step: 591, lr: 0.001000, loss: 2.002328, loss_shrink_maps: 1.105892, loss_threshold_maps: 0.688508, loss_binary_maps: 0.220123, avg_reader_cost: 0.58948 s, avg_batch_cost: 0.64420 s, avg_samples: 2.9, ips: 4.50170 samples/s, eta: 0:00:56
[2024/07/27 23:12:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:12:10] ppocr INFO: epoch: [198/200], global_step: 594, lr: 0.001000, loss: 2.002328, loss_shrink_maps: 1.105892, loss_threshold_maps: 0.687102, loss_binary_maps: 0.220123, avg_reader_cost: 1.54211 s, avg_batch_cost: 1.77142 s, avg_samples: 12.5, ips: 7.05647 samples/s, eta: 0:00:37
[2024/07/27 23:12:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:12:18] ppocr INFO: epoch: [199/200], global_step: 597, lr: 0.001000, loss: 2.002328, loss_shrink_maps: 1.105892, loss_threshold_maps: 0.681492, loss_binary_maps: 0.220123, avg_reader_cost: 1.52315 s, avg_batch_cost: 1.78840 s, avg_samples: 12.5, ips: 6.98951 samples/s, eta: 0:00:18
[2024/07/27 23:12:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:12:25] ppocr INFO: epoch: [200/200], global_step: 600, lr: 0.001000, loss: 1.996198, loss_shrink_maps: 1.079593, loss_threshold_maps: 0.684349, loss_binary_maps: 0.214244, avg_reader_cost: 1.50024 s, avg_batch_cost: 1.73364 s, avg_samples: 12.5, ips: 7.21027 samples/s, eta: 0:00:00

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:54,  9.15it/s]
eval model::   1%|          | 4/500 [00:00<00:25, 19.56it/s]
eval model::   1%|          | 6/500 [00:00<00:27, 18.12it/s]
eval model::   2%|▏         | 8/500 [00:00<00:28, 17.01it/s]
eval model::   2%|▏         | 11/500 [00:00<00:27, 17.83it/s]
eval model::   3%|▎         | 13/500 [00:00<00:26, 18.29it/s]
eval model::   3%|▎         | 16/500 [00:00<00:24, 19.57it/s]
eval model::   4%|▍         | 19/500 [00:01<00:23, 20.27it/s]
eval model::   4%|▍         | 22/500 [00:01<00:23, 20.56it/s]
eval model::   5%|▌         | 25/500 [00:01<00:23, 19.82it/s]
eval model::   6%|▌         | 28/500 [00:01<00:22, 21.05it/s]
eval model::   6%|▌         | 31/500 [00:01<00:24, 19.31it/s]
eval model::   7%|▋         | 34/500 [00:01<00:24, 19.02it/s]
eval model::   7%|▋         | 37/500 [00:01<00:23, 20.02it/s]
eval model::   8%|▊         | 40/500 [00:02<00:25, 18.33it/s]
eval model::   9%|▊         | 43/500 [00:02<00:23, 19.39it/s]
eval model::   9%|▉         | 46/500 [00:02<00:23, 19.53it/s]
eval model::  10%|▉         | 49/500 [00:02<00:21, 20.51it/s]
eval model::  10%|█         | 52/500 [00:02<00:21, 20.66it/s]
eval model::  11%|█         | 55/500 [00:02<00:22, 20.18it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:23, 18.96it/s]
eval model::  12%|█▏        | 60/500 [00:03<00:22, 19.13it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:27, 15.83it/s]
eval model::  13%|█▎        | 64/500 [00:03<00:28, 15.04it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:24, 17.45it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:21, 19.71it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:21, 19.88it/s]
eval model::  15%|█▌        | 76/500 [00:03<00:19, 21.68it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:21, 19.91it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:19, 21.58it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:18, 22.21it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:21, 19.01it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:23, 17.15it/s]
eval model::  19%|█▉        | 94/500 [00:04<00:22, 18.33it/s]
eval model::  19%|█▉        | 97/500 [00:05<00:20, 19.67it/s]
eval model::  20%|██        | 100/500 [00:05<00:19, 20.76it/s]
eval model::  21%|██        | 103/500 [00:05<00:17, 22.07it/s]
eval model::  21%|██        | 106/500 [00:05<00:19, 20.70it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:18, 20.70it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:18, 20.71it/s]
eval model::  23%|██▎       | 115/500 [00:05<00:19, 19.97it/s]
eval model::  24%|██▎       | 118/500 [00:06<00:17, 21.79it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:18, 20.49it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:18, 20.12it/s]
eval model::  25%|██▌       | 127/500 [00:06<00:18, 20.46it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:18, 19.54it/s]
eval model::  27%|██▋       | 133/500 [00:06<00:17, 20.75it/s]
eval model::  27%|██▋       | 136/500 [00:06<00:18, 20.18it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:18, 19.34it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:17, 20.70it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:17, 20.50it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:19, 18.41it/s]
eval model::  30%|███       | 151/500 [00:07<00:19, 17.93it/s]
eval model::  31%|███       | 155/500 [00:07<00:16, 21.26it/s]
eval model::  32%|███▏      | 158/500 [00:07<00:15, 22.60it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:18, 18.30it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:18, 18.43it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:17, 18.69it/s]
eval model::  34%|███▍      | 170/500 [00:08<00:17, 19.20it/s]
eval model::  34%|███▍      | 172/500 [00:08<00:17, 18.69it/s]
eval model::  35%|███▍      | 174/500 [00:08<00:18, 17.71it/s]
eval model::  35%|███▌      | 177/500 [00:09<00:16, 19.12it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:18, 17.11it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:16, 19.42it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:14, 21.30it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:14, 21.45it/s]
eval model::  38%|███▊      | 192/500 [00:09<00:14, 21.26it/s]
eval model::  39%|███▉      | 195/500 [00:09<00:14, 20.97it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:14, 20.34it/s]
eval model::  40%|████      | 201/500 [00:10<00:14, 20.09it/s]
eval model::  41%|████      | 204/500 [00:10<00:13, 21.54it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:18, 16.05it/s]
eval model::  42%|████▏     | 209/500 [00:10<00:17, 16.47it/s]
eval model::  42%|████▏     | 211/500 [00:10<00:18, 15.62it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:17, 16.08it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:19, 14.66it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:19, 14.23it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:17, 16.33it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:18, 15.25it/s]
eval model::  45%|████▍     | 224/500 [00:11<00:16, 16.26it/s]
eval model::  45%|████▌     | 226/500 [00:11<00:17, 15.91it/s]
eval model::  46%|████▌     | 229/500 [00:12<00:14, 18.57it/s]
eval model::  46%|████▋     | 232/500 [00:12<00:13, 20.59it/s]
eval model::  47%|████▋     | 235/500 [00:12<00:13, 19.00it/s]
eval model::  48%|████▊     | 238/500 [00:12<00:13, 20.11it/s]
eval model::  48%|████▊     | 241/500 [00:12<00:11, 22.36it/s]
eval model::  49%|████▉     | 244/500 [00:12<00:12, 20.69it/s]
eval model::  49%|████▉     | 247/500 [00:12<00:11, 22.45it/s]
eval model::  50%|█████     | 250/500 [00:12<00:11, 21.65it/s]
eval model::  51%|█████     | 254/500 [00:13<00:10, 24.31it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:10, 22.46it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:10, 23.27it/s]
eval model::  53%|█████▎    | 263/500 [00:13<00:11, 21.48it/s]
eval model::  53%|█████▎    | 266/500 [00:13<00:11, 20.21it/s]
eval model::  54%|█████▍    | 269/500 [00:13<00:11, 20.84it/s]
eval model::  54%|█████▍    | 272/500 [00:13<00:11, 20.24it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:11, 19.24it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:10, 20.55it/s]
eval model::  56%|█████▌    | 281/500 [00:14<00:10, 21.67it/s]
eval model::  57%|█████▋    | 284/500 [00:14<00:10, 20.76it/s]
eval model::  57%|█████▋    | 287/500 [00:14<00:16, 13.23it/s]
eval model::  58%|█████▊    | 290/500 [00:15<00:13, 15.54it/s]
eval model::  58%|█████▊    | 292/500 [00:15<00:12, 16.23it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:12, 16.20it/s]
eval model::  59%|█████▉    | 296/500 [00:15<00:13, 15.45it/s]
eval model::  60%|██████    | 300/500 [00:15<00:11, 16.90it/s]
eval model::  61%|██████    | 303/500 [00:15<00:10, 18.75it/s]
eval model::  61%|██████    | 306/500 [00:15<00:09, 20.04it/s]
eval model::  62%|██████▏   | 309/500 [00:16<00:09, 20.92it/s]
eval model::  62%|██████▏   | 312/500 [00:16<00:08, 21.14it/s]
eval model::  63%|██████▎   | 315/500 [00:16<00:08, 21.11it/s]
eval model::  64%|██████▎   | 318/500 [00:16<00:08, 21.58it/s]
eval model::  64%|██████▍   | 321/500 [00:16<00:08, 22.25it/s]
eval model::  65%|██████▍   | 324/500 [00:16<00:08, 21.17it/s]
eval model::  65%|██████▌   | 327/500 [00:16<00:07, 22.19it/s]
eval model::  66%|██████▌   | 330/500 [00:17<00:08, 19.81it/s]
eval model::  67%|██████▋   | 333/500 [00:17<00:08, 20.57it/s]
eval model::  67%|██████▋   | 336/500 [00:17<00:07, 20.74it/s]
eval model::  68%|██████▊   | 339/500 [00:17<00:08, 18.92it/s]
eval model::  68%|██████▊   | 341/500 [00:17<00:09, 16.17it/s]
eval model::  69%|██████▉   | 344/500 [00:17<00:08, 18.68it/s]
eval model::  69%|██████▉   | 347/500 [00:17<00:07, 19.35it/s]
eval model::  70%|███████   | 350/500 [00:18<00:07, 21.24it/s]
eval model::  71%|███████   | 353/500 [00:18<00:06, 22.75it/s]
eval model::  71%|███████   | 356/500 [00:18<00:06, 21.12it/s]
eval model::  72%|███████▏  | 359/500 [00:18<00:06, 21.37it/s]
eval model::  72%|███████▏  | 362/500 [00:18<00:07, 18.87it/s]
eval model::  73%|███████▎  | 364/500 [00:18<00:07, 18.60it/s]
eval model::  73%|███████▎  | 367/500 [00:18<00:07, 18.33it/s]
eval model::  74%|███████▍  | 370/500 [00:19<00:06, 20.38it/s]
eval model::  75%|███████▍  | 373/500 [00:19<00:05, 21.46it/s]
eval model::  75%|███████▌  | 376/500 [00:19<00:05, 21.71it/s]
eval model::  76%|███████▌  | 379/500 [00:19<00:05, 20.83it/s]
eval model::  76%|███████▋  | 382/500 [00:19<00:05, 20.22it/s]
eval model::  77%|███████▋  | 385/500 [00:19<00:05, 21.64it/s]
eval model::  78%|███████▊  | 388/500 [00:20<00:08, 13.88it/s]
eval model::  78%|███████▊  | 391/500 [00:20<00:07, 15.48it/s]
eval model::  79%|███████▉  | 394/500 [00:20<00:06, 16.59it/s]
eval model::  79%|███████▉  | 397/500 [00:20<00:05, 18.30it/s]
eval model::  80%|████████  | 400/500 [00:20<00:05, 18.02it/s]
eval model::  81%|████████  | 403/500 [00:20<00:04, 19.57it/s]
eval model::  81%|████████  | 406/500 [00:21<00:04, 20.57it/s]
eval model::  82%|████████▏ | 409/500 [00:21<00:04, 22.71it/s]
eval model::  82%|████████▏ | 412/500 [00:21<00:03, 23.22it/s]
eval model::  83%|████████▎ | 415/500 [00:21<00:03, 22.19it/s]
eval model::  84%|████████▎ | 418/500 [00:21<00:04, 19.84it/s]
eval model::  84%|████████▍ | 421/500 [00:21<00:04, 17.12it/s]
eval model::  85%|████████▍ | 424/500 [00:21<00:04, 17.39it/s]
eval model::  85%|████████▌ | 427/500 [00:22<00:04, 18.13it/s]
eval model::  86%|████████▌ | 430/500 [00:22<00:03, 19.88it/s]
eval model::  87%|████████▋ | 433/500 [00:22<00:03, 19.89it/s]
eval model::  87%|████████▋ | 436/500 [00:22<00:03, 21.19it/s]
eval model::  88%|████████▊ | 439/500 [00:22<00:02, 20.35it/s]
eval model::  88%|████████▊ | 442/500 [00:22<00:02, 21.58it/s]
eval model::  89%|████████▉ | 446/500 [00:22<00:02, 23.85it/s]
eval model::  90%|████████▉ | 449/500 [00:23<00:02, 22.34it/s]
eval model::  90%|█████████ | 452/500 [00:23<00:02, 23.29it/s]
eval model::  91%|█████████ | 455/500 [00:23<00:01, 23.07it/s]
eval model::  92%|█████████▏| 458/500 [00:23<00:01, 23.63it/s]
eval model::  92%|█████████▏| 461/500 [00:23<00:01, 22.30it/s]
eval model::  93%|█████████▎| 464/500 [00:23<00:01, 18.26it/s]
eval model::  93%|█████████▎| 466/500 [00:23<00:01, 17.18it/s]
eval model::  94%|█████████▎| 468/500 [00:24<00:01, 17.55it/s]
eval model::  94%|█████████▍| 471/500 [00:24<00:01, 19.30it/s]
eval model::  95%|█████████▍| 473/500 [00:24<00:01, 19.35it/s]
eval model::  95%|█████████▌| 475/500 [00:24<00:01, 19.44it/s]
eval model::  96%|█████████▌| 478/500 [00:24<00:01, 21.54it/s]
eval model::  96%|█████████▌| 481/500 [00:24<00:00, 22.83it/s]
eval model::  97%|█████████▋| 484/500 [00:24<00:00, 22.60it/s]
eval model::  97%|█████████▋| 487/500 [00:24<00:00, 23.40it/s]
eval model::  98%|█████████▊| 490/500 [00:25<00:00, 23.80it/s]
eval model::  99%|█████████▊| 493/500 [00:25<00:00, 22.50it/s]
eval model::  99%|█████████▉| 496/500 [00:25<00:00, 20.30it/s]
eval model:: 100%|█████████▉| 499/500 [00:25<00:00, 22.50it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.61it/s]
[2024/07/27 23:12:51] ppocr INFO: cur metric, precision: 0.6872100728959576, recall: 0.4992778045257583, hmean: 0.5783602900167318, fps: 43.8015493763807
[2024/07/27 23:12:51] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/27 23:12:51] ppocr INFO: best metric, hmean: 0.5783602900167318, precision: 0.6872100728959576, recall: 0.4992778045257583, fps: 43.8015493763807, best_epoch: 200
[2024/07/27 23:12:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:12:51] ppocr INFO: best metric, hmean: 0.5783602900167318, precision: 0.6872100728959576, recall: 0.4992778045257583, fps: 43.8015493763807, best_epoch: 200
I0727 23:12:53.432174 113207 tcp_store.cc:289] receive shutdown event and so quit from MasterDaemon run loop
[2024/07/27 23:25:12] ppocr INFO: Architecture : 
[2024/07/27 23:25:12] ppocr INFO:     Backbone : 
[2024/07/27 23:25:12] ppocr INFO:         model_name : large
[2024/07/27 23:25:12] ppocr INFO:         name : MobileNetV3
[2024/07/27 23:25:12] ppocr INFO:         scale : 0.5
[2024/07/27 23:25:12] ppocr INFO:     Head : 
[2024/07/27 23:25:12] ppocr INFO:         k : 50
[2024/07/27 23:25:12] ppocr INFO:         name : DBHead
[2024/07/27 23:25:12] ppocr INFO:     Neck : 
[2024/07/27 23:25:12] ppocr INFO:         name : DBFPN
[2024/07/27 23:25:12] ppocr INFO:         out_channels : 256
[2024/07/27 23:25:12] ppocr INFO:     Transform : None
[2024/07/27 23:25:12] ppocr INFO:     algorithm : DB
[2024/07/27 23:25:12] ppocr INFO:     model_type : det
[2024/07/27 23:25:12] ppocr INFO: Eval : 
[2024/07/27 23:25:12] ppocr INFO:     dataset : 
[2024/07/27 23:25:12] ppocr INFO:         data_dir : /datasets/icdar2015/text_localization/
[2024/07/27 23:25:12] ppocr INFO:         label_file_list : ['/datasets/icdar2015/text_localization/test_icdar2015_label.txt']
[2024/07/27 23:25:12] ppocr INFO:         name : SimpleDataSet
[2024/07/27 23:25:12] ppocr INFO:         transforms : 
[2024/07/27 23:25:12] ppocr INFO:             DecodeImage : 
[2024/07/27 23:25:12] ppocr INFO:                 channel_first : False
[2024/07/27 23:25:12] ppocr INFO:                 img_mode : BGR
[2024/07/27 23:25:12] ppocr INFO:             DetLabelEncode : None
[2024/07/27 23:25:12] ppocr INFO:             DetResizeForTest : 
[2024/07/27 23:25:12] ppocr INFO:                 image_shape : [736, 1280]
[2024/07/27 23:25:12] ppocr INFO:             NormalizeImage : 
[2024/07/27 23:25:12] ppocr INFO:                 mean : [0.485, 0.456, 0.406]
[2024/07/27 23:25:12] ppocr INFO:                 order : hwc
[2024/07/27 23:25:12] ppocr INFO:                 scale : 1./255.
[2024/07/27 23:25:12] ppocr INFO:                 std : [0.229, 0.224, 0.225]
[2024/07/27 23:25:12] ppocr INFO:             ToCHWImage : None
[2024/07/27 23:25:12] ppocr INFO:             KeepKeys : 
[2024/07/27 23:25:12] ppocr INFO:                 keep_keys : ['image', 'shape', 'polys', 'ignore_tags']
[2024/07/27 23:25:12] ppocr INFO:     loader : 
[2024/07/27 23:25:12] ppocr INFO:         batch_size_per_card : 1
[2024/07/27 23:25:12] ppocr INFO:         drop_last : False
[2024/07/27 23:25:12] ppocr INFO:         num_workers : 0
[2024/07/27 23:25:12] ppocr INFO:         shuffle : False
[2024/07/27 23:25:12] ppocr INFO:         use_shared_memory : True
[2024/07/27 23:25:12] ppocr INFO: Global : 
[2024/07/27 23:25:12] ppocr INFO:     cal_metric_during_train : False
[2024/07/27 23:25:12] ppocr INFO:     checkpoints : None
[2024/07/27 23:25:12] ppocr INFO:     distributed : True
[2024/07/27 23:25:12] ppocr INFO:     epoch_num : 1500
[2024/07/27 23:25:12] ppocr INFO:     eval_batch_step : [0, 60]
[2024/07/27 23:25:12] ppocr INFO:     infer_img : doc/imgs_en/img_10.jpg
[2024/07/27 23:25:12] ppocr INFO:     log_smooth_window : 20
[2024/07/27 23:25:12] ppocr INFO:     pretrained_model : ./pretrain_models/MobileNetV3_large_x0_5_pretrained
[2024/07/27 23:25:12] ppocr INFO:     print_batch_step : 10
[2024/07/27 23:25:12] ppocr INFO:     save_epoch_step : 1200
[2024/07/27 23:25:12] ppocr INFO:     save_inference_dir : None
[2024/07/27 23:25:12] ppocr INFO:     save_model_dir : ./output/db_mv3/
[2024/07/27 23:25:12] ppocr INFO:     save_res_path : ./output/det_db/predicts_db.txt
[2024/07/27 23:25:12] ppocr INFO:     use_gpu : True
[2024/07/27 23:25:12] ppocr INFO:     use_visualdl : False
[2024/07/27 23:25:12] ppocr INFO:     use_xpu : False
[2024/07/27 23:25:12] ppocr INFO: Loss : 
[2024/07/27 23:25:12] ppocr INFO:     alpha : 5
[2024/07/27 23:25:12] ppocr INFO:     balance_loss : True
[2024/07/27 23:25:12] ppocr INFO:     beta : 10
[2024/07/27 23:25:12] ppocr INFO:     main_loss_type : DiceLoss
[2024/07/27 23:25:12] ppocr INFO:     name : DBLoss
[2024/07/27 23:25:12] ppocr INFO:     ohem_ratio : 3
[2024/07/27 23:25:12] ppocr INFO: Metric : 
[2024/07/27 23:25:12] ppocr INFO:     main_indicator : hmean
[2024/07/27 23:25:12] ppocr INFO:     name : DetMetric
[2024/07/27 23:25:12] ppocr INFO: Optimizer : 
[2024/07/27 23:25:12] ppocr INFO:     beta1 : 0.9
[2024/07/27 23:25:12] ppocr INFO:     beta2 : 0.999
[2024/07/27 23:25:12] ppocr INFO:     lr : 
[2024/07/27 23:25:12] ppocr INFO:         learning_rate : 0.001
[2024/07/27 23:25:12] ppocr INFO:     name : Adam
[2024/07/27 23:25:12] ppocr INFO:     regularizer : 
[2024/07/27 23:25:12] ppocr INFO:         factor : 0
[2024/07/27 23:25:12] ppocr INFO:         name : L2
[2024/07/27 23:25:12] ppocr INFO: PostProcess : 
[2024/07/27 23:25:12] ppocr INFO:     box_thresh : 0.6
[2024/07/27 23:25:12] ppocr INFO:     max_candidates : 1000
[2024/07/27 23:25:12] ppocr INFO:     name : DBPostProcess
[2024/07/27 23:25:12] ppocr INFO:     thresh : 0.3
[2024/07/27 23:25:12] ppocr INFO:     unclip_ratio : 1.5
[2024/07/27 23:25:12] ppocr INFO: Train : 
[2024/07/27 23:25:12] ppocr INFO:     dataset : 
[2024/07/27 23:25:12] ppocr INFO:         data_dir : /datasets/icdar2015/text_localization/
[2024/07/27 23:25:12] ppocr INFO:         label_file_list : ['/datasets/icdar2015/text_localization/train_icdar2015_label.txt']
[2024/07/27 23:25:12] ppocr INFO:         name : SimpleDataSet
[2024/07/27 23:25:12] ppocr INFO:         ratio_list : [1.0]
[2024/07/27 23:25:12] ppocr INFO:         transforms : 
[2024/07/27 23:25:12] ppocr INFO:             DecodeImage : 
[2024/07/27 23:25:12] ppocr INFO:                 channel_first : False
[2024/07/27 23:25:12] ppocr INFO:                 img_mode : BGR
[2024/07/27 23:25:12] ppocr INFO:             DetLabelEncode : None
[2024/07/27 23:25:12] ppocr INFO:             IaaAugment : 
[2024/07/27 23:25:12] ppocr INFO:                 augmenter_args : 
[2024/07/27 23:25:12] ppocr INFO:                     args : 
[2024/07/27 23:25:12] ppocr INFO:                         p : 0.5
[2024/07/27 23:25:12] ppocr INFO:                     type : Fliplr
[2024/07/27 23:25:12] ppocr INFO:                     args : 
[2024/07/27 23:25:12] ppocr INFO:                         rotate : [-10, 10]
[2024/07/27 23:25:12] ppocr INFO:                     type : Affine
[2024/07/27 23:25:12] ppocr INFO:                     args : 
[2024/07/27 23:25:12] ppocr INFO:                         size : [0.5, 3]
[2024/07/27 23:25:12] ppocr INFO:                     type : Resize
[2024/07/27 23:25:12] ppocr INFO:             EastRandomCropData : 
[2024/07/27 23:25:12] ppocr INFO:                 keep_ratio : True
[2024/07/27 23:25:12] ppocr INFO:                 max_tries : 50
[2024/07/27 23:25:12] ppocr INFO:                 size : [640, 640]
[2024/07/27 23:25:12] ppocr INFO:             MakeBorderMap : 
[2024/07/27 23:25:12] ppocr INFO:                 shrink_ratio : 0.4
[2024/07/27 23:25:12] ppocr INFO:                 thresh_max : 0.7
[2024/07/27 23:25:12] ppocr INFO:                 thresh_min : 0.3
[2024/07/27 23:25:12] ppocr INFO:             MakeShrinkMap : 
[2024/07/27 23:25:12] ppocr INFO:                 min_text_size : 8
[2024/07/27 23:25:12] ppocr INFO:                 shrink_ratio : 0.4
[2024/07/27 23:25:12] ppocr INFO:             NormalizeImage : 
[2024/07/27 23:25:12] ppocr INFO:                 mean : [0.485, 0.456, 0.406]
[2024/07/27 23:25:12] ppocr INFO:                 order : hwc
[2024/07/27 23:25:12] ppocr INFO:                 scale : 1./255.
[2024/07/27 23:25:12] ppocr INFO:                 std : [0.229, 0.224, 0.225]
[2024/07/27 23:25:12] ppocr INFO:             ToCHWImage : None
[2024/07/27 23:25:12] ppocr INFO:             KeepKeys : 
[2024/07/27 23:25:12] ppocr INFO:                 keep_keys : ['image', 'threshold_map', 'threshold_mask', 'shrink_map', 'shrink_mask']
[2024/07/27 23:25:12] ppocr INFO:     loader : 
[2024/07/27 23:25:12] ppocr INFO:         batch_size_per_card : 48
[2024/07/27 23:25:12] ppocr INFO:         drop_last : False
[2024/07/27 23:25:12] ppocr INFO:         num_workers : 8
[2024/07/27 23:25:12] ppocr INFO:         shuffle : True
[2024/07/27 23:25:12] ppocr INFO:         use_shared_memory : True
[2024/07/27 23:25:12] ppocr INFO: profiler_options : None
[2024/07/27 23:25:12] ppocr INFO: train with paddle 2.5.2 and device Place(gpu:0)
======================= Modified FLAGS detected =======================
FLAGS(name='FLAGS_selected_gpus', current_value='0', default_value='')
FLAGS(name='FLAGS_cudnn_batchnorm_spatial_persistent', current_value=True, default_value=False)
=======================================================================
I0727 23:25:12.009635 192372 tcp_utils.cc:181] The server starts to listen on IP_ANY:57742
I0727 23:25:12.009845 192372 tcp_utils.cc:130] Successfully connected to 127.0.0.1:57742
I0727 23:25:12.276495 192372 process_group_nccl.cc:120] ProcessGroupNCCL pg_timeout_ 1800000
[2024/07/27 23:25:12] ppocr INFO: Initialize indexs of datasets:['/datasets/icdar2015/text_localization/train_icdar2015_label.txt']
[2024/07/27 23:25:12] ppocr INFO: Initialize indexs of datasets:['/datasets/icdar2015/text_localization/test_icdar2015_label.txt']
W0727 23:25:12.297878 192372 gpu_resources.cc:119] Please NOTE: device: 0, GPU Compute Capability: 90.2, Driver API Version: 50724.2, Runtime API Version: 50724.2
[2024/07/27 23:25:13] ppocr INFO: load pretrain successful from ./pretrain_models/MobileNetV3_large_x0_5_pretrained
[2024/07/27 23:25:13] ppocr INFO: train dataloader has 3 iters
[2024/07/27 23:25:13] ppocr INFO: valid dataloader has 500 iters
[2024/07/27 23:25:13] ppocr INFO: During the training process, after the 0th iteration, an evaluation is run every 60 iterations
[2024/07/27 23:25:36] ppocr INFO: epoch: [1/1500], global_step: 3, lr: 0.001000, loss: 9.375711, loss_shrink_maps: 4.915188, loss_threshold_maps: 3.474780, loss_binary_maps: 0.985743, avg_reader_cost: 5.86177 s, avg_batch_cost: 6.51959 s, avg_samples: 12.5, ips: 1.91730 samples/s, eta: 1 day, 3:08:48
[2024/07/27 23:25:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:25:45] ppocr INFO: epoch: [2/1500], global_step: 6, lr: 0.001000, loss: 8.349568, loss_shrink_maps: 4.871605, loss_threshold_maps: 2.502100, loss_binary_maps: 0.978699, avg_reader_cost: 2.23706 s, avg_batch_cost: 2.46490 s, avg_samples: 12.5, ips: 5.07120 samples/s, eta: 18:41:33
[2024/07/27 23:25:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:25:55] ppocr INFO: epoch: [3/1500], global_step: 9, lr: 0.001000, loss: 7.682193, loss_shrink_maps: 4.862057, loss_threshold_maps: 1.842980, loss_binary_maps: 0.977156, avg_reader_cost: 2.24538 s, avg_batch_cost: 2.47261 s, avg_samples: 12.5, ips: 5.05538 samples/s, eta: 15:52:50
[2024/07/27 23:25:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:26:03] ppocr INFO: epoch: [4/1500], global_step: 10, lr: 0.001000, loss: 7.487565, loss_shrink_maps: 4.860974, loss_threshold_maps: 1.649941, loss_binary_maps: 0.976730, avg_reader_cost: 0.64250 s, avg_batch_cost: 0.73961 s, avg_samples: 4.8, ips: 6.48990 samples/s, eta: 15:12:43
[2024/07/27 23:26:04] ppocr INFO: epoch: [4/1500], global_step: 12, lr: 0.001000, loss: 7.192430, loss_shrink_maps: 4.858564, loss_threshold_maps: 1.371744, loss_binary_maps: 0.976224, avg_reader_cost: 1.57013 s, avg_batch_cost: 1.71551 s, avg_samples: 7.7, ips: 4.48847 samples/s, eta: 14:27:11
[2024/07/27 23:26:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:26:14] ppocr INFO: epoch: [5/1500], global_step: 15, lr: 0.001000, loss: 7.051856, loss_shrink_maps: 4.825602, loss_threshold_maps: 1.235765, loss_binary_maps: 0.967080, avg_reader_cost: 2.26830 s, avg_batch_cost: 2.51290 s, avg_samples: 12.5, ips: 4.97433 samples/s, eta: 13:38:31
[2024/07/27 23:26:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:26:23] ppocr INFO: epoch: [6/1500], global_step: 18, lr: 0.001000, loss: 6.932699, loss_shrink_maps: 4.799246, loss_threshold_maps: 1.161819, loss_binary_maps: 0.962392, avg_reader_cost: 2.18515 s, avg_batch_cost: 2.43845 s, avg_samples: 12.5, ips: 5.12622 samples/s, eta: 13:02:50
[2024/07/27 23:26:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:26:32] ppocr INFO: epoch: [7/1500], global_step: 20, lr: 0.001000, loss: 6.904118, loss_shrink_maps: 4.785454, loss_threshold_maps: 1.161083, loss_binary_maps: 0.957916, avg_reader_cost: 1.39656 s, avg_batch_cost: 1.58187 s, avg_samples: 9.6, ips: 6.06877 samples/s, eta: 12:43:17
[2024/07/27 23:26:33] ppocr INFO: epoch: [7/1500], global_step: 21, lr: 0.001000, loss: 6.884484, loss_shrink_maps: 4.767570, loss_threshold_maps: 1.158091, loss_binary_maps: 0.955695, avg_reader_cost: 0.83681 s, avg_batch_cost: 0.89153 s, avg_samples: 2.9, ips: 3.25285 samples/s, eta: 12:38:28
[2024/07/27 23:26:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:26:42] ppocr INFO: epoch: [8/1500], global_step: 24, lr: 0.001000, loss: 6.811518, loss_shrink_maps: 4.715513, loss_threshold_maps: 1.153006, loss_binary_maps: 0.946022, avg_reader_cost: 2.22658 s, avg_batch_cost: 2.46713 s, avg_samples: 12.5, ips: 5.06662 samples/s, eta: 12:19:54
[2024/07/27 23:26:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:26:52] ppocr INFO: epoch: [9/1500], global_step: 27, lr: 0.001000, loss: 6.742378, loss_shrink_maps: 4.671161, loss_threshold_maps: 1.129713, loss_binary_maps: 0.930989, avg_reader_cost: 2.10302 s, avg_batch_cost: 2.39705 s, avg_samples: 12.5, ips: 5.21475 samples/s, eta: 12:03:26
[2024/07/27 23:26:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:27:01] ppocr INFO: epoch: [10/1500], global_step: 30, lr: 0.001000, loss: 6.512224, loss_shrink_maps: 4.568359, loss_threshold_maps: 1.094460, loss_binary_maps: 0.871143, avg_reader_cost: 2.25572 s, avg_batch_cost: 2.52676 s, avg_samples: 12.5, ips: 4.94705 samples/s, eta: 11:53:24
[2024/07/27 23:27:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:27:11] ppocr INFO: epoch: [11/1500], global_step: 33, lr: 0.001000, loss: 6.387847, loss_shrink_maps: 4.492524, loss_threshold_maps: 1.067466, loss_binary_maps: 0.822320, avg_reader_cost: 2.16144 s, avg_batch_cost: 2.44110 s, avg_samples: 12.5, ips: 5.12064 samples/s, eta: 11:43:11
[2024/07/27 23:27:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:27:20] ppocr INFO: epoch: [12/1500], global_step: 36, lr: 0.001000, loss: 6.017320, loss_shrink_maps: 4.261142, loss_threshold_maps: 1.047703, loss_binary_maps: 0.730894, avg_reader_cost: 2.23210 s, avg_batch_cost: 2.49150 s, avg_samples: 12.5, ips: 5.01705 samples/s, eta: 11:35:39
[2024/07/27 23:27:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:27:30] ppocr INFO: epoch: [13/1500], global_step: 39, lr: 0.001000, loss: 5.809624, loss_shrink_maps: 4.084210, loss_threshold_maps: 1.015606, loss_binary_maps: 0.704834, avg_reader_cost: 2.20560 s, avg_batch_cost: 2.46133 s, avg_samples: 12.5, ips: 5.07855 samples/s, eta: 11:28:37
[2024/07/27 23:27:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:27:38] ppocr INFO: epoch: [14/1500], global_step: 40, lr: 0.001000, loss: 5.717099, loss_shrink_maps: 4.012658, loss_threshold_maps: 1.010852, loss_binary_maps: 0.694131, avg_reader_cost: 0.64115 s, avg_batch_cost: 0.74817 s, avg_samples: 4.8, ips: 6.41562 samples/s, eta: 11:25:10
[2024/07/27 23:27:39] ppocr INFO: epoch: [14/1500], global_step: 42, lr: 0.001000, loss: 5.635980, loss_shrink_maps: 3.958893, loss_threshold_maps: 0.987196, loss_binary_maps: 0.668112, avg_reader_cost: 1.58756 s, avg_batch_cost: 1.73334 s, avg_samples: 7.7, ips: 4.44229 samples/s, eta: 11:22:54
[2024/07/27 23:27:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:27:49] ppocr INFO: epoch: [15/1500], global_step: 45, lr: 0.001000, loss: 5.374820, loss_shrink_maps: 3.758679, loss_threshold_maps: 0.974061, loss_binary_maps: 0.633635, avg_reader_cost: 2.21792 s, avg_batch_cost: 2.45682 s, avg_samples: 12.5, ips: 5.08787 samples/s, eta: 11:17:29
[2024/07/27 23:27:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:27:58] ppocr INFO: epoch: [16/1500], global_step: 48, lr: 0.001000, loss: 4.915116, loss_shrink_maps: 3.431638, loss_threshold_maps: 0.967177, loss_binary_maps: 0.532846, avg_reader_cost: 2.25993 s, avg_batch_cost: 2.48755 s, avg_samples: 12.5, ips: 5.02502 samples/s, eta: 11:13:10
[2024/07/27 23:27:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:28:08] ppocr INFO: epoch: [17/1500], global_step: 50, lr: 0.001000, loss: 4.716512, loss_shrink_maps: 3.259915, loss_threshold_maps: 0.960539, loss_binary_maps: 0.489610, avg_reader_cost: 1.43263 s, avg_batch_cost: 1.62292 s, avg_samples: 9.6, ips: 5.91528 samples/s, eta: 11:10:01
[2024/07/27 23:28:08] ppocr INFO: epoch: [17/1500], global_step: 51, lr: 0.001000, loss: 4.620404, loss_shrink_maps: 3.215099, loss_threshold_maps: 0.955661, loss_binary_maps: 0.476025, avg_reader_cost: 0.85680 s, avg_batch_cost: 0.91132 s, avg_samples: 2.9, ips: 3.18219 samples/s, eta: 11:09:59
[2024/07/27 23:28:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:28:18] ppocr INFO: epoch: [18/1500], global_step: 54, lr: 0.001000, loss: 4.412524, loss_shrink_maps: 3.018656, loss_threshold_maps: 0.950579, loss_binary_maps: 0.444982, avg_reader_cost: 2.26470 s, avg_batch_cost: 2.50988 s, avg_samples: 12.5, ips: 4.98032 samples/s, eta: 11:06:47
[2024/07/27 23:28:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:28:27] ppocr INFO: epoch: [19/1500], global_step: 57, lr: 0.001000, loss: 4.219252, loss_shrink_maps: 2.834966, loss_threshold_maps: 0.940522, loss_binary_maps: 0.424838, avg_reader_cost: 2.23139 s, avg_batch_cost: 2.45908 s, avg_samples: 12.5, ips: 5.08321 samples/s, eta: 11:03:12
[2024/07/27 23:28:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:28:37] ppocr INFO: epoch: [20/1500], global_step: 60, lr: 0.001000, loss: 4.151111, loss_shrink_maps: 2.791682, loss_threshold_maps: 0.937163, loss_binary_maps: 0.417132, avg_reader_cost: 2.23098 s, avg_batch_cost: 2.45910 s, avg_samples: 12.5, ips: 5.08317 samples/s, eta: 10:59:57

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<01:00,  8.21it/s]
eval model::   1%|          | 4/500 [00:00<00:27, 17.89it/s]
eval model::   1%|▏         | 7/500 [00:00<00:25, 19.53it/s]
eval model::   2%|▏         | 9/500 [00:00<00:26, 18.37it/s]
eval model::   2%|▏         | 12/500 [00:00<00:23, 20.40it/s]
eval model::   3%|▎         | 15/500 [00:00<00:22, 21.85it/s]
eval model::   4%|▎         | 18/500 [00:00<00:21, 22.12it/s]
eval model::   4%|▍         | 21/500 [00:01<00:22, 20.83it/s]
eval model::   5%|▌         | 25/500 [00:01<00:19, 24.54it/s]
eval model::   6%|▌         | 28/500 [00:01<00:19, 23.95it/s]
eval model::   6%|▌         | 31/500 [00:01<00:21, 21.86it/s]
eval model::   7%|▋         | 34/500 [00:01<00:21, 21.39it/s]
eval model::   7%|▋         | 37/500 [00:01<00:22, 20.75it/s]
eval model::   8%|▊         | 40/500 [00:01<00:22, 20.40it/s]
eval model::   9%|▊         | 43/500 [00:02<00:21, 21.11it/s]
eval model::   9%|▉         | 46/500 [00:02<00:21, 20.81it/s]
eval model::  10%|█         | 50/500 [00:02<00:18, 24.01it/s]
eval model::  11%|█         | 53/500 [00:02<00:17, 25.14it/s]
eval model::  11%|█         | 56/500 [00:02<00:18, 24.54it/s]
eval model::  12%|█▏        | 59/500 [00:02<00:18, 23.77it/s]
eval model::  12%|█▏        | 62/500 [00:02<00:20, 21.21it/s]
eval model::  13%|█▎        | 65/500 [00:02<00:19, 22.24it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:17, 24.57it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:16, 26.67it/s]
eval model::  15%|█▌        | 76/500 [00:03<00:16, 25.84it/s]
eval model::  16%|█▌        | 79/500 [00:03<00:16, 25.97it/s]
eval model::  16%|█▋        | 82/500 [00:03<00:17, 23.82it/s]
eval model::  17%|█▋        | 85/500 [00:03<00:17, 23.09it/s]
eval model::  18%|█▊        | 88/500 [00:03<00:17, 23.06it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:18, 22.27it/s]
eval model::  19%|█▉        | 94/500 [00:04<00:18, 22.53it/s]
eval model::  19%|█▉        | 97/500 [00:04<00:17, 22.49it/s]
eval model::  20%|██        | 100/500 [00:04<00:18, 21.29it/s]
eval model::  21%|██        | 103/500 [00:04<00:17, 22.18it/s]
eval model::  21%|██        | 106/500 [00:04<00:16, 23.27it/s]
eval model::  22%|██▏       | 109/500 [00:04<00:17, 22.03it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:18, 20.65it/s]
eval model::  23%|██▎       | 115/500 [00:05<00:18, 20.80it/s]
eval model::  24%|██▎       | 118/500 [00:05<00:18, 20.36it/s]
eval model::  24%|██▍       | 121/500 [00:05<00:18, 20.54it/s]
eval model::  25%|██▍       | 124/500 [00:05<00:18, 20.47it/s]
eval model::  25%|██▌       | 127/500 [00:05<00:17, 21.32it/s]
eval model::  26%|██▌       | 130/500 [00:05<00:20, 17.93it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:20, 18.20it/s]
eval model::  27%|██▋       | 134/500 [00:06<00:19, 18.56it/s]
eval model::  27%|██▋       | 136/500 [00:06<00:20, 17.97it/s]
eval model::  28%|██▊       | 139/500 [00:06<00:19, 18.96it/s]
eval model::  28%|██▊       | 142/500 [00:06<00:18, 19.81it/s]
eval model::  29%|██▉       | 144/500 [00:06<00:19, 18.02it/s]
eval model::  29%|██▉       | 146/500 [00:06<00:20, 17.34it/s]
eval model::  30%|██▉       | 148/500 [00:06<00:20, 17.49it/s]
eval model::  30%|███       | 151/500 [00:07<00:20, 16.68it/s]
eval model::  31%|███       | 154/500 [00:07<00:19, 18.05it/s]
eval model::  31%|███▏      | 157/500 [00:07<00:16, 20.40it/s]
eval model::  32%|███▏      | 160/500 [00:07<00:18, 18.81it/s]
eval model::  33%|███▎      | 163/500 [00:07<00:17, 19.57it/s]
eval model::  33%|███▎      | 166/500 [00:07<00:17, 19.58it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:19, 17.11it/s]
eval model::  34%|███▍      | 172/500 [00:08<00:17, 18.33it/s]
eval model::  35%|███▍      | 174/500 [00:08<00:17, 18.53it/s]
eval model::  35%|███▌      | 176/500 [00:08<00:18, 17.98it/s]
eval model::  36%|███▌      | 178/500 [00:08<00:18, 17.74it/s]
eval model::  36%|███▌      | 180/500 [00:08<00:19, 16.27it/s]
eval model::  36%|███▋      | 182/500 [00:08<00:18, 17.06it/s]
eval model::  37%|███▋      | 185/500 [00:08<00:16, 19.56it/s]
eval model::  38%|███▊      | 188/500 [00:09<00:14, 22.13it/s]
eval model::  38%|███▊      | 191/500 [00:09<00:15, 19.71it/s]
eval model::  39%|███▉      | 194/500 [00:09<00:14, 20.60it/s]
eval model::  39%|███▉      | 197/500 [00:09<00:19, 15.94it/s]
eval model::  40%|████      | 200/500 [00:09<00:16, 18.08it/s]
eval model::  41%|████      | 203/500 [00:09<00:15, 18.94it/s]
eval model::  41%|████      | 206/500 [00:10<00:23, 12.67it/s]
eval model::  42%|████▏     | 208/500 [00:10<00:21, 13.54it/s]
eval model::  42%|████▏     | 210/500 [00:10<00:20, 14.33it/s]
eval model::  43%|████▎     | 213/500 [00:10<00:17, 16.56it/s]
eval model::  43%|████▎     | 215/500 [00:10<00:18, 15.10it/s]
eval model::  43%|████▎     | 217/500 [00:10<00:19, 14.78it/s]
eval model::  44%|████▍     | 221/500 [00:11<00:14, 19.34it/s]
eval model::  45%|████▍     | 224/500 [00:11<00:13, 20.93it/s]
eval model::  45%|████▌     | 227/500 [00:11<00:12, 22.45it/s]
eval model::  46%|████▌     | 231/500 [00:11<00:10, 26.38it/s]
eval model::  47%|████▋     | 234/500 [00:11<00:10, 24.49it/s]
eval model::  47%|████▋     | 237/500 [00:11<00:10, 24.21it/s]
eval model::  48%|████▊     | 240/500 [00:11<00:10, 24.40it/s]
eval model::  49%|████▊     | 243/500 [00:12<00:11, 21.48it/s]
eval model::  49%|████▉     | 246/500 [00:12<00:10, 23.22it/s]
eval model::  50%|████▉     | 249/500 [00:12<00:11, 22.06it/s]
eval model::  50%|█████     | 252/500 [00:12<00:11, 21.02it/s]
eval model::  51%|█████     | 255/500 [00:12<00:11, 20.70it/s]
eval model::  52%|█████▏    | 258/500 [00:12<00:11, 21.94it/s]
eval model::  52%|█████▏    | 261/500 [00:12<00:10, 22.63it/s]
eval model::  53%|█████▎    | 264/500 [00:12<00:10, 22.55it/s]
eval model::  53%|█████▎    | 267/500 [00:13<00:10, 21.81it/s]
eval model::  54%|█████▍    | 270/500 [00:13<00:10, 21.63it/s]
eval model::  55%|█████▍    | 273/500 [00:13<00:10, 20.95it/s]
eval model::  55%|█████▌    | 276/500 [00:13<00:11, 20.31it/s]
eval model::  56%|█████▌    | 279/500 [00:13<00:11, 19.76it/s]
eval model::  56%|█████▋    | 282/500 [00:13<00:10, 20.78it/s]
eval model::  57%|█████▋    | 285/500 [00:14<00:13, 15.64it/s]
eval model::  57%|█████▋    | 287/500 [00:14<00:13, 16.24it/s]
eval model::  58%|█████▊    | 290/500 [00:14<00:11, 18.38it/s]
eval model::  59%|█████▊    | 293/500 [00:14<00:10, 19.63it/s]
eval model::  59%|█████▉    | 296/500 [00:14<00:11, 18.35it/s]
eval model::  60%|█████▉    | 299/500 [00:14<00:09, 20.19it/s]
eval model::  60%|██████    | 302/500 [00:14<00:10, 19.70it/s]
eval model::  61%|██████    | 305/500 [00:15<00:09, 20.32it/s]
eval model::  62%|██████▏   | 308/500 [00:15<00:08, 21.82it/s]
eval model::  62%|██████▏   | 311/500 [00:15<00:08, 21.68it/s]
eval model::  63%|██████▎   | 314/500 [00:15<00:08, 22.59it/s]
eval model::  63%|██████▎   | 317/500 [00:15<00:08, 20.59it/s]
eval model::  64%|██████▍   | 320/500 [00:15<00:08, 21.20it/s]
eval model::  65%|██████▍   | 323/500 [00:15<00:08, 20.97it/s]
eval model::  65%|██████▌   | 326/500 [00:16<00:08, 21.74it/s]
eval model::  66%|██████▌   | 329/500 [00:16<00:08, 21.18it/s]
eval model::  66%|██████▋   | 332/500 [00:16<00:08, 20.56it/s]
eval model::  67%|██████▋   | 335/500 [00:16<00:08, 20.27it/s]
eval model::  68%|██████▊   | 338/500 [00:16<00:07, 20.34it/s]
eval model::  68%|██████▊   | 341/500 [00:16<00:08, 18.94it/s]
eval model::  69%|██████▉   | 345/500 [00:16<00:07, 21.65it/s]
eval model::  70%|██████▉   | 348/500 [00:17<00:06, 21.83it/s]
eval model::  70%|███████   | 351/500 [00:17<00:07, 20.65it/s]
eval model::  71%|███████   | 354/500 [00:17<00:07, 20.01it/s]
eval model::  71%|███████▏  | 357/500 [00:17<00:07, 18.20it/s]
eval model::  72%|███████▏  | 359/500 [00:17<00:07, 18.47it/s]
eval model::  72%|███████▏  | 361/500 [00:17<00:07, 17.89it/s]
eval model::  73%|███████▎  | 364/500 [00:18<00:07, 17.57it/s]
eval model::  73%|███████▎  | 366/500 [00:18<00:07, 18.01it/s]
eval model::  74%|███████▍  | 369/500 [00:18<00:06, 19.76it/s]
eval model::  74%|███████▍  | 372/500 [00:18<00:05, 21.81it/s]
eval model::  75%|███████▌  | 375/500 [00:18<00:05, 22.43it/s]
eval model::  76%|███████▌  | 378/500 [00:18<00:05, 21.11it/s]
eval model::  76%|███████▌  | 381/500 [00:18<00:05, 21.53it/s]
eval model::  77%|███████▋  | 384/500 [00:18<00:05, 21.92it/s]
eval model::  77%|███████▋  | 387/500 [00:19<00:05, 18.91it/s]
eval model::  78%|███████▊  | 390/500 [00:19<00:05, 20.55it/s]
eval model::  79%|███████▊  | 393/500 [00:19<00:05, 21.23it/s]
eval model::  79%|███████▉  | 396/500 [00:19<00:04, 20.93it/s]
eval model::  80%|███████▉  | 399/500 [00:19<00:04, 20.34it/s]
eval model::  80%|████████  | 402/500 [00:19<00:04, 20.60it/s]
eval model::  81%|████████  | 405/500 [00:19<00:04, 21.24it/s]
eval model::  82%|████████▏ | 408/500 [00:20<00:04, 20.53it/s]
eval model::  82%|████████▏ | 411/500 [00:20<00:04, 21.48it/s]
eval model::  83%|████████▎ | 414/500 [00:20<00:04, 20.59it/s]
eval model::  83%|████████▎ | 417/500 [00:20<00:04, 19.44it/s]
eval model::  84%|████████▍ | 419/500 [00:20<00:04, 18.28it/s]
eval model::  84%|████████▍ | 421/500 [00:20<00:04, 16.58it/s]
eval model::  85%|████████▍ | 424/500 [00:21<00:04, 18.27it/s]
eval model::  85%|████████▌ | 426/500 [00:21<00:03, 18.55it/s]
eval model::  86%|████████▌ | 430/500 [00:21<00:03, 21.81it/s]
eval model::  87%|████████▋ | 433/500 [00:21<00:03, 21.29it/s]
eval model::  87%|████████▋ | 436/500 [00:21<00:03, 21.15it/s]
eval model::  88%|████████▊ | 439/500 [00:21<00:02, 20.84it/s]
eval model::  88%|████████▊ | 442/500 [00:21<00:02, 21.01it/s]
eval model::  89%|████████▉ | 445/500 [00:21<00:02, 21.05it/s]
eval model::  90%|████████▉ | 448/500 [00:22<00:02, 19.99it/s]
eval model::  90%|█████████ | 451/500 [00:22<00:02, 20.50it/s]
eval model::  91%|█████████ | 454/500 [00:22<00:02, 19.67it/s]
eval model::  91%|█████████▏| 457/500 [00:22<00:02, 20.30it/s]
eval model::  92%|█████████▏| 460/500 [00:22<00:01, 20.90it/s]
eval model::  93%|█████████▎| 463/500 [00:22<00:01, 21.08it/s]
eval model::  93%|█████████▎| 466/500 [00:23<00:01, 20.26it/s]
eval model::  94%|█████████▍| 469/500 [00:23<00:01, 21.21it/s]
eval model::  94%|█████████▍| 472/500 [00:23<00:01, 20.29it/s]
eval model::  95%|█████████▌| 475/500 [00:23<00:01, 21.48it/s]
eval model::  96%|█████████▌| 478/500 [00:23<00:01, 21.10it/s]
eval model::  96%|█████████▌| 481/500 [00:23<00:00, 20.18it/s]
eval model::  97%|█████████▋| 484/500 [00:23<00:00, 20.12it/s]
eval model::  97%|█████████▋| 487/500 [00:24<00:00, 20.49it/s]
eval model::  98%|█████████▊| 490/500 [00:24<00:00, 20.61it/s]
eval model::  99%|█████████▊| 493/500 [00:24<00:00, 20.36it/s]
eval model::  99%|█████████▉| 496/500 [00:24<00:00, 20.34it/s]
eval model:: 100%|█████████▉| 499/500 [00:24<00:00, 22.37it/s]
eval model:: 100%|██████████| 500/500 [00:24<00:00, 20.31it/s]
[2024/07/27 23:29:01] ppocr INFO: cur metric, precision: 0.29863013698630136, recall: 0.15743861338468945, hmean: 0.20617906683480453, fps: 45.08311599737208
[2024/07/27 23:29:01] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/27 23:29:01] ppocr INFO: best metric, hmean: 0.20617906683480453, precision: 0.29863013698630136, recall: 0.15743861338468945, fps: 45.08311599737208, best_epoch: 20
[2024/07/27 23:29:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:29:09] ppocr INFO: epoch: [21/1500], global_step: 63, lr: 0.001000, loss: 4.080241, loss_shrink_maps: 2.738514, loss_threshold_maps: 0.937163, loss_binary_maps: 0.402558, avg_reader_cost: 1.62885 s, avg_batch_cost: 1.91093 s, avg_samples: 12.5, ips: 6.54131 samples/s, eta: 10:50:32
[2024/07/27 23:29:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:29:16] ppocr INFO: epoch: [22/1500], global_step: 66, lr: 0.001000, loss: 4.034955, loss_shrink_maps: 2.699648, loss_threshold_maps: 0.934345, loss_binary_maps: 0.402558, avg_reader_cost: 1.58337 s, avg_batch_cost: 1.81529 s, avg_samples: 12.5, ips: 6.88595 samples/s, eta: 10:40:52
[2024/07/27 23:29:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:29:23] ppocr INFO: epoch: [23/1500], global_step: 69, lr: 0.001000, loss: 3.981198, loss_shrink_maps: 2.657832, loss_threshold_maps: 0.929097, loss_binary_maps: 0.396769, avg_reader_cost: 1.51271 s, avg_batch_cost: 1.76303 s, avg_samples: 12.5, ips: 7.09007 samples/s, eta: 10:31:27
[2024/07/27 23:29:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:29:29] ppocr INFO: epoch: [24/1500], global_step: 70, lr: 0.001000, loss: 3.910433, loss_shrink_maps: 2.596458, loss_threshold_maps: 0.926523, loss_binary_maps: 0.396769, avg_reader_cost: 0.41085 s, avg_batch_cost: 0.50778 s, avg_samples: 4.8, ips: 9.45286 samples/s, eta: 10:27:39
[2024/07/27 23:29:30] ppocr INFO: epoch: [24/1500], global_step: 72, lr: 0.001000, loss: 3.920726, loss_shrink_maps: 2.596458, loss_threshold_maps: 0.929989, loss_binary_maps: 0.400353, avg_reader_cost: 1.10667 s, avg_batch_cost: 1.25224 s, avg_samples: 7.7, ips: 6.14900 samples/s, eta: 10:22:46
[2024/07/27 23:29:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:29:37] ppocr INFO: epoch: [25/1500], global_step: 75, lr: 0.001000, loss: 3.859083, loss_shrink_maps: 2.502296, loss_threshold_maps: 0.926523, loss_binary_maps: 0.404162, avg_reader_cost: 1.52482 s, avg_batch_cost: 1.75290 s, avg_samples: 12.5, ips: 7.13105 samples/s, eta: 10:14:42
[2024/07/27 23:29:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:29:44] ppocr INFO: epoch: [26/1500], global_step: 78, lr: 0.001000, loss: 3.740852, loss_shrink_maps: 2.419104, loss_threshold_maps: 0.912594, loss_binary_maps: 0.395320, avg_reader_cost: 1.50883 s, avg_batch_cost: 1.75149 s, avg_samples: 12.5, ips: 7.13680 samples/s, eta: 10:07:12
[2024/07/27 23:29:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:29:51] ppocr INFO: epoch: [27/1500], global_step: 80, lr: 0.001000, loss: 3.683215, loss_shrink_maps: 2.370544, loss_threshold_maps: 0.909663, loss_binary_maps: 0.387887, avg_reader_cost: 0.89569 s, avg_batch_cost: 1.07283 s, avg_samples: 9.6, ips: 8.94829 samples/s, eta: 10:01:38
[2024/07/27 23:29:51] ppocr INFO: epoch: [27/1500], global_step: 81, lr: 0.001000, loss: 3.647673, loss_shrink_maps: 2.350705, loss_threshold_maps: 0.906193, loss_binary_maps: 0.381212, avg_reader_cost: 0.58191 s, avg_batch_cost: 0.63697 s, avg_samples: 2.9, ips: 4.55278 samples/s, eta: 9:59:52
[2024/07/27 23:29:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:29:58] ppocr INFO: epoch: [28/1500], global_step: 84, lr: 0.001000, loss: 3.406248, loss_shrink_maps: 2.177213, loss_threshold_maps: 0.886992, loss_binary_maps: 0.358823, avg_reader_cost: 1.53018 s, avg_batch_cost: 1.78292 s, avg_samples: 12.5, ips: 7.01097 samples/s, eta: 9:53:40
[2024/07/27 23:29:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:30:06] ppocr INFO: epoch: [29/1500], global_step: 87, lr: 0.001000, loss: 3.349561, loss_shrink_maps: 2.121737, loss_threshold_maps: 0.883556, loss_binary_maps: 0.348226, avg_reader_cost: 1.66590 s, avg_batch_cost: 1.89398 s, avg_samples: 12.5, ips: 6.59985 samples/s, eta: 9:48:49
[2024/07/27 23:30:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:30:13] ppocr INFO: epoch: [30/1500], global_step: 90, lr: 0.001000, loss: 3.293404, loss_shrink_maps: 2.096559, loss_threshold_maps: 0.883388, loss_binary_maps: 0.350930, avg_reader_cost: 1.50401 s, avg_batch_cost: 1.73596 s, avg_samples: 12.5, ips: 7.20062 samples/s, eta: 9:42:59
[2024/07/27 23:30:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:30:20] ppocr INFO: epoch: [31/1500], global_step: 93, lr: 0.001000, loss: 3.256478, loss_shrink_maps: 2.023408, loss_threshold_maps: 0.866258, loss_binary_maps: 0.350930, avg_reader_cost: 1.53432 s, avg_batch_cost: 1.78011 s, avg_samples: 12.5, ips: 7.02202 samples/s, eta: 9:37:51
[2024/07/27 23:30:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:30:27] ppocr INFO: epoch: [32/1500], global_step: 96, lr: 0.001000, loss: 3.223192, loss_shrink_maps: 2.004760, loss_threshold_maps: 0.852820, loss_binary_maps: 0.342458, avg_reader_cost: 1.51782 s, avg_batch_cost: 1.77830 s, avg_samples: 12.5, ips: 7.02918 samples/s, eta: 9:33:00
[2024/07/27 23:30:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:30:34] ppocr INFO: epoch: [33/1500], global_step: 99, lr: 0.001000, loss: 3.153462, loss_shrink_maps: 1.951061, loss_threshold_maps: 0.845036, loss_binary_maps: 0.334254, avg_reader_cost: 1.49794 s, avg_batch_cost: 1.72771 s, avg_samples: 12.5, ips: 7.23499 samples/s, eta: 9:28:04
[2024/07/27 23:30:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:30:39] ppocr INFO: epoch: [34/1500], global_step: 100, lr: 0.001000, loss: 3.148788, loss_shrink_maps: 1.938410, loss_threshold_maps: 0.841603, loss_binary_maps: 0.334254, avg_reader_cost: 0.41143 s, avg_batch_cost: 0.49608 s, avg_samples: 4.8, ips: 9.67586 samples/s, eta: 9:25:54
[2024/07/27 23:30:41] ppocr INFO: epoch: [34/1500], global_step: 102, lr: 0.001000, loss: 3.025582, loss_shrink_maps: 1.863062, loss_threshold_maps: 0.840630, loss_binary_maps: 0.328599, avg_reader_cost: 1.08355 s, avg_batch_cost: 1.22937 s, avg_samples: 7.7, ips: 6.26339 samples/s, eta: 9:23:23
[2024/07/27 23:30:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:30:48] ppocr INFO: epoch: [35/1500], global_step: 105, lr: 0.001000, loss: 2.993498, loss_shrink_maps: 1.839174, loss_threshold_maps: 0.831249, loss_binary_maps: 0.328271, avg_reader_cost: 1.51914 s, avg_batch_cost: 1.75079 s, avg_samples: 12.5, ips: 7.13965 samples/s, eta: 9:19:07
[2024/07/27 23:30:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:30:55] ppocr INFO: epoch: [36/1500], global_step: 108, lr: 0.001000, loss: 2.994124, loss_shrink_maps: 1.845578, loss_threshold_maps: 0.831249, loss_binary_maps: 0.332773, avg_reader_cost: 1.52896 s, avg_batch_cost: 1.79093 s, avg_samples: 12.5, ips: 6.97961 samples/s, eta: 9:15:22
[2024/07/27 23:30:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:31:02] ppocr INFO: epoch: [37/1500], global_step: 110, lr: 0.001000, loss: 2.994124, loss_shrink_maps: 1.841758, loss_threshold_maps: 0.831249, loss_binary_maps: 0.333325, avg_reader_cost: 0.98818 s, avg_batch_cost: 1.16375 s, avg_samples: 9.6, ips: 8.24919 samples/s, eta: 9:12:45
[2024/07/27 23:31:03] ppocr INFO: epoch: [37/1500], global_step: 111, lr: 0.001000, loss: 2.992690, loss_shrink_maps: 1.835354, loss_threshold_maps: 0.827756, loss_binary_maps: 0.332539, avg_reader_cost: 0.62748 s, avg_batch_cost: 0.68237 s, avg_samples: 2.9, ips: 4.24987 samples/s, eta: 9:12:09
[2024/07/27 23:31:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:31:10] ppocr INFO: epoch: [38/1500], global_step: 114, lr: 0.001000, loss: 2.978850, loss_shrink_maps: 1.825602, loss_threshold_maps: 0.825094, loss_binary_maps: 0.324127, avg_reader_cost: 1.52141 s, avg_batch_cost: 1.75202 s, avg_samples: 12.5, ips: 7.13460 samples/s, eta: 9:08:29
[2024/07/27 23:31:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:31:17] ppocr INFO: epoch: [39/1500], global_step: 117, lr: 0.001000, loss: 2.961697, loss_shrink_maps: 1.811566, loss_threshold_maps: 0.835785, loss_binary_maps: 0.323504, avg_reader_cost: 1.53859 s, avg_batch_cost: 1.76720 s, avg_samples: 12.5, ips: 7.07332 samples/s, eta: 9:05:05
[2024/07/27 23:31:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:31:24] ppocr INFO: epoch: [40/1500], global_step: 120, lr: 0.001000, loss: 2.935220, loss_shrink_maps: 1.793961, loss_threshold_maps: 0.815128, loss_binary_maps: 0.321562, avg_reader_cost: 1.54088 s, avg_batch_cost: 1.80016 s, avg_samples: 12.5, ips: 6.94381 samples/s, eta: 9:02:03

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<01:06,  7.55it/s]
eval model::   1%|          | 3/500 [00:00<00:35, 13.85it/s]
eval model::   1%|          | 6/500 [00:00<00:26, 18.81it/s]
eval model::   2%|▏         | 8/500 [00:00<00:27, 17.63it/s]
eval model::   2%|▏         | 11/500 [00:00<00:28, 17.41it/s]
eval model::   3%|▎         | 14/500 [00:00<00:27, 17.44it/s]
eval model::   3%|▎         | 17/500 [00:00<00:25, 18.98it/s]
eval model::   4%|▍         | 19/500 [00:01<00:25, 18.61it/s]
eval model::   4%|▍         | 22/500 [00:01<00:24, 19.12it/s]
eval model::   5%|▍         | 24/500 [00:01<00:24, 19.19it/s]
eval model::   5%|▌         | 27/500 [00:01<00:22, 20.63it/s]
eval model::   6%|▌         | 30/500 [00:01<00:22, 21.24it/s]
eval model::   7%|▋         | 33/500 [00:01<00:22, 21.22it/s]
eval model::   7%|▋         | 36/500 [00:01<00:22, 20.32it/s]
eval model::   8%|▊         | 39/500 [00:02<00:25, 18.23it/s]
eval model::   8%|▊         | 42/500 [00:02<00:25, 17.98it/s]
eval model::   9%|▉         | 45/500 [00:02<00:24, 18.83it/s]
eval model::   9%|▉         | 47/500 [00:02<00:24, 18.55it/s]
eval model::  10%|█         | 50/500 [00:02<00:25, 17.87it/s]
eval model::  10%|█         | 52/500 [00:02<00:26, 16.98it/s]
eval model::  11%|█         | 55/500 [00:02<00:24, 18.10it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:23, 18.93it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:24, 17.99it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:24, 17.75it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:22, 19.05it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:21, 20.47it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:20, 20.50it/s]
eval model::  15%|█▌        | 75/500 [00:03<00:19, 21.41it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:21, 20.09it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:21, 19.63it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:20, 19.90it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:21, 19.11it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:22, 18.24it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:22, 18.47it/s]
eval model::  19%|█▉        | 95/500 [00:05<00:23, 17.19it/s]
eval model::  20%|█▉        | 98/500 [00:05<00:21, 19.08it/s]
eval model::  20%|██        | 100/500 [00:05<00:21, 18.53it/s]
eval model::  21%|██        | 103/500 [00:05<00:19, 20.51it/s]
eval model::  21%|██        | 106/500 [00:05<00:19, 20.42it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:19, 19.73it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:20, 19.25it/s]
eval model::  23%|██▎       | 114/500 [00:06<00:20, 19.07it/s]
eval model::  23%|██▎       | 117/500 [00:06<00:19, 19.86it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:20, 18.59it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:18, 19.93it/s]
eval model::  25%|██▌       | 127/500 [00:06<00:17, 20.81it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:19, 18.67it/s]
eval model::  27%|██▋       | 133/500 [00:06<00:18, 20.19it/s]
eval model::  27%|██▋       | 136/500 [00:07<00:16, 21.45it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:18, 19.71it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:19, 18.76it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:19, 18.68it/s]
eval model::  29%|██▉       | 146/500 [00:07<00:18, 18.72it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:19, 18.09it/s]
eval model::  30%|███       | 150/500 [00:07<00:19, 18.33it/s]
eval model::  30%|███       | 152/500 [00:08<00:20, 16.76it/s]
eval model::  31%|███       | 155/500 [00:08<00:18, 18.71it/s]
eval model::  32%|███▏      | 158/500 [00:08<00:17, 19.11it/s]
eval model::  32%|███▏      | 160/500 [00:08<00:18, 17.99it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:17, 18.92it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:17, 19.59it/s]
eval model::  34%|███▎      | 168/500 [00:08<00:19, 17.10it/s]
eval model::  34%|███▍      | 171/500 [00:09<00:18, 17.89it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:20, 16.16it/s]
eval model::  35%|███▌      | 177/500 [00:09<00:18, 17.84it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:17, 17.94it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:16, 19.21it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:16, 18.81it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:15, 20.63it/s]
eval model::  38%|███▊      | 192/500 [00:10<00:14, 21.42it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:15, 19.47it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:14, 20.73it/s]
eval model::  40%|████      | 201/500 [00:10<00:14, 20.21it/s]
eval model::  41%|████      | 204/500 [00:10<00:13, 22.38it/s]
eval model::  41%|████▏     | 207/500 [00:11<00:20, 14.49it/s]
eval model::  42%|████▏     | 209/500 [00:11<00:19, 14.57it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:19, 14.90it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.74it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:19, 14.60it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:19, 14.47it/s]
eval model::  44%|████▍     | 219/500 [00:11<00:18, 15.50it/s]
eval model::  44%|████▍     | 221/500 [00:11<00:17, 16.27it/s]
eval model::  45%|████▍     | 224/500 [00:12<00:14, 18.72it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:14, 18.69it/s]
eval model::  46%|████▌     | 229/500 [00:12<00:12, 21.27it/s]
eval model::  46%|████▋     | 232/500 [00:12<00:13, 20.51it/s]
eval model::  47%|████▋     | 235/500 [00:12<00:12, 21.96it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:10, 24.41it/s]
eval model::  48%|████▊     | 242/500 [00:12<00:11, 22.82it/s]
eval model::  49%|████▉     | 246/500 [00:12<00:10, 24.38it/s]
eval model::  50%|████▉     | 249/500 [00:13<00:11, 22.77it/s]
eval model::  50%|█████     | 252/500 [00:13<00:11, 21.27it/s]
eval model::  51%|█████     | 255/500 [00:13<00:11, 20.55it/s]
eval model::  52%|█████▏    | 258/500 [00:13<00:12, 19.83it/s]
eval model::  52%|█████▏    | 261/500 [00:13<00:12, 18.82it/s]
eval model::  53%|█████▎    | 264/500 [00:13<00:12, 18.88it/s]
eval model::  53%|█████▎    | 267/500 [00:14<00:12, 19.33it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:12, 19.09it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:12, 18.33it/s]
eval model::  55%|█████▍    | 274/500 [00:14<00:12, 18.69it/s]
eval model::  55%|█████▌    | 276/500 [00:14<00:12, 18.48it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:12, 18.46it/s]
eval model::  56%|█████▌    | 281/500 [00:14<00:11, 19.16it/s]
eval model::  57%|█████▋    | 283/500 [00:14<00:11, 18.43it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:16, 13.18it/s]
eval model::  58%|█████▊    | 288/500 [00:15<00:13, 16.21it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:11, 18.59it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:10, 18.79it/s]
eval model::  59%|█████▉    | 297/500 [00:15<00:10, 19.16it/s]
eval model::  60%|██████    | 300/500 [00:15<00:11, 18.09it/s]
eval model::  60%|██████    | 302/500 [00:16<00:10, 18.30it/s]
eval model::  61%|██████    | 304/500 [00:16<00:10, 18.05it/s]
eval model::  61%|██████▏   | 307/500 [00:16<00:09, 19.54it/s]
eval model::  62%|██████▏   | 309/500 [00:16<00:10, 18.93it/s]
eval model::  62%|██████▏   | 311/500 [00:16<00:10, 18.63it/s]
eval model::  63%|██████▎   | 314/500 [00:16<00:10, 17.81it/s]
eval model::  63%|██████▎   | 316/500 [00:16<00:11, 16.40it/s]
eval model::  64%|██████▍   | 319/500 [00:16<00:09, 18.87it/s]
eval model::  64%|██████▍   | 322/500 [00:17<00:08, 20.00it/s]
eval model::  65%|██████▌   | 325/500 [00:17<00:08, 20.72it/s]
eval model::  66%|██████▌   | 328/500 [00:17<00:09, 18.38it/s]
eval model::  66%|██████▌   | 331/500 [00:17<00:08, 19.72it/s]
eval model::  67%|██████▋   | 334/500 [00:17<00:07, 20.82it/s]
eval model::  67%|██████▋   | 337/500 [00:17<00:08, 18.95it/s]
eval model::  68%|██████▊   | 340/500 [00:18<00:10, 15.69it/s]
eval model::  69%|██████▊   | 343/500 [00:18<00:08, 18.13it/s]
eval model::  69%|██████▉   | 346/500 [00:18<00:07, 20.33it/s]
eval model::  70%|██████▉   | 349/500 [00:18<00:06, 21.77it/s]
eval model::  70%|███████   | 352/500 [00:18<00:06, 21.28it/s]
eval model::  71%|███████   | 355/500 [00:18<00:07, 19.43it/s]
eval model::  72%|███████▏  | 358/500 [00:18<00:06, 20.91it/s]
eval model::  72%|███████▏  | 361/500 [00:19<00:06, 20.09it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:06, 19.83it/s]
eval model::  73%|███████▎  | 367/500 [00:19<00:06, 20.44it/s]
eval model::  74%|███████▍  | 370/500 [00:19<00:05, 22.03it/s]
eval model::  75%|███████▍  | 373/500 [00:19<00:05, 22.13it/s]
eval model::  75%|███████▌  | 376/500 [00:19<00:05, 21.51it/s]
eval model::  76%|███████▌  | 379/500 [00:19<00:06, 19.90it/s]
eval model::  76%|███████▋  | 382/500 [00:20<00:05, 20.41it/s]
eval model::  77%|███████▋  | 385/500 [00:20<00:05, 22.19it/s]
eval model::  78%|███████▊  | 388/500 [00:20<00:07, 15.45it/s]
eval model::  78%|███████▊  | 390/500 [00:20<00:06, 15.78it/s]
eval model::  79%|███████▊  | 393/500 [00:20<00:05, 17.92it/s]
eval model::  79%|███████▉  | 396/500 [00:20<00:05, 19.11it/s]
eval model::  80%|███████▉  | 399/500 [00:21<00:04, 20.25it/s]
eval model::  80%|████████  | 402/500 [00:21<00:05, 19.58it/s]
eval model::  81%|████████  | 405/500 [00:21<00:04, 20.44it/s]
eval model::  82%|████████▏ | 408/500 [00:21<00:04, 21.92it/s]
eval model::  82%|████████▏ | 411/500 [00:21<00:03, 23.21it/s]
eval model::  83%|████████▎ | 414/500 [00:21<00:03, 22.98it/s]
eval model::  83%|████████▎ | 417/500 [00:21<00:03, 22.11it/s]
eval model::  84%|████████▍ | 420/500 [00:22<00:04, 17.86it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:04, 18.07it/s]
eval model::  85%|████████▌ | 425/500 [00:22<00:03, 18.95it/s]
eval model::  86%|████████▌ | 428/500 [00:22<00:03, 20.94it/s]
eval model::  86%|████████▋ | 432/500 [00:22<00:02, 24.12it/s]
eval model::  87%|████████▋ | 436/500 [00:22<00:02, 26.11it/s]
eval model::  88%|████████▊ | 439/500 [00:22<00:02, 24.01it/s]
eval model::  88%|████████▊ | 442/500 [00:23<00:02, 23.30it/s]
eval model::  89%|████████▉ | 445/500 [00:23<00:02, 22.40it/s]
eval model::  90%|████████▉ | 448/500 [00:23<00:02, 20.80it/s]
eval model::  90%|█████████ | 451/500 [00:23<00:02, 20.85it/s]
eval model::  91%|█████████ | 454/500 [00:23<00:02, 20.37it/s]
eval model::  91%|█████████▏| 457/500 [00:23<00:02, 21.07it/s]
eval model::  92%|█████████▏| 460/500 [00:23<00:01, 21.08it/s]
eval model::  93%|█████████▎| 463/500 [00:24<00:02, 18.09it/s]
eval model::  93%|█████████▎| 465/500 [00:24<00:02, 16.54it/s]
eval model::  94%|█████████▍| 469/500 [00:24<00:01, 20.33it/s]
eval model::  94%|█████████▍| 472/500 [00:24<00:01, 21.18it/s]
eval model::  95%|█████████▌| 475/500 [00:24<00:01, 21.56it/s]
eval model::  96%|█████████▌| 478/500 [00:24<00:01, 21.59it/s]
eval model::  96%|█████████▌| 481/500 [00:24<00:00, 20.06it/s]
eval model::  97%|█████████▋| 484/500 [00:25<00:00, 20.46it/s]
eval model::  97%|█████████▋| 487/500 [00:25<00:00, 19.69it/s]
eval model::  98%|█████████▊| 490/500 [00:25<00:00, 21.27it/s]
eval model::  99%|█████████▊| 493/500 [00:25<00:00, 21.56it/s]
eval model::  99%|█████████▉| 496/500 [00:25<00:00, 22.34it/s]
eval model:: 100%|█████████▉| 499/500 [00:25<00:00, 23.79it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.38it/s]
[2024/07/27 23:31:50] ppocr INFO: cur metric, precision: 0.5166023166023166, recall: 0.32209918151179584, hmean: 0.39679715302491103, fps: 46.076865625715506
[2024/07/27 23:31:50] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/27 23:31:50] ppocr INFO: best metric, hmean: 0.39679715302491103, precision: 0.5166023166023166, recall: 0.32209918151179584, fps: 46.076865625715506, best_epoch: 40
[2024/07/27 23:31:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:31:56] ppocr INFO: epoch: [41/1500], global_step: 123, lr: 0.001000, loss: 2.883159, loss_shrink_maps: 1.735100, loss_threshold_maps: 0.815128, loss_binary_maps: 0.312276, avg_reader_cost: 1.44015 s, avg_batch_cost: 1.67706 s, avg_samples: 12.5, ips: 7.45352 samples/s, eta: 8:58:25
[2024/07/27 23:31:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:32:04] ppocr INFO: epoch: [42/1500], global_step: 126, lr: 0.001000, loss: 2.784557, loss_shrink_maps: 1.669631, loss_threshold_maps: 0.815128, loss_binary_maps: 0.302257, avg_reader_cost: 1.57560 s, avg_batch_cost: 1.81912 s, avg_samples: 12.5, ips: 6.87144 samples/s, eta: 8:55:45
[2024/07/27 23:32:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:32:11] ppocr INFO: epoch: [43/1500], global_step: 129, lr: 0.001000, loss: 2.769441, loss_shrink_maps: 1.649815, loss_threshold_maps: 0.810003, loss_binary_maps: 0.297281, avg_reader_cost: 1.51696 s, avg_batch_cost: 1.75118 s, avg_samples: 12.5, ips: 7.13803 samples/s, eta: 8:52:50
[2024/07/27 23:32:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:32:17] ppocr INFO: epoch: [44/1500], global_step: 130, lr: 0.001000, loss: 2.764102, loss_shrink_maps: 1.642196, loss_threshold_maps: 0.806035, loss_binary_maps: 0.295727, avg_reader_cost: 0.42675 s, avg_batch_cost: 0.52127 s, avg_samples: 4.8, ips: 9.20833 samples/s, eta: 8:51:32
[2024/07/27 23:32:18] ppocr INFO: epoch: [44/1500], global_step: 132, lr: 0.001000, loss: 2.776821, loss_shrink_maps: 1.655495, loss_threshold_maps: 0.810003, loss_binary_maps: 0.297281, avg_reader_cost: 1.13391 s, avg_batch_cost: 1.27915 s, avg_samples: 7.7, ips: 6.01964 samples/s, eta: 8:50:17
[2024/07/27 23:32:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:32:25] ppocr INFO: epoch: [45/1500], global_step: 135, lr: 0.001000, loss: 2.775065, loss_shrink_maps: 1.664439, loss_threshold_maps: 0.804146, loss_binary_maps: 0.304573, avg_reader_cost: 1.55032 s, avg_batch_cost: 1.78582 s, avg_samples: 12.5, ips: 6.99957 samples/s, eta: 8:47:46
[2024/07/27 23:32:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:32:32] ppocr INFO: epoch: [46/1500], global_step: 138, lr: 0.001000, loss: 2.801608, loss_shrink_maps: 1.690853, loss_threshold_maps: 0.805666, loss_binary_maps: 0.306324, avg_reader_cost: 1.52002 s, avg_batch_cost: 1.77090 s, avg_samples: 12.5, ips: 7.05857 samples/s, eta: 8:45:16
[2024/07/27 23:32:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:32:39] ppocr INFO: epoch: [47/1500], global_step: 140, lr: 0.001000, loss: 2.761428, loss_shrink_maps: 1.664439, loss_threshold_maps: 0.804146, loss_binary_maps: 0.299543, avg_reader_cost: 0.92682 s, avg_batch_cost: 1.10657 s, avg_samples: 9.6, ips: 8.67544 samples/s, eta: 8:43:17
[2024/07/27 23:32:39] ppocr INFO: epoch: [47/1500], global_step: 141, lr: 0.001000, loss: 2.792115, loss_shrink_maps: 1.685216, loss_threshold_maps: 0.808615, loss_binary_maps: 0.305752, avg_reader_cost: 0.59882 s, avg_batch_cost: 0.65420 s, avg_samples: 2.9, ips: 4.43292 samples/s, eta: 8:42:49
[2024/07/27 23:32:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:32:47] ppocr INFO: epoch: [48/1500], global_step: 144, lr: 0.001000, loss: 2.741264, loss_shrink_maps: 1.656588, loss_threshold_maps: 0.804146, loss_binary_maps: 0.296682, avg_reader_cost: 1.56473 s, avg_batch_cost: 1.82044 s, avg_samples: 12.5, ips: 6.86649 samples/s, eta: 8:40:45
[2024/07/27 23:32:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:32:54] ppocr INFO: epoch: [49/1500], global_step: 147, lr: 0.001000, loss: 2.741264, loss_shrink_maps: 1.661702, loss_threshold_maps: 0.808402, loss_binary_maps: 0.298334, avg_reader_cost: 1.63377 s, avg_batch_cost: 1.91885 s, avg_samples: 12.5, ips: 6.51431 samples/s, eta: 8:39:14
[2024/07/27 23:32:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:33:02] ppocr INFO: epoch: [50/1500], global_step: 150, lr: 0.001000, loss: 2.706133, loss_shrink_maps: 1.631373, loss_threshold_maps: 0.788792, loss_binary_maps: 0.298334, avg_reader_cost: 1.59973 s, avg_batch_cost: 1.87536 s, avg_samples: 12.5, ips: 6.66537 samples/s, eta: 8:37:34
[2024/07/27 23:33:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:33:09] ppocr INFO: epoch: [51/1500], global_step: 153, lr: 0.001000, loss: 2.686611, loss_shrink_maps: 1.603767, loss_threshold_maps: 0.780494, loss_binary_maps: 0.296459, avg_reader_cost: 1.55318 s, avg_batch_cost: 1.79274 s, avg_samples: 12.5, ips: 6.97258 samples/s, eta: 8:35:34
[2024/07/27 23:33:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:33:16] ppocr INFO: epoch: [52/1500], global_step: 156, lr: 0.001000, loss: 2.670284, loss_shrink_maps: 1.579481, loss_threshold_maps: 0.782544, loss_binary_maps: 0.290991, avg_reader_cost: 1.50835 s, avg_batch_cost: 1.73943 s, avg_samples: 12.5, ips: 7.18628 samples/s, eta: 8:33:22
[2024/07/27 23:33:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:33:24] ppocr INFO: epoch: [53/1500], global_step: 159, lr: 0.001000, loss: 2.629240, loss_shrink_maps: 1.546434, loss_threshold_maps: 0.783303, loss_binary_maps: 0.288077, avg_reader_cost: 1.54704 s, avg_batch_cost: 1.77484 s, avg_samples: 12.5, ips: 7.04291 samples/s, eta: 8:31:25
[2024/07/27 23:33:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:33:29] ppocr INFO: epoch: [54/1500], global_step: 160, lr: 0.001000, loss: 2.670284, loss_shrink_maps: 1.569450, loss_threshold_maps: 0.784121, loss_binary_maps: 0.291360, avg_reader_cost: 0.41779 s, avg_batch_cost: 0.50667 s, avg_samples: 4.8, ips: 9.47367 samples/s, eta: 8:30:23
[2024/07/27 23:33:31] ppocr INFO: epoch: [54/1500], global_step: 162, lr: 0.001000, loss: 2.668161, loss_shrink_maps: 1.572882, loss_threshold_maps: 0.783303, loss_binary_maps: 0.296459, avg_reader_cost: 1.10487 s, avg_batch_cost: 1.25090 s, avg_samples: 7.7, ips: 6.15559 samples/s, eta: 8:29:26
[2024/07/27 23:33:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:33:38] ppocr INFO: epoch: [55/1500], global_step: 165, lr: 0.001000, loss: 2.668161, loss_shrink_maps: 1.572882, loss_threshold_maps: 0.783303, loss_binary_maps: 0.296514, avg_reader_cost: 1.51618 s, avg_batch_cost: 1.75431 s, avg_samples: 12.5, ips: 7.12530 samples/s, eta: 8:27:31
[2024/07/27 23:33:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:33:46] ppocr INFO: epoch: [56/1500], global_step: 168, lr: 0.001000, loss: 2.588552, loss_shrink_maps: 1.513257, loss_threshold_maps: 0.784121, loss_binary_maps: 0.288074, avg_reader_cost: 1.64681 s, avg_batch_cost: 1.92639 s, avg_samples: 12.5, ips: 6.48880 samples/s, eta: 8:26:23
[2024/07/27 23:33:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:33:52] ppocr INFO: epoch: [57/1500], global_step: 170, lr: 0.001000, loss: 2.623957, loss_shrink_maps: 1.537436, loss_threshold_maps: 0.784121, loss_binary_maps: 0.291877, avg_reader_cost: 0.95033 s, avg_batch_cost: 1.12382 s, avg_samples: 9.6, ips: 8.54230 samples/s, eta: 8:24:58
[2024/07/27 23:33:53] ppocr INFO: epoch: [57/1500], global_step: 171, lr: 0.001000, loss: 2.623957, loss_shrink_maps: 1.537436, loss_threshold_maps: 0.785261, loss_binary_maps: 0.291877, avg_reader_cost: 0.60776 s, avg_batch_cost: 0.66238 s, avg_samples: 2.9, ips: 4.37815 samples/s, eta: 8:24:41
[2024/07/27 23:33:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:34:00] ppocr INFO: epoch: [58/1500], global_step: 174, lr: 0.001000, loss: 2.679314, loss_shrink_maps: 1.575697, loss_threshold_maps: 0.786489, loss_binary_maps: 0.299474, avg_reader_cost: 1.52836 s, avg_batch_cost: 1.75780 s, avg_samples: 12.5, ips: 7.11117 samples/s, eta: 8:22:56
[2024/07/27 23:34:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:34:07] ppocr INFO: epoch: [59/1500], global_step: 177, lr: 0.001000, loss: 2.662877, loss_shrink_maps: 1.560451, loss_threshold_maps: 0.780708, loss_binary_maps: 0.297437, avg_reader_cost: 1.54185 s, avg_batch_cost: 1.80270 s, avg_samples: 12.5, ips: 6.93404 samples/s, eta: 8:21:24
[2024/07/27 23:34:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:34:14] ppocr INFO: epoch: [60/1500], global_step: 180, lr: 0.001000, loss: 2.662877, loss_shrink_maps: 1.573298, loss_threshold_maps: 0.778581, loss_binary_maps: 0.297710, avg_reader_cost: 1.52940 s, avg_batch_cost: 1.78184 s, avg_samples: 12.5, ips: 7.01524 samples/s, eta: 8:19:50

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:53,  9.35it/s]
eval model::   1%|          | 4/500 [00:00<00:28, 17.43it/s]
eval model::   1%|▏         | 7/500 [00:00<00:24, 20.40it/s]
eval model::   2%|▏         | 9/500 [00:00<00:24, 19.85it/s]
eval model::   2%|▏         | 11/500 [00:00<00:25, 19.20it/s]
eval model::   3%|▎         | 14/500 [00:00<00:23, 20.43it/s]
eval model::   3%|▎         | 17/500 [00:00<00:24, 19.98it/s]
eval model::   4%|▍         | 19/500 [00:01<00:26, 18.14it/s]
eval model::   4%|▍         | 21/500 [00:01<00:27, 17.17it/s]
eval model::   5%|▍         | 23/500 [00:01<00:27, 17.58it/s]
eval model::   5%|▌         | 26/500 [00:01<00:26, 18.15it/s]
eval model::   6%|▌         | 28/500 [00:01<00:25, 18.25it/s]
eval model::   6%|▌         | 31/500 [00:01<00:24, 19.01it/s]
eval model::   7%|▋         | 34/500 [00:01<00:25, 18.06it/s]
eval model::   7%|▋         | 36/500 [00:02<00:28, 16.42it/s]
eval model::   8%|▊         | 38/500 [00:02<00:28, 16.40it/s]
eval model::   8%|▊         | 40/500 [00:02<00:27, 16.63it/s]
eval model::   8%|▊         | 42/500 [00:02<00:26, 17.08it/s]
eval model::   9%|▉         | 45/500 [00:02<00:22, 20.10it/s]
eval model::  10%|▉         | 48/500 [00:02<00:22, 20.32it/s]
eval model::  10%|█         | 51/500 [00:02<00:20, 21.74it/s]
eval model::  11%|█         | 54/500 [00:02<00:19, 22.86it/s]
eval model::  11%|█▏        | 57/500 [00:02<00:20, 21.22it/s]
eval model::  12%|█▏        | 60/500 [00:03<00:20, 21.09it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:24, 17.75it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:19, 21.92it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:20, 21.40it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:20, 20.60it/s]
eval model::  15%|█▌        | 76/500 [00:03<00:19, 21.68it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:20, 20.99it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:20, 20.46it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:20, 20.53it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:21, 18.91it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:21, 18.76it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:20, 20.22it/s]
eval model::  19%|█▉        | 96/500 [00:04<00:20, 19.48it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:19, 20.29it/s]
eval model::  20%|██        | 102/500 [00:05<00:19, 20.83it/s]
eval model::  21%|██        | 105/500 [00:05<00:18, 21.07it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:19, 19.75it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:20, 19.12it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:19, 19.66it/s]
eval model::  23%|██▎       | 117/500 [00:05<00:19, 20.13it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:20, 18.63it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:19, 19.33it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:20, 18.75it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:18, 20.07it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:19, 18.73it/s]
eval model::  27%|██▋       | 133/500 [00:06<00:19, 18.78it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:19, 18.48it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:17, 20.39it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:17, 20.25it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:17, 20.46it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:17, 19.71it/s]
eval model::  30%|███       | 150/500 [00:07<00:16, 20.62it/s]
eval model::  31%|███       | 153/500 [00:07<00:18, 19.00it/s]
eval model::  31%|███       | 156/500 [00:07<00:16, 20.31it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:16, 21.06it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:18, 18.54it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:18, 18.25it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:17, 19.04it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:17, 18.76it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:17, 19.00it/s]
eval model::  35%|███▍      | 173/500 [00:08<00:17, 18.88it/s]
eval model::  35%|███▌      | 175/500 [00:09<00:20, 15.79it/s]
eval model::  36%|███▌      | 178/500 [00:09<00:17, 18.30it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:20, 15.52it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:17, 18.45it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:15, 20.31it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:15, 20.46it/s]
eval model::  38%|███▊      | 192/500 [00:09<00:15, 19.38it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:15, 19.54it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:14, 20.85it/s]
eval model::  40%|████      | 201/500 [00:10<00:13, 22.19it/s]
eval model::  41%|████      | 204/500 [00:10<00:12, 23.59it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:17, 16.76it/s]
eval model::  42%|████▏     | 209/500 [00:10<00:16, 17.13it/s]
eval model::  42%|████▏     | 212/500 [00:10<00:15, 19.10it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:17, 16.75it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:18, 15.54it/s]
eval model::  44%|████▍     | 219/500 [00:11<00:17, 16.15it/s]
eval model::  44%|████▍     | 221/500 [00:11<00:16, 16.52it/s]
eval model::  45%|████▍     | 224/500 [00:11<00:14, 18.78it/s]
eval model::  45%|████▌     | 226/500 [00:11<00:14, 18.89it/s]
eval model::  46%|████▌     | 229/500 [00:11<00:12, 21.63it/s]
eval model::  46%|████▋     | 232/500 [00:11<00:11, 23.75it/s]
eval model::  47%|████▋     | 235/500 [00:12<00:11, 23.77it/s]
eval model::  48%|████▊     | 238/500 [00:12<00:11, 23.77it/s]
eval model::  48%|████▊     | 241/500 [00:12<00:10, 24.50it/s]
eval model::  49%|████▉     | 244/500 [00:12<00:11, 23.17it/s]
eval model::  49%|████▉     | 247/500 [00:12<00:11, 22.70it/s]
eval model::  50%|█████     | 250/500 [00:12<00:11, 21.16it/s]
eval model::  51%|█████     | 253/500 [00:12<00:11, 22.39it/s]
eval model::  51%|█████     | 256/500 [00:13<00:10, 22.36it/s]
eval model::  52%|█████▏    | 259/500 [00:13<00:10, 22.65it/s]
eval model::  52%|█████▏    | 262/500 [00:13<00:11, 20.45it/s]
eval model::  53%|█████▎    | 265/500 [00:13<00:12, 19.19it/s]
eval model::  54%|█████▎    | 268/500 [00:13<00:11, 20.35it/s]
eval model::  54%|█████▍    | 271/500 [00:13<00:11, 20.53it/s]
eval model::  55%|█████▍    | 274/500 [00:13<00:10, 20.62it/s]
eval model::  55%|█████▌    | 277/500 [00:14<00:10, 20.64it/s]
eval model::  56%|█████▌    | 280/500 [00:14<00:10, 20.24it/s]
eval model::  57%|█████▋    | 283/500 [00:14<00:11, 19.44it/s]
eval model::  57%|█████▋    | 285/500 [00:14<00:15, 13.66it/s]
eval model::  58%|█████▊    | 288/500 [00:14<00:12, 16.34it/s]
eval model::  58%|█████▊    | 291/500 [00:14<00:11, 18.11it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:11, 17.59it/s]
eval model::  59%|█████▉    | 296/500 [00:15<00:12, 16.39it/s]
eval model::  60%|█████▉    | 299/500 [00:15<00:11, 18.04it/s]
eval model::  60%|██████    | 301/500 [00:15<00:12, 15.85it/s]
eval model::  61%|██████    | 304/500 [00:15<00:12, 16.02it/s]
eval model::  61%|██████▏   | 307/500 [00:15<00:10, 17.90it/s]
eval model::  62%|██████▏   | 310/500 [00:16<00:09, 19.26it/s]
eval model::  63%|██████▎   | 313/500 [00:16<00:09, 20.71it/s]
eval model::  63%|██████▎   | 316/500 [00:16<00:08, 20.57it/s]
eval model::  64%|██████▍   | 320/500 [00:16<00:07, 22.79it/s]
eval model::  65%|██████▍   | 323/500 [00:16<00:08, 21.36it/s]
eval model::  65%|██████▌   | 326/500 [00:16<00:07, 21.81it/s]
eval model::  66%|██████▌   | 329/500 [00:16<00:07, 22.13it/s]
eval model::  66%|██████▋   | 332/500 [00:17<00:07, 22.36it/s]
eval model::  67%|██████▋   | 335/500 [00:17<00:07, 23.26it/s]
eval model::  68%|██████▊   | 338/500 [00:17<00:07, 22.76it/s]
eval model::  68%|██████▊   | 341/500 [00:17<00:08, 17.84it/s]
eval model::  69%|██████▉   | 344/500 [00:17<00:08, 19.29it/s]
eval model::  69%|██████▉   | 347/500 [00:17<00:07, 19.82it/s]
eval model::  70%|███████   | 350/500 [00:17<00:06, 21.91it/s]
eval model::  71%|███████   | 353/500 [00:17<00:06, 23.47it/s]
eval model::  71%|███████   | 356/500 [00:18<00:06, 20.92it/s]
eval model::  72%|███████▏  | 359/500 [00:18<00:06, 21.85it/s]
eval model::  72%|███████▏  | 362/500 [00:18<00:06, 20.32it/s]
eval model::  73%|███████▎  | 365/500 [00:18<00:06, 19.34it/s]
eval model::  74%|███████▎  | 368/500 [00:18<00:07, 18.35it/s]
eval model::  74%|███████▍  | 371/500 [00:18<00:07, 18.19it/s]
eval model::  75%|███████▍  | 374/500 [00:19<00:06, 19.36it/s]
eval model::  75%|███████▌  | 377/500 [00:19<00:06, 20.24it/s]
eval model::  76%|███████▌  | 380/500 [00:19<00:05, 20.55it/s]
eval model::  77%|███████▋  | 383/500 [00:19<00:05, 22.16it/s]
eval model::  77%|███████▋  | 386/500 [00:19<00:07, 15.83it/s]
eval model::  78%|███████▊  | 389/500 [00:19<00:06, 18.02it/s]
eval model::  78%|███████▊  | 392/500 [00:20<00:05, 18.48it/s]
eval model::  79%|███████▉  | 395/500 [00:20<00:05, 18.93it/s]
eval model::  80%|███████▉  | 398/500 [00:20<00:04, 21.01it/s]
eval model::  80%|████████  | 401/500 [00:20<00:04, 20.69it/s]
eval model::  81%|████████  | 404/500 [00:20<00:04, 21.97it/s]
eval model::  81%|████████▏ | 407/500 [00:20<00:04, 20.26it/s]
eval model::  82%|████████▏ | 410/500 [00:20<00:04, 20.86it/s]
eval model::  83%|████████▎ | 413/500 [00:21<00:04, 19.73it/s]
eval model::  83%|████████▎ | 416/500 [00:21<00:04, 18.56it/s]
eval model::  84%|████████▎ | 418/500 [00:21<00:04, 18.03it/s]
eval model::  84%|████████▍ | 420/500 [00:21<00:04, 16.99it/s]
eval model::  84%|████████▍ | 422/500 [00:21<00:04, 16.94it/s]
eval model::  85%|████████▍ | 424/500 [00:21<00:04, 16.73it/s]
eval model::  85%|████████▌ | 426/500 [00:21<00:04, 17.21it/s]
eval model::  86%|████████▌ | 428/500 [00:22<00:04, 16.19it/s]
eval model::  86%|████████▌ | 431/500 [00:22<00:03, 17.46it/s]
eval model::  87%|████████▋ | 434/500 [00:22<00:03, 19.04it/s]
eval model::  87%|████████▋ | 436/500 [00:22<00:03, 19.15it/s]
eval model::  88%|████████▊ | 439/500 [00:22<00:03, 19.97it/s]
eval model::  88%|████████▊ | 441/500 [00:22<00:03, 19.55it/s]
eval model::  89%|████████▉ | 444/500 [00:22<00:02, 19.46it/s]
eval model::  89%|████████▉ | 447/500 [00:22<00:02, 20.54it/s]
eval model::  90%|█████████ | 450/500 [00:23<00:02, 19.64it/s]
eval model::  91%|█████████ | 453/500 [00:23<00:02, 21.98it/s]
eval model::  91%|█████████ | 456/500 [00:23<00:01, 22.85it/s]
eval model::  92%|█████████▏| 459/500 [00:23<00:01, 24.27it/s]
eval model::  92%|█████████▏| 462/500 [00:23<00:01, 21.58it/s]
eval model::  93%|█████████▎| 465/500 [00:23<00:01, 19.32it/s]
eval model::  94%|█████████▎| 468/500 [00:23<00:01, 21.32it/s]
eval model::  94%|█████████▍| 471/500 [00:24<00:01, 21.64it/s]
eval model::  95%|█████████▍| 474/500 [00:24<00:01, 21.74it/s]
eval model::  95%|█████████▌| 477/500 [00:24<00:01, 21.34it/s]
eval model::  96%|█████████▌| 480/500 [00:24<00:00, 20.40it/s]
eval model::  97%|█████████▋| 483/500 [00:24<00:00, 20.58it/s]
eval model::  97%|█████████▋| 486/500 [00:24<00:00, 17.73it/s]
eval model::  98%|█████████▊| 489/500 [00:24<00:00, 18.85it/s]
eval model::  98%|█████████▊| 491/500 [00:25<00:00, 19.02it/s]
eval model::  99%|█████████▉| 494/500 [00:25<00:00, 20.81it/s]
eval model::  99%|█████████▉| 497/500 [00:25<00:00, 22.92it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.68it/s]
[2024/07/27 23:34:40] ppocr INFO: cur metric, precision: 0.5042904290429043, recall: 0.3678382282137699, hmean: 0.4253897550111359, fps: 43.79320023378904
[2024/07/27 23:34:40] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/27 23:34:40] ppocr INFO: best metric, hmean: 0.4253897550111359, precision: 0.5042904290429043, recall: 0.3678382282137699, fps: 43.79320023378904, best_epoch: 60
[2024/07/27 23:34:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:34:47] ppocr INFO: epoch: [61/1500], global_step: 183, lr: 0.001000, loss: 2.633545, loss_shrink_maps: 1.534923, loss_threshold_maps: 0.782445, loss_binary_maps: 0.293202, avg_reader_cost: 1.55837 s, avg_batch_cost: 1.78621 s, avg_samples: 12.5, ips: 6.99805 samples/s, eta: 8:18:19
[2024/07/27 23:34:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:34:54] ppocr INFO: epoch: [62/1500], global_step: 186, lr: 0.001000, loss: 2.493396, loss_shrink_maps: 1.443069, loss_threshold_maps: 0.777017, loss_binary_maps: 0.277909, avg_reader_cost: 1.55452 s, avg_batch_cost: 1.82102 s, avg_samples: 12.5, ips: 6.86430 samples/s, eta: 8:16:59
[2024/07/27 23:34:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:35:01] ppocr INFO: epoch: [63/1500], global_step: 189, lr: 0.001000, loss: 2.560382, loss_shrink_maps: 1.481440, loss_threshold_maps: 0.777017, loss_binary_maps: 0.284606, avg_reader_cost: 1.62224 s, avg_batch_cost: 1.85034 s, avg_samples: 12.5, ips: 6.75552 samples/s, eta: 8:15:47
[2024/07/27 23:35:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:35:07] ppocr INFO: epoch: [64/1500], global_step: 190, lr: 0.001000, loss: 2.507715, loss_shrink_maps: 1.440216, loss_threshold_maps: 0.777865, loss_binary_maps: 0.277909, avg_reader_cost: 0.39923 s, avg_batch_cost: 0.50380 s, avg_samples: 4.8, ips: 9.52765 samples/s, eta: 8:14:58
[2024/07/27 23:35:09] ppocr INFO: epoch: [64/1500], global_step: 192, lr: 0.001000, loss: 2.482508, loss_shrink_maps: 1.428812, loss_threshold_maps: 0.773859, loss_binary_maps: 0.276773, avg_reader_cost: 1.09867 s, avg_batch_cost: 1.24447 s, avg_samples: 7.7, ips: 6.18737 samples/s, eta: 8:14:14
[2024/07/27 23:35:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:35:16] ppocr INFO: epoch: [65/1500], global_step: 195, lr: 0.001000, loss: 2.482508, loss_shrink_maps: 1.428812, loss_threshold_maps: 0.773859, loss_binary_maps: 0.276424, avg_reader_cost: 1.51552 s, avg_batch_cost: 1.74586 s, avg_samples: 12.5, ips: 7.15978 samples/s, eta: 8:12:43
[2024/07/27 23:35:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:35:23] ppocr INFO: epoch: [66/1500], global_step: 198, lr: 0.001000, loss: 2.444984, loss_shrink_maps: 1.416468, loss_threshold_maps: 0.773859, loss_binary_maps: 0.273036, avg_reader_cost: 1.49745 s, avg_batch_cost: 1.73271 s, avg_samples: 12.5, ips: 7.21415 samples/s, eta: 8:11:11
[2024/07/27 23:35:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:35:29] ppocr INFO: epoch: [67/1500], global_step: 200, lr: 0.001000, loss: 2.444984, loss_shrink_maps: 1.416468, loss_threshold_maps: 0.762099, loss_binary_maps: 0.273036, avg_reader_cost: 0.91740 s, avg_batch_cost: 1.10383 s, avg_samples: 9.6, ips: 8.69701 samples/s, eta: 8:10:00
[2024/07/27 23:35:30] ppocr INFO: epoch: [67/1500], global_step: 201, lr: 0.001000, loss: 2.444984, loss_shrink_maps: 1.416468, loss_threshold_maps: 0.759970, loss_binary_maps: 0.273036, avg_reader_cost: 0.59759 s, avg_batch_cost: 0.65250 s, avg_samples: 2.9, ips: 4.44444 samples/s, eta: 8:09:47
[2024/07/27 23:35:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:35:37] ppocr INFO: epoch: [68/1500], global_step: 204, lr: 0.001000, loss: 2.444984, loss_shrink_maps: 1.416468, loss_threshold_maps: 0.759970, loss_binary_maps: 0.273036, avg_reader_cost: 1.50078 s, avg_batch_cost: 1.73062 s, avg_samples: 12.5, ips: 7.22284 samples/s, eta: 8:08:19
[2024/07/27 23:35:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:35:44] ppocr INFO: epoch: [69/1500], global_step: 207, lr: 0.001000, loss: 2.403663, loss_shrink_maps: 1.380546, loss_threshold_maps: 0.759970, loss_binary_maps: 0.265484, avg_reader_cost: 1.51407 s, avg_batch_cost: 1.76251 s, avg_samples: 12.5, ips: 7.09214 samples/s, eta: 8:06:59
[2024/07/27 23:35:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:35:51] ppocr INFO: epoch: [70/1500], global_step: 210, lr: 0.001000, loss: 2.436618, loss_shrink_maps: 1.408582, loss_threshold_maps: 0.763456, loss_binary_maps: 0.272804, avg_reader_cost: 1.52374 s, avg_batch_cost: 1.75286 s, avg_samples: 12.5, ips: 7.13120 samples/s, eta: 8:05:40
[2024/07/27 23:35:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:35:59] ppocr INFO: epoch: [71/1500], global_step: 213, lr: 0.001000, loss: 2.436618, loss_shrink_maps: 1.413770, loss_threshold_maps: 0.756995, loss_binary_maps: 0.273377, avg_reader_cost: 1.52920 s, avg_batch_cost: 1.76111 s, avg_samples: 12.5, ips: 7.09779 samples/s, eta: 8:04:24
[2024/07/27 23:35:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:36:06] ppocr INFO: epoch: [72/1500], global_step: 216, lr: 0.001000, loss: 2.487045, loss_shrink_maps: 1.447402, loss_threshold_maps: 0.766760, loss_binary_maps: 0.279472, avg_reader_cost: 1.54122 s, avg_batch_cost: 1.77030 s, avg_samples: 12.5, ips: 7.06095 samples/s, eta: 8:03:11
[2024/07/27 23:36:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:36:13] ppocr INFO: epoch: [73/1500], global_step: 219, lr: 0.001000, loss: 2.471851, loss_shrink_maps: 1.435933, loss_threshold_maps: 0.766760, loss_binary_maps: 0.275358, avg_reader_cost: 1.52994 s, avg_batch_cost: 1.77518 s, avg_samples: 12.5, ips: 7.04156 samples/s, eta: 8:02:01
[2024/07/27 23:36:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:36:19] ppocr INFO: epoch: [74/1500], global_step: 220, lr: 0.001000, loss: 2.484640, loss_shrink_maps: 1.438137, loss_threshold_maps: 0.766760, loss_binary_maps: 0.277044, avg_reader_cost: 0.42160 s, avg_batch_cost: 0.50407 s, avg_samples: 4.8, ips: 9.52250 samples/s, eta: 8:01:21
[2024/07/27 23:36:20] ppocr INFO: epoch: [74/1500], global_step: 222, lr: 0.001000, loss: 2.434213, loss_shrink_maps: 1.404505, loss_threshold_maps: 0.760298, loss_binary_maps: 0.270949, avg_reader_cost: 1.09954 s, avg_batch_cost: 1.24533 s, avg_samples: 7.7, ips: 6.18308 samples/s, eta: 8:00:47
[2024/07/27 23:36:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:36:28] ppocr INFO: epoch: [75/1500], global_step: 225, lr: 0.001000, loss: 2.392224, loss_shrink_maps: 1.379028, loss_threshold_maps: 0.750002, loss_binary_maps: 0.266747, avg_reader_cost: 1.58783 s, avg_batch_cost: 1.82564 s, avg_samples: 12.5, ips: 6.84690 samples/s, eta: 7:59:50
[2024/07/27 23:36:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:36:35] ppocr INFO: epoch: [76/1500], global_step: 228, lr: 0.001000, loss: 2.376469, loss_shrink_maps: 1.366992, loss_threshold_maps: 0.756002, loss_binary_maps: 0.263791, avg_reader_cost: 1.51839 s, avg_batch_cost: 1.75660 s, avg_samples: 12.5, ips: 7.11602 samples/s, eta: 7:58:40
[2024/07/27 23:36:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:36:42] ppocr INFO: epoch: [77/1500], global_step: 230, lr: 0.001000, loss: 2.365944, loss_shrink_maps: 1.343203, loss_threshold_maps: 0.741022, loss_binary_maps: 0.261653, avg_reader_cost: 1.09646 s, avg_batch_cost: 1.31576 s, avg_samples: 9.6, ips: 7.29619 samples/s, eta: 7:58:21
[2024/07/27 23:36:43] ppocr INFO: epoch: [77/1500], global_step: 231, lr: 0.001000, loss: 2.365944, loss_shrink_maps: 1.343203, loss_threshold_maps: 0.741022, loss_binary_maps: 0.261653, avg_reader_cost: 0.70358 s, avg_batch_cost: 0.75845 s, avg_samples: 2.9, ips: 3.82361 samples/s, eta: 7:58:30
[2024/07/27 23:36:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:36:51] ppocr INFO: epoch: [78/1500], global_step: 234, lr: 0.001000, loss: 2.376469, loss_shrink_maps: 1.343203, loss_threshold_maps: 0.762685, loss_binary_maps: 0.261653, avg_reader_cost: 1.58901 s, avg_batch_cost: 1.83955 s, avg_samples: 12.5, ips: 6.79515 samples/s, eta: 7:57:38
[2024/07/27 23:36:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:36:58] ppocr INFO: epoch: [79/1500], global_step: 237, lr: 0.001000, loss: 2.338708, loss_shrink_maps: 1.334671, loss_threshold_maps: 0.754564, loss_binary_maps: 0.259675, avg_reader_cost: 1.67321 s, avg_batch_cost: 1.90207 s, avg_samples: 12.5, ips: 6.57179 samples/s, eta: 7:56:57
[2024/07/27 23:36:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:37:06] ppocr INFO: epoch: [80/1500], global_step: 240, lr: 0.001000, loss: 2.430758, loss_shrink_maps: 1.383901, loss_threshold_maps: 0.773299, loss_binary_maps: 0.269900, avg_reader_cost: 1.56829 s, avg_batch_cost: 1.83636 s, avg_samples: 12.5, ips: 6.80694 samples/s, eta: 7:56:06

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 2/500 [00:00<00:37, 13.24it/s]
eval model::   1%|          | 5/500 [00:00<00:26, 18.79it/s]
eval model::   1%|▏         | 7/500 [00:00<00:26, 18.85it/s]
eval model::   2%|▏         | 10/500 [00:00<00:24, 20.13it/s]
eval model::   3%|▎         | 13/500 [00:00<00:24, 20.06it/s]
eval model::   3%|▎         | 16/500 [00:00<00:23, 20.38it/s]
eval model::   4%|▍         | 19/500 [00:01<00:26, 18.47it/s]
eval model::   4%|▍         | 21/500 [00:01<00:25, 18.56it/s]
eval model::   5%|▍         | 24/500 [00:01<00:24, 19.36it/s]
eval model::   5%|▌         | 27/500 [00:01<00:22, 20.63it/s]
eval model::   6%|▌         | 30/500 [00:01<00:23, 19.83it/s]
eval model::   7%|▋         | 33/500 [00:01<00:22, 20.74it/s]
eval model::   7%|▋         | 36/500 [00:01<00:22, 21.03it/s]
eval model::   8%|▊         | 39/500 [00:02<00:25, 18.14it/s]
eval model::   8%|▊         | 42/500 [00:02<00:24, 18.49it/s]
eval model::   9%|▉         | 45/500 [00:02<00:23, 19.75it/s]
eval model::  10%|▉         | 48/500 [00:02<00:24, 18.61it/s]
eval model::  10%|█         | 51/500 [00:02<00:22, 19.70it/s]
eval model::  11%|█         | 54/500 [00:02<00:20, 21.55it/s]
eval model::  11%|█▏        | 57/500 [00:02<00:20, 21.40it/s]
eval model::  12%|█▏        | 60/500 [00:02<00:19, 22.50it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:22, 19.50it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:20, 21.41it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:18, 23.41it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:19, 22.38it/s]
eval model::  15%|█▌        | 76/500 [00:03<00:19, 21.72it/s]
eval model::  16%|█▌        | 79/500 [00:03<00:19, 21.89it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:19, 21.03it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:20, 20.28it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:22, 18.62it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:22, 17.83it/s]
eval model::  18%|█▊        | 92/500 [00:04<00:23, 17.64it/s]
eval model::  19%|█▉        | 95/500 [00:04<00:21, 19.02it/s]
eval model::  20%|█▉        | 98/500 [00:04<00:19, 20.28it/s]
eval model::  20%|██        | 101/500 [00:05<00:20, 19.82it/s]
eval model::  21%|██        | 104/500 [00:05<00:18, 21.03it/s]
eval model::  21%|██▏       | 107/500 [00:05<00:18, 20.97it/s]
eval model::  22%|██▏       | 110/500 [00:05<00:18, 21.05it/s]
eval model::  23%|██▎       | 113/500 [00:05<00:18, 20.76it/s]
eval model::  23%|██▎       | 116/500 [00:05<00:18, 21.33it/s]
eval model::  24%|██▍       | 119/500 [00:05<00:18, 20.25it/s]
eval model::  24%|██▍       | 122/500 [00:06<00:18, 20.45it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:19, 19.53it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:18, 19.82it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:20, 18.31it/s]
eval model::  27%|██▋       | 133/500 [00:06<00:18, 20.26it/s]
eval model::  27%|██▋       | 136/500 [00:06<00:17, 20.74it/s]
eval model::  28%|██▊       | 139/500 [00:06<00:18, 20.02it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:18, 19.24it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:18, 18.93it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:18, 18.73it/s]
eval model::  30%|███       | 150/500 [00:07<00:17, 20.22it/s]
eval model::  31%|███       | 153/500 [00:07<00:18, 19.17it/s]
eval model::  31%|███       | 156/500 [00:07<00:17, 19.15it/s]
eval model::  32%|███▏      | 158/500 [00:07<00:18, 18.16it/s]
eval model::  32%|███▏      | 160/500 [00:08<00:19, 17.12it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:18, 18.41it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:16, 20.26it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:16, 19.60it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:17, 18.44it/s]
eval model::  35%|███▍      | 174/500 [00:08<00:18, 17.64it/s]
eval model::  35%|███▌      | 176/500 [00:08<00:18, 17.57it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:16, 19.29it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:18, 17.09it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:16, 18.65it/s]
eval model::  37%|███▋      | 187/500 [00:09<00:16, 19.50it/s]
eval model::  38%|███▊      | 190/500 [00:09<00:15, 20.35it/s]
eval model::  39%|███▊      | 193/500 [00:09<00:14, 20.82it/s]
eval model::  39%|███▉      | 196/500 [00:09<00:14, 21.06it/s]
eval model::  40%|███▉      | 199/500 [00:10<00:13, 22.60it/s]
eval model::  40%|████      | 202/500 [00:10<00:12, 22.94it/s]
eval model::  41%|████      | 205/500 [00:10<00:18, 15.92it/s]
eval model::  42%|████▏     | 208/500 [00:10<00:17, 16.80it/s]
eval model::  42%|████▏     | 210/500 [00:10<00:17, 16.35it/s]
eval model::  43%|████▎     | 213/500 [00:10<00:15, 17.99it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:16, 17.64it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:17, 16.45it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:14, 18.87it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:15, 18.12it/s]
eval model::  45%|████▌     | 226/500 [00:11<00:13, 20.45it/s]
eval model::  46%|████▌     | 230/500 [00:11<00:11, 24.38it/s]
eval model::  47%|████▋     | 233/500 [00:11<00:11, 23.93it/s]
eval model::  47%|████▋     | 236/500 [00:11<00:11, 22.37it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:10, 24.08it/s]
eval model::  48%|████▊     | 242/500 [00:12<00:12, 20.86it/s]
eval model::  49%|████▉     | 246/500 [00:12<00:11, 22.96it/s]
eval model::  50%|████▉     | 249/500 [00:12<00:12, 20.66it/s]
eval model::  50%|█████     | 252/500 [00:12<00:12, 20.53it/s]
eval model::  51%|█████     | 255/500 [00:12<00:12, 20.10it/s]
eval model::  52%|█████▏    | 258/500 [00:13<00:12, 19.47it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:12, 18.88it/s]
eval model::  52%|█████▏    | 262/500 [00:13<00:12, 18.88it/s]
eval model::  53%|█████▎    | 264/500 [00:13<00:13, 18.00it/s]
eval model::  53%|█████▎    | 267/500 [00:13<00:12, 19.19it/s]
eval model::  54%|█████▍    | 270/500 [00:13<00:11, 20.18it/s]
eval model::  55%|█████▍    | 273/500 [00:13<00:10, 20.67it/s]
eval model::  55%|█████▌    | 276/500 [00:13<00:11, 19.77it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:11, 19.32it/s]
eval model::  56%|█████▋    | 282/500 [00:14<00:10, 21.35it/s]
eval model::  57%|█████▋    | 285/500 [00:14<00:14, 15.06it/s]
eval model::  58%|█████▊    | 289/500 [00:14<00:11, 18.57it/s]
eval model::  59%|█████▊    | 293/500 [00:14<00:09, 21.68it/s]
eval model::  59%|█████▉    | 296/500 [00:15<00:10, 19.28it/s]
eval model::  60%|█████▉    | 299/500 [00:15<00:09, 21.04it/s]
eval model::  60%|██████    | 302/500 [00:15<00:09, 20.25it/s]
eval model::  61%|██████    | 305/500 [00:15<00:09, 21.13it/s]
eval model::  62%|██████▏   | 308/500 [00:15<00:08, 21.37it/s]
eval model::  62%|██████▏   | 311/500 [00:15<00:08, 22.18it/s]
eval model::  63%|██████▎   | 314/500 [00:15<00:08, 21.52it/s]
eval model::  63%|██████▎   | 317/500 [00:15<00:08, 20.77it/s]
eval model::  64%|██████▍   | 320/500 [00:16<00:09, 19.36it/s]
eval model::  64%|██████▍   | 322/500 [00:16<00:09, 18.82it/s]
eval model::  65%|██████▌   | 325/500 [00:16<00:08, 19.66it/s]
eval model::  66%|██████▌   | 328/500 [00:16<00:08, 19.41it/s]
eval model::  66%|██████▌   | 331/500 [00:16<00:08, 20.14it/s]
eval model::  67%|██████▋   | 334/500 [00:16<00:07, 21.56it/s]
eval model::  67%|██████▋   | 337/500 [00:17<00:08, 19.46it/s]
eval model::  68%|██████▊   | 340/500 [00:17<00:09, 16.72it/s]
eval model::  69%|██████▊   | 343/500 [00:17<00:08, 18.19it/s]
eval model::  69%|██████▉   | 346/500 [00:17<00:07, 20.47it/s]
eval model::  70%|██████▉   | 349/500 [00:17<00:07, 21.11it/s]
eval model::  70%|███████   | 352/500 [00:17<00:07, 19.67it/s]
eval model::  71%|███████   | 355/500 [00:17<00:07, 19.56it/s]
eval model::  72%|███████▏  | 358/500 [00:18<00:07, 19.06it/s]
eval model::  72%|███████▏  | 361/500 [00:18<00:07, 19.28it/s]
eval model::  73%|███████▎  | 364/500 [00:18<00:07, 18.47it/s]
eval model::  73%|███████▎  | 367/500 [00:18<00:07, 18.73it/s]
eval model::  74%|███████▍  | 370/500 [00:18<00:06, 20.17it/s]
eval model::  75%|███████▍  | 373/500 [00:18<00:06, 19.00it/s]
eval model::  75%|███████▌  | 375/500 [00:19<00:06, 18.50it/s]
eval model::  76%|███████▌  | 378/500 [00:19<00:06, 20.27it/s]
eval model::  76%|███████▌  | 381/500 [00:19<00:06, 17.92it/s]
eval model::  77%|███████▋  | 384/500 [00:19<00:05, 19.61it/s]
eval model::  77%|███████▋  | 387/500 [00:19<00:07, 14.81it/s]
eval model::  78%|███████▊  | 390/500 [00:19<00:06, 16.40it/s]
eval model::  79%|███████▊  | 393/500 [00:20<00:06, 17.57it/s]
eval model::  79%|███████▉  | 395/500 [00:20<00:05, 17.77it/s]
eval model::  80%|███████▉  | 398/500 [00:20<00:05, 20.17it/s]
eval model::  80%|████████  | 401/500 [00:20<00:05, 19.62it/s]
eval model::  81%|████████  | 404/500 [00:20<00:04, 20.66it/s]
eval model::  81%|████████▏ | 407/500 [00:20<00:04, 21.88it/s]
eval model::  82%|████████▏ | 410/500 [00:20<00:04, 22.00it/s]
eval model::  83%|████████▎ | 413/500 [00:20<00:03, 23.06it/s]
eval model::  83%|████████▎ | 416/500 [00:21<00:03, 21.29it/s]
eval model::  84%|████████▍ | 419/500 [00:21<00:04, 19.86it/s]
eval model::  84%|████████▍ | 422/500 [00:21<00:04, 18.05it/s]
eval model::  85%|████████▍ | 424/500 [00:21<00:04, 17.58it/s]
eval model::  85%|████████▌ | 427/500 [00:21<00:03, 20.22it/s]
eval model::  86%|████████▌ | 431/500 [00:21<00:02, 23.39it/s]
eval model::  87%|████████▋ | 434/500 [00:21<00:02, 23.21it/s]
eval model::  87%|████████▋ | 437/500 [00:22<00:02, 22.38it/s]
eval model::  88%|████████▊ | 440/500 [00:22<00:03, 17.96it/s]
eval model::  89%|████████▊ | 443/500 [00:22<00:02, 20.25it/s]
eval model::  89%|████████▉ | 446/500 [00:22<00:02, 21.65it/s]
eval model::  90%|████████▉ | 449/500 [00:22<00:02, 20.34it/s]
eval model::  90%|█████████ | 452/500 [00:22<00:02, 22.47it/s]
eval model::  91%|█████████ | 455/500 [00:23<00:02, 21.61it/s]
eval model::  92%|█████████▏| 458/500 [00:23<00:01, 21.44it/s]
eval model::  92%|█████████▏| 461/500 [00:23<00:01, 21.07it/s]
eval model::  93%|█████████▎| 464/500 [00:23<00:01, 19.50it/s]
eval model::  93%|█████████▎| 467/500 [00:23<00:01, 18.50it/s]
eval model::  94%|█████████▍| 470/500 [00:23<00:01, 19.56it/s]
eval model::  95%|█████████▍| 473/500 [00:23<00:01, 18.04it/s]
eval model::  95%|█████████▌| 475/500 [00:24<00:01, 18.44it/s]
eval model::  96%|█████████▌| 478/500 [00:24<00:01, 19.22it/s]
eval model::  96%|█████████▌| 481/500 [00:24<00:00, 21.07it/s]
eval model::  97%|█████████▋| 484/500 [00:24<00:00, 19.97it/s]
eval model::  97%|█████████▋| 487/500 [00:24<00:00, 17.72it/s]
eval model::  98%|█████████▊| 490/500 [00:24<00:00, 18.81it/s]
eval model::  98%|█████████▊| 492/500 [00:24<00:00, 18.61it/s]
eval model::  99%|█████████▉| 495/500 [00:25<00:00, 20.99it/s]
eval model:: 100%|█████████▉| 498/500 [00:25<00:00, 22.40it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.77it/s]
[2024/07/27 23:37:31] ppocr INFO: cur metric, precision: 0.6025903203817314, recall: 0.4256138661531054, hmean: 0.49887133182844245, fps: 45.47610497136633
[2024/07/27 23:37:31] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/27 23:37:31] ppocr INFO: best metric, hmean: 0.49887133182844245, precision: 0.6025903203817314, recall: 0.4256138661531054, fps: 45.47610497136633, best_epoch: 80
[2024/07/27 23:37:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:37:38] ppocr INFO: epoch: [81/1500], global_step: 243, lr: 0.001000, loss: 2.450931, loss_shrink_maps: 1.394744, loss_threshold_maps: 0.773299, loss_binary_maps: 0.271241, avg_reader_cost: 1.56201 s, avg_batch_cost: 1.83608 s, avg_samples: 12.5, ips: 6.80798 samples/s, eta: 7:55:15
[2024/07/27 23:37:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:37:46] ppocr INFO: epoch: [82/1500], global_step: 246, lr: 0.001000, loss: 2.473295, loss_shrink_maps: 1.410013, loss_threshold_maps: 0.778276, loss_binary_maps: 0.273380, avg_reader_cost: 1.56562 s, avg_batch_cost: 1.81666 s, avg_samples: 12.5, ips: 6.88076 samples/s, eta: 7:54:21
[2024/07/27 23:37:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:37:53] ppocr INFO: epoch: [83/1500], global_step: 249, lr: 0.001000, loss: 2.474975, loss_shrink_maps: 1.420564, loss_threshold_maps: 0.771397, loss_binary_maps: 0.275856, avg_reader_cost: 1.51465 s, avg_batch_cost: 1.76289 s, avg_samples: 12.5, ips: 7.09062 samples/s, eta: 7:53:20
[2024/07/27 23:37:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:37:59] ppocr INFO: epoch: [84/1500], global_step: 250, lr: 0.001000, loss: 2.471704, loss_shrink_maps: 1.410013, loss_threshold_maps: 0.764074, loss_binary_maps: 0.273380, avg_reader_cost: 0.42903 s, avg_batch_cost: 0.51183 s, avg_samples: 4.8, ips: 9.37812 samples/s, eta: 7:52:46
[2024/07/27 23:38:00] ppocr INFO: epoch: [84/1500], global_step: 252, lr: 0.001000, loss: 2.418985, loss_shrink_maps: 1.388735, loss_threshold_maps: 0.760388, loss_binary_maps: 0.270539, avg_reader_cost: 1.11458 s, avg_batch_cost: 1.26017 s, avg_samples: 7.7, ips: 6.11028 samples/s, eta: 7:52:20
[2024/07/27 23:38:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:38:07] ppocr INFO: epoch: [85/1500], global_step: 255, lr: 0.001000, loss: 2.424484, loss_shrink_maps: 1.394565, loss_threshold_maps: 0.760850, loss_binary_maps: 0.271047, avg_reader_cost: 1.54455 s, avg_batch_cost: 1.80239 s, avg_samples: 12.5, ips: 6.93522 samples/s, eta: 7:51:27
[2024/07/27 23:38:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:38:15] ppocr INFO: epoch: [86/1500], global_step: 258, lr: 0.001000, loss: 2.404061, loss_shrink_maps: 1.363493, loss_threshold_maps: 0.753860, loss_binary_maps: 0.265935, avg_reader_cost: 1.51833 s, avg_batch_cost: 1.75846 s, avg_samples: 12.5, ips: 7.10849 samples/s, eta: 7:50:28
[2024/07/27 23:38:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:38:21] ppocr INFO: epoch: [87/1500], global_step: 260, lr: 0.001000, loss: 2.360428, loss_shrink_maps: 1.340032, loss_threshold_maps: 0.746452, loss_binary_maps: 0.259612, avg_reader_cost: 0.91733 s, avg_batch_cost: 1.10750 s, avg_samples: 9.6, ips: 8.66817 samples/s, eta: 7:49:38
[2024/07/27 23:38:22] ppocr INFO: epoch: [87/1500], global_step: 261, lr: 0.001000, loss: 2.360428, loss_shrink_maps: 1.340032, loss_threshold_maps: 0.746452, loss_binary_maps: 0.259612, avg_reader_cost: 0.59966 s, avg_batch_cost: 0.65461 s, avg_samples: 2.9, ips: 4.43015 samples/s, eta: 7:49:30
[2024/07/27 23:38:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:38:29] ppocr INFO: epoch: [88/1500], global_step: 264, lr: 0.001000, loss: 2.345607, loss_shrink_maps: 1.333139, loss_threshold_maps: 0.745279, loss_binary_maps: 0.258223, avg_reader_cost: 1.54245 s, avg_batch_cost: 1.79098 s, avg_samples: 12.5, ips: 6.97941 samples/s, eta: 7:48:37
[2024/07/27 23:38:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:38:37] ppocr INFO: epoch: [89/1500], global_step: 267, lr: 0.001000, loss: 2.271658, loss_shrink_maps: 1.314958, loss_threshold_maps: 0.742581, loss_binary_maps: 0.256435, avg_reader_cost: 1.61916 s, avg_batch_cost: 1.85028 s, avg_samples: 12.5, ips: 6.75573 samples/s, eta: 7:47:55
[2024/07/27 23:38:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:38:44] ppocr INFO: epoch: [90/1500], global_step: 270, lr: 0.001000, loss: 2.258403, loss_shrink_maps: 1.295921, loss_threshold_maps: 0.725529, loss_binary_maps: 0.253276, avg_reader_cost: 1.50475 s, avg_batch_cost: 1.75936 s, avg_samples: 12.5, ips: 7.10484 samples/s, eta: 7:46:59
[2024/07/27 23:38:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:38:51] ppocr INFO: epoch: [91/1500], global_step: 273, lr: 0.001000, loss: 2.262432, loss_shrink_maps: 1.297075, loss_threshold_maps: 0.725529, loss_binary_maps: 0.252806, avg_reader_cost: 1.50852 s, avg_batch_cost: 1.76572 s, avg_samples: 12.5, ips: 7.07925 samples/s, eta: 7:46:05
[2024/07/27 23:38:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:38:59] ppocr INFO: epoch: [92/1500], global_step: 276, lr: 0.001000, loss: 2.262432, loss_shrink_maps: 1.297075, loss_threshold_maps: 0.725529, loss_binary_maps: 0.252806, avg_reader_cost: 1.63683 s, avg_batch_cost: 1.95603 s, avg_samples: 12.5, ips: 6.39051 samples/s, eta: 7:45:40
[2024/07/27 23:39:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:39:06] ppocr INFO: epoch: [93/1500], global_step: 279, lr: 0.001000, loss: 2.250143, loss_shrink_maps: 1.284062, loss_threshold_maps: 0.722341, loss_binary_maps: 0.249610, avg_reader_cost: 1.52972 s, avg_batch_cost: 1.81600 s, avg_samples: 12.5, ips: 6.88327 samples/s, eta: 7:44:55
[2024/07/27 23:39:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:39:12] ppocr INFO: epoch: [94/1500], global_step: 280, lr: 0.001000, loss: 2.270944, loss_shrink_maps: 1.286430, loss_threshold_maps: 0.725529, loss_binary_maps: 0.249817, avg_reader_cost: 0.40684 s, avg_batch_cost: 0.50478 s, avg_samples: 4.8, ips: 9.50905 samples/s, eta: 7:44:25
[2024/07/27 23:39:14] ppocr INFO: epoch: [94/1500], global_step: 282, lr: 0.001000, loss: 2.281600, loss_shrink_maps: 1.293334, loss_threshold_maps: 0.733596, loss_binary_maps: 0.252944, avg_reader_cost: 1.10156 s, avg_batch_cost: 1.24821 s, avg_samples: 7.7, ips: 6.16884 samples/s, eta: 7:44:01
[2024/07/27 23:39:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:39:21] ppocr INFO: epoch: [95/1500], global_step: 285, lr: 0.001000, loss: 2.281600, loss_shrink_maps: 1.293334, loss_threshold_maps: 0.737424, loss_binary_maps: 0.252944, avg_reader_cost: 1.51541 s, avg_batch_cost: 1.74489 s, avg_samples: 12.5, ips: 7.16377 samples/s, eta: 7:43:06
[2024/07/27 23:39:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:39:28] ppocr INFO: epoch: [96/1500], global_step: 288, lr: 0.001000, loss: 2.297625, loss_shrink_maps: 1.302846, loss_threshold_maps: 0.737424, loss_binary_maps: 0.256125, avg_reader_cost: 1.50920 s, avg_batch_cost: 1.73790 s, avg_samples: 12.5, ips: 7.19258 samples/s, eta: 7:42:12
[2024/07/27 23:39:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:39:35] ppocr INFO: epoch: [97/1500], global_step: 290, lr: 0.001000, loss: 2.313153, loss_shrink_maps: 1.314552, loss_threshold_maps: 0.740601, loss_binary_maps: 0.258328, avg_reader_cost: 0.93153 s, avg_batch_cost: 1.10731 s, avg_samples: 9.6, ips: 8.66965 samples/s, eta: 7:41:28
[2024/07/27 23:39:35] ppocr INFO: epoch: [97/1500], global_step: 291, lr: 0.001000, loss: 2.297625, loss_shrink_maps: 1.302846, loss_threshold_maps: 0.737424, loss_binary_maps: 0.256125, avg_reader_cost: 0.59933 s, avg_batch_cost: 0.65443 s, avg_samples: 2.9, ips: 4.43136 samples/s, eta: 7:41:21
[2024/07/27 23:39:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:39:42] ppocr INFO: epoch: [98/1500], global_step: 294, lr: 0.001000, loss: 2.313153, loss_shrink_maps: 1.329103, loss_threshold_maps: 0.732865, loss_binary_maps: 0.260704, avg_reader_cost: 1.49369 s, avg_batch_cost: 1.73095 s, avg_samples: 12.5, ips: 7.22146 samples/s, eta: 7:40:27
[2024/07/27 23:39:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:39:49] ppocr INFO: epoch: [99/1500], global_step: 297, lr: 0.001000, loss: 2.305367, loss_shrink_maps: 1.310790, loss_threshold_maps: 0.727011, loss_binary_maps: 0.258501, avg_reader_cost: 1.50086 s, avg_batch_cost: 1.77244 s, avg_samples: 12.5, ips: 7.05244 samples/s, eta: 7:39:39
[2024/07/27 23:39:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:39:57] ppocr INFO: epoch: [100/1500], global_step: 300, lr: 0.001000, loss: 2.278742, loss_shrink_maps: 1.286905, loss_threshold_maps: 0.727011, loss_binary_maps: 0.251951, avg_reader_cost: 1.49925 s, avg_batch_cost: 1.74988 s, avg_samples: 12.5, ips: 7.14333 samples/s, eta: 7:38:49

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<01:04,  7.73it/s]
eval model::   1%|          | 3/500 [00:00<00:35, 14.05it/s]
eval model::   1%|          | 6/500 [00:00<00:30, 16.21it/s]
eval model::   2%|▏         | 8/500 [00:00<00:28, 17.30it/s]
eval model::   2%|▏         | 10/500 [00:00<00:27, 17.65it/s]
eval model::   2%|▏         | 12/500 [00:00<00:28, 17.32it/s]
eval model::   3%|▎         | 14/500 [00:00<00:27, 17.63it/s]
eval model::   3%|▎         | 17/500 [00:00<00:26, 18.45it/s]
eval model::   4%|▍         | 19/500 [00:01<00:26, 18.02it/s]
eval model::   4%|▍         | 22/500 [00:01<00:26, 18.04it/s]
eval model::   5%|▍         | 24/500 [00:01<00:25, 18.41it/s]
eval model::   5%|▌         | 26/500 [00:01<00:27, 17.10it/s]
eval model::   6%|▌         | 29/500 [00:01<00:23, 19.79it/s]
eval model::   6%|▋         | 32/500 [00:01<00:24, 19.02it/s]
eval model::   7%|▋         | 34/500 [00:01<00:25, 18.48it/s]
eval model::   7%|▋         | 37/500 [00:02<00:22, 20.58it/s]
eval model::   8%|▊         | 40/500 [00:02<00:25, 18.04it/s]
eval model::   8%|▊         | 42/500 [00:02<00:25, 18.28it/s]
eval model::   9%|▉         | 45/500 [00:02<00:23, 19.05it/s]
eval model::   9%|▉         | 47/500 [00:02<00:23, 18.94it/s]
eval model::  10%|█         | 50/500 [00:02<00:21, 20.83it/s]
eval model::  11%|█         | 53/500 [00:02<00:20, 21.53it/s]
eval model::  11%|█         | 56/500 [00:02<00:21, 20.55it/s]
eval model::  12%|█▏        | 59/500 [00:03<00:20, 21.42it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:24, 17.77it/s]
eval model::  13%|█▎        | 65/500 [00:03<00:22, 18.92it/s]
eval model::  14%|█▎        | 68/500 [00:03<00:20, 21.32it/s]
eval model::  14%|█▍        | 71/500 [00:03<00:19, 21.48it/s]
eval model::  15%|█▍        | 74/500 [00:03<00:21, 19.37it/s]
eval model::  15%|█▌        | 77/500 [00:04<00:22, 18.87it/s]
eval model::  16%|█▌        | 80/500 [00:04<00:19, 21.12it/s]
eval model::  17%|█▋        | 83/500 [00:04<00:19, 21.55it/s]
eval model::  17%|█▋        | 86/500 [00:04<00:20, 20.17it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:23, 17.21it/s]
eval model::  18%|█▊        | 92/500 [00:04<00:22, 18.46it/s]
eval model::  19%|█▉        | 95/500 [00:05<00:20, 19.30it/s]
eval model::  20%|█▉        | 98/500 [00:05<00:19, 20.35it/s]
eval model::  20%|██        | 101/500 [00:05<00:20, 19.74it/s]
eval model::  21%|██        | 104/500 [00:05<00:19, 19.99it/s]
eval model::  21%|██▏       | 107/500 [00:05<00:19, 20.17it/s]
eval model::  22%|██▏       | 110/500 [00:05<00:19, 20.05it/s]
eval model::  23%|██▎       | 113/500 [00:05<00:18, 21.30it/s]
eval model::  23%|██▎       | 116/500 [00:06<00:20, 18.85it/s]
eval model::  24%|██▍       | 119/500 [00:06<00:19, 20.00it/s]
eval model::  24%|██▍       | 122/500 [00:06<00:18, 20.45it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:19, 19.53it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:18, 19.69it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:18, 19.81it/s]
eval model::  27%|██▋       | 134/500 [00:06<00:18, 20.07it/s]
eval model::  27%|██▋       | 137/500 [00:07<00:17, 20.34it/s]
eval model::  28%|██▊       | 140/500 [00:07<00:17, 20.62it/s]
eval model::  29%|██▊       | 143/500 [00:07<00:16, 21.04it/s]
eval model::  29%|██▉       | 146/500 [00:07<00:16, 21.43it/s]
eval model::  30%|██▉       | 149/500 [00:07<00:17, 20.37it/s]
eval model::  30%|███       | 152/500 [00:07<00:18, 18.54it/s]
eval model::  31%|███       | 155/500 [00:07<00:17, 19.91it/s]
eval model::  32%|███▏      | 158/500 [00:08<00:17, 20.06it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:18, 18.29it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:18, 18.31it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:16, 20.18it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:16, 20.08it/s]
eval model::  34%|███▍      | 172/500 [00:08<00:17, 19.12it/s]
eval model::  35%|███▍      | 174/500 [00:08<00:16, 19.25it/s]
eval model::  35%|███▌      | 177/500 [00:09<00:15, 20.95it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:19, 16.49it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:16, 19.73it/s]
eval model::  37%|███▋      | 187/500 [00:09<00:14, 21.01it/s]
eval model::  38%|███▊      | 190/500 [00:09<00:14, 21.32it/s]
eval model::  39%|███▊      | 193/500 [00:09<00:13, 23.12it/s]
eval model::  39%|███▉      | 196/500 [00:10<00:14, 20.57it/s]
eval model::  40%|███▉      | 199/500 [00:10<00:14, 21.42it/s]
eval model::  40%|████      | 202/500 [00:10<00:15, 19.84it/s]
eval model::  41%|████      | 205/500 [00:10<00:19, 15.07it/s]
eval model::  42%|████▏     | 208/500 [00:10<00:17, 16.91it/s]
eval model::  42%|████▏     | 210/500 [00:10<00:16, 17.18it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:15, 18.39it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:17, 15.84it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:18, 15.43it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:16, 17.34it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:15, 17.61it/s]
eval model::  45%|████▌     | 225/500 [00:11<00:13, 20.48it/s]
eval model::  46%|████▌     | 228/500 [00:11<00:12, 22.00it/s]
eval model::  46%|████▋     | 232/500 [00:11<00:10, 24.61it/s]
eval model::  47%|████▋     | 235/500 [00:12<00:11, 22.99it/s]
eval model::  48%|████▊     | 238/500 [00:12<00:10, 23.95it/s]
eval model::  48%|████▊     | 241/500 [00:12<00:10, 24.05it/s]
eval model::  49%|████▉     | 244/500 [00:12<00:11, 22.77it/s]
eval model::  49%|████▉     | 247/500 [00:12<00:11, 22.24it/s]
eval model::  50%|█████     | 250/500 [00:12<00:12, 20.00it/s]
eval model::  51%|█████     | 253/500 [00:12<00:11, 21.97it/s]
eval model::  51%|█████     | 256/500 [00:13<00:11, 21.00it/s]
eval model::  52%|█████▏    | 259/500 [00:13<00:11, 21.07it/s]
eval model::  52%|█████▏    | 262/500 [00:13<00:11, 21.12it/s]
eval model::  53%|█████▎    | 265/500 [00:13<00:12, 19.45it/s]
eval model::  54%|█████▎    | 268/500 [00:13<00:11, 20.50it/s]
eval model::  54%|█████▍    | 271/500 [00:13<00:11, 20.36it/s]
eval model::  55%|█████▍    | 274/500 [00:13<00:11, 19.40it/s]
eval model::  55%|█████▌    | 276/500 [00:14<00:12, 18.55it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:11, 19.54it/s]
eval model::  56%|█████▋    | 282/500 [00:14<00:10, 21.01it/s]
eval model::  57%|█████▋    | 285/500 [00:14<00:14, 15.11it/s]
eval model::  58%|█████▊    | 289/500 [00:14<00:11, 18.57it/s]
eval model::  58%|█████▊    | 292/500 [00:14<00:10, 19.97it/s]
eval model::  59%|█████▉    | 295/500 [00:15<00:11, 17.14it/s]
eval model::  60%|█████▉    | 298/500 [00:15<00:10, 19.51it/s]
eval model::  60%|██████    | 301/500 [00:15<00:10, 18.67it/s]
eval model::  61%|██████    | 304/500 [00:15<00:10, 19.58it/s]
eval model::  61%|██████▏   | 307/500 [00:15<00:09, 19.95it/s]
eval model::  62%|██████▏   | 310/500 [00:15<00:08, 21.28it/s]
eval model::  63%|██████▎   | 313/500 [00:15<00:08, 21.74it/s]
eval model::  63%|██████▎   | 316/500 [00:16<00:08, 21.09it/s]
eval model::  64%|██████▍   | 319/500 [00:16<00:07, 22.72it/s]
eval model::  64%|██████▍   | 322/500 [00:16<00:08, 22.05it/s]
eval model::  65%|██████▌   | 325/500 [00:16<00:07, 22.34it/s]
eval model::  66%|██████▌   | 328/500 [00:16<00:08, 20.01it/s]
eval model::  66%|██████▌   | 331/500 [00:16<00:07, 21.24it/s]
eval model::  67%|██████▋   | 334/500 [00:16<00:07, 22.99it/s]
eval model::  67%|██████▋   | 337/500 [00:17<00:08, 19.87it/s]
eval model::  68%|██████▊   | 340/500 [00:17<00:09, 16.48it/s]
eval model::  69%|██████▊   | 343/500 [00:17<00:08, 18.16it/s]
eval model::  69%|██████▉   | 346/500 [00:17<00:07, 20.16it/s]
eval model::  70%|███████   | 350/500 [00:17<00:06, 22.53it/s]
eval model::  71%|███████   | 353/500 [00:17<00:06, 22.42it/s]
eval model::  71%|███████   | 356/500 [00:18<00:06, 21.52it/s]
eval model::  72%|███████▏  | 359/500 [00:18<00:06, 21.71it/s]
eval model::  72%|███████▏  | 362/500 [00:18<00:06, 20.59it/s]
eval model::  73%|███████▎  | 365/500 [00:18<00:06, 19.49it/s]
eval model::  73%|███████▎  | 367/500 [00:18<00:06, 19.37it/s]
eval model::  74%|███████▍  | 370/500 [00:18<00:06, 21.38it/s]
eval model::  75%|███████▍  | 373/500 [00:18<00:06, 19.96it/s]
eval model::  75%|███████▌  | 376/500 [00:19<00:06, 20.19it/s]
eval model::  76%|███████▌  | 379/500 [00:19<00:05, 20.47it/s]
eval model::  76%|███████▋  | 382/500 [00:19<00:05, 19.85it/s]
eval model::  77%|███████▋  | 385/500 [00:19<00:05, 20.40it/s]
eval model::  78%|███████▊  | 388/500 [00:19<00:07, 15.75it/s]
eval model::  78%|███████▊  | 391/500 [00:19<00:06, 17.47it/s]
eval model::  79%|███████▉  | 394/500 [00:20<00:05, 19.63it/s]
eval model::  79%|███████▉  | 397/500 [00:20<00:05, 20.51it/s]
eval model::  80%|████████  | 400/500 [00:20<00:04, 21.45it/s]
eval model::  81%|████████  | 403/500 [00:20<00:04, 22.65it/s]
eval model::  81%|████████  | 406/500 [00:20<00:04, 22.61it/s]
eval model::  82%|████████▏ | 409/500 [00:20<00:03, 22.85it/s]
eval model::  82%|████████▏ | 412/500 [00:20<00:03, 22.03it/s]
eval model::  83%|████████▎ | 415/500 [00:20<00:03, 22.95it/s]
eval model::  84%|████████▎ | 418/500 [00:21<00:04, 20.47it/s]
eval model::  84%|████████▍ | 421/500 [00:21<00:04, 17.97it/s]
eval model::  85%|████████▍ | 424/500 [00:21<00:03, 19.70it/s]
eval model::  85%|████████▌ | 427/500 [00:21<00:03, 20.76it/s]
eval model::  86%|████████▌ | 430/500 [00:21<00:03, 20.88it/s]
eval model::  87%|████████▋ | 433/500 [00:21<00:03, 20.39it/s]
eval model::  87%|████████▋ | 436/500 [00:22<00:03, 20.42it/s]
eval model::  88%|████████▊ | 439/500 [00:22<00:03, 19.89it/s]
eval model::  88%|████████▊ | 442/500 [00:22<00:02, 20.54it/s]
eval model::  89%|████████▉ | 445/500 [00:22<00:02, 20.47it/s]
eval model::  90%|████████▉ | 448/500 [00:22<00:02, 19.95it/s]
eval model::  90%|█████████ | 451/500 [00:22<00:02, 20.34it/s]
eval model::  91%|█████████ | 454/500 [00:22<00:02, 19.79it/s]
eval model::  91%|█████████▏| 457/500 [00:23<00:02, 20.27it/s]
eval model::  92%|█████████▏| 460/500 [00:23<00:02, 20.00it/s]
eval model::  93%|█████████▎| 463/500 [00:23<00:01, 19.31it/s]
eval model::  93%|█████████▎| 465/500 [00:23<00:01, 18.24it/s]
eval model::  94%|█████████▎| 468/500 [00:23<00:01, 20.86it/s]
eval model::  94%|█████████▍| 471/500 [00:23<00:01, 21.73it/s]
eval model::  95%|█████████▍| 474/500 [00:23<00:01, 18.39it/s]
eval model::  95%|█████████▌| 477/500 [00:24<00:01, 19.91it/s]
eval model::  96%|█████████▌| 480/500 [00:24<00:01, 19.65it/s]
eval model::  97%|█████████▋| 483/500 [00:24<00:00, 18.82it/s]
eval model::  97%|█████████▋| 485/500 [00:24<00:00, 19.00it/s]
eval model::  98%|█████████▊| 488/500 [00:24<00:00, 20.18it/s]
eval model::  98%|█████████▊| 491/500 [00:24<00:00, 19.64it/s]
eval model::  99%|█████████▉| 494/500 [00:24<00:00, 19.89it/s]
eval model::  99%|█████████▉| 497/500 [00:25<00:00, 20.90it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 20.91it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.83it/s]
[2024/07/27 23:40:22] ppocr INFO: cur metric, precision: 0.6433308769344142, recall: 0.4203177660086663, hmean: 0.5084449621432731, fps: 45.83175235810987
[2024/07/27 23:40:22] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/27 23:40:22] ppocr INFO: best metric, hmean: 0.5084449621432731, precision: 0.6433308769344142, recall: 0.4203177660086663, fps: 45.83175235810987, best_epoch: 100
[2024/07/27 23:40:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:40:29] ppocr INFO: epoch: [101/1500], global_step: 303, lr: 0.001000, loss: 2.289311, loss_shrink_maps: 1.309103, loss_threshold_maps: 0.731390, loss_binary_maps: 0.256603, avg_reader_cost: 1.57900 s, avg_batch_cost: 1.83677 s, avg_samples: 12.5, ips: 6.80541 samples/s, eta: 7:38:11
[2024/07/27 23:40:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:40:37] ppocr INFO: epoch: [102/1500], global_step: 306, lr: 0.001000, loss: 2.245837, loss_shrink_maps: 1.263778, loss_threshold_maps: 0.724061, loss_binary_maps: 0.246900, avg_reader_cost: 1.57118 s, avg_batch_cost: 1.82921 s, avg_samples: 12.5, ips: 6.83353 samples/s, eta: 7:37:33
[2024/07/27 23:40:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:40:44] ppocr INFO: epoch: [103/1500], global_step: 309, lr: 0.001000, loss: 2.185150, loss_shrink_maps: 1.229291, loss_threshold_maps: 0.717026, loss_binary_maps: 0.240870, avg_reader_cost: 1.49258 s, avg_batch_cost: 1.72702 s, avg_samples: 12.5, ips: 7.23791 samples/s, eta: 7:36:41
[2024/07/27 23:40:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:40:50] ppocr INFO: epoch: [104/1500], global_step: 310, lr: 0.001000, loss: 2.191876, loss_shrink_maps: 1.229291, loss_threshold_maps: 0.721876, loss_binary_maps: 0.240870, avg_reader_cost: 0.41832 s, avg_batch_cost: 0.50084 s, avg_samples: 4.8, ips: 9.58385 samples/s, eta: 7:36:14
[2024/07/27 23:40:51] ppocr INFO: epoch: [104/1500], global_step: 312, lr: 0.001000, loss: 2.210989, loss_shrink_maps: 1.239950, loss_threshold_maps: 0.723314, loss_binary_maps: 0.242095, avg_reader_cost: 1.09300 s, avg_batch_cost: 1.23906 s, avg_samples: 7.7, ips: 6.21441 samples/s, eta: 7:35:52
[2024/07/27 23:40:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:40:59] ppocr INFO: epoch: [105/1500], global_step: 315, lr: 0.001000, loss: 2.206601, loss_shrink_maps: 1.232135, loss_threshold_maps: 0.726139, loss_binary_maps: 0.241913, avg_reader_cost: 1.54680 s, avg_batch_cost: 1.77639 s, avg_samples: 12.5, ips: 7.03675 samples/s, eta: 7:35:08
[2024/07/27 23:40:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:41:06] ppocr INFO: epoch: [106/1500], global_step: 318, lr: 0.001000, loss: 2.195047, loss_shrink_maps: 1.232135, loss_threshold_maps: 0.726139, loss_binary_maps: 0.240688, avg_reader_cost: 1.53802 s, avg_batch_cost: 1.80053 s, avg_samples: 12.5, ips: 6.94241 samples/s, eta: 7:34:27
[2024/07/27 23:41:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:41:13] ppocr INFO: epoch: [107/1500], global_step: 320, lr: 0.001000, loss: 2.195047, loss_shrink_maps: 1.228196, loss_threshold_maps: 0.730097, loss_binary_maps: 0.240002, avg_reader_cost: 0.94487 s, avg_batch_cost: 1.11835 s, avg_samples: 9.6, ips: 8.58410 samples/s, eta: 7:33:50
[2024/07/27 23:41:13] ppocr INFO: epoch: [107/1500], global_step: 321, lr: 0.001000, loss: 2.195047, loss_shrink_maps: 1.228196, loss_threshold_maps: 0.730206, loss_binary_maps: 0.240002, avg_reader_cost: 0.60480 s, avg_batch_cost: 0.65989 s, avg_samples: 2.9, ips: 4.39469 samples/s, eta: 7:33:45
[2024/07/27 23:41:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:41:21] ppocr INFO: epoch: [108/1500], global_step: 324, lr: 0.001000, loss: 2.179350, loss_shrink_maps: 1.219583, loss_threshold_maps: 0.726139, loss_binary_maps: 0.238265, avg_reader_cost: 1.49794 s, avg_batch_cost: 1.76444 s, avg_samples: 12.5, ips: 7.08439 samples/s, eta: 7:33:01
[2024/07/27 23:41:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:41:28] ppocr INFO: epoch: [109/1500], global_step: 327, lr: 0.001000, loss: 2.179350, loss_shrink_maps: 1.219583, loss_threshold_maps: 0.725392, loss_binary_maps: 0.238265, avg_reader_cost: 1.51925 s, avg_batch_cost: 1.77213 s, avg_samples: 12.5, ips: 7.05365 samples/s, eta: 7:32:18
[2024/07/27 23:41:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:41:36] ppocr INFO: epoch: [110/1500], global_step: 330, lr: 0.001000, loss: 2.175030, loss_shrink_maps: 1.228051, loss_threshold_maps: 0.721963, loss_binary_maps: 0.239154, avg_reader_cost: 1.73879 s, avg_batch_cost: 1.96714 s, avg_samples: 12.5, ips: 6.35440 samples/s, eta: 7:32:01
[2024/07/27 23:41:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:41:43] ppocr INFO: epoch: [111/1500], global_step: 333, lr: 0.001000, loss: 2.147031, loss_shrink_maps: 1.219449, loss_threshold_maps: 0.718753, loss_binary_maps: 0.238265, avg_reader_cost: 1.52522 s, avg_batch_cost: 1.77442 s, avg_samples: 12.5, ips: 7.04457 samples/s, eta: 7:31:19
[2024/07/27 23:41:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:41:50] ppocr INFO: epoch: [112/1500], global_step: 336, lr: 0.001000, loss: 2.147031, loss_shrink_maps: 1.219449, loss_threshold_maps: 0.716373, loss_binary_maps: 0.239154, avg_reader_cost: 1.53078 s, avg_batch_cost: 1.75951 s, avg_samples: 12.5, ips: 7.10426 samples/s, eta: 7:30:36
[2024/07/27 23:41:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:41:58] ppocr INFO: epoch: [113/1500], global_step: 339, lr: 0.001000, loss: 2.177678, loss_shrink_maps: 1.227917, loss_threshold_maps: 0.710225, loss_binary_maps: 0.240596, avg_reader_cost: 1.52368 s, avg_batch_cost: 1.75225 s, avg_samples: 12.5, ips: 7.13367 samples/s, eta: 7:29:52
[2024/07/27 23:41:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:42:04] ppocr INFO: epoch: [114/1500], global_step: 340, lr: 0.001000, loss: 2.219978, loss_shrink_maps: 1.251387, loss_threshold_maps: 0.716373, loss_binary_maps: 0.244948, avg_reader_cost: 0.42486 s, avg_batch_cost: 0.51690 s, avg_samples: 4.8, ips: 9.28606 samples/s, eta: 7:29:30
[2024/07/27 23:42:05] ppocr INFO: epoch: [114/1500], global_step: 342, lr: 0.001000, loss: 2.219978, loss_shrink_maps: 1.251387, loss_threshold_maps: 0.717984, loss_binary_maps: 0.244948, avg_reader_cost: 1.12531 s, avg_batch_cost: 1.27131 s, avg_samples: 7.7, ips: 6.05672 samples/s, eta: 7:29:14
[2024/07/27 23:42:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:42:13] ppocr INFO: epoch: [115/1500], global_step: 345, lr: 0.001000, loss: 2.177678, loss_shrink_maps: 1.227917, loss_threshold_maps: 0.712982, loss_binary_maps: 0.240596, avg_reader_cost: 1.54280 s, avg_batch_cost: 1.81464 s, avg_samples: 12.5, ips: 6.88843 samples/s, eta: 7:28:39
[2024/07/27 23:42:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:42:20] ppocr INFO: epoch: [116/1500], global_step: 348, lr: 0.001000, loss: 2.258319, loss_shrink_maps: 1.290975, loss_threshold_maps: 0.718888, loss_binary_maps: 0.253692, avg_reader_cost: 1.53453 s, avg_batch_cost: 1.76513 s, avg_samples: 12.5, ips: 7.08164 samples/s, eta: 7:27:58
[2024/07/27 23:42:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:42:27] ppocr INFO: epoch: [117/1500], global_step: 350, lr: 0.001000, loss: 2.276583, loss_shrink_maps: 1.309475, loss_threshold_maps: 0.722866, loss_binary_maps: 0.257341, avg_reader_cost: 0.96844 s, avg_batch_cost: 1.14231 s, avg_samples: 9.6, ips: 8.40400 samples/s, eta: 7:27:27
[2024/07/27 23:42:27] ppocr INFO: epoch: [117/1500], global_step: 351, lr: 0.001000, loss: 2.276583, loss_shrink_maps: 1.309475, loss_threshold_maps: 0.722866, loss_binary_maps: 0.257341, avg_reader_cost: 0.61692 s, avg_batch_cost: 0.67185 s, avg_samples: 2.9, ips: 4.31644 samples/s, eta: 7:27:23
[2024/07/27 23:42:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:42:35] ppocr INFO: epoch: [118/1500], global_step: 354, lr: 0.001000, loss: 2.212352, loss_shrink_maps: 1.257312, loss_threshold_maps: 0.720380, loss_binary_maps: 0.246734, avg_reader_cost: 1.80327 s, avg_batch_cost: 2.03780 s, avg_samples: 12.5, ips: 6.13406 samples/s, eta: 7:27:15
[2024/07/27 23:42:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:42:43] ppocr INFO: epoch: [119/1500], global_step: 357, lr: 0.001000, loss: 2.212352, loss_shrink_maps: 1.257312, loss_threshold_maps: 0.715498, loss_binary_maps: 0.246734, avg_reader_cost: 1.56686 s, avg_batch_cost: 1.79488 s, avg_samples: 12.5, ips: 6.96424 samples/s, eta: 7:26:39
[2024/07/27 23:42:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:42:50] ppocr INFO: epoch: [120/1500], global_step: 360, lr: 0.001000, loss: 2.195211, loss_shrink_maps: 1.236896, loss_threshold_maps: 0.710050, loss_binary_maps: 0.243644, avg_reader_cost: 1.51267 s, avg_batch_cost: 1.78159 s, avg_samples: 12.5, ips: 7.01622 samples/s, eta: 7:26:01

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:50,  9.97it/s]
eval model::   1%|          | 4/500 [00:00<00:29, 16.91it/s]
eval model::   1%|          | 6/500 [00:00<00:27, 17.70it/s]
eval model::   2%|▏         | 8/500 [00:00<00:27, 18.11it/s]
eval model::   2%|▏         | 11/500 [00:00<00:23, 20.42it/s]
eval model::   3%|▎         | 14/500 [00:00<00:24, 19.88it/s]
eval model::   3%|▎         | 17/500 [00:00<00:23, 20.28it/s]
eval model::   4%|▍         | 20/500 [00:01<00:27, 17.21it/s]
eval model::   5%|▍         | 23/500 [00:01<00:25, 19.07it/s]
eval model::   5%|▌         | 26/500 [00:01<00:24, 19.28it/s]
eval model::   6%|▌         | 29/500 [00:01<00:23, 20.27it/s]
eval model::   6%|▋         | 32/500 [00:01<00:24, 19.42it/s]
eval model::   7%|▋         | 35/500 [00:01<00:23, 20.02it/s]
eval model::   8%|▊         | 38/500 [00:01<00:23, 20.06it/s]
eval model::   8%|▊         | 41/500 [00:02<00:24, 19.09it/s]
eval model::   9%|▊         | 43/500 [00:02<00:24, 18.41it/s]
eval model::   9%|▉         | 46/500 [00:02<00:24, 18.55it/s]
eval model::  10%|█         | 50/500 [00:02<00:20, 21.60it/s]
eval model::  11%|█         | 53/500 [00:02<00:19, 22.48it/s]
eval model::  11%|█         | 56/500 [00:02<00:20, 21.36it/s]
eval model::  12%|█▏        | 59/500 [00:02<00:20, 21.69it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:25, 17.00it/s]
eval model::  13%|█▎        | 64/500 [00:03<00:25, 17.19it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:23, 18.59it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:21, 20.15it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:19, 22.13it/s]
eval model::  15%|█▌        | 76/500 [00:03<00:18, 23.49it/s]
eval model::  16%|█▌        | 79/500 [00:03<00:18, 22.49it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:18, 22.83it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:18, 22.79it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:20, 20.32it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:22, 18.47it/s]
eval model::  19%|█▉        | 94/500 [00:04<00:20, 19.88it/s]
eval model::  19%|█▉        | 97/500 [00:04<00:18, 21.29it/s]
eval model::  20%|██        | 100/500 [00:05<00:20, 19.38it/s]
eval model::  21%|██        | 103/500 [00:05<00:18, 21.26it/s]
eval model::  21%|██        | 106/500 [00:05<00:18, 21.66it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:17, 22.14it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:18, 20.88it/s]
eval model::  23%|██▎       | 115/500 [00:05<00:18, 21.34it/s]
eval model::  24%|██▎       | 118/500 [00:05<00:17, 21.93it/s]
eval model::  24%|██▍       | 121/500 [00:05<00:17, 21.89it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:18, 20.57it/s]
eval model::  25%|██▌       | 127/500 [00:06<00:17, 21.60it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:19, 18.55it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:19, 18.73it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:17, 21.05it/s]
eval model::  28%|██▊       | 138/500 [00:06<00:17, 20.22it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:18, 19.57it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:17, 20.14it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:19, 17.85it/s]
eval model::  30%|███       | 150/500 [00:07<00:18, 18.97it/s]
eval model::  30%|███       | 152/500 [00:07<00:19, 17.84it/s]
eval model::  31%|███       | 156/500 [00:07<00:16, 21.37it/s]
eval model::  32%|███▏      | 159/500 [00:07<00:16, 21.13it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:19, 17.35it/s]
eval model::  33%|███▎      | 165/500 [00:08<00:18, 18.37it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:18, 18.37it/s]
eval model::  34%|███▍      | 170/500 [00:08<00:16, 20.33it/s]
eval model::  35%|███▍      | 173/500 [00:08<00:17, 18.46it/s]
eval model::  35%|███▌      | 175/500 [00:08<00:18, 17.27it/s]
eval model::  35%|███▌      | 177/500 [00:08<00:18, 17.62it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:18, 17.68it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:21, 14.60it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:17, 17.64it/s]
eval model::  37%|███▋      | 187/500 [00:09<00:16, 18.66it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:16, 18.49it/s]
eval model::  38%|███▊      | 191/500 [00:09<00:16, 18.60it/s]
eval model::  39%|███▉      | 194/500 [00:09<00:14, 20.78it/s]
eval model::  39%|███▉      | 197/500 [00:10<00:15, 19.78it/s]
eval model::  40%|████      | 200/500 [00:10<00:13, 21.72it/s]
eval model::  41%|████      | 203/500 [00:10<00:13, 21.42it/s]
eval model::  41%|████      | 206/500 [00:10<00:22, 13.20it/s]
eval model::  42%|████▏     | 208/500 [00:10<00:21, 13.31it/s]
eval model::  42%|████▏     | 210/500 [00:10<00:20, 14.04it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.87it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:19, 14.94it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:19, 14.31it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:17, 16.00it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:18, 14.79it/s]
eval model::  45%|████▌     | 225/500 [00:11<00:16, 16.84it/s]
eval model::  46%|████▌     | 228/500 [00:11<00:14, 18.94it/s]
eval model::  46%|████▋     | 232/500 [00:12<00:12, 22.00it/s]
eval model::  47%|████▋     | 235/500 [00:12<00:12, 21.49it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:10, 24.09it/s]
eval model::  48%|████▊     | 242/500 [00:12<00:12, 19.89it/s]
eval model::  49%|████▉     | 245/500 [00:12<00:12, 20.76it/s]
eval model::  50%|████▉     | 248/500 [00:12<00:11, 22.18it/s]
eval model::  50%|█████     | 251/500 [00:12<00:11, 22.44it/s]
eval model::  51%|█████     | 254/500 [00:13<00:11, 21.90it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:10, 22.19it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:10, 22.18it/s]
eval model::  53%|█████▎    | 263/500 [00:13<00:10, 21.63it/s]
eval model::  53%|█████▎    | 266/500 [00:13<00:12, 18.64it/s]
eval model::  54%|█████▎    | 268/500 [00:13<00:12, 18.29it/s]
eval model::  54%|█████▍    | 271/500 [00:14<00:11, 19.44it/s]
eval model::  55%|█████▍    | 273/500 [00:14<00:11, 19.44it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:12, 18.18it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:11, 19.96it/s]
eval model::  56%|█████▌    | 281/500 [00:14<00:09, 21.94it/s]
eval model::  57%|█████▋    | 284/500 [00:14<00:09, 22.70it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:16, 13.27it/s]
eval model::  58%|█████▊    | 290/500 [00:15<00:13, 15.32it/s]
eval model::  59%|█████▊    | 293/500 [00:15<00:12, 16.96it/s]
eval model::  59%|█████▉    | 296/500 [00:15<00:12, 16.30it/s]
eval model::  60%|██████    | 300/500 [00:15<00:11, 18.07it/s]
eval model::  60%|██████    | 302/500 [00:15<00:10, 18.32it/s]
eval model::  61%|██████    | 305/500 [00:15<00:09, 19.73it/s]
eval model::  62%|██████▏   | 308/500 [00:16<00:09, 21.25it/s]
eval model::  62%|██████▏   | 311/500 [00:16<00:08, 22.22it/s]
eval model::  63%|██████▎   | 314/500 [00:16<00:08, 22.66it/s]
eval model::  63%|██████▎   | 317/500 [00:16<00:08, 21.97it/s]
eval model::  64%|██████▍   | 320/500 [00:16<00:08, 20.94it/s]
eval model::  65%|██████▍   | 323/500 [00:16<00:08, 19.70it/s]
eval model::  65%|██████▌   | 326/500 [00:16<00:08, 19.41it/s]
eval model::  66%|██████▌   | 329/500 [00:17<00:08, 19.80it/s]
eval model::  66%|██████▋   | 332/500 [00:17<00:08, 20.44it/s]
eval model::  67%|██████▋   | 335/500 [00:17<00:07, 21.35it/s]
eval model::  68%|██████▊   | 338/500 [00:17<00:08, 18.44it/s]
eval model::  68%|██████▊   | 340/500 [00:17<00:10, 14.73it/s]
eval model::  69%|██████▊   | 343/500 [00:17<00:09, 16.87it/s]
eval model::  69%|██████▉   | 346/500 [00:17<00:08, 18.90it/s]
eval model::  70%|██████▉   | 349/500 [00:18<00:07, 20.44it/s]
eval model::  70%|███████   | 352/500 [00:18<00:06, 21.86it/s]
eval model::  71%|███████   | 355/500 [00:18<00:06, 21.75it/s]
eval model::  72%|███████▏  | 358/500 [00:18<00:06, 21.39it/s]
eval model::  72%|███████▏  | 361/500 [00:18<00:07, 19.44it/s]
eval model::  73%|███████▎  | 364/500 [00:18<00:07, 18.75it/s]
eval model::  73%|███████▎  | 367/500 [00:19<00:07, 18.97it/s]
eval model::  74%|███████▍  | 370/500 [00:19<00:06, 20.32it/s]
eval model::  75%|███████▍  | 373/500 [00:19<00:06, 20.01it/s]
eval model::  75%|███████▌  | 376/500 [00:19<00:06, 19.91it/s]
eval model::  76%|███████▌  | 379/500 [00:19<00:05, 21.02it/s]
eval model::  76%|███████▋  | 382/500 [00:19<00:05, 19.92it/s]
eval model::  77%|███████▋  | 385/500 [00:19<00:05, 19.51it/s]
eval model::  77%|███████▋  | 387/500 [00:20<00:08, 13.80it/s]
eval model::  78%|███████▊  | 390/500 [00:20<00:06, 16.57it/s]
eval model::  79%|███████▊  | 393/500 [00:20<00:05, 18.45it/s]
eval model::  79%|███████▉  | 396/500 [00:20<00:05, 19.12it/s]
eval model::  80%|███████▉  | 399/500 [00:20<00:04, 20.58it/s]
eval model::  80%|████████  | 402/500 [00:20<00:04, 21.09it/s]
eval model::  81%|████████  | 405/500 [00:20<00:04, 21.76it/s]
eval model::  82%|████████▏ | 408/500 [00:21<00:04, 21.09it/s]
eval model::  82%|████████▏ | 411/500 [00:21<00:04, 20.38it/s]
eval model::  83%|████████▎ | 414/500 [00:21<00:04, 20.49it/s]
eval model::  83%|████████▎ | 417/500 [00:21<00:04, 17.81it/s]
eval model::  84%|████████▍ | 419/500 [00:21<00:04, 17.03it/s]
eval model::  84%|████████▍ | 421/500 [00:21<00:05, 15.59it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:04, 17.69it/s]
eval model::  85%|████████▌ | 427/500 [00:22<00:03, 19.50it/s]
eval model::  86%|████████▌ | 430/500 [00:22<00:03, 20.10it/s]
eval model::  87%|████████▋ | 433/500 [00:22<00:03, 21.73it/s]
eval model::  87%|████████▋ | 436/500 [00:22<00:02, 21.50it/s]
eval model::  88%|████████▊ | 439/500 [00:22<00:02, 21.52it/s]
eval model::  88%|████████▊ | 442/500 [00:22<00:02, 20.01it/s]
eval model::  89%|████████▉ | 445/500 [00:23<00:02, 21.70it/s]
eval model::  90%|████████▉ | 448/500 [00:23<00:02, 19.67it/s]
eval model::  90%|█████████ | 451/500 [00:23<00:02, 21.05it/s]
eval model::  91%|█████████ | 454/500 [00:23<00:02, 19.50it/s]
eval model::  91%|█████████▏| 457/500 [00:23<00:02, 20.73it/s]
eval model::  92%|█████████▏| 460/500 [00:23<00:01, 20.10it/s]
eval model::  93%|█████████▎| 463/500 [00:23<00:01, 19.20it/s]
eval model::  93%|█████████▎| 465/500 [00:24<00:02, 17.50it/s]
eval model::  94%|█████████▎| 468/500 [00:24<00:01, 19.54it/s]
eval model::  94%|█████████▍| 471/500 [00:24<00:01, 20.40it/s]
eval model::  95%|█████████▍| 474/500 [00:24<00:01, 19.62it/s]
eval model::  95%|█████████▌| 477/500 [00:24<00:01, 20.91it/s]
eval model::  96%|█████████▌| 480/500 [00:24<00:00, 20.29it/s]
eval model::  97%|█████████▋| 483/500 [00:24<00:00, 19.37it/s]
eval model::  97%|█████████▋| 486/500 [00:25<00:00, 18.23it/s]
eval model::  98%|█████████▊| 489/500 [00:25<00:00, 19.39it/s]
eval model::  98%|█████████▊| 491/500 [00:25<00:00, 19.50it/s]
eval model::  99%|█████████▉| 494/500 [00:25<00:00, 20.40it/s]
eval model::  99%|█████████▉| 497/500 [00:25<00:00, 21.74it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.44it/s]
[2024/07/27 23:43:16] ppocr INFO: cur metric, precision: 0.6432825943084051, recall: 0.4679826673086182, hmean: 0.5418060200668896, fps: 45.18622528921397
[2024/07/27 23:43:16] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/27 23:43:16] ppocr INFO: best metric, hmean: 0.5418060200668896, precision: 0.6432825943084051, recall: 0.4679826673086182, fps: 45.18622528921397, best_epoch: 120
[2024/07/27 23:43:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:43:23] ppocr INFO: epoch: [121/1500], global_step: 363, lr: 0.001000, loss: 2.200762, loss_shrink_maps: 1.243786, loss_threshold_maps: 0.710954, loss_binary_maps: 0.244542, avg_reader_cost: 1.54369 s, avg_batch_cost: 1.80039 s, avg_samples: 12.5, ips: 6.94294 samples/s, eta: 7:25:26
[2024/07/27 23:43:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:43:31] ppocr INFO: epoch: [122/1500], global_step: 366, lr: 0.001000, loss: 2.187952, loss_shrink_maps: 1.224304, loss_threshold_maps: 0.700027, loss_binary_maps: 0.240850, avg_reader_cost: 1.73625 s, avg_batch_cost: 1.97554 s, avg_samples: 12.5, ips: 6.32739 samples/s, eta: 7:25:11
[2024/07/27 23:43:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:43:39] ppocr INFO: epoch: [123/1500], global_step: 369, lr: 0.001000, loss: 2.150370, loss_shrink_maps: 1.200460, loss_threshold_maps: 0.705192, loss_binary_maps: 0.235632, avg_reader_cost: 1.54518 s, avg_batch_cost: 1.77458 s, avg_samples: 12.5, ips: 7.04394 samples/s, eta: 7:24:33
[2024/07/27 23:43:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:43:44] ppocr INFO: epoch: [124/1500], global_step: 370, lr: 0.001000, loss: 2.150370, loss_shrink_maps: 1.200460, loss_threshold_maps: 0.705192, loss_binary_maps: 0.235632, avg_reader_cost: 0.43961 s, avg_batch_cost: 0.52211 s, avg_samples: 4.8, ips: 9.19352 samples/s, eta: 7:24:13
[2024/07/27 23:43:46] ppocr INFO: epoch: [124/1500], global_step: 372, lr: 0.001000, loss: 2.150370, loss_shrink_maps: 1.200460, loss_threshold_maps: 0.705192, loss_binary_maps: 0.235632, avg_reader_cost: 1.13556 s, avg_batch_cost: 1.28118 s, avg_samples: 7.7, ips: 6.01008 samples/s, eta: 7:23:59
[2024/07/27 23:43:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:43:53] ppocr INFO: epoch: [125/1500], global_step: 375, lr: 0.001000, loss: 2.104001, loss_shrink_maps: 1.151974, loss_threshold_maps: 0.699047, loss_binary_maps: 0.227237, avg_reader_cost: 1.50420 s, avg_batch_cost: 1.75267 s, avg_samples: 12.5, ips: 7.13198 samples/s, eta: 7:23:19
[2024/07/27 23:43:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:44:00] ppocr INFO: epoch: [126/1500], global_step: 378, lr: 0.001000, loss: 2.127295, loss_shrink_maps: 1.181484, loss_threshold_maps: 0.699047, loss_binary_maps: 0.232697, avg_reader_cost: 1.50258 s, avg_batch_cost: 1.73841 s, avg_samples: 12.5, ips: 7.19049 samples/s, eta: 7:22:39
[2024/07/27 23:44:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:44:07] ppocr INFO: epoch: [127/1500], global_step: 380, lr: 0.001000, loss: 2.087334, loss_shrink_maps: 1.151974, loss_threshold_maps: 0.700721, loss_binary_maps: 0.227237, avg_reader_cost: 0.94105 s, avg_batch_cost: 1.11466 s, avg_samples: 9.6, ips: 8.61248 samples/s, eta: 7:22:07
[2024/07/27 23:44:08] ppocr INFO: epoch: [127/1500], global_step: 381, lr: 0.001000, loss: 2.055261, loss_shrink_maps: 1.141891, loss_threshold_maps: 0.689910, loss_binary_maps: 0.225001, avg_reader_cost: 0.60292 s, avg_batch_cost: 0.65795 s, avg_samples: 2.9, ips: 4.40764 samples/s, eta: 7:22:02
[2024/07/27 23:44:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:44:16] ppocr INFO: epoch: [128/1500], global_step: 384, lr: 0.001000, loss: 2.143697, loss_shrink_maps: 1.181484, loss_threshold_maps: 0.717168, loss_binary_maps: 0.232697, avg_reader_cost: 1.63080 s, avg_batch_cost: 1.87814 s, avg_samples: 12.5, ips: 6.65553 samples/s, eta: 7:21:37
[2024/07/27 23:44:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:44:24] ppocr INFO: epoch: [129/1500], global_step: 387, lr: 0.001000, loss: 2.087334, loss_shrink_maps: 1.151974, loss_threshold_maps: 0.711403, loss_binary_maps: 0.227237, avg_reader_cost: 1.70338 s, avg_batch_cost: 1.93202 s, avg_samples: 12.5, ips: 6.46992 samples/s, eta: 7:21:18
[2024/07/27 23:44:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:44:31] ppocr INFO: epoch: [130/1500], global_step: 390, lr: 0.001000, loss: 2.117614, loss_shrink_maps: 1.191429, loss_threshold_maps: 0.702596, loss_binary_maps: 0.234849, avg_reader_cost: 1.49562 s, avg_batch_cost: 1.73222 s, avg_samples: 12.5, ips: 7.21618 samples/s, eta: 7:20:37
[2024/07/27 23:44:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:44:38] ppocr INFO: epoch: [131/1500], global_step: 393, lr: 0.001000, loss: 2.037670, loss_shrink_maps: 1.141219, loss_threshold_maps: 0.719700, loss_binary_maps: 0.224851, avg_reader_cost: 1.50417 s, avg_batch_cost: 1.73535 s, avg_samples: 12.5, ips: 7.20316 samples/s, eta: 7:19:58
[2024/07/27 23:44:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:44:46] ppocr INFO: epoch: [132/1500], global_step: 396, lr: 0.001000, loss: 2.082449, loss_shrink_maps: 1.157526, loss_threshold_maps: 0.711837, loss_binary_maps: 0.228328, avg_reader_cost: 1.54839 s, avg_batch_cost: 1.78239 s, avg_samples: 12.5, ips: 7.01307 samples/s, eta: 7:19:23
[2024/07/27 23:44:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:44:53] ppocr INFO: epoch: [133/1500], global_step: 399, lr: 0.001000, loss: 2.140510, loss_shrink_maps: 1.206403, loss_threshold_maps: 0.711837, loss_binary_maps: 0.237763, avg_reader_cost: 1.50757 s, avg_batch_cost: 1.74929 s, avg_samples: 12.5, ips: 7.14575 samples/s, eta: 7:18:46
[2024/07/27 23:44:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:44:59] ppocr INFO: epoch: [134/1500], global_step: 400, lr: 0.001000, loss: 2.082449, loss_shrink_maps: 1.157526, loss_threshold_maps: 0.707184, loss_binary_maps: 0.228328, avg_reader_cost: 0.40194 s, avg_batch_cost: 0.50520 s, avg_samples: 4.8, ips: 9.50124 samples/s, eta: 7:18:25
[2024/07/27 23:45:00] ppocr INFO: epoch: [134/1500], global_step: 402, lr: 0.001000, loss: 2.082449, loss_shrink_maps: 1.157526, loss_threshold_maps: 0.707184, loss_binary_maps: 0.228328, avg_reader_cost: 1.10241 s, avg_batch_cost: 1.24917 s, avg_samples: 7.7, ips: 6.16409 samples/s, eta: 7:18:09
[2024/07/27 23:45:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:45:07] ppocr INFO: epoch: [135/1500], global_step: 405, lr: 0.001000, loss: 2.066156, loss_shrink_maps: 1.149538, loss_threshold_maps: 0.700651, loss_binary_maps: 0.224583, avg_reader_cost: 1.48227 s, avg_batch_cost: 1.71449 s, avg_samples: 12.5, ips: 7.29081 samples/s, eta: 7:17:29
[2024/07/27 23:45:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:45:15] ppocr INFO: epoch: [136/1500], global_step: 408, lr: 0.001000, loss: 2.066156, loss_shrink_maps: 1.139768, loss_threshold_maps: 0.695294, loss_binary_maps: 0.222923, avg_reader_cost: 1.55079 s, avg_batch_cost: 1.80052 s, avg_samples: 12.5, ips: 6.94243 samples/s, eta: 7:16:57
[2024/07/27 23:45:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:45:21] ppocr INFO: epoch: [137/1500], global_step: 410, lr: 0.001000, loss: 2.066156, loss_shrink_maps: 1.139768, loss_threshold_maps: 0.692952, loss_binary_maps: 0.222923, avg_reader_cost: 0.91993 s, avg_batch_cost: 1.10070 s, avg_samples: 9.6, ips: 8.72170 samples/s, eta: 7:16:26
[2024/07/27 23:45:22] ppocr INFO: epoch: [137/1500], global_step: 411, lr: 0.001000, loss: 2.066156, loss_shrink_maps: 1.139768, loss_threshold_maps: 0.692952, loss_binary_maps: 0.222923, avg_reader_cost: 0.59582 s, avg_batch_cost: 0.65055 s, avg_samples: 2.9, ips: 4.45774 samples/s, eta: 7:16:21
[2024/07/27 23:45:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:45:29] ppocr INFO: epoch: [138/1500], global_step: 414, lr: 0.001000, loss: 2.035359, loss_shrink_maps: 1.109319, loss_threshold_maps: 0.684148, loss_binary_maps: 0.219003, avg_reader_cost: 1.56664 s, avg_batch_cost: 1.80136 s, avg_samples: 12.5, ips: 6.93920 samples/s, eta: 7:15:50
[2024/07/27 23:45:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:45:37] ppocr INFO: epoch: [139/1500], global_step: 417, lr: 0.001000, loss: 1.986979, loss_shrink_maps: 1.086796, loss_threshold_maps: 0.685317, loss_binary_maps: 0.214120, avg_reader_cost: 1.51554 s, avg_batch_cost: 1.76869 s, avg_samples: 12.5, ips: 7.06738 samples/s, eta: 7:15:16
[2024/07/27 23:45:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:45:44] ppocr INFO: epoch: [140/1500], global_step: 420, lr: 0.001000, loss: 1.975574, loss_shrink_maps: 1.075849, loss_threshold_maps: 0.685811, loss_binary_maps: 0.212468, avg_reader_cost: 1.49792 s, avg_batch_cost: 1.72727 s, avg_samples: 12.5, ips: 7.23686 samples/s, eta: 7:14:38

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<01:00,  8.22it/s]
eval model::   1%|          | 3/500 [00:00<00:34, 14.31it/s]
eval model::   1%|          | 5/500 [00:00<00:30, 16.50it/s]
eval model::   1%|▏         | 7/500 [00:00<00:30, 16.38it/s]
eval model::   2%|▏         | 9/500 [00:00<00:29, 16.44it/s]
eval model::   2%|▏         | 12/500 [00:00<00:25, 18.88it/s]
eval model::   3%|▎         | 14/500 [00:00<00:26, 18.20it/s]
eval model::   3%|▎         | 17/500 [00:00<00:24, 19.53it/s]
eval model::   4%|▍         | 19/500 [00:01<00:25, 18.66it/s]
eval model::   4%|▍         | 21/500 [00:01<00:28, 16.84it/s]
eval model::   5%|▍         | 24/500 [00:01<00:24, 19.59it/s]
eval model::   5%|▌         | 27/500 [00:01<00:21, 21.77it/s]
eval model::   6%|▌         | 30/500 [00:01<00:21, 21.60it/s]
eval model::   7%|▋         | 33/500 [00:01<00:22, 21.00it/s]
eval model::   7%|▋         | 36/500 [00:01<00:22, 20.19it/s]
eval model::   8%|▊         | 39/500 [00:02<00:24, 19.10it/s]
eval model::   8%|▊         | 42/500 [00:02<00:23, 19.50it/s]
eval model::   9%|▉         | 45/500 [00:02<00:22, 20.41it/s]
eval model::  10%|▉         | 48/500 [00:02<00:21, 20.73it/s]
eval model::  10%|█         | 51/500 [00:02<00:20, 22.26it/s]
eval model::  11%|█         | 54/500 [00:02<00:20, 22.07it/s]
eval model::  11%|█▏        | 57/500 [00:02<00:21, 20.14it/s]
eval model::  12%|█▏        | 60/500 [00:03<00:22, 19.96it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:27, 15.84it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:25, 17.20it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:22, 18.91it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:20, 21.14it/s]
eval model::  15%|█▌        | 75/500 [00:03<00:19, 22.01it/s]
eval model::  16%|█▌        | 78/500 [00:03<00:19, 21.17it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:19, 21.93it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:19, 21.86it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:22, 18.69it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:22, 18.65it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:23, 17.48it/s]
eval model::  19%|█▉        | 94/500 [00:04<00:21, 19.13it/s]
eval model::  19%|█▉        | 97/500 [00:04<00:19, 21.02it/s]
eval model::  20%|██        | 100/500 [00:05<00:20, 19.40it/s]
eval model::  21%|██        | 103/500 [00:05<00:19, 20.88it/s]
eval model::  21%|██        | 106/500 [00:05<00:19, 19.95it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:18, 21.59it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:18, 20.81it/s]
eval model::  23%|██▎       | 115/500 [00:05<00:19, 20.16it/s]
eval model::  24%|██▎       | 118/500 [00:05<00:17, 21.76it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:17, 21.94it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:17, 21.31it/s]
eval model::  25%|██▌       | 127/500 [00:06<00:16, 22.27it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:18, 19.71it/s]
eval model::  27%|██▋       | 133/500 [00:06<00:17, 20.85it/s]
eval model::  27%|██▋       | 136/500 [00:06<00:17, 20.34it/s]
eval model::  28%|██▊       | 139/500 [00:06<00:17, 20.92it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:16, 21.97it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:16, 20.90it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:19, 18.29it/s]
eval model::  30%|███       | 151/500 [00:07<00:19, 17.61it/s]
eval model::  31%|███       | 155/500 [00:07<00:16, 20.96it/s]
eval model::  32%|███▏      | 158/500 [00:07<00:15, 21.70it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:17, 19.53it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:16, 20.17it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:16, 20.70it/s]
eval model::  34%|███▍      | 170/500 [00:08<00:15, 20.90it/s]
eval model::  35%|███▍      | 173/500 [00:08<00:16, 19.31it/s]
eval model::  35%|███▌      | 175/500 [00:08<00:20, 15.74it/s]
eval model::  35%|███▌      | 177/500 [00:09<00:19, 16.21it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:18, 16.92it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:16, 19.65it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:15, 20.12it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:15, 20.04it/s]
eval model::  38%|███▊      | 192/500 [00:09<00:14, 21.25it/s]
eval model::  39%|███▉      | 195/500 [00:09<00:15, 20.30it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:14, 20.28it/s]
eval model::  40%|████      | 201/500 [00:10<00:14, 20.74it/s]
eval model::  41%|████      | 204/500 [00:10<00:13, 22.28it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:16, 18.20it/s]
eval model::  42%|████▏     | 209/500 [00:10<00:15, 18.39it/s]
eval model::  42%|████▏     | 211/500 [00:10<00:16, 17.44it/s]
eval model::  43%|████▎     | 213/500 [00:10<00:16, 17.74it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:18, 15.38it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:18, 15.45it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:15, 18.59it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:14, 18.56it/s]
eval model::  45%|████▌     | 226/500 [00:11<00:13, 20.56it/s]
eval model::  46%|████▌     | 229/500 [00:11<00:12, 22.19it/s]
eval model::  47%|████▋     | 233/500 [00:11<00:11, 23.95it/s]
eval model::  47%|████▋     | 236/500 [00:11<00:11, 23.54it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:10, 25.09it/s]
eval model::  48%|████▊     | 242/500 [00:12<00:11, 22.09it/s]
eval model::  49%|████▉     | 245/500 [00:12<00:11, 21.93it/s]
eval model::  50%|████▉     | 248/500 [00:12<00:11, 22.84it/s]
eval model::  50%|█████     | 251/500 [00:12<00:11, 22.03it/s]
eval model::  51%|█████     | 254/500 [00:12<00:11, 21.83it/s]
eval model::  51%|█████▏    | 257/500 [00:12<00:11, 20.94it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:11, 21.63it/s]
eval model::  53%|█████▎    | 263/500 [00:13<00:11, 21.41it/s]
eval model::  53%|█████▎    | 266/500 [00:13<00:10, 21.44it/s]
eval model::  54%|█████▍    | 269/500 [00:13<00:11, 19.57it/s]
eval model::  54%|█████▍    | 272/500 [00:13<00:11, 20.24it/s]
eval model::  55%|█████▌    | 275/500 [00:13<00:11, 19.00it/s]
eval model::  56%|█████▌    | 278/500 [00:13<00:10, 20.72it/s]
eval model::  56%|█████▌    | 281/500 [00:14<00:10, 20.92it/s]
eval model::  57%|█████▋    | 284/500 [00:14<00:10, 20.76it/s]
eval model::  57%|█████▋    | 287/500 [00:14<00:15, 14.09it/s]
eval model::  58%|█████▊    | 290/500 [00:14<00:12, 16.28it/s]
eval model::  59%|█████▊    | 293/500 [00:14<00:11, 17.52it/s]
eval model::  59%|█████▉    | 296/500 [00:15<00:12, 16.71it/s]
eval model::  60%|█████▉    | 299/500 [00:15<00:10, 19.16it/s]
eval model::  60%|██████    | 302/500 [00:15<00:10, 19.14it/s]
eval model::  61%|██████    | 305/500 [00:15<00:10, 19.40it/s]
eval model::  62%|██████▏   | 308/500 [00:15<00:09, 20.06it/s]
eval model::  62%|██████▏   | 311/500 [00:15<00:08, 21.04it/s]
eval model::  63%|██████▎   | 314/500 [00:15<00:09, 20.30it/s]
eval model::  63%|██████▎   | 317/500 [00:16<00:08, 21.16it/s]
eval model::  64%|██████▍   | 320/500 [00:16<00:08, 21.13it/s]
eval model::  65%|██████▍   | 323/500 [00:16<00:08, 20.03it/s]
eval model::  65%|██████▌   | 326/500 [00:16<00:08, 20.37it/s]
eval model::  66%|██████▌   | 329/500 [00:16<00:08, 19.71it/s]
eval model::  66%|██████▋   | 332/500 [00:16<00:08, 20.63it/s]
eval model::  67%|██████▋   | 335/500 [00:16<00:07, 21.79it/s]
eval model::  68%|██████▊   | 338/500 [00:17<00:07, 20.71it/s]
eval model::  68%|██████▊   | 341/500 [00:17<00:09, 17.33it/s]
eval model::  69%|██████▉   | 344/500 [00:17<00:08, 18.93it/s]
eval model::  70%|██████▉   | 348/500 [00:17<00:06, 22.51it/s]
eval model::  70%|███████   | 351/500 [00:17<00:06, 22.25it/s]
eval model::  71%|███████   | 354/500 [00:17<00:06, 22.60it/s]
eval model::  71%|███████▏  | 357/500 [00:17<00:06, 21.75it/s]
eval model::  72%|███████▏  | 360/500 [00:18<00:06, 22.21it/s]
eval model::  73%|███████▎  | 363/500 [00:18<00:06, 22.02it/s]
eval model::  73%|███████▎  | 366/500 [00:18<00:06, 19.42it/s]
eval model::  74%|███████▍  | 369/500 [00:18<00:06, 20.72it/s]
eval model::  74%|███████▍  | 372/500 [00:18<00:06, 19.62it/s]
eval model::  75%|███████▌  | 375/500 [00:18<00:06, 20.62it/s]
eval model::  76%|███████▌  | 378/500 [00:18<00:05, 20.46it/s]
eval model::  76%|███████▌  | 381/500 [00:19<00:06, 19.15it/s]
eval model::  77%|███████▋  | 384/500 [00:19<00:06, 18.89it/s]
eval model::  77%|███████▋  | 386/500 [00:19<00:08, 13.14it/s]
eval model::  78%|███████▊  | 389/500 [00:19<00:06, 15.88it/s]
eval model::  78%|███████▊  | 392/500 [00:19<00:06, 17.50it/s]
eval model::  79%|███████▉  | 395/500 [00:19<00:05, 19.42it/s]
eval model::  80%|███████▉  | 399/500 [00:20<00:04, 22.23it/s]
eval model::  80%|████████  | 402/500 [00:20<00:04, 22.31it/s]
eval model::  81%|████████  | 405/500 [00:20<00:04, 22.62it/s]
eval model::  82%|████████▏ | 408/500 [00:20<00:04, 22.49it/s]
eval model::  82%|████████▏ | 411/500 [00:20<00:04, 22.21it/s]
eval model::  83%|████████▎ | 414/500 [00:20<00:03, 21.88it/s]
eval model::  83%|████████▎ | 417/500 [00:20<00:03, 20.96it/s]
eval model::  84%|████████▍ | 420/500 [00:21<00:04, 17.30it/s]
eval model::  85%|████████▍ | 423/500 [00:21<00:04, 18.85it/s]
eval model::  85%|████████▌ | 426/500 [00:21<00:03, 18.86it/s]
eval model::  86%|████████▌ | 429/500 [00:21<00:03, 20.78it/s]
eval model::  86%|████████▋ | 432/500 [00:21<00:03, 19.88it/s]
eval model::  87%|████████▋ | 435/500 [00:21<00:03, 20.37it/s]
eval model::  88%|████████▊ | 438/500 [00:22<00:02, 21.88it/s]
eval model::  88%|████████▊ | 441/500 [00:22<00:03, 19.21it/s]
eval model::  89%|████████▉ | 445/500 [00:22<00:02, 19.49it/s]
eval model::  90%|████████▉ | 448/500 [00:22<00:02, 19.22it/s]
eval model::  90%|█████████ | 451/500 [00:22<00:02, 20.29it/s]
eval model::  91%|█████████ | 454/500 [00:22<00:02, 18.95it/s]
eval model::  91%|█████████ | 456/500 [00:22<00:02, 18.92it/s]
eval model::  92%|█████████▏| 459/500 [00:23<00:02, 19.44it/s]
eval model::  92%|█████████▏| 462/500 [00:23<00:02, 18.91it/s]
eval model::  93%|█████████▎| 465/500 [00:23<00:01, 17.83it/s]
eval model::  94%|█████████▎| 468/500 [00:23<00:01, 19.75it/s]
eval model::  94%|█████████▍| 471/500 [00:23<00:01, 19.99it/s]
eval model::  95%|█████████▍| 474/500 [00:23<00:01, 19.44it/s]
eval model::  95%|█████████▌| 477/500 [00:24<00:01, 19.70it/s]
eval model::  96%|█████████▌| 480/500 [00:24<00:00, 20.79it/s]
eval model::  97%|█████████▋| 483/500 [00:24<00:00, 20.14it/s]
eval model::  97%|█████████▋| 486/500 [00:24<00:00, 16.67it/s]
eval model::  98%|█████████▊| 489/500 [00:24<00:00, 18.36it/s]
eval model::  98%|█████████▊| 492/500 [00:24<00:00, 19.15it/s]
eval model::  99%|█████████▉| 495/500 [00:24<00:00, 20.70it/s]
eval model:: 100%|█████████▉| 498/500 [00:25<00:00, 22.16it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.85it/s]
[2024/07/27 23:46:09] ppocr INFO: cur metric, precision: 0.7136498516320475, recall: 0.4631680308136736, hmean: 0.5617518248175183, fps: 45.67912762631318
[2024/07/27 23:46:09] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/27 23:46:09] ppocr INFO: best metric, hmean: 0.5617518248175183, precision: 0.7136498516320475, recall: 0.4631680308136736, fps: 45.67912762631318, best_epoch: 140
[2024/07/27 23:46:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:46:17] ppocr INFO: epoch: [141/1500], global_step: 423, lr: 0.001000, loss: 1.949074, loss_shrink_maps: 1.070845, loss_threshold_maps: 0.676432, loss_binary_maps: 0.210051, avg_reader_cost: 1.58101 s, avg_batch_cost: 1.81992 s, avg_samples: 12.5, ips: 6.86843 samples/s, eta: 7:14:09
[2024/07/27 23:46:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:46:24] ppocr INFO: epoch: [142/1500], global_step: 426, lr: 0.001000, loss: 1.977204, loss_shrink_maps: 1.078130, loss_threshold_maps: 0.685811, loss_binary_maps: 0.212468, avg_reader_cost: 1.46673 s, avg_batch_cost: 1.70860 s, avg_samples: 12.5, ips: 7.31595 samples/s, eta: 7:13:30
[2024/07/27 23:46:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:46:31] ppocr INFO: epoch: [143/1500], global_step: 429, lr: 0.001000, loss: 1.961635, loss_shrink_maps: 1.073094, loss_threshold_maps: 0.681505, loss_binary_maps: 0.209769, avg_reader_cost: 1.54340 s, avg_batch_cost: 1.80739 s, avg_samples: 12.5, ips: 6.91604 samples/s, eta: 7:13:01
[2024/07/27 23:46:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:46:37] ppocr INFO: epoch: [144/1500], global_step: 430, lr: 0.001000, loss: 1.974834, loss_shrink_maps: 1.073094, loss_threshold_maps: 0.691056, loss_binary_maps: 0.209769, avg_reader_cost: 0.40773 s, avg_batch_cost: 0.50025 s, avg_samples: 4.8, ips: 9.59517 samples/s, eta: 7:12:41
[2024/07/27 23:46:39] ppocr INFO: epoch: [144/1500], global_step: 432, lr: 0.001000, loss: 1.961635, loss_shrink_maps: 1.068969, loss_threshold_maps: 0.691056, loss_binary_maps: 0.209328, avg_reader_cost: 1.09234 s, avg_batch_cost: 1.23750 s, avg_samples: 7.7, ips: 6.22221 samples/s, eta: 7:12:25
[2024/07/27 23:46:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:46:46] ppocr INFO: epoch: [145/1500], global_step: 435, lr: 0.001000, loss: 1.981626, loss_shrink_maps: 1.075376, loss_threshold_maps: 0.691056, loss_binary_maps: 0.210176, avg_reader_cost: 1.57586 s, avg_batch_cost: 1.80479 s, avg_samples: 12.5, ips: 6.92603 samples/s, eta: 7:11:56
[2024/07/27 23:46:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:46:54] ppocr INFO: epoch: [146/1500], global_step: 438, lr: 0.001000, loss: 1.984950, loss_shrink_maps: 1.081067, loss_threshold_maps: 0.684711, loss_binary_maps: 0.211336, avg_reader_cost: 1.54943 s, avg_batch_cost: 1.77958 s, avg_samples: 12.5, ips: 7.02412 samples/s, eta: 7:11:24
[2024/07/27 23:46:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:47:01] ppocr INFO: epoch: [147/1500], global_step: 440, lr: 0.001000, loss: 2.012243, loss_shrink_maps: 1.107649, loss_threshold_maps: 0.698560, loss_binary_maps: 0.217707, avg_reader_cost: 0.94236 s, avg_batch_cost: 1.11604 s, avg_samples: 9.6, ips: 8.60188 samples/s, eta: 7:10:57
[2024/07/27 23:47:01] ppocr INFO: epoch: [147/1500], global_step: 441, lr: 0.001000, loss: 2.069197, loss_shrink_maps: 1.151056, loss_threshold_maps: 0.704053, loss_binary_maps: 0.225466, avg_reader_cost: 0.60362 s, avg_batch_cost: 0.65844 s, avg_samples: 2.9, ips: 4.40437 samples/s, eta: 7:10:53
[2024/07/27 23:47:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:47:09] ppocr INFO: epoch: [148/1500], global_step: 444, lr: 0.001000, loss: 2.012243, loss_shrink_maps: 1.123560, loss_threshold_maps: 0.707328, loss_binary_maps: 0.220579, avg_reader_cost: 1.54616 s, avg_batch_cost: 1.82129 s, avg_samples: 12.5, ips: 6.86326 samples/s, eta: 7:10:25
[2024/07/27 23:47:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:47:16] ppocr INFO: epoch: [149/1500], global_step: 447, lr: 0.001000, loss: 2.012243, loss_shrink_maps: 1.123560, loss_threshold_maps: 0.707328, loss_binary_maps: 0.220579, avg_reader_cost: 1.55267 s, avg_batch_cost: 1.79608 s, avg_samples: 12.5, ips: 6.95958 samples/s, eta: 7:09:56
[2024/07/27 23:47:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:47:24] ppocr INFO: epoch: [150/1500], global_step: 450, lr: 0.001000, loss: 2.092118, loss_shrink_maps: 1.160945, loss_threshold_maps: 0.708800, loss_binary_maps: 0.229324, avg_reader_cost: 1.52568 s, avg_batch_cost: 1.75431 s, avg_samples: 12.5, ips: 7.12532 samples/s, eta: 7:09:23
[2024/07/27 23:47:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:47:31] ppocr INFO: epoch: [151/1500], global_step: 453, lr: 0.001000, loss: 2.122918, loss_shrink_maps: 1.186805, loss_threshold_maps: 0.708140, loss_binary_maps: 0.235248, avg_reader_cost: 1.55988 s, avg_batch_cost: 1.78812 s, avg_samples: 12.5, ips: 6.99060 samples/s, eta: 7:08:53
[2024/07/27 23:47:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:47:38] ppocr INFO: epoch: [152/1500], global_step: 456, lr: 0.001000, loss: 2.094515, loss_shrink_maps: 1.160945, loss_threshold_maps: 0.708140, loss_binary_maps: 0.229324, avg_reader_cost: 1.53235 s, avg_batch_cost: 1.78866 s, avg_samples: 12.5, ips: 6.98849 samples/s, eta: 7:08:23
[2024/07/27 23:47:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:47:46] ppocr INFO: epoch: [153/1500], global_step: 459, lr: 0.001000, loss: 2.045575, loss_shrink_maps: 1.136683, loss_threshold_maps: 0.697151, loss_binary_maps: 0.223723, avg_reader_cost: 1.53388 s, avg_batch_cost: 1.78203 s, avg_samples: 12.5, ips: 7.01446 samples/s, eta: 7:07:53
[2024/07/27 23:47:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:47:52] ppocr INFO: epoch: [154/1500], global_step: 460, lr: 0.001000, loss: 1.999756, loss_shrink_maps: 1.120553, loss_threshold_maps: 0.688079, loss_binary_maps: 0.220667, avg_reader_cost: 0.41192 s, avg_batch_cost: 0.53018 s, avg_samples: 4.8, ips: 9.05346 samples/s, eta: 7:07:38
[2024/07/27 23:47:53] ppocr INFO: epoch: [154/1500], global_step: 462, lr: 0.001000, loss: 2.045575, loss_shrink_maps: 1.136683, loss_threshold_maps: 0.688079, loss_binary_maps: 0.223723, avg_reader_cost: 1.15149 s, avg_batch_cost: 1.29712 s, avg_samples: 7.7, ips: 5.93624 samples/s, eta: 7:07:27
[2024/07/27 23:47:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:48:01] ppocr INFO: epoch: [155/1500], global_step: 465, lr: 0.001000, loss: 2.094515, loss_shrink_maps: 1.168359, loss_threshold_maps: 0.696643, loss_binary_maps: 0.230707, avg_reader_cost: 1.58610 s, avg_batch_cost: 1.88135 s, avg_samples: 12.5, ips: 6.64416 samples/s, eta: 7:07:06
[2024/07/27 23:48:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:48:08] ppocr INFO: epoch: [156/1500], global_step: 468, lr: 0.001000, loss: 2.127028, loss_shrink_maps: 1.195218, loss_threshold_maps: 0.701211, loss_binary_maps: 0.236680, avg_reader_cost: 1.49987 s, avg_batch_cost: 1.72817 s, avg_samples: 12.5, ips: 7.23307 samples/s, eta: 7:06:32
[2024/07/27 23:48:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:48:15] ppocr INFO: epoch: [157/1500], global_step: 470, lr: 0.001000, loss: 2.116817, loss_shrink_maps: 1.189145, loss_threshold_maps: 0.698402, loss_binary_maps: 0.235032, avg_reader_cost: 0.90598 s, avg_batch_cost: 1.09583 s, avg_samples: 9.6, ips: 8.76047 samples/s, eta: 7:06:04
[2024/07/27 23:48:15] ppocr INFO: epoch: [157/1500], global_step: 471, lr: 0.001000, loss: 2.076497, loss_shrink_maps: 1.151424, loss_threshold_maps: 0.694342, loss_binary_maps: 0.226617, avg_reader_cost: 0.59370 s, avg_batch_cost: 0.64833 s, avg_samples: 2.9, ips: 4.47305 samples/s, eta: 7:05:59
[2024/07/27 23:48:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:48:23] ppocr INFO: epoch: [158/1500], global_step: 474, lr: 0.001000, loss: 2.061648, loss_shrink_maps: 1.151424, loss_threshold_maps: 0.692413, loss_binary_maps: 0.226528, avg_reader_cost: 1.58997 s, avg_batch_cost: 1.87246 s, avg_samples: 12.5, ips: 6.67570 samples/s, eta: 7:05:38
[2024/07/27 23:48:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:48:30] ppocr INFO: epoch: [159/1500], global_step: 477, lr: 0.001000, loss: 2.061648, loss_shrink_maps: 1.137980, loss_threshold_maps: 0.698402, loss_binary_maps: 0.223596, avg_reader_cost: 1.49385 s, avg_batch_cost: 1.73734 s, avg_samples: 12.5, ips: 7.19491 samples/s, eta: 7:05:05
[2024/07/27 23:48:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:48:38] ppocr INFO: epoch: [160/1500], global_step: 480, lr: 0.001000, loss: 2.094162, loss_shrink_maps: 1.170390, loss_threshold_maps: 0.701292, loss_binary_maps: 0.231066, avg_reader_cost: 1.64534 s, avg_batch_cost: 1.93316 s, avg_samples: 12.5, ips: 6.46610 samples/s, eta: 7:04:48

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:55,  9.07it/s]
eval model::   1%|          | 4/500 [00:00<00:26, 18.90it/s]
eval model::   1%|          | 6/500 [00:00<00:26, 18.53it/s]
eval model::   2%|▏         | 8/500 [00:00<00:28, 17.37it/s]
eval model::   2%|▏         | 10/500 [00:00<00:29, 16.78it/s]
eval model::   3%|▎         | 13/500 [00:00<00:25, 18.79it/s]
eval model::   3%|▎         | 15/500 [00:00<00:27, 17.81it/s]
eval model::   4%|▎         | 18/500 [00:00<00:24, 20.01it/s]
eval model::   4%|▍         | 21/500 [00:01<00:25, 18.74it/s]
eval model::   5%|▍         | 24/500 [00:01<00:25, 18.54it/s]
eval model::   5%|▌         | 26/500 [00:01<00:25, 18.84it/s]
eval model::   6%|▌         | 29/500 [00:01<00:22, 21.30it/s]
eval model::   6%|▋         | 32/500 [00:01<00:23, 19.74it/s]
eval model::   7%|▋         | 35/500 [00:01<00:24, 18.65it/s]
eval model::   7%|▋         | 37/500 [00:02<00:25, 18.08it/s]
eval model::   8%|▊         | 39/500 [00:02<00:29, 15.78it/s]
eval model::   8%|▊         | 42/500 [00:02<00:29, 15.74it/s]
eval model::   9%|▉         | 45/500 [00:02<00:25, 18.17it/s]
eval model::   9%|▉         | 47/500 [00:02<00:24, 18.14it/s]
eval model::  10%|█         | 50/500 [00:02<00:22, 20.21it/s]
eval model::  11%|█         | 53/500 [00:02<00:23, 18.90it/s]
eval model::  11%|█         | 56/500 [00:03<00:22, 19.43it/s]
eval model::  12%|█▏        | 59/500 [00:03<00:22, 19.27it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:26, 16.65it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:28, 15.43it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:22, 19.38it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:20, 21.28it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:20, 21.08it/s]
eval model::  15%|█▌        | 76/500 [00:04<00:18, 22.77it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:19, 21.35it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:19, 21.74it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:19, 21.12it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:21, 19.53it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:22, 18.07it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:22, 18.09it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:20, 19.52it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:19, 20.76it/s]
eval model::  20%|██        | 102/500 [00:05<00:20, 19.68it/s]
eval model::  21%|██        | 105/500 [00:05<00:19, 19.96it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:19, 20.62it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:19, 19.86it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:17, 21.49it/s]
eval model::  23%|██▎       | 117/500 [00:06<00:17, 21.30it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:19, 19.55it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:18, 19.98it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:20, 18.20it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:19, 19.30it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:19, 19.18it/s]
eval model::  27%|██▋       | 133/500 [00:06<00:19, 19.20it/s]
eval model::  27%|██▋       | 136/500 [00:07<00:18, 19.79it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:18, 19.28it/s]
eval model::  28%|██▊       | 140/500 [00:07<00:19, 18.59it/s]
eval model::  29%|██▊       | 143/500 [00:07<00:18, 19.61it/s]
eval model::  29%|██▉       | 146/500 [00:07<00:17, 19.86it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:19, 18.34it/s]
eval model::  30%|███       | 151/500 [00:07<00:19, 17.68it/s]
eval model::  31%|███       | 154/500 [00:08<00:17, 19.90it/s]
eval model::  31%|███▏      | 157/500 [00:08<00:17, 19.98it/s]
eval model::  32%|███▏      | 160/500 [00:08<00:20, 16.22it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:19, 17.34it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:17, 18.65it/s]
eval model::  34%|███▎      | 168/500 [00:08<00:17, 18.53it/s]
eval model::  34%|███▍      | 171/500 [00:09<00:18, 17.72it/s]
eval model::  35%|███▍      | 173/500 [00:09<00:17, 18.18it/s]
eval model::  35%|███▌      | 175/500 [00:09<00:21, 14.95it/s]
eval model::  36%|███▌      | 178/500 [00:09<00:18, 16.96it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:21, 14.86it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:18, 16.74it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:16, 18.79it/s]
eval model::  38%|███▊      | 189/500 [00:10<00:15, 20.21it/s]
eval model::  38%|███▊      | 192/500 [00:10<00:15, 20.12it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:14, 20.53it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:14, 21.23it/s]
eval model::  40%|████      | 201/500 [00:10<00:15, 19.91it/s]
eval model::  41%|████      | 204/500 [00:10<00:13, 22.03it/s]
eval model::  41%|████▏     | 207/500 [00:11<00:19, 15.18it/s]
eval model::  42%|████▏     | 209/500 [00:11<00:18, 15.98it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:17, 16.23it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:16, 16.94it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:19, 14.82it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:19, 14.56it/s]
eval model::  44%|████▍     | 219/500 [00:11<00:18, 14.96it/s]
eval model::  44%|████▍     | 221/500 [00:12<00:21, 13.05it/s]
eval model::  45%|████▍     | 223/500 [00:12<00:19, 14.33it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:16, 16.16it/s]
eval model::  46%|████▌     | 229/500 [00:12<00:14, 18.48it/s]
eval model::  46%|████▋     | 232/500 [00:12<00:13, 19.85it/s]
eval model::  47%|████▋     | 235/500 [00:12<00:14, 18.58it/s]
eval model::  47%|████▋     | 237/500 [00:12<00:14, 18.57it/s]
eval model::  48%|████▊     | 240/500 [00:12<00:12, 20.37it/s]
eval model::  49%|████▊     | 243/500 [00:13<00:12, 19.82it/s]
eval model::  49%|████▉     | 246/500 [00:13<00:13, 19.31it/s]
eval model::  50%|████▉     | 249/500 [00:13<00:14, 17.45it/s]
eval model::  50%|█████     | 252/500 [00:13<00:13, 18.93it/s]
eval model::  51%|█████     | 254/500 [00:13<00:12, 18.95it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:12, 19.37it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:11, 20.51it/s]
eval model::  53%|█████▎    | 263/500 [00:14<00:11, 20.79it/s]
eval model::  53%|█████▎    | 266/500 [00:14<00:13, 17.65it/s]
eval model::  54%|█████▎    | 268/500 [00:14<00:12, 18.07it/s]
eval model::  54%|█████▍    | 271/500 [00:14<00:11, 19.86it/s]
eval model::  55%|█████▍    | 274/500 [00:14<00:10, 20.65it/s]
eval model::  55%|█████▌    | 277/500 [00:14<00:11, 19.70it/s]
eval model::  56%|█████▌    | 280/500 [00:14<00:10, 20.72it/s]
eval model::  57%|█████▋    | 283/500 [00:15<00:09, 22.83it/s]
eval model::  57%|█████▋    | 286/500 [00:15<00:14, 14.42it/s]
eval model::  58%|█████▊    | 288/500 [00:15<00:14, 15.10it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:12, 17.25it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:12, 16.23it/s]
eval model::  59%|█████▉    | 296/500 [00:16<00:13, 15.45it/s]
eval model::  60%|█████▉    | 299/500 [00:16<00:11, 16.90it/s]
eval model::  60%|██████    | 301/500 [00:16<00:13, 15.30it/s]
eval model::  61%|██████    | 304/500 [00:16<00:12, 16.25it/s]
eval model::  61%|██████▏   | 307/500 [00:16<00:10, 17.94it/s]
eval model::  62%|██████▏   | 310/500 [00:16<00:09, 19.19it/s]
eval model::  63%|██████▎   | 313/500 [00:16<00:09, 20.47it/s]
eval model::  63%|██████▎   | 316/500 [00:17<00:09, 18.52it/s]
eval model::  64%|██████▍   | 319/500 [00:17<00:09, 20.04it/s]
eval model::  64%|██████▍   | 322/500 [00:17<00:08, 20.16it/s]
eval model::  65%|██████▌   | 325/500 [00:17<00:08, 21.72it/s]
eval model::  66%|██████▌   | 328/500 [00:17<00:08, 20.79it/s]
eval model::  66%|██████▌   | 331/500 [00:17<00:08, 20.36it/s]
eval model::  67%|██████▋   | 334/500 [00:17<00:07, 21.46it/s]
eval model::  67%|██████▋   | 337/500 [00:18<00:08, 19.75it/s]
eval model::  68%|██████▊   | 340/500 [00:18<00:10, 14.67it/s]
eval model::  69%|██████▊   | 343/500 [00:18<00:09, 17.19it/s]
eval model::  69%|██████▉   | 346/500 [00:18<00:08, 18.68it/s]
eval model::  70%|██████▉   | 349/500 [00:18<00:07, 19.68it/s]
eval model::  70%|███████   | 352/500 [00:18<00:07, 20.88it/s]
eval model::  71%|███████   | 355/500 [00:19<00:07, 19.77it/s]
eval model::  72%|███████▏  | 358/500 [00:19<00:07, 19.14it/s]
eval model::  72%|███████▏  | 361/500 [00:19<00:07, 18.53it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:07, 18.09it/s]
eval model::  73%|███████▎  | 367/500 [00:19<00:06, 19.59it/s]
eval model::  74%|███████▍  | 370/500 [00:19<00:06, 20.85it/s]
eval model::  75%|███████▍  | 373/500 [00:20<00:06, 20.24it/s]
eval model::  75%|███████▌  | 376/500 [00:20<00:05, 20.72it/s]
eval model::  76%|███████▌  | 380/500 [00:20<00:05, 21.26it/s]
eval model::  77%|███████▋  | 383/500 [00:20<00:05, 22.72it/s]
eval model::  77%|███████▋  | 386/500 [00:20<00:07, 14.44it/s]
eval model::  78%|███████▊  | 390/500 [00:21<00:06, 17.45it/s]
eval model::  79%|███████▊  | 393/500 [00:21<00:05, 19.08it/s]
eval model::  79%|███████▉  | 396/500 [00:21<00:05, 19.26it/s]
eval model::  80%|███████▉  | 399/500 [00:21<00:04, 20.59it/s]
eval model::  80%|████████  | 402/500 [00:21<00:05, 19.57it/s]
eval model::  81%|████████  | 405/500 [00:21<00:04, 21.14it/s]
eval model::  82%|████████▏ | 408/500 [00:21<00:04, 22.25it/s]
eval model::  82%|████████▏ | 411/500 [00:21<00:03, 23.05it/s]
eval model::  83%|████████▎ | 414/500 [00:22<00:03, 22.73it/s]
eval model::  83%|████████▎ | 417/500 [00:22<00:04, 20.39it/s]
eval model::  84%|████████▍ | 420/500 [00:22<00:04, 16.09it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:05, 15.50it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:04, 15.46it/s]
eval model::  85%|████████▌ | 426/500 [00:22<00:04, 16.36it/s]
eval model::  86%|████████▌ | 429/500 [00:22<00:03, 19.32it/s]
eval model::  86%|████████▋ | 432/500 [00:23<00:03, 20.12it/s]
eval model::  87%|████████▋ | 436/500 [00:23<00:02, 22.89it/s]
eval model::  88%|████████▊ | 439/500 [00:23<00:02, 23.43it/s]
eval model::  88%|████████▊ | 442/500 [00:23<00:02, 22.33it/s]
eval model::  89%|████████▉ | 445/500 [00:23<00:02, 22.10it/s]
eval model::  90%|████████▉ | 448/500 [00:23<00:02, 21.30it/s]
eval model::  90%|█████████ | 451/500 [00:23<00:02, 20.31it/s]
eval model::  91%|█████████ | 454/500 [00:24<00:02, 19.47it/s]
eval model::  91%|█████████ | 456/500 [00:24<00:02, 19.00it/s]
eval model::  92%|█████████▏| 459/500 [00:24<00:02, 19.73it/s]
eval model::  92%|█████████▏| 461/500 [00:24<00:01, 19.75it/s]
eval model::  93%|█████████▎| 463/500 [00:24<00:01, 18.54it/s]
eval model::  93%|█████████▎| 465/500 [00:24<00:01, 17.96it/s]
eval model::  94%|█████████▎| 468/500 [00:24<00:01, 19.69it/s]
eval model::  94%|█████████▍| 471/500 [00:25<00:01, 21.66it/s]
eval model::  95%|█████████▍| 474/500 [00:25<00:01, 20.30it/s]
eval model::  95%|█████████▌| 477/500 [00:25<00:01, 21.71it/s]
eval model::  96%|█████████▌| 480/500 [00:25<00:00, 21.72it/s]
eval model::  97%|█████████▋| 483/500 [00:25<00:00, 22.16it/s]
eval model::  97%|█████████▋| 486/500 [00:25<00:00, 21.20it/s]
eval model::  98%|█████████▊| 489/500 [00:25<00:00, 23.02it/s]
eval model::  98%|█████████▊| 492/500 [00:25<00:00, 22.21it/s]
eval model::  99%|█████████▉| 495/500 [00:26<00:00, 22.76it/s]
eval model:: 100%|█████████▉| 499/500 [00:26<00:00, 24.68it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 19.03it/s]
[2024/07/27 23:49:05] ppocr INFO: cur metric, precision: 0.6331930246542393, recall: 0.5069812229176697, hmean: 0.5631016042780749, fps: 44.85164591471328
[2024/07/27 23:49:05] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/27 23:49:05] ppocr INFO: best metric, hmean: 0.5631016042780749, precision: 0.6331930246542393, recall: 0.5069812229176697, fps: 44.85164591471328, best_epoch: 160
[2024/07/27 23:49:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:49:11] ppocr INFO: epoch: [161/1500], global_step: 483, lr: 0.001000, loss: 2.041810, loss_shrink_maps: 1.120030, loss_threshold_maps: 0.692413, loss_binary_maps: 0.220275, avg_reader_cost: 1.43582 s, avg_batch_cost: 1.67100 s, avg_samples: 12.5, ips: 7.48053 samples/s, eta: 7:04:10
[2024/07/27 23:49:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:49:19] ppocr INFO: epoch: [162/1500], global_step: 486, lr: 0.001000, loss: 2.012747, loss_shrink_maps: 1.104158, loss_threshold_maps: 0.676631, loss_binary_maps: 0.218636, avg_reader_cost: 1.51513 s, avg_batch_cost: 1.74969 s, avg_samples: 12.5, ips: 7.14413 samples/s, eta: 7:03:38
[2024/07/27 23:49:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:49:26] ppocr INFO: epoch: [163/1500], global_step: 489, lr: 0.001000, loss: 2.007298, loss_shrink_maps: 1.102692, loss_threshold_maps: 0.676565, loss_binary_maps: 0.217724, avg_reader_cost: 1.53565 s, avg_batch_cost: 1.76420 s, avg_samples: 12.5, ips: 7.08537 samples/s, eta: 7:03:08
[2024/07/27 23:49:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:49:32] ppocr INFO: epoch: [164/1500], global_step: 490, lr: 0.001000, loss: 2.007298, loss_shrink_maps: 1.104158, loss_threshold_maps: 0.676565, loss_binary_maps: 0.218636, avg_reader_cost: 0.42717 s, avg_batch_cost: 0.50973 s, avg_samples: 4.8, ips: 9.41673 samples/s, eta: 7:02:52
[2024/07/27 23:49:33] ppocr INFO: epoch: [164/1500], global_step: 492, lr: 0.001000, loss: 2.012747, loss_shrink_maps: 1.104158, loss_threshold_maps: 0.680691, loss_binary_maps: 0.218636, avg_reader_cost: 1.11071 s, avg_batch_cost: 1.25645 s, avg_samples: 7.7, ips: 6.12838 samples/s, eta: 7:02:38
[2024/07/27 23:49:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:49:41] ppocr INFO: epoch: [165/1500], global_step: 495, lr: 0.001000, loss: 2.039208, loss_shrink_maps: 1.121711, loss_threshold_maps: 0.681392, loss_binary_maps: 0.221763, avg_reader_cost: 1.58363 s, avg_batch_cost: 1.85801 s, avg_samples: 12.5, ips: 6.72763 samples/s, eta: 7:02:16
[2024/07/27 23:49:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:49:48] ppocr INFO: epoch: [166/1500], global_step: 498, lr: 0.001000, loss: 2.030554, loss_shrink_maps: 1.125770, loss_threshold_maps: 0.680736, loss_binary_maps: 0.222078, avg_reader_cost: 1.53228 s, avg_batch_cost: 1.76004 s, avg_samples: 12.5, ips: 7.10210 samples/s, eta: 7:01:46
[2024/07/27 23:49:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:49:55] ppocr INFO: epoch: [167/1500], global_step: 500, lr: 0.001000, loss: 2.012276, loss_shrink_maps: 1.116617, loss_threshold_maps: 0.680669, loss_binary_maps: 0.220656, avg_reader_cost: 0.91631 s, avg_batch_cost: 1.09228 s, avg_samples: 9.6, ips: 8.78894 samples/s, eta: 7:01:20
[2024/07/27 23:49:56] ppocr INFO: epoch: [167/1500], global_step: 501, lr: 0.001000, loss: 2.030554, loss_shrink_maps: 1.137456, loss_threshold_maps: 0.681370, loss_binary_maps: 0.224195, avg_reader_cost: 0.59167 s, avg_batch_cost: 0.64679 s, avg_samples: 2.9, ips: 4.48365 samples/s, eta: 7:01:15
[2024/07/27 23:49:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:50:04] ppocr INFO: epoch: [168/1500], global_step: 504, lr: 0.001000, loss: 2.047999, loss_shrink_maps: 1.149449, loss_threshold_maps: 0.690792, loss_binary_maps: 0.227212, avg_reader_cost: 1.63840 s, avg_batch_cost: 1.92163 s, avg_samples: 12.5, ips: 6.50490 samples/s, eta: 7:00:58
[2024/07/27 23:50:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:50:11] ppocr INFO: epoch: [169/1500], global_step: 507, lr: 0.001000, loss: 2.076146, loss_shrink_maps: 1.160236, loss_threshold_maps: 0.696608, loss_binary_maps: 0.229369, avg_reader_cost: 1.60112 s, avg_batch_cost: 1.83104 s, avg_samples: 12.5, ips: 6.82671 samples/s, eta: 7:00:34
[2024/07/27 23:50:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:50:19] ppocr INFO: epoch: [170/1500], global_step: 510, lr: 0.001000, loss: 2.036999, loss_shrink_maps: 1.131685, loss_threshold_maps: 0.692763, loss_binary_maps: 0.222926, avg_reader_cost: 1.57981 s, avg_batch_cost: 1.82244 s, avg_samples: 12.5, ips: 6.85895 samples/s, eta: 7:00:09
[2024/07/27 23:50:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:50:26] ppocr INFO: epoch: [171/1500], global_step: 513, lr: 0.001000, loss: 2.001013, loss_shrink_maps: 1.098705, loss_threshold_maps: 0.689921, loss_binary_maps: 0.217471, avg_reader_cost: 1.53778 s, avg_batch_cost: 1.78672 s, avg_samples: 12.5, ips: 6.99604 samples/s, eta: 6:59:41
[2024/07/27 23:50:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:50:34] ppocr INFO: epoch: [172/1500], global_step: 516, lr: 0.001000, loss: 2.001013, loss_shrink_maps: 1.095372, loss_threshold_maps: 0.691709, loss_binary_maps: 0.216600, avg_reader_cost: 1.64183 s, avg_batch_cost: 1.94721 s, avg_samples: 12.5, ips: 6.41944 samples/s, eta: 6:59:27
[2024/07/27 23:50:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:50:42] ppocr INFO: epoch: [173/1500], global_step: 519, lr: 0.001000, loss: 1.995640, loss_shrink_maps: 1.095372, loss_threshold_maps: 0.691709, loss_binary_maps: 0.216600, avg_reader_cost: 1.51639 s, avg_batch_cost: 1.74520 s, avg_samples: 12.5, ips: 7.16249 samples/s, eta: 6:58:56
[2024/07/27 23:50:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:50:48] ppocr INFO: epoch: [174/1500], global_step: 520, lr: 0.001000, loss: 1.994522, loss_shrink_maps: 1.095372, loss_threshold_maps: 0.689921, loss_binary_maps: 0.216600, avg_reader_cost: 0.37924 s, avg_batch_cost: 0.50916 s, avg_samples: 4.8, ips: 9.42724 samples/s, eta: 6:58:40
[2024/07/27 23:50:49] ppocr INFO: epoch: [174/1500], global_step: 522, lr: 0.001000, loss: 1.987276, loss_shrink_maps: 1.092127, loss_threshold_maps: 0.677239, loss_binary_maps: 0.215896, avg_reader_cost: 1.10981 s, avg_batch_cost: 1.25560 s, avg_samples: 7.7, ips: 6.13253 samples/s, eta: 6:58:27
[2024/07/27 23:50:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:50:57] ppocr INFO: epoch: [175/1500], global_step: 525, lr: 0.001000, loss: 1.987276, loss_shrink_maps: 1.092127, loss_threshold_maps: 0.664425, loss_binary_maps: 0.215896, avg_reader_cost: 1.62004 s, avg_batch_cost: 1.89999 s, avg_samples: 12.5, ips: 6.57899 samples/s, eta: 6:58:09
[2024/07/27 23:50:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:51:04] ppocr INFO: epoch: [176/1500], global_step: 528, lr: 0.001000, loss: 1.970208, loss_shrink_maps: 1.090610, loss_threshold_maps: 0.671497, loss_binary_maps: 0.215512, avg_reader_cost: 1.48288 s, avg_batch_cost: 1.74077 s, avg_samples: 12.5, ips: 7.18074 samples/s, eta: 6:57:38
[2024/07/27 23:51:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:51:12] ppocr INFO: epoch: [177/1500], global_step: 530, lr: 0.001000, loss: 1.968479, loss_shrink_maps: 1.092127, loss_threshold_maps: 0.671497, loss_binary_maps: 0.215512, avg_reader_cost: 0.99900 s, avg_batch_cost: 1.17232 s, avg_samples: 9.6, ips: 8.18888 samples/s, eta: 6:57:19
[2024/07/27 23:51:12] ppocr INFO: epoch: [177/1500], global_step: 531, lr: 0.001000, loss: 1.945938, loss_shrink_maps: 1.081574, loss_threshold_maps: 0.671497, loss_binary_maps: 0.213702, avg_reader_cost: 0.63197 s, avg_batch_cost: 0.68731 s, avg_samples: 2.9, ips: 4.21932 samples/s, eta: 6:57:17
[2024/07/27 23:51:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:51:20] ppocr INFO: epoch: [178/1500], global_step: 534, lr: 0.001000, loss: 1.945938, loss_shrink_maps: 1.081574, loss_threshold_maps: 0.671497, loss_binary_maps: 0.213702, avg_reader_cost: 1.56714 s, avg_batch_cost: 1.84310 s, avg_samples: 12.5, ips: 6.78205 samples/s, eta: 6:56:54
[2024/07/27 23:51:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:51:28] ppocr INFO: epoch: [179/1500], global_step: 537, lr: 0.001000, loss: 1.938330, loss_shrink_maps: 1.066443, loss_threshold_maps: 0.664663, loss_binary_maps: 0.211001, avg_reader_cost: 1.61215 s, avg_batch_cost: 1.84087 s, avg_samples: 12.5, ips: 6.79028 samples/s, eta: 6:56:32
[2024/07/27 23:51:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:51:35] ppocr INFO: epoch: [180/1500], global_step: 540, lr: 0.001000, loss: 1.945938, loss_shrink_maps: 1.081574, loss_threshold_maps: 0.677134, loss_binary_maps: 0.213702, avg_reader_cost: 1.63509 s, avg_batch_cost: 1.89334 s, avg_samples: 12.5, ips: 6.60208 samples/s, eta: 6:56:13

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<01:00,  8.30it/s]
eval model::   1%|          | 3/500 [00:00<00:36, 13.76it/s]
eval model::   1%|          | 6/500 [00:00<00:26, 18.44it/s]
eval model::   2%|▏         | 8/500 [00:00<00:27, 17.64it/s]
eval model::   2%|▏         | 10/500 [00:00<00:26, 18.28it/s]
eval model::   2%|▏         | 12/500 [00:00<00:27, 17.57it/s]
eval model::   3%|▎         | 15/500 [00:00<00:26, 18.56it/s]
eval model::   4%|▎         | 18/500 [00:00<00:23, 20.51it/s]
eval model::   4%|▍         | 21/500 [00:01<00:24, 19.63it/s]
eval model::   5%|▍         | 24/500 [00:01<00:23, 20.26it/s]
eval model::   5%|▌         | 27/500 [00:01<00:22, 21.38it/s]
eval model::   6%|▌         | 30/500 [00:01<00:21, 21.42it/s]
eval model::   7%|▋         | 33/500 [00:01<00:21, 21.52it/s]
eval model::   7%|▋         | 36/500 [00:01<00:23, 19.39it/s]
eval model::   8%|▊         | 38/500 [00:01<00:23, 19.42it/s]
eval model::   8%|▊         | 40/500 [00:02<00:25, 17.74it/s]
eval model::   8%|▊         | 42/500 [00:02<00:26, 17.41it/s]
eval model::   9%|▉         | 45/500 [00:02<00:25, 18.16it/s]
eval model::   9%|▉         | 47/500 [00:02<00:27, 16.77it/s]
eval model::  10%|█         | 50/500 [00:02<00:24, 18.16it/s]
eval model::  11%|█         | 53/500 [00:02<00:21, 20.50it/s]
eval model::  11%|█         | 56/500 [00:02<00:20, 21.90it/s]
eval model::  12%|█▏        | 59/500 [00:03<00:20, 21.20it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:26, 16.62it/s]
eval model::  13%|█▎        | 64/500 [00:03<00:25, 17.24it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:22, 19.38it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:20, 20.77it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:21, 20.32it/s]
eval model::  15%|█▌        | 76/500 [00:03<00:20, 20.84it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:20, 20.73it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:20, 20.54it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:20, 20.00it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:21, 18.75it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:23, 17.42it/s]
eval model::  18%|█▊        | 92/500 [00:04<00:23, 17.72it/s]
eval model::  19%|█▉        | 95/500 [00:04<00:21, 18.83it/s]
eval model::  20%|█▉        | 98/500 [00:05<00:18, 21.27it/s]
eval model::  20%|██        | 101/500 [00:05<00:20, 19.63it/s]
eval model::  21%|██        | 104/500 [00:05<00:19, 20.68it/s]
eval model::  21%|██▏       | 107/500 [00:05<00:19, 20.16it/s]
eval model::  22%|██▏       | 110/500 [00:05<00:17, 21.95it/s]
eval model::  23%|██▎       | 113/500 [00:05<00:18, 20.49it/s]
eval model::  23%|██▎       | 116/500 [00:05<00:17, 21.59it/s]
eval model::  24%|██▍       | 119/500 [00:06<00:17, 21.18it/s]
eval model::  24%|██▍       | 122/500 [00:06<00:17, 21.65it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:19, 19.32it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:17, 20.92it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:18, 20.50it/s]
eval model::  27%|██▋       | 134/500 [00:06<00:17, 20.39it/s]
eval model::  27%|██▋       | 137/500 [00:06<00:17, 20.33it/s]
eval model::  28%|██▊       | 140/500 [00:07<00:17, 20.30it/s]
eval model::  29%|██▊       | 143/500 [00:07<00:16, 21.77it/s]
eval model::  29%|██▉       | 146/500 [00:07<00:17, 20.56it/s]
eval model::  30%|██▉       | 149/500 [00:07<00:18, 19.15it/s]
eval model::  30%|███       | 151/500 [00:07<00:20, 17.22it/s]
eval model::  31%|███       | 154/500 [00:07<00:17, 19.57it/s]
eval model::  31%|███▏      | 157/500 [00:08<00:17, 19.93it/s]
eval model::  32%|███▏      | 160/500 [00:08<00:19, 17.07it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:17, 18.81it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:16, 20.10it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:16, 20.56it/s]
eval model::  34%|███▍      | 172/500 [00:08<00:15, 21.27it/s]
eval model::  35%|███▌      | 175/500 [00:09<00:19, 16.68it/s]
eval model::  36%|███▌      | 178/500 [00:09<00:17, 18.36it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:20, 15.25it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:19, 16.36it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:18, 16.83it/s]
eval model::  38%|███▊      | 188/500 [00:09<00:18, 16.77it/s]
eval model::  38%|███▊      | 190/500 [00:09<00:17, 17.22it/s]
eval model::  39%|███▊      | 193/500 [00:10<00:15, 19.91it/s]
eval model::  39%|███▉      | 196/500 [00:10<00:15, 19.78it/s]
eval model::  40%|███▉      | 199/500 [00:10<00:15, 20.00it/s]
eval model::  40%|████      | 202/500 [00:10<00:13, 21.33it/s]
eval model::  41%|████      | 205/500 [00:10<00:21, 13.70it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:19, 14.74it/s]
eval model::  42%|████▏     | 209/500 [00:11<00:19, 14.75it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:19, 15.16it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:17, 15.98it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:21, 13.30it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:21, 13.31it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:17, 16.17it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:18, 14.75it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:15, 17.40it/s]
eval model::  46%|████▌     | 229/500 [00:12<00:13, 19.67it/s]
eval model::  46%|████▋     | 232/500 [00:12<00:13, 20.14it/s]
eval model::  47%|████▋     | 235/500 [00:12<00:14, 18.46it/s]
eval model::  47%|████▋     | 237/500 [00:12<00:14, 17.88it/s]
eval model::  48%|████▊     | 240/500 [00:12<00:13, 19.29it/s]
eval model::  48%|████▊     | 242/500 [00:12<00:14, 17.84it/s]
eval model::  49%|████▉     | 245/500 [00:13<00:13, 19.31it/s]
eval model::  50%|████▉     | 248/500 [00:13<00:12, 20.30it/s]
eval model::  50%|█████     | 251/500 [00:13<00:13, 18.49it/s]
eval model::  51%|█████     | 254/500 [00:13<00:12, 19.47it/s]
eval model::  51%|█████     | 256/500 [00:13<00:12, 19.54it/s]
eval model::  52%|█████▏    | 259/500 [00:13<00:11, 21.03it/s]
eval model::  52%|█████▏    | 262/500 [00:13<00:10, 21.87it/s]
eval model::  53%|█████▎    | 265/500 [00:14<00:11, 19.73it/s]
eval model::  54%|█████▎    | 268/500 [00:14<00:11, 20.38it/s]
eval model::  54%|█████▍    | 271/500 [00:14<00:12, 18.75it/s]
eval model::  55%|█████▍    | 274/500 [00:14<00:11, 20.24it/s]
eval model::  55%|█████▌    | 277/500 [00:14<00:11, 18.82it/s]
eval model::  56%|█████▌    | 280/500 [00:14<00:11, 19.45it/s]
eval model::  57%|█████▋    | 283/500 [00:14<00:10, 20.47it/s]
eval model::  57%|█████▋    | 286/500 [00:15<00:14, 14.36it/s]
eval model::  58%|█████▊    | 289/500 [00:15<00:12, 16.24it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:12, 16.95it/s]
eval model::  59%|█████▊    | 293/500 [00:15<00:12, 16.38it/s]
eval model::  59%|█████▉    | 295/500 [00:15<00:14, 14.11it/s]
eval model::  60%|█████▉    | 298/500 [00:16<00:12, 16.11it/s]
eval model::  60%|██████    | 300/500 [00:16<00:12, 16.40it/s]
eval model::  61%|██████    | 303/500 [00:16<00:10, 18.85it/s]
eval model::  61%|██████    | 306/500 [00:16<00:10, 18.00it/s]
eval model::  62%|██████▏   | 308/500 [00:16<00:11, 17.12it/s]
eval model::  62%|██████▏   | 310/500 [00:16<00:11, 16.72it/s]
eval model::  62%|██████▏   | 312/500 [00:16<00:11, 16.07it/s]
eval model::  63%|██████▎   | 315/500 [00:16<00:10, 17.58it/s]
eval model::  64%|██████▎   | 318/500 [00:17<00:09, 19.73it/s]
eval model::  64%|██████▍   | 321/500 [00:17<00:08, 21.32it/s]
eval model::  65%|██████▍   | 324/500 [00:17<00:08, 21.06it/s]
eval model::  65%|██████▌   | 327/500 [00:17<00:07, 22.11it/s]
eval model::  66%|██████▌   | 330/500 [00:17<00:07, 21.65it/s]
eval model::  67%|██████▋   | 333/500 [00:17<00:07, 22.62it/s]
eval model::  67%|██████▋   | 336/500 [00:17<00:07, 21.98it/s]
eval model::  68%|██████▊   | 339/500 [00:18<00:08, 19.71it/s]
eval model::  68%|██████▊   | 342/500 [00:18<00:09, 16.73it/s]
eval model::  69%|██████▉   | 345/500 [00:18<00:08, 18.66it/s]
eval model::  70%|██████▉   | 348/500 [00:18<00:08, 17.69it/s]
eval model::  70%|███████   | 351/500 [00:18<00:07, 19.09it/s]
eval model::  71%|███████   | 354/500 [00:18<00:06, 20.88it/s]
eval model::  71%|███████▏  | 357/500 [00:19<00:07, 19.01it/s]
eval model::  72%|███████▏  | 360/500 [00:19<00:07, 18.60it/s]
eval model::  72%|███████▏  | 362/500 [00:19<00:07, 17.86it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:07, 17.72it/s]
eval model::  73%|███████▎  | 367/500 [00:19<00:07, 18.35it/s]
eval model::  74%|███████▍  | 370/500 [00:19<00:06, 19.89it/s]
eval model::  75%|███████▍  | 373/500 [00:19<00:06, 19.71it/s]
eval model::  75%|███████▌  | 375/500 [00:20<00:06, 19.44it/s]
eval model::  76%|███████▌  | 378/500 [00:20<00:05, 21.45it/s]
eval model::  76%|███████▌  | 381/500 [00:20<00:05, 21.42it/s]
eval model::  77%|███████▋  | 384/500 [00:20<00:05, 22.03it/s]
eval model::  77%|███████▋  | 387/500 [00:20<00:07, 15.13it/s]
eval model::  78%|███████▊  | 390/500 [00:20<00:06, 17.59it/s]
eval model::  79%|███████▊  | 393/500 [00:20<00:05, 19.21it/s]
eval model::  79%|███████▉  | 396/500 [00:21<00:05, 19.99it/s]
eval model::  80%|███████▉  | 399/500 [00:21<00:05, 19.38it/s]
eval model::  80%|████████  | 402/500 [00:21<00:05, 19.51it/s]
eval model::  81%|████████  | 405/500 [00:21<00:04, 20.81it/s]
eval model::  82%|████████▏ | 408/500 [00:21<00:04, 19.01it/s]
eval model::  82%|████████▏ | 410/500 [00:21<00:04, 18.65it/s]
eval model::  82%|████████▏ | 412/500 [00:21<00:04, 18.88it/s]
eval model::  83%|████████▎ | 414/500 [00:22<00:04, 18.49it/s]
eval model::  83%|████████▎ | 416/500 [00:22<00:04, 17.91it/s]
eval model::  84%|████████▎ | 418/500 [00:22<00:04, 17.18it/s]
eval model::  84%|████████▍ | 420/500 [00:22<00:05, 14.38it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:05, 15.07it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:05, 14.52it/s]
eval model::  85%|████████▌ | 426/500 [00:22<00:05, 14.61it/s]
eval model::  86%|████████▌ | 429/500 [00:23<00:03, 17.97it/s]
eval model::  86%|████████▌ | 431/500 [00:23<00:03, 17.58it/s]
eval model::  87%|████████▋ | 435/500 [00:23<00:03, 21.41it/s]
eval model::  88%|████████▊ | 438/500 [00:23<00:02, 22.09it/s]
eval model::  88%|████████▊ | 441/500 [00:23<00:02, 20.10it/s]
eval model::  89%|████████▉ | 445/500 [00:23<00:02, 23.29it/s]
eval model::  90%|████████▉ | 448/500 [00:23<00:02, 22.20it/s]
eval model::  90%|█████████ | 451/500 [00:23<00:02, 22.01it/s]
eval model::  91%|█████████ | 454/500 [00:24<00:02, 22.11it/s]
eval model::  91%|█████████▏| 457/500 [00:24<00:01, 23.92it/s]
eval model::  92%|█████████▏| 460/500 [00:24<00:01, 21.99it/s]
eval model::  93%|█████████▎| 463/500 [00:24<00:01, 19.15it/s]
eval model::  93%|█████████▎| 466/500 [00:24<00:01, 18.18it/s]
eval model::  94%|█████████▎| 468/500 [00:24<00:01, 18.18it/s]
eval model::  94%|█████████▍| 471/500 [00:25<00:01, 19.42it/s]
eval model::  95%|█████████▍| 474/500 [00:25<00:01, 19.71it/s]
eval model::  96%|█████████▌| 478/500 [00:25<00:00, 22.55it/s]
eval model::  96%|█████████▌| 481/500 [00:25<00:00, 23.63it/s]
eval model::  97%|█████████▋| 484/500 [00:25<00:00, 22.83it/s]
eval model::  97%|█████████▋| 487/500 [00:25<00:00, 20.36it/s]
eval model::  98%|█████████▊| 490/500 [00:25<00:00, 21.03it/s]
eval model::  99%|█████████▊| 493/500 [00:26<00:00, 20.31it/s]
eval model::  99%|█████████▉| 496/500 [00:26<00:00, 20.26it/s]
eval model:: 100%|█████████▉| 499/500 [00:26<00:00, 22.19it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.98it/s]
[2024/07/27 23:52:02] ppocr INFO: cur metric, precision: 0.6092560046865847, recall: 0.5007221954742417, hmean: 0.5496828752642705, fps: 44.18784063205819
[2024/07/27 23:52:02] ppocr INFO: best metric, hmean: 0.5631016042780749, precision: 0.6331930246542393, recall: 0.5069812229176697, fps: 44.85164591471328, best_epoch: 160
[2024/07/27 23:52:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:52:09] ppocr INFO: epoch: [181/1500], global_step: 543, lr: 0.001000, loss: 1.960871, loss_shrink_maps: 1.078732, loss_threshold_maps: 0.684330, loss_binary_maps: 0.212784, avg_reader_cost: 1.54389 s, avg_batch_cost: 1.77544 s, avg_samples: 12.5, ips: 7.04052 samples/s, eta: 6:55:46
[2024/07/27 23:52:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:52:16] ppocr INFO: epoch: [182/1500], global_step: 546, lr: 0.001000, loss: 1.954436, loss_shrink_maps: 1.075013, loss_threshold_maps: 0.679596, loss_binary_maps: 0.212494, avg_reader_cost: 1.53630 s, avg_batch_cost: 1.77278 s, avg_samples: 12.5, ips: 7.05109 samples/s, eta: 6:55:18
[2024/07/27 23:52:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:52:23] ppocr INFO: epoch: [183/1500], global_step: 549, lr: 0.001000, loss: 1.990467, loss_shrink_maps: 1.089560, loss_threshold_maps: 0.684330, loss_binary_maps: 0.215502, avg_reader_cost: 1.48864 s, avg_batch_cost: 1.72869 s, avg_samples: 12.5, ips: 7.23090 samples/s, eta: 6:54:47
[2024/07/27 23:52:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:52:29] ppocr INFO: epoch: [184/1500], global_step: 550, lr: 0.001000, loss: 1.990467, loss_shrink_maps: 1.089560, loss_threshold_maps: 0.677642, loss_binary_maps: 0.215502, avg_reader_cost: 0.40792 s, avg_batch_cost: 0.49885 s, avg_samples: 4.8, ips: 9.62218 samples/s, eta: 6:54:32
[2024/07/27 23:52:31] ppocr INFO: epoch: [184/1500], global_step: 552, lr: 0.001000, loss: 1.990467, loss_shrink_maps: 1.089560, loss_threshold_maps: 0.674628, loss_binary_maps: 0.215502, avg_reader_cost: 1.08906 s, avg_batch_cost: 1.23512 s, avg_samples: 7.7, ips: 6.23420 samples/s, eta: 6:54:17
[2024/07/27 23:52:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:52:38] ppocr INFO: epoch: [185/1500], global_step: 555, lr: 0.001000, loss: 1.974481, loss_shrink_maps: 1.086622, loss_threshold_maps: 0.674628, loss_binary_maps: 0.215212, avg_reader_cost: 1.52355 s, avg_batch_cost: 1.75730 s, avg_samples: 12.5, ips: 7.11317 samples/s, eta: 6:53:49
[2024/07/27 23:52:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:52:46] ppocr INFO: epoch: [186/1500], global_step: 558, lr: 0.001000, loss: 2.002833, loss_shrink_maps: 1.093280, loss_threshold_maps: 0.683837, loss_binary_maps: 0.216557, avg_reader_cost: 1.63638 s, avg_batch_cost: 1.86510 s, avg_samples: 12.5, ips: 6.70204 samples/s, eta: 6:53:29
[2024/07/27 23:52:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:52:53] ppocr INFO: epoch: [187/1500], global_step: 560, lr: 0.001000, loss: 1.974481, loss_shrink_maps: 1.086622, loss_threshold_maps: 0.679848, loss_binary_maps: 0.215212, avg_reader_cost: 0.93064 s, avg_batch_cost: 1.10423 s, avg_samples: 9.6, ips: 8.69387 samples/s, eta: 6:53:05
[2024/07/27 23:52:53] ppocr INFO: epoch: [187/1500], global_step: 561, lr: 0.001000, loss: 1.974481, loss_shrink_maps: 1.086622, loss_threshold_maps: 0.679487, loss_binary_maps: 0.215212, avg_reader_cost: 0.59774 s, avg_batch_cost: 0.65272 s, avg_samples: 2.9, ips: 4.44295 samples/s, eta: 6:53:01
[2024/07/27 23:52:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:53:01] ppocr INFO: epoch: [188/1500], global_step: 564, lr: 0.001000, loss: 1.974481, loss_shrink_maps: 1.086622, loss_threshold_maps: 0.679144, loss_binary_maps: 0.215212, avg_reader_cost: 1.55620 s, avg_batch_cost: 1.79668 s, avg_samples: 12.5, ips: 6.95729 samples/s, eta: 6:52:35
[2024/07/27 23:53:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:53:09] ppocr INFO: epoch: [189/1500], global_step: 567, lr: 0.001000, loss: 1.956400, loss_shrink_maps: 1.062959, loss_threshold_maps: 0.675001, loss_binary_maps: 0.210366, avg_reader_cost: 1.53314 s, avg_batch_cost: 1.77355 s, avg_samples: 12.5, ips: 7.04802 samples/s, eta: 6:52:09
[2024/07/27 23:53:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:53:16] ppocr INFO: epoch: [190/1500], global_step: 570, lr: 0.001000, loss: 1.956400, loss_shrink_maps: 1.062959, loss_threshold_maps: 0.679487, loss_binary_maps: 0.210366, avg_reader_cost: 1.55010 s, avg_batch_cost: 1.77866 s, avg_samples: 12.5, ips: 7.02777 samples/s, eta: 6:51:42
[2024/07/27 23:53:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:53:24] ppocr INFO: epoch: [191/1500], global_step: 573, lr: 0.001000, loss: 1.971182, loss_shrink_maps: 1.082446, loss_threshold_maps: 0.682497, loss_binary_maps: 0.214142, avg_reader_cost: 1.49876 s, avg_batch_cost: 1.73178 s, avg_samples: 12.5, ips: 7.21799 samples/s, eta: 6:51:13
[2024/07/27 23:53:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:53:31] ppocr INFO: epoch: [192/1500], global_step: 576, lr: 0.001000, loss: 1.985849, loss_shrink_maps: 1.086241, loss_threshold_maps: 0.682497, loss_binary_maps: 0.214142, avg_reader_cost: 1.55560 s, avg_batch_cost: 1.78313 s, avg_samples: 12.5, ips: 7.01015 samples/s, eta: 6:50:47
[2024/07/27 23:53:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:53:38] ppocr INFO: epoch: [193/1500], global_step: 579, lr: 0.001000, loss: 1.968158, loss_shrink_maps: 1.069174, loss_threshold_maps: 0.682392, loss_binary_maps: 0.211002, avg_reader_cost: 1.57030 s, avg_batch_cost: 1.81834 s, avg_samples: 12.5, ips: 6.87439 samples/s, eta: 6:50:24
[2024/07/27 23:53:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:53:44] ppocr INFO: epoch: [194/1500], global_step: 580, lr: 0.001000, loss: 1.968158, loss_shrink_maps: 1.069174, loss_threshold_maps: 0.682392, loss_binary_maps: 0.211002, avg_reader_cost: 0.41319 s, avg_batch_cost: 0.49621 s, avg_samples: 4.8, ips: 9.67339 samples/s, eta: 6:50:09
[2024/07/27 23:53:46] ppocr INFO: epoch: [194/1500], global_step: 582, lr: 0.001000, loss: 1.982334, loss_shrink_maps: 1.075195, loss_threshold_maps: 0.688344, loss_binary_maps: 0.211988, avg_reader_cost: 1.08340 s, avg_batch_cost: 1.22909 s, avg_samples: 7.7, ips: 6.26480 samples/s, eta: 6:49:54
[2024/07/27 23:53:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:53:54] ppocr INFO: epoch: [195/1500], global_step: 585, lr: 0.001000, loss: 1.987521, loss_shrink_maps: 1.092089, loss_threshold_maps: 0.688373, loss_binary_maps: 0.215835, avg_reader_cost: 1.72788 s, avg_batch_cost: 1.95693 s, avg_samples: 12.5, ips: 6.38755 samples/s, eta: 6:49:40
[2024/07/27 23:53:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:54:02] ppocr INFO: epoch: [196/1500], global_step: 588, lr: 0.001000, loss: 1.978816, loss_shrink_maps: 1.080674, loss_threshold_maps: 0.688373, loss_binary_maps: 0.214374, avg_reader_cost: 1.68687 s, avg_batch_cost: 2.02857 s, avg_samples: 12.5, ips: 6.16197 samples/s, eta: 6:49:31
[2024/07/27 23:54:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:54:09] ppocr INFO: epoch: [197/1500], global_step: 590, lr: 0.001000, loss: 1.978151, loss_shrink_maps: 1.075195, loss_threshold_maps: 0.688373, loss_binary_maps: 0.211988, avg_reader_cost: 0.90202 s, avg_batch_cost: 1.12069 s, avg_samples: 9.6, ips: 8.56614 samples/s, eta: 6:49:10
[2024/07/27 23:54:10] ppocr INFO: epoch: [197/1500], global_step: 591, lr: 0.001000, loss: 1.972226, loss_shrink_maps: 1.071824, loss_threshold_maps: 0.678840, loss_binary_maps: 0.210759, avg_reader_cost: 0.60613 s, avg_batch_cost: 0.66082 s, avg_samples: 2.9, ips: 4.38847 samples/s, eta: 6:49:06
[2024/07/27 23:54:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:54:17] ppocr INFO: epoch: [198/1500], global_step: 594, lr: 0.001000, loss: 1.967867, loss_shrink_maps: 1.074194, loss_threshold_maps: 0.675060, loss_binary_maps: 0.211745, avg_reader_cost: 1.56680 s, avg_batch_cost: 1.81887 s, avg_samples: 12.5, ips: 6.87240 samples/s, eta: 6:48:42
[2024/07/27 23:54:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:54:25] ppocr INFO: epoch: [199/1500], global_step: 597, lr: 0.001000, loss: 1.967867, loss_shrink_maps: 1.076419, loss_threshold_maps: 0.668593, loss_binary_maps: 0.212763, avg_reader_cost: 1.54389 s, avg_batch_cost: 1.77216 s, avg_samples: 12.5, ips: 7.05355 samples/s, eta: 6:48:16
[2024/07/27 23:54:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:54:32] ppocr INFO: epoch: [200/1500], global_step: 600, lr: 0.001000, loss: 1.978151, loss_shrink_maps: 1.079647, loss_threshold_maps: 0.688150, loss_binary_maps: 0.214523, avg_reader_cost: 1.50021 s, avg_batch_cost: 1.72975 s, avg_samples: 12.5, ips: 7.22648 samples/s, eta: 6:47:48

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 2/500 [00:00<00:38, 13.07it/s]
eval model::   1%|          | 5/500 [00:00<00:24, 20.18it/s]
eval model::   2%|▏         | 8/500 [00:00<00:26, 18.66it/s]
eval model::   2%|▏         | 11/500 [00:00<00:24, 19.68it/s]
eval model::   3%|▎         | 14/500 [00:00<00:24, 19.62it/s]
eval model::   3%|▎         | 17/500 [00:00<00:23, 20.53it/s]
eval model::   4%|▍         | 20/500 [00:01<00:25, 19.03it/s]
eval model::   5%|▍         | 23/500 [00:01<00:22, 20.82it/s]
eval model::   5%|▌         | 26/500 [00:01<00:24, 18.97it/s]
eval model::   6%|▌         | 29/500 [00:01<00:23, 20.11it/s]
eval model::   6%|▋         | 32/500 [00:01<00:25, 18.47it/s]
eval model::   7%|▋         | 34/500 [00:01<00:26, 17.77it/s]
eval model::   7%|▋         | 37/500 [00:01<00:23, 19.98it/s]
eval model::   8%|▊         | 40/500 [00:02<00:27, 16.80it/s]
eval model::   8%|▊         | 42/500 [00:02<00:28, 16.20it/s]
eval model::   9%|▉         | 45/500 [00:02<00:24, 18.56it/s]
eval model::   9%|▉         | 47/500 [00:02<00:25, 17.93it/s]
eval model::  10%|█         | 50/500 [00:02<00:23, 18.75it/s]
eval model::  11%|█         | 53/500 [00:02<00:21, 20.58it/s]
eval model::  11%|█         | 56/500 [00:02<00:21, 20.57it/s]
eval model::  12%|█▏        | 59/500 [00:03<00:20, 21.61it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:22, 19.05it/s]
eval model::  13%|█▎        | 64/500 [00:03<00:23, 18.22it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:21, 20.37it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:19, 22.35it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:19, 22.21it/s]
eval model::  15%|█▌        | 76/500 [00:03<00:18, 22.73it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:19, 21.77it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:18, 22.23it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:20, 20.50it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:20, 19.83it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:22, 18.23it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:22, 18.21it/s]
eval model::  19%|█▉        | 96/500 [00:04<00:19, 20.22it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:18, 21.19it/s]
eval model::  20%|██        | 102/500 [00:05<00:20, 19.69it/s]
eval model::  21%|██        | 106/500 [00:05<00:17, 22.59it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:17, 22.54it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:18, 21.40it/s]
eval model::  23%|██▎       | 115/500 [00:05<00:18, 20.71it/s]
eval model::  24%|██▎       | 118/500 [00:05<00:17, 21.84it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:17, 21.70it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:18, 20.85it/s]
eval model::  25%|██▌       | 127/500 [00:06<00:17, 21.13it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:18, 19.51it/s]
eval model::  27%|██▋       | 133/500 [00:06<00:17, 20.56it/s]
eval model::  27%|██▋       | 136/500 [00:06<00:16, 22.18it/s]
eval model::  28%|██▊       | 139/500 [00:06<00:17, 21.19it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:17, 20.49it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:18, 19.40it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:18, 18.98it/s]
eval model::  30%|███       | 150/500 [00:07<00:16, 20.69it/s]
eval model::  31%|███       | 153/500 [00:07<00:17, 20.29it/s]
eval model::  31%|███▏      | 157/500 [00:07<00:14, 23.74it/s]
eval model::  32%|███▏      | 160/500 [00:07<00:17, 19.71it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:16, 20.54it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:15, 21.17it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:16, 20.64it/s]
eval model::  34%|███▍      | 172/500 [00:08<00:17, 18.90it/s]
eval model::  35%|███▍      | 174/500 [00:08<00:21, 15.24it/s]
eval model::  35%|███▌      | 177/500 [00:08<00:18, 17.06it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:19, 16.29it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:17, 18.23it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:16, 19.22it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:15, 20.66it/s]
eval model::  38%|███▊      | 192/500 [00:09<00:14, 21.46it/s]
eval model::  39%|███▉      | 195/500 [00:09<00:14, 21.58it/s]
eval model::  40%|███▉      | 198/500 [00:09<00:14, 21.49it/s]
eval model::  40%|████      | 201/500 [00:10<00:14, 20.09it/s]
eval model::  41%|████      | 205/500 [00:10<00:20, 14.62it/s]
eval model::  42%|████▏     | 208/500 [00:10<00:18, 15.52it/s]
eval model::  42%|████▏     | 210/500 [00:10<00:18, 15.45it/s]
eval model::  43%|████▎     | 213/500 [00:10<00:16, 16.92it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:19, 14.72it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:20, 13.88it/s]
eval model::  44%|████▍     | 219/500 [00:11<00:18, 15.04it/s]
eval model::  44%|████▍     | 221/500 [00:11<00:19, 14.67it/s]
eval model::  45%|████▍     | 224/500 [00:11<00:15, 17.81it/s]
eval model::  45%|████▌     | 226/500 [00:11<00:15, 17.80it/s]
eval model::  46%|████▌     | 229/500 [00:11<00:13, 20.66it/s]
eval model::  46%|████▋     | 232/500 [00:11<00:11, 22.82it/s]
eval model::  47%|████▋     | 235/500 [00:12<00:12, 21.36it/s]
eval model::  48%|████▊     | 238/500 [00:12<00:11, 22.09it/s]
eval model::  48%|████▊     | 241/500 [00:12<00:11, 22.63it/s]
eval model::  49%|████▉     | 244/500 [00:12<00:13, 18.87it/s]
eval model::  49%|████▉     | 247/500 [00:12<00:12, 20.13it/s]
eval model::  50%|█████     | 250/500 [00:12<00:12, 19.96it/s]
eval model::  51%|█████     | 253/500 [00:12<00:11, 21.89it/s]
eval model::  51%|█████     | 256/500 [00:13<00:11, 21.85it/s]
eval model::  52%|█████▏    | 259/500 [00:13<00:10, 22.74it/s]
eval model::  52%|█████▏    | 262/500 [00:13<00:09, 24.23it/s]
eval model::  53%|█████▎    | 265/500 [00:13<00:10, 22.32it/s]
eval model::  54%|█████▎    | 268/500 [00:13<00:10, 21.70it/s]
eval model::  54%|█████▍    | 271/500 [00:13<00:10, 21.79it/s]
eval model::  55%|█████▍    | 274/500 [00:13<00:10, 20.79it/s]
eval model::  55%|█████▌    | 277/500 [00:14<00:11, 19.61it/s]
eval model::  56%|█████▌    | 280/500 [00:14<00:10, 20.63it/s]
eval model::  57%|█████▋    | 283/500 [00:14<00:10, 20.84it/s]
eval model::  57%|█████▋    | 286/500 [00:14<00:17, 12.48it/s]
eval model::  58%|█████▊    | 289/500 [00:14<00:14, 14.61it/s]
eval model::  58%|█████▊    | 292/500 [00:15<00:12, 16.65it/s]
eval model::  59%|█████▉    | 295/500 [00:15<00:13, 14.72it/s]
eval model::  60%|█████▉    | 298/500 [00:15<00:12, 16.70it/s]
eval model::  60%|██████    | 300/500 [00:15<00:12, 16.44it/s]
eval model::  61%|██████    | 303/500 [00:15<00:10, 18.29it/s]
eval model::  61%|██████    | 306/500 [00:15<00:10, 18.29it/s]
eval model::  62%|██████▏   | 309/500 [00:16<00:09, 19.35it/s]
eval model::  62%|██████▏   | 312/500 [00:16<00:09, 20.26it/s]
eval model::  63%|██████▎   | 315/500 [00:16<00:09, 19.97it/s]
eval model::  64%|██████▎   | 318/500 [00:16<00:08, 21.98it/s]
eval model::  64%|██████▍   | 321/500 [00:16<00:08, 22.36it/s]
eval model::  65%|██████▍   | 324/500 [00:16<00:08, 20.96it/s]
eval model::  65%|██████▌   | 327/500 [00:16<00:07, 22.61it/s]
eval model::  66%|██████▌   | 330/500 [00:16<00:07, 22.20it/s]
eval model::  67%|██████▋   | 333/500 [00:17<00:08, 20.12it/s]
eval model::  67%|██████▋   | 336/500 [00:17<00:08, 20.41it/s]
eval model::  68%|██████▊   | 339/500 [00:17<00:09, 16.85it/s]
eval model::  68%|██████▊   | 341/500 [00:17<00:11, 13.41it/s]
eval model::  69%|██████▊   | 343/500 [00:17<00:10, 14.56it/s]
eval model::  69%|██████▉   | 346/500 [00:17<00:08, 17.42it/s]
eval model::  70%|██████▉   | 349/500 [00:18<00:07, 19.36it/s]
eval model::  70%|███████   | 352/500 [00:18<00:07, 21.12it/s]
eval model::  71%|███████   | 356/500 [00:18<00:06, 22.03it/s]
eval model::  72%|███████▏  | 359/500 [00:18<00:06, 21.78it/s]
eval model::  72%|███████▏  | 362/500 [00:18<00:06, 20.03it/s]
eval model::  73%|███████▎  | 365/500 [00:18<00:07, 18.92it/s]
eval model::  73%|███████▎  | 367/500 [00:19<00:07, 18.52it/s]
eval model::  74%|███████▍  | 370/500 [00:19<00:07, 18.56it/s]
eval model::  74%|███████▍  | 372/500 [00:19<00:07, 17.43it/s]
eval model::  75%|███████▌  | 375/500 [00:19<00:06, 18.56it/s]
eval model::  76%|███████▌  | 378/500 [00:19<00:05, 20.93it/s]
eval model::  76%|███████▌  | 381/500 [00:19<00:05, 21.47it/s]
eval model::  77%|███████▋  | 385/500 [00:19<00:04, 24.10it/s]
eval model::  78%|███████▊  | 388/500 [00:20<00:07, 15.89it/s]
eval model::  78%|███████▊  | 391/500 [00:20<00:06, 17.97it/s]
eval model::  79%|███████▉  | 394/500 [00:20<00:05, 18.28it/s]
eval model::  79%|███████▉  | 397/500 [00:20<00:05, 20.05it/s]
eval model::  80%|████████  | 400/500 [00:20<00:04, 20.84it/s]
eval model::  81%|████████  | 403/500 [00:20<00:04, 21.53it/s]
eval model::  81%|████████  | 406/500 [00:20<00:04, 21.96it/s]
eval model::  82%|████████▏ | 409/500 [00:21<00:03, 23.22it/s]
eval model::  83%|████████▎ | 413/500 [00:21<00:03, 23.24it/s]
eval model::  83%|████████▎ | 416/500 [00:21<00:03, 21.57it/s]
eval model::  84%|████████▍ | 419/500 [00:21<00:03, 20.27it/s]
eval model::  84%|████████▍ | 422/500 [00:21<00:04, 17.71it/s]
eval model::  85%|████████▍ | 424/500 [00:21<00:04, 16.57it/s]
eval model::  85%|████████▌ | 426/500 [00:22<00:04, 16.99it/s]
eval model::  86%|████████▌ | 429/500 [00:22<00:03, 19.42it/s]
eval model::  86%|████████▋ | 432/500 [00:22<00:03, 20.65it/s]
eval model::  87%|████████▋ | 436/500 [00:22<00:02, 23.85it/s]
eval model::  88%|████████▊ | 439/500 [00:22<00:02, 23.62it/s]
eval model::  88%|████████▊ | 442/500 [00:22<00:02, 22.44it/s]
eval model::  89%|████████▉ | 445/500 [00:22<00:02, 21.64it/s]
eval model::  90%|████████▉ | 448/500 [00:22<00:02, 20.87it/s]
eval model::  90%|█████████ | 451/500 [00:23<00:02, 20.78it/s]
eval model::  91%|█████████ | 454/500 [00:23<00:02, 20.34it/s]
eval model::  91%|█████████▏| 457/500 [00:23<00:01, 21.56it/s]
eval model::  92%|█████████▏| 460/500 [00:23<00:01, 21.33it/s]
eval model::  93%|█████████▎| 463/500 [00:23<00:01, 19.82it/s]
eval model::  93%|█████████▎| 466/500 [00:23<00:01, 18.01it/s]
eval model::  94%|█████████▍| 469/500 [00:24<00:01, 19.60it/s]
eval model::  94%|█████████▍| 472/500 [00:24<00:01, 18.99it/s]
eval model::  95%|█████████▍| 474/500 [00:24<00:01, 18.51it/s]
eval model::  96%|█████████▌| 478/500 [00:24<00:00, 22.45it/s]
eval model::  96%|█████████▌| 481/500 [00:24<00:00, 23.03it/s]
eval model::  97%|█████████▋| 484/500 [00:24<00:00, 22.87it/s]
eval model::  97%|█████████▋| 487/500 [00:24<00:00, 21.07it/s]
eval model::  98%|█████████▊| 490/500 [00:25<00:00, 22.15it/s]
eval model::  99%|█████████▊| 493/500 [00:25<00:00, 21.37it/s]
eval model::  99%|█████████▉| 496/500 [00:25<00:00, 21.23it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 24.27it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.66it/s]
[2024/07/27 23:54:58] ppocr INFO: cur metric, precision: 0.6244131455399061, recall: 0.5122773230621088, hmean: 0.5628140703517588, fps: 45.7029364917752
[2024/07/27 23:54:58] ppocr INFO: best metric, hmean: 0.5631016042780749, precision: 0.6331930246542393, recall: 0.5069812229176697, fps: 44.85164591471328, best_epoch: 160
[2024/07/27 23:54:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:55:05] ppocr INFO: epoch: [201/1500], global_step: 603, lr: 0.001000, loss: 1.958547, loss_shrink_maps: 1.065553, loss_threshold_maps: 0.678438, loss_binary_maps: 0.210176, avg_reader_cost: 1.75875 s, avg_batch_cost: 2.00448 s, avg_samples: 12.5, ips: 6.23602 samples/s, eta: 6:47:37
[2024/07/27 23:55:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:55:13] ppocr INFO: epoch: [202/1500], global_step: 606, lr: 0.001000, loss: 1.952297, loss_shrink_maps: 1.058300, loss_threshold_maps: 0.679608, loss_binary_maps: 0.209011, avg_reader_cost: 1.51738 s, avg_batch_cost: 1.76644 s, avg_samples: 12.5, ips: 7.07638 samples/s, eta: 6:47:10
[2024/07/27 23:55:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:55:20] ppocr INFO: epoch: [203/1500], global_step: 609, lr: 0.001000, loss: 1.931891, loss_shrink_maps: 1.046044, loss_threshold_maps: 0.678541, loss_binary_maps: 0.207306, avg_reader_cost: 1.50349 s, avg_batch_cost: 1.73955 s, avg_samples: 12.5, ips: 7.18577 samples/s, eta: 6:46:42
[2024/07/27 23:55:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:55:27] ppocr INFO: epoch: [204/1500], global_step: 610, lr: 0.001000, loss: 1.931891, loss_shrink_maps: 1.046044, loss_threshold_maps: 0.678541, loss_binary_maps: 0.207306, avg_reader_cost: 0.41091 s, avg_batch_cost: 0.54298 s, avg_samples: 4.8, ips: 8.84010 samples/s, eta: 6:46:31
[2024/07/27 23:55:28] ppocr INFO: epoch: [204/1500], global_step: 612, lr: 0.001000, loss: 1.931891, loss_shrink_maps: 1.046044, loss_threshold_maps: 0.678541, loss_binary_maps: 0.207670, avg_reader_cost: 1.17733 s, avg_batch_cost: 1.32340 s, avg_samples: 7.7, ips: 5.81833 samples/s, eta: 6:46:23
[2024/07/27 23:55:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:55:36] ppocr INFO: epoch: [205/1500], global_step: 615, lr: 0.001000, loss: 1.945765, loss_shrink_maps: 1.051362, loss_threshold_maps: 0.681711, loss_binary_maps: 0.208908, avg_reader_cost: 1.53896 s, avg_batch_cost: 1.79860 s, avg_samples: 12.5, ips: 6.94984 samples/s, eta: 6:45:59
[2024/07/27 23:55:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:55:43] ppocr INFO: epoch: [206/1500], global_step: 618, lr: 0.001000, loss: 1.931891, loss_shrink_maps: 1.046044, loss_threshold_maps: 0.678541, loss_binary_maps: 0.207670, avg_reader_cost: 1.53145 s, avg_batch_cost: 1.77742 s, avg_samples: 12.5, ips: 7.03266 samples/s, eta: 6:45:33
[2024/07/27 23:55:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:55:50] ppocr INFO: epoch: [207/1500], global_step: 620, lr: 0.001000, loss: 1.931891, loss_shrink_maps: 1.046044, loss_threshold_maps: 0.678541, loss_binary_maps: 0.207670, avg_reader_cost: 0.92690 s, avg_batch_cost: 1.09992 s, avg_samples: 9.6, ips: 8.72790 samples/s, eta: 6:45:11
[2024/07/27 23:55:51] ppocr INFO: epoch: [207/1500], global_step: 621, lr: 0.001000, loss: 1.945765, loss_shrink_maps: 1.052403, loss_threshold_maps: 0.679608, loss_binary_maps: 0.208908, avg_reader_cost: 0.59552 s, avg_batch_cost: 0.65024 s, avg_samples: 2.9, ips: 4.45987 samples/s, eta: 6:45:06
[2024/07/27 23:55:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:55:59] ppocr INFO: epoch: [208/1500], global_step: 624, lr: 0.001000, loss: 1.945765, loss_shrink_maps: 1.052403, loss_threshold_maps: 0.678541, loss_binary_maps: 0.208908, avg_reader_cost: 1.69747 s, avg_batch_cost: 1.95922 s, avg_samples: 12.5, ips: 6.38010 samples/s, eta: 6:44:52
[2024/07/27 23:56:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:56:06] ppocr INFO: epoch: [209/1500], global_step: 627, lr: 0.001000, loss: 2.005749, loss_shrink_maps: 1.102871, loss_threshold_maps: 0.684232, loss_binary_maps: 0.218686, avg_reader_cost: 1.51293 s, avg_batch_cost: 1.74306 s, avg_samples: 12.5, ips: 7.17129 samples/s, eta: 6:44:25
[2024/07/27 23:56:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:56:14] ppocr INFO: epoch: [210/1500], global_step: 630, lr: 0.001000, loss: 2.005749, loss_shrink_maps: 1.102871, loss_threshold_maps: 0.684232, loss_binary_maps: 0.218686, avg_reader_cost: 1.52463 s, avg_batch_cost: 1.75434 s, avg_samples: 12.5, ips: 7.12518 samples/s, eta: 6:43:59
[2024/07/27 23:56:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:56:21] ppocr INFO: epoch: [211/1500], global_step: 633, lr: 0.001000, loss: 2.025602, loss_shrink_maps: 1.111232, loss_threshold_maps: 0.686868, loss_binary_maps: 0.219671, avg_reader_cost: 1.55638 s, avg_batch_cost: 1.80198 s, avg_samples: 12.5, ips: 6.93680 samples/s, eta: 6:43:35
[2024/07/27 23:56:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:56:29] ppocr INFO: epoch: [212/1500], global_step: 636, lr: 0.001000, loss: 2.012444, loss_shrink_maps: 1.102871, loss_threshold_maps: 0.686868, loss_binary_maps: 0.218686, avg_reader_cost: 1.62918 s, avg_batch_cost: 1.87257 s, avg_samples: 12.5, ips: 6.67531 samples/s, eta: 6:43:16
[2024/07/27 23:56:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:56:37] ppocr INFO: epoch: [213/1500], global_step: 639, lr: 0.001000, loss: 1.981729, loss_shrink_maps: 1.076080, loss_threshold_maps: 0.676039, loss_binary_maps: 0.214030, avg_reader_cost: 1.56984 s, avg_batch_cost: 1.79760 s, avg_samples: 12.5, ips: 6.95371 samples/s, eta: 6:42:52
[2024/07/27 23:56:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:56:43] ppocr INFO: epoch: [214/1500], global_step: 640, lr: 0.001000, loss: 1.971024, loss_shrink_maps: 1.064190, loss_threshold_maps: 0.672115, loss_binary_maps: 0.211495, avg_reader_cost: 0.42102 s, avg_batch_cost: 0.50380 s, avg_samples: 4.8, ips: 9.52758 samples/s, eta: 6:42:39
[2024/07/27 23:56:44] ppocr INFO: epoch: [214/1500], global_step: 642, lr: 0.001000, loss: 1.971024, loss_shrink_maps: 1.064190, loss_threshold_maps: 0.669929, loss_binary_maps: 0.211495, avg_reader_cost: 1.10019 s, avg_batch_cost: 1.24612 s, avg_samples: 7.7, ips: 6.17919 samples/s, eta: 6:42:26
[2024/07/27 23:56:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:56:52] ppocr INFO: epoch: [215/1500], global_step: 645, lr: 0.001000, loss: 1.971024, loss_shrink_maps: 1.074164, loss_threshold_maps: 0.665282, loss_binary_maps: 0.213369, avg_reader_cost: 1.58522 s, avg_batch_cost: 1.81285 s, avg_samples: 12.5, ips: 6.89522 samples/s, eta: 6:42:03
[2024/07/27 23:56:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:57:00] ppocr INFO: epoch: [216/1500], global_step: 648, lr: 0.001000, loss: 1.936592, loss_shrink_maps: 1.044825, loss_threshold_maps: 0.663157, loss_binary_maps: 0.206869, avg_reader_cost: 1.54929 s, avg_batch_cost: 1.83751 s, avg_samples: 12.5, ips: 6.80270 samples/s, eta: 6:41:42
[2024/07/27 23:57:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:57:07] ppocr INFO: epoch: [217/1500], global_step: 650, lr: 0.001000, loss: 1.908999, loss_shrink_maps: 1.041266, loss_threshold_maps: 0.663157, loss_binary_maps: 0.206073, avg_reader_cost: 0.97098 s, avg_batch_cost: 1.18351 s, avg_samples: 9.6, ips: 8.11144 samples/s, eta: 6:41:26
[2024/07/27 23:57:07] ppocr INFO: epoch: [217/1500], global_step: 651, lr: 0.001000, loss: 1.908999, loss_shrink_maps: 1.035606, loss_threshold_maps: 0.663157, loss_binary_maps: 0.204677, avg_reader_cost: 0.63783 s, avg_batch_cost: 0.69207 s, avg_samples: 2.9, ips: 4.19031 samples/s, eta: 6:41:23
[2024/07/27 23:57:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:57:15] ppocr INFO: epoch: [218/1500], global_step: 654, lr: 0.001000, loss: 1.928618, loss_shrink_maps: 1.044825, loss_threshold_maps: 0.663157, loss_binary_maps: 0.206869, avg_reader_cost: 1.53121 s, avg_batch_cost: 1.75981 s, avg_samples: 12.5, ips: 7.10303 samples/s, eta: 6:40:58
[2024/07/27 23:57:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:57:23] ppocr INFO: epoch: [219/1500], global_step: 657, lr: 0.001000, loss: 1.914478, loss_shrink_maps: 1.044825, loss_threshold_maps: 0.663157, loss_binary_maps: 0.206869, avg_reader_cost: 1.56295 s, avg_batch_cost: 1.86778 s, avg_samples: 12.5, ips: 6.69244 samples/s, eta: 6:40:38
[2024/07/27 23:57:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:57:30] ppocr INFO: epoch: [220/1500], global_step: 660, lr: 0.001000, loss: 1.965129, loss_shrink_maps: 1.083242, loss_threshold_maps: 0.675103, loss_binary_maps: 0.214573, avg_reader_cost: 1.53234 s, avg_batch_cost: 1.79772 s, avg_samples: 12.5, ips: 6.95325 samples/s, eta: 6:40:15

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:52,  9.47it/s]
eval model::   1%|          | 4/500 [00:00<00:26, 18.80it/s]
eval model::   1%|▏         | 7/500 [00:00<00:24, 20.47it/s]
eval model::   2%|▏         | 10/500 [00:00<00:25, 19.38it/s]
eval model::   2%|▏         | 12/500 [00:00<00:28, 17.34it/s]
eval model::   3%|▎         | 15/500 [00:00<00:26, 18.08it/s]
eval model::   4%|▍         | 19/500 [00:00<00:24, 20.00it/s]
eval model::   4%|▍         | 22/500 [00:01<00:22, 20.98it/s]
eval model::   5%|▌         | 25/500 [00:01<00:21, 21.71it/s]
eval model::   6%|▌         | 28/500 [00:01<00:20, 22.67it/s]
eval model::   6%|▌         | 31/500 [00:01<00:23, 19.84it/s]
eval model::   7%|▋         | 34/500 [00:01<00:23, 19.86it/s]
eval model::   7%|▋         | 37/500 [00:01<00:21, 21.07it/s]
eval model::   8%|▊         | 40/500 [00:02<00:24, 18.86it/s]
eval model::   8%|▊         | 42/500 [00:02<00:24, 18.95it/s]
eval model::   9%|▉         | 45/500 [00:02<00:22, 20.37it/s]
eval model::  10%|▉         | 48/500 [00:02<00:25, 17.82it/s]
eval model::  10%|█         | 50/500 [00:02<00:24, 18.22it/s]
eval model::  11%|█         | 53/500 [00:02<00:23, 19.15it/s]
eval model::  11%|█         | 56/500 [00:02<00:21, 20.81it/s]
eval model::  12%|█▏        | 59/500 [00:02<00:21, 20.53it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:24, 18.19it/s]
eval model::  13%|█▎        | 64/500 [00:03<00:26, 16.32it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:23, 18.54it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:20, 20.68it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:20, 21.27it/s]
eval model::  15%|█▌        | 76/500 [00:03<00:18, 22.81it/s]
eval model::  16%|█▌        | 79/500 [00:03<00:18, 23.09it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:18, 22.05it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:18, 22.08it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:19, 20.64it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:22, 18.22it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:22, 18.35it/s]
eval model::  19%|█▉        | 96/500 [00:04<00:20, 19.47it/s]
eval model::  20%|█▉        | 99/500 [00:04<00:19, 21.03it/s]
eval model::  20%|██        | 102/500 [00:05<00:19, 20.66it/s]
eval model::  21%|██        | 105/500 [00:05<00:17, 22.02it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:16, 23.15it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:16, 23.25it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:16, 23.98it/s]
eval model::  23%|██▎       | 117/500 [00:05<00:17, 21.97it/s]
eval model::  24%|██▍       | 120/500 [00:05<00:19, 19.58it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:17, 21.03it/s]
eval model::  25%|██▌       | 127/500 [00:06<00:17, 21.67it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:17, 21.01it/s]
eval model::  27%|██▋       | 133/500 [00:06<00:16, 22.11it/s]
eval model::  27%|██▋       | 136/500 [00:06<00:16, 22.68it/s]
eval model::  28%|██▊       | 139/500 [00:06<00:16, 21.29it/s]
eval model::  28%|██▊       | 142/500 [00:06<00:16, 21.27it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:17, 20.62it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:19, 18.35it/s]
eval model::  30%|███       | 151/500 [00:07<00:18, 18.46it/s]
eval model::  31%|███       | 155/500 [00:07<00:16, 21.48it/s]
eval model::  32%|███▏      | 158/500 [00:07<00:15, 21.46it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:19, 17.00it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:19, 17.35it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:17, 19.03it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:18, 17.85it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:20, 16.40it/s]
eval model::  35%|███▍      | 174/500 [00:08<00:23, 13.78it/s]
eval model::  35%|███▌      | 177/500 [00:08<00:19, 16.20it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:21, 15.13it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:18, 17.43it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:16, 19.40it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:15, 19.51it/s]
eval model::  38%|███▊      | 192/500 [00:09<00:15, 20.28it/s]
eval model::  39%|███▉      | 195/500 [00:09<00:14, 20.62it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:14, 21.34it/s]
eval model::  40%|████      | 201/500 [00:10<00:14, 20.85it/s]
eval model::  41%|████      | 204/500 [00:10<00:13, 22.07it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:20, 14.45it/s]
eval model::  42%|████▏     | 209/500 [00:10<00:19, 15.13it/s]
eval model::  42%|████▏     | 211/500 [00:10<00:18, 15.80it/s]
eval model::  43%|████▎     | 213/500 [00:10<00:17, 16.24it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:19, 14.52it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:19, 14.24it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:16, 16.66it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:17, 15.90it/s]
eval model::  45%|████▌     | 225/500 [00:11<00:14, 18.99it/s]
eval model::  46%|████▌     | 228/500 [00:11<00:14, 18.95it/s]
eval model::  46%|████▌     | 231/500 [00:11<00:13, 20.13it/s]
eval model::  47%|████▋     | 234/500 [00:12<00:13, 19.54it/s]
eval model::  47%|████▋     | 237/500 [00:12<00:12, 21.03it/s]
eval model::  48%|████▊     | 240/500 [00:12<00:13, 19.64it/s]
eval model::  49%|████▊     | 243/500 [00:12<00:13, 18.64it/s]
eval model::  49%|████▉     | 246/500 [00:12<00:12, 20.59it/s]
eval model::  50%|████▉     | 249/500 [00:12<00:12, 19.57it/s]
eval model::  50%|█████     | 252/500 [00:13<00:13, 18.32it/s]
eval model::  51%|█████     | 256/500 [00:13<00:11, 20.66it/s]
eval model::  52%|█████▏    | 259/500 [00:13<00:11, 21.31it/s]
eval model::  52%|█████▏    | 262/500 [00:13<00:11, 20.41it/s]
eval model::  53%|█████▎    | 265/500 [00:13<00:11, 20.19it/s]
eval model::  54%|█████▎    | 268/500 [00:13<00:11, 20.78it/s]
eval model::  54%|█████▍    | 271/500 [00:13<00:10, 21.18it/s]
eval model::  55%|█████▍    | 274/500 [00:14<00:11, 19.55it/s]
eval model::  55%|█████▌    | 276/500 [00:14<00:13, 17.11it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:11, 19.38it/s]
eval model::  56%|█████▋    | 282/500 [00:14<00:10, 21.02it/s]
eval model::  57%|█████▋    | 285/500 [00:14<00:17, 12.26it/s]
eval model::  58%|█████▊    | 288/500 [00:15<00:14, 14.77it/s]
eval model::  58%|█████▊    | 292/500 [00:15<00:11, 17.52it/s]
eval model::  59%|█████▉    | 295/500 [00:15<00:12, 16.06it/s]
eval model::  60%|█████▉    | 299/500 [00:15<00:10, 18.95it/s]
eval model::  60%|██████    | 302/500 [00:15<00:10, 19.07it/s]
eval model::  61%|██████    | 305/500 [00:15<00:09, 20.29it/s]
eval model::  62%|██████▏   | 308/500 [00:16<00:08, 22.31it/s]
eval model::  62%|██████▏   | 311/500 [00:16<00:08, 23.05it/s]
eval model::  63%|██████▎   | 314/500 [00:16<00:08, 22.53it/s]
eval model::  63%|██████▎   | 317/500 [00:16<00:08, 21.73it/s]
eval model::  64%|██████▍   | 320/500 [00:16<00:08, 20.36it/s]
eval model::  65%|██████▍   | 323/500 [00:16<00:09, 19.16it/s]
eval model::  65%|██████▌   | 326/500 [00:16<00:08, 19.86it/s]
eval model::  66%|██████▌   | 329/500 [00:17<00:08, 19.83it/s]
eval model::  66%|██████▋   | 332/500 [00:17<00:08, 19.41it/s]
eval model::  67%|██████▋   | 335/500 [00:17<00:07, 20.98it/s]
eval model::  68%|██████▊   | 338/500 [00:17<00:08, 19.34it/s]
eval model::  68%|██████▊   | 340/500 [00:17<00:10, 15.21it/s]
eval model::  69%|██████▊   | 343/500 [00:17<00:08, 18.04it/s]
eval model::  69%|██████▉   | 346/500 [00:17<00:07, 20.54it/s]
eval model::  70%|███████   | 350/500 [00:18<00:06, 22.80it/s]
eval model::  71%|███████   | 354/500 [00:18<00:05, 24.65it/s]
eval model::  71%|███████▏  | 357/500 [00:18<00:05, 24.15it/s]
eval model::  72%|███████▏  | 360/500 [00:18<00:06, 22.09it/s]
eval model::  73%|███████▎  | 363/500 [00:18<00:06, 21.35it/s]
eval model::  73%|███████▎  | 366/500 [00:18<00:07, 18.34it/s]
eval model::  74%|███████▍  | 369/500 [00:19<00:06, 19.62it/s]
eval model::  74%|███████▍  | 372/500 [00:19<00:06, 19.30it/s]
eval model::  75%|███████▌  | 375/500 [00:19<00:06, 20.01it/s]
eval model::  76%|███████▌  | 378/500 [00:19<00:05, 21.07it/s]
eval model::  76%|███████▌  | 381/500 [00:19<00:06, 19.69it/s]
eval model::  77%|███████▋  | 384/500 [00:19<00:05, 21.74it/s]
eval model::  77%|███████▋  | 387/500 [00:20<00:07, 14.78it/s]
eval model::  78%|███████▊  | 390/500 [00:20<00:06, 16.95it/s]
eval model::  79%|███████▊  | 393/500 [00:20<00:05, 17.93it/s]
eval model::  79%|███████▉  | 396/500 [00:20<00:05, 18.70it/s]
eval model::  80%|███████▉  | 399/500 [00:20<00:04, 20.22it/s]
eval model::  80%|████████  | 402/500 [00:20<00:05, 19.46it/s]
eval model::  81%|████████  | 405/500 [00:20<00:04, 21.30it/s]
eval model::  82%|████████▏ | 408/500 [00:20<00:04, 22.74it/s]
eval model::  82%|████████▏ | 411/500 [00:21<00:03, 24.06it/s]
eval model::  83%|████████▎ | 414/500 [00:21<00:03, 24.72it/s]
eval model::  83%|████████▎ | 417/500 [00:21<00:03, 21.38it/s]
eval model::  84%|████████▍ | 420/500 [00:21<00:04, 17.81it/s]
eval model::  85%|████████▍ | 423/500 [00:21<00:03, 19.30it/s]
eval model::  85%|████████▌ | 426/500 [00:21<00:04, 18.49it/s]
eval model::  86%|████████▌ | 430/500 [00:22<00:03, 21.69it/s]
eval model::  87%|████████▋ | 433/500 [00:22<00:03, 21.54it/s]
eval model::  87%|████████▋ | 436/500 [00:22<00:02, 22.28it/s]
eval model::  88%|████████▊ | 439/500 [00:22<00:02, 22.91it/s]
eval model::  88%|████████▊ | 442/500 [00:22<00:02, 22.10it/s]
eval model::  89%|████████▉ | 445/500 [00:22<00:02, 22.68it/s]
eval model::  90%|████████▉ | 448/500 [00:22<00:02, 20.30it/s]
eval model::  90%|█████████ | 451/500 [00:23<00:02, 20.52it/s]
eval model::  91%|█████████ | 454/500 [00:23<00:02, 21.45it/s]
eval model::  91%|█████████▏| 457/500 [00:23<00:02, 20.09it/s]
eval model::  92%|█████████▏| 460/500 [00:23<00:01, 21.15it/s]
eval model::  93%|█████████▎| 463/500 [00:23<00:01, 19.90it/s]
eval model::  93%|█████████▎| 466/500 [00:23<00:01, 19.02it/s]
eval model::  94%|█████████▎| 468/500 [00:23<00:01, 18.38it/s]
eval model::  94%|█████████▍| 471/500 [00:24<00:01, 20.92it/s]
eval model::  95%|█████████▍| 474/500 [00:24<00:01, 19.46it/s]
eval model::  95%|█████████▌| 477/500 [00:24<00:01, 21.46it/s]
eval model::  96%|█████████▌| 480/500 [00:24<00:00, 22.19it/s]
eval model::  97%|█████████▋| 483/500 [00:24<00:00, 22.76it/s]
eval model::  97%|█████████▋| 486/500 [00:24<00:00, 20.57it/s]
eval model::  98%|█████████▊| 489/500 [00:24<00:00, 21.90it/s]
eval model::  98%|█████████▊| 492/500 [00:25<00:00, 21.13it/s]
eval model::  99%|█████████▉| 495/500 [00:25<00:00, 21.37it/s]
eval model:: 100%|█████████▉| 498/500 [00:25<00:00, 22.45it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.71it/s]
[2024/07/27 23:57:56] ppocr INFO: cur metric, precision: 0.5990648743424898, recall: 0.49350024073182475, hmean: 0.5411826821541711, fps: 46.257031849573245
[2024/07/27 23:57:56] ppocr INFO: best metric, hmean: 0.5631016042780749, precision: 0.6331930246542393, recall: 0.5069812229176697, fps: 44.85164591471328, best_epoch: 160
[2024/07/27 23:57:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:58:03] ppocr INFO: epoch: [221/1500], global_step: 663, lr: 0.001000, loss: 1.965129, loss_shrink_maps: 1.083242, loss_threshold_maps: 0.678481, loss_binary_maps: 0.214573, avg_reader_cost: 1.64394 s, avg_batch_cost: 1.92655 s, avg_samples: 12.5, ips: 6.48829 samples/s, eta: 6:39:59
[2024/07/27 23:58:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:58:11] ppocr INFO: epoch: [222/1500], global_step: 666, lr: 0.001000, loss: 1.955548, loss_shrink_maps: 1.065690, loss_threshold_maps: 0.678481, loss_binary_maps: 0.211132, avg_reader_cost: 1.53624 s, avg_batch_cost: 1.76447 s, avg_samples: 12.5, ips: 7.08428 samples/s, eta: 6:39:34
[2024/07/27 23:58:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:58:18] ppocr INFO: epoch: [223/1500], global_step: 669, lr: 0.001000, loss: 1.928618, loss_shrink_maps: 1.053649, loss_threshold_maps: 0.678481, loss_binary_maps: 0.208929, avg_reader_cost: 1.51394 s, avg_batch_cost: 1.74361 s, avg_samples: 12.5, ips: 7.16903 samples/s, eta: 6:39:08
[2024/07/27 23:58:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:58:24] ppocr INFO: epoch: [224/1500], global_step: 670, lr: 0.001000, loss: 1.955548, loss_shrink_maps: 1.060485, loss_threshold_maps: 0.683850, loss_binary_maps: 0.209912, avg_reader_cost: 0.41512 s, avg_batch_cost: 0.50434 s, avg_samples: 4.8, ips: 9.51744 samples/s, eta: 6:38:54
[2024/07/27 23:58:26] ppocr INFO: epoch: [224/1500], global_step: 672, lr: 0.001000, loss: 1.943865, loss_shrink_maps: 1.060485, loss_threshold_maps: 0.663960, loss_binary_maps: 0.209912, avg_reader_cost: 1.09963 s, avg_batch_cost: 1.24533 s, avg_samples: 7.7, ips: 6.18310 samples/s, eta: 6:38:42
[2024/07/27 23:58:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:58:33] ppocr INFO: epoch: [225/1500], global_step: 675, lr: 0.001000, loss: 1.937782, loss_shrink_maps: 1.060485, loss_threshold_maps: 0.659131, loss_binary_maps: 0.209912, avg_reader_cost: 1.51363 s, avg_batch_cost: 1.74843 s, avg_samples: 12.5, ips: 7.14927 samples/s, eta: 6:38:16
[2024/07/27 23:58:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:58:41] ppocr INFO: epoch: [226/1500], global_step: 678, lr: 0.001000, loss: 1.937782, loss_shrink_maps: 1.060485, loss_threshold_maps: 0.659131, loss_binary_maps: 0.209912, avg_reader_cost: 1.52364 s, avg_batch_cost: 1.77462 s, avg_samples: 12.5, ips: 7.04377 samples/s, eta: 6:37:51
[2024/07/27 23:58:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:58:48] ppocr INFO: epoch: [227/1500], global_step: 680, lr: 0.001000, loss: 1.937782, loss_shrink_maps: 1.050684, loss_threshold_maps: 0.659131, loss_binary_maps: 0.208214, avg_reader_cost: 0.92222 s, avg_batch_cost: 1.09661 s, avg_samples: 9.6, ips: 8.75427 samples/s, eta: 6:37:30
[2024/07/27 23:58:48] ppocr INFO: epoch: [227/1500], global_step: 681, lr: 0.001000, loss: 1.937782, loss_shrink_maps: 1.050684, loss_threshold_maps: 0.652108, loss_binary_maps: 0.208214, avg_reader_cost: 0.59437 s, avg_batch_cost: 0.64928 s, avg_samples: 2.9, ips: 4.46652 samples/s, eta: 6:37:25
[2024/07/27 23:58:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:58:56] ppocr INFO: epoch: [228/1500], global_step: 684, lr: 0.001000, loss: 1.847172, loss_shrink_maps: 1.010317, loss_threshold_maps: 0.650323, loss_binary_maps: 0.200288, avg_reader_cost: 1.51587 s, avg_batch_cost: 1.76991 s, avg_samples: 12.5, ips: 7.06252 samples/s, eta: 6:37:01
[2024/07/27 23:58:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:59:04] ppocr INFO: epoch: [229/1500], global_step: 687, lr: 0.001000, loss: 1.915916, loss_shrink_maps: 1.049010, loss_threshold_maps: 0.652108, loss_binary_maps: 0.207847, avg_reader_cost: 1.57138 s, avg_batch_cost: 1.80000 s, avg_samples: 12.5, ips: 6.94445 samples/s, eta: 6:36:38
[2024/07/27 23:59:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:59:11] ppocr INFO: epoch: [230/1500], global_step: 690, lr: 0.001000, loss: 1.915916, loss_shrink_maps: 1.044336, loss_threshold_maps: 0.653428, loss_binary_maps: 0.206772, avg_reader_cost: 1.54494 s, avg_batch_cost: 1.80365 s, avg_samples: 12.5, ips: 6.93039 samples/s, eta: 6:36:16
[2024/07/27 23:59:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:59:19] ppocr INFO: epoch: [231/1500], global_step: 693, lr: 0.001000, loss: 1.876064, loss_shrink_maps: 1.013966, loss_threshold_maps: 0.665792, loss_binary_maps: 0.200484, avg_reader_cost: 1.53779 s, avg_batch_cost: 1.77274 s, avg_samples: 12.5, ips: 7.05124 samples/s, eta: 6:35:51
[2024/07/27 23:59:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:59:26] ppocr INFO: epoch: [232/1500], global_step: 696, lr: 0.001000, loss: 1.815720, loss_shrink_maps: 0.943777, loss_threshold_maps: 0.653266, loss_binary_maps: 0.186580, avg_reader_cost: 1.53779 s, avg_batch_cost: 1.77134 s, avg_samples: 12.5, ips: 7.05681 samples/s, eta: 6:35:27
[2024/07/27 23:59:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:59:34] ppocr INFO: epoch: [233/1500], global_step: 699, lr: 0.001000, loss: 1.853877, loss_shrink_maps: 0.998295, loss_threshold_maps: 0.661105, loss_binary_maps: 0.197383, avg_reader_cost: 1.49522 s, avg_batch_cost: 1.73051 s, avg_samples: 12.5, ips: 7.22332 samples/s, eta: 6:35:01
[2024/07/27 23:59:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:59:40] ppocr INFO: epoch: [234/1500], global_step: 700, lr: 0.001000, loss: 1.835105, loss_shrink_maps: 0.977694, loss_threshold_maps: 0.657238, loss_binary_maps: 0.193419, avg_reader_cost: 0.40982 s, avg_batch_cost: 0.50681 s, avg_samples: 4.8, ips: 9.47105 samples/s, eta: 6:34:48
[2024/07/27 23:59:41] ppocr INFO: epoch: [234/1500], global_step: 702, lr: 0.001000, loss: 1.853877, loss_shrink_maps: 0.998295, loss_threshold_maps: 0.661105, loss_binary_maps: 0.197383, avg_reader_cost: 1.10464 s, avg_batch_cost: 1.25039 s, avg_samples: 7.7, ips: 6.15810 samples/s, eta: 6:34:36
[2024/07/27 23:59:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:59:49] ppocr INFO: epoch: [235/1500], global_step: 705, lr: 0.001000, loss: 1.840976, loss_shrink_maps: 0.986208, loss_threshold_maps: 0.659810, loss_binary_maps: 0.195000, avg_reader_cost: 1.58766 s, avg_batch_cost: 1.81685 s, avg_samples: 12.5, ips: 6.88005 samples/s, eta: 6:34:14
[2024/07/27 23:59:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/27 23:59:56] ppocr INFO: epoch: [236/1500], global_step: 708, lr: 0.001000, loss: 1.813416, loss_shrink_maps: 0.962930, loss_threshold_maps: 0.657158, loss_binary_maps: 0.190320, avg_reader_cost: 1.52386 s, avg_batch_cost: 1.76193 s, avg_samples: 12.5, ips: 7.09450 samples/s, eta: 6:33:50
[2024/07/27 23:59:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:00:04] ppocr INFO: epoch: [237/1500], global_step: 710, lr: 0.001000, loss: 1.797323, loss_shrink_maps: 0.957191, loss_threshold_maps: 0.644491, loss_binary_maps: 0.189817, avg_reader_cost: 1.07206 s, avg_batch_cost: 1.24575 s, avg_samples: 9.6, ips: 7.70617 samples/s, eta: 6:33:38
[2024/07/28 00:00:05] ppocr INFO: epoch: [237/1500], global_step: 711, lr: 0.001000, loss: 1.803004, loss_shrink_maps: 0.959592, loss_threshold_maps: 0.652772, loss_binary_maps: 0.190269, avg_reader_cost: 0.66907 s, avg_batch_cost: 0.72351 s, avg_samples: 2.9, ips: 4.00821 samples/s, eta: 6:33:37
[2024/07/28 00:00:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:00:12] ppocr INFO: epoch: [238/1500], global_step: 714, lr: 0.001000, loss: 1.797323, loss_shrink_maps: 0.959592, loss_threshold_maps: 0.644491, loss_binary_maps: 0.190269, avg_reader_cost: 1.51875 s, avg_batch_cost: 1.74721 s, avg_samples: 12.5, ips: 7.15427 samples/s, eta: 6:33:11
[2024/07/28 00:00:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:00:20] ppocr INFO: epoch: [239/1500], global_step: 717, lr: 0.001000, loss: 1.798698, loss_shrink_maps: 0.959592, loss_threshold_maps: 0.652772, loss_binary_maps: 0.190269, avg_reader_cost: 1.56034 s, avg_batch_cost: 1.78880 s, avg_samples: 12.5, ips: 6.98794 samples/s, eta: 6:32:48
[2024/07/28 00:00:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:00:28] ppocr INFO: epoch: [240/1500], global_step: 720, lr: 0.001000, loss: 1.784104, loss_shrink_maps: 0.951852, loss_threshold_maps: 0.644102, loss_binary_maps: 0.188988, avg_reader_cost: 1.50066 s, avg_batch_cost: 1.75778 s, avg_samples: 12.5, ips: 7.11124 samples/s, eta: 6:32:24

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 2/500 [00:00<00:38, 12.93it/s]
eval model::   1%|          | 5/500 [00:00<00:26, 18.71it/s]
eval model::   1%|▏         | 7/500 [00:00<00:25, 19.14it/s]
eval model::   2%|▏         | 9/500 [00:00<00:25, 18.95it/s]
eval model::   2%|▏         | 11/500 [00:00<00:26, 18.47it/s]
eval model::   3%|▎         | 14/500 [00:00<00:25, 19.22it/s]
eval model::   4%|▎         | 18/500 [00:00<00:21, 21.98it/s]
eval model::   4%|▍         | 21/500 [00:01<00:25, 18.76it/s]
eval model::   5%|▌         | 25/500 [00:01<00:21, 21.90it/s]
eval model::   6%|▌         | 28/500 [00:01<00:21, 21.64it/s]
eval model::   6%|▌         | 31/500 [00:01<00:23, 19.71it/s]
eval model::   7%|▋         | 34/500 [00:01<00:25, 18.30it/s]
eval model::   7%|▋         | 37/500 [00:01<00:23, 19.44it/s]
eval model::   8%|▊         | 40/500 [00:02<00:25, 18.24it/s]
eval model::   8%|▊         | 42/500 [00:02<00:25, 18.03it/s]
eval model::   9%|▉         | 45/500 [00:02<00:22, 20.22it/s]
eval model::  10%|▉         | 48/500 [00:02<00:21, 20.62it/s]
eval model::  10%|█         | 51/500 [00:02<00:21, 20.60it/s]
eval model::  11%|█         | 54/500 [00:02<00:22, 19.84it/s]
eval model::  11%|█▏        | 57/500 [00:02<00:22, 20.08it/s]
eval model::  12%|█▏        | 60/500 [00:03<00:22, 19.61it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:26, 16.62it/s]
eval model::  13%|█▎        | 64/500 [00:03<00:26, 16.44it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:23, 18.80it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:22, 18.90it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:20, 20.64it/s]
eval model::  15%|█▌        | 75/500 [00:03<00:20, 21.23it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:20, 20.47it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:19, 21.94it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:20, 20.24it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:23, 17.41it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:23, 17.70it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:22, 18.01it/s]
eval model::  19%|█▉        | 94/500 [00:04<00:21, 19.02it/s]
eval model::  19%|█▉        | 96/500 [00:04<00:21, 18.90it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:21, 18.65it/s]
eval model::  20%|██        | 101/500 [00:05<00:21, 18.37it/s]
eval model::  21%|██        | 104/500 [00:05<00:20, 19.02it/s]
eval model::  21%|██▏       | 107/500 [00:05<00:18, 21.26it/s]
eval model::  22%|██▏       | 110/500 [00:05<00:18, 21.30it/s]
eval model::  23%|██▎       | 113/500 [00:05<00:17, 22.26it/s]
eval model::  23%|██▎       | 116/500 [00:05<00:16, 23.36it/s]
eval model::  24%|██▍       | 119/500 [00:06<00:16, 22.83it/s]
eval model::  24%|██▍       | 122/500 [00:06<00:18, 20.09it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:19, 19.63it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:19, 18.89it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:20, 17.74it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:20, 17.88it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:18, 20.11it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:16, 21.39it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:16, 21.51it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:16, 21.26it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:19, 18.28it/s]
eval model::  30%|███       | 150/500 [00:07<00:17, 20.08it/s]
eval model::  31%|███       | 153/500 [00:07<00:18, 18.47it/s]
eval model::  31%|███       | 156/500 [00:07<00:16, 20.76it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:16, 20.47it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:18, 18.14it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:18, 18.15it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:17, 18.92it/s]
eval model::  34%|███▍      | 170/500 [00:08<00:15, 20.93it/s]
eval model::  35%|███▍      | 173/500 [00:08<00:17, 18.66it/s]
eval model::  35%|███▌      | 175/500 [00:09<00:21, 15.11it/s]
eval model::  35%|███▌      | 177/500 [00:09<00:20, 16.01it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:21, 15.08it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:19, 16.35it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:16, 18.65it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:16, 18.54it/s]
eval model::  38%|███▊      | 192/500 [00:09<00:15, 19.73it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:14, 21.11it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:14, 20.65it/s]
eval model::  40%|████      | 201/500 [00:10<00:14, 20.80it/s]
eval model::  41%|████      | 204/500 [00:10<00:13, 21.58it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:20, 14.55it/s]
eval model::  42%|████▏     | 209/500 [00:10<00:19, 15.17it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:19, 15.17it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.61it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:21, 13.46it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:22, 12.71it/s]
eval model::  44%|████▍     | 219/500 [00:11<00:19, 14.12it/s]
eval model::  44%|████▍     | 221/500 [00:11<00:21, 13.14it/s]
eval model::  45%|████▍     | 224/500 [00:12<00:17, 15.81it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:16, 16.17it/s]
eval model::  46%|████▌     | 229/500 [00:12<00:14, 18.90it/s]
eval model::  46%|████▋     | 232/500 [00:12<00:12, 21.16it/s]
eval model::  47%|████▋     | 235/500 [00:12<00:12, 20.73it/s]
eval model::  48%|████▊     | 238/500 [00:12<00:11, 21.91it/s]
eval model::  48%|████▊     | 241/500 [00:12<00:12, 20.92it/s]
eval model::  49%|████▉     | 244/500 [00:12<00:13, 19.01it/s]
eval model::  49%|████▉     | 247/500 [00:13<00:12, 20.58it/s]
eval model::  50%|█████     | 250/500 [00:13<00:12, 19.61it/s]
eval model::  51%|█████     | 253/500 [00:13<00:11, 21.12it/s]
eval model::  51%|█████     | 256/500 [00:13<00:11, 21.97it/s]
eval model::  52%|█████▏    | 259/500 [00:13<00:10, 23.42it/s]
eval model::  52%|█████▏    | 262/500 [00:13<00:10, 23.50it/s]
eval model::  53%|█████▎    | 265/500 [00:13<00:12, 19.17it/s]
eval model::  54%|█████▎    | 268/500 [00:14<00:11, 19.82it/s]
eval model::  54%|█████▍    | 271/500 [00:14<00:11, 20.72it/s]
eval model::  55%|█████▍    | 274/500 [00:14<00:11, 19.91it/s]
eval model::  55%|█████▌    | 277/500 [00:14<00:11, 19.14it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:11, 19.11it/s]
eval model::  56%|█████▋    | 282/500 [00:14<00:10, 21.24it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:14, 15.09it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:13, 15.82it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:10, 19.72it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:11, 18.10it/s]
eval model::  59%|█████▉    | 297/500 [00:15<00:11, 17.07it/s]
eval model::  60%|██████    | 300/500 [00:15<00:11, 16.91it/s]
eval model::  61%|██████    | 303/500 [00:16<00:10, 18.44it/s]
eval model::  61%|██████    | 306/500 [00:16<00:09, 19.52it/s]
eval model::  62%|██████▏   | 309/500 [00:16<00:09, 19.87it/s]
eval model::  62%|██████▏   | 312/500 [00:16<00:09, 20.55it/s]
eval model::  63%|██████▎   | 315/500 [00:16<00:08, 20.58it/s]
eval model::  64%|██████▎   | 318/500 [00:16<00:08, 20.71it/s]
eval model::  64%|██████▍   | 321/500 [00:16<00:08, 20.45it/s]
eval model::  65%|██████▍   | 324/500 [00:17<00:08, 20.68it/s]
eval model::  65%|██████▌   | 327/500 [00:17<00:07, 22.24it/s]
eval model::  66%|██████▌   | 330/500 [00:17<00:08, 20.65it/s]
eval model::  67%|██████▋   | 333/500 [00:17<00:07, 21.80it/s]
eval model::  67%|██████▋   | 336/500 [00:17<00:07, 22.76it/s]
eval model::  68%|██████▊   | 339/500 [00:17<00:08, 18.37it/s]
eval model::  68%|██████▊   | 342/500 [00:18<00:10, 15.13it/s]
eval model::  69%|██████▉   | 345/500 [00:18<00:09, 16.80it/s]
eval model::  69%|██████▉   | 347/500 [00:18<00:08, 17.34it/s]
eval model::  70%|███████   | 350/500 [00:18<00:08, 18.24it/s]
eval model::  71%|███████   | 353/500 [00:18<00:07, 19.64it/s]
eval model::  71%|███████   | 356/500 [00:18<00:07, 19.03it/s]
eval model::  72%|███████▏  | 359/500 [00:18<00:06, 20.24it/s]
eval model::  72%|███████▏  | 362/500 [00:19<00:06, 20.37it/s]
eval model::  73%|███████▎  | 365/500 [00:19<00:06, 20.52it/s]
eval model::  74%|███████▎  | 368/500 [00:19<00:06, 20.31it/s]
eval model::  74%|███████▍  | 371/500 [00:19<00:06, 20.04it/s]
eval model::  75%|███████▍  | 374/500 [00:19<00:06, 19.49it/s]
eval model::  75%|███████▌  | 377/500 [00:19<00:06, 20.47it/s]
eval model::  76%|███████▌  | 380/500 [00:19<00:05, 21.21it/s]
eval model::  77%|███████▋  | 383/500 [00:19<00:05, 23.13it/s]
eval model::  77%|███████▋  | 386/500 [00:20<00:08, 14.12it/s]
eval model::  78%|███████▊  | 389/500 [00:20<00:06, 16.28it/s]
eval model::  78%|███████▊  | 392/500 [00:20<00:06, 17.22it/s]
eval model::  79%|███████▉  | 395/500 [00:20<00:05, 18.45it/s]
eval model::  80%|███████▉  | 398/500 [00:20<00:04, 20.51it/s]
eval model::  80%|████████  | 401/500 [00:21<00:05, 19.37it/s]
eval model::  81%|████████  | 404/500 [00:21<00:04, 21.13it/s]
eval model::  81%|████████▏ | 407/500 [00:21<00:04, 22.34it/s]
eval model::  82%|████████▏ | 410/500 [00:21<00:03, 22.82it/s]
eval model::  83%|████████▎ | 413/500 [00:21<00:03, 22.50it/s]
eval model::  83%|████████▎ | 416/500 [00:21<00:04, 20.21it/s]
eval model::  84%|████████▍ | 419/500 [00:21<00:04, 20.20it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:04, 16.01it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:04, 15.92it/s]
eval model::  85%|████████▌ | 426/500 [00:22<00:04, 16.17it/s]
eval model::  86%|████████▌ | 429/500 [00:22<00:03, 18.10it/s]
eval model::  86%|████████▌ | 431/500 [00:22<00:03, 17.72it/s]
eval model::  87%|████████▋ | 434/500 [00:22<00:03, 20.07it/s]
eval model::  87%|████████▋ | 437/500 [00:22<00:02, 21.86it/s]
eval model::  88%|████████▊ | 440/500 [00:23<00:02, 20.15it/s]
eval model::  89%|████████▊ | 443/500 [00:23<00:02, 21.87it/s]
eval model::  89%|████████▉ | 446/500 [00:23<00:02, 21.62it/s]
eval model::  90%|████████▉ | 449/500 [00:23<00:02, 19.90it/s]
eval model::  90%|█████████ | 452/500 [00:23<00:02, 21.83it/s]
eval model::  91%|█████████ | 455/500 [00:23<00:02, 22.04it/s]
eval model::  92%|█████████▏| 458/500 [00:23<00:01, 22.17it/s]
eval model::  92%|█████████▏| 461/500 [00:24<00:01, 21.98it/s]
eval model::  93%|█████████▎| 464/500 [00:24<00:01, 18.33it/s]
eval model::  93%|█████████▎| 466/500 [00:24<00:01, 17.03it/s]
eval model::  94%|█████████▍| 469/500 [00:24<00:01, 18.60it/s]
eval model::  94%|█████████▍| 472/500 [00:24<00:01, 18.99it/s]
eval model::  95%|█████████▍| 474/500 [00:24<00:01, 18.85it/s]
eval model::  95%|█████████▌| 477/500 [00:24<00:01, 20.97it/s]
eval model::  96%|█████████▌| 480/500 [00:25<00:00, 20.68it/s]
eval model::  97%|█████████▋| 483/500 [00:25<00:00, 22.00it/s]
eval model::  97%|█████████▋| 486/500 [00:25<00:00, 20.42it/s]
eval model::  98%|█████████▊| 489/500 [00:25<00:00, 21.53it/s]
eval model::  98%|█████████▊| 492/500 [00:25<00:00, 20.44it/s]
eval model::  99%|█████████▉| 495/500 [00:25<00:00, 21.39it/s]
eval model:: 100%|█████████▉| 498/500 [00:25<00:00, 22.28it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.28it/s]
[2024/07/28 00:00:54] ppocr INFO: cur metric, precision: 0.6414565826330533, recall: 0.5512758786711603, hmean: 0.5929570170895909, fps: 44.78792511087625
[2024/07/28 00:00:54] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/28 00:00:54] ppocr INFO: best metric, hmean: 0.5929570170895909, precision: 0.6414565826330533, recall: 0.5512758786711603, fps: 44.78792511087625, best_epoch: 240
[2024/07/28 00:00:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:01:01] ppocr INFO: epoch: [241/1500], global_step: 723, lr: 0.001000, loss: 1.784104, loss_shrink_maps: 0.951852, loss_threshold_maps: 0.644102, loss_binary_maps: 0.188988, avg_reader_cost: 1.55072 s, avg_batch_cost: 1.84335 s, avg_samples: 12.5, ips: 6.78115 samples/s, eta: 6:32:04
[2024/07/28 00:01:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:01:08] ppocr INFO: epoch: [242/1500], global_step: 726, lr: 0.001000, loss: 1.772211, loss_shrink_maps: 0.948284, loss_threshold_maps: 0.641719, loss_binary_maps: 0.187887, avg_reader_cost: 1.49310 s, avg_batch_cost: 1.72724 s, avg_samples: 12.5, ips: 7.23697 samples/s, eta: 6:31:38
[2024/07/28 00:01:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:01:16] ppocr INFO: epoch: [243/1500], global_step: 729, lr: 0.001000, loss: 1.813181, loss_shrink_maps: 0.959519, loss_threshold_maps: 0.647060, loss_binary_maps: 0.190645, avg_reader_cost: 1.49833 s, avg_batch_cost: 1.73537 s, avg_samples: 12.5, ips: 7.20309 samples/s, eta: 6:31:12
[2024/07/28 00:01:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:01:22] ppocr INFO: epoch: [244/1500], global_step: 730, lr: 0.001000, loss: 1.841196, loss_shrink_maps: 0.987987, loss_threshold_maps: 0.650143, loss_binary_maps: 0.195648, avg_reader_cost: 0.43857 s, avg_batch_cost: 0.55638 s, avg_samples: 4.8, ips: 8.62726 samples/s, eta: 6:31:03
[2024/07/28 00:01:24] ppocr INFO: epoch: [244/1500], global_step: 732, lr: 0.001000, loss: 1.847384, loss_shrink_maps: 0.990791, loss_threshold_maps: 0.650143, loss_binary_maps: 0.195889, avg_reader_cost: 1.20422 s, avg_batch_cost: 1.34918 s, avg_samples: 7.7, ips: 5.70716 samples/s, eta: 6:30:56
[2024/07/28 00:01:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:01:31] ppocr INFO: epoch: [245/1500], global_step: 735, lr: 0.001000, loss: 1.868314, loss_shrink_maps: 1.013077, loss_threshold_maps: 0.655977, loss_binary_maps: 0.199961, avg_reader_cost: 1.49581 s, avg_batch_cost: 1.75048 s, avg_samples: 12.5, ips: 7.14092 samples/s, eta: 6:30:31
[2024/07/28 00:01:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:01:40] ppocr INFO: epoch: [246/1500], global_step: 738, lr: 0.001000, loss: 1.849946, loss_shrink_maps: 1.000967, loss_threshold_maps: 0.653850, loss_binary_maps: 0.197480, avg_reader_cost: 1.63330 s, avg_batch_cost: 1.95986 s, avg_samples: 12.5, ips: 6.37802 samples/s, eta: 6:30:17
[2024/07/28 00:01:41] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:01:47] ppocr INFO: epoch: [247/1500], global_step: 740, lr: 0.001000, loss: 1.868314, loss_shrink_maps: 1.013077, loss_threshold_maps: 0.653850, loss_binary_maps: 0.199961, avg_reader_cost: 0.95782 s, avg_batch_cost: 1.13165 s, avg_samples: 9.6, ips: 8.48318 samples/s, eta: 6:29:59
[2024/07/28 00:01:47] ppocr INFO: epoch: [247/1500], global_step: 741, lr: 0.001000, loss: 1.885513, loss_shrink_maps: 1.025466, loss_threshold_maps: 0.655977, loss_binary_maps: 0.202593, avg_reader_cost: 0.61153 s, avg_batch_cost: 0.66637 s, avg_samples: 2.9, ips: 4.35196 samples/s, eta: 6:29:55
[2024/07/28 00:01:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:01:55] ppocr INFO: epoch: [248/1500], global_step: 744, lr: 0.001000, loss: 1.868598, loss_shrink_maps: 1.018184, loss_threshold_maps: 0.652264, loss_binary_maps: 0.201208, avg_reader_cost: 1.50633 s, avg_batch_cost: 1.73442 s, avg_samples: 12.5, ips: 7.20702 samples/s, eta: 6:29:29
[2024/07/28 00:01:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:02:02] ppocr INFO: epoch: [249/1500], global_step: 747, lr: 0.001000, loss: 1.868598, loss_shrink_maps: 1.018184, loss_threshold_maps: 0.647506, loss_binary_maps: 0.201208, avg_reader_cost: 1.49978 s, avg_batch_cost: 1.73700 s, avg_samples: 12.5, ips: 7.19630 samples/s, eta: 6:29:04
[2024/07/28 00:02:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:02:11] ppocr INFO: epoch: [250/1500], global_step: 750, lr: 0.001000, loss: 1.825942, loss_shrink_maps: 0.987744, loss_threshold_maps: 0.641039, loss_binary_maps: 0.195467, avg_reader_cost: 1.73185 s, avg_batch_cost: 1.97257 s, avg_samples: 12.5, ips: 6.33693 samples/s, eta: 6:28:51
[2024/07/28 00:02:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:02:19] ppocr INFO: epoch: [251/1500], global_step: 753, lr: 0.001000, loss: 1.803528, loss_shrink_maps: 0.961742, loss_threshold_maps: 0.622845, loss_binary_maps: 0.190209, avg_reader_cost: 1.62251 s, avg_batch_cost: 1.85830 s, avg_samples: 12.5, ips: 6.72658 samples/s, eta: 6:28:32
[2024/07/28 00:02:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:02:26] ppocr INFO: epoch: [252/1500], global_step: 756, lr: 0.001000, loss: 1.792442, loss_shrink_maps: 0.971797, loss_threshold_maps: 0.618936, loss_binary_maps: 0.193008, avg_reader_cost: 1.51234 s, avg_batch_cost: 1.74667 s, avg_samples: 12.5, ips: 7.15647 samples/s, eta: 6:28:07
[2024/07/28 00:02:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:02:34] ppocr INFO: epoch: [253/1500], global_step: 759, lr: 0.001000, loss: 1.792442, loss_shrink_maps: 0.961742, loss_threshold_maps: 0.622225, loss_binary_maps: 0.190209, avg_reader_cost: 1.53818 s, avg_batch_cost: 1.77038 s, avg_samples: 12.5, ips: 7.06061 samples/s, eta: 6:27:44
[2024/07/28 00:02:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:02:40] ppocr INFO: epoch: [254/1500], global_step: 760, lr: 0.001000, loss: 1.792442, loss_shrink_maps: 0.961742, loss_threshold_maps: 0.622225, loss_binary_maps: 0.190685, avg_reader_cost: 0.43149 s, avg_batch_cost: 0.51487 s, avg_samples: 4.8, ips: 9.32268 samples/s, eta: 6:27:32
[2024/07/28 00:02:42] ppocr INFO: epoch: [254/1500], global_step: 762, lr: 0.001000, loss: 1.792442, loss_shrink_maps: 0.961742, loss_threshold_maps: 0.622225, loss_binary_maps: 0.190685, avg_reader_cost: 1.12132 s, avg_batch_cost: 1.26731 s, avg_samples: 7.7, ips: 6.07588 samples/s, eta: 6:27:21
[2024/07/28 00:02:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:02:49] ppocr INFO: epoch: [255/1500], global_step: 765, lr: 0.001000, loss: 1.781576, loss_shrink_maps: 0.953593, loss_threshold_maps: 0.623635, loss_binary_maps: 0.188736, avg_reader_cost: 1.50441 s, avg_batch_cost: 1.75992 s, avg_samples: 12.5, ips: 7.10261 samples/s, eta: 6:26:57
[2024/07/28 00:02:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:02:57] ppocr INFO: epoch: [256/1500], global_step: 768, lr: 0.001000, loss: 1.769766, loss_shrink_maps: 0.950090, loss_threshold_maps: 0.622944, loss_binary_maps: 0.187904, avg_reader_cost: 1.64758 s, avg_batch_cost: 1.87630 s, avg_samples: 12.5, ips: 6.66203 samples/s, eta: 6:26:39
[2024/07/28 00:02:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:03:04] ppocr INFO: epoch: [257/1500], global_step: 770, lr: 0.001000, loss: 1.769766, loss_shrink_maps: 0.950090, loss_threshold_maps: 0.623635, loss_binary_maps: 0.187904, avg_reader_cost: 0.90101 s, avg_batch_cost: 1.09046 s, avg_samples: 9.6, ips: 8.80359 samples/s, eta: 6:26:19
[2024/07/28 00:03:05] ppocr INFO: epoch: [257/1500], global_step: 771, lr: 0.001000, loss: 1.778686, loss_shrink_maps: 0.953593, loss_threshold_maps: 0.627518, loss_binary_maps: 0.188736, avg_reader_cost: 0.59092 s, avg_batch_cost: 0.64568 s, avg_samples: 2.9, ips: 4.49140 samples/s, eta: 6:26:14
[2024/07/28 00:03:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:03:12] ppocr INFO: epoch: [258/1500], global_step: 774, lr: 0.001000, loss: 1.778686, loss_shrink_maps: 0.949875, loss_threshold_maps: 0.627586, loss_binary_maps: 0.188342, avg_reader_cost: 1.52490 s, avg_batch_cost: 1.77401 s, avg_samples: 12.5, ips: 7.04618 samples/s, eta: 6:25:51
[2024/07/28 00:03:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:03:20] ppocr INFO: epoch: [259/1500], global_step: 777, lr: 0.001000, loss: 1.770768, loss_shrink_maps: 0.943155, loss_threshold_maps: 0.627586, loss_binary_maps: 0.186393, avg_reader_cost: 1.51260 s, avg_batch_cost: 1.75048 s, avg_samples: 12.5, ips: 7.14091 samples/s, eta: 6:25:27
[2024/07/28 00:03:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:03:28] ppocr INFO: epoch: [260/1500], global_step: 780, lr: 0.001000, loss: 1.779805, loss_shrink_maps: 0.949300, loss_threshold_maps: 0.627586, loss_binary_maps: 0.187436, avg_reader_cost: 1.55198 s, avg_batch_cost: 1.78005 s, avg_samples: 12.5, ips: 7.02226 samples/s, eta: 6:25:05

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:54,  9.24it/s]
eval model::   1%|          | 4/500 [00:00<00:30, 16.09it/s]
eval model::   1%|          | 6/500 [00:00<00:29, 16.63it/s]
eval model::   2%|▏         | 9/500 [00:00<00:26, 18.54it/s]
eval model::   2%|▏         | 11/500 [00:00<00:28, 17.07it/s]
eval model::   3%|▎         | 14/500 [00:00<00:26, 18.59it/s]
eval model::   3%|▎         | 17/500 [00:00<00:23, 20.41it/s]
eval model::   4%|▍         | 20/500 [00:01<00:26, 18.42it/s]
eval model::   5%|▍         | 23/500 [00:01<00:22, 20.91it/s]
eval model::   5%|▌         | 26/500 [00:01<00:24, 19.42it/s]
eval model::   6%|▌         | 29/500 [00:01<00:24, 18.86it/s]
eval model::   6%|▌         | 31/500 [00:01<00:25, 18.22it/s]
eval model::   7%|▋         | 34/500 [00:01<00:25, 18.25it/s]
eval model::   7%|▋         | 37/500 [00:01<00:23, 19.82it/s]
eval model::   8%|▊         | 40/500 [00:02<00:24, 18.54it/s]
eval model::   8%|▊         | 42/500 [00:02<00:27, 16.74it/s]
eval model::   9%|▉         | 44/500 [00:02<00:26, 17.41it/s]
eval model::   9%|▉         | 46/500 [00:02<00:25, 17.47it/s]
eval model::  10%|▉         | 49/500 [00:02<00:22, 20.39it/s]
eval model::  10%|█         | 52/500 [00:02<00:21, 20.54it/s]
eval model::  11%|█         | 55/500 [00:02<00:21, 21.13it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:20, 21.05it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:25, 17.23it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:27, 15.63it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:24, 17.88it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:21, 20.33it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:20, 21.23it/s]
eval model::  15%|█▌        | 75/500 [00:03<00:21, 19.91it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:20, 20.39it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:18, 22.35it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:19, 21.84it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:20, 19.75it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:22, 18.59it/s]
eval model::  18%|█▊        | 92/500 [00:04<00:21, 18.87it/s]
eval model::  19%|█▉        | 95/500 [00:04<00:20, 19.36it/s]
eval model::  20%|█▉        | 98/500 [00:05<00:19, 20.43it/s]
eval model::  20%|██        | 101/500 [00:05<00:19, 20.37it/s]
eval model::  21%|██        | 104/500 [00:05<00:18, 21.22it/s]
eval model::  21%|██▏       | 107/500 [00:05<00:18, 21.72it/s]
eval model::  22%|██▏       | 110/500 [00:05<00:17, 22.53it/s]
eval model::  23%|██▎       | 113/500 [00:05<00:16, 23.03it/s]
eval model::  23%|██▎       | 116/500 [00:05<00:18, 21.21it/s]
eval model::  24%|██▍       | 119/500 [00:06<00:17, 21.72it/s]
eval model::  24%|██▍       | 122/500 [00:06<00:18, 20.97it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:19, 18.81it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:18, 19.86it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:18, 19.58it/s]
eval model::  27%|██▋       | 133/500 [00:06<00:19, 19.25it/s]
eval model::  27%|██▋       | 136/500 [00:06<00:17, 20.46it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:18, 19.32it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:18, 19.09it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:18, 19.24it/s]
eval model::  29%|██▉       | 146/500 [00:07<00:19, 18.42it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:20, 17.43it/s]
eval model::  30%|███       | 151/500 [00:07<00:20, 17.02it/s]
eval model::  31%|███       | 155/500 [00:07<00:16, 21.13it/s]
eval model::  32%|███▏      | 158/500 [00:08<00:15, 22.03it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:18, 18.58it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:17, 19.70it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:17, 19.17it/s]
eval model::  34%|███▍      | 170/500 [00:08<00:16, 19.97it/s]
eval model::  35%|███▍      | 173/500 [00:08<00:17, 18.64it/s]
eval model::  35%|███▌      | 175/500 [00:09<00:20, 15.49it/s]
eval model::  36%|███▌      | 178/500 [00:09<00:18, 17.39it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:22, 14.48it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:19, 16.48it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:17, 18.22it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:16, 19.34it/s]
eval model::  38%|███▊      | 192/500 [00:09<00:15, 20.18it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:15, 20.00it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:15, 19.41it/s]
eval model::  40%|████      | 201/500 [00:10<00:14, 19.98it/s]
eval model::  41%|████      | 204/500 [00:10<00:14, 20.84it/s]
eval model::  41%|████▏     | 207/500 [00:11<00:23, 12.72it/s]
eval model::  42%|████▏     | 209/500 [00:11<00:22, 13.05it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:20, 13.90it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:19, 14.85it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:21, 13.21it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:22, 12.84it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:18, 15.44it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:18, 14.75it/s]
eval model::  45%|████▌     | 225/500 [00:12<00:15, 17.83it/s]
eval model::  45%|████▌     | 227/500 [00:12<00:15, 17.83it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:13, 19.67it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:12, 20.67it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:12, 20.72it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:12, 21.18it/s]
eval model::  48%|████▊     | 242/500 [00:12<00:13, 19.49it/s]
eval model::  49%|████▉     | 245/500 [00:13<00:12, 21.16it/s]
eval model::  50%|████▉     | 248/500 [00:13<00:11, 21.96it/s]
eval model::  50%|█████     | 251/500 [00:13<00:11, 20.97it/s]
eval model::  51%|█████     | 254/500 [00:13<00:11, 21.70it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:11, 21.68it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:10, 23.39it/s]
eval model::  53%|█████▎    | 263/500 [00:13<00:10, 22.79it/s]
eval model::  53%|█████▎    | 266/500 [00:14<00:12, 18.35it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:12, 18.92it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:12, 18.69it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:12, 18.21it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:12, 18.47it/s]
eval model::  56%|█████▌    | 280/500 [00:14<00:13, 16.81it/s]
eval model::  56%|█████▋    | 282/500 [00:15<00:12, 17.32it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:18, 11.51it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:17, 12.41it/s]
eval model::  58%|█████▊    | 290/500 [00:15<00:13, 15.08it/s]
eval model::  58%|█████▊    | 292/500 [00:15<00:13, 15.86it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:13, 15.65it/s]
eval model::  59%|█████▉    | 296/500 [00:16<00:15, 13.22it/s]
eval model::  60%|█████▉    | 298/500 [00:16<00:13, 14.49it/s]
eval model::  60%|██████    | 300/500 [00:16<00:13, 14.50it/s]
eval model::  61%|██████    | 303/500 [00:16<00:11, 16.94it/s]
eval model::  61%|██████    | 305/500 [00:16<00:11, 17.06it/s]
eval model::  62%|██████▏   | 308/500 [00:16<00:10, 19.19it/s]
eval model::  62%|██████▏   | 310/500 [00:16<00:09, 19.30it/s]
eval model::  63%|██████▎   | 313/500 [00:16<00:09, 20.62it/s]
eval model::  63%|██████▎   | 316/500 [00:17<00:09, 20.12it/s]
eval model::  64%|██████▍   | 319/500 [00:17<00:08, 21.48it/s]
eval model::  64%|██████▍   | 322/500 [00:17<00:08, 20.75it/s]
eval model::  65%|██████▌   | 325/500 [00:17<00:08, 20.70it/s]
eval model::  66%|██████▌   | 328/500 [00:17<00:08, 20.23it/s]
eval model::  66%|██████▌   | 331/500 [00:17<00:08, 19.55it/s]
eval model::  67%|██████▋   | 334/500 [00:18<00:08, 20.11it/s]
eval model::  67%|██████▋   | 337/500 [00:18<00:08, 18.48it/s]
eval model::  68%|██████▊   | 339/500 [00:18<00:08, 18.70it/s]
eval model::  68%|██████▊   | 341/500 [00:18<00:11, 14.38it/s]
eval model::  69%|██████▉   | 344/500 [00:18<00:09, 16.55it/s]
eval model::  69%|██████▉   | 347/500 [00:18<00:08, 18.17it/s]
eval model::  70%|███████   | 350/500 [00:18<00:07, 20.20it/s]
eval model::  71%|███████   | 353/500 [00:19<00:06, 22.00it/s]
eval model::  71%|███████   | 356/500 [00:19<00:06, 21.83it/s]
eval model::  72%|███████▏  | 359/500 [00:19<00:06, 22.73it/s]
eval model::  72%|███████▏  | 362/500 [00:19<00:06, 20.34it/s]
eval model::  73%|███████▎  | 365/500 [00:19<00:07, 19.19it/s]
eval model::  74%|███████▎  | 368/500 [00:19<00:07, 18.44it/s]
eval model::  74%|███████▍  | 370/500 [00:19<00:07, 18.19it/s]
eval model::  74%|███████▍  | 372/500 [00:20<00:07, 16.21it/s]
eval model::  75%|███████▌  | 375/500 [00:20<00:06, 18.51it/s]
eval model::  76%|███████▌  | 379/500 [00:20<00:05, 22.32it/s]
eval model::  76%|███████▋  | 382/500 [00:20<00:05, 21.77it/s]
eval model::  77%|███████▋  | 385/500 [00:20<00:04, 23.14it/s]
eval model::  78%|███████▊  | 388/500 [00:20<00:07, 14.52it/s]
eval model::  78%|███████▊  | 391/500 [00:21<00:06, 16.23it/s]
eval model::  79%|███████▉  | 394/500 [00:21<00:06, 17.30it/s]
eval model::  79%|███████▉  | 397/500 [00:21<00:05, 18.98it/s]
eval model::  80%|████████  | 400/500 [00:21<00:05, 19.80it/s]
eval model::  81%|████████  | 403/500 [00:21<00:04, 20.68it/s]
eval model::  81%|████████  | 406/500 [00:21<00:04, 19.85it/s]
eval model::  82%|████████▏ | 409/500 [00:21<00:04, 20.58it/s]
eval model::  82%|████████▏ | 412/500 [00:22<00:04, 21.59it/s]
eval model::  83%|████████▎ | 415/500 [00:22<00:04, 21.23it/s]
eval model::  84%|████████▎ | 418/500 [00:22<00:04, 19.18it/s]
eval model::  84%|████████▍ | 420/500 [00:22<00:04, 16.85it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:04, 16.31it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:04, 15.72it/s]
eval model::  85%|████████▌ | 426/500 [00:22<00:04, 15.71it/s]
eval model::  86%|████████▌ | 429/500 [00:23<00:03, 18.05it/s]
eval model::  86%|████████▌ | 431/500 [00:23<00:03, 18.08it/s]
eval model::  87%|████████▋ | 434/500 [00:23<00:03, 20.32it/s]
eval model::  87%|████████▋ | 437/500 [00:23<00:02, 21.62it/s]
eval model::  88%|████████▊ | 440/500 [00:23<00:03, 17.62it/s]
eval model::  89%|████████▊ | 443/500 [00:23<00:02, 20.06it/s]
eval model::  89%|████████▉ | 446/500 [00:23<00:02, 20.75it/s]
eval model::  90%|████████▉ | 449/500 [00:24<00:02, 20.88it/s]
eval model::  90%|█████████ | 452/500 [00:24<00:02, 22.46it/s]
eval model::  91%|█████████ | 455/500 [00:24<00:01, 22.78it/s]
eval model::  92%|█████████▏| 458/500 [00:24<00:01, 23.93it/s]
eval model::  92%|█████████▏| 461/500 [00:24<00:01, 24.31it/s]
eval model::  93%|█████████▎| 464/500 [00:24<00:01, 19.44it/s]
eval model::  93%|█████████▎| 467/500 [00:24<00:01, 17.10it/s]
eval model::  94%|█████████▍| 470/500 [00:25<00:01, 19.55it/s]
eval model::  95%|█████████▍| 473/500 [00:25<00:01, 20.18it/s]
eval model::  95%|█████████▌| 476/500 [00:25<00:01, 20.33it/s]
eval model::  96%|█████████▌| 480/500 [00:25<00:00, 22.47it/s]
eval model::  97%|█████████▋| 483/500 [00:25<00:00, 23.37it/s]
eval model::  97%|█████████▋| 486/500 [00:25<00:00, 22.37it/s]
eval model::  98%|█████████▊| 489/500 [00:25<00:00, 22.94it/s]
eval model::  98%|█████████▊| 492/500 [00:26<00:00, 22.22it/s]
eval model::  99%|█████████▉| 495/500 [00:26<00:00, 22.51it/s]
eval model:: 100%|█████████▉| 499/500 [00:26<00:00, 24.46it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.96it/s]
[2024/07/28 00:03:54] ppocr INFO: cur metric, precision: 0.6282633371169126, recall: 0.5329802599903707, hmean: 0.576712685595207, fps: 44.6025386214144
[2024/07/28 00:03:54] ppocr INFO: best metric, hmean: 0.5929570170895909, precision: 0.6414565826330533, recall: 0.5512758786711603, fps: 44.78792511087625, best_epoch: 240
[2024/07/28 00:03:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:04:01] ppocr INFO: epoch: [261/1500], global_step: 783, lr: 0.001000, loss: 1.769654, loss_shrink_maps: 0.932984, loss_threshold_maps: 0.627586, loss_binary_maps: 0.184060, avg_reader_cost: 1.57710 s, avg_batch_cost: 1.80652 s, avg_samples: 12.5, ips: 6.91937 samples/s, eta: 6:24:43
[2024/07/28 00:04:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:04:09] ppocr INFO: epoch: [262/1500], global_step: 786, lr: 0.001000, loss: 1.742635, loss_shrink_maps: 0.919281, loss_threshold_maps: 0.632756, loss_binary_maps: 0.182090, avg_reader_cost: 1.55572 s, avg_batch_cost: 1.78525 s, avg_samples: 12.5, ips: 7.00184 samples/s, eta: 6:24:21
[2024/07/28 00:04:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:04:17] ppocr INFO: epoch: [263/1500], global_step: 789, lr: 0.001000, loss: 1.773933, loss_shrink_maps: 0.935734, loss_threshold_maps: 0.632756, loss_binary_maps: 0.185084, avg_reader_cost: 1.54335 s, avg_batch_cost: 1.81639 s, avg_samples: 12.5, ips: 6.88180 samples/s, eta: 6:24:00
[2024/07/28 00:04:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:04:23] ppocr INFO: epoch: [264/1500], global_step: 790, lr: 0.001000, loss: 1.798483, loss_shrink_maps: 0.949300, loss_threshold_maps: 0.640929, loss_binary_maps: 0.187436, avg_reader_cost: 0.40135 s, avg_batch_cost: 0.51777 s, avg_samples: 4.8, ips: 9.27057 samples/s, eta: 6:23:49
[2024/07/28 00:04:24] ppocr INFO: epoch: [264/1500], global_step: 792, lr: 0.001000, loss: 1.804037, loss_shrink_maps: 0.989607, loss_threshold_maps: 0.640929, loss_binary_maps: 0.196213, avg_reader_cost: 1.12717 s, avg_batch_cost: 1.27336 s, avg_samples: 7.7, ips: 6.04700 samples/s, eta: 6:23:38
[2024/07/28 00:04:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:04:32] ppocr INFO: epoch: [265/1500], global_step: 795, lr: 0.001000, loss: 1.849017, loss_shrink_maps: 1.023250, loss_threshold_maps: 0.646418, loss_binary_maps: 0.202906, avg_reader_cost: 1.57105 s, avg_batch_cost: 1.79929 s, avg_samples: 12.5, ips: 6.94718 samples/s, eta: 6:23:17
[2024/07/28 00:04:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:04:40] ppocr INFO: epoch: [266/1500], global_step: 798, lr: 0.001000, loss: 1.863707, loss_shrink_maps: 1.025448, loss_threshold_maps: 0.653907, loss_binary_maps: 0.203678, avg_reader_cost: 1.60520 s, avg_batch_cost: 1.83430 s, avg_samples: 12.5, ips: 6.81459 samples/s, eta: 6:22:57
[2024/07/28 00:04:41] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:04:47] ppocr INFO: epoch: [267/1500], global_step: 800, lr: 0.001000, loss: 1.863707, loss_shrink_maps: 1.025448, loss_threshold_maps: 0.652725, loss_binary_maps: 0.203678, avg_reader_cost: 0.97285 s, avg_batch_cost: 1.16467 s, avg_samples: 9.6, ips: 8.24270 samples/s, eta: 6:22:41
[2024/07/28 00:04:48] ppocr INFO: epoch: [267/1500], global_step: 801, lr: 0.001000, loss: 1.849017, loss_shrink_maps: 1.015840, loss_threshold_maps: 0.650772, loss_binary_maps: 0.201748, avg_reader_cost: 0.62817 s, avg_batch_cost: 0.68285 s, avg_samples: 2.9, ips: 4.24693 samples/s, eta: 6:22:38
[2024/07/28 00:04:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:04:55] ppocr INFO: epoch: [268/1500], global_step: 804, lr: 0.001000, loss: 1.849017, loss_shrink_maps: 1.015840, loss_threshold_maps: 0.649016, loss_binary_maps: 0.201748, avg_reader_cost: 1.59257 s, avg_batch_cost: 1.82186 s, avg_samples: 12.5, ips: 6.86110 samples/s, eta: 6:22:17
[2024/07/28 00:04:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:05:03] ppocr INFO: epoch: [269/1500], global_step: 807, lr: 0.001000, loss: 1.825997, loss_shrink_maps: 0.978724, loss_threshold_maps: 0.648036, loss_binary_maps: 0.194124, avg_reader_cost: 1.62448 s, avg_batch_cost: 1.85207 s, avg_samples: 12.5, ips: 6.74922 samples/s, eta: 6:21:58
[2024/07/28 00:05:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:05:11] ppocr INFO: epoch: [270/1500], global_step: 810, lr: 0.001000, loss: 1.779125, loss_shrink_maps: 0.945040, loss_threshold_maps: 0.640147, loss_binary_maps: 0.187321, avg_reader_cost: 1.56522 s, avg_batch_cost: 1.79421 s, avg_samples: 12.5, ips: 6.96684 samples/s, eta: 6:21:36
[2024/07/28 00:05:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:05:19] ppocr INFO: epoch: [271/1500], global_step: 813, lr: 0.001000, loss: 1.744180, loss_shrink_maps: 0.943015, loss_threshold_maps: 0.629587, loss_binary_maps: 0.186207, avg_reader_cost: 1.52333 s, avg_batch_cost: 1.75187 s, avg_samples: 12.5, ips: 7.13525 samples/s, eta: 6:21:13
[2024/07/28 00:05:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:05:27] ppocr INFO: epoch: [272/1500], global_step: 816, lr: 0.001000, loss: 1.754815, loss_shrink_maps: 0.945040, loss_threshold_maps: 0.640263, loss_binary_maps: 0.187321, avg_reader_cost: 1.56326 s, avg_batch_cost: 1.86403 s, avg_samples: 12.5, ips: 6.70589 samples/s, eta: 6:20:54
[2024/07/28 00:05:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:05:34] ppocr INFO: epoch: [273/1500], global_step: 819, lr: 0.001000, loss: 1.754270, loss_shrink_maps: 0.943943, loss_threshold_maps: 0.629587, loss_binary_maps: 0.186398, avg_reader_cost: 1.54753 s, avg_batch_cost: 1.79714 s, avg_samples: 12.5, ips: 6.95549 samples/s, eta: 6:20:33
[2024/07/28 00:05:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:05:41] ppocr INFO: epoch: [274/1500], global_step: 820, lr: 0.001000, loss: 1.761802, loss_shrink_maps: 0.945040, loss_threshold_maps: 0.629587, loss_binary_maps: 0.187321, avg_reader_cost: 0.46101 s, avg_batch_cost: 0.57630 s, avg_samples: 4.8, ips: 8.32894 samples/s, eta: 6:20:25
[2024/07/28 00:05:43] ppocr INFO: epoch: [274/1500], global_step: 822, lr: 0.001000, loss: 1.763474, loss_shrink_maps: 0.946795, loss_threshold_maps: 0.629587, loss_binary_maps: 0.188313, avg_reader_cost: 1.24307 s, avg_batch_cost: 1.38806 s, avg_samples: 7.7, ips: 5.54732 samples/s, eta: 6:20:19
[2024/07/28 00:05:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:05:51] ppocr INFO: epoch: [275/1500], global_step: 825, lr: 0.001000, loss: 1.780017, loss_shrink_maps: 0.953388, loss_threshold_maps: 0.640263, loss_binary_maps: 0.190207, avg_reader_cost: 1.58178 s, avg_batch_cost: 1.84845 s, avg_samples: 12.5, ips: 6.76243 samples/s, eta: 6:20:00
[2024/07/28 00:05:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:05:58] ppocr INFO: epoch: [276/1500], global_step: 828, lr: 0.001000, loss: 1.779472, loss_shrink_maps: 0.953388, loss_threshold_maps: 0.641722, loss_binary_maps: 0.190207, avg_reader_cost: 1.50621 s, avg_batch_cost: 1.76659 s, avg_samples: 12.5, ips: 7.07576 samples/s, eta: 6:19:37
[2024/07/28 00:06:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:06:06] ppocr INFO: epoch: [277/1500], global_step: 830, lr: 0.001000, loss: 1.837664, loss_shrink_maps: 1.008350, loss_threshold_maps: 0.647516, loss_binary_maps: 0.199345, avg_reader_cost: 0.93017 s, avg_batch_cost: 1.13013 s, avg_samples: 9.6, ips: 8.49457 samples/s, eta: 6:19:19
[2024/07/28 00:06:06] ppocr INFO: epoch: [277/1500], global_step: 831, lr: 0.001000, loss: 1.837664, loss_shrink_maps: 1.008350, loss_threshold_maps: 0.647516, loss_binary_maps: 0.199345, avg_reader_cost: 0.61065 s, avg_batch_cost: 0.66578 s, avg_samples: 2.9, ips: 4.35579 samples/s, eta: 6:19:15
[2024/07/28 00:06:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:06:14] ppocr INFO: epoch: [278/1500], global_step: 834, lr: 0.001000, loss: 1.846667, loss_shrink_maps: 1.011954, loss_threshold_maps: 0.647516, loss_binary_maps: 0.200868, avg_reader_cost: 1.55000 s, avg_batch_cost: 1.77903 s, avg_samples: 12.5, ips: 7.02631 samples/s, eta: 6:18:53
[2024/07/28 00:06:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:06:21] ppocr INFO: epoch: [279/1500], global_step: 837, lr: 0.001000, loss: 1.823623, loss_shrink_maps: 1.011665, loss_threshold_maps: 0.634668, loss_binary_maps: 0.198949, avg_reader_cost: 1.48699 s, avg_batch_cost: 1.72982 s, avg_samples: 12.5, ips: 7.22618 samples/s, eta: 6:18:29
[2024/07/28 00:06:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:06:29] ppocr INFO: epoch: [280/1500], global_step: 840, lr: 0.001000, loss: 1.838177, loss_shrink_maps: 1.011665, loss_threshold_maps: 0.634668, loss_binary_maps: 0.198949, avg_reader_cost: 1.65340 s, avg_batch_cost: 1.93097 s, avg_samples: 12.5, ips: 6.47341 samples/s, eta: 6:18:13

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<01:01,  8.16it/s]
eval model::   1%|          | 4/500 [00:00<00:26, 18.73it/s]
eval model::   1%|          | 6/500 [00:00<00:27, 17.92it/s]
eval model::   2%|▏         | 8/500 [00:00<00:27, 17.60it/s]
eval model::   2%|▏         | 11/500 [00:00<00:28, 17.42it/s]
eval model::   3%|▎         | 14/500 [00:00<00:25, 19.11it/s]
eval model::   3%|▎         | 17/500 [00:00<00:22, 21.74it/s]
eval model::   4%|▍         | 20/500 [00:01<00:23, 20.09it/s]
eval model::   5%|▍         | 23/500 [00:01<00:23, 20.49it/s]
eval model::   5%|▌         | 26/500 [00:01<00:24, 19.42it/s]
eval model::   6%|▌         | 29/500 [00:01<00:22, 20.50it/s]
eval model::   6%|▋         | 32/500 [00:01<00:23, 19.54it/s]
eval model::   7%|▋         | 34/500 [00:01<00:24, 19.17it/s]
eval model::   7%|▋         | 37/500 [00:01<00:21, 21.73it/s]
eval model::   8%|▊         | 40/500 [00:02<00:23, 19.22it/s]
eval model::   9%|▊         | 43/500 [00:02<00:23, 19.78it/s]
eval model::   9%|▉         | 46/500 [00:02<00:23, 19.43it/s]
eval model::  10%|▉         | 49/500 [00:02<00:21, 20.88it/s]
eval model::  10%|█         | 52/500 [00:02<00:20, 21.40it/s]
eval model::  11%|█         | 55/500 [00:02<00:21, 20.73it/s]
eval model::  12%|█▏        | 58/500 [00:02<00:22, 19.45it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:26, 16.60it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:27, 15.98it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:21, 19.82it/s]
eval model::  14%|█▍        | 71/500 [00:03<00:18, 22.74it/s]
eval model::  15%|█▍        | 74/500 [00:03<00:19, 21.92it/s]
eval model::  15%|█▌        | 77/500 [00:03<00:19, 22.15it/s]
eval model::  16%|█▌        | 80/500 [00:03<00:17, 23.51it/s]
eval model::  17%|█▋        | 83/500 [00:04<00:19, 21.62it/s]
eval model::  17%|█▋        | 86/500 [00:04<00:21, 19.54it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:22, 17.88it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:24, 16.98it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:23, 17.45it/s]
eval model::  19%|█▉        | 96/500 [00:04<00:21, 19.12it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:18, 21.32it/s]
eval model::  20%|██        | 102/500 [00:05<00:19, 20.15it/s]
eval model::  21%|██        | 105/500 [00:05<00:18, 21.62it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:18, 21.74it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:18, 21.24it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:17, 22.29it/s]
eval model::  23%|██▎       | 117/500 [00:05<00:18, 20.36it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:17, 21.16it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:18, 20.44it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:20, 18.29it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:18, 20.27it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:19, 18.90it/s]
eval model::  27%|██▋       | 136/500 [00:06<00:17, 20.50it/s]
eval model::  28%|██▊       | 139/500 [00:06<00:17, 20.28it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:16, 21.44it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:18, 19.18it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:20, 17.05it/s]
eval model::  30%|███       | 150/500 [00:07<00:18, 18.54it/s]
eval model::  30%|███       | 152/500 [00:07<00:19, 17.87it/s]
eval model::  31%|███       | 155/500 [00:07<00:16, 20.43it/s]
eval model::  32%|███▏      | 158/500 [00:07<00:15, 21.48it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:19, 17.54it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:19, 17.63it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:16, 20.11it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:17, 19.04it/s]
eval model::  34%|███▍      | 172/500 [00:08<00:17, 18.50it/s]
eval model::  35%|███▍      | 174/500 [00:08<00:20, 16.19it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:19, 16.36it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:17, 18.69it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:19, 16.76it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:16, 19.11it/s]
eval model::  37%|███▋      | 187/500 [00:09<00:15, 19.93it/s]
eval model::  38%|███▊      | 190/500 [00:09<00:14, 21.49it/s]
eval model::  39%|███▊      | 193/500 [00:09<00:13, 23.19it/s]
eval model::  39%|███▉      | 196/500 [00:09<00:14, 20.49it/s]
eval model::  40%|███▉      | 199/500 [00:10<00:14, 20.61it/s]
eval model::  40%|████      | 202/500 [00:10<00:14, 20.72it/s]
eval model::  41%|████      | 205/500 [00:10<00:24, 11.97it/s]
eval model::  42%|████▏     | 208/500 [00:10<00:21, 13.72it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:20, 14.06it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:17, 15.95it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:22, 12.74it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:21, 13.13it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:18, 15.54it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:18, 14.92it/s]
eval model::  45%|████▌     | 225/500 [00:11<00:15, 17.90it/s]
eval model::  45%|████▌     | 227/500 [00:12<00:15, 18.19it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:13, 20.64it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:12, 21.84it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:12, 21.15it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:11, 22.05it/s]
eval model::  48%|████▊     | 242/500 [00:12<00:13, 18.91it/s]
eval model::  49%|████▉     | 245/500 [00:12<00:12, 20.25it/s]
eval model::  50%|████▉     | 248/500 [00:13<00:11, 21.61it/s]
eval model::  50%|█████     | 251/500 [00:13<00:11, 20.79it/s]
eval model::  51%|█████     | 254/500 [00:13<00:11, 22.19it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:10, 22.17it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:10, 23.35it/s]
eval model::  53%|█████▎    | 263/500 [00:13<00:10, 23.41it/s]
eval model::  53%|█████▎    | 266/500 [00:13<00:11, 20.83it/s]
eval model::  54%|█████▍    | 269/500 [00:13<00:11, 20.54it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:10, 21.23it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:11, 20.36it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:11, 20.15it/s]
eval model::  56%|█████▌    | 281/500 [00:14<00:10, 21.06it/s]
eval model::  57%|█████▋    | 284/500 [00:14<00:10, 21.47it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:16, 12.92it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:12, 16.46it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:11, 17.37it/s]
eval model::  59%|█████▉    | 297/500 [00:15<00:12, 16.58it/s]
eval model::  60%|██████    | 300/500 [00:15<00:11, 16.94it/s]
eval model::  61%|██████    | 303/500 [00:15<00:10, 18.47it/s]
eval model::  61%|██████    | 306/500 [00:16<00:09, 19.83it/s]
eval model::  62%|██████▏   | 309/500 [00:16<00:09, 20.34it/s]
eval model::  62%|██████▏   | 312/500 [00:16<00:08, 21.11it/s]
eval model::  63%|██████▎   | 315/500 [00:16<00:08, 20.97it/s]
eval model::  64%|██████▎   | 318/500 [00:16<00:08, 22.38it/s]
eval model::  64%|██████▍   | 321/500 [00:16<00:08, 21.49it/s]
eval model::  65%|██████▍   | 324/500 [00:16<00:08, 21.39it/s]
eval model::  65%|██████▌   | 327/500 [00:16<00:07, 22.11it/s]
eval model::  66%|██████▌   | 330/500 [00:17<00:08, 20.39it/s]
eval model::  67%|██████▋   | 333/500 [00:17<00:08, 19.89it/s]
eval model::  67%|██████▋   | 336/500 [00:17<00:08, 19.50it/s]
eval model::  68%|██████▊   | 338/500 [00:17<00:09, 17.69it/s]
eval model::  68%|██████▊   | 340/500 [00:17<00:11, 14.35it/s]
eval model::  68%|██████▊   | 342/500 [00:17<00:10, 15.41it/s]
eval model::  69%|██████▉   | 345/500 [00:18<00:08, 17.62it/s]
eval model::  70%|██████▉   | 348/500 [00:18<00:07, 19.75it/s]
eval model::  70%|███████   | 351/500 [00:18<00:06, 21.40it/s]
eval model::  71%|███████   | 355/500 [00:18<00:06, 22.88it/s]
eval model::  72%|███████▏  | 358/500 [00:18<00:06, 22.28it/s]
eval model::  72%|███████▏  | 361/500 [00:18<00:07, 17.91it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:07, 17.59it/s]
eval model::  73%|███████▎  | 367/500 [00:19<00:07, 18.47it/s]
eval model::  74%|███████▍  | 370/500 [00:19<00:06, 20.10it/s]
eval model::  75%|███████▍  | 373/500 [00:19<00:06, 20.26it/s]
eval model::  75%|███████▌  | 376/500 [00:19<00:05, 21.88it/s]
eval model::  76%|███████▌  | 380/500 [00:19<00:05, 22.70it/s]
eval model::  77%|███████▋  | 383/500 [00:19<00:04, 23.99it/s]
eval model::  77%|███████▋  | 386/500 [00:20<00:07, 14.34it/s]
eval model::  78%|███████▊  | 389/500 [00:20<00:06, 16.36it/s]
eval model::  78%|███████▊  | 392/500 [00:20<00:06, 17.77it/s]
eval model::  79%|███████▉  | 395/500 [00:20<00:05, 19.54it/s]
eval model::  80%|███████▉  | 399/500 [00:20<00:04, 21.65it/s]
eval model::  80%|████████  | 402/500 [00:20<00:04, 21.52it/s]
eval model::  81%|████████  | 405/500 [00:21<00:04, 21.86it/s]
eval model::  82%|████████▏ | 408/500 [00:21<00:03, 23.10it/s]
eval model::  82%|████████▏ | 411/500 [00:21<00:04, 20.90it/s]
eval model::  83%|████████▎ | 414/500 [00:21<00:04, 18.32it/s]
eval model::  83%|████████▎ | 416/500 [00:21<00:04, 17.47it/s]
eval model::  84%|████████▎ | 418/500 [00:21<00:04, 17.52it/s]
eval model::  84%|████████▍ | 420/500 [00:22<00:05, 14.35it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:05, 14.81it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:05, 13.68it/s]
eval model::  85%|████████▌ | 427/500 [00:22<00:04, 16.30it/s]
eval model::  86%|████████▌ | 430/500 [00:22<00:03, 18.61it/s]
eval model::  87%|████████▋ | 433/500 [00:22<00:03, 19.96it/s]
eval model::  87%|████████▋ | 436/500 [00:22<00:03, 21.17it/s]
eval model::  88%|████████▊ | 439/500 [00:22<00:02, 22.68it/s]
eval model::  88%|████████▊ | 442/500 [00:23<00:02, 21.20it/s]
eval model::  89%|████████▉ | 446/500 [00:23<00:02, 24.20it/s]
eval model::  90%|████████▉ | 449/500 [00:23<00:02, 20.53it/s]
eval model::  90%|█████████ | 452/500 [00:23<00:02, 21.51it/s]
eval model::  91%|█████████ | 455/500 [00:23<00:02, 22.42it/s]
eval model::  92%|█████████▏| 458/500 [00:23<00:02, 20.98it/s]
eval model::  92%|█████████▏| 461/500 [00:23<00:01, 20.61it/s]
eval model::  93%|█████████▎| 464/500 [00:24<00:02, 17.70it/s]
eval model::  93%|█████████▎| 466/500 [00:24<00:02, 16.82it/s]
eval model::  94%|█████████▎| 468/500 [00:24<00:01, 17.20it/s]
eval model::  94%|█████████▍| 472/500 [00:24<00:01, 20.13it/s]
eval model::  95%|█████████▌| 475/500 [00:24<00:01, 19.75it/s]
eval model::  96%|█████████▌| 478/500 [00:24<00:01, 21.58it/s]
eval model::  96%|█████████▌| 481/500 [00:24<00:00, 22.78it/s]
eval model::  97%|█████████▋| 484/500 [00:25<00:00, 21.34it/s]
eval model::  97%|█████████▋| 487/500 [00:25<00:00, 20.92it/s]
eval model::  98%|█████████▊| 490/500 [00:25<00:00, 20.86it/s]
eval model::  99%|█████████▊| 493/500 [00:25<00:00, 20.31it/s]
eval model::  99%|█████████▉| 496/500 [00:25<00:00, 19.68it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 23.06it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.34it/s]
[2024/07/28 00:06:55] ppocr INFO: cur metric, precision: 0.6382113821138211, recall: 0.529128550794415, hmean: 0.5785733087654645, fps: 45.3557077708031
[2024/07/28 00:06:55] ppocr INFO: best metric, hmean: 0.5929570170895909, precision: 0.6414565826330533, recall: 0.5512758786711603, fps: 44.78792511087625, best_epoch: 240
[2024/07/28 00:06:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:07:03] ppocr INFO: epoch: [281/1500], global_step: 843, lr: 0.001000, loss: 1.846667, loss_shrink_maps: 1.013008, loss_threshold_maps: 0.641551, loss_binary_maps: 0.199727, avg_reader_cost: 1.62137 s, avg_batch_cost: 1.90659 s, avg_samples: 12.5, ips: 6.55621 samples/s, eta: 6:17:57
[2024/07/28 00:07:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:07:11] ppocr INFO: epoch: [282/1500], global_step: 846, lr: 0.001000, loss: 1.838177, loss_shrink_maps: 1.009537, loss_threshold_maps: 0.641551, loss_binary_maps: 0.198949, avg_reader_cost: 1.58589 s, avg_batch_cost: 1.83289 s, avg_samples: 12.5, ips: 6.81985 samples/s, eta: 6:17:37
[2024/07/28 00:07:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:07:18] ppocr INFO: epoch: [283/1500], global_step: 849, lr: 0.001000, loss: 1.846667, loss_shrink_maps: 1.013008, loss_threshold_maps: 0.651154, loss_binary_maps: 0.199727, avg_reader_cost: 1.54391 s, avg_batch_cost: 1.77237 s, avg_samples: 12.5, ips: 7.05270 samples/s, eta: 6:17:15
[2024/07/28 00:07:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:07:25] ppocr INFO: epoch: [284/1500], global_step: 850, lr: 0.001000, loss: 1.857326, loss_shrink_maps: 1.018942, loss_threshold_maps: 0.653200, loss_binary_maps: 0.201652, avg_reader_cost: 0.40212 s, avg_batch_cost: 0.49701 s, avg_samples: 4.8, ips: 9.65766 samples/s, eta: 6:17:03
[2024/07/28 00:07:26] ppocr INFO: epoch: [284/1500], global_step: 852, lr: 0.001000, loss: 1.846444, loss_shrink_maps: 1.013008, loss_threshold_maps: 0.651154, loss_binary_maps: 0.199727, avg_reader_cost: 1.08611 s, avg_batch_cost: 1.23189 s, avg_samples: 7.7, ips: 6.25057 samples/s, eta: 6:16:50
[2024/07/28 00:07:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:07:34] ppocr INFO: epoch: [285/1500], global_step: 855, lr: 0.001000, loss: 1.872227, loss_shrink_maps: 1.013008, loss_threshold_maps: 0.657643, loss_binary_maps: 0.199727, avg_reader_cost: 1.53368 s, avg_batch_cost: 1.76228 s, avg_samples: 12.5, ips: 7.09309 samples/s, eta: 6:16:28
[2024/07/28 00:07:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:07:41] ppocr INFO: epoch: [286/1500], global_step: 858, lr: 0.001000, loss: 1.900864, loss_shrink_maps: 1.022336, loss_threshold_maps: 0.661093, loss_binary_maps: 0.203551, avg_reader_cost: 1.51097 s, avg_batch_cost: 1.76109 s, avg_samples: 12.5, ips: 7.09788 samples/s, eta: 6:16:05
[2024/07/28 00:07:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:07:48] ppocr INFO: epoch: [287/1500], global_step: 860, lr: 0.001000, loss: 1.903134, loss_shrink_maps: 1.022336, loss_threshold_maps: 0.661093, loss_binary_maps: 0.203551, avg_reader_cost: 0.90602 s, avg_batch_cost: 1.08196 s, avg_samples: 9.6, ips: 8.87282 samples/s, eta: 6:15:46
[2024/07/28 00:07:49] ppocr INFO: epoch: [287/1500], global_step: 861, lr: 0.001000, loss: 1.892308, loss_shrink_maps: 1.022336, loss_threshold_maps: 0.658866, loss_binary_maps: 0.203551, avg_reader_cost: 0.58645 s, avg_batch_cost: 0.64136 s, avg_samples: 2.9, ips: 4.52166 samples/s, eta: 6:15:41
[2024/07/28 00:07:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:07:57] ppocr INFO: epoch: [288/1500], global_step: 864, lr: 0.001000, loss: 1.892308, loss_shrink_maps: 1.019243, loss_threshold_maps: 0.659136, loss_binary_maps: 0.202513, avg_reader_cost: 1.59879 s, avg_batch_cost: 1.91380 s, avg_samples: 12.5, ips: 6.53150 samples/s, eta: 6:15:24
[2024/07/28 00:07:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:08:05] ppocr INFO: epoch: [289/1500], global_step: 867, lr: 0.001000, loss: 1.859307, loss_shrink_maps: 1.010354, loss_threshold_maps: 0.651154, loss_binary_maps: 0.200445, avg_reader_cost: 1.68659 s, avg_batch_cost: 1.94869 s, avg_samples: 12.5, ips: 6.41456 samples/s, eta: 6:15:09
[2024/07/28 00:08:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:08:13] ppocr INFO: epoch: [290/1500], global_step: 870, lr: 0.001000, loss: 1.826267, loss_shrink_maps: 0.987241, loss_threshold_maps: 0.645531, loss_binary_maps: 0.195932, avg_reader_cost: 1.52971 s, avg_batch_cost: 1.76330 s, avg_samples: 12.5, ips: 7.08896 samples/s, eta: 6:14:47
[2024/07/28 00:08:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:08:21] ppocr INFO: epoch: [291/1500], global_step: 873, lr: 0.001000, loss: 1.818420, loss_shrink_maps: 0.976331, loss_threshold_maps: 0.640354, loss_binary_maps: 0.193942, avg_reader_cost: 1.54750 s, avg_batch_cost: 1.77912 s, avg_samples: 12.5, ips: 7.02596 samples/s, eta: 6:14:25
[2024/07/28 00:08:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:08:29] ppocr INFO: epoch: [292/1500], global_step: 876, lr: 0.001000, loss: 1.785052, loss_shrink_maps: 0.965596, loss_threshold_maps: 0.636858, loss_binary_maps: 0.191883, avg_reader_cost: 1.61602 s, avg_batch_cost: 1.84543 s, avg_samples: 12.5, ips: 6.77348 samples/s, eta: 6:14:06
[2024/07/28 00:08:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:08:37] ppocr INFO: epoch: [293/1500], global_step: 879, lr: 0.001000, loss: 1.726962, loss_shrink_maps: 0.913913, loss_threshold_maps: 0.630083, loss_binary_maps: 0.180991, avg_reader_cost: 1.57504 s, avg_batch_cost: 1.81867 s, avg_samples: 12.5, ips: 6.87316 samples/s, eta: 6:13:46
[2024/07/28 00:08:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:08:43] ppocr INFO: epoch: [294/1500], global_step: 880, lr: 0.001000, loss: 1.716616, loss_shrink_maps: 0.905383, loss_threshold_maps: 0.622253, loss_binary_maps: 0.179806, avg_reader_cost: 0.40291 s, avg_batch_cost: 0.51947 s, avg_samples: 4.8, ips: 9.24021 samples/s, eta: 6:13:35
[2024/07/28 00:08:44] ppocr INFO: epoch: [294/1500], global_step: 882, lr: 0.001000, loss: 1.716616, loss_shrink_maps: 0.905383, loss_threshold_maps: 0.622253, loss_binary_maps: 0.179806, avg_reader_cost: 1.13040 s, avg_batch_cost: 1.27634 s, avg_samples: 7.7, ips: 6.03289 samples/s, eta: 6:13:25
[2024/07/28 00:08:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:08:52] ppocr INFO: epoch: [295/1500], global_step: 885, lr: 0.001000, loss: 1.696951, loss_shrink_maps: 0.896378, loss_threshold_maps: 0.625490, loss_binary_maps: 0.178268, avg_reader_cost: 1.51027 s, avg_batch_cost: 1.73904 s, avg_samples: 12.5, ips: 7.18789 samples/s, eta: 6:13:01
[2024/07/28 00:08:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:09:00] ppocr INFO: epoch: [296/1500], global_step: 888, lr: 0.001000, loss: 1.724864, loss_shrink_maps: 0.910557, loss_threshold_maps: 0.630972, loss_binary_maps: 0.180448, avg_reader_cost: 1.53884 s, avg_batch_cost: 1.76739 s, avg_samples: 12.5, ips: 7.07256 samples/s, eta: 6:12:39
[2024/07/28 00:09:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:09:07] ppocr INFO: epoch: [297/1500], global_step: 890, lr: 0.001000, loss: 1.715084, loss_shrink_maps: 0.896378, loss_threshold_maps: 0.630972, loss_binary_maps: 0.178268, avg_reader_cost: 1.00272 s, avg_batch_cost: 1.22892 s, avg_samples: 9.6, ips: 7.81174 samples/s, eta: 6:12:26
[2024/07/28 00:09:08] ppocr INFO: epoch: [297/1500], global_step: 891, lr: 0.001000, loss: 1.715084, loss_shrink_maps: 0.896378, loss_threshold_maps: 0.630972, loss_binary_maps: 0.178268, avg_reader_cost: 0.66031 s, avg_batch_cost: 0.71483 s, avg_samples: 2.9, ips: 4.05693 samples/s, eta: 6:12:24
[2024/07/28 00:09:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:09:16] ppocr INFO: epoch: [298/1500], global_step: 894, lr: 0.001000, loss: 1.679664, loss_shrink_maps: 0.886335, loss_threshold_maps: 0.619646, loss_binary_maps: 0.175894, avg_reader_cost: 1.53212 s, avg_batch_cost: 1.79234 s, avg_samples: 12.5, ips: 6.97412 samples/s, eta: 6:12:03
[2024/07/28 00:09:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:09:24] ppocr INFO: epoch: [299/1500], global_step: 897, lr: 0.001000, loss: 1.689550, loss_shrink_maps: 0.886335, loss_threshold_maps: 0.618226, loss_binary_maps: 0.175894, avg_reader_cost: 1.50088 s, avg_batch_cost: 1.73780 s, avg_samples: 12.5, ips: 7.19301 samples/s, eta: 6:11:39
[2024/07/28 00:09:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:09:31] ppocr INFO: epoch: [300/1500], global_step: 900, lr: 0.001000, loss: 1.684705, loss_shrink_maps: 0.886335, loss_threshold_maps: 0.618226, loss_binary_maps: 0.175894, avg_reader_cost: 1.53572 s, avg_batch_cost: 1.79819 s, avg_samples: 12.5, ips: 6.95145 samples/s, eta: 6:11:18

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 2/500 [00:00<00:37, 13.34it/s]
eval model::   1%|          | 5/500 [00:00<00:24, 20.16it/s]
eval model::   2%|▏         | 8/500 [00:00<00:25, 19.23it/s]
eval model::   2%|▏         | 11/500 [00:00<00:26, 18.72it/s]
eval model::   3%|▎         | 14/500 [00:00<00:26, 18.37it/s]
eval model::   3%|▎         | 17/500 [00:00<00:23, 20.81it/s]
eval model::   4%|▍         | 20/500 [00:01<00:23, 20.83it/s]
eval model::   5%|▍         | 23/500 [00:01<00:20, 22.80it/s]
eval model::   5%|▌         | 26/500 [00:01<00:22, 21.34it/s]
eval model::   6%|▌         | 29/500 [00:01<00:21, 22.02it/s]
eval model::   6%|▋         | 32/500 [00:01<00:21, 21.98it/s]
eval model::   7%|▋         | 35/500 [00:01<00:22, 20.23it/s]
eval model::   8%|▊         | 38/500 [00:01<00:23, 19.42it/s]
eval model::   8%|▊         | 40/500 [00:02<00:26, 17.55it/s]
eval model::   8%|▊         | 42/500 [00:02<00:27, 16.91it/s]
eval model::   9%|▉         | 45/500 [00:02<00:23, 19.30it/s]
eval model::   9%|▉         | 47/500 [00:02<00:24, 18.75it/s]
eval model::  10%|█         | 50/500 [00:02<00:21, 20.59it/s]
eval model::  11%|█         | 53/500 [00:02<00:21, 20.87it/s]
eval model::  11%|█         | 56/500 [00:02<00:21, 21.09it/s]
eval model::  12%|█▏        | 59/500 [00:02<00:21, 20.26it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:26, 16.39it/s]
eval model::  13%|█▎        | 64/500 [00:03<00:26, 16.18it/s]
eval model::  14%|█▎        | 68/500 [00:03<00:21, 20.57it/s]
eval model::  14%|█▍        | 71/500 [00:03<00:19, 21.62it/s]
eval model::  15%|█▍        | 74/500 [00:03<00:20, 21.06it/s]
eval model::  15%|█▌        | 77/500 [00:03<00:20, 20.84it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:17, 24.15it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:18, 22.52it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:19, 20.69it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:22, 18.12it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:22, 18.20it/s]
eval model::  19%|█▉        | 96/500 [00:04<00:20, 19.73it/s]
eval model::  20%|█▉        | 99/500 [00:04<00:19, 20.67it/s]
eval model::  20%|██        | 102/500 [00:05<00:20, 19.00it/s]
eval model::  21%|██        | 105/500 [00:05<00:19, 20.25it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:19, 19.78it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:18, 20.53it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:17, 22.02it/s]
eval model::  23%|██▎       | 117/500 [00:05<00:18, 20.84it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:19, 19.78it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:17, 21.21it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:19, 18.97it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:18, 20.15it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:20, 17.86it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:18, 20.05it/s]
eval model::  28%|██▊       | 138/500 [00:06<00:17, 20.43it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:18, 19.22it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:17, 19.80it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:19, 18.35it/s]
eval model::  30%|███       | 150/500 [00:07<00:17, 19.78it/s]
eval model::  31%|███       | 153/500 [00:07<00:18, 18.66it/s]
eval model::  31%|███       | 156/500 [00:07<00:17, 19.90it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:18, 18.93it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:21, 15.44it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:21, 15.61it/s]
eval model::  33%|███▎      | 165/500 [00:08<00:20, 16.09it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:20, 15.94it/s]
eval model::  34%|███▍      | 170/500 [00:08<00:18, 18.06it/s]
eval model::  34%|███▍      | 172/500 [00:08<00:20, 15.75it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:24, 13.34it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:22, 14.53it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:17, 17.93it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:21, 15.17it/s]
eval model::  37%|███▋      | 185/500 [00:09<00:15, 19.86it/s]
eval model::  38%|███▊      | 188/500 [00:09<00:15, 19.59it/s]
eval model::  38%|███▊      | 191/500 [00:09<00:15, 20.32it/s]
eval model::  39%|███▉      | 194/500 [00:10<00:14, 21.69it/s]
eval model::  39%|███▉      | 197/500 [00:10<00:16, 18.66it/s]
eval model::  40%|████      | 200/500 [00:10<00:14, 20.53it/s]
eval model::  41%|████      | 203/500 [00:10<00:13, 21.44it/s]
eval model::  41%|████      | 206/500 [00:11<00:25, 11.34it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:23, 12.19it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:24, 11.86it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:21, 13.44it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:23, 11.99it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:26, 10.88it/s]
eval model::  44%|████▍     | 219/500 [00:12<00:23, 12.15it/s]
eval model::  44%|████▍     | 221/500 [00:12<00:23, 11.94it/s]
eval model::  45%|████▍     | 224/500 [00:12<00:18, 14.74it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:18, 15.01it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:14, 19.21it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:13, 20.27it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:12, 20.75it/s]
eval model::  48%|████▊     | 239/500 [00:13<00:11, 22.45it/s]
eval model::  48%|████▊     | 242/500 [00:13<00:12, 19.87it/s]
eval model::  49%|████▉     | 245/500 [00:13<00:12, 20.55it/s]
eval model::  50%|████▉     | 248/500 [00:13<00:12, 20.77it/s]
eval model::  50%|█████     | 251/500 [00:13<00:12, 19.55it/s]
eval model::  51%|█████     | 254/500 [00:13<00:11, 20.80it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:10, 22.16it/s]
eval model::  52%|█████▏    | 260/500 [00:14<00:11, 21.47it/s]
eval model::  53%|█████▎    | 263/500 [00:14<00:11, 20.61it/s]
eval model::  53%|█████▎    | 266/500 [00:14<00:11, 19.61it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:12, 18.93it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:12, 18.96it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:12, 17.39it/s]
eval model::  56%|█████▌    | 278/500 [00:15<00:11, 18.91it/s]
eval model::  56%|█████▋    | 282/500 [00:15<00:10, 21.31it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:15, 13.84it/s]
eval model::  58%|█████▊    | 288/500 [00:15<00:13, 15.73it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:11, 18.16it/s]
eval model::  59%|█████▉    | 294/500 [00:16<00:11, 17.72it/s]
eval model::  59%|█████▉    | 297/500 [00:16<00:12, 15.71it/s]
eval model::  60%|██████    | 300/500 [00:16<00:12, 16.18it/s]
eval model::  61%|██████    | 303/500 [00:16<00:10, 18.46it/s]
eval model::  61%|██████    | 306/500 [00:16<00:10, 19.28it/s]
eval model::  62%|██████▏   | 309/500 [00:16<00:09, 19.51it/s]
eval model::  62%|██████▏   | 312/500 [00:16<00:09, 20.81it/s]
eval model::  63%|██████▎   | 315/500 [00:17<00:08, 21.48it/s]
eval model::  64%|██████▎   | 318/500 [00:17<00:07, 23.05it/s]
eval model::  64%|██████▍   | 321/500 [00:17<00:08, 20.73it/s]
eval model::  65%|██████▍   | 324/500 [00:17<00:08, 20.00it/s]
eval model::  65%|██████▌   | 327/500 [00:17<00:08, 21.31it/s]
eval model::  66%|██████▌   | 330/500 [00:17<00:08, 19.61it/s]
eval model::  67%|██████▋   | 333/500 [00:17<00:07, 21.59it/s]
eval model::  67%|██████▋   | 336/500 [00:18<00:07, 23.24it/s]
eval model::  68%|██████▊   | 339/500 [00:18<00:08, 18.68it/s]
eval model::  68%|██████▊   | 342/500 [00:18<00:10, 14.85it/s]
eval model::  69%|██████▉   | 345/500 [00:18<00:08, 17.42it/s]
eval model::  70%|██████▉   | 348/500 [00:18<00:08, 18.15it/s]
eval model::  70%|███████   | 351/500 [00:18<00:07, 18.78it/s]
eval model::  71%|███████   | 354/500 [00:19<00:07, 20.38it/s]
eval model::  71%|███████▏  | 357/500 [00:19<00:07, 18.85it/s]
eval model::  72%|███████▏  | 360/500 [00:19<00:06, 20.39it/s]
eval model::  73%|███████▎  | 363/500 [00:19<00:06, 20.77it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:07, 17.80it/s]
eval model::  74%|███████▍  | 369/500 [00:19<00:06, 19.86it/s]
eval model::  74%|███████▍  | 372/500 [00:20<00:07, 17.91it/s]
eval model::  75%|███████▌  | 375/500 [00:20<00:06, 19.48it/s]
eval model::  76%|███████▌  | 379/500 [00:20<00:05, 22.97it/s]
eval model::  76%|███████▋  | 382/500 [00:20<00:05, 23.17it/s]
eval model::  77%|███████▋  | 386/500 [00:20<00:07, 15.75it/s]
eval model::  78%|███████▊  | 389/500 [00:20<00:06, 17.55it/s]
eval model::  78%|███████▊  | 392/500 [00:21<00:05, 18.55it/s]
eval model::  79%|███████▉  | 395/500 [00:21<00:05, 18.83it/s]
eval model::  80%|███████▉  | 398/500 [00:21<00:04, 20.57it/s]
eval model::  80%|████████  | 401/500 [00:21<00:05, 19.38it/s]
eval model::  81%|████████  | 404/500 [00:21<00:04, 20.77it/s]
eval model::  81%|████████▏ | 407/500 [00:21<00:04, 22.27it/s]
eval model::  82%|████████▏ | 410/500 [00:21<00:03, 22.66it/s]
eval model::  83%|████████▎ | 413/500 [00:22<00:03, 23.24it/s]
eval model::  83%|████████▎ | 416/500 [00:22<00:03, 23.34it/s]
eval model::  84%|████████▍ | 419/500 [00:22<00:03, 22.47it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:04, 17.39it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:04, 17.11it/s]
eval model::  85%|████████▌ | 426/500 [00:22<00:04, 16.74it/s]
eval model::  86%|████████▌ | 429/500 [00:22<00:03, 18.89it/s]
eval model::  86%|████████▌ | 431/500 [00:23<00:03, 17.75it/s]
eval model::  87%|████████▋ | 435/500 [00:23<00:03, 21.03it/s]
eval model::  88%|████████▊ | 438/500 [00:23<00:02, 22.58it/s]
eval model::  88%|████████▊ | 441/500 [00:23<00:02, 21.08it/s]
eval model::  89%|████████▉ | 445/500 [00:23<00:02, 24.06it/s]
eval model::  90%|████████▉ | 448/500 [00:23<00:02, 20.75it/s]
eval model::  90%|█████████ | 451/500 [00:23<00:02, 21.56it/s]
eval model::  91%|█████████ | 454/500 [00:24<00:02, 21.27it/s]
eval model::  91%|█████████▏| 457/500 [00:24<00:01, 21.60it/s]
eval model::  92%|█████████▏| 460/500 [00:24<00:01, 20.27it/s]
eval model::  93%|█████████▎| 463/500 [00:24<00:02, 16.93it/s]
eval model::  93%|█████████▎| 465/500 [00:24<00:02, 16.19it/s]
eval model::  93%|█████████▎| 467/500 [00:24<00:01, 16.76it/s]
eval model::  94%|█████████▍| 470/500 [00:24<00:01, 19.28it/s]
eval model::  95%|█████████▍| 473/500 [00:25<00:01, 20.23it/s]
eval model::  95%|█████████▌| 476/500 [00:25<00:01, 20.78it/s]
eval model::  96%|█████████▌| 479/500 [00:25<00:00, 22.75it/s]
eval model::  96%|█████████▋| 482/500 [00:25<00:00, 21.30it/s]
eval model::  97%|█████████▋| 485/500 [00:25<00:00, 23.24it/s]
eval model::  98%|█████████▊| 488/500 [00:25<00:00, 22.87it/s]
eval model::  98%|█████████▊| 491/500 [00:25<00:00, 22.35it/s]
eval model::  99%|█████████▉| 494/500 [00:26<00:00, 21.25it/s]
eval model::  99%|█████████▉| 497/500 [00:26<00:00, 21.40it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 23.09it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 19.02it/s]
[2024/07/28 00:09:58] ppocr INFO: cur metric, precision: 0.6733181299885975, recall: 0.568608570052961, hmean: 0.6165492038632212, fps: 45.792003513915795
[2024/07/28 00:09:58] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/28 00:09:58] ppocr INFO: best metric, hmean: 0.6165492038632212, precision: 0.6733181299885975, recall: 0.568608570052961, fps: 45.792003513915795, best_epoch: 300
[2024/07/28 00:09:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:10:05] ppocr INFO: epoch: [301/1500], global_step: 903, lr: 0.001000, loss: 1.710967, loss_shrink_maps: 0.903807, loss_threshold_maps: 0.618226, loss_binary_maps: 0.179562, avg_reader_cost: 1.71315 s, avg_batch_cost: 1.97479 s, avg_samples: 12.5, ips: 6.32977 samples/s, eta: 6:11:04
[2024/07/28 00:10:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:10:13] ppocr INFO: epoch: [302/1500], global_step: 906, lr: 0.001000, loss: 1.702414, loss_shrink_maps: 0.891611, loss_threshold_maps: 0.623733, loss_binary_maps: 0.177357, avg_reader_cost: 1.55142 s, avg_batch_cost: 1.80658 s, avg_samples: 12.5, ips: 6.91916 samples/s, eta: 6:10:44
[2024/07/28 00:10:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:10:21] ppocr INFO: epoch: [303/1500], global_step: 909, lr: 0.001000, loss: 1.681748, loss_shrink_maps: 0.886421, loss_threshold_maps: 0.613128, loss_binary_maps: 0.176220, avg_reader_cost: 1.56260 s, avg_batch_cost: 1.82267 s, avg_samples: 12.5, ips: 6.85808 samples/s, eta: 6:10:24
[2024/07/28 00:10:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:10:28] ppocr INFO: epoch: [304/1500], global_step: 910, lr: 0.001000, loss: 1.694732, loss_shrink_maps: 0.891611, loss_threshold_maps: 0.616132, loss_binary_maps: 0.177357, avg_reader_cost: 0.38989 s, avg_batch_cost: 0.55912 s, avg_samples: 4.8, ips: 8.58491 samples/s, eta: 6:10:15
[2024/07/28 00:10:29] ppocr INFO: epoch: [304/1500], global_step: 912, lr: 0.001000, loss: 1.694732, loss_shrink_maps: 0.900516, loss_threshold_maps: 0.616132, loss_binary_maps: 0.179090, avg_reader_cost: 1.20955 s, avg_batch_cost: 1.35524 s, avg_samples: 7.7, ips: 5.68166 samples/s, eta: 6:10:08
[2024/07/28 00:10:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:10:37] ppocr INFO: epoch: [305/1500], global_step: 915, lr: 0.001000, loss: 1.694732, loss_shrink_maps: 0.900516, loss_threshold_maps: 0.618588, loss_binary_maps: 0.179090, avg_reader_cost: 1.63394 s, avg_batch_cost: 1.87864 s, avg_samples: 12.5, ips: 6.65375 samples/s, eta: 6:09:50
[2024/07/28 00:10:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:10:45] ppocr INFO: epoch: [306/1500], global_step: 918, lr: 0.001000, loss: 1.694732, loss_shrink_maps: 0.900516, loss_threshold_maps: 0.617656, loss_binary_maps: 0.179090, avg_reader_cost: 1.51458 s, avg_batch_cost: 1.75072 s, avg_samples: 12.5, ips: 7.13992 samples/s, eta: 6:09:27
[2024/07/28 00:10:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:10:52] ppocr INFO: epoch: [307/1500], global_step: 920, lr: 0.001000, loss: 1.696456, loss_shrink_maps: 0.900516, loss_threshold_maps: 0.620874, loss_binary_maps: 0.179090, avg_reader_cost: 0.95419 s, avg_batch_cost: 1.14435 s, avg_samples: 9.6, ips: 8.38903 samples/s, eta: 6:09:11
[2024/07/28 00:10:53] ppocr INFO: epoch: [307/1500], global_step: 921, lr: 0.001000, loss: 1.684161, loss_shrink_maps: 0.897070, loss_threshold_maps: 0.617656, loss_binary_maps: 0.178110, avg_reader_cost: 0.61815 s, avg_batch_cost: 0.67331 s, avg_samples: 2.9, ips: 4.30710 samples/s, eta: 6:09:07
[2024/07/28 00:10:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:11:01] ppocr INFO: epoch: [308/1500], global_step: 924, lr: 0.001000, loss: 1.674015, loss_shrink_maps: 0.891712, loss_threshold_maps: 0.617656, loss_binary_maps: 0.176942, avg_reader_cost: 1.52231 s, avg_batch_cost: 1.75098 s, avg_samples: 12.5, ips: 7.13887 samples/s, eta: 6:08:45
[2024/07/28 00:11:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:11:08] ppocr INFO: epoch: [309/1500], global_step: 927, lr: 0.001000, loss: 1.698528, loss_shrink_maps: 0.922975, loss_threshold_maps: 0.617858, loss_binary_maps: 0.182575, avg_reader_cost: 1.52980 s, avg_batch_cost: 1.77004 s, avg_samples: 12.5, ips: 7.06199 samples/s, eta: 6:08:23
[2024/07/28 00:11:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:11:16] ppocr INFO: epoch: [310/1500], global_step: 930, lr: 0.001000, loss: 1.741045, loss_shrink_maps: 0.952409, loss_threshold_maps: 0.619417, loss_binary_maps: 0.188109, avg_reader_cost: 1.53883 s, avg_batch_cost: 1.77563 s, avg_samples: 12.5, ips: 7.03977 samples/s, eta: 6:08:01
[2024/07/28 00:11:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:11:24] ppocr INFO: epoch: [311/1500], global_step: 933, lr: 0.001000, loss: 1.741045, loss_shrink_maps: 0.952409, loss_threshold_maps: 0.619417, loss_binary_maps: 0.188109, avg_reader_cost: 1.53292 s, avg_batch_cost: 1.77100 s, avg_samples: 12.5, ips: 7.05816 samples/s, eta: 6:07:39
[2024/07/28 00:11:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:11:32] ppocr INFO: epoch: [312/1500], global_step: 936, lr: 0.001000, loss: 1.794587, loss_shrink_maps: 0.980402, loss_threshold_maps: 0.619417, loss_binary_maps: 0.194768, avg_reader_cost: 1.54636 s, avg_batch_cost: 1.83205 s, avg_samples: 12.5, ips: 6.82297 samples/s, eta: 6:07:20
[2024/07/28 00:11:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:11:40] ppocr INFO: epoch: [313/1500], global_step: 939, lr: 0.001000, loss: 1.821812, loss_shrink_maps: 0.990127, loss_threshold_maps: 0.626903, loss_binary_maps: 0.197372, avg_reader_cost: 1.54035 s, avg_batch_cost: 1.77026 s, avg_samples: 12.5, ips: 7.06110 samples/s, eta: 6:06:58
[2024/07/28 00:11:41] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:11:46] ppocr INFO: epoch: [314/1500], global_step: 940, lr: 0.001000, loss: 1.794587, loss_shrink_maps: 0.980402, loss_threshold_maps: 0.619417, loss_binary_maps: 0.194768, avg_reader_cost: 0.42233 s, avg_batch_cost: 0.51530 s, avg_samples: 4.8, ips: 9.31494 samples/s, eta: 6:06:48
[2024/07/28 00:11:47] ppocr INFO: epoch: [314/1500], global_step: 942, lr: 0.001000, loss: 1.741045, loss_shrink_maps: 0.952409, loss_threshold_maps: 0.614283, loss_binary_maps: 0.188109, avg_reader_cost: 1.12201 s, avg_batch_cost: 1.26781 s, avg_samples: 7.7, ips: 6.07348 samples/s, eta: 6:06:37
[2024/07/28 00:11:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:11:55] ppocr INFO: epoch: [315/1500], global_step: 945, lr: 0.001000, loss: 1.741045, loss_shrink_maps: 0.952409, loss_threshold_maps: 0.618962, loss_binary_maps: 0.188109, avg_reader_cost: 1.51481 s, avg_batch_cost: 1.74993 s, avg_samples: 12.5, ips: 7.14313 samples/s, eta: 6:06:14
[2024/07/28 00:11:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:12:04] ppocr INFO: epoch: [316/1500], global_step: 948, lr: 0.001000, loss: 1.677360, loss_shrink_maps: 0.895268, loss_threshold_maps: 0.614283, loss_binary_maps: 0.177642, avg_reader_cost: 1.74767 s, avg_batch_cost: 2.01234 s, avg_samples: 12.5, ips: 6.21167 samples/s, eta: 6:06:02
[2024/07/28 00:12:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:12:11] ppocr INFO: epoch: [317/1500], global_step: 950, lr: 0.001000, loss: 1.680534, loss_shrink_maps: 0.895920, loss_threshold_maps: 0.614928, loss_binary_maps: 0.177656, avg_reader_cost: 0.93264 s, avg_batch_cost: 1.10753 s, avg_samples: 9.6, ips: 8.66795 samples/s, eta: 6:05:44
[2024/07/28 00:12:11] ppocr INFO: epoch: [317/1500], global_step: 951, lr: 0.001000, loss: 1.764711, loss_shrink_maps: 0.946008, loss_threshold_maps: 0.626448, loss_binary_maps: 0.187390, avg_reader_cost: 0.60002 s, avg_batch_cost: 0.65439 s, avg_samples: 2.9, ips: 4.43163 samples/s, eta: 6:05:40
[2024/07/28 00:12:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:12:19] ppocr INFO: epoch: [318/1500], global_step: 954, lr: 0.001000, loss: 1.680534, loss_shrink_maps: 0.895920, loss_threshold_maps: 0.611266, loss_binary_maps: 0.177656, avg_reader_cost: 1.52979 s, avg_batch_cost: 1.77378 s, avg_samples: 12.5, ips: 7.04710 samples/s, eta: 6:05:18
[2024/07/28 00:12:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:12:27] ppocr INFO: epoch: [319/1500], global_step: 957, lr: 0.001000, loss: 1.764711, loss_shrink_maps: 0.946008, loss_threshold_maps: 0.611892, loss_binary_maps: 0.187390, avg_reader_cost: 1.52390 s, avg_batch_cost: 1.76135 s, avg_samples: 12.5, ips: 7.09684 samples/s, eta: 6:04:56
[2024/07/28 00:12:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:12:35] ppocr INFO: epoch: [320/1500], global_step: 960, lr: 0.001000, loss: 1.704222, loss_shrink_maps: 0.912415, loss_threshold_maps: 0.605600, loss_binary_maps: 0.181487, avg_reader_cost: 1.59677 s, avg_batch_cost: 1.82590 s, avg_samples: 12.5, ips: 6.84596 samples/s, eta: 6:04:37

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 2/500 [00:00<00:33, 14.69it/s]
eval model::   1%|          | 5/500 [00:00<00:22, 21.68it/s]
eval model::   2%|▏         | 8/500 [00:00<00:26, 18.68it/s]
eval model::   2%|▏         | 11/500 [00:00<00:28, 17.27it/s]
eval model::   3%|▎         | 14/500 [00:00<00:25, 18.91it/s]
eval model::   3%|▎         | 17/500 [00:00<00:22, 21.24it/s]
eval model::   4%|▍         | 20/500 [00:01<00:23, 20.87it/s]
eval model::   5%|▍         | 23/500 [00:01<00:21, 21.84it/s]
eval model::   5%|▌         | 26/500 [00:01<00:23, 19.95it/s]
eval model::   6%|▌         | 29/500 [00:01<00:21, 21.46it/s]
eval model::   6%|▋         | 32/500 [00:01<00:23, 20.03it/s]
eval model::   7%|▋         | 35/500 [00:01<00:25, 18.07it/s]
eval model::   8%|▊         | 38/500 [00:01<00:23, 19.53it/s]
eval model::   8%|▊         | 41/500 [00:02<00:23, 19.33it/s]
eval model::   9%|▊         | 43/500 [00:02<00:25, 18.07it/s]
eval model::   9%|▉         | 46/500 [00:02<00:27, 16.59it/s]
eval model::  10%|▉         | 49/500 [00:02<00:24, 18.23it/s]
eval model::  10%|█         | 51/500 [00:02<00:24, 18.55it/s]
eval model::  11%|█         | 54/500 [00:02<00:23, 19.26it/s]
eval model::  11%|█▏        | 57/500 [00:02<00:22, 19.77it/s]
eval model::  12%|█▏        | 60/500 [00:03<00:25, 17.58it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:31, 14.03it/s]
eval model::  13%|█▎        | 64/500 [00:03<00:29, 14.73it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:24, 17.71it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:21, 20.30it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:20, 21.11it/s]
eval model::  15%|█▌        | 76/500 [00:03<00:19, 21.41it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:20, 20.78it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:18, 22.88it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:17, 23.54it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:20, 19.66it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:22, 17.79it/s]
eval model::  19%|█▉        | 94/500 [00:04<00:20, 19.59it/s]
eval model::  19%|█▉        | 97/500 [00:05<00:19, 20.59it/s]
eval model::  20%|██        | 100/500 [00:05<00:19, 20.52it/s]
eval model::  21%|██        | 103/500 [00:05<00:17, 22.58it/s]
eval model::  21%|██        | 106/500 [00:05<00:17, 22.79it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:16, 23.64it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:17, 22.01it/s]
eval model::  23%|██▎       | 115/500 [00:05<00:18, 21.35it/s]
eval model::  24%|██▎       | 118/500 [00:05<00:17, 21.45it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:18, 20.79it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:18, 20.25it/s]
eval model::  25%|██▌       | 127/500 [00:06<00:18, 20.14it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:19, 19.36it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:20, 18.38it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:19, 18.77it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:18, 19.63it/s]
eval model::  28%|██▊       | 140/500 [00:07<00:19, 18.74it/s]
eval model::  29%|██▊       | 143/500 [00:07<00:17, 20.41it/s]
eval model::  29%|██▉       | 146/500 [00:07<00:17, 20.46it/s]
eval model::  30%|██▉       | 149/500 [00:07<00:18, 19.23it/s]
eval model::  30%|███       | 151/500 [00:07<00:21, 16.20it/s]
eval model::  31%|███       | 154/500 [00:07<00:18, 18.78it/s]
eval model::  31%|███▏      | 157/500 [00:08<00:17, 19.96it/s]
eval model::  32%|███▏      | 160/500 [00:08<00:19, 17.24it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:17, 18.78it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:16, 20.67it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:16, 20.40it/s]
eval model::  34%|███▍      | 172/500 [00:08<00:18, 17.90it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:21, 15.11it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:20, 15.94it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:17, 18.49it/s]
eval model::  36%|███▋      | 182/500 [00:09<00:19, 16.22it/s]
eval model::  37%|███▋      | 185/500 [00:09<00:16, 18.60it/s]
eval model::  38%|███▊      | 188/500 [00:09<00:18, 16.78it/s]
eval model::  38%|███▊      | 191/500 [00:09<00:17, 18.06it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:15, 19.83it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:14, 20.41it/s]
eval model::  40%|████      | 201/500 [00:10<00:14, 21.21it/s]
eval model::  41%|████      | 205/500 [00:10<00:19, 15.49it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:18, 16.22it/s]
eval model::  42%|████▏     | 209/500 [00:10<00:17, 16.47it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:18, 15.92it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.77it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:21, 13.50it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:21, 12.90it/s]
eval model::  44%|████▍     | 219/500 [00:11<00:19, 14.10it/s]
eval model::  44%|████▍     | 221/500 [00:11<00:19, 14.04it/s]
eval model::  45%|████▍     | 224/500 [00:12<00:16, 16.93it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:15, 17.58it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:12, 21.89it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:12, 21.99it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:13, 19.69it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:12, 21.71it/s]
eval model::  48%|████▊     | 242/500 [00:12<00:12, 20.46it/s]
eval model::  49%|████▉     | 245/500 [00:12<00:11, 21.73it/s]
eval model::  50%|████▉     | 248/500 [00:13<00:10, 23.03it/s]
eval model::  50%|█████     | 251/500 [00:13<00:10, 23.34it/s]
eval model::  51%|█████     | 254/500 [00:13<00:10, 24.33it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:10, 23.62it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:10, 22.81it/s]
eval model::  53%|█████▎    | 263/500 [00:13<00:11, 21.31it/s]
eval model::  53%|█████▎    | 266/500 [00:13<00:12, 19.09it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:11, 19.70it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:10, 21.19it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:10, 20.59it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:10, 21.59it/s]
eval model::  56%|█████▌    | 281/500 [00:14<00:09, 23.52it/s]
eval model::  57%|█████▋    | 284/500 [00:14<00:09, 22.85it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:17, 12.15it/s]
eval model::  58%|█████▊    | 290/500 [00:15<00:14, 14.64it/s]
eval model::  59%|█████▊    | 293/500 [00:15<00:12, 16.26it/s]
eval model::  59%|█████▉    | 296/500 [00:15<00:15, 13.32it/s]
eval model::  60%|█████▉    | 299/500 [00:15<00:13, 15.33it/s]
eval model::  60%|██████    | 301/500 [00:16<00:15, 13.00it/s]
eval model::  61%|██████    | 304/500 [00:16<00:13, 15.05it/s]
eval model::  61%|██████▏   | 307/500 [00:16<00:11, 17.47it/s]
eval model::  62%|██████▏   | 310/500 [00:16<00:09, 19.55it/s]
eval model::  63%|██████▎   | 314/500 [00:16<00:08, 21.74it/s]
eval model::  63%|██████▎   | 317/500 [00:16<00:07, 23.03it/s]
eval model::  64%|██████▍   | 320/500 [00:16<00:08, 22.28it/s]
eval model::  65%|██████▍   | 323/500 [00:17<00:08, 21.50it/s]
eval model::  65%|██████▌   | 326/500 [00:17<00:07, 22.36it/s]
eval model::  66%|██████▌   | 329/500 [00:17<00:08, 20.77it/s]
eval model::  66%|██████▋   | 332/500 [00:17<00:08, 19.24it/s]
eval model::  67%|██████▋   | 336/500 [00:17<00:07, 21.36it/s]
eval model::  68%|██████▊   | 339/500 [00:17<00:07, 20.34it/s]
eval model::  68%|██████▊   | 342/500 [00:18<00:10, 15.71it/s]
eval model::  69%|██████▉   | 344/500 [00:18<00:09, 16.12it/s]
eval model::  69%|██████▉   | 346/500 [00:18<00:09, 16.59it/s]
eval model::  70%|██████▉   | 348/500 [00:18<00:08, 16.95it/s]
eval model::  70%|███████   | 351/500 [00:18<00:07, 18.93it/s]
eval model::  71%|███████   | 354/500 [00:18<00:07, 20.19it/s]
eval model::  71%|███████▏  | 357/500 [00:18<00:07, 18.73it/s]
eval model::  72%|███████▏  | 359/500 [00:19<00:07, 18.41it/s]
eval model::  72%|███████▏  | 361/500 [00:19<00:08, 17.24it/s]
eval model::  73%|███████▎  | 363/500 [00:19<00:07, 17.68it/s]
eval model::  73%|███████▎  | 365/500 [00:19<00:08, 15.48it/s]
eval model::  73%|███████▎  | 367/500 [00:19<00:09, 13.74it/s]
eval model::  74%|███████▍  | 369/500 [00:19<00:08, 14.79it/s]
eval model::  74%|███████▍  | 371/500 [00:19<00:08, 15.53it/s]
eval model::  75%|███████▍  | 374/500 [00:19<00:06, 18.71it/s]
eval model::  75%|███████▌  | 377/500 [00:20<00:05, 21.34it/s]
eval model::  76%|███████▌  | 380/500 [00:20<00:05, 21.67it/s]
eval model::  77%|███████▋  | 384/500 [00:20<00:04, 24.97it/s]
eval model::  77%|███████▋  | 387/500 [00:20<00:07, 14.24it/s]
eval model::  78%|███████▊  | 390/500 [00:20<00:06, 16.37it/s]
eval model::  79%|███████▊  | 393/500 [00:21<00:05, 17.83it/s]
eval model::  79%|███████▉  | 396/500 [00:21<00:05, 18.69it/s]
eval model::  80%|███████▉  | 399/500 [00:21<00:04, 20.31it/s]
eval model::  80%|████████  | 402/500 [00:21<00:04, 21.05it/s]
eval model::  81%|████████  | 405/500 [00:21<00:04, 21.51it/s]
eval model::  82%|████████▏ | 408/500 [00:21<00:04, 21.62it/s]
eval model::  82%|████████▏ | 411/500 [00:21<00:04, 21.27it/s]
eval model::  83%|████████▎ | 414/500 [00:21<00:04, 19.87it/s]
eval model::  83%|████████▎ | 417/500 [00:22<00:04, 17.28it/s]
eval model::  84%|████████▍ | 419/500 [00:22<00:04, 17.38it/s]
eval model::  84%|████████▍ | 421/500 [00:22<00:05, 14.42it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:04, 15.76it/s]
eval model::  85%|████████▌ | 427/500 [00:22<00:04, 17.54it/s]
eval model::  86%|████████▌ | 430/500 [00:22<00:03, 19.36it/s]
eval model::  87%|████████▋ | 433/500 [00:23<00:03, 18.43it/s]
eval model::  87%|████████▋ | 436/500 [00:23<00:03, 19.73it/s]
eval model::  88%|████████▊ | 439/500 [00:23<00:02, 21.03it/s]
eval model::  88%|████████▊ | 442/500 [00:23<00:02, 19.60it/s]
eval model::  89%|████████▉ | 445/500 [00:23<00:02, 21.57it/s]
eval model::  90%|████████▉ | 448/500 [00:23<00:02, 21.59it/s]
eval model::  90%|█████████ | 451/500 [00:23<00:02, 21.17it/s]
eval model::  91%|█████████ | 454/500 [00:24<00:02, 20.98it/s]
eval model::  91%|█████████▏| 457/500 [00:24<00:02, 20.13it/s]
eval model::  92%|█████████▏| 460/500 [00:24<00:01, 20.29it/s]
eval model::  93%|█████████▎| 463/500 [00:24<00:02, 18.21it/s]
eval model::  93%|█████████▎| 465/500 [00:24<00:01, 18.15it/s]
eval model::  93%|█████████▎| 467/500 [00:24<00:01, 17.59it/s]
eval model::  94%|█████████▍| 470/500 [00:24<00:01, 20.23it/s]
eval model::  95%|█████████▍| 473/500 [00:25<00:01, 20.64it/s]
eval model::  95%|█████████▌| 476/500 [00:25<00:01, 18.02it/s]
eval model::  96%|█████████▌| 479/500 [00:25<00:01, 20.35it/s]
eval model::  96%|█████████▋| 482/500 [00:25<00:00, 20.38it/s]
eval model::  97%|█████████▋| 486/500 [00:25<00:00, 20.81it/s]
eval model::  98%|█████████▊| 490/500 [00:25<00:00, 24.72it/s]
eval model::  99%|█████████▊| 493/500 [00:26<00:00, 21.46it/s]
eval model::  99%|█████████▉| 496/500 [00:26<00:00, 21.60it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 25.02it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 19.02it/s]
[2024/07/28 00:13:01] ppocr INFO: cur metric, precision: 0.6528697571743929, recall: 0.5695714973519499, hmean: 0.608382617639496, fps: 45.91489514866459
[2024/07/28 00:13:01] ppocr INFO: best metric, hmean: 0.6165492038632212, precision: 0.6733181299885975, recall: 0.568608570052961, fps: 45.792003513915795, best_epoch: 300
[2024/07/28 00:13:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:13:08] ppocr INFO: epoch: [321/1500], global_step: 963, lr: 0.001000, loss: 1.843419, loss_shrink_maps: 1.000370, loss_threshold_maps: 0.631571, loss_binary_maps: 0.198119, avg_reader_cost: 1.56759 s, avg_batch_cost: 1.84304 s, avg_samples: 12.5, ips: 6.78226 samples/s, eta: 6:04:18
[2024/07/28 00:13:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:13:16] ppocr INFO: epoch: [322/1500], global_step: 966, lr: 0.001000, loss: 1.796238, loss_shrink_maps: 0.985737, loss_threshold_maps: 0.605600, loss_binary_maps: 0.195702, avg_reader_cost: 1.52351 s, avg_batch_cost: 1.75210 s, avg_samples: 12.5, ips: 7.13430 samples/s, eta: 6:03:55
[2024/07/28 00:13:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:13:23] ppocr INFO: epoch: [323/1500], global_step: 969, lr: 0.001000, loss: 1.747766, loss_shrink_maps: 0.980160, loss_threshold_maps: 0.601704, loss_binary_maps: 0.194745, avg_reader_cost: 1.47387 s, avg_batch_cost: 1.71516 s, avg_samples: 12.5, ips: 7.28797 samples/s, eta: 6:03:32
[2024/07/28 00:13:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:13:30] ppocr INFO: epoch: [324/1500], global_step: 970, lr: 0.001000, loss: 1.747766, loss_shrink_maps: 0.980160, loss_threshold_maps: 0.604454, loss_binary_maps: 0.194745, avg_reader_cost: 0.39621 s, avg_batch_cost: 0.56285 s, avg_samples: 4.8, ips: 8.52808 samples/s, eta: 6:03:24
[2024/07/28 00:13:32] ppocr INFO: epoch: [324/1500], global_step: 972, lr: 0.001000, loss: 1.779115, loss_shrink_maps: 0.992880, loss_threshold_maps: 0.604454, loss_binary_maps: 0.196841, avg_reader_cost: 1.21790 s, avg_batch_cost: 1.36316 s, avg_samples: 7.7, ips: 5.64865 samples/s, eta: 6:03:16
[2024/07/28 00:13:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:13:39] ppocr INFO: epoch: [325/1500], global_step: 975, lr: 0.001000, loss: 1.747766, loss_shrink_maps: 0.980160, loss_threshold_maps: 0.604044, loss_binary_maps: 0.194745, avg_reader_cost: 1.54946 s, avg_batch_cost: 1.78113 s, avg_samples: 12.5, ips: 7.01800 samples/s, eta: 6:02:55
[2024/07/28 00:13:41] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:13:48] ppocr INFO: epoch: [326/1500], global_step: 978, lr: 0.001000, loss: 1.747766, loss_shrink_maps: 0.980160, loss_threshold_maps: 0.603875, loss_binary_maps: 0.194745, avg_reader_cost: 1.74909 s, avg_batch_cost: 2.01774 s, avg_samples: 12.5, ips: 6.19505 samples/s, eta: 6:02:42
[2024/07/28 00:13:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:13:56] ppocr INFO: epoch: [327/1500], global_step: 980, lr: 0.001000, loss: 1.733242, loss_shrink_maps: 0.952223, loss_threshold_maps: 0.601535, loss_binary_maps: 0.188918, avg_reader_cost: 0.99189 s, avg_batch_cost: 1.16681 s, avg_samples: 9.6, ips: 8.22759 samples/s, eta: 6:02:27
[2024/07/28 00:13:56] ppocr INFO: epoch: [327/1500], global_step: 981, lr: 0.001000, loss: 1.699306, loss_shrink_maps: 0.946548, loss_threshold_maps: 0.595257, loss_binary_maps: 0.188858, avg_reader_cost: 0.62900 s, avg_batch_cost: 0.68367 s, avg_samples: 2.9, ips: 4.24178 samples/s, eta: 6:02:23
[2024/07/28 00:13:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:14:04] ppocr INFO: epoch: [328/1500], global_step: 984, lr: 0.001000, loss: 1.617858, loss_shrink_maps: 0.858967, loss_threshold_maps: 0.593619, loss_binary_maps: 0.170642, avg_reader_cost: 1.56952 s, avg_batch_cost: 1.80032 s, avg_samples: 12.5, ips: 6.94320 samples/s, eta: 6:02:03
[2024/07/28 00:14:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:14:12] ppocr INFO: epoch: [329/1500], global_step: 987, lr: 0.001000, loss: 1.617858, loss_shrink_maps: 0.858967, loss_threshold_maps: 0.599626, loss_binary_maps: 0.170642, avg_reader_cost: 1.50231 s, avg_batch_cost: 1.73123 s, avg_samples: 12.5, ips: 7.22032 samples/s, eta: 6:01:40
[2024/07/28 00:14:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:14:20] ppocr INFO: epoch: [330/1500], global_step: 990, lr: 0.001000, loss: 1.617858, loss_shrink_maps: 0.858967, loss_threshold_maps: 0.599626, loss_binary_maps: 0.170642, avg_reader_cost: 1.54143 s, avg_batch_cost: 1.77887 s, avg_samples: 12.5, ips: 7.02695 samples/s, eta: 6:01:19
[2024/07/28 00:14:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:14:27] ppocr INFO: epoch: [331/1500], global_step: 993, lr: 0.001000, loss: 1.647462, loss_shrink_maps: 0.889947, loss_threshold_maps: 0.603568, loss_binary_maps: 0.177590, avg_reader_cost: 1.51456 s, avg_batch_cost: 1.75282 s, avg_samples: 12.5, ips: 7.13137 samples/s, eta: 6:00:57
[2024/07/28 00:14:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:14:35] ppocr INFO: epoch: [332/1500], global_step: 996, lr: 0.001000, loss: 1.641897, loss_shrink_maps: 0.885094, loss_threshold_maps: 0.599626, loss_binary_maps: 0.175894, avg_reader_cost: 1.53668 s, avg_batch_cost: 1.77320 s, avg_samples: 12.5, ips: 7.04939 samples/s, eta: 6:00:36
[2024/07/28 00:14:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:14:43] ppocr INFO: epoch: [333/1500], global_step: 999, lr: 0.001000, loss: 1.700925, loss_shrink_maps: 0.922795, loss_threshold_maps: 0.608902, loss_binary_maps: 0.183419, avg_reader_cost: 1.52966 s, avg_batch_cost: 1.76127 s, avg_samples: 12.5, ips: 7.09714 samples/s, eta: 6:00:14
[2024/07/28 00:14:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:14:49] ppocr INFO: epoch: [334/1500], global_step: 1000, lr: 0.001000, loss: 1.738771, loss_shrink_maps: 0.928993, loss_threshold_maps: 0.608902, loss_binary_maps: 0.184001, avg_reader_cost: 0.43265 s, avg_batch_cost: 0.52788 s, avg_samples: 4.8, ips: 9.09305 samples/s, eta: 6:00:05
[2024/07/28 00:14:51] ppocr INFO: epoch: [334/1500], global_step: 1002, lr: 0.001000, loss: 1.752892, loss_shrink_maps: 0.936253, loss_threshold_maps: 0.631463, loss_binary_maps: 0.185399, avg_reader_cost: 1.14722 s, avg_batch_cost: 1.29311 s, avg_samples: 7.7, ips: 5.95462 samples/s, eta: 5:59:54
[2024/07/28 00:14:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:14:59] ppocr INFO: epoch: [335/1500], global_step: 1005, lr: 0.001000, loss: 1.750008, loss_shrink_maps: 0.935382, loss_threshold_maps: 0.621866, loss_binary_maps: 0.185081, avg_reader_cost: 1.55942 s, avg_batch_cost: 1.78879 s, avg_samples: 12.5, ips: 6.98796 samples/s, eta: 5:59:33
[2024/07/28 00:15:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:15:06] ppocr INFO: epoch: [336/1500], global_step: 1008, lr: 0.001000, loss: 1.750008, loss_shrink_maps: 0.935382, loss_threshold_maps: 0.624105, loss_binary_maps: 0.185081, avg_reader_cost: 1.51010 s, avg_batch_cost: 1.73923 s, avg_samples: 12.5, ips: 7.18708 samples/s, eta: 5:59:11
[2024/07/28 00:15:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:15:14] ppocr INFO: epoch: [337/1500], global_step: 1010, lr: 0.001000, loss: 1.750008, loss_shrink_maps: 0.935382, loss_threshold_maps: 0.624105, loss_binary_maps: 0.185081, avg_reader_cost: 0.97631 s, avg_batch_cost: 1.18018 s, avg_samples: 9.6, ips: 8.13437 samples/s, eta: 5:58:57
[2024/07/28 00:15:14] ppocr INFO: epoch: [337/1500], global_step: 1011, lr: 0.001000, loss: 1.750008, loss_shrink_maps: 0.932479, loss_threshold_maps: 0.624105, loss_binary_maps: 0.184793, avg_reader_cost: 0.63584 s, avg_batch_cost: 0.69066 s, avg_samples: 2.9, ips: 4.19890 samples/s, eta: 5:58:53
[2024/07/28 00:15:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:15:22] ppocr INFO: epoch: [338/1500], global_step: 1014, lr: 0.001000, loss: 1.759424, loss_shrink_maps: 0.934916, loss_threshold_maps: 0.619365, loss_binary_maps: 0.185273, avg_reader_cost: 1.54157 s, avg_batch_cost: 1.76982 s, avg_samples: 12.5, ips: 7.06288 samples/s, eta: 5:58:32
[2024/07/28 00:15:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:15:30] ppocr INFO: epoch: [339/1500], global_step: 1017, lr: 0.001000, loss: 1.759424, loss_shrink_maps: 0.934916, loss_threshold_maps: 0.605237, loss_binary_maps: 0.185273, avg_reader_cost: 1.50063 s, avg_batch_cost: 1.73203 s, avg_samples: 12.5, ips: 7.21695 samples/s, eta: 5:58:09
[2024/07/28 00:15:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:15:38] ppocr INFO: epoch: [340/1500], global_step: 1020, lr: 0.001000, loss: 1.724715, loss_shrink_maps: 0.932479, loss_threshold_maps: 0.603823, loss_binary_maps: 0.184570, avg_reader_cost: 1.66152 s, avg_batch_cost: 1.91747 s, avg_samples: 12.5, ips: 6.51899 samples/s, eta: 5:57:53

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<01:00,  8.22it/s]
eval model::   1%|          | 4/500 [00:00<00:27, 18.18it/s]
eval model::   1%|          | 6/500 [00:00<00:26, 18.79it/s]
eval model::   2%|▏         | 8/500 [00:00<00:29, 16.74it/s]
eval model::   2%|▏         | 10/500 [00:00<00:28, 17.14it/s]
eval model::   3%|▎         | 13/500 [00:00<00:24, 19.51it/s]
eval model::   3%|▎         | 16/500 [00:00<00:22, 21.29it/s]
eval model::   4%|▍         | 19/500 [00:00<00:23, 20.38it/s]
eval model::   4%|▍         | 22/500 [00:01<00:25, 18.48it/s]
eval model::   5%|▌         | 25/500 [00:01<00:25, 18.86it/s]
eval model::   6%|▌         | 28/500 [00:01<00:23, 19.72it/s]
eval model::   6%|▌         | 31/500 [00:01<00:25, 18.45it/s]
eval model::   7%|▋         | 34/500 [00:01<00:24, 19.20it/s]
eval model::   8%|▊         | 38/500 [00:01<00:22, 20.94it/s]
eval model::   8%|▊         | 41/500 [00:02<00:25, 18.28it/s]
eval model::   9%|▊         | 43/500 [00:02<00:27, 16.68it/s]
eval model::   9%|▉         | 45/500 [00:02<00:26, 17.34it/s]
eval model::   9%|▉         | 47/500 [00:02<00:26, 16.84it/s]
eval model::  10%|█         | 50/500 [00:02<00:23, 18.88it/s]
eval model::  10%|█         | 52/500 [00:02<00:24, 18.31it/s]
eval model::  11%|█         | 55/500 [00:02<00:23, 19.33it/s]
eval model::  11%|█▏        | 57/500 [00:03<00:22, 19.39it/s]
eval model::  12%|█▏        | 59/500 [00:03<00:24, 17.78it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:30, 14.23it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:29, 14.64it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:26, 16.50it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:24, 17.55it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:23, 18.37it/s]
eval model::  15%|█▍        | 74/500 [00:04<00:22, 18.62it/s]
eval model::  15%|█▌        | 77/500 [00:04<00:21, 20.12it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:18, 23.21it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:20, 20.63it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:22, 18.25it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:24, 17.07it/s]
eval model::  18%|█▊        | 91/500 [00:05<00:24, 16.76it/s]
eval model::  19%|█▊        | 93/500 [00:05<00:25, 16.24it/s]
eval model::  19%|█▉        | 95/500 [00:05<00:24, 16.60it/s]
eval model::  19%|█▉        | 97/500 [00:05<00:24, 16.50it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:23, 17.18it/s]
eval model::  20%|██        | 101/500 [00:05<00:23, 16.69it/s]
eval model::  21%|██        | 104/500 [00:05<00:21, 18.80it/s]
eval model::  21%|██▏       | 107/500 [00:05<00:19, 20.45it/s]
eval model::  22%|██▏       | 110/500 [00:05<00:18, 20.91it/s]
eval model::  23%|██▎       | 113/500 [00:06<00:18, 20.81it/s]
eval model::  23%|██▎       | 116/500 [00:06<00:18, 21.16it/s]
eval model::  24%|██▍       | 119/500 [00:06<00:17, 22.41it/s]
eval model::  24%|██▍       | 122/500 [00:06<00:17, 21.51it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:18, 19.75it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:18, 19.79it/s]
eval model::  26%|██▌       | 131/500 [00:07<00:18, 19.44it/s]
eval model::  27%|██▋       | 133/500 [00:07<00:20, 18.32it/s]
eval model::  27%|██▋       | 136/500 [00:07<00:18, 19.20it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:18, 19.08it/s]
eval model::  28%|██▊       | 140/500 [00:07<00:18, 19.24it/s]
eval model::  29%|██▊       | 143/500 [00:07<00:17, 20.59it/s]
eval model::  29%|██▉       | 146/500 [00:07<00:18, 19.55it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:18, 18.91it/s]
eval model::  30%|███       | 151/500 [00:08<00:17, 19.78it/s]
eval model::  31%|███       | 155/500 [00:08<00:14, 23.59it/s]
eval model::  32%|███▏      | 158/500 [00:08<00:14, 22.93it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:19, 17.57it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:17, 18.89it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:17, 19.15it/s]
eval model::  34%|███▍      | 170/500 [00:08<00:16, 20.42it/s]
eval model::  35%|███▍      | 173/500 [00:09<00:16, 19.87it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:20, 15.86it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:18, 17.19it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:19, 16.47it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:17, 18.28it/s]
eval model::  37%|███▋      | 187/500 [00:09<00:16, 19.09it/s]
eval model::  38%|███▊      | 190/500 [00:10<00:14, 21.28it/s]
eval model::  39%|███▊      | 193/500 [00:10<00:13, 23.24it/s]
eval model::  39%|███▉      | 196/500 [00:10<00:14, 21.13it/s]
eval model::  40%|███▉      | 199/500 [00:10<00:13, 21.91it/s]
eval model::  40%|████      | 202/500 [00:10<00:12, 23.08it/s]
eval model::  41%|████      | 205/500 [00:10<00:19, 15.43it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:17, 16.52it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:19, 15.26it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:17, 16.11it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:20, 14.13it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:21, 13.43it/s]
eval model::  44%|████▍     | 219/500 [00:11<00:19, 14.29it/s]
eval model::  44%|████▍     | 221/500 [00:12<00:18, 15.04it/s]
eval model::  45%|████▍     | 224/500 [00:12<00:16, 17.20it/s]
eval model::  45%|████▌     | 227/500 [00:12<00:14, 19.07it/s]
eval model::  46%|████▌     | 231/500 [00:12<00:11, 22.47it/s]
eval model::  47%|████▋     | 234/500 [00:12<00:12, 21.86it/s]
eval model::  47%|████▋     | 237/500 [00:12<00:11, 23.08it/s]
eval model::  48%|████▊     | 240/500 [00:12<00:10, 24.35it/s]
eval model::  49%|████▊     | 243/500 [00:12<00:12, 21.19it/s]
eval model::  49%|████▉     | 246/500 [00:13<00:11, 21.60it/s]
eval model::  50%|████▉     | 249/500 [00:13<00:11, 20.96it/s]
eval model::  50%|█████     | 252/500 [00:13<00:11, 21.57it/s]
eval model::  51%|█████     | 255/500 [00:13<00:12, 20.11it/s]
eval model::  52%|█████▏    | 258/500 [00:13<00:13, 17.65it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:13, 17.76it/s]
eval model::  53%|█████▎    | 263/500 [00:14<00:12, 18.60it/s]
eval model::  53%|█████▎    | 265/500 [00:14<00:15, 15.58it/s]
eval model::  53%|█████▎    | 267/500 [00:14<00:14, 16.28it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:13, 16.89it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:12, 18.19it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:13, 16.51it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:11, 18.63it/s]
eval model::  56%|█████▌    | 280/500 [00:15<00:11, 18.77it/s]
eval model::  56%|█████▋    | 282/500 [00:15<00:11, 18.71it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:18, 11.91it/s]
eval model::  58%|█████▊    | 288/500 [00:15<00:14, 14.42it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:12, 17.13it/s]
eval model::  59%|█████▉    | 294/500 [00:16<00:13, 15.46it/s]
eval model::  59%|█████▉    | 296/500 [00:16<00:14, 13.83it/s]
eval model::  60%|██████    | 300/500 [00:16<00:12, 16.12it/s]
eval model::  61%|██████    | 303/500 [00:16<00:10, 18.08it/s]
eval model::  61%|██████    | 306/500 [00:16<00:10, 19.16it/s]
eval model::  62%|██████▏   | 309/500 [00:16<00:09, 21.17it/s]
eval model::  62%|██████▏   | 312/500 [00:16<00:09, 20.60it/s]
eval model::  63%|██████▎   | 315/500 [00:17<00:08, 21.50it/s]
eval model::  64%|██████▎   | 318/500 [00:17<00:07, 23.34it/s]
eval model::  64%|██████▍   | 321/500 [00:17<00:07, 23.91it/s]
eval model::  65%|██████▍   | 324/500 [00:17<00:07, 23.32it/s]
eval model::  65%|██████▌   | 327/500 [00:17<00:07, 23.91it/s]
eval model::  66%|██████▌   | 330/500 [00:17<00:07, 23.05it/s]
eval model::  67%|██████▋   | 333/500 [00:17<00:07, 21.84it/s]
eval model::  67%|██████▋   | 336/500 [00:17<00:08, 20.45it/s]
eval model::  68%|██████▊   | 339/500 [00:18<00:08, 18.49it/s]
eval model::  68%|██████▊   | 341/500 [00:18<00:12, 13.14it/s]
eval model::  69%|██████▊   | 343/500 [00:18<00:11, 13.75it/s]
eval model::  69%|██████▉   | 346/500 [00:18<00:09, 16.13it/s]
eval model::  70%|██████▉   | 349/500 [00:18<00:08, 18.45it/s]
eval model::  70%|███████   | 352/500 [00:19<00:08, 18.17it/s]
eval model::  71%|███████   | 355/500 [00:19<00:07, 18.41it/s]
eval model::  72%|███████▏  | 358/500 [00:19<00:07, 19.21it/s]
eval model::  72%|███████▏  | 361/500 [00:19<00:07, 17.73it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:07, 17.09it/s]
eval model::  73%|███████▎  | 367/500 [00:19<00:07, 17.81it/s]
eval model::  74%|███████▍  | 370/500 [00:19<00:06, 19.51it/s]
eval model::  75%|███████▍  | 373/500 [00:20<00:06, 19.99it/s]
eval model::  75%|███████▌  | 376/500 [00:20<00:05, 21.65it/s]
eval model::  76%|███████▌  | 379/500 [00:20<00:05, 23.38it/s]
eval model::  76%|███████▋  | 382/500 [00:20<00:04, 23.72it/s]
eval model::  77%|███████▋  | 386/500 [00:20<00:08, 13.24it/s]
eval model::  78%|███████▊  | 388/500 [00:21<00:07, 14.22it/s]
eval model::  78%|███████▊  | 391/500 [00:21<00:06, 15.86it/s]
eval model::  79%|███████▉  | 394/500 [00:21<00:05, 17.85it/s]
eval model::  80%|███████▉  | 398/500 [00:21<00:04, 21.40it/s]
eval model::  80%|████████  | 401/500 [00:21<00:05, 19.42it/s]
eval model::  81%|████████  | 404/500 [00:21<00:04, 21.25it/s]
eval model::  82%|████████▏ | 408/500 [00:21<00:03, 24.06it/s]
eval model::  82%|████████▏ | 411/500 [00:21<00:03, 25.23it/s]
eval model::  83%|████████▎ | 414/500 [00:22<00:03, 23.54it/s]
eval model::  83%|████████▎ | 417/500 [00:22<00:04, 20.60it/s]
eval model::  84%|████████▍ | 420/500 [00:22<00:04, 17.71it/s]
eval model::  85%|████████▍ | 423/500 [00:22<00:04, 19.23it/s]
eval model::  85%|████████▌ | 426/500 [00:22<00:04, 16.73it/s]
eval model::  86%|████████▌ | 429/500 [00:23<00:03, 18.58it/s]
eval model::  86%|████████▋ | 432/500 [00:23<00:03, 18.92it/s]
eval model::  87%|████████▋ | 436/500 [00:23<00:02, 22.28it/s]
eval model::  88%|████████▊ | 439/500 [00:23<00:02, 21.70it/s]
eval model::  88%|████████▊ | 442/500 [00:23<00:02, 20.63it/s]
eval model::  89%|████████▉ | 445/500 [00:23<00:02, 19.88it/s]
eval model::  90%|████████▉ | 448/500 [00:23<00:02, 19.54it/s]
eval model::  90%|█████████ | 450/500 [00:24<00:02, 19.42it/s]
eval model::  91%|█████████ | 453/500 [00:24<00:02, 21.03it/s]
eval model::  91%|█████████ | 456/500 [00:24<00:02, 21.47it/s]
eval model::  92%|█████████▏| 459/500 [00:24<00:02, 19.17it/s]
eval model::  92%|█████████▏| 461/500 [00:24<00:02, 18.98it/s]
eval model::  93%|█████████▎| 463/500 [00:24<00:02, 14.64it/s]
eval model::  93%|█████████▎| 465/500 [00:24<00:02, 15.15it/s]
eval model::  94%|█████████▎| 468/500 [00:25<00:01, 18.05it/s]
eval model::  94%|█████████▍| 471/500 [00:25<00:01, 19.00it/s]
eval model::  95%|█████████▍| 474/500 [00:25<00:01, 19.02it/s]
eval model::  95%|█████████▌| 477/500 [00:25<00:01, 21.15it/s]
eval model::  96%|█████████▌| 480/500 [00:25<00:00, 23.01it/s]
eval model::  97%|█████████▋| 484/500 [00:25<00:00, 25.35it/s]
eval model::  97%|█████████▋| 487/500 [00:25<00:00, 24.90it/s]
eval model::  98%|█████████▊| 490/500 [00:25<00:00, 24.99it/s]
eval model::  99%|█████████▊| 493/500 [00:26<00:00, 23.41it/s]
eval model::  99%|█████████▉| 496/500 [00:26<00:00, 22.64it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 25.66it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.97it/s]
[2024/07/28 00:16:04] ppocr INFO: cur metric, precision: 0.7000582411182295, recall: 0.5787193066923447, hmean: 0.6336320506062204, fps: 44.6370540470635
[2024/07/28 00:16:05] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/28 00:16:05] ppocr INFO: best metric, hmean: 0.6336320506062204, precision: 0.7000582411182295, recall: 0.5787193066923447, fps: 44.6370540470635, best_epoch: 340
[2024/07/28 00:16:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:16:12] ppocr INFO: epoch: [341/1500], global_step: 1023, lr: 0.001000, loss: 1.692542, loss_shrink_maps: 0.910822, loss_threshold_maps: 0.603823, loss_binary_maps: 0.180824, avg_reader_cost: 1.62301 s, avg_batch_cost: 1.90427 s, avg_samples: 12.5, ips: 6.56418 samples/s, eta: 5:57:36
[2024/07/28 00:16:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:16:20] ppocr INFO: epoch: [342/1500], global_step: 1026, lr: 0.001000, loss: 1.684275, loss_shrink_maps: 0.904693, loss_threshold_maps: 0.602964, loss_binary_maps: 0.179544, avg_reader_cost: 1.52702 s, avg_batch_cost: 1.75683 s, avg_samples: 12.5, ips: 7.11507 samples/s, eta: 5:57:15
[2024/07/28 00:16:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:16:28] ppocr INFO: epoch: [343/1500], global_step: 1029, lr: 0.001000, loss: 1.679546, loss_shrink_maps: 0.900760, loss_threshold_maps: 0.602964, loss_binary_maps: 0.178837, avg_reader_cost: 1.54295 s, avg_batch_cost: 1.81070 s, avg_samples: 12.5, ips: 6.90340 samples/s, eta: 5:56:55
[2024/07/28 00:16:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:16:34] ppocr INFO: epoch: [344/1500], global_step: 1030, lr: 0.001000, loss: 1.679546, loss_shrink_maps: 0.900760, loss_threshold_maps: 0.603249, loss_binary_maps: 0.178837, avg_reader_cost: 0.42462 s, avg_batch_cost: 0.50874 s, avg_samples: 4.8, ips: 9.43515 samples/s, eta: 5:56:45
[2024/07/28 00:16:35] ppocr INFO: epoch: [344/1500], global_step: 1032, lr: 0.001000, loss: 1.668892, loss_shrink_maps: 0.885846, loss_threshold_maps: 0.602904, loss_binary_maps: 0.176026, avg_reader_cost: 1.10858 s, avg_batch_cost: 1.25386 s, avg_samples: 7.7, ips: 6.14105 samples/s, eta: 5:56:33
[2024/07/28 00:16:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:16:43] ppocr INFO: epoch: [345/1500], global_step: 1035, lr: 0.001000, loss: 1.681645, loss_shrink_maps: 0.900760, loss_threshold_maps: 0.607220, loss_binary_maps: 0.178837, avg_reader_cost: 1.49542 s, avg_batch_cost: 1.74591 s, avg_samples: 12.5, ips: 7.15959 samples/s, eta: 5:56:11
[2024/07/28 00:16:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:16:52] ppocr INFO: epoch: [346/1500], global_step: 1038, lr: 0.001000, loss: 1.704276, loss_shrink_maps: 0.908984, loss_threshold_maps: 0.617838, loss_binary_maps: 0.180544, avg_reader_cost: 1.68602 s, avg_batch_cost: 1.94290 s, avg_samples: 12.5, ips: 6.43369 samples/s, eta: 5:55:56
[2024/07/28 00:16:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:16:59] ppocr INFO: epoch: [347/1500], global_step: 1040, lr: 0.001000, loss: 1.681645, loss_shrink_maps: 0.900760, loss_threshold_maps: 0.617838, loss_binary_maps: 0.178837, avg_reader_cost: 0.93480 s, avg_batch_cost: 1.12775 s, avg_samples: 9.6, ips: 8.51250 samples/s, eta: 5:55:40
[2024/07/28 00:16:59] ppocr INFO: epoch: [347/1500], global_step: 1041, lr: 0.001000, loss: 1.676466, loss_shrink_maps: 0.900760, loss_threshold_maps: 0.612547, loss_binary_maps: 0.178837, avg_reader_cost: 0.60947 s, avg_batch_cost: 0.66425 s, avg_samples: 2.9, ips: 4.36581 samples/s, eta: 5:55:35
[2024/07/28 00:17:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:17:08] ppocr INFO: epoch: [348/1500], global_step: 1044, lr: 0.001000, loss: 1.680368, loss_shrink_maps: 0.908584, loss_threshold_maps: 0.612547, loss_binary_maps: 0.180533, avg_reader_cost: 1.62040 s, avg_batch_cost: 1.84828 s, avg_samples: 12.5, ips: 6.76304 samples/s, eta: 5:55:17
[2024/07/28 00:17:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:17:15] ppocr INFO: epoch: [349/1500], global_step: 1047, lr: 0.001000, loss: 1.733621, loss_shrink_maps: 0.915460, loss_threshold_maps: 0.624931, loss_binary_maps: 0.182296, avg_reader_cost: 1.55168 s, avg_batch_cost: 1.78320 s, avg_samples: 12.5, ips: 7.00988 samples/s, eta: 5:54:56
[2024/07/28 00:17:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:17:23] ppocr INFO: epoch: [350/1500], global_step: 1050, lr: 0.001000, loss: 1.733621, loss_shrink_maps: 0.915460, loss_threshold_maps: 0.631956, loss_binary_maps: 0.182296, avg_reader_cost: 1.57036 s, avg_batch_cost: 1.79822 s, avg_samples: 12.5, ips: 6.95131 samples/s, eta: 5:54:36
[2024/07/28 00:17:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:17:31] ppocr INFO: epoch: [351/1500], global_step: 1053, lr: 0.001000, loss: 1.733621, loss_shrink_maps: 0.915460, loss_threshold_maps: 0.631956, loss_binary_maps: 0.182296, avg_reader_cost: 1.53946 s, avg_batch_cost: 1.77042 s, avg_samples: 12.5, ips: 7.06047 samples/s, eta: 5:54:15
[2024/07/28 00:17:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:17:39] ppocr INFO: epoch: [352/1500], global_step: 1056, lr: 0.001000, loss: 1.706569, loss_shrink_maps: 0.910599, loss_threshold_maps: 0.615671, loss_binary_maps: 0.180634, avg_reader_cost: 1.51942 s, avg_batch_cost: 1.74846 s, avg_samples: 12.5, ips: 7.14917 samples/s, eta: 5:53:53
[2024/07/28 00:17:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:17:47] ppocr INFO: epoch: [353/1500], global_step: 1059, lr: 0.001000, loss: 1.685021, loss_shrink_maps: 0.903598, loss_threshold_maps: 0.608717, loss_binary_maps: 0.178630, avg_reader_cost: 1.54862 s, avg_batch_cost: 1.77755 s, avg_samples: 12.5, ips: 7.03214 samples/s, eta: 5:53:32
[2024/07/28 00:17:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:17:53] ppocr INFO: epoch: [354/1500], global_step: 1060, lr: 0.001000, loss: 1.664191, loss_shrink_maps: 0.878371, loss_threshold_maps: 0.608717, loss_binary_maps: 0.173661, avg_reader_cost: 0.42402 s, avg_batch_cost: 0.51770 s, avg_samples: 4.8, ips: 9.27179 samples/s, eta: 5:53:23
[2024/07/28 00:17:55] ppocr INFO: epoch: [354/1500], global_step: 1062, lr: 0.001000, loss: 1.634132, loss_shrink_maps: 0.847005, loss_threshold_maps: 0.615315, loss_binary_maps: 0.167807, avg_reader_cost: 1.12700 s, avg_batch_cost: 1.27313 s, avg_samples: 7.7, ips: 6.04809 samples/s, eta: 5:53:12
[2024/07/28 00:17:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:18:03] ppocr INFO: epoch: [355/1500], global_step: 1065, lr: 0.001000, loss: 1.609590, loss_shrink_maps: 0.837176, loss_threshold_maps: 0.605219, loss_binary_maps: 0.165830, avg_reader_cost: 1.69031 s, avg_batch_cost: 1.91794 s, avg_samples: 12.5, ips: 6.51740 samples/s, eta: 5:52:55
[2024/07/28 00:18:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:18:11] ppocr INFO: epoch: [356/1500], global_step: 1068, lr: 0.001000, loss: 1.609590, loss_shrink_maps: 0.837176, loss_threshold_maps: 0.599203, loss_binary_maps: 0.165830, avg_reader_cost: 1.60523 s, avg_batch_cost: 1.83362 s, avg_samples: 12.5, ips: 6.81711 samples/s, eta: 5:52:36
[2024/07/28 00:18:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:18:19] ppocr INFO: epoch: [357/1500], global_step: 1070, lr: 0.001000, loss: 1.632425, loss_shrink_maps: 0.850547, loss_threshold_maps: 0.605558, loss_binary_maps: 0.168968, avg_reader_cost: 0.95368 s, avg_batch_cost: 1.14969 s, avg_samples: 9.6, ips: 8.35010 samples/s, eta: 5:52:21
[2024/07/28 00:18:19] ppocr INFO: epoch: [357/1500], global_step: 1071, lr: 0.001000, loss: 1.632425, loss_shrink_maps: 0.850547, loss_threshold_maps: 0.605558, loss_binary_maps: 0.168968, avg_reader_cost: 0.62036 s, avg_batch_cost: 0.67511 s, avg_samples: 2.9, ips: 4.29559 samples/s, eta: 5:52:17
[2024/07/28 00:18:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:18:27] ppocr INFO: epoch: [358/1500], global_step: 1074, lr: 0.001000, loss: 1.632425, loss_shrink_maps: 0.853765, loss_threshold_maps: 0.609245, loss_binary_maps: 0.168968, avg_reader_cost: 1.51478 s, avg_batch_cost: 1.74317 s, avg_samples: 12.5, ips: 7.17084 samples/s, eta: 5:51:55
[2024/07/28 00:18:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:18:35] ppocr INFO: epoch: [359/1500], global_step: 1077, lr: 0.001000, loss: 1.632425, loss_shrink_maps: 0.861998, loss_threshold_maps: 0.609245, loss_binary_maps: 0.170885, avg_reader_cost: 1.52942 s, avg_batch_cost: 1.77768 s, avg_samples: 12.5, ips: 7.03165 samples/s, eta: 5:51:35
[2024/07/28 00:18:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:18:43] ppocr INFO: epoch: [360/1500], global_step: 1080, lr: 0.001000, loss: 1.656538, loss_shrink_maps: 0.875410, loss_threshold_maps: 0.618816, loss_binary_maps: 0.174340, avg_reader_cost: 1.53077 s, avg_batch_cost: 1.77553 s, avg_samples: 12.5, ips: 7.04014 samples/s, eta: 5:51:14

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:53,  9.30it/s]
eval model::   1%|          | 4/500 [00:00<00:29, 16.92it/s]
eval model::   1%|▏         | 7/500 [00:00<00:24, 19.84it/s]
eval model::   2%|▏         | 9/500 [00:00<00:26, 18.84it/s]
eval model::   2%|▏         | 11/500 [00:00<00:28, 17.32it/s]
eval model::   3%|▎         | 13/500 [00:00<00:26, 18.08it/s]
eval model::   3%|▎         | 15/500 [00:00<00:26, 18.49it/s]
eval model::   4%|▎         | 18/500 [00:00<00:22, 21.52it/s]
eval model::   4%|▍         | 21/500 [00:01<00:24, 19.56it/s]
eval model::   5%|▍         | 24/500 [00:01<00:21, 21.92it/s]
eval model::   5%|▌         | 27/500 [00:01<00:21, 22.29it/s]
eval model::   6%|▌         | 30/500 [00:01<00:21, 22.12it/s]
eval model::   7%|▋         | 33/500 [00:01<00:21, 21.65it/s]
eval model::   7%|▋         | 36/500 [00:01<00:22, 20.54it/s]
eval model::   8%|▊         | 39/500 [00:02<00:25, 17.87it/s]
eval model::   8%|▊         | 41/500 [00:02<00:25, 18.17it/s]
eval model::   9%|▊         | 43/500 [00:02<00:27, 16.53it/s]
eval model::   9%|▉         | 46/500 [00:02<00:28, 16.21it/s]
eval model::  10%|▉         | 49/500 [00:02<00:24, 18.24it/s]
eval model::  10%|█         | 52/500 [00:02<00:23, 18.99it/s]
eval model::  11%|█         | 55/500 [00:02<00:22, 19.53it/s]
eval model::  11%|█▏        | 57/500 [00:02<00:23, 19.06it/s]
eval model::  12%|█▏        | 59/500 [00:03<00:23, 18.57it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:27, 15.72it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:28, 15.39it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:23, 18.31it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:21, 19.78it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:21, 20.27it/s]
eval model::  15%|█▌        | 75/500 [00:03<00:22, 19.27it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:20, 20.75it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:18, 22.63it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:18, 22.67it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:20, 20.47it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:21, 19.35it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:20, 19.39it/s]
eval model::  19%|█▉        | 96/500 [00:04<00:19, 20.61it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:19, 20.68it/s]
eval model::  20%|██        | 102/500 [00:05<00:19, 20.10it/s]
eval model::  21%|██        | 105/500 [00:05<00:18, 21.79it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:17, 22.64it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:17, 21.97it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:16, 23.27it/s]
eval model::  23%|██▎       | 117/500 [00:05<00:16, 23.38it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:16, 23.62it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:18, 20.82it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:20, 17.82it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:19, 18.86it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:20, 17.84it/s]
eval model::  27%|██▋       | 133/500 [00:06<00:20, 18.04it/s]
eval model::  27%|██▋       | 136/500 [00:06<00:18, 19.63it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:19, 18.92it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:17, 20.59it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:17, 20.87it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:17, 20.06it/s]
eval model::  30%|███       | 151/500 [00:07<00:17, 20.00it/s]
eval model::  31%|███       | 155/500 [00:07<00:14, 23.26it/s]
eval model::  32%|███▏      | 158/500 [00:07<00:14, 23.53it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:18, 18.20it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:18, 18.46it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:17, 19.20it/s]
eval model::  34%|███▍      | 170/500 [00:08<00:16, 20.10it/s]
eval model::  35%|███▍      | 173/500 [00:08<00:16, 19.52it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:20, 15.56it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:17, 18.09it/s]
eval model::  36%|███▋      | 182/500 [00:09<00:19, 16.11it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:16, 19.55it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:14, 21.14it/s]
eval model::  38%|███▊      | 192/500 [00:09<00:14, 21.13it/s]
eval model::  39%|███▉      | 195/500 [00:09<00:14, 21.28it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:14, 21.35it/s]
eval model::  40%|████      | 201/500 [00:10<00:13, 21.68it/s]
eval model::  41%|████      | 204/500 [00:10<00:12, 23.16it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:21, 13.80it/s]
eval model::  42%|████▏     | 209/500 [00:10<00:19, 14.72it/s]
eval model::  42%|████▏     | 211/500 [00:10<00:19, 15.05it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:17, 16.00it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:19, 14.40it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:20, 13.87it/s]
eval model::  44%|████▍     | 219/500 [00:11<00:18, 14.90it/s]
eval model::  44%|████▍     | 221/500 [00:11<00:18, 14.85it/s]
eval model::  45%|████▍     | 224/500 [00:11<00:15, 18.19it/s]
eval model::  45%|████▌     | 227/500 [00:11<00:13, 20.31it/s]
eval model::  46%|████▌     | 231/500 [00:11<00:10, 25.14it/s]
eval model::  47%|████▋     | 234/500 [00:12<00:11, 22.75it/s]
eval model::  47%|████▋     | 237/500 [00:12<00:11, 23.49it/s]
eval model::  48%|████▊     | 240/500 [00:12<00:10, 23.87it/s]
eval model::  49%|████▊     | 243/500 [00:12<00:13, 19.61it/s]
eval model::  49%|████▉     | 246/500 [00:12<00:12, 20.92it/s]
eval model::  50%|████▉     | 249/500 [00:12<00:12, 20.69it/s]
eval model::  51%|█████     | 253/500 [00:12<00:10, 23.36it/s]
eval model::  51%|█████     | 256/500 [00:13<00:10, 23.44it/s]
eval model::  52%|█████▏    | 259/500 [00:13<00:10, 23.80it/s]
eval model::  52%|█████▏    | 262/500 [00:13<00:10, 23.05it/s]
eval model::  53%|█████▎    | 265/500 [00:13<00:11, 20.94it/s]
eval model::  54%|█████▎    | 268/500 [00:13<00:10, 21.44it/s]
eval model::  54%|█████▍    | 271/500 [00:13<00:10, 21.33it/s]
eval model::  55%|█████▍    | 274/500 [00:13<00:10, 20.56it/s]
eval model::  55%|█████▌    | 277/500 [00:14<00:11, 19.09it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:11, 18.76it/s]
eval model::  56%|█████▋    | 282/500 [00:14<00:10, 20.51it/s]
eval model::  57%|█████▋    | 285/500 [00:14<00:17, 11.97it/s]
eval model::  57%|█████▋    | 287/500 [00:14<00:16, 12.78it/s]
eval model::  58%|█████▊    | 290/500 [00:15<00:13, 15.40it/s]
eval model::  58%|█████▊    | 292/500 [00:15<00:12, 16.19it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:12, 16.47it/s]
eval model::  59%|█████▉    | 296/500 [00:15<00:13, 14.59it/s]
eval model::  60%|██████    | 300/500 [00:15<00:12, 15.77it/s]
eval model::  61%|██████    | 303/500 [00:15<00:10, 17.95it/s]
eval model::  61%|██████    | 306/500 [00:15<00:10, 18.59it/s]
eval model::  62%|██████▏   | 309/500 [00:16<00:09, 19.98it/s]
eval model::  62%|██████▏   | 312/500 [00:16<00:09, 20.86it/s]
eval model::  63%|██████▎   | 315/500 [00:16<00:08, 21.53it/s]
eval model::  64%|██████▎   | 318/500 [00:16<00:08, 22.23it/s]
eval model::  64%|██████▍   | 321/500 [00:16<00:08, 22.32it/s]
eval model::  65%|██████▍   | 324/500 [00:16<00:07, 22.43it/s]
eval model::  65%|██████▌   | 327/500 [00:16<00:07, 24.03it/s]
eval model::  66%|██████▌   | 330/500 [00:17<00:07, 22.93it/s]
eval model::  67%|██████▋   | 333/500 [00:17<00:07, 23.28it/s]
eval model::  67%|██████▋   | 336/500 [00:17<00:06, 23.61it/s]
eval model::  68%|██████▊   | 339/500 [00:17<00:07, 22.41it/s]
eval model::  68%|██████▊   | 342/500 [00:17<00:09, 16.07it/s]
eval model::  69%|██████▉   | 345/500 [00:17<00:08, 18.54it/s]
eval model::  70%|██████▉   | 348/500 [00:17<00:07, 19.29it/s]
eval model::  70%|███████   | 351/500 [00:18<00:07, 20.97it/s]
eval model::  71%|███████   | 355/500 [00:18<00:06, 21.90it/s]
eval model::  72%|███████▏  | 358/500 [00:18<00:06, 22.11it/s]
eval model::  72%|███████▏  | 361/500 [00:18<00:06, 21.17it/s]
eval model::  73%|███████▎  | 364/500 [00:18<00:06, 19.44it/s]
eval model::  73%|███████▎  | 367/500 [00:18<00:07, 17.98it/s]
eval model::  74%|███████▍  | 370/500 [00:19<00:06, 19.38it/s]
eval model::  75%|███████▍  | 373/500 [00:19<00:06, 20.37it/s]
eval model::  75%|███████▌  | 376/500 [00:19<00:05, 21.95it/s]
eval model::  76%|███████▌  | 379/500 [00:19<00:05, 22.92it/s]
eval model::  76%|███████▋  | 382/500 [00:19<00:05, 21.53it/s]
eval model::  77%|███████▋  | 386/500 [00:19<00:07, 14.99it/s]
eval model::  78%|███████▊  | 388/500 [00:20<00:07, 15.67it/s]
eval model::  78%|███████▊  | 391/500 [00:20<00:06, 17.52it/s]
eval model::  79%|███████▉  | 394/500 [00:20<00:05, 18.45it/s]
eval model::  79%|███████▉  | 397/500 [00:20<00:05, 19.11it/s]
eval model::  80%|████████  | 400/500 [00:20<00:05, 19.20it/s]
eval model::  81%|████████  | 403/500 [00:20<00:04, 20.06it/s]
eval model::  81%|████████  | 406/500 [00:20<00:04, 21.17it/s]
eval model::  82%|████████▏ | 410/500 [00:21<00:03, 23.58it/s]
eval model::  83%|████████▎ | 413/500 [00:21<00:03, 23.73it/s]
eval model::  83%|████████▎ | 416/500 [00:21<00:04, 20.61it/s]
eval model::  84%|████████▍ | 419/500 [00:21<00:04, 19.50it/s]
eval model::  84%|████████▍ | 422/500 [00:21<00:04, 16.62it/s]
eval model::  85%|████████▍ | 424/500 [00:21<00:04, 16.02it/s]
eval model::  85%|████████▌ | 426/500 [00:22<00:04, 15.78it/s]
eval model::  86%|████████▌ | 429/500 [00:22<00:03, 18.54it/s]
eval model::  86%|████████▌ | 431/500 [00:22<00:03, 17.80it/s]
eval model::  87%|████████▋ | 435/500 [00:22<00:03, 21.01it/s]
eval model::  88%|████████▊ | 438/500 [00:22<00:02, 22.47it/s]
eval model::  88%|████████▊ | 441/500 [00:22<00:02, 21.80it/s]
eval model::  89%|████████▉ | 445/500 [00:22<00:02, 24.09it/s]
eval model::  90%|████████▉ | 448/500 [00:22<00:02, 24.42it/s]
eval model::  90%|█████████ | 451/500 [00:23<00:02, 22.20it/s]
eval model::  91%|█████████ | 454/500 [00:23<00:01, 23.26it/s]
eval model::  91%|█████████▏| 457/500 [00:23<00:01, 22.36it/s]
eval model::  92%|█████████▏| 460/500 [00:23<00:01, 21.21it/s]
eval model::  93%|█████████▎| 463/500 [00:23<00:02, 17.19it/s]
eval model::  93%|█████████▎| 465/500 [00:23<00:02, 16.13it/s]
eval model::  93%|█████████▎| 467/500 [00:24<00:01, 16.82it/s]
eval model::  94%|█████████▍| 471/500 [00:24<00:01, 19.03it/s]
eval model::  95%|█████████▍| 473/500 [00:24<00:01, 19.13it/s]
eval model::  95%|█████████▌| 475/500 [00:24<00:01, 18.98it/s]
eval model::  96%|█████████▌| 478/500 [00:24<00:01, 21.00it/s]
eval model::  96%|█████████▌| 481/500 [00:24<00:00, 23.04it/s]
eval model::  97%|█████████▋| 484/500 [00:24<00:00, 21.82it/s]
eval model::  97%|█████████▋| 487/500 [00:24<00:00, 20.55it/s]
eval model::  98%|█████████▊| 490/500 [00:25<00:00, 21.59it/s]
eval model::  99%|█████████▊| 493/500 [00:25<00:00, 18.34it/s]
eval model::  99%|█████████▉| 495/500 [00:25<00:00, 17.63it/s]
eval model:: 100%|█████████▉| 498/500 [00:25<00:00, 19.66it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.54it/s]
[2024/07/28 00:19:08] ppocr INFO: cur metric, precision: 0.633856138453218, recall: 0.5642753972075109, hmean: 0.5970453387671931, fps: 46.00852840200949
[2024/07/28 00:19:08] ppocr INFO: best metric, hmean: 0.6336320506062204, precision: 0.7000582411182295, recall: 0.5787193066923447, fps: 44.6370540470635, best_epoch: 340
[2024/07/28 00:19:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:19:17] ppocr INFO: epoch: [361/1500], global_step: 1083, lr: 0.001000, loss: 1.710404, loss_shrink_maps: 0.904476, loss_threshold_maps: 0.622944, loss_binary_maps: 0.179257, avg_reader_cost: 1.89698 s, avg_batch_cost: 2.32545 s, avg_samples: 12.5, ips: 5.37530 samples/s, eta: 5:51:10
[2024/07/28 00:19:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:19:25] ppocr INFO: epoch: [362/1500], global_step: 1086, lr: 0.001000, loss: 1.745214, loss_shrink_maps: 0.919082, loss_threshold_maps: 0.625792, loss_binary_maps: 0.182624, avg_reader_cost: 1.52501 s, avg_batch_cost: 1.77253 s, avg_samples: 12.5, ips: 7.05206 samples/s, eta: 5:50:49
[2024/07/28 00:19:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:19:33] ppocr INFO: epoch: [363/1500], global_step: 1089, lr: 0.001000, loss: 1.779011, loss_shrink_maps: 0.951254, loss_threshold_maps: 0.632712, loss_binary_maps: 0.187664, avg_reader_cost: 1.57643 s, avg_batch_cost: 1.86456 s, avg_samples: 12.5, ips: 6.70398 samples/s, eta: 5:50:31
[2024/07/28 00:19:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:19:39] ppocr INFO: epoch: [364/1500], global_step: 1090, lr: 0.001000, loss: 1.779011, loss_shrink_maps: 0.951254, loss_threshold_maps: 0.632712, loss_binary_maps: 0.187664, avg_reader_cost: 0.40712 s, avg_batch_cost: 0.49692 s, avg_samples: 4.8, ips: 9.65955 samples/s, eta: 5:50:21
[2024/07/28 00:19:41] ppocr INFO: epoch: [364/1500], global_step: 1092, lr: 0.001000, loss: 1.765797, loss_shrink_maps: 0.951254, loss_threshold_maps: 0.630058, loss_binary_maps: 0.187664, avg_reader_cost: 1.08654 s, avg_batch_cost: 1.23349 s, avg_samples: 7.7, ips: 6.24244 samples/s, eta: 5:50:09
[2024/07/28 00:19:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:19:49] ppocr INFO: epoch: [365/1500], global_step: 1095, lr: 0.001000, loss: 1.756851, loss_shrink_maps: 0.935207, loss_threshold_maps: 0.627355, loss_binary_maps: 0.185677, avg_reader_cost: 1.59405 s, avg_batch_cost: 1.88524 s, avg_samples: 12.5, ips: 6.63044 samples/s, eta: 5:49:52
[2024/07/28 00:19:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:19:58] ppocr INFO: epoch: [366/1500], global_step: 1098, lr: 0.001000, loss: 1.756851, loss_shrink_maps: 0.935207, loss_threshold_maps: 0.624129, loss_binary_maps: 0.185677, avg_reader_cost: 1.69200 s, avg_batch_cost: 1.95132 s, avg_samples: 12.5, ips: 6.40592 samples/s, eta: 5:49:36
[2024/07/28 00:19:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:20:05] ppocr INFO: epoch: [367/1500], global_step: 1100, lr: 0.001000, loss: 1.754933, loss_shrink_maps: 0.930912, loss_threshold_maps: 0.624129, loss_binary_maps: 0.185148, avg_reader_cost: 0.95177 s, avg_batch_cost: 1.12534 s, avg_samples: 9.6, ips: 8.53075 samples/s, eta: 5:49:21
[2024/07/28 00:20:06] ppocr INFO: epoch: [367/1500], global_step: 1101, lr: 0.001000, loss: 1.754933, loss_shrink_maps: 0.930912, loss_threshold_maps: 0.625693, loss_binary_maps: 0.185148, avg_reader_cost: 0.60831 s, avg_batch_cost: 0.66309 s, avg_samples: 2.9, ips: 4.37348 samples/s, eta: 5:49:16
[2024/07/28 00:20:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:20:14] ppocr INFO: epoch: [368/1500], global_step: 1104, lr: 0.001000, loss: 1.762037, loss_shrink_maps: 0.933497, loss_threshold_maps: 0.625693, loss_binary_maps: 0.185312, avg_reader_cost: 1.71072 s, avg_batch_cost: 1.94592 s, avg_samples: 12.5, ips: 6.42369 samples/s, eta: 5:49:00
[2024/07/28 00:20:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:20:22] ppocr INFO: epoch: [369/1500], global_step: 1107, lr: 0.001000, loss: 1.762037, loss_shrink_maps: 0.933497, loss_threshold_maps: 0.624200, loss_binary_maps: 0.185312, avg_reader_cost: 1.49238 s, avg_batch_cost: 1.74053 s, avg_samples: 12.5, ips: 7.18171 samples/s, eta: 5:48:39
[2024/07/28 00:20:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:20:30] ppocr INFO: epoch: [370/1500], global_step: 1110, lr: 0.001000, loss: 1.765897, loss_shrink_maps: 0.933497, loss_threshold_maps: 0.624200, loss_binary_maps: 0.185312, avg_reader_cost: 1.53529 s, avg_batch_cost: 1.76387 s, avg_samples: 12.5, ips: 7.08670 samples/s, eta: 5:48:18
[2024/07/28 00:20:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:20:38] ppocr INFO: epoch: [371/1500], global_step: 1113, lr: 0.001000, loss: 1.780667, loss_shrink_maps: 0.958705, loss_threshold_maps: 0.625609, loss_binary_maps: 0.190775, avg_reader_cost: 1.56844 s, avg_batch_cost: 1.81764 s, avg_samples: 12.5, ips: 6.87703 samples/s, eta: 5:47:58
[2024/07/28 00:20:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:20:46] ppocr INFO: epoch: [372/1500], global_step: 1116, lr: 0.001000, loss: 1.798127, loss_shrink_maps: 0.971047, loss_threshold_maps: 0.625609, loss_binary_maps: 0.193183, avg_reader_cost: 1.56933 s, avg_batch_cost: 1.79826 s, avg_samples: 12.5, ips: 6.95116 samples/s, eta: 5:47:38
[2024/07/28 00:20:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:20:54] ppocr INFO: epoch: [373/1500], global_step: 1119, lr: 0.001000, loss: 1.798127, loss_shrink_maps: 0.971047, loss_threshold_maps: 0.626206, loss_binary_maps: 0.193183, avg_reader_cost: 1.55987 s, avg_batch_cost: 1.80348 s, avg_samples: 12.5, ips: 6.93106 samples/s, eta: 5:47:18
[2024/07/28 00:20:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:21:00] ppocr INFO: epoch: [374/1500], global_step: 1120, lr: 0.001000, loss: 1.798127, loss_shrink_maps: 0.971047, loss_threshold_maps: 0.626206, loss_binary_maps: 0.193183, avg_reader_cost: 0.41664 s, avg_batch_cost: 0.52828 s, avg_samples: 4.8, ips: 9.08610 samples/s, eta: 5:47:09
[2024/07/28 00:21:02] ppocr INFO: epoch: [374/1500], global_step: 1122, lr: 0.001000, loss: 1.792867, loss_shrink_maps: 0.963565, loss_threshold_maps: 0.624859, loss_binary_maps: 0.191280, avg_reader_cost: 1.14797 s, avg_batch_cost: 1.29250 s, avg_samples: 7.7, ips: 5.95742 samples/s, eta: 5:46:59
[2024/07/28 00:21:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:21:10] ppocr INFO: epoch: [375/1500], global_step: 1125, lr: 0.001000, loss: 1.713756, loss_shrink_maps: 0.908928, loss_threshold_maps: 0.615428, loss_binary_maps: 0.181186, avg_reader_cost: 1.58314 s, avg_batch_cost: 1.81176 s, avg_samples: 12.5, ips: 6.89937 samples/s, eta: 5:46:39
[2024/07/28 00:21:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:21:18] ppocr INFO: epoch: [376/1500], global_step: 1128, lr: 0.001000, loss: 1.708065, loss_shrink_maps: 0.907282, loss_threshold_maps: 0.611492, loss_binary_maps: 0.181076, avg_reader_cost: 1.53733 s, avg_batch_cost: 1.77377 s, avg_samples: 12.5, ips: 7.04716 samples/s, eta: 5:46:18
[2024/07/28 00:21:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:21:25] ppocr INFO: epoch: [377/1500], global_step: 1130, lr: 0.001000, loss: 1.679189, loss_shrink_maps: 0.885790, loss_threshold_maps: 0.607371, loss_binary_maps: 0.176157, avg_reader_cost: 0.97584 s, avg_batch_cost: 1.18134 s, avg_samples: 9.6, ips: 8.12635 samples/s, eta: 5:46:05
[2024/07/28 00:21:26] ppocr INFO: epoch: [377/1500], global_step: 1131, lr: 0.001000, loss: 1.651794, loss_shrink_maps: 0.868979, loss_threshold_maps: 0.607371, loss_binary_maps: 0.172427, avg_reader_cost: 0.63632 s, avg_batch_cost: 0.69125 s, avg_samples: 2.9, ips: 4.19527 samples/s, eta: 5:46:01
[2024/07/28 00:21:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:21:34] ppocr INFO: epoch: [378/1500], global_step: 1134, lr: 0.001000, loss: 1.638454, loss_shrink_maps: 0.868979, loss_threshold_maps: 0.604869, loss_binary_maps: 0.172427, avg_reader_cost: 1.54373 s, avg_batch_cost: 1.77404 s, avg_samples: 12.5, ips: 7.04608 samples/s, eta: 5:45:40
[2024/07/28 00:21:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:21:42] ppocr INFO: epoch: [379/1500], global_step: 1137, lr: 0.001000, loss: 1.638454, loss_shrink_maps: 0.865217, loss_threshold_maps: 0.607371, loss_binary_maps: 0.171275, avg_reader_cost: 1.57503 s, avg_batch_cost: 1.80300 s, avg_samples: 12.5, ips: 6.93288 samples/s, eta: 5:45:20
[2024/07/28 00:21:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:21:50] ppocr INFO: epoch: [380/1500], global_step: 1140, lr: 0.001000, loss: 1.643500, loss_shrink_maps: 0.881331, loss_threshold_maps: 0.607371, loss_binary_maps: 0.175065, avg_reader_cost: 1.54050 s, avg_batch_cost: 1.81082 s, avg_samples: 12.5, ips: 6.90296 samples/s, eta: 5:45:01

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<01:06,  7.51it/s]
eval model::   1%|          | 3/500 [00:00<00:37, 13.11it/s]
eval model::   1%|          | 6/500 [00:00<00:27, 17.86it/s]
eval model::   2%|▏         | 9/500 [00:00<00:23, 20.47it/s]
eval model::   2%|▏         | 12/500 [00:00<00:27, 18.06it/s]
eval model::   3%|▎         | 14/500 [00:00<00:26, 18.50it/s]
eval model::   3%|▎         | 17/500 [00:00<00:23, 21.00it/s]
eval model::   4%|▍         | 20/500 [00:01<00:22, 20.92it/s]
eval model::   5%|▍         | 23/500 [00:01<00:21, 22.50it/s]
eval model::   5%|▌         | 26/500 [00:01<00:23, 19.82it/s]
eval model::   6%|▌         | 29/500 [00:01<00:22, 21.00it/s]
eval model::   6%|▋         | 32/500 [00:01<00:23, 19.95it/s]
eval model::   7%|▋         | 35/500 [00:01<00:23, 19.54it/s]
eval model::   8%|▊         | 38/500 [00:01<00:23, 19.71it/s]
eval model::   8%|▊         | 41/500 [00:02<00:23, 19.18it/s]
eval model::   9%|▊         | 43/500 [00:02<00:26, 17.48it/s]
eval model::   9%|▉         | 46/500 [00:02<00:24, 18.49it/s]
eval model::  10%|▉         | 49/500 [00:02<00:22, 19.72it/s]
eval model::  10%|█         | 52/500 [00:02<00:21, 21.30it/s]
eval model::  11%|█         | 55/500 [00:02<00:19, 23.11it/s]
eval model::  12%|█▏        | 58/500 [00:02<00:20, 21.48it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:25, 17.43it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:25, 17.40it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:22, 19.70it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:19, 21.82it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:19, 22.51it/s]
eval model::  15%|█▌        | 75/500 [00:03<00:18, 22.45it/s]
eval model::  16%|█▌        | 78/500 [00:03<00:19, 22.14it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:17, 23.81it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:17, 23.75it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:20, 20.21it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:21, 19.24it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:22, 18.48it/s]
eval model::  19%|█▉        | 96/500 [00:04<00:19, 20.49it/s]
eval model::  20%|█▉        | 99/500 [00:04<00:18, 21.85it/s]
eval model::  20%|██        | 102/500 [00:05<00:18, 21.24it/s]
eval model::  21%|██        | 106/500 [00:05<00:16, 24.15it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:17, 22.72it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:17, 22.29it/s]
eval model::  23%|██▎       | 115/500 [00:05<00:18, 20.45it/s]
eval model::  24%|██▎       | 118/500 [00:05<00:17, 22.10it/s]
eval model::  24%|██▍       | 121/500 [00:05<00:19, 19.85it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:19, 19.10it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:19, 18.92it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:17, 20.81it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:17, 20.86it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:16, 21.74it/s]
eval model::  28%|██▊       | 138/500 [00:06<00:17, 20.32it/s]
eval model::  28%|██▊       | 141/500 [00:06<00:18, 19.24it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:16, 21.28it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:16, 21.08it/s]
eval model::  30%|███       | 150/500 [00:07<00:16, 21.33it/s]
eval model::  31%|███       | 153/500 [00:07<00:18, 19.22it/s]
eval model::  31%|███       | 156/500 [00:07<00:16, 21.31it/s]
eval model::  32%|███▏      | 159/500 [00:07<00:16, 20.51it/s]
eval model::  32%|███▏      | 162/500 [00:07<00:17, 19.00it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:17, 18.74it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:16, 19.89it/s]
eval model::  34%|███▍      | 170/500 [00:08<00:15, 21.93it/s]
eval model::  35%|███▍      | 173/500 [00:08<00:15, 20.83it/s]
eval model::  35%|███▌      | 176/500 [00:08<00:22, 14.67it/s]
eval model::  36%|███▌      | 178/500 [00:08<00:20, 15.36it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:22, 14.53it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:17, 17.63it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:15, 19.98it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:14, 21.25it/s]
eval model::  38%|███▊      | 192/500 [00:09<00:13, 22.22it/s]
eval model::  39%|███▉      | 195/500 [00:09<00:13, 23.23it/s]
eval model::  40%|███▉      | 198/500 [00:09<00:12, 23.77it/s]
eval model::  40%|████      | 201/500 [00:09<00:13, 22.43it/s]
eval model::  41%|████      | 204/500 [00:10<00:13, 22.54it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:24, 11.82it/s]
eval model::  42%|████▏     | 209/500 [00:10<00:24, 11.98it/s]
eval model::  42%|████▏     | 211/500 [00:10<00:22, 12.74it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:20, 13.89it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:23, 12.17it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:21, 13.09it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:17, 15.75it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:18, 15.08it/s]
eval model::  45%|████▌     | 226/500 [00:11<00:14, 19.34it/s]
eval model::  46%|████▌     | 230/500 [00:11<00:11, 23.71it/s]
eval model::  47%|████▋     | 234/500 [00:12<00:10, 24.20it/s]
eval model::  47%|████▋     | 237/500 [00:12<00:10, 24.48it/s]
eval model::  48%|████▊     | 240/500 [00:12<00:10, 24.92it/s]
eval model::  49%|████▊     | 243/500 [00:12<00:12, 20.63it/s]
eval model::  49%|████▉     | 246/500 [00:12<00:11, 21.49it/s]
eval model::  50%|████▉     | 249/500 [00:12<00:11, 22.15it/s]
eval model::  50%|█████     | 252/500 [00:12<00:10, 23.30it/s]
eval model::  51%|█████     | 255/500 [00:12<00:10, 22.83it/s]
eval model::  52%|█████▏    | 258/500 [00:13<00:10, 22.96it/s]
eval model::  52%|█████▏    | 261/500 [00:13<00:10, 23.10it/s]
eval model::  53%|█████▎    | 264/500 [00:13<00:11, 20.30it/s]
eval model::  53%|█████▎    | 267/500 [00:13<00:11, 19.66it/s]
eval model::  54%|█████▍    | 270/500 [00:13<00:11, 20.59it/s]
eval model::  55%|█████▍    | 273/500 [00:13<00:10, 21.13it/s]
eval model::  55%|█████▌    | 276/500 [00:14<00:12, 18.01it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:11, 18.44it/s]
eval model::  56%|█████▋    | 282/500 [00:14<00:10, 19.93it/s]
eval model::  57%|█████▋    | 285/500 [00:14<00:17, 12.58it/s]
eval model::  57%|█████▋    | 287/500 [00:14<00:16, 13.18it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:12, 16.78it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:12, 16.77it/s]
eval model::  59%|█████▉    | 296/500 [00:15<00:14, 14.51it/s]
eval model::  60%|█████▉    | 299/500 [00:15<00:11, 16.78it/s]
eval model::  60%|██████    | 301/500 [00:15<00:11, 16.66it/s]
eval model::  61%|██████    | 304/500 [00:15<00:10, 18.40it/s]
eval model::  61%|██████▏   | 307/500 [00:15<00:09, 19.55it/s]
eval model::  62%|██████▏   | 310/500 [00:16<00:08, 21.49it/s]
eval model::  63%|██████▎   | 314/500 [00:16<00:07, 23.94it/s]
eval model::  63%|██████▎   | 317/500 [00:16<00:07, 24.11it/s]
eval model::  64%|██████▍   | 321/500 [00:16<00:07, 23.69it/s]
eval model::  65%|██████▍   | 324/500 [00:16<00:07, 22.39it/s]
eval model::  65%|██████▌   | 327/500 [00:16<00:07, 23.45it/s]
eval model::  66%|██████▌   | 330/500 [00:16<00:07, 21.98it/s]
eval model::  67%|██████▋   | 333/500 [00:16<00:07, 23.66it/s]
eval model::  67%|██████▋   | 336/500 [00:17<00:07, 22.56it/s]
eval model::  68%|██████▊   | 339/500 [00:17<00:07, 20.15it/s]
eval model::  68%|██████▊   | 342/500 [00:17<00:10, 15.77it/s]
eval model::  69%|██████▉   | 345/500 [00:17<00:08, 17.99it/s]
eval model::  70%|██████▉   | 348/500 [00:17<00:07, 19.74it/s]
eval model::  70%|███████   | 351/500 [00:17<00:07, 20.48it/s]
eval model::  71%|███████   | 354/500 [00:18<00:06, 22.27it/s]
eval model::  71%|███████▏  | 357/500 [00:18<00:06, 20.56it/s]
eval model::  72%|███████▏  | 360/500 [00:18<00:06, 20.35it/s]
eval model::  73%|███████▎  | 363/500 [00:18<00:07, 18.34it/s]
eval model::  73%|███████▎  | 365/500 [00:18<00:07, 17.58it/s]
eval model::  74%|███████▎  | 368/500 [00:18<00:06, 19.68it/s]
eval model::  74%|███████▍  | 371/500 [00:18<00:06, 20.04it/s]
eval model::  75%|███████▍  | 374/500 [00:19<00:06, 20.16it/s]
eval model::  75%|███████▌  | 377/500 [00:19<00:05, 21.06it/s]
eval model::  76%|███████▌  | 380/500 [00:19<00:05, 21.63it/s]
eval model::  77%|███████▋  | 383/500 [00:19<00:05, 23.22it/s]
eval model::  77%|███████▋  | 386/500 [00:19<00:08, 13.84it/s]
eval model::  78%|███████▊  | 389/500 [00:20<00:07, 15.77it/s]
eval model::  78%|███████▊  | 392/500 [00:20<00:06, 16.68it/s]
eval model::  79%|███████▉  | 394/500 [00:20<00:06, 16.56it/s]
eval model::  79%|███████▉  | 397/500 [00:20<00:05, 18.68it/s]
eval model::  80%|████████  | 400/500 [00:20<00:05, 19.57it/s]
eval model::  81%|████████  | 403/500 [00:20<00:04, 20.46it/s]
eval model::  81%|████████  | 406/500 [00:20<00:04, 20.90it/s]
eval model::  82%|████████▏ | 409/500 [00:20<00:04, 22.11it/s]
eval model::  82%|████████▏ | 412/500 [00:21<00:03, 22.76it/s]
eval model::  83%|████████▎ | 415/500 [00:21<00:03, 21.97it/s]
eval model::  84%|████████▎ | 418/500 [00:21<00:03, 21.02it/s]
eval model::  84%|████████▍ | 421/500 [00:21<00:04, 18.75it/s]
eval model::  85%|████████▍ | 424/500 [00:21<00:03, 19.62it/s]
eval model::  85%|████████▌ | 427/500 [00:21<00:03, 19.14it/s]
eval model::  86%|████████▌ | 430/500 [00:22<00:03, 20.74it/s]
eval model::  87%|████████▋ | 433/500 [00:22<00:03, 21.12it/s]
eval model::  87%|████████▋ | 436/500 [00:22<00:02, 22.78it/s]
eval model::  88%|████████▊ | 439/500 [00:22<00:02, 22.82it/s]
eval model::  88%|████████▊ | 442/500 [00:22<00:02, 22.88it/s]
eval model::  89%|████████▉ | 446/500 [00:22<00:02, 25.18it/s]
eval model::  90%|████████▉ | 449/500 [00:22<00:02, 22.90it/s]
eval model::  90%|█████████ | 452/500 [00:22<00:02, 23.64it/s]
eval model::  91%|█████████ | 455/500 [00:23<00:01, 23.86it/s]
eval model::  92%|█████████▏| 458/500 [00:23<00:01, 23.20it/s]
eval model::  92%|█████████▏| 461/500 [00:23<00:01, 22.97it/s]
eval model::  93%|█████████▎| 464/500 [00:23<00:01, 19.18it/s]
eval model::  93%|█████████▎| 467/500 [00:23<00:01, 17.82it/s]
eval model::  94%|█████████▍| 469/500 [00:23<00:01, 18.14it/s]
eval model::  94%|█████████▍| 472/500 [00:23<00:01, 19.14it/s]
eval model::  95%|█████████▌| 475/500 [00:24<00:01, 20.14it/s]
eval model::  96%|█████████▌| 478/500 [00:24<00:01, 21.25it/s]
eval model::  96%|█████████▌| 481/500 [00:24<00:00, 21.23it/s]
eval model::  97%|█████████▋| 484/500 [00:24<00:00, 22.34it/s]
eval model::  97%|█████████▋| 487/500 [00:24<00:00, 21.20it/s]
eval model::  98%|█████████▊| 490/500 [00:24<00:00, 22.14it/s]
eval model::  99%|█████████▊| 493/500 [00:24<00:00, 19.31it/s]
eval model::  99%|█████████▉| 496/500 [00:25<00:00, 18.94it/s]
eval model:: 100%|█████████▉| 499/500 [00:25<00:00, 20.88it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.76it/s]
[2024/07/28 00:22:15] ppocr INFO: cur metric, precision: 0.736, recall: 0.575830524795378, hmean: 0.6461372231226364, fps: 45.03702120574545
[2024/07/28 00:22:16] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/28 00:22:16] ppocr INFO: best metric, hmean: 0.6461372231226364, precision: 0.736, recall: 0.575830524795378, fps: 45.03702120574545, best_epoch: 380
[2024/07/28 00:22:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:22:24] ppocr INFO: epoch: [381/1500], global_step: 1143, lr: 0.001000, loss: 1.691133, loss_shrink_maps: 0.887713, loss_threshold_maps: 0.616847, loss_binary_maps: 0.177050, avg_reader_cost: 1.89806 s, avg_batch_cost: 2.31581 s, avg_samples: 12.5, ips: 5.39769 samples/s, eta: 5:44:56
[2024/07/28 00:22:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:22:32] ppocr INFO: epoch: [382/1500], global_step: 1146, lr: 0.001000, loss: 1.739494, loss_shrink_maps: 0.927497, loss_threshold_maps: 0.623302, loss_binary_maps: 0.184823, avg_reader_cost: 1.50357 s, avg_batch_cost: 1.73232 s, avg_samples: 12.5, ips: 7.21576 samples/s, eta: 5:44:34
[2024/07/28 00:22:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:22:40] ppocr INFO: epoch: [383/1500], global_step: 1149, lr: 0.001000, loss: 1.682839, loss_shrink_maps: 0.888798, loss_threshold_maps: 0.626474, loss_binary_maps: 0.178135, avg_reader_cost: 1.53571 s, avg_batch_cost: 1.78110 s, avg_samples: 12.5, ips: 7.01814 samples/s, eta: 5:44:13
[2024/07/28 00:22:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:22:46] ppocr INFO: epoch: [384/1500], global_step: 1150, lr: 0.001000, loss: 1.641330, loss_shrink_maps: 0.884311, loss_threshold_maps: 0.626474, loss_binary_maps: 0.176714, avg_reader_cost: 0.41707 s, avg_batch_cost: 0.50414 s, avg_samples: 4.8, ips: 9.52125 samples/s, eta: 5:44:04
[2024/07/28 00:22:48] ppocr INFO: epoch: [384/1500], global_step: 1152, lr: 0.001000, loss: 1.682839, loss_shrink_maps: 0.888798, loss_threshold_maps: 0.628067, loss_binary_maps: 0.178135, avg_reader_cost: 1.09925 s, avg_batch_cost: 1.24451 s, avg_samples: 7.7, ips: 6.18717 samples/s, eta: 5:43:52
[2024/07/28 00:22:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:22:56] ppocr INFO: epoch: [385/1500], global_step: 1155, lr: 0.001000, loss: 1.682839, loss_shrink_maps: 0.884311, loss_threshold_maps: 0.628067, loss_binary_maps: 0.176714, avg_reader_cost: 1.74250 s, avg_batch_cost: 1.97095 s, avg_samples: 12.5, ips: 6.34212 samples/s, eta: 5:43:37
[2024/07/28 00:22:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:23:04] ppocr INFO: epoch: [386/1500], global_step: 1158, lr: 0.001000, loss: 1.773771, loss_shrink_maps: 0.931430, loss_threshold_maps: 0.628067, loss_binary_maps: 0.186438, avg_reader_cost: 1.53018 s, avg_batch_cost: 1.75950 s, avg_samples: 12.5, ips: 7.10428 samples/s, eta: 5:43:16
[2024/07/28 00:23:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:23:12] ppocr INFO: epoch: [387/1500], global_step: 1160, lr: 0.001000, loss: 1.634851, loss_shrink_maps: 0.865136, loss_threshold_maps: 0.621820, loss_binary_maps: 0.171009, avg_reader_cost: 0.94168 s, avg_batch_cost: 1.13247 s, avg_samples: 9.6, ips: 8.47704 samples/s, eta: 5:43:01
[2024/07/28 00:23:12] ppocr INFO: epoch: [387/1500], global_step: 1161, lr: 0.001000, loss: 1.634851, loss_shrink_maps: 0.865136, loss_threshold_maps: 0.621820, loss_binary_maps: 0.171009, avg_reader_cost: 0.61198 s, avg_batch_cost: 0.66725 s, avg_samples: 2.9, ips: 4.34622 samples/s, eta: 5:42:56
[2024/07/28 00:23:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:23:20] ppocr INFO: epoch: [388/1500], global_step: 1164, lr: 0.001000, loss: 1.634851, loss_shrink_maps: 0.870128, loss_threshold_maps: 0.609463, loss_binary_maps: 0.173088, avg_reader_cost: 1.62588 s, avg_batch_cost: 1.87023 s, avg_samples: 12.5, ips: 6.68368 samples/s, eta: 5:42:38
[2024/07/28 00:23:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:23:28] ppocr INFO: epoch: [389/1500], global_step: 1167, lr: 0.001000, loss: 1.634851, loss_shrink_maps: 0.870128, loss_threshold_maps: 0.608213, loss_binary_maps: 0.173088, avg_reader_cost: 1.49652 s, avg_batch_cost: 1.74347 s, avg_samples: 12.5, ips: 7.16959 samples/s, eta: 5:42:17
[2024/07/28 00:23:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:23:36] ppocr INFO: epoch: [390/1500], global_step: 1170, lr: 0.001000, loss: 1.651499, loss_shrink_maps: 0.870128, loss_threshold_maps: 0.608213, loss_binary_maps: 0.173088, avg_reader_cost: 1.54534 s, avg_batch_cost: 1.77391 s, avg_samples: 12.5, ips: 7.04659 samples/s, eta: 5:41:56
[2024/07/28 00:23:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:23:44] ppocr INFO: epoch: [391/1500], global_step: 1173, lr: 0.001000, loss: 1.630760, loss_shrink_maps: 0.857313, loss_threshold_maps: 0.601540, loss_binary_maps: 0.170869, avg_reader_cost: 1.50625 s, avg_batch_cost: 1.77448 s, avg_samples: 12.5, ips: 7.04431 samples/s, eta: 5:41:35
[2024/07/28 00:23:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:23:53] ppocr INFO: epoch: [392/1500], global_step: 1176, lr: 0.001000, loss: 1.634384, loss_shrink_maps: 0.863500, loss_threshold_maps: 0.597774, loss_binary_maps: 0.171647, avg_reader_cost: 1.65777 s, avg_batch_cost: 1.95675 s, avg_samples: 12.5, ips: 6.38813 samples/s, eta: 5:41:20
[2024/07/28 00:23:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:24:01] ppocr INFO: epoch: [393/1500], global_step: 1179, lr: 0.001000, loss: 1.649745, loss_shrink_maps: 0.873604, loss_threshold_maps: 0.597774, loss_binary_maps: 0.173456, avg_reader_cost: 1.53754 s, avg_batch_cost: 1.80381 s, avg_samples: 12.5, ips: 6.92977 samples/s, eta: 5:41:00
[2024/07/28 00:24:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:24:07] ppocr INFO: epoch: [394/1500], global_step: 1180, lr: 0.001000, loss: 1.676150, loss_shrink_maps: 0.882332, loss_threshold_maps: 0.601540, loss_binary_maps: 0.175152, avg_reader_cost: 0.41875 s, avg_batch_cost: 0.52540 s, avg_samples: 4.8, ips: 9.13593 samples/s, eta: 5:40:52
[2024/07/28 00:24:09] ppocr INFO: epoch: [394/1500], global_step: 1182, lr: 0.001000, loss: 1.636300, loss_shrink_maps: 0.863500, loss_threshold_maps: 0.597774, loss_binary_maps: 0.171647, avg_reader_cost: 1.14207 s, avg_batch_cost: 1.28799 s, avg_samples: 7.7, ips: 5.97830 samples/s, eta: 5:40:41
[2024/07/28 00:24:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:24:17] ppocr INFO: epoch: [395/1500], global_step: 1185, lr: 0.001000, loss: 1.630293, loss_shrink_maps: 0.858364, loss_threshold_maps: 0.597774, loss_binary_maps: 0.170946, avg_reader_cost: 1.56981 s, avg_batch_cost: 1.79862 s, avg_samples: 12.5, ips: 6.94978 samples/s, eta: 5:40:21
[2024/07/28 00:24:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:24:25] ppocr INFO: epoch: [396/1500], global_step: 1188, lr: 0.001000, loss: 1.636300, loss_shrink_maps: 0.863500, loss_threshold_maps: 0.605900, loss_binary_maps: 0.171647, avg_reader_cost: 1.57362 s, avg_batch_cost: 1.85321 s, avg_samples: 12.5, ips: 6.74507 samples/s, eta: 5:40:03
[2024/07/28 00:24:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:24:33] ppocr INFO: epoch: [397/1500], global_step: 1190, lr: 0.001000, loss: 1.651719, loss_shrink_maps: 0.867655, loss_threshold_maps: 0.613621, loss_binary_maps: 0.172590, avg_reader_cost: 0.93739 s, avg_batch_cost: 1.14277 s, avg_samples: 9.6, ips: 8.40068 samples/s, eta: 5:39:48
[2024/07/28 00:24:33] ppocr INFO: epoch: [397/1500], global_step: 1191, lr: 0.001000, loss: 1.674454, loss_shrink_maps: 0.887292, loss_threshold_maps: 0.616625, loss_binary_maps: 0.175843, avg_reader_cost: 0.61708 s, avg_batch_cost: 0.67182 s, avg_samples: 2.9, ips: 4.31661 samples/s, eta: 5:39:43
[2024/07/28 00:24:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:24:41] ppocr INFO: epoch: [398/1500], global_step: 1194, lr: 0.001000, loss: 1.685386, loss_shrink_maps: 0.887292, loss_threshold_maps: 0.619225, loss_binary_maps: 0.175843, avg_reader_cost: 1.54064 s, avg_batch_cost: 1.78456 s, avg_samples: 12.5, ips: 7.00451 samples/s, eta: 5:39:23
[2024/07/28 00:24:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:24:49] ppocr INFO: epoch: [399/1500], global_step: 1197, lr: 0.001000, loss: 1.651719, loss_shrink_maps: 0.859607, loss_threshold_maps: 0.616625, loss_binary_maps: 0.171045, avg_reader_cost: 1.65483 s, avg_batch_cost: 1.88442 s, avg_samples: 12.5, ips: 6.63334 samples/s, eta: 5:39:06
[2024/07/28 00:24:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:24:58] ppocr INFO: epoch: [400/1500], global_step: 1200, lr: 0.001000, loss: 1.651719, loss_shrink_maps: 0.859607, loss_threshold_maps: 0.617574, loss_binary_maps: 0.171045, avg_reader_cost: 1.61289 s, avg_batch_cost: 1.84268 s, avg_samples: 12.5, ips: 6.78359 samples/s, eta: 5:38:47

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:57,  8.66it/s]
eval model::   1%|          | 4/500 [00:00<00:31, 15.85it/s]
eval model::   1%|          | 6/500 [00:00<00:28, 17.20it/s]
eval model::   2%|▏         | 8/500 [00:00<00:30, 15.97it/s]
eval model::   2%|▏         | 10/500 [00:00<00:29, 16.45it/s]
eval model::   2%|▏         | 12/500 [00:00<00:28, 17.21it/s]
eval model::   3%|▎         | 14/500 [00:00<00:27, 17.66it/s]
eval model::   3%|▎         | 17/500 [00:00<00:23, 20.85it/s]
eval model::   4%|▍         | 20/500 [00:01<00:24, 19.83it/s]
eval model::   5%|▍         | 23/500 [00:01<00:22, 21.45it/s]
eval model::   5%|▌         | 26/500 [00:01<00:21, 22.56it/s]
eval model::   6%|▌         | 29/500 [00:01<00:22, 21.36it/s]
eval model::   6%|▋         | 32/500 [00:01<00:24, 19.48it/s]
eval model::   7%|▋         | 35/500 [00:01<00:24, 18.60it/s]
eval model::   8%|▊         | 38/500 [00:02<00:24, 18.79it/s]
eval model::   8%|▊         | 40/500 [00:02<00:26, 17.07it/s]
eval model::   8%|▊         | 42/500 [00:02<00:28, 15.96it/s]
eval model::   9%|▉         | 45/500 [00:02<00:26, 17.25it/s]
eval model::   9%|▉         | 47/500 [00:02<00:26, 17.29it/s]
eval model::  10%|█         | 50/500 [00:02<00:23, 19.08it/s]
eval model::  11%|█         | 53/500 [00:02<00:23, 19.34it/s]
eval model::  11%|█         | 55/500 [00:02<00:23, 18.90it/s]
eval model::  11%|█▏        | 57/500 [00:03<00:23, 18.59it/s]
eval model::  12%|█▏        | 59/500 [00:03<00:26, 16.76it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:28, 15.14it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:29, 14.90it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:24, 17.37it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:22, 18.92it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:20, 21.29it/s]
eval model::  15%|█▌        | 75/500 [00:04<00:19, 21.79it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:19, 22.02it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:19, 21.83it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:18, 22.25it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:19, 21.03it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:20, 19.60it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:21, 18.93it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:20, 20.17it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:18, 21.86it/s]
eval model::  20%|██        | 102/500 [00:05<00:19, 20.87it/s]
eval model::  21%|██        | 105/500 [00:05<00:17, 22.88it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:17, 22.72it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:18, 21.61it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:16, 23.34it/s]
eval model::  23%|██▎       | 117/500 [00:06<00:18, 21.07it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:20, 18.97it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:18, 20.67it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:21, 17.77it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:19, 19.06it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:19, 18.63it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:17, 20.35it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:17, 20.69it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:17, 20.25it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:17, 20.53it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:19, 18.52it/s]
eval model::  30%|███       | 150/500 [00:07<00:17, 19.79it/s]
eval model::  31%|███       | 153/500 [00:07<00:18, 19.09it/s]
eval model::  31%|███▏      | 157/500 [00:08<00:15, 21.68it/s]
eval model::  32%|███▏      | 160/500 [00:08<00:21, 15.88it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:20, 16.44it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:18, 17.79it/s]
eval model::  34%|███▎      | 168/500 [00:08<00:19, 17.28it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:18, 17.50it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:20, 15.79it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:20, 16.17it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:17, 18.12it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:20, 15.42it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:18, 17.01it/s]
eval model::  37%|███▋      | 187/500 [00:09<00:16, 18.57it/s]
eval model::  38%|███▊      | 190/500 [00:10<00:15, 19.55it/s]
eval model::  39%|███▊      | 193/500 [00:10<00:14, 21.42it/s]
eval model::  39%|███▉      | 196/500 [00:10<00:15, 19.55it/s]
eval model::  40%|███▉      | 199/500 [00:10<00:15, 19.73it/s]
eval model::  40%|████      | 202/500 [00:10<00:14, 20.55it/s]
eval model::  41%|████      | 205/500 [00:10<00:18, 15.91it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:17, 16.49it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:18, 15.57it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:17, 16.41it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:18, 15.29it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:19, 14.59it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:17, 16.04it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:19, 14.37it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:15, 17.63it/s]
eval model::  46%|████▌     | 229/500 [00:12<00:13, 19.98it/s]
eval model::  46%|████▋     | 232/500 [00:12<00:12, 20.66it/s]
eval model::  47%|████▋     | 235/500 [00:12<00:13, 20.07it/s]
eval model::  48%|████▊     | 238/500 [00:12<00:12, 20.72it/s]
eval model::  48%|████▊     | 241/500 [00:12<00:12, 21.53it/s]
eval model::  49%|████▉     | 244/500 [00:12<00:12, 20.41it/s]
eval model::  49%|████▉     | 247/500 [00:13<00:12, 20.90it/s]
eval model::  50%|█████     | 250/500 [00:13<00:12, 20.65it/s]
eval model::  51%|█████     | 253/500 [00:13<00:11, 20.86it/s]
eval model::  51%|█████     | 256/500 [00:13<00:11, 21.51it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:09, 24.33it/s]
eval model::  53%|█████▎    | 263/500 [00:13<00:09, 24.47it/s]
eval model::  53%|█████▎    | 266/500 [00:13<00:10, 21.62it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:11, 19.77it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:11, 19.94it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:11, 19.31it/s]
eval model::  55%|█████▌    | 277/500 [00:14<00:11, 18.80it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:11, 18.75it/s]
eval model::  56%|█████▋    | 282/500 [00:14<00:11, 19.27it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:17, 12.48it/s]
eval model::  58%|█████▊    | 288/500 [00:15<00:14, 14.94it/s]
eval model::  58%|█████▊    | 292/500 [00:15<00:11, 17.46it/s]
eval model::  59%|█████▉    | 295/500 [00:15<00:14, 14.22it/s]
eval model::  60%|█████▉    | 298/500 [00:15<00:12, 16.45it/s]
eval model::  60%|██████    | 301/500 [00:16<00:11, 16.69it/s]
eval model::  61%|██████    | 304/500 [00:16<00:10, 18.55it/s]
eval model::  61%|██████▏   | 307/500 [00:16<00:09, 19.75it/s]
eval model::  62%|██████▏   | 310/500 [00:16<00:08, 21.13it/s]
eval model::  63%|██████▎   | 313/500 [00:16<00:08, 21.90it/s]
eval model::  63%|██████▎   | 316/500 [00:16<00:08, 20.54it/s]
eval model::  64%|██████▍   | 319/500 [00:16<00:08, 21.49it/s]
eval model::  64%|██████▍   | 322/500 [00:17<00:08, 19.89it/s]
eval model::  65%|██████▌   | 325/500 [00:17<00:08, 20.30it/s]
eval model::  66%|██████▌   | 328/500 [00:17<00:08, 19.74it/s]
eval model::  66%|██████▌   | 331/500 [00:17<00:08, 19.24it/s]
eval model::  67%|██████▋   | 334/500 [00:17<00:08, 20.65it/s]
eval model::  67%|██████▋   | 337/500 [00:17<00:07, 20.52it/s]
eval model::  68%|██████▊   | 340/500 [00:18<00:11, 14.44it/s]
eval model::  69%|██████▊   | 343/500 [00:18<00:09, 16.60it/s]
eval model::  69%|██████▉   | 346/500 [00:18<00:08, 18.86it/s]
eval model::  70%|██████▉   | 349/500 [00:18<00:07, 20.88it/s]
eval model::  70%|███████   | 352/500 [00:18<00:06, 22.48it/s]
eval model::  71%|███████   | 355/500 [00:18<00:06, 22.18it/s]
eval model::  72%|███████▏  | 358/500 [00:18<00:06, 22.10it/s]
eval model::  72%|███████▏  | 361/500 [00:19<00:07, 19.79it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:07, 18.85it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:07, 18.09it/s]
eval model::  74%|███████▍  | 369/500 [00:19<00:06, 19.10it/s]
eval model::  74%|███████▍  | 371/500 [00:19<00:06, 18.82it/s]
eval model::  75%|███████▍  | 374/500 [00:19<00:06, 20.36it/s]
eval model::  75%|███████▌  | 377/500 [00:19<00:05, 21.54it/s]
eval model::  76%|███████▌  | 380/500 [00:20<00:05, 20.48it/s]
eval model::  77%|███████▋  | 383/500 [00:20<00:05, 22.26it/s]
eval model::  77%|███████▋  | 386/500 [00:20<00:08, 13.56it/s]
eval model::  78%|███████▊  | 389/500 [00:20<00:06, 15.90it/s]
eval model::  78%|███████▊  | 392/500 [00:20<00:06, 17.78it/s]
eval model::  79%|███████▉  | 395/500 [00:20<00:05, 19.67it/s]
eval model::  80%|███████▉  | 398/500 [00:21<00:04, 21.75it/s]
eval model::  80%|████████  | 401/500 [00:21<00:04, 19.86it/s]
eval model::  81%|████████  | 404/500 [00:21<00:04, 21.60it/s]
eval model::  81%|████████▏ | 407/500 [00:21<00:04, 22.69it/s]
eval model::  82%|████████▏ | 410/500 [00:21<00:03, 23.77it/s]
eval model::  83%|████████▎ | 413/500 [00:21<00:03, 23.22it/s]
eval model::  83%|████████▎ | 416/500 [00:21<00:03, 22.73it/s]
eval model::  84%|████████▍ | 419/500 [00:21<00:03, 21.03it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:04, 16.79it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:04, 16.22it/s]
eval model::  85%|████████▌ | 426/500 [00:22<00:04, 16.31it/s]
eval model::  86%|████████▌ | 429/500 [00:22<00:03, 19.28it/s]
eval model::  86%|████████▋ | 432/500 [00:22<00:03, 20.02it/s]
eval model::  87%|████████▋ | 436/500 [00:22<00:02, 23.23it/s]
eval model::  88%|████████▊ | 439/500 [00:23<00:02, 24.07it/s]
eval model::  88%|████████▊ | 442/500 [00:23<00:02, 21.86it/s]
eval model::  89%|████████▉ | 445/500 [00:23<00:02, 23.39it/s]
eval model::  90%|████████▉ | 448/500 [00:23<00:02, 22.35it/s]
eval model::  90%|█████████ | 451/500 [00:23<00:02, 21.83it/s]
eval model::  91%|█████████ | 454/500 [00:23<00:02, 21.69it/s]
eval model::  91%|█████████▏| 457/500 [00:23<00:02, 19.55it/s]
eval model::  92%|█████████▏| 460/500 [00:24<00:02, 18.89it/s]
eval model::  92%|█████████▏| 462/500 [00:24<00:02, 16.60it/s]
eval model::  93%|█████████▎| 465/500 [00:24<00:02, 16.87it/s]
eval model::  94%|█████████▎| 468/500 [00:24<00:01, 18.09it/s]
eval model::  94%|█████████▍| 471/500 [00:24<00:01, 20.60it/s]
eval model::  95%|█████████▍| 474/500 [00:24<00:01, 19.42it/s]
eval model::  95%|█████████▌| 477/500 [00:24<00:01, 21.22it/s]
eval model::  96%|█████████▌| 480/500 [00:25<00:00, 21.76it/s]
eval model::  97%|█████████▋| 483/500 [00:25<00:00, 22.11it/s]
eval model::  97%|█████████▋| 486/500 [00:25<00:00, 20.49it/s]
eval model::  98%|█████████▊| 490/500 [00:25<00:00, 22.63it/s]
eval model::  99%|█████████▊| 493/500 [00:25<00:00, 19.64it/s]
eval model::  99%|█████████▉| 496/500 [00:25<00:00, 18.98it/s]
eval model:: 100%|█████████▉| 499/500 [00:25<00:00, 20.93it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 19.21it/s]
[2024/07/28 00:25:24] ppocr INFO: cur metric, precision: 0.6799345692475464, recall: 0.6003851709195955, hmean: 0.6376885706980312, fps: 44.61766559592031
[2024/07/28 00:25:24] ppocr INFO: best metric, hmean: 0.6461372231226364, precision: 0.736, recall: 0.575830524795378, fps: 45.03702120574545, best_epoch: 380
[2024/07/28 00:25:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:25:31] ppocr INFO: epoch: [401/1500], global_step: 1203, lr: 0.001000, loss: 1.586054, loss_shrink_maps: 0.840839, loss_threshold_maps: 0.602548, loss_binary_maps: 0.166893, avg_reader_cost: 1.62907 s, avg_batch_cost: 1.89648 s, avg_samples: 12.5, ips: 6.59116 samples/s, eta: 5:38:30
[2024/07/28 00:25:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:25:39] ppocr INFO: epoch: [402/1500], global_step: 1206, lr: 0.001000, loss: 1.625817, loss_shrink_maps: 0.864749, loss_threshold_maps: 0.602548, loss_binary_maps: 0.172268, avg_reader_cost: 1.57057 s, avg_batch_cost: 1.80036 s, avg_samples: 12.5, ips: 6.94304 samples/s, eta: 5:38:10
[2024/07/28 00:25:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:25:47] ppocr INFO: epoch: [403/1500], global_step: 1209, lr: 0.001000, loss: 1.585797, loss_shrink_maps: 0.836167, loss_threshold_maps: 0.598699, loss_binary_maps: 0.165994, avg_reader_cost: 1.54481 s, avg_batch_cost: 1.77573 s, avg_samples: 12.5, ips: 7.03936 samples/s, eta: 5:37:50
[2024/07/28 00:25:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:25:54] ppocr INFO: epoch: [404/1500], global_step: 1210, lr: 0.001000, loss: 1.560107, loss_shrink_maps: 0.819685, loss_threshold_maps: 0.593415, loss_binary_maps: 0.163123, avg_reader_cost: 0.46200 s, avg_batch_cost: 0.54421 s, avg_samples: 4.8, ips: 8.82010 samples/s, eta: 5:37:41
[2024/07/28 00:25:55] ppocr INFO: epoch: [404/1500], global_step: 1212, lr: 0.001000, loss: 1.560107, loss_shrink_maps: 0.819685, loss_threshold_maps: 0.588799, loss_binary_maps: 0.163123, avg_reader_cost: 1.17978 s, avg_batch_cost: 1.32555 s, avg_samples: 7.7, ips: 5.80892 samples/s, eta: 5:37:32
[2024/07/28 00:25:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:26:03] ppocr INFO: epoch: [405/1500], global_step: 1215, lr: 0.001000, loss: 1.523618, loss_shrink_maps: 0.801569, loss_threshold_maps: 0.581405, loss_binary_maps: 0.159266, avg_reader_cost: 1.50192 s, avg_batch_cost: 1.73890 s, avg_samples: 12.5, ips: 7.18844 samples/s, eta: 5:37:10
[2024/07/28 00:26:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:26:11] ppocr INFO: epoch: [406/1500], global_step: 1218, lr: 0.001000, loss: 1.557924, loss_shrink_maps: 0.808361, loss_threshold_maps: 0.589488, loss_binary_maps: 0.161128, avg_reader_cost: 1.56512 s, avg_batch_cost: 1.79315 s, avg_samples: 12.5, ips: 6.97098 samples/s, eta: 5:36:50
[2024/07/28 00:26:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:26:18] ppocr INFO: epoch: [407/1500], global_step: 1220, lr: 0.001000, loss: 1.563270, loss_shrink_maps: 0.823067, loss_threshold_maps: 0.589488, loss_binary_maps: 0.163606, avg_reader_cost: 0.93112 s, avg_batch_cost: 1.11360 s, avg_samples: 9.6, ips: 8.62070 samples/s, eta: 5:36:35
[2024/07/28 00:26:19] ppocr INFO: epoch: [407/1500], global_step: 1221, lr: 0.001000, loss: 1.561088, loss_shrink_maps: 0.823067, loss_threshold_maps: 0.587074, loss_binary_maps: 0.163606, avg_reader_cost: 0.60278 s, avg_batch_cost: 0.65729 s, avg_samples: 2.9, ips: 4.41205 samples/s, eta: 5:36:30
[2024/07/28 00:26:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:26:27] ppocr INFO: epoch: [408/1500], global_step: 1224, lr: 0.001000, loss: 1.561088, loss_shrink_maps: 0.811743, loss_threshold_maps: 0.587074, loss_binary_maps: 0.161612, avg_reader_cost: 1.60048 s, avg_batch_cost: 1.85791 s, avg_samples: 12.5, ips: 6.72799 samples/s, eta: 5:36:12
[2024/07/28 00:26:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:26:35] ppocr INFO: epoch: [409/1500], global_step: 1227, lr: 0.001000, loss: 1.561088, loss_shrink_maps: 0.811743, loss_threshold_maps: 0.587733, loss_binary_maps: 0.161612, avg_reader_cost: 1.61384 s, avg_batch_cost: 1.86462 s, avg_samples: 12.5, ips: 6.70377 samples/s, eta: 5:35:54
[2024/07/28 00:26:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:26:43] ppocr INFO: epoch: [410/1500], global_step: 1230, lr: 0.001000, loss: 1.588631, loss_shrink_maps: 0.828657, loss_threshold_maps: 0.590265, loss_binary_maps: 0.164850, avg_reader_cost: 1.51835 s, avg_batch_cost: 1.76275 s, avg_samples: 12.5, ips: 7.09121 samples/s, eta: 5:35:33
[2024/07/28 00:26:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:26:51] ppocr INFO: epoch: [411/1500], global_step: 1233, lr: 0.001000, loss: 1.646921, loss_shrink_maps: 0.860624, loss_threshold_maps: 0.606435, loss_binary_maps: 0.171031, avg_reader_cost: 1.54418 s, avg_batch_cost: 1.77295 s, avg_samples: 12.5, ips: 7.05039 samples/s, eta: 5:35:12
[2024/07/28 00:26:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:27:00] ppocr INFO: epoch: [412/1500], global_step: 1236, lr: 0.001000, loss: 1.666135, loss_shrink_maps: 0.884868, loss_threshold_maps: 0.607167, loss_binary_maps: 0.176125, avg_reader_cost: 1.59284 s, avg_batch_cost: 1.83488 s, avg_samples: 12.5, ips: 6.81245 samples/s, eta: 5:34:54
[2024/07/28 00:27:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:27:07] ppocr INFO: epoch: [413/1500], global_step: 1239, lr: 0.001000, loss: 1.666135, loss_shrink_maps: 0.879983, loss_threshold_maps: 0.622257, loss_binary_maps: 0.175232, avg_reader_cost: 1.53621 s, avg_batch_cost: 1.79071 s, avg_samples: 12.5, ips: 6.98046 samples/s, eta: 5:34:34
[2024/07/28 00:27:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:27:14] ppocr INFO: epoch: [414/1500], global_step: 1240, lr: 0.001000, loss: 1.648944, loss_shrink_maps: 0.855739, loss_threshold_maps: 0.608445, loss_binary_maps: 0.170292, avg_reader_cost: 0.42913 s, avg_batch_cost: 0.51813 s, avg_samples: 4.8, ips: 9.26400 samples/s, eta: 5:34:25
[2024/07/28 00:27:16] ppocr INFO: epoch: [414/1500], global_step: 1242, lr: 0.001000, loss: 1.648944, loss_shrink_maps: 0.855739, loss_threshold_maps: 0.608445, loss_binary_maps: 0.170292, avg_reader_cost: 1.12798 s, avg_batch_cost: 1.27473 s, avg_samples: 7.7, ips: 6.04048 samples/s, eta: 5:34:14
[2024/07/28 00:27:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:27:24] ppocr INFO: epoch: [415/1500], global_step: 1245, lr: 0.001000, loss: 1.648944, loss_shrink_maps: 0.855739, loss_threshold_maps: 0.608445, loss_binary_maps: 0.170292, avg_reader_cost: 1.56862 s, avg_batch_cost: 1.79777 s, avg_samples: 12.5, ips: 6.95306 samples/s, eta: 5:33:54
[2024/07/28 00:27:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:27:32] ppocr INFO: epoch: [416/1500], global_step: 1248, lr: 0.001000, loss: 1.613878, loss_shrink_maps: 0.842662, loss_threshold_maps: 0.596350, loss_binary_maps: 0.167690, avg_reader_cost: 1.60874 s, avg_batch_cost: 1.83877 s, avg_samples: 12.5, ips: 6.79802 samples/s, eta: 5:33:35
[2024/07/28 00:27:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:27:39] ppocr INFO: epoch: [417/1500], global_step: 1250, lr: 0.001000, loss: 1.588322, loss_shrink_maps: 0.822585, loss_threshold_maps: 0.580968, loss_binary_maps: 0.163584, avg_reader_cost: 0.96252 s, avg_batch_cost: 1.13584 s, avg_samples: 9.6, ips: 8.45189 samples/s, eta: 5:33:21
[2024/07/28 00:27:40] ppocr INFO: epoch: [417/1500], global_step: 1251, lr: 0.001000, loss: 1.588322, loss_shrink_maps: 0.822585, loss_threshold_maps: 0.580968, loss_binary_maps: 0.163584, avg_reader_cost: 0.61356 s, avg_batch_cost: 0.66854 s, avg_samples: 2.9, ips: 4.33779 samples/s, eta: 5:33:16
[2024/07/28 00:27:41] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:27:48] ppocr INFO: epoch: [418/1500], global_step: 1254, lr: 0.001000, loss: 1.564924, loss_shrink_maps: 0.816973, loss_threshold_maps: 0.573940, loss_binary_maps: 0.162247, avg_reader_cost: 1.51741 s, avg_batch_cost: 1.75588 s, avg_samples: 12.5, ips: 7.11894 samples/s, eta: 5:32:55
[2024/07/28 00:27:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:27:56] ppocr INFO: epoch: [419/1500], global_step: 1257, lr: 0.001000, loss: 1.564924, loss_shrink_maps: 0.816973, loss_threshold_maps: 0.580616, loss_binary_maps: 0.162247, avg_reader_cost: 1.51926 s, avg_batch_cost: 1.75628 s, avg_samples: 12.5, ips: 7.11732 samples/s, eta: 5:32:34
[2024/07/28 00:27:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:28:04] ppocr INFO: epoch: [420/1500], global_step: 1260, lr: 0.001000, loss: 1.564924, loss_shrink_maps: 0.816973, loss_threshold_maps: 0.580616, loss_binary_maps: 0.162247, avg_reader_cost: 1.52942 s, avg_batch_cost: 1.76665 s, avg_samples: 12.5, ips: 7.07555 samples/s, eta: 5:32:14

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:51,  9.63it/s]
eval model::   1%|          | 3/500 [00:00<00:34, 14.26it/s]
eval model::   1%|          | 6/500 [00:00<00:26, 18.70it/s]
eval model::   2%|▏         | 8/500 [00:00<00:29, 16.93it/s]
eval model::   2%|▏         | 10/500 [00:00<00:28, 17.14it/s]
eval model::   2%|▏         | 12/500 [00:00<00:28, 17.24it/s]
eval model::   3%|▎         | 14/500 [00:00<00:29, 16.76it/s]
eval model::   3%|▎         | 17/500 [00:00<00:24, 19.57it/s]
eval model::   4%|▍         | 20/500 [00:01<00:24, 19.85it/s]
eval model::   5%|▍         | 23/500 [00:01<00:21, 22.16it/s]
eval model::   5%|▌         | 26/500 [00:01<00:22, 20.70it/s]
eval model::   6%|▌         | 29/500 [00:01<00:21, 21.88it/s]
eval model::   6%|▋         | 32/500 [00:01<00:23, 19.60it/s]
eval model::   7%|▋         | 35/500 [00:01<00:23, 19.46it/s]
eval model::   8%|▊         | 38/500 [00:01<00:23, 19.69it/s]
eval model::   8%|▊         | 41/500 [00:02<00:24, 18.40it/s]
eval model::   9%|▊         | 43/500 [00:02<00:26, 17.26it/s]
eval model::   9%|▉         | 46/500 [00:02<00:27, 16.61it/s]
eval model::  10%|▉         | 49/500 [00:02<00:23, 19.04it/s]
eval model::  10%|█         | 52/500 [00:02<00:22, 20.27it/s]
eval model::  11%|█         | 55/500 [00:02<00:20, 21.66it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:22, 19.98it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:26, 16.36it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:28, 15.42it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:25, 17.30it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:23, 18.61it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:21, 19.64it/s]
eval model::  15%|█▌        | 75/500 [00:03<00:21, 20.08it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:20, 20.15it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:18, 22.13it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:18, 21.92it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:20, 20.08it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:22, 18.33it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:21, 19.21it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:19, 20.51it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:18, 21.92it/s]
eval model::  20%|██        | 102/500 [00:05<00:17, 22.25it/s]
eval model::  21%|██        | 106/500 [00:05<00:16, 24.60it/s]
eval model::  22%|██▏       | 110/500 [00:05<00:15, 24.75it/s]
eval model::  23%|██▎       | 113/500 [00:05<00:17, 22.16it/s]
eval model::  23%|██▎       | 116/500 [00:05<00:17, 21.80it/s]
eval model::  24%|██▍       | 119/500 [00:06<00:17, 21.74it/s]
eval model::  24%|██▍       | 122/500 [00:06<00:17, 21.44it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:18, 19.75it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:18, 20.48it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:19, 18.77it/s]
eval model::  27%|██▋       | 134/500 [00:06<00:18, 19.27it/s]
eval model::  27%|██▋       | 136/500 [00:06<00:18, 19.24it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:18, 19.58it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:17, 20.19it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:17, 20.27it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:19, 17.79it/s]
eval model::  30%|███       | 151/500 [00:07<00:20, 17.07it/s]
eval model::  31%|███       | 154/500 [00:07<00:17, 19.59it/s]
eval model::  31%|███▏      | 157/500 [00:07<00:15, 21.76it/s]
eval model::  32%|███▏      | 160/500 [00:08<00:19, 17.34it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:19, 17.67it/s]
eval model::  33%|███▎      | 165/500 [00:08<00:19, 17.58it/s]
eval model::  34%|███▎      | 168/500 [00:08<00:18, 18.42it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:17, 18.71it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:19, 17.01it/s]
eval model::  35%|███▌      | 177/500 [00:09<00:17, 18.91it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:18, 16.92it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:16, 19.12it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:15, 20.85it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:14, 21.00it/s]
eval model::  38%|███▊      | 192/500 [00:09<00:14, 21.68it/s]
eval model::  39%|███▉      | 195/500 [00:09<00:14, 21.14it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:14, 20.86it/s]
eval model::  40%|████      | 201/500 [00:10<00:14, 20.60it/s]
eval model::  41%|████      | 204/500 [00:10<00:14, 20.97it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:20, 14.29it/s]
eval model::  42%|████▏     | 209/500 [00:10<00:20, 14.49it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:20, 14.43it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.26it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:20, 13.79it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:20, 13.87it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:17, 16.46it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:18, 15.16it/s]
eval model::  45%|████▌     | 226/500 [00:11<00:14, 18.68it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:12, 21.99it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:11, 23.17it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:11, 22.44it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:11, 22.25it/s]
eval model::  48%|████▊     | 242/500 [00:12<00:13, 18.80it/s]
eval model::  49%|████▉     | 245/500 [00:12<00:12, 20.06it/s]
eval model::  50%|████▉     | 248/500 [00:12<00:12, 20.85it/s]
eval model::  50%|█████     | 251/500 [00:13<00:12, 20.09it/s]
eval model::  51%|█████     | 254/500 [00:13<00:12, 19.13it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:12, 19.36it/s]
eval model::  52%|█████▏    | 259/500 [00:13<00:12, 19.40it/s]
eval model::  52%|█████▏    | 261/500 [00:13<00:12, 18.79it/s]
eval model::  53%|█████▎    | 263/500 [00:13<00:12, 18.25it/s]
eval model::  53%|█████▎    | 265/500 [00:13<00:14, 16.66it/s]
eval model::  53%|█████▎    | 267/500 [00:14<00:13, 17.20it/s]
eval model::  54%|█████▍    | 270/500 [00:14<00:12, 18.79it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:12, 18.58it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:13, 17.28it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:11, 19.32it/s]
eval model::  56%|█████▌    | 281/500 [00:14<00:10, 21.67it/s]
eval model::  57%|█████▋    | 284/500 [00:14<00:09, 22.87it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:18, 11.46it/s]
eval model::  58%|█████▊    | 290/500 [00:15<00:14, 14.11it/s]
eval model::  59%|█████▊    | 293/500 [00:15<00:13, 15.47it/s]
eval model::  59%|█████▉    | 296/500 [00:15<00:14, 13.77it/s]
eval model::  60%|█████▉    | 299/500 [00:15<00:12, 15.98it/s]
eval model::  60%|██████    | 302/500 [00:16<00:12, 15.98it/s]
eval model::  61%|██████    | 304/500 [00:16<00:11, 16.43it/s]
eval model::  61%|██████▏   | 307/500 [00:16<00:10, 18.15it/s]
eval model::  62%|██████▏   | 310/500 [00:16<00:09, 19.19it/s]
eval model::  63%|██████▎   | 313/500 [00:16<00:09, 20.40it/s]
eval model::  63%|██████▎   | 316/500 [00:16<00:09, 20.12it/s]
eval model::  64%|██████▍   | 319/500 [00:16<00:08, 21.54it/s]
eval model::  64%|██████▍   | 322/500 [00:17<00:08, 20.57it/s]
eval model::  65%|██████▌   | 325/500 [00:17<00:08, 21.04it/s]
eval model::  66%|██████▌   | 328/500 [00:17<00:08, 21.19it/s]
eval model::  66%|██████▌   | 331/500 [00:17<00:07, 21.69it/s]
eval model::  67%|██████▋   | 335/500 [00:17<00:06, 24.40it/s]
eval model::  68%|██████▊   | 338/500 [00:17<00:07, 21.72it/s]
eval model::  68%|██████▊   | 341/500 [00:18<00:09, 16.50it/s]
eval model::  69%|██████▉   | 344/500 [00:18<00:08, 18.85it/s]
eval model::  69%|██████▉   | 347/500 [00:18<00:07, 20.29it/s]
eval model::  70%|███████   | 351/500 [00:18<00:06, 23.06it/s]
eval model::  71%|███████   | 354/500 [00:18<00:06, 24.16it/s]
eval model::  71%|███████▏  | 357/500 [00:18<00:06, 20.95it/s]
eval model::  72%|███████▏  | 360/500 [00:18<00:06, 21.01it/s]
eval model::  73%|███████▎  | 363/500 [00:19<00:06, 20.30it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:07, 16.93it/s]
eval model::  74%|███████▍  | 369/500 [00:19<00:07, 18.63it/s]
eval model::  74%|███████▍  | 372/500 [00:19<00:06, 18.97it/s]
eval model::  75%|███████▌  | 375/500 [00:19<00:06, 20.55it/s]
eval model::  76%|███████▌  | 378/500 [00:19<00:05, 22.31it/s]
eval model::  76%|███████▌  | 381/500 [00:19<00:05, 20.28it/s]
eval model::  77%|███████▋  | 384/500 [00:20<00:05, 20.99it/s]
eval model::  77%|███████▋  | 387/500 [00:20<00:08, 13.12it/s]
eval model::  78%|███████▊  | 390/500 [00:20<00:07, 15.32it/s]
eval model::  78%|███████▊  | 392/500 [00:20<00:06, 15.93it/s]
eval model::  79%|███████▉  | 395/500 [00:20<00:05, 17.85it/s]
eval model::  80%|███████▉  | 398/500 [00:21<00:05, 19.31it/s]
eval model::  80%|████████  | 401/500 [00:21<00:05, 18.76it/s]
eval model::  81%|████████  | 404/500 [00:21<00:04, 19.61it/s]
eval model::  81%|████████▏ | 407/500 [00:21<00:04, 20.99it/s]
eval model::  82%|████████▏ | 410/500 [00:21<00:04, 22.03it/s]
eval model::  83%|████████▎ | 413/500 [00:21<00:04, 21.17it/s]
eval model::  83%|████████▎ | 416/500 [00:21<00:03, 21.23it/s]
eval model::  84%|████████▍ | 419/500 [00:22<00:03, 20.25it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:04, 17.66it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:04, 16.39it/s]
eval model::  85%|████████▌ | 426/500 [00:22<00:04, 16.09it/s]
eval model::  86%|████████▌ | 429/500 [00:22<00:03, 18.48it/s]
eval model::  86%|████████▌ | 431/500 [00:22<00:03, 18.12it/s]
eval model::  87%|████████▋ | 435/500 [00:22<00:02, 22.26it/s]
eval model::  88%|████████▊ | 439/500 [00:23<00:02, 23.98it/s]
eval model::  88%|████████▊ | 442/500 [00:23<00:02, 24.53it/s]
eval model::  89%|████████▉ | 445/500 [00:23<00:02, 25.04it/s]
eval model::  90%|████████▉ | 448/500 [00:23<00:02, 22.77it/s]
eval model::  90%|█████████ | 451/500 [00:23<00:02, 21.42it/s]
eval model::  91%|█████████ | 454/500 [00:23<00:02, 22.32it/s]
eval model::  91%|█████████▏| 457/500 [00:23<00:01, 22.09it/s]
eval model::  92%|█████████▏| 460/500 [00:23<00:01, 22.34it/s]
eval model::  93%|█████████▎| 463/500 [00:24<00:02, 18.36it/s]
eval model::  93%|█████████▎| 465/500 [00:24<00:01, 18.42it/s]
eval model::  93%|█████████▎| 467/500 [00:24<00:01, 18.41it/s]
eval model::  94%|█████████▍| 470/500 [00:24<00:01, 21.15it/s]
eval model::  95%|█████████▍| 473/500 [00:24<00:01, 20.07it/s]
eval model::  95%|█████████▌| 476/500 [00:24<00:01, 20.49it/s]
eval model::  96%|█████████▌| 479/500 [00:24<00:00, 21.13it/s]
eval model::  96%|█████████▋| 482/500 [00:25<00:00, 21.03it/s]
eval model::  97%|█████████▋| 485/500 [00:25<00:00, 21.85it/s]
eval model::  98%|█████████▊| 488/500 [00:25<00:00, 21.66it/s]
eval model::  98%|█████████▊| 491/500 [00:25<00:00, 19.39it/s]
eval model::  99%|█████████▉| 494/500 [00:25<00:00, 19.08it/s]
eval model::  99%|█████████▉| 496/500 [00:25<00:00, 18.72it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 22.39it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.25it/s]
[2024/07/28 00:28:30] ppocr INFO: cur metric, precision: 0.6857971014492754, recall: 0.5695714973519499, hmean: 0.6223040504997369, fps: 45.463526348182015
[2024/07/28 00:28:30] ppocr INFO: best metric, hmean: 0.6461372231226364, precision: 0.736, recall: 0.575830524795378, fps: 45.03702120574545, best_epoch: 380
[2024/07/28 00:28:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:28:37] ppocr INFO: epoch: [421/1500], global_step: 1263, lr: 0.001000, loss: 1.612776, loss_shrink_maps: 0.830799, loss_threshold_maps: 0.586668, loss_binary_maps: 0.164796, avg_reader_cost: 1.48787 s, avg_batch_cost: 1.76017 s, avg_samples: 12.5, ips: 7.10157 samples/s, eta: 5:31:53
[2024/07/28 00:28:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:28:45] ppocr INFO: epoch: [422/1500], global_step: 1266, lr: 0.001000, loss: 1.592406, loss_shrink_maps: 0.824495, loss_threshold_maps: 0.581626, loss_binary_maps: 0.163849, avg_reader_cost: 1.51048 s, avg_batch_cost: 1.73919 s, avg_samples: 12.5, ips: 7.18726 samples/s, eta: 5:31:32
[2024/07/28 00:28:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:28:53] ppocr INFO: epoch: [423/1500], global_step: 1269, lr: 0.001000, loss: 1.594537, loss_shrink_maps: 0.827667, loss_threshold_maps: 0.588009, loss_binary_maps: 0.164050, avg_reader_cost: 1.54414 s, avg_batch_cost: 1.81822 s, avg_samples: 12.5, ips: 6.87487 samples/s, eta: 5:31:13
[2024/07/28 00:28:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:28:59] ppocr INFO: epoch: [424/1500], global_step: 1270, lr: 0.001000, loss: 1.616949, loss_shrink_maps: 0.853198, loss_threshold_maps: 0.591786, loss_binary_maps: 0.169040, avg_reader_cost: 0.42000 s, avg_batch_cost: 0.50404 s, avg_samples: 4.8, ips: 9.52297 samples/s, eta: 5:31:04
[2024/07/28 00:29:01] ppocr INFO: epoch: [424/1500], global_step: 1272, lr: 0.001000, loss: 1.570212, loss_shrink_maps: 0.827667, loss_threshold_maps: 0.581626, loss_binary_maps: 0.164050, avg_reader_cost: 1.09910 s, avg_batch_cost: 1.24462 s, avg_samples: 7.7, ips: 6.18663 samples/s, eta: 5:30:52
[2024/07/28 00:29:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:29:09] ppocr INFO: epoch: [425/1500], global_step: 1275, lr: 0.001000, loss: 1.636066, loss_shrink_maps: 0.858825, loss_threshold_maps: 0.594370, loss_binary_maps: 0.170831, avg_reader_cost: 1.51429 s, avg_batch_cost: 1.74761 s, avg_samples: 12.5, ips: 7.15262 samples/s, eta: 5:30:31
[2024/07/28 00:29:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:29:17] ppocr INFO: epoch: [426/1500], global_step: 1278, lr: 0.001000, loss: 1.636066, loss_shrink_maps: 0.858825, loss_threshold_maps: 0.594370, loss_binary_maps: 0.170831, avg_reader_cost: 1.51755 s, avg_batch_cost: 1.76515 s, avg_samples: 12.5, ips: 7.08154 samples/s, eta: 5:30:11
[2024/07/28 00:29:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:29:25] ppocr INFO: epoch: [427/1500], global_step: 1280, lr: 0.001000, loss: 1.596579, loss_shrink_maps: 0.842280, loss_threshold_maps: 0.591426, loss_binary_maps: 0.167785, avg_reader_cost: 0.94765 s, avg_batch_cost: 1.12219 s, avg_samples: 9.6, ips: 8.55469 samples/s, eta: 5:29:56
[2024/07/28 00:29:25] ppocr INFO: epoch: [427/1500], global_step: 1281, lr: 0.001000, loss: 1.636066, loss_shrink_maps: 0.858825, loss_threshold_maps: 0.593511, loss_binary_maps: 0.170831, avg_reader_cost: 0.60732 s, avg_batch_cost: 0.66228 s, avg_samples: 2.9, ips: 4.37882 samples/s, eta: 5:29:51
[2024/07/28 00:29:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:29:33] ppocr INFO: epoch: [428/1500], global_step: 1284, lr: 0.001000, loss: 1.656328, loss_shrink_maps: 0.895036, loss_threshold_maps: 0.591252, loss_binary_maps: 0.177772, avg_reader_cost: 1.58737 s, avg_batch_cost: 1.81654 s, avg_samples: 12.5, ips: 6.88121 samples/s, eta: 5:29:31
[2024/07/28 00:29:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:29:42] ppocr INFO: epoch: [429/1500], global_step: 1287, lr: 0.001000, loss: 1.656328, loss_shrink_maps: 0.895036, loss_threshold_maps: 0.591252, loss_binary_maps: 0.177772, avg_reader_cost: 1.61699 s, avg_batch_cost: 1.88724 s, avg_samples: 12.5, ips: 6.62344 samples/s, eta: 5:29:14
[2024/07/28 00:29:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:29:50] ppocr INFO: epoch: [430/1500], global_step: 1290, lr: 0.001000, loss: 1.590491, loss_shrink_maps: 0.842865, loss_threshold_maps: 0.579189, loss_binary_maps: 0.168335, avg_reader_cost: 1.54700 s, avg_batch_cost: 1.77576 s, avg_samples: 12.5, ips: 7.03924 samples/s, eta: 5:28:54
[2024/07/28 00:29:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:29:58] ppocr INFO: epoch: [431/1500], global_step: 1293, lr: 0.001000, loss: 1.590491, loss_shrink_maps: 0.853076, loss_threshold_maps: 0.580879, loss_binary_maps: 0.170533, avg_reader_cost: 1.51695 s, avg_batch_cost: 1.74744 s, avg_samples: 12.5, ips: 7.15331 samples/s, eta: 5:28:33
[2024/07/28 00:29:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:30:06] ppocr INFO: epoch: [432/1500], global_step: 1296, lr: 0.001000, loss: 1.611322, loss_shrink_maps: 0.871331, loss_threshold_maps: 0.583471, loss_binary_maps: 0.173273, avg_reader_cost: 1.61644 s, avg_batch_cost: 1.85009 s, avg_samples: 12.5, ips: 6.75644 samples/s, eta: 5:28:15
[2024/07/28 00:30:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:30:14] ppocr INFO: epoch: [433/1500], global_step: 1299, lr: 0.001000, loss: 1.645379, loss_shrink_maps: 0.885074, loss_threshold_maps: 0.580879, loss_binary_maps: 0.175372, avg_reader_cost: 1.52212 s, avg_batch_cost: 1.75040 s, avg_samples: 12.5, ips: 7.14122 samples/s, eta: 5:27:54
[2024/07/28 00:30:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:30:20] ppocr INFO: epoch: [434/1500], global_step: 1300, lr: 0.001000, loss: 1.662823, loss_shrink_maps: 0.890357, loss_threshold_maps: 0.585198, loss_binary_maps: 0.177179, avg_reader_cost: 0.41720 s, avg_batch_cost: 0.52371 s, avg_samples: 4.8, ips: 9.16546 samples/s, eta: 5:27:46
[2024/07/28 00:30:22] ppocr INFO: epoch: [434/1500], global_step: 1302, lr: 0.001000, loss: 1.611322, loss_shrink_maps: 0.871331, loss_threshold_maps: 0.580879, loss_binary_maps: 0.173273, avg_reader_cost: 1.13882 s, avg_batch_cost: 1.28465 s, avg_samples: 7.7, ips: 5.99383 samples/s, eta: 5:27:35
[2024/07/28 00:30:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:30:30] ppocr INFO: epoch: [435/1500], global_step: 1305, lr: 0.001000, loss: 1.590491, loss_shrink_maps: 0.847172, loss_threshold_maps: 0.580879, loss_binary_maps: 0.168611, avg_reader_cost: 1.49295 s, avg_batch_cost: 1.74514 s, avg_samples: 12.5, ips: 7.16273 samples/s, eta: 5:27:14
[2024/07/28 00:30:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:30:38] ppocr INFO: epoch: [436/1500], global_step: 1308, lr: 0.001000, loss: 1.617934, loss_shrink_maps: 0.861233, loss_threshold_maps: 0.588210, loss_binary_maps: 0.170758, avg_reader_cost: 1.49988 s, avg_batch_cost: 1.73525 s, avg_samples: 12.5, ips: 7.20359 samples/s, eta: 5:26:53
[2024/07/28 00:30:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:30:46] ppocr INFO: epoch: [437/1500], global_step: 1310, lr: 0.001000, loss: 1.636921, loss_shrink_maps: 0.872822, loss_threshold_maps: 0.593926, loss_binary_maps: 0.172980, avg_reader_cost: 0.92347 s, avg_batch_cost: 1.16787 s, avg_samples: 9.6, ips: 8.22008 samples/s, eta: 5:26:39
[2024/07/28 00:30:46] ppocr INFO: epoch: [437/1500], global_step: 1311, lr: 0.001000, loss: 1.623551, loss_shrink_maps: 0.861233, loss_threshold_maps: 0.593926, loss_binary_maps: 0.170758, avg_reader_cost: 0.62952 s, avg_batch_cost: 0.68430 s, avg_samples: 2.9, ips: 4.23793 samples/s, eta: 5:26:35
[2024/07/28 00:30:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:30:54] ppocr INFO: epoch: [438/1500], global_step: 1314, lr: 0.001000, loss: 1.601754, loss_shrink_maps: 0.841862, loss_threshold_maps: 0.590051, loss_binary_maps: 0.167175, avg_reader_cost: 1.56291 s, avg_batch_cost: 1.81149 s, avg_samples: 12.5, ips: 6.90040 samples/s, eta: 5:26:15
[2024/07/28 00:30:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:31:02] ppocr INFO: epoch: [439/1500], global_step: 1317, lr: 0.001000, loss: 1.553858, loss_shrink_maps: 0.829338, loss_threshold_maps: 0.582963, loss_binary_maps: 0.164732, avg_reader_cost: 1.52214 s, avg_batch_cost: 1.77013 s, avg_samples: 12.5, ips: 7.06161 samples/s, eta: 5:25:55
[2024/07/28 00:31:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:31:11] ppocr INFO: epoch: [440/1500], global_step: 1320, lr: 0.001000, loss: 1.549259, loss_shrink_maps: 0.827956, loss_threshold_maps: 0.580023, loss_binary_maps: 0.164107, avg_reader_cost: 1.65513 s, avg_batch_cost: 1.94365 s, avg_samples: 12.5, ips: 6.43119 samples/s, eta: 5:25:39

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:50,  9.94it/s]
eval model::   1%|          | 4/500 [00:00<00:28, 17.69it/s]
eval model::   1%|          | 6/500 [00:00<00:27, 18.10it/s]
eval model::   2%|▏         | 8/500 [00:00<00:29, 16.61it/s]
eval model::   2%|▏         | 11/500 [00:00<00:29, 16.47it/s]
eval model::   3%|▎         | 14/500 [00:00<00:27, 17.46it/s]
eval model::   3%|▎         | 17/500 [00:00<00:24, 19.60it/s]
eval model::   4%|▍         | 19/500 [00:01<00:24, 19.48it/s]
eval model::   4%|▍         | 21/500 [00:01<00:24, 19.24it/s]
eval model::   5%|▍         | 24/500 [00:01<00:23, 20.13it/s]
eval model::   5%|▌         | 27/500 [00:01<00:23, 20.54it/s]
eval model::   6%|▌         | 30/500 [00:01<00:21, 21.63it/s]
eval model::   7%|▋         | 33/500 [00:01<00:21, 21.35it/s]
eval model::   7%|▋         | 36/500 [00:01<00:23, 19.82it/s]
eval model::   8%|▊         | 39/500 [00:02<00:27, 16.60it/s]
eval model::   8%|▊         | 42/500 [00:02<00:27, 16.70it/s]
eval model::   9%|▉         | 45/500 [00:02<00:25, 18.17it/s]
eval model::   9%|▉         | 47/500 [00:02<00:26, 17.00it/s]
eval model::  10%|█         | 50/500 [00:02<00:24, 18.15it/s]
eval model::  11%|█         | 53/500 [00:02<00:23, 19.06it/s]
eval model::  11%|█         | 56/500 [00:02<00:22, 19.62it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:22, 19.52it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:27, 16.03it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:28, 15.37it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:22, 19.16it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:21, 20.15it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:21, 20.15it/s]
eval model::  15%|█▌        | 76/500 [00:04<00:19, 21.74it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:18, 22.47it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:18, 22.71it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:18, 22.63it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:20, 19.89it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:23, 17.25it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:24, 16.81it/s]
eval model::  19%|█▉        | 95/500 [00:05<00:23, 17.03it/s]
eval model::  20%|█▉        | 98/500 [00:05<00:22, 17.74it/s]
eval model::  20%|██        | 100/500 [00:05<00:22, 17.65it/s]
eval model::  21%|██        | 103/500 [00:05<00:20, 19.51it/s]
eval model::  21%|██        | 106/500 [00:05<00:18, 21.11it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:17, 22.61it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:17, 22.20it/s]
eval model::  23%|██▎       | 115/500 [00:06<00:19, 19.63it/s]
eval model::  24%|██▎       | 118/500 [00:06<00:18, 20.66it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:19, 19.45it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:18, 20.30it/s]
eval model::  25%|██▌       | 127/500 [00:06<00:18, 20.57it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:18, 20.24it/s]
eval model::  27%|██▋       | 133/500 [00:06<00:18, 20.33it/s]
eval model::  27%|██▋       | 136/500 [00:07<00:17, 20.46it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:16, 21.26it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:16, 21.16it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:16, 21.11it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:18, 19.50it/s]
eval model::  30%|███       | 151/500 [00:07<00:18, 18.53it/s]
eval model::  31%|███       | 155/500 [00:07<00:15, 21.90it/s]
eval model::  32%|███▏      | 158/500 [00:08<00:14, 23.38it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:18, 18.69it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:18, 18.59it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:17, 19.56it/s]
eval model::  34%|███▍      | 170/500 [00:08<00:16, 20.06it/s]
eval model::  35%|███▍      | 173/500 [00:08<00:17, 19.11it/s]
eval model::  35%|███▌      | 175/500 [00:09<00:21, 15.24it/s]
eval model::  36%|███▌      | 178/500 [00:09<00:18, 17.74it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:20, 15.46it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:18, 17.22it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:16, 19.19it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:16, 19.36it/s]
eval model::  38%|███▊      | 192/500 [00:09<00:14, 20.75it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:14, 21.45it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:14, 21.33it/s]
eval model::  40%|████      | 201/500 [00:10<00:14, 21.26it/s]
eval model::  41%|████      | 204/500 [00:10<00:12, 23.08it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:20, 14.47it/s]
eval model::  42%|████▏     | 209/500 [00:10<00:19, 15.27it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:18, 15.64it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:17, 16.06it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:19, 14.82it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:19, 14.32it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:16, 17.07it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:17, 15.91it/s]
eval model::  45%|████▌     | 226/500 [00:11<00:14, 19.38it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:12, 22.45it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:11, 22.92it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:13, 19.90it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:12, 21.11it/s]
eval model::  48%|████▊     | 242/500 [00:12<00:12, 20.40it/s]
eval model::  49%|████▉     | 245/500 [00:12<00:11, 21.47it/s]
eval model::  50%|████▉     | 248/500 [00:12<00:10, 23.29it/s]
eval model::  50%|█████     | 251/500 [00:13<00:11, 21.47it/s]
eval model::  51%|█████     | 254/500 [00:13<00:11, 21.86it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:12, 19.19it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:12, 19.33it/s]
eval model::  53%|█████▎    | 263/500 [00:13<00:12, 19.68it/s]
eval model::  53%|█████▎    | 266/500 [00:13<00:12, 18.09it/s]
eval model::  54%|█████▎    | 268/500 [00:13<00:12, 18.34it/s]
eval model::  54%|█████▍    | 270/500 [00:14<00:12, 17.77it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:14, 16.16it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:14, 15.21it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:13, 16.98it/s]
eval model::  56%|█████▌    | 281/500 [00:14<00:11, 18.97it/s]
eval model::  57%|█████▋    | 284/500 [00:14<00:10, 19.83it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:18, 11.80it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:13, 15.41it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:13, 15.49it/s]
eval model::  59%|█████▉    | 296/500 [00:15<00:14, 13.91it/s]
eval model::  60%|█████▉    | 299/500 [00:15<00:12, 16.34it/s]
eval model::  60%|██████    | 301/500 [00:16<00:13, 14.97it/s]
eval model::  61%|██████    | 304/500 [00:16<00:11, 16.93it/s]
eval model::  62%|██████▏   | 308/500 [00:16<00:09, 20.13it/s]
eval model::  62%|██████▏   | 311/500 [00:16<00:09, 20.37it/s]
eval model::  63%|██████▎   | 314/500 [00:16<00:09, 19.32it/s]
eval model::  63%|██████▎   | 317/500 [00:16<00:09, 19.83it/s]
eval model::  64%|██████▍   | 320/500 [00:17<00:08, 21.37it/s]
eval model::  65%|██████▍   | 323/500 [00:17<00:08, 20.83it/s]
eval model::  65%|██████▌   | 326/500 [00:17<00:07, 22.29it/s]
eval model::  66%|██████▌   | 329/500 [00:17<00:08, 20.81it/s]
eval model::  66%|██████▋   | 332/500 [00:17<00:07, 21.18it/s]
eval model::  67%|██████▋   | 335/500 [00:17<00:08, 20.53it/s]
eval model::  68%|██████▊   | 338/500 [00:17<00:08, 18.48it/s]
eval model::  68%|██████▊   | 340/500 [00:18<00:11, 13.64it/s]
eval model::  69%|██████▊   | 343/500 [00:18<00:09, 16.00it/s]
eval model::  69%|██████▉   | 346/500 [00:18<00:08, 18.43it/s]
eval model::  70%|██████▉   | 349/500 [00:18<00:07, 20.46it/s]
eval model::  70%|███████   | 352/500 [00:18<00:07, 20.44it/s]
eval model::  71%|███████   | 355/500 [00:18<00:07, 19.74it/s]
eval model::  72%|███████▏  | 358/500 [00:19<00:07, 19.96it/s]
eval model::  72%|███████▏  | 361/500 [00:19<00:07, 18.70it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:07, 17.73it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:07, 17.35it/s]
eval model::  74%|███████▍  | 369/500 [00:19<00:06, 18.85it/s]
eval model::  74%|███████▍  | 371/500 [00:19<00:06, 18.67it/s]
eval model::  75%|███████▍  | 373/500 [00:19<00:06, 18.53it/s]
eval model::  75%|███████▌  | 375/500 [00:19<00:06, 17.99it/s]
eval model::  76%|███████▌  | 379/500 [00:20<00:05, 22.38it/s]
eval model::  76%|███████▋  | 382/500 [00:20<00:05, 19.92it/s]
eval model::  77%|███████▋  | 385/500 [00:20<00:05, 20.73it/s]
eval model::  78%|███████▊  | 388/500 [00:20<00:09, 11.41it/s]
eval model::  78%|███████▊  | 391/500 [00:21<00:08, 13.42it/s]
eval model::  79%|███████▉  | 394/500 [00:21<00:06, 15.85it/s]
eval model::  79%|███████▉  | 397/500 [00:21<00:05, 18.35it/s]
eval model::  80%|████████  | 400/500 [00:21<00:05, 18.15it/s]
eval model::  81%|████████  | 403/500 [00:21<00:05, 18.91it/s]
eval model::  81%|████████  | 406/500 [00:21<00:05, 16.92it/s]
eval model::  82%|████████▏ | 409/500 [00:21<00:04, 18.70it/s]
eval model::  82%|████████▏ | 412/500 [00:22<00:04, 20.77it/s]
eval model::  83%|████████▎ | 415/500 [00:22<00:04, 20.37it/s]
eval model::  84%|████████▎ | 418/500 [00:22<00:04, 17.16it/s]
eval model::  84%|████████▍ | 420/500 [00:22<00:05, 14.46it/s]
eval model::  85%|████████▍ | 423/500 [00:22<00:04, 16.43it/s]
eval model::  85%|████████▌ | 425/500 [00:22<00:04, 15.56it/s]
eval model::  86%|████████▌ | 428/500 [00:23<00:03, 18.32it/s]
eval model::  86%|████████▌ | 431/500 [00:23<00:03, 19.26it/s]
eval model::  87%|████████▋ | 434/500 [00:23<00:03, 21.22it/s]
eval model::  87%|████████▋ | 437/500 [00:23<00:02, 22.44it/s]
eval model::  88%|████████▊ | 440/500 [00:23<00:03, 19.98it/s]
eval model::  89%|████████▊ | 443/500 [00:23<00:02, 21.56it/s]
eval model::  89%|████████▉ | 446/500 [00:23<00:02, 22.10it/s]
eval model::  90%|████████▉ | 449/500 [00:24<00:02, 19.63it/s]
eval model::  90%|█████████ | 452/500 [00:24<00:02, 20.60it/s]
eval model::  91%|█████████ | 455/500 [00:24<00:02, 21.86it/s]
eval model::  92%|█████████▏| 458/500 [00:24<00:01, 21.67it/s]
eval model::  92%|█████████▏| 461/500 [00:24<00:01, 21.83it/s]
eval model::  93%|█████████▎| 464/500 [00:24<00:02, 16.78it/s]
eval model::  93%|█████████▎| 466/500 [00:24<00:02, 16.33it/s]
eval model::  94%|█████████▎| 468/500 [00:25<00:01, 16.97it/s]
eval model::  94%|█████████▍| 471/500 [00:25<00:01, 19.31it/s]
eval model::  95%|█████████▍| 474/500 [00:25<00:01, 18.71it/s]
eval model::  96%|█████████▌| 478/500 [00:25<00:01, 21.83it/s]
eval model::  96%|█████████▌| 481/500 [00:25<00:00, 21.23it/s]
eval model::  97%|█████████▋| 484/500 [00:25<00:00, 22.02it/s]
eval model::  97%|█████████▋| 487/500 [00:25<00:00, 21.03it/s]
eval model::  98%|█████████▊| 490/500 [00:26<00:00, 19.86it/s]
eval model::  99%|█████████▊| 493/500 [00:26<00:00, 17.55it/s]
eval model::  99%|█████████▉| 496/500 [00:26<00:00, 18.14it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 21.23it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.79it/s]
[2024/07/28 00:31:37] ppocr INFO: cur metric, precision: 0.6873223422399091, recall: 0.582089552238806, hmean: 0.6303441084462983, fps: 44.14698926198636
[2024/07/28 00:31:37] ppocr INFO: best metric, hmean: 0.6461372231226364, precision: 0.736, recall: 0.575830524795378, fps: 45.03702120574545, best_epoch: 380
[2024/07/28 00:31:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:31:45] ppocr INFO: epoch: [441/1500], global_step: 1323, lr: 0.001000, loss: 1.563924, loss_shrink_maps: 0.841897, loss_threshold_maps: 0.589290, loss_binary_maps: 0.166510, avg_reader_cost: 1.55972 s, avg_batch_cost: 1.80824 s, avg_samples: 12.5, ips: 6.91280 samples/s, eta: 5:25:20
[2024/07/28 00:31:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:31:53] ppocr INFO: epoch: [442/1500], global_step: 1326, lr: 0.001000, loss: 1.563924, loss_shrink_maps: 0.848012, loss_threshold_maps: 0.589290, loss_binary_maps: 0.167914, avg_reader_cost: 1.54320 s, avg_batch_cost: 1.79496 s, avg_samples: 12.5, ips: 6.96393 samples/s, eta: 5:25:00
[2024/07/28 00:31:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:32:01] ppocr INFO: epoch: [443/1500], global_step: 1329, lr: 0.001000, loss: 1.582372, loss_shrink_maps: 0.846443, loss_threshold_maps: 0.583438, loss_binary_maps: 0.167914, avg_reader_cost: 1.52255 s, avg_batch_cost: 1.77706 s, avg_samples: 12.5, ips: 7.03409 samples/s, eta: 5:24:40
[2024/07/28 00:32:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:32:07] ppocr INFO: epoch: [444/1500], global_step: 1330, lr: 0.001000, loss: 1.564357, loss_shrink_maps: 0.841689, loss_threshold_maps: 0.583438, loss_binary_maps: 0.166770, avg_reader_cost: 0.37305 s, avg_batch_cost: 0.51492 s, avg_samples: 4.8, ips: 9.32180 samples/s, eta: 5:24:32
[2024/07/28 00:32:09] ppocr INFO: epoch: [444/1500], global_step: 1332, lr: 0.001000, loss: 1.582372, loss_shrink_maps: 0.846443, loss_threshold_maps: 0.583438, loss_binary_maps: 0.167914, avg_reader_cost: 1.12110 s, avg_batch_cost: 1.26687 s, avg_samples: 7.7, ips: 6.07796 samples/s, eta: 5:24:20
[2024/07/28 00:32:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:32:17] ppocr INFO: epoch: [445/1500], global_step: 1335, lr: 0.001000, loss: 1.591897, loss_shrink_maps: 0.852337, loss_threshold_maps: 0.580788, loss_binary_maps: 0.169291, avg_reader_cost: 1.61218 s, avg_batch_cost: 1.86151 s, avg_samples: 12.5, ips: 6.71498 samples/s, eta: 5:24:02
[2024/07/28 00:32:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:32:25] ppocr INFO: epoch: [446/1500], global_step: 1338, lr: 0.001000, loss: 1.607916, loss_shrink_maps: 0.855122, loss_threshold_maps: 0.585136, loss_binary_maps: 0.170355, avg_reader_cost: 1.52687 s, avg_batch_cost: 1.75551 s, avg_samples: 12.5, ips: 7.12046 samples/s, eta: 5:23:42
[2024/07/28 00:32:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:32:32] ppocr INFO: epoch: [447/1500], global_step: 1340, lr: 0.001000, loss: 1.607916, loss_shrink_maps: 0.855122, loss_threshold_maps: 0.587614, loss_binary_maps: 0.170355, avg_reader_cost: 0.92399 s, avg_batch_cost: 1.09970 s, avg_samples: 9.6, ips: 8.72963 samples/s, eta: 5:23:27
[2024/07/28 00:32:33] ppocr INFO: epoch: [447/1500], global_step: 1341, lr: 0.001000, loss: 1.607916, loss_shrink_maps: 0.855122, loss_threshold_maps: 0.587614, loss_binary_maps: 0.170355, avg_reader_cost: 0.59553 s, avg_batch_cost: 0.65033 s, avg_samples: 2.9, ips: 4.45931 samples/s, eta: 5:23:21
[2024/07/28 00:32:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:32:41] ppocr INFO: epoch: [448/1500], global_step: 1344, lr: 0.001000, loss: 1.607916, loss_shrink_maps: 0.855122, loss_threshold_maps: 0.585136, loss_binary_maps: 0.170355, avg_reader_cost: 1.48903 s, avg_batch_cost: 1.71855 s, avg_samples: 12.5, ips: 7.27357 samples/s, eta: 5:23:00
[2024/07/28 00:32:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:32:49] ppocr INFO: epoch: [449/1500], global_step: 1347, lr: 0.001000, loss: 1.605290, loss_shrink_maps: 0.850369, loss_threshold_maps: 0.591534, loss_binary_maps: 0.168694, avg_reader_cost: 1.52313 s, avg_batch_cost: 1.75541 s, avg_samples: 12.5, ips: 7.12084 samples/s, eta: 5:22:39
[2024/07/28 00:32:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:32:57] ppocr INFO: epoch: [450/1500], global_step: 1350, lr: 0.001000, loss: 1.643077, loss_shrink_maps: 0.865667, loss_threshold_maps: 0.602776, loss_binary_maps: 0.172347, avg_reader_cost: 1.55357 s, avg_batch_cost: 1.80303 s, avg_samples: 12.5, ips: 6.93279 samples/s, eta: 5:22:20
[2024/07/28 00:32:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:33:05] ppocr INFO: epoch: [451/1500], global_step: 1353, lr: 0.001000, loss: 1.617802, loss_shrink_maps: 0.855054, loss_threshold_maps: 0.602776, loss_binary_maps: 0.170119, avg_reader_cost: 1.52653 s, avg_batch_cost: 1.76715 s, avg_samples: 12.5, ips: 7.07354 samples/s, eta: 5:22:00
[2024/07/28 00:33:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:33:13] ppocr INFO: epoch: [452/1500], global_step: 1356, lr: 0.001000, loss: 1.625391, loss_shrink_maps: 0.855054, loss_threshold_maps: 0.602776, loss_binary_maps: 0.170119, avg_reader_cost: 1.54943 s, avg_batch_cost: 1.77878 s, avg_samples: 12.5, ips: 7.02727 samples/s, eta: 5:21:40
[2024/07/28 00:33:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:33:21] ppocr INFO: epoch: [453/1500], global_step: 1359, lr: 0.001000, loss: 1.598877, loss_shrink_maps: 0.842453, loss_threshold_maps: 0.601460, loss_binary_maps: 0.167753, avg_reader_cost: 1.51481 s, avg_batch_cost: 1.74474 s, avg_samples: 12.5, ips: 7.16438 samples/s, eta: 5:21:19
[2024/07/28 00:33:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:33:27] ppocr INFO: epoch: [454/1500], global_step: 1360, lr: 0.001000, loss: 1.598877, loss_shrink_maps: 0.842453, loss_threshold_maps: 0.591139, loss_binary_maps: 0.167753, avg_reader_cost: 0.40501 s, avg_batch_cost: 0.50192 s, avg_samples: 4.8, ips: 9.56321 samples/s, eta: 5:21:11
[2024/07/28 00:33:29] ppocr INFO: epoch: [454/1500], global_step: 1362, lr: 0.001000, loss: 1.579771, loss_shrink_maps: 0.830377, loss_threshold_maps: 0.575808, loss_binary_maps: 0.164879, avg_reader_cost: 1.09547 s, avg_batch_cost: 1.24155 s, avg_samples: 7.7, ips: 6.20192 samples/s, eta: 5:20:59
[2024/07/28 00:33:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:33:37] ppocr INFO: epoch: [455/1500], global_step: 1365, lr: 0.001000, loss: 1.591234, loss_shrink_maps: 0.842453, loss_threshold_maps: 0.575808, loss_binary_maps: 0.167753, avg_reader_cost: 1.51996 s, avg_batch_cost: 1.76399 s, avg_samples: 12.5, ips: 7.08622 samples/s, eta: 5:20:39
[2024/07/28 00:33:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:33:45] ppocr INFO: epoch: [456/1500], global_step: 1368, lr: 0.001000, loss: 1.591234, loss_shrink_maps: 0.841384, loss_threshold_maps: 0.568673, loss_binary_maps: 0.167753, avg_reader_cost: 1.51205 s, avg_batch_cost: 1.74650 s, avg_samples: 12.5, ips: 7.15717 samples/s, eta: 5:20:18
[2024/07/28 00:33:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:33:52] ppocr INFO: epoch: [457/1500], global_step: 1370, lr: 0.001000, loss: 1.591234, loss_shrink_maps: 0.841384, loss_threshold_maps: 0.570098, loss_binary_maps: 0.167769, avg_reader_cost: 0.88375 s, avg_batch_cost: 1.08187 s, avg_samples: 9.6, ips: 8.87354 samples/s, eta: 5:20:02
[2024/07/28 00:33:53] ppocr INFO: epoch: [457/1500], global_step: 1371, lr: 0.001000, loss: 1.585334, loss_shrink_maps: 0.831399, loss_threshold_maps: 0.570634, loss_binary_maps: 0.165527, avg_reader_cost: 0.58672 s, avg_batch_cost: 0.64163 s, avg_samples: 2.9, ips: 4.51972 samples/s, eta: 5:19:57
[2024/07/28 00:33:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:34:01] ppocr INFO: epoch: [458/1500], global_step: 1374, lr: 0.001000, loss: 1.553081, loss_shrink_maps: 0.818516, loss_threshold_maps: 0.569931, loss_binary_maps: 0.162796, avg_reader_cost: 1.57581 s, avg_batch_cost: 1.80433 s, avg_samples: 12.5, ips: 6.92779 samples/s, eta: 5:19:38
[2024/07/28 00:34:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:34:09] ppocr INFO: epoch: [459/1500], global_step: 1377, lr: 0.001000, loss: 1.544060, loss_shrink_maps: 0.807290, loss_threshold_maps: 0.575105, loss_binary_maps: 0.160634, avg_reader_cost: 1.51012 s, avg_batch_cost: 1.74859 s, avg_samples: 12.5, ips: 7.14862 samples/s, eta: 5:19:17
[2024/07/28 00:34:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:34:17] ppocr INFO: epoch: [460/1500], global_step: 1380, lr: 0.001000, loss: 1.525183, loss_shrink_maps: 0.790052, loss_threshold_maps: 0.575105, loss_binary_maps: 0.156443, avg_reader_cost: 1.48429 s, avg_batch_cost: 1.71558 s, avg_samples: 12.5, ips: 7.28618 samples/s, eta: 5:18:56

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 2/500 [00:00<00:37, 13.22it/s]
eval model::   1%|          | 6/500 [00:00<00:24, 20.00it/s]
eval model::   2%|▏         | 8/500 [00:00<00:25, 19.54it/s]
eval model::   2%|▏         | 11/500 [00:00<00:26, 18.23it/s]
eval model::   3%|▎         | 13/500 [00:00<00:26, 18.46it/s]
eval model::   3%|▎         | 16/500 [00:00<00:24, 19.94it/s]
eval model::   4%|▍         | 19/500 [00:00<00:22, 21.06it/s]
eval model::   4%|▍         | 22/500 [00:01<00:25, 18.85it/s]
eval model::   5%|▌         | 25/500 [00:01<00:26, 18.13it/s]
eval model::   5%|▌         | 27/500 [00:01<00:25, 18.38it/s]
eval model::   6%|▌         | 29/500 [00:01<00:25, 18.41it/s]
eval model::   6%|▌         | 31/500 [00:01<00:29, 16.01it/s]
eval model::   7%|▋         | 33/500 [00:01<00:27, 16.89it/s]
eval model::   7%|▋         | 35/500 [00:01<00:28, 16.54it/s]
eval model::   8%|▊         | 38/500 [00:02<00:27, 16.56it/s]
eval model::   8%|▊         | 40/500 [00:02<00:30, 15.07it/s]
eval model::   8%|▊         | 42/500 [00:02<00:29, 15.38it/s]
eval model::   9%|▉         | 45/500 [00:02<00:26, 17.12it/s]
eval model::   9%|▉         | 47/500 [00:02<00:25, 17.61it/s]
eval model::  10%|█         | 50/500 [00:02<00:22, 20.17it/s]
eval model::  11%|█         | 53/500 [00:02<00:21, 20.87it/s]
eval model::  11%|█         | 56/500 [00:03<00:21, 20.99it/s]
eval model::  12%|█▏        | 59/500 [00:03<00:22, 19.25it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:26, 16.47it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:27, 15.85it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:21, 20.44it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:18, 22.67it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:17, 23.91it/s]
eval model::  15%|█▌        | 76/500 [00:04<00:18, 23.18it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:19, 21.49it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:21, 19.04it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:22, 18.61it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:22, 18.25it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:22, 18.56it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:21, 18.75it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:21, 18.80it/s]
eval model::  19%|█▉        | 95/500 [00:05<00:21, 18.60it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:18, 22.19it/s]
eval model::  20%|██        | 102/500 [00:05<00:18, 21.16it/s]
eval model::  21%|██        | 105/500 [00:05<00:19, 20.40it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:20, 19.52it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:18, 20.75it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:17, 22.56it/s]
eval model::  23%|██▎       | 117/500 [00:06<00:18, 20.91it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:18, 20.53it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:17, 21.33it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:19, 19.67it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:17, 20.97it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:20, 18.14it/s]
eval model::  27%|██▋       | 135/500 [00:07<00:18, 19.78it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:19, 18.66it/s]
eval model::  28%|██▊       | 140/500 [00:07<00:19, 18.23it/s]
eval model::  29%|██▊       | 143/500 [00:07<00:19, 18.54it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:19, 18.05it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:20, 17.19it/s]
eval model::  30%|███       | 150/500 [00:07<00:17, 19.71it/s]
eval model::  31%|███       | 153/500 [00:08<00:18, 18.57it/s]
eval model::  31%|███       | 156/500 [00:08<00:16, 20.71it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:18, 18.66it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:19, 17.29it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:19, 17.22it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:17, 19.00it/s]
eval model::  34%|███▎      | 168/500 [00:08<00:17, 19.14it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:16, 19.43it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:16, 19.53it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:16, 19.18it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:15, 20.75it/s]
eval model::  36%|███▋      | 182/500 [00:09<00:17, 18.59it/s]
eval model::  37%|███▋      | 185/500 [00:09<00:15, 20.73it/s]
eval model::  38%|███▊      | 188/500 [00:09<00:16, 19.05it/s]
eval model::  38%|███▊      | 191/500 [00:09<00:15, 19.84it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:15, 19.98it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:14, 20.82it/s]
eval model::  40%|████      | 201/500 [00:10<00:14, 20.58it/s]
eval model::  41%|████      | 204/500 [00:10<00:13, 21.37it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:21, 13.67it/s]
eval model::  42%|████▏     | 209/500 [00:11<00:20, 14.07it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:21, 13.20it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:20, 14.32it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:20, 13.84it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:20, 13.79it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:17, 16.24it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:19, 14.38it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:15, 17.93it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:12, 22.07it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:11, 22.45it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:12, 20.69it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:11, 22.48it/s]
eval model::  48%|████▊     | 242/500 [00:12<00:12, 19.94it/s]
eval model::  49%|████▉     | 245/500 [00:13<00:12, 20.39it/s]
eval model::  50%|████▉     | 248/500 [00:13<00:12, 20.35it/s]
eval model::  50%|█████     | 251/500 [00:13<00:14, 17.43it/s]
eval model::  51%|█████     | 254/500 [00:13<00:12, 18.99it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:12, 19.85it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:11, 20.75it/s]
eval model::  53%|█████▎    | 263/500 [00:13<00:11, 19.82it/s]
eval model::  53%|█████▎    | 266/500 [00:14<00:13, 17.59it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:13, 17.47it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:12, 17.75it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:13, 16.86it/s]
eval model::  55%|█████▌    | 277/500 [00:14<00:12, 17.21it/s]
eval model::  56%|█████▌    | 280/500 [00:14<00:11, 19.08it/s]
eval model::  57%|█████▋    | 283/500 [00:15<00:10, 20.66it/s]
eval model::  57%|█████▋    | 286/500 [00:15<00:15, 13.42it/s]
eval model::  58%|█████▊    | 289/500 [00:15<00:13, 16.14it/s]
eval model::  58%|█████▊    | 292/500 [00:15<00:11, 17.95it/s]
eval model::  59%|█████▉    | 295/500 [00:15<00:14, 14.11it/s]
eval model::  60%|█████▉    | 299/500 [00:16<00:11, 17.65it/s]
eval model::  60%|██████    | 302/500 [00:16<00:11, 17.04it/s]
eval model::  61%|██████    | 305/500 [00:16<00:10, 17.74it/s]
eval model::  62%|██████▏   | 308/500 [00:16<00:09, 19.53it/s]
eval model::  62%|██████▏   | 311/500 [00:16<00:09, 19.45it/s]
eval model::  63%|██████▎   | 314/500 [00:16<00:10, 17.81it/s]
eval model::  63%|██████▎   | 317/500 [00:17<00:09, 19.56it/s]
eval model::  64%|██████▍   | 320/500 [00:17<00:08, 20.79it/s]
eval model::  65%|██████▍   | 323/500 [00:17<00:08, 20.58it/s]
eval model::  65%|██████▌   | 326/500 [00:17<00:07, 22.71it/s]
eval model::  66%|██████▌   | 329/500 [00:17<00:07, 22.03it/s]
eval model::  66%|██████▋   | 332/500 [00:17<00:07, 22.46it/s]
eval model::  67%|██████▋   | 335/500 [00:17<00:07, 22.54it/s]
eval model::  68%|██████▊   | 338/500 [00:18<00:08, 20.25it/s]
eval model::  68%|██████▊   | 341/500 [00:18<00:09, 15.90it/s]
eval model::  69%|██████▉   | 345/500 [00:18<00:08, 19.21it/s]
eval model::  70%|██████▉   | 348/500 [00:18<00:07, 20.74it/s]
eval model::  70%|███████   | 351/500 [00:18<00:06, 21.79it/s]
eval model::  71%|███████   | 354/500 [00:18<00:06, 23.06it/s]
eval model::  71%|███████▏  | 357/500 [00:18<00:07, 19.59it/s]
eval model::  72%|███████▏  | 360/500 [00:19<00:06, 20.12it/s]
eval model::  73%|███████▎  | 363/500 [00:19<00:06, 20.37it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:07, 16.93it/s]
eval model::  74%|███████▍  | 369/500 [00:19<00:07, 18.68it/s]
eval model::  74%|███████▍  | 372/500 [00:19<00:07, 18.27it/s]
eval model::  75%|███████▌  | 375/500 [00:19<00:06, 18.89it/s]
eval model::  76%|███████▌  | 378/500 [00:20<00:05, 20.78it/s]
eval model::  76%|███████▌  | 381/500 [00:20<00:06, 18.59it/s]
eval model::  77%|███████▋  | 384/500 [00:20<00:05, 20.92it/s]
eval model::  77%|███████▋  | 387/500 [00:20<00:08, 13.22it/s]
eval model::  78%|███████▊  | 391/500 [00:20<00:06, 16.50it/s]
eval model::  79%|███████▉  | 394/500 [00:21<00:05, 18.43it/s]
eval model::  80%|███████▉  | 398/500 [00:21<00:04, 21.61it/s]
eval model::  80%|████████  | 401/500 [00:21<00:04, 20.19it/s]
eval model::  81%|████████  | 404/500 [00:21<00:04, 20.87it/s]
eval model::  81%|████████▏ | 407/500 [00:21<00:04, 20.84it/s]
eval model::  82%|████████▏ | 410/500 [00:21<00:04, 19.90it/s]
eval model::  83%|████████▎ | 413/500 [00:21<00:04, 18.06it/s]
eval model::  83%|████████▎ | 416/500 [00:22<00:04, 18.88it/s]
eval model::  84%|████████▎ | 418/500 [00:22<00:04, 17.76it/s]
eval model::  84%|████████▍ | 420/500 [00:22<00:04, 16.40it/s]
eval model::  85%|████████▍ | 423/500 [00:22<00:04, 18.21it/s]
eval model::  85%|████████▌ | 425/500 [00:22<00:04, 15.07it/s]
eval model::  86%|████████▌ | 429/500 [00:22<00:03, 19.43it/s]
eval model::  86%|████████▋ | 432/500 [00:23<00:03, 20.05it/s]
eval model::  87%|████████▋ | 435/500 [00:23<00:03, 21.16it/s]
eval model::  88%|████████▊ | 438/500 [00:23<00:02, 22.29it/s]
eval model::  88%|████████▊ | 441/500 [00:23<00:03, 18.77it/s]
eval model::  89%|████████▉ | 444/500 [00:23<00:02, 21.03it/s]
eval model::  89%|████████▉ | 447/500 [00:23<00:02, 22.27it/s]
eval model::  90%|█████████ | 450/500 [00:23<00:02, 20.48it/s]
eval model::  91%|█████████ | 453/500 [00:23<00:02, 22.59it/s]
eval model::  91%|█████████ | 456/500 [00:24<00:01, 24.20it/s]
eval model::  92%|█████████▏| 459/500 [00:24<00:01, 22.06it/s]
eval model::  92%|█████████▏| 462/500 [00:24<00:02, 16.88it/s]
eval model::  93%|█████████▎| 464/500 [00:24<00:02, 16.41it/s]
eval model::  93%|█████████▎| 466/500 [00:24<00:02, 16.52it/s]
eval model::  94%|█████████▎| 468/500 [00:24<00:01, 16.00it/s]
eval model::  94%|█████████▍| 471/500 [00:25<00:01, 18.16it/s]
eval model::  95%|█████████▍| 473/500 [00:25<00:01, 18.35it/s]
eval model::  95%|█████████▌| 475/500 [00:25<00:01, 16.78it/s]
eval model::  96%|█████████▌| 478/500 [00:25<00:01, 18.57it/s]
eval model::  96%|█████████▌| 480/500 [00:25<00:01, 18.84it/s]
eval model::  97%|█████████▋| 483/500 [00:25<00:00, 21.02it/s]
eval model::  97%|█████████▋| 486/500 [00:25<00:00, 20.19it/s]
eval model::  98%|█████████▊| 489/500 [00:25<00:00, 21.84it/s]
eval model::  98%|█████████▊| 492/500 [00:26<00:00, 18.54it/s]
eval model::  99%|█████████▉| 495/500 [00:26<00:00, 19.77it/s]
eval model:: 100%|█████████▉| 498/500 [00:26<00:00, 21.70it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.92it/s]
[2024/07/28 00:34:43] ppocr INFO: cur metric, precision: 0.7324185248713551, recall: 0.6167549350024073, hmean: 0.6696288552012545, fps: 45.42158780325782
[2024/07/28 00:34:44] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/28 00:34:44] ppocr INFO: best metric, hmean: 0.6696288552012545, precision: 0.7324185248713551, recall: 0.6167549350024073, fps: 45.42158780325782, best_epoch: 460
[2024/07/28 00:34:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:34:51] ppocr INFO: epoch: [461/1500], global_step: 1383, lr: 0.001000, loss: 1.510768, loss_shrink_maps: 0.776703, loss_threshold_maps: 0.571644, loss_binary_maps: 0.153831, avg_reader_cost: 1.55656 s, avg_batch_cost: 1.81990 s, avg_samples: 12.5, ips: 6.86850 samples/s, eta: 5:18:37
[2024/07/28 00:34:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:35:00] ppocr INFO: epoch: [462/1500], global_step: 1386, lr: 0.001000, loss: 1.525183, loss_shrink_maps: 0.791554, loss_threshold_maps: 0.586632, loss_binary_maps: 0.157212, avg_reader_cost: 1.74745 s, avg_batch_cost: 1.97592 s, avg_samples: 12.5, ips: 6.32617 samples/s, eta: 5:18:22
[2024/07/28 00:35:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:35:08] ppocr INFO: epoch: [463/1500], global_step: 1389, lr: 0.001000, loss: 1.503236, loss_shrink_maps: 0.772331, loss_threshold_maps: 0.584444, loss_binary_maps: 0.153446, avg_reader_cost: 1.55477 s, avg_batch_cost: 1.83016 s, avg_samples: 12.5, ips: 6.83001 samples/s, eta: 5:18:03
[2024/07/28 00:35:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:35:14] ppocr INFO: epoch: [464/1500], global_step: 1390, lr: 0.001000, loss: 1.503236, loss_shrink_maps: 0.772331, loss_threshold_maps: 0.584444, loss_binary_maps: 0.153446, avg_reader_cost: 0.39907 s, avg_batch_cost: 0.51792 s, avg_samples: 4.8, ips: 9.26783 samples/s, eta: 5:17:55
[2024/07/28 00:35:16] ppocr INFO: epoch: [464/1500], global_step: 1392, lr: 0.001000, loss: 1.525183, loss_shrink_maps: 0.776802, loss_threshold_maps: 0.584444, loss_binary_maps: 0.154440, avg_reader_cost: 1.12721 s, avg_batch_cost: 1.27310 s, avg_samples: 7.7, ips: 6.04821 samples/s, eta: 5:17:44
[2024/07/28 00:35:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:35:24] ppocr INFO: epoch: [465/1500], global_step: 1395, lr: 0.001000, loss: 1.541671, loss_shrink_maps: 0.791554, loss_threshold_maps: 0.586632, loss_binary_maps: 0.157212, avg_reader_cost: 1.58558 s, avg_batch_cost: 1.81435 s, avg_samples: 12.5, ips: 6.88952 samples/s, eta: 5:17:25
[2024/07/28 00:35:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:35:32] ppocr INFO: epoch: [466/1500], global_step: 1398, lr: 0.001000, loss: 1.554489, loss_shrink_maps: 0.807871, loss_threshold_maps: 0.584444, loss_binary_maps: 0.159993, avg_reader_cost: 1.52315 s, avg_batch_cost: 1.76391 s, avg_samples: 12.5, ips: 7.08652 samples/s, eta: 5:17:05
[2024/07/28 00:35:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:35:40] ppocr INFO: epoch: [467/1500], global_step: 1400, lr: 0.001000, loss: 1.560642, loss_shrink_maps: 0.822145, loss_threshold_maps: 0.584444, loss_binary_maps: 0.162929, avg_reader_cost: 0.91342 s, avg_batch_cost: 1.09039 s, avg_samples: 9.6, ips: 8.80421 samples/s, eta: 5:16:49
[2024/07/28 00:35:40] ppocr INFO: epoch: [467/1500], global_step: 1401, lr: 0.001000, loss: 1.560642, loss_shrink_maps: 0.822145, loss_threshold_maps: 0.582987, loss_binary_maps: 0.162929, avg_reader_cost: 0.59099 s, avg_batch_cost: 0.64584 s, avg_samples: 2.9, ips: 4.49024 samples/s, eta: 5:16:44
[2024/07/28 00:35:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:35:49] ppocr INFO: epoch: [468/1500], global_step: 1404, lr: 0.001000, loss: 1.594982, loss_shrink_maps: 0.850261, loss_threshold_maps: 0.591373, loss_binary_maps: 0.168478, avg_reader_cost: 1.57189 s, avg_batch_cost: 1.80076 s, avg_samples: 12.5, ips: 6.94149 samples/s, eta: 5:16:25
[2024/07/28 00:35:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:35:57] ppocr INFO: epoch: [469/1500], global_step: 1407, lr: 0.001000, loss: 1.555097, loss_shrink_maps: 0.830400, loss_threshold_maps: 0.579202, loss_binary_maps: 0.164848, avg_reader_cost: 1.54747 s, avg_batch_cost: 1.80198 s, avg_samples: 12.5, ips: 6.93681 samples/s, eta: 5:16:05
[2024/07/28 00:35:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:36:05] ppocr INFO: epoch: [470/1500], global_step: 1410, lr: 0.001000, loss: 1.622727, loss_shrink_maps: 0.870038, loss_threshold_maps: 0.576619, loss_binary_maps: 0.171781, avg_reader_cost: 1.54349 s, avg_batch_cost: 1.77386 s, avg_samples: 12.5, ips: 7.04677 samples/s, eta: 5:15:46
[2024/07/28 00:36:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:36:13] ppocr INFO: epoch: [471/1500], global_step: 1413, lr: 0.001000, loss: 1.531518, loss_shrink_maps: 0.803959, loss_threshold_maps: 0.576619, loss_binary_maps: 0.159125, avg_reader_cost: 1.55825 s, avg_batch_cost: 1.81205 s, avg_samples: 12.5, ips: 6.89826 samples/s, eta: 5:15:27
[2024/07/28 00:36:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:36:21] ppocr INFO: epoch: [472/1500], global_step: 1416, lr: 0.001000, loss: 1.531518, loss_shrink_maps: 0.803959, loss_threshold_maps: 0.576619, loss_binary_maps: 0.159125, avg_reader_cost: 1.52595 s, avg_batch_cost: 1.77591 s, avg_samples: 12.5, ips: 7.03864 samples/s, eta: 5:15:07
[2024/07/28 00:36:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:36:30] ppocr INFO: epoch: [473/1500], global_step: 1419, lr: 0.001000, loss: 1.531518, loss_shrink_maps: 0.803959, loss_threshold_maps: 0.579202, loss_binary_maps: 0.158982, avg_reader_cost: 1.60678 s, avg_batch_cost: 1.91977 s, avg_samples: 12.5, ips: 6.51120 samples/s, eta: 5:14:50
[2024/07/28 00:36:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:36:36] ppocr INFO: epoch: [474/1500], global_step: 1420, lr: 0.001000, loss: 1.573379, loss_shrink_maps: 0.833546, loss_threshold_maps: 0.579112, loss_binary_maps: 0.165746, avg_reader_cost: 0.42139 s, avg_batch_cost: 0.51842 s, avg_samples: 4.8, ips: 9.25895 samples/s, eta: 5:14:42
[2024/07/28 00:36:38] ppocr INFO: epoch: [474/1500], global_step: 1422, lr: 0.001000, loss: 1.609995, loss_shrink_maps: 0.849856, loss_threshold_maps: 0.585156, loss_binary_maps: 0.169451, avg_reader_cost: 1.12853 s, avg_batch_cost: 1.27402 s, avg_samples: 7.7, ips: 6.04384 samples/s, eta: 5:14:31
[2024/07/28 00:36:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:36:46] ppocr INFO: epoch: [475/1500], global_step: 1425, lr: 0.001000, loss: 1.609995, loss_shrink_maps: 0.849856, loss_threshold_maps: 0.576811, loss_binary_maps: 0.169451, avg_reader_cost: 1.59336 s, avg_batch_cost: 1.82501 s, avg_samples: 12.5, ips: 6.84927 samples/s, eta: 5:14:12
[2024/07/28 00:36:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:36:54] ppocr INFO: epoch: [476/1500], global_step: 1428, lr: 0.001000, loss: 1.562101, loss_shrink_maps: 0.814447, loss_threshold_maps: 0.576310, loss_binary_maps: 0.161770, avg_reader_cost: 1.53751 s, avg_batch_cost: 1.78614 s, avg_samples: 12.5, ips: 6.99832 samples/s, eta: 5:13:52
[2024/07/28 00:36:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:37:02] ppocr INFO: epoch: [477/1500], global_step: 1430, lr: 0.001000, loss: 1.520171, loss_shrink_maps: 0.784635, loss_threshold_maps: 0.576811, loss_binary_maps: 0.155678, avg_reader_cost: 0.93000 s, avg_batch_cost: 1.12001 s, avg_samples: 9.6, ips: 8.57132 samples/s, eta: 5:13:38
[2024/07/28 00:37:02] ppocr INFO: epoch: [477/1500], global_step: 1431, lr: 0.001000, loss: 1.523601, loss_shrink_maps: 0.790190, loss_threshold_maps: 0.581328, loss_binary_maps: 0.156573, avg_reader_cost: 0.60543 s, avg_batch_cost: 0.66044 s, avg_samples: 2.9, ips: 4.39101 samples/s, eta: 5:13:33
[2024/07/28 00:37:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:37:11] ppocr INFO: epoch: [478/1500], global_step: 1434, lr: 0.001000, loss: 1.523093, loss_shrink_maps: 0.790190, loss_threshold_maps: 0.576811, loss_binary_maps: 0.156573, avg_reader_cost: 1.60126 s, avg_batch_cost: 1.83171 s, avg_samples: 12.5, ips: 6.82421 samples/s, eta: 5:13:14
[2024/07/28 00:37:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:37:19] ppocr INFO: epoch: [479/1500], global_step: 1437, lr: 0.001000, loss: 1.496398, loss_shrink_maps: 0.784635, loss_threshold_maps: 0.566657, loss_binary_maps: 0.155678, avg_reader_cost: 1.54865 s, avg_batch_cost: 1.81266 s, avg_samples: 12.5, ips: 6.89595 samples/s, eta: 5:12:55
[2024/07/28 00:37:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:37:27] ppocr INFO: epoch: [480/1500], global_step: 1440, lr: 0.001000, loss: 1.491736, loss_shrink_maps: 0.778265, loss_threshold_maps: 0.563023, loss_binary_maps: 0.154394, avg_reader_cost: 1.50683 s, avg_batch_cost: 1.74562 s, avg_samples: 12.5, ips: 7.16077 samples/s, eta: 5:12:35

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:54,  9.08it/s]
eval model::   1%|          | 4/500 [00:00<00:28, 17.27it/s]
eval model::   1%|          | 6/500 [00:00<00:27, 17.92it/s]
eval model::   2%|▏         | 8/500 [00:00<00:26, 18.39it/s]
eval model::   2%|▏         | 11/500 [00:00<00:28, 17.24it/s]
eval model::   3%|▎         | 13/500 [00:00<00:27, 17.98it/s]
eval model::   3%|▎         | 16/500 [00:00<00:25, 19.09it/s]
eval model::   4%|▍         | 19/500 [00:01<00:25, 18.62it/s]
eval model::   4%|▍         | 21/500 [00:01<00:25, 18.67it/s]
eval model::   5%|▍         | 24/500 [00:01<00:23, 20.67it/s]
eval model::   5%|▌         | 27/500 [00:01<00:24, 19.23it/s]
eval model::   6%|▌         | 30/500 [00:01<00:22, 20.71it/s]
eval model::   7%|▋         | 33/500 [00:01<00:23, 19.70it/s]
eval model::   7%|▋         | 36/500 [00:01<00:24, 18.78it/s]
eval model::   8%|▊         | 38/500 [00:02<00:25, 18.37it/s]
eval model::   8%|▊         | 40/500 [00:02<00:26, 17.61it/s]
eval model::   8%|▊         | 42/500 [00:02<00:26, 17.06it/s]
eval model::   9%|▉         | 45/500 [00:02<00:24, 18.37it/s]
eval model::   9%|▉         | 47/500 [00:02<00:26, 16.81it/s]
eval model::  10%|▉         | 49/500 [00:02<00:27, 16.46it/s]
eval model::  10%|█         | 52/500 [00:02<00:24, 18.07it/s]
eval model::  11%|█         | 55/500 [00:02<00:22, 19.43it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:23, 18.69it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:27, 16.14it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:27, 16.11it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:23, 18.85it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:20, 20.64it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:20, 20.65it/s]
eval model::  15%|█▌        | 75/500 [00:04<00:20, 20.59it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:19, 21.83it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:17, 23.38it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:19, 21.39it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:20, 20.61it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:22, 18.23it/s]
eval model::  18%|█▊        | 92/500 [00:04<00:23, 17.53it/s]
eval model::  19%|█▉        | 94/500 [00:05<00:23, 17.00it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:24, 16.79it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:21, 18.30it/s]
eval model::  20%|██        | 101/500 [00:05<00:23, 17.09it/s]
eval model::  21%|██        | 104/500 [00:05<00:20, 19.16it/s]
eval model::  21%|██▏       | 107/500 [00:05<00:19, 20.42it/s]
eval model::  22%|██▏       | 110/500 [00:05<00:19, 19.63it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:20, 19.00it/s]
eval model::  23%|██▎       | 115/500 [00:06<00:19, 19.41it/s]
eval model::  24%|██▎       | 118/500 [00:06<00:18, 20.57it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:18, 20.42it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:19, 18.98it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:20, 18.69it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:19, 18.85it/s]
eval model::  26%|██▌       | 131/500 [00:07<00:22, 16.55it/s]
eval model::  27%|██▋       | 133/500 [00:07<00:23, 15.84it/s]
eval model::  27%|██▋       | 136/500 [00:07<00:20, 17.94it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:19, 18.25it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:17, 20.11it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:16, 21.42it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:16, 20.90it/s]
eval model::  30%|███       | 151/500 [00:08<00:17, 19.89it/s]
eval model::  31%|███       | 154/500 [00:08<00:16, 21.29it/s]
eval model::  31%|███▏      | 157/500 [00:08<00:15, 22.80it/s]
eval model::  32%|███▏      | 160/500 [00:08<00:20, 16.85it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:19, 17.60it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:17, 19.26it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:17, 18.96it/s]
eval model::  34%|███▍      | 172/500 [00:09<00:17, 18.42it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:22, 14.50it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:21, 15.37it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:18, 17.71it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:20, 15.61it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:17, 18.23it/s]
eval model::  37%|███▋      | 187/500 [00:10<00:16, 19.30it/s]
eval model::  38%|███▊      | 190/500 [00:10<00:15, 19.77it/s]
eval model::  39%|███▊      | 193/500 [00:10<00:14, 21.52it/s]
eval model::  39%|███▉      | 196/500 [00:10<00:15, 19.17it/s]
eval model::  40%|███▉      | 199/500 [00:10<00:14, 20.62it/s]
eval model::  40%|████      | 202/500 [00:10<00:13, 21.40it/s]
eval model::  41%|████      | 205/500 [00:11<00:20, 14.44it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:19, 15.33it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:18, 15.28it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:17, 16.31it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:19, 14.71it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:21, 13.40it/s]
eval model::  44%|████▍     | 219/500 [00:12<00:19, 14.47it/s]
eval model::  44%|████▍     | 221/500 [00:12<00:21, 13.26it/s]
eval model::  45%|████▍     | 224/500 [00:12<00:17, 15.88it/s]
eval model::  45%|████▌     | 227/500 [00:12<00:14, 18.41it/s]
eval model::  46%|████▌     | 231/500 [00:12<00:11, 22.61it/s]
eval model::  47%|████▋     | 234/500 [00:12<00:13, 20.06it/s]
eval model::  47%|████▋     | 237/500 [00:12<00:12, 20.29it/s]
eval model::  48%|████▊     | 240/500 [00:13<00:11, 21.67it/s]
eval model::  49%|████▊     | 243/500 [00:13<00:12, 19.92it/s]
eval model::  49%|████▉     | 246/500 [00:13<00:11, 21.37it/s]
eval model::  50%|████▉     | 249/500 [00:13<00:12, 19.89it/s]
eval model::  50%|█████     | 252/500 [00:13<00:11, 20.90it/s]
eval model::  51%|█████     | 255/500 [00:13<00:11, 22.11it/s]
eval model::  52%|█████▏    | 258/500 [00:13<00:11, 21.66it/s]
eval model::  52%|█████▏    | 261/500 [00:13<00:10, 23.35it/s]
eval model::  53%|█████▎    | 264/500 [00:14<00:10, 21.68it/s]
eval model::  53%|█████▎    | 267/500 [00:14<00:10, 22.13it/s]
eval model::  54%|█████▍    | 270/500 [00:14<00:11, 20.72it/s]
eval model::  55%|█████▍    | 273/500 [00:14<00:10, 21.57it/s]
eval model::  55%|█████▌    | 276/500 [00:14<00:11, 19.66it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:11, 20.06it/s]
eval model::  56%|█████▋    | 282/500 [00:15<00:10, 21.10it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:17, 12.24it/s]
eval model::  58%|█████▊    | 288/500 [00:15<00:14, 14.43it/s]
eval model::  58%|█████▊    | 292/500 [00:15<00:12, 17.21it/s]
eval model::  59%|█████▉    | 295/500 [00:16<00:13, 14.77it/s]
eval model::  60%|█████▉    | 299/500 [00:16<00:11, 17.86it/s]
eval model::  60%|██████    | 302/500 [00:16<00:11, 17.15it/s]
eval model::  61%|██████    | 305/500 [00:16<00:10, 18.01it/s]
eval model::  62%|██████▏   | 308/500 [00:16<00:10, 18.70it/s]
eval model::  62%|██████▏   | 311/500 [00:16<00:09, 20.14it/s]
eval model::  63%|██████▎   | 314/500 [00:16<00:08, 21.26it/s]
eval model::  63%|██████▎   | 317/500 [00:17<00:08, 21.37it/s]
eval model::  64%|██████▍   | 320/500 [00:17<00:08, 21.79it/s]
eval model::  65%|██████▍   | 323/500 [00:17<00:08, 20.47it/s]
eval model::  65%|██████▌   | 326/500 [00:17<00:08, 20.51it/s]
eval model::  66%|██████▌   | 329/500 [00:17<00:08, 19.32it/s]
eval model::  66%|██████▋   | 332/500 [00:17<00:08, 19.98it/s]
eval model::  67%|██████▋   | 336/500 [00:17<00:07, 22.46it/s]
eval model::  68%|██████▊   | 339/500 [00:18<00:07, 20.20it/s]
eval model::  68%|██████▊   | 342/500 [00:18<00:09, 16.60it/s]
eval model::  69%|██████▉   | 344/500 [00:18<00:09, 17.04it/s]
eval model::  69%|██████▉   | 347/500 [00:18<00:08, 18.84it/s]
eval model::  70%|███████   | 350/500 [00:18<00:07, 21.26it/s]
eval model::  71%|███████   | 353/500 [00:18<00:06, 22.35it/s]
eval model::  71%|███████   | 356/500 [00:19<00:07, 18.95it/s]
eval model::  72%|███████▏  | 359/500 [00:19<00:06, 20.20it/s]
eval model::  72%|███████▏  | 362/500 [00:19<00:07, 19.27it/s]
eval model::  73%|███████▎  | 365/500 [00:19<00:07, 19.06it/s]
eval model::  73%|███████▎  | 367/500 [00:19<00:08, 15.26it/s]
eval model::  74%|███████▍  | 370/500 [00:19<00:07, 16.68it/s]
eval model::  74%|███████▍  | 372/500 [00:20<00:07, 16.27it/s]
eval model::  75%|███████▌  | 375/500 [00:20<00:06, 18.24it/s]
eval model::  76%|███████▌  | 379/500 [00:20<00:05, 22.40it/s]
eval model::  76%|███████▋  | 382/500 [00:20<00:05, 22.61it/s]
eval model::  77%|███████▋  | 385/500 [00:20<00:04, 24.22it/s]
eval model::  78%|███████▊  | 388/500 [00:20<00:08, 13.10it/s]
eval model::  78%|███████▊  | 390/500 [00:21<00:08, 13.73it/s]
eval model::  78%|███████▊  | 392/500 [00:21<00:07, 14.75it/s]
eval model::  79%|███████▉  | 395/500 [00:21<00:06, 16.34it/s]
eval model::  80%|███████▉  | 398/500 [00:21<00:05, 18.21it/s]
eval model::  80%|████████  | 401/500 [00:21<00:05, 18.02it/s]
eval model::  81%|████████  | 404/500 [00:21<00:04, 20.06it/s]
eval model::  81%|████████▏ | 407/500 [00:21<00:04, 20.93it/s]
eval model::  82%|████████▏ | 410/500 [00:21<00:03, 22.53it/s]
eval model::  83%|████████▎ | 413/500 [00:22<00:03, 22.69it/s]
eval model::  83%|████████▎ | 416/500 [00:22<00:03, 22.45it/s]
eval model::  84%|████████▍ | 419/500 [00:22<00:03, 20.96it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:05, 15.48it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:04, 15.50it/s]
eval model::  85%|████████▌ | 426/500 [00:23<00:05, 14.36it/s]
eval model::  86%|████████▌ | 428/500 [00:23<00:04, 15.43it/s]
eval model::  86%|████████▌ | 430/500 [00:23<00:04, 16.15it/s]
eval model::  86%|████████▋ | 432/500 [00:23<00:04, 16.51it/s]
eval model::  87%|████████▋ | 436/500 [00:23<00:03, 20.16it/s]
eval model::  88%|████████▊ | 439/500 [00:23<00:02, 21.70it/s]
eval model::  88%|████████▊ | 442/500 [00:23<00:02, 21.43it/s]
eval model::  89%|████████▉ | 445/500 [00:23<00:02, 20.87it/s]
eval model::  90%|████████▉ | 448/500 [00:24<00:02, 20.50it/s]
eval model::  90%|█████████ | 451/500 [00:24<00:02, 21.05it/s]
eval model::  91%|█████████ | 454/500 [00:24<00:02, 20.60it/s]
eval model::  91%|█████████▏| 457/500 [00:24<00:02, 21.11it/s]
eval model::  92%|█████████▏| 460/500 [00:24<00:01, 20.77it/s]
eval model::  93%|█████████▎| 463/500 [00:24<00:02, 17.16it/s]
eval model::  93%|█████████▎| 465/500 [00:25<00:02, 16.28it/s]
eval model::  94%|█████████▎| 468/500 [00:25<00:01, 17.52it/s]
eval model::  94%|█████████▍| 471/500 [00:25<00:01, 18.89it/s]
eval model::  95%|█████████▍| 474/500 [00:25<00:01, 19.71it/s]
eval model::  95%|█████████▌| 477/500 [00:25<00:01, 22.03it/s]
eval model::  96%|█████████▌| 480/500 [00:25<00:00, 21.89it/s]
eval model::  97%|█████████▋| 483/500 [00:25<00:00, 22.02it/s]
eval model::  97%|█████████▋| 486/500 [00:26<00:00, 18.78it/s]
eval model::  98%|█████████▊| 489/500 [00:26<00:00, 20.90it/s]
eval model::  98%|█████████▊| 492/500 [00:26<00:00, 17.56it/s]
eval model::  99%|█████████▉| 495/500 [00:26<00:00, 18.64it/s]
eval model:: 100%|█████████▉| 499/500 [00:26<00:00, 22.06it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.76it/s]
[2024/07/28 00:37:53] ppocr INFO: cur metric, precision: 0.6902927580893683, recall: 0.6470871449205585, hmean: 0.6679920477137178, fps: 44.86244954837676
[2024/07/28 00:37:53] ppocr INFO: best metric, hmean: 0.6696288552012545, precision: 0.7324185248713551, recall: 0.6167549350024073, fps: 45.42158780325782, best_epoch: 460
[2024/07/28 00:37:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:38:01] ppocr INFO: epoch: [481/1500], global_step: 1443, lr: 0.001000, loss: 1.488510, loss_shrink_maps: 0.772379, loss_threshold_maps: 0.559784, loss_binary_maps: 0.153071, avg_reader_cost: 1.71051 s, avg_batch_cost: 1.99854 s, avg_samples: 12.5, ips: 6.25457 samples/s, eta: 5:12:20
[2024/07/28 00:38:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:38:09] ppocr INFO: epoch: [482/1500], global_step: 1446, lr: 0.001000, loss: 1.491736, loss_shrink_maps: 0.778265, loss_threshold_maps: 0.563023, loss_binary_maps: 0.154601, avg_reader_cost: 1.51735 s, avg_batch_cost: 1.74710 s, avg_samples: 12.5, ips: 7.15471 samples/s, eta: 5:12:00
[2024/07/28 00:38:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:38:18] ppocr INFO: epoch: [483/1500], global_step: 1449, lr: 0.001000, loss: 1.491736, loss_shrink_maps: 0.772379, loss_threshold_maps: 0.563023, loss_binary_maps: 0.153071, avg_reader_cost: 1.56436 s, avg_batch_cost: 1.85500 s, avg_samples: 12.5, ips: 6.73856 samples/s, eta: 5:11:42
[2024/07/28 00:38:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:38:24] ppocr INFO: epoch: [484/1500], global_step: 1450, lr: 0.001000, loss: 1.491736, loss_shrink_maps: 0.764021, loss_threshold_maps: 0.563023, loss_binary_maps: 0.151816, avg_reader_cost: 0.39279 s, avg_batch_cost: 0.51385 s, avg_samples: 4.8, ips: 9.34132 samples/s, eta: 5:11:33
[2024/07/28 00:38:26] ppocr INFO: epoch: [484/1500], global_step: 1452, lr: 0.001000, loss: 1.491736, loss_shrink_maps: 0.764021, loss_threshold_maps: 0.559784, loss_binary_maps: 0.151816, avg_reader_cost: 1.11921 s, avg_batch_cost: 1.26526 s, avg_samples: 7.7, ips: 6.08569 samples/s, eta: 5:11:22
[2024/07/28 00:38:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:38:34] ppocr INFO: epoch: [485/1500], global_step: 1455, lr: 0.001000, loss: 1.479168, loss_shrink_maps: 0.757179, loss_threshold_maps: 0.559784, loss_binary_maps: 0.150627, avg_reader_cost: 1.52482 s, avg_batch_cost: 1.75321 s, avg_samples: 12.5, ips: 7.12979 samples/s, eta: 5:11:02
[2024/07/28 00:38:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:38:43] ppocr INFO: epoch: [486/1500], global_step: 1458, lr: 0.001000, loss: 1.485117, loss_shrink_maps: 0.757179, loss_threshold_maps: 0.576725, loss_binary_maps: 0.150627, avg_reader_cost: 1.66917 s, avg_batch_cost: 2.02302 s, avg_samples: 12.5, ips: 6.17888 samples/s, eta: 5:10:47
[2024/07/28 00:38:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:38:50] ppocr INFO: epoch: [487/1500], global_step: 1460, lr: 0.001000, loss: 1.485117, loss_shrink_maps: 0.756590, loss_threshold_maps: 0.576725, loss_binary_maps: 0.150023, avg_reader_cost: 0.99837 s, avg_batch_cost: 1.18591 s, avg_samples: 9.6, ips: 8.09508 samples/s, eta: 5:10:34
[2024/07/28 00:38:51] ppocr INFO: epoch: [487/1500], global_step: 1461, lr: 0.001000, loss: 1.485117, loss_shrink_maps: 0.756590, loss_threshold_maps: 0.576725, loss_binary_maps: 0.150023, avg_reader_cost: 0.63850 s, avg_batch_cost: 0.69361 s, avg_samples: 2.9, ips: 4.18100 samples/s, eta: 5:10:30
[2024/07/28 00:38:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:38:59] ppocr INFO: epoch: [488/1500], global_step: 1464, lr: 0.001000, loss: 1.485117, loss_shrink_maps: 0.757247, loss_threshold_maps: 0.569789, loss_binary_maps: 0.150322, avg_reader_cost: 1.53612 s, avg_batch_cost: 1.77633 s, avg_samples: 12.5, ips: 7.03697 samples/s, eta: 5:10:10
[2024/07/28 00:39:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:39:08] ppocr INFO: epoch: [489/1500], global_step: 1467, lr: 0.001000, loss: 1.484186, loss_shrink_maps: 0.752751, loss_threshold_maps: 0.569789, loss_binary_maps: 0.148982, avg_reader_cost: 1.64006 s, avg_batch_cost: 1.87074 s, avg_samples: 12.5, ips: 6.68185 samples/s, eta: 5:09:52
[2024/07/28 00:39:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:39:16] ppocr INFO: epoch: [490/1500], global_step: 1470, lr: 0.001000, loss: 1.540274, loss_shrink_maps: 0.790655, loss_threshold_maps: 0.574174, loss_binary_maps: 0.157083, avg_reader_cost: 1.65038 s, avg_batch_cost: 1.94216 s, avg_samples: 12.5, ips: 6.43612 samples/s, eta: 5:09:36
[2024/07/28 00:39:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:39:24] ppocr INFO: epoch: [491/1500], global_step: 1473, lr: 0.001000, loss: 1.540274, loss_shrink_maps: 0.790655, loss_threshold_maps: 0.581021, loss_binary_maps: 0.157419, avg_reader_cost: 1.49852 s, avg_batch_cost: 1.75099 s, avg_samples: 12.5, ips: 7.13881 samples/s, eta: 5:09:16
[2024/07/28 00:39:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:39:32] ppocr INFO: epoch: [492/1500], global_step: 1476, lr: 0.001000, loss: 1.540274, loss_shrink_maps: 0.787087, loss_threshold_maps: 0.581021, loss_binary_maps: 0.156736, avg_reader_cost: 1.52418 s, avg_batch_cost: 1.76037 s, avg_samples: 12.5, ips: 7.10078 samples/s, eta: 5:08:56
[2024/07/28 00:39:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:39:41] ppocr INFO: epoch: [493/1500], global_step: 1479, lr: 0.001000, loss: 1.549348, loss_shrink_maps: 0.790655, loss_threshold_maps: 0.583368, loss_binary_maps: 0.157419, avg_reader_cost: 1.55060 s, avg_batch_cost: 1.81194 s, avg_samples: 12.5, ips: 6.89868 samples/s, eta: 5:08:37
[2024/07/28 00:39:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:39:48] ppocr INFO: epoch: [494/1500], global_step: 1480, lr: 0.001000, loss: 1.552604, loss_shrink_maps: 0.801348, loss_threshold_maps: 0.586564, loss_binary_maps: 0.159254, avg_reader_cost: 0.41671 s, avg_batch_cost: 0.51729 s, avg_samples: 4.8, ips: 9.27910 samples/s, eta: 5:08:29
[2024/07/28 00:39:49] ppocr INFO: epoch: [494/1500], global_step: 1482, lr: 0.001000, loss: 1.549348, loss_shrink_maps: 0.790655, loss_threshold_maps: 0.583368, loss_binary_maps: 0.157419, avg_reader_cost: 1.12563 s, avg_batch_cost: 1.27066 s, avg_samples: 7.7, ips: 6.05982 samples/s, eta: 5:08:17
[2024/07/28 00:39:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:39:57] ppocr INFO: epoch: [495/1500], global_step: 1485, lr: 0.001000, loss: 1.520809, loss_shrink_maps: 0.766907, loss_threshold_maps: 0.580004, loss_binary_maps: 0.152524, avg_reader_cost: 1.57663 s, avg_batch_cost: 1.83100 s, avg_samples: 12.5, ips: 6.82688 samples/s, eta: 5:07:59
[2024/07/28 00:39:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:40:06] ppocr INFO: epoch: [496/1500], global_step: 1488, lr: 0.001000, loss: 1.528041, loss_shrink_maps: 0.782393, loss_threshold_maps: 0.580004, loss_binary_maps: 0.155630, avg_reader_cost: 1.57133 s, avg_batch_cost: 1.79928 s, avg_samples: 12.5, ips: 6.94720 samples/s, eta: 5:07:40
[2024/07/28 00:40:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:40:13] ppocr INFO: epoch: [497/1500], global_step: 1490, lr: 0.001000, loss: 1.520809, loss_shrink_maps: 0.782393, loss_threshold_maps: 0.576784, loss_binary_maps: 0.155966, avg_reader_cost: 0.93452 s, avg_batch_cost: 1.13558 s, avg_samples: 9.6, ips: 8.45386 samples/s, eta: 5:07:26
[2024/07/28 00:40:14] ppocr INFO: epoch: [497/1500], global_step: 1491, lr: 0.001000, loss: 1.518988, loss_shrink_maps: 0.766907, loss_threshold_maps: 0.572203, loss_binary_maps: 0.152524, avg_reader_cost: 0.61341 s, avg_batch_cost: 0.66839 s, avg_samples: 2.9, ips: 4.33876 samples/s, eta: 5:07:21
[2024/07/28 00:40:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:40:22] ppocr INFO: epoch: [498/1500], global_step: 1494, lr: 0.001000, loss: 1.534422, loss_shrink_maps: 0.785570, loss_threshold_maps: 0.569676, loss_binary_maps: 0.156617, avg_reader_cost: 1.52241 s, avg_batch_cost: 1.75090 s, avg_samples: 12.5, ips: 7.13920 samples/s, eta: 5:07:00
[2024/07/28 00:40:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:40:30] ppocr INFO: epoch: [499/1500], global_step: 1497, lr: 0.001000, loss: 1.533468, loss_shrink_maps: 0.794589, loss_threshold_maps: 0.569676, loss_binary_maps: 0.158741, avg_reader_cost: 1.50827 s, avg_batch_cost: 1.73669 s, avg_samples: 12.5, ips: 7.19762 samples/s, eta: 5:06:40
[2024/07/28 00:40:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:40:38] ppocr INFO: epoch: [500/1500], global_step: 1500, lr: 0.001000, loss: 1.511823, loss_shrink_maps: 0.791566, loss_threshold_maps: 0.568531, loss_binary_maps: 0.157838, avg_reader_cost: 1.64435 s, avg_batch_cost: 1.87355 s, avg_samples: 12.5, ips: 6.67182 samples/s, eta: 5:06:22

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:54,  9.10it/s]
eval model::   1%|          | 4/500 [00:00<00:25, 19.82it/s]
eval model::   1%|          | 6/500 [00:00<00:27, 18.07it/s]
eval model::   2%|▏         | 8/500 [00:00<00:28, 17.17it/s]
eval model::   2%|▏         | 10/500 [00:00<00:28, 17.45it/s]
eval model::   2%|▏         | 12/500 [00:00<00:27, 17.78it/s]
eval model::   3%|▎         | 14/500 [00:00<00:27, 17.73it/s]
eval model::   3%|▎         | 17/500 [00:00<00:24, 19.87it/s]
eval model::   4%|▍         | 19/500 [00:01<00:24, 19.31it/s]
eval model::   4%|▍         | 21/500 [00:01<00:28, 16.99it/s]
eval model::   5%|▍         | 24/500 [00:01<00:24, 19.67it/s]
eval model::   5%|▌         | 27/500 [00:01<00:24, 19.55it/s]
eval model::   6%|▌         | 31/500 [00:01<00:22, 20.81it/s]
eval model::   7%|▋         | 34/500 [00:01<00:22, 20.64it/s]
eval model::   7%|▋         | 37/500 [00:01<00:22, 20.93it/s]
eval model::   8%|▊         | 40/500 [00:02<00:25, 17.83it/s]
eval model::   8%|▊         | 42/500 [00:02<00:28, 16.30it/s]
eval model::   9%|▉         | 44/500 [00:02<00:26, 16.99it/s]
eval model::   9%|▉         | 46/500 [00:02<00:29, 15.62it/s]
eval model::  10%|▉         | 49/500 [00:02<00:25, 17.63it/s]
eval model::  10%|█         | 52/500 [00:02<00:23, 19.06it/s]
eval model::  11%|█         | 54/500 [00:02<00:23, 18.86it/s]
eval model::  11%|█         | 56/500 [00:03<00:24, 18.49it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:24, 17.72it/s]
eval model::  12%|█▏        | 60/500 [00:03<00:24, 18.02it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:29, 14.64it/s]
eval model::  13%|█▎        | 64/500 [00:03<00:28, 15.31it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:23, 18.25it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:23, 18.42it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:21, 20.15it/s]
eval model::  15%|█▌        | 75/500 [00:04<00:20, 20.41it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:19, 21.32it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:18, 22.10it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:19, 21.72it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:19, 21.00it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:22, 18.51it/s]
eval model::  19%|█▊        | 93/500 [00:05<00:22, 18.45it/s]
eval model::  19%|█▉        | 95/500 [00:05<00:22, 18.23it/s]
eval model::  20%|█▉        | 98/500 [00:05<00:20, 19.40it/s]
eval model::  20%|██        | 100/500 [00:05<00:21, 18.55it/s]
eval model::  21%|██        | 103/500 [00:05<00:19, 20.45it/s]
eval model::  21%|██        | 106/500 [00:05<00:17, 22.71it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:17, 22.29it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:19, 19.67it/s]
eval model::  23%|██▎       | 115/500 [00:06<00:19, 19.75it/s]
eval model::  24%|██▍       | 119/500 [00:06<00:17, 22.32it/s]
eval model::  24%|██▍       | 122/500 [00:06<00:16, 22.60it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:20, 18.33it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:18, 19.88it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:19, 19.16it/s]
eval model::  27%|██▋       | 134/500 [00:07<00:18, 19.96it/s]
eval model::  27%|██▋       | 137/500 [00:07<00:17, 21.07it/s]
eval model::  28%|██▊       | 140/500 [00:07<00:18, 19.92it/s]
eval model::  29%|██▊       | 143/500 [00:07<00:16, 21.54it/s]
eval model::  29%|██▉       | 146/500 [00:07<00:16, 20.93it/s]
eval model::  30%|██▉       | 149/500 [00:07<00:18, 19.48it/s]
eval model::  30%|███       | 152/500 [00:07<00:20, 17.33it/s]
eval model::  31%|███       | 156/500 [00:08<00:16, 20.91it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:16, 20.67it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:20, 16.57it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:19, 17.15it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:19, 17.11it/s]
eval model::  34%|███▎      | 168/500 [00:08<00:20, 16.55it/s]
eval model::  34%|███▍      | 171/500 [00:09<00:19, 16.56it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:21, 15.16it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:20, 15.61it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:18, 17.50it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:21, 14.78it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:18, 17.34it/s]
eval model::  37%|███▋      | 187/500 [00:09<00:17, 18.07it/s]
eval model::  38%|███▊      | 190/500 [00:10<00:16, 18.62it/s]
eval model::  39%|███▊      | 193/500 [00:10<00:15, 19.71it/s]
eval model::  39%|███▉      | 196/500 [00:10<00:16, 18.00it/s]
eval model::  40%|███▉      | 199/500 [00:10<00:15, 19.06it/s]
eval model::  40%|████      | 201/500 [00:10<00:16, 18.68it/s]
eval model::  41%|████      | 205/500 [00:11<00:20, 14.46it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:18, 15.41it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:19, 14.89it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.71it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:19, 14.44it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:21, 13.12it/s]
eval model::  44%|████▍     | 219/500 [00:12<00:19, 14.22it/s]
eval model::  44%|████▍     | 221/500 [00:12<00:20, 13.70it/s]
eval model::  45%|████▍     | 223/500 [00:12<00:18, 14.91it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:16, 16.29it/s]
eval model::  46%|████▌     | 229/500 [00:12<00:15, 17.76it/s]
eval model::  46%|████▋     | 232/500 [00:12<00:13, 19.32it/s]
eval model::  47%|████▋     | 234/500 [00:12<00:14, 18.82it/s]
eval model::  47%|████▋     | 237/500 [00:13<00:13, 19.50it/s]
eval model::  48%|████▊     | 240/500 [00:13<00:12, 20.57it/s]
eval model::  49%|████▊     | 243/500 [00:13<00:13, 19.58it/s]
eval model::  49%|████▉     | 246/500 [00:13<00:11, 21.81it/s]
eval model::  50%|████▉     | 249/500 [00:13<00:10, 23.00it/s]
eval model::  50%|█████     | 252/500 [00:13<00:11, 22.27it/s]
eval model::  51%|█████     | 255/500 [00:13<00:11, 22.03it/s]
eval model::  52%|█████▏    | 258/500 [00:13<00:10, 22.49it/s]
eval model::  52%|█████▏    | 261/500 [00:14<00:12, 19.22it/s]
eval model::  53%|█████▎    | 264/500 [00:14<00:13, 17.51it/s]
eval model::  53%|█████▎    | 266/500 [00:14<00:14, 16.47it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:15, 15.36it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:13, 17.08it/s]
eval model::  55%|█████▌    | 275/500 [00:15<00:12, 17.41it/s]
eval model::  55%|█████▌    | 277/500 [00:15<00:12, 17.65it/s]
eval model::  56%|█████▌    | 279/500 [00:15<00:12, 17.87it/s]
eval model::  56%|█████▋    | 282/500 [00:15<00:11, 19.10it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:17, 12.50it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:15, 13.34it/s]
eval model::  58%|█████▊    | 291/500 [00:16<00:11, 17.43it/s]
eval model::  59%|█████▉    | 294/500 [00:16<00:12, 16.71it/s]
eval model::  59%|█████▉    | 296/500 [00:16<00:14, 14.05it/s]
eval model::  60%|█████▉    | 299/500 [00:16<00:12, 16.17it/s]
eval model::  60%|██████    | 301/500 [00:16<00:13, 15.26it/s]
eval model::  61%|██████    | 304/500 [00:16<00:11, 16.98it/s]
eval model::  61%|██████▏   | 307/500 [00:17<00:11, 17.50it/s]
eval model::  62%|██████▏   | 310/500 [00:17<00:10, 18.81it/s]
eval model::  62%|██████▏   | 312/500 [00:17<00:10, 18.45it/s]
eval model::  63%|██████▎   | 315/500 [00:17<00:10, 17.74it/s]
eval model::  64%|██████▎   | 318/500 [00:17<00:09, 19.60it/s]
eval model::  64%|██████▍   | 321/500 [00:17<00:09, 18.96it/s]
eval model::  65%|██████▍   | 324/500 [00:17<00:08, 19.73it/s]
eval model::  66%|██████▌   | 328/500 [00:18<00:07, 21.97it/s]
eval model::  66%|██████▌   | 331/500 [00:18<00:07, 21.92it/s]
eval model::  67%|██████▋   | 335/500 [00:18<00:07, 23.07it/s]
eval model::  68%|██████▊   | 338/500 [00:18<00:07, 20.42it/s]
eval model::  68%|██████▊   | 341/500 [00:18<00:09, 16.55it/s]
eval model::  69%|██████▉   | 344/500 [00:18<00:08, 17.64it/s]
eval model::  69%|██████▉   | 346/500 [00:19<00:08, 18.00it/s]
eval model::  70%|██████▉   | 349/500 [00:19<00:07, 18.93it/s]
eval model::  70%|███████   | 351/500 [00:19<00:08, 18.46it/s]
eval model::  71%|███████   | 355/500 [00:19<00:07, 20.06it/s]
eval model::  72%|███████▏  | 358/500 [00:19<00:07, 18.91it/s]
eval model::  72%|███████▏  | 360/500 [00:19<00:07, 18.99it/s]
eval model::  72%|███████▏  | 362/500 [00:19<00:07, 17.75it/s]
eval model::  73%|███████▎  | 364/500 [00:20<00:08, 16.67it/s]
eval model::  73%|███████▎  | 366/500 [00:20<00:08, 15.31it/s]
eval model::  74%|███████▎  | 368/500 [00:20<00:08, 15.94it/s]
eval model::  74%|███████▍  | 370/500 [00:20<00:07, 16.79it/s]
eval model::  74%|███████▍  | 372/500 [00:20<00:07, 16.44it/s]
eval model::  75%|███████▌  | 375/500 [00:20<00:06, 18.36it/s]
eval model::  76%|███████▌  | 379/500 [00:20<00:05, 22.87it/s]
eval model::  76%|███████▋  | 382/500 [00:20<00:05, 21.77it/s]
eval model::  77%|███████▋  | 385/500 [00:21<00:05, 22.82it/s]
eval model::  78%|███████▊  | 388/500 [00:21<00:08, 13.54it/s]
eval model::  78%|███████▊  | 391/500 [00:21<00:06, 15.59it/s]
eval model::  79%|███████▉  | 394/500 [00:21<00:06, 16.29it/s]
eval model::  79%|███████▉  | 397/500 [00:21<00:05, 18.53it/s]
eval model::  80%|████████  | 400/500 [00:22<00:05, 18.57it/s]
eval model::  81%|████████  | 403/500 [00:22<00:04, 20.03it/s]
eval model::  81%|████████  | 406/500 [00:22<00:04, 21.22it/s]
eval model::  82%|████████▏ | 409/500 [00:22<00:04, 21.88it/s]
eval model::  82%|████████▏ | 412/500 [00:22<00:03, 22.09it/s]
eval model::  83%|████████▎ | 415/500 [00:22<00:04, 20.85it/s]
eval model::  84%|████████▎ | 418/500 [00:22<00:04, 16.99it/s]
eval model::  84%|████████▍ | 420/500 [00:23<00:05, 14.29it/s]
eval model::  85%|████████▍ | 423/500 [00:23<00:04, 16.15it/s]
eval model::  85%|████████▌ | 425/500 [00:23<00:05, 14.34it/s]
eval model::  86%|████████▌ | 428/500 [00:23<00:04, 16.79it/s]
eval model::  86%|████████▌ | 431/500 [00:23<00:03, 18.40it/s]
eval model::  87%|████████▋ | 435/500 [00:23<00:02, 22.03it/s]
eval model::  88%|████████▊ | 438/500 [00:23<00:02, 23.83it/s]
eval model::  88%|████████▊ | 441/500 [00:24<00:02, 20.66it/s]
eval model::  89%|████████▉ | 444/500 [00:24<00:02, 21.95it/s]
eval model::  89%|████████▉ | 447/500 [00:24<00:02, 22.91it/s]
eval model::  90%|█████████ | 450/500 [00:24<00:02, 20.33it/s]
eval model::  91%|█████████ | 453/500 [00:24<00:02, 21.01it/s]
eval model::  91%|█████████ | 456/500 [00:24<00:01, 22.06it/s]
eval model::  92%|█████████▏| 459/500 [00:24<00:01, 22.47it/s]
eval model::  92%|█████████▏| 462/500 [00:25<00:02, 16.80it/s]
eval model::  93%|█████████▎| 464/500 [00:25<00:02, 17.01it/s]
eval model::  93%|█████████▎| 466/500 [00:25<00:02, 16.58it/s]
eval model::  94%|█████████▍| 469/500 [00:25<00:01, 18.44it/s]
eval model::  94%|█████████▍| 472/500 [00:25<00:01, 19.79it/s]
eval model::  95%|█████████▌| 475/500 [00:25<00:01, 19.99it/s]
eval model::  96%|█████████▌| 478/500 [00:26<00:01, 20.13it/s]
eval model::  96%|█████████▌| 481/500 [00:26<00:00, 19.94it/s]
eval model::  97%|█████████▋| 484/500 [00:26<00:00, 21.01it/s]
eval model::  97%|█████████▋| 487/500 [00:26<00:00, 20.84it/s]
eval model::  98%|█████████▊| 490/500 [00:26<00:00, 22.48it/s]
eval model::  99%|█████████▊| 493/500 [00:26<00:00, 21.11it/s]
eval model::  99%|█████████▉| 496/500 [00:26<00:00, 20.68it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 24.15it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.52it/s]
[2024/07/28 00:41:05] ppocr INFO: cur metric, precision: 0.6375609756097561, recall: 0.6292729898892634, hmean: 0.633389871577417, fps: 44.61247566275464
[2024/07/28 00:41:05] ppocr INFO: best metric, hmean: 0.6696288552012545, precision: 0.7324185248713551, recall: 0.6167549350024073, fps: 45.42158780325782, best_epoch: 460
[2024/07/28 00:41:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:41:13] ppocr INFO: epoch: [501/1500], global_step: 1503, lr: 0.001000, loss: 1.533468, loss_shrink_maps: 0.794589, loss_threshold_maps: 0.569676, loss_binary_maps: 0.158741, avg_reader_cost: 1.57984 s, avg_batch_cost: 1.84414 s, avg_samples: 12.5, ips: 6.77823 samples/s, eta: 5:06:04
[2024/07/28 00:41:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:41:21] ppocr INFO: epoch: [502/1500], global_step: 1506, lr: 0.001000, loss: 1.549227, loss_shrink_maps: 0.804807, loss_threshold_maps: 0.576491, loss_binary_maps: 0.160610, avg_reader_cost: 1.60737 s, avg_batch_cost: 1.84921 s, avg_samples: 12.5, ips: 6.75965 samples/s, eta: 5:05:46
[2024/07/28 00:41:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:41:29] ppocr INFO: epoch: [503/1500], global_step: 1509, lr: 0.001000, loss: 1.546758, loss_shrink_maps: 0.804807, loss_threshold_maps: 0.572611, loss_binary_maps: 0.160610, avg_reader_cost: 1.52649 s, avg_batch_cost: 1.75464 s, avg_samples: 12.5, ips: 7.12398 samples/s, eta: 5:05:26
[2024/07/28 00:41:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:41:36] ppocr INFO: epoch: [504/1500], global_step: 1510, lr: 0.001000, loss: 1.546758, loss_shrink_maps: 0.805096, loss_threshold_maps: 0.574294, loss_binary_maps: 0.160766, avg_reader_cost: 0.44642 s, avg_batch_cost: 0.52957 s, avg_samples: 4.8, ips: 9.06401 samples/s, eta: 5:05:18
[2024/07/28 00:41:37] ppocr INFO: epoch: [504/1500], global_step: 1512, lr: 0.001000, loss: 1.551014, loss_shrink_maps: 0.817074, loss_threshold_maps: 0.583081, loss_binary_maps: 0.162728, avg_reader_cost: 1.15065 s, avg_batch_cost: 1.29688 s, avg_samples: 7.7, ips: 5.93734 samples/s, eta: 5:05:07
[2024/07/28 00:41:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:41:46] ppocr INFO: epoch: [505/1500], global_step: 1515, lr: 0.001000, loss: 1.525113, loss_shrink_maps: 0.793331, loss_threshold_maps: 0.574294, loss_binary_maps: 0.158205, avg_reader_cost: 1.50799 s, avg_batch_cost: 1.76092 s, avg_samples: 12.5, ips: 7.09855 samples/s, eta: 5:04:47
[2024/07/28 00:41:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:41:54] ppocr INFO: epoch: [506/1500], global_step: 1518, lr: 0.001000, loss: 1.523872, loss_shrink_maps: 0.792637, loss_threshold_maps: 0.572945, loss_binary_maps: 0.157658, avg_reader_cost: 1.54017 s, avg_batch_cost: 1.78059 s, avg_samples: 12.5, ips: 7.02014 samples/s, eta: 5:04:28
[2024/07/28 00:41:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:42:01] ppocr INFO: epoch: [507/1500], global_step: 1520, lr: 0.001000, loss: 1.488989, loss_shrink_maps: 0.783955, loss_threshold_maps: 0.569698, loss_binary_maps: 0.157050, avg_reader_cost: 0.91099 s, avg_batch_cost: 1.08748 s, avg_samples: 9.6, ips: 8.82777 samples/s, eta: 5:04:13
[2024/07/28 00:42:02] ppocr INFO: epoch: [507/1500], global_step: 1521, lr: 0.001000, loss: 1.488989, loss_shrink_maps: 0.783955, loss_threshold_maps: 0.563622, loss_binary_maps: 0.157050, avg_reader_cost: 0.58948 s, avg_batch_cost: 0.64427 s, avg_samples: 2.9, ips: 4.50124 samples/s, eta: 5:04:07
[2024/07/28 00:42:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:42:10] ppocr INFO: epoch: [508/1500], global_step: 1524, lr: 0.001000, loss: 1.503924, loss_shrink_maps: 0.800916, loss_threshold_maps: 0.562118, loss_binary_maps: 0.158877, avg_reader_cost: 1.58736 s, avg_batch_cost: 1.82586 s, avg_samples: 12.5, ips: 6.84607 samples/s, eta: 5:03:49
[2024/07/28 00:42:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:42:19] ppocr INFO: epoch: [509/1500], global_step: 1527, lr: 0.001000, loss: 1.503924, loss_shrink_maps: 0.800916, loss_threshold_maps: 0.547759, loss_binary_maps: 0.158877, avg_reader_cost: 1.52635 s, avg_batch_cost: 1.75760 s, avg_samples: 12.5, ips: 7.11198 samples/s, eta: 5:03:29
[2024/07/28 00:42:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:42:27] ppocr INFO: epoch: [510/1500], global_step: 1530, lr: 0.001000, loss: 1.503924, loss_shrink_maps: 0.800916, loss_threshold_maps: 0.547759, loss_binary_maps: 0.158877, avg_reader_cost: 1.57908 s, avg_batch_cost: 1.84108 s, avg_samples: 12.5, ips: 6.78948 samples/s, eta: 5:03:11
[2024/07/28 00:42:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:42:35] ppocr INFO: epoch: [511/1500], global_step: 1533, lr: 0.001000, loss: 1.470134, loss_shrink_maps: 0.783955, loss_threshold_maps: 0.546788, loss_binary_maps: 0.156794, avg_reader_cost: 1.51567 s, avg_batch_cost: 1.76508 s, avg_samples: 12.5, ips: 7.08183 samples/s, eta: 5:02:51
[2024/07/28 00:42:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:42:43] ppocr INFO: epoch: [512/1500], global_step: 1536, lr: 0.001000, loss: 1.470134, loss_shrink_maps: 0.783955, loss_threshold_maps: 0.546788, loss_binary_maps: 0.156794, avg_reader_cost: 1.52864 s, avg_batch_cost: 1.78896 s, avg_samples: 12.5, ips: 6.98732 samples/s, eta: 5:02:31
[2024/07/28 00:42:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:42:52] ppocr INFO: epoch: [513/1500], global_step: 1539, lr: 0.001000, loss: 1.490506, loss_shrink_maps: 0.789249, loss_threshold_maps: 0.547759, loss_binary_maps: 0.156794, avg_reader_cost: 1.55875 s, avg_batch_cost: 1.78816 s, avg_samples: 12.5, ips: 6.99041 samples/s, eta: 5:02:12
[2024/07/28 00:42:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:42:58] ppocr INFO: epoch: [514/1500], global_step: 1540, lr: 0.001000, loss: 1.518953, loss_shrink_maps: 0.811922, loss_threshold_maps: 0.556152, loss_binary_maps: 0.160493, avg_reader_cost: 0.42646 s, avg_batch_cost: 0.51260 s, avg_samples: 4.8, ips: 9.36411 samples/s, eta: 5:02:04
[2024/07/28 00:43:00] ppocr INFO: epoch: [514/1500], global_step: 1542, lr: 0.001000, loss: 1.549581, loss_shrink_maps: 0.828288, loss_threshold_maps: 0.565490, loss_binary_maps: 0.164015, avg_reader_cost: 1.11666 s, avg_batch_cost: 1.26260 s, avg_samples: 7.7, ips: 6.09853 samples/s, eta: 5:01:53
[2024/07/28 00:43:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:43:08] ppocr INFO: epoch: [515/1500], global_step: 1545, lr: 0.001000, loss: 1.513444, loss_shrink_maps: 0.799282, loss_threshold_maps: 0.564017, loss_binary_maps: 0.158832, avg_reader_cost: 1.55653 s, avg_batch_cost: 1.78577 s, avg_samples: 12.5, ips: 6.99978 samples/s, eta: 5:01:33
[2024/07/28 00:43:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:43:16] ppocr INFO: epoch: [516/1500], global_step: 1548, lr: 0.001000, loss: 1.513444, loss_shrink_maps: 0.790501, loss_threshold_maps: 0.570960, loss_binary_maps: 0.156676, avg_reader_cost: 1.52209 s, avg_batch_cost: 1.79234 s, avg_samples: 12.5, ips: 6.97412 samples/s, eta: 5:01:14
[2024/07/28 00:43:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:43:24] ppocr INFO: epoch: [517/1500], global_step: 1550, lr: 0.001000, loss: 1.530067, loss_shrink_maps: 0.802159, loss_threshold_maps: 0.578784, loss_binary_maps: 0.159069, avg_reader_cost: 0.93736 s, avg_batch_cost: 1.14840 s, avg_samples: 9.6, ips: 8.35945 samples/s, eta: 5:01:00
[2024/07/28 00:43:25] ppocr INFO: epoch: [517/1500], global_step: 1551, lr: 0.001000, loss: 1.541907, loss_shrink_maps: 0.809300, loss_threshold_maps: 0.580679, loss_binary_maps: 0.161224, avg_reader_cost: 0.62009 s, avg_batch_cost: 0.67502 s, avg_samples: 2.9, ips: 4.29614 samples/s, eta: 5:00:55
[2024/07/28 00:43:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:43:33] ppocr INFO: epoch: [518/1500], global_step: 1554, lr: 0.001000, loss: 1.549485, loss_shrink_maps: 0.815993, loss_threshold_maps: 0.583150, loss_binary_maps: 0.162519, avg_reader_cost: 1.53120 s, avg_batch_cost: 1.77157 s, avg_samples: 12.5, ips: 7.05589 samples/s, eta: 5:00:36
[2024/07/28 00:43:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:43:41] ppocr INFO: epoch: [519/1500], global_step: 1557, lr: 0.001000, loss: 1.549485, loss_shrink_maps: 0.809300, loss_threshold_maps: 0.583150, loss_binary_maps: 0.161377, avg_reader_cost: 1.54430 s, avg_batch_cost: 1.77327 s, avg_samples: 12.5, ips: 7.04911 samples/s, eta: 5:00:16
[2024/07/28 00:43:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:43:50] ppocr INFO: epoch: [520/1500], global_step: 1560, lr: 0.001000, loss: 1.530067, loss_shrink_maps: 0.798828, loss_threshold_maps: 0.578784, loss_binary_maps: 0.158617, avg_reader_cost: 1.55966 s, avg_batch_cost: 1.83146 s, avg_samples: 12.5, ips: 6.82515 samples/s, eta: 4:59:58

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:53,  9.35it/s]
eval model::   1%|          | 4/500 [00:00<00:28, 17.48it/s]
eval model::   1%|▏         | 7/500 [00:00<00:23, 21.07it/s]
eval model::   2%|▏         | 10/500 [00:00<00:25, 19.16it/s]
eval model::   2%|▏         | 12/500 [00:00<00:26, 18.14it/s]
eval model::   3%|▎         | 14/500 [00:00<00:26, 18.04it/s]
eval model::   3%|▎         | 17/500 [00:00<00:24, 19.63it/s]
eval model::   4%|▍         | 19/500 [00:01<00:25, 18.67it/s]
eval model::   4%|▍         | 21/500 [00:01<00:25, 18.91it/s]
eval model::   5%|▌         | 25/500 [00:01<00:22, 20.74it/s]
eval model::   6%|▌         | 28/500 [00:01<00:22, 20.82it/s]
eval model::   6%|▌         | 31/500 [00:01<00:23, 20.11it/s]
eval model::   7%|▋         | 34/500 [00:01<00:23, 19.85it/s]
eval model::   7%|▋         | 36/500 [00:01<00:24, 19.04it/s]
eval model::   8%|▊         | 38/500 [00:01<00:24, 19.05it/s]
eval model::   8%|▊         | 40/500 [00:02<00:27, 17.00it/s]
eval model::   8%|▊         | 42/500 [00:02<00:28, 15.86it/s]
eval model::   9%|▉         | 45/500 [00:02<00:25, 17.62it/s]
eval model::   9%|▉         | 47/500 [00:02<00:25, 17.85it/s]
eval model::  10%|█         | 50/500 [00:02<00:22, 19.65it/s]
eval model::  10%|█         | 52/500 [00:02<00:23, 18.69it/s]
eval model::  11%|█         | 55/500 [00:02<00:21, 20.38it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:23, 19.00it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:28, 15.31it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:28, 15.41it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:24, 17.78it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:22, 19.27it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:21, 20.31it/s]
eval model::  15%|█▌        | 75/500 [00:04<00:20, 20.46it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:19, 21.57it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:18, 22.54it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:18, 21.97it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:21, 19.07it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:24, 16.67it/s]
eval model::  18%|█▊        | 92/500 [00:04<00:23, 17.18it/s]
eval model::  19%|█▉        | 94/500 [00:05<00:23, 17.60it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:22, 18.09it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:20, 19.49it/s]
eval model::  20%|██        | 102/500 [00:05<00:19, 20.19it/s]
eval model::  21%|██        | 106/500 [00:05<00:18, 21.52it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:17, 21.86it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:19, 20.30it/s]
eval model::  23%|██▎       | 115/500 [00:06<00:20, 19.21it/s]
eval model::  24%|██▎       | 118/500 [00:06<00:18, 20.88it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:17, 21.98it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:19, 18.82it/s]
eval model::  25%|██▌       | 127/500 [00:06<00:18, 19.92it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:20, 17.89it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:21, 17.23it/s]
eval model::  27%|██▋       | 135/500 [00:07<00:18, 19.74it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:18, 19.90it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:17, 20.17it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:17, 20.70it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:18, 19.57it/s]
eval model::  30%|███       | 150/500 [00:07<00:16, 21.29it/s]
eval model::  31%|███       | 153/500 [00:07<00:17, 20.10it/s]
eval model::  31%|███▏      | 157/500 [00:08<00:15, 22.49it/s]
eval model::  32%|███▏      | 160/500 [00:08<00:19, 17.23it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:18, 18.67it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:17, 19.39it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:16, 20.25it/s]
eval model::  34%|███▍      | 172/500 [00:08<00:17, 18.63it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:20, 15.90it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:19, 16.67it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:16, 19.54it/s]
eval model::  36%|███▋      | 182/500 [00:09<00:17, 17.80it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:15, 20.63it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:14, 22.00it/s]
eval model::  38%|███▊      | 192/500 [00:09<00:13, 22.93it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:13, 23.01it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:12, 23.32it/s]
eval model::  40%|████      | 201/500 [00:10<00:13, 22.21it/s]
eval model::  41%|████      | 204/500 [00:10<00:13, 22.53it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:21, 13.61it/s]
eval model::  42%|████▏     | 209/500 [00:11<00:20, 14.06it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:19, 14.55it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.15it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:22, 12.91it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:23, 12.28it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:18, 15.36it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:18, 15.05it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:14, 19.23it/s]
eval model::  46%|████▌     | 229/500 [00:12<00:12, 21.34it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:11, 22.93it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:11, 22.57it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:11, 22.19it/s]
eval model::  48%|████▊     | 242/500 [00:12<00:13, 19.77it/s]
eval model::  49%|████▉     | 245/500 [00:12<00:11, 21.74it/s]
eval model::  50%|████▉     | 248/500 [00:12<00:10, 23.60it/s]
eval model::  50%|█████     | 251/500 [00:13<00:10, 23.02it/s]
eval model::  51%|█████     | 254/500 [00:13<00:10, 23.42it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:10, 23.81it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:10, 22.20it/s]
eval model::  53%|█████▎    | 263/500 [00:13<00:11, 20.37it/s]
eval model::  53%|█████▎    | 266/500 [00:13<00:12, 18.74it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:12, 18.15it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:11, 19.02it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:12, 17.96it/s]
eval model::  55%|█████▌    | 277/500 [00:14<00:12, 18.23it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:11, 18.60it/s]
eval model::  56%|█████▋    | 282/500 [00:14<00:12, 17.70it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:17, 12.26it/s]
eval model::  58%|█████▊    | 288/500 [00:15<00:14, 14.31it/s]
eval model::  58%|█████▊    | 292/500 [00:15<00:11, 17.54it/s]
eval model::  59%|█████▉    | 295/500 [00:15<00:13, 15.16it/s]
eval model::  60%|█████▉    | 298/500 [00:15<00:11, 17.31it/s]
eval model::  60%|██████    | 301/500 [00:16<00:11, 16.69it/s]
eval model::  61%|██████    | 304/500 [00:16<00:10, 18.30it/s]
eval model::  61%|██████▏   | 307/500 [00:16<00:09, 19.81it/s]
eval model::  62%|██████▏   | 310/500 [00:16<00:09, 20.36it/s]
eval model::  63%|██████▎   | 313/500 [00:16<00:09, 20.67it/s]
eval model::  63%|██████▎   | 316/500 [00:16<00:08, 20.77it/s]
eval model::  64%|██████▍   | 319/500 [00:16<00:08, 22.05it/s]
eval model::  64%|██████▍   | 322/500 [00:16<00:08, 21.78it/s]
eval model::  65%|██████▌   | 325/500 [00:17<00:07, 22.20it/s]
eval model::  66%|██████▌   | 328/500 [00:17<00:07, 21.78it/s]
eval model::  66%|██████▌   | 331/500 [00:17<00:07, 22.24it/s]
eval model::  67%|██████▋   | 334/500 [00:17<00:07, 23.39it/s]
eval model::  67%|██████▋   | 337/500 [00:17<00:07, 23.09it/s]
eval model::  68%|██████▊   | 340/500 [00:17<00:10, 15.23it/s]
eval model::  69%|██████▊   | 343/500 [00:18<00:09, 16.95it/s]
eval model::  69%|██████▉   | 346/500 [00:18<00:08, 19.04it/s]
eval model::  70%|██████▉   | 349/500 [00:18<00:07, 21.15it/s]
eval model::  70%|███████   | 352/500 [00:18<00:06, 22.90it/s]
eval model::  71%|███████   | 355/500 [00:18<00:06, 23.81it/s]
eval model::  72%|███████▏  | 358/500 [00:18<00:06, 22.90it/s]
eval model::  72%|███████▏  | 361/500 [00:18<00:07, 19.08it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:07, 17.71it/s]
eval model::  73%|███████▎  | 367/500 [00:19<00:07, 18.56it/s]
eval model::  74%|███████▍  | 370/500 [00:19<00:06, 19.44it/s]
eval model::  75%|███████▍  | 373/500 [00:19<00:06, 20.50it/s]
eval model::  75%|███████▌  | 376/500 [00:19<00:06, 20.06it/s]
eval model::  76%|███████▌  | 379/500 [00:19<00:05, 22.13it/s]
eval model::  76%|███████▋  | 382/500 [00:19<00:05, 20.35it/s]
eval model::  77%|███████▋  | 385/500 [00:20<00:05, 22.20it/s]
eval model::  78%|███████▊  | 388/500 [00:20<00:08, 12.62it/s]
eval model::  78%|███████▊  | 391/500 [00:20<00:07, 14.33it/s]
eval model::  79%|███████▊  | 393/500 [00:20<00:07, 15.01it/s]
eval model::  79%|███████▉  | 396/500 [00:20<00:05, 17.69it/s]
eval model::  80%|███████▉  | 399/500 [00:20<00:05, 19.52it/s]
eval model::  80%|████████  | 402/500 [00:21<00:05, 19.26it/s]
eval model::  81%|████████  | 405/500 [00:21<00:04, 21.39it/s]
eval model::  82%|████████▏ | 408/500 [00:21<00:04, 22.15it/s]
eval model::  82%|████████▏ | 411/500 [00:21<00:03, 22.76it/s]
eval model::  83%|████████▎ | 414/500 [00:21<00:03, 22.32it/s]
eval model::  83%|████████▎ | 417/500 [00:21<00:04, 20.29it/s]
eval model::  84%|████████▍ | 420/500 [00:22<00:05, 14.38it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:05, 15.24it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:04, 15.33it/s]
eval model::  85%|████████▌ | 426/500 [00:22<00:04, 15.32it/s]
eval model::  86%|████████▌ | 429/500 [00:22<00:04, 17.56it/s]
eval model::  86%|████████▌ | 431/500 [00:22<00:03, 17.32it/s]
eval model::  87%|████████▋ | 435/500 [00:22<00:03, 21.11it/s]
eval model::  88%|████████▊ | 439/500 [00:23<00:02, 24.36it/s]
eval model::  88%|████████▊ | 442/500 [00:23<00:02, 24.42it/s]
eval model::  89%|████████▉ | 445/500 [00:23<00:02, 23.56it/s]
eval model::  90%|████████▉ | 448/500 [00:23<00:02, 22.23it/s]
eval model::  90%|█████████ | 451/500 [00:23<00:02, 22.60it/s]
eval model::  91%|█████████ | 454/500 [00:23<00:02, 20.91it/s]
eval model::  91%|█████████▏| 457/500 [00:23<00:01, 22.18it/s]
eval model::  92%|█████████▏| 460/500 [00:24<00:01, 20.66it/s]
eval model::  93%|█████████▎| 463/500 [00:24<00:02, 18.00it/s]
eval model::  93%|█████████▎| 465/500 [00:24<00:02, 17.49it/s]
eval model::  94%|█████████▎| 468/500 [00:24<00:01, 18.73it/s]
eval model::  94%|█████████▍| 471/500 [00:24<00:01, 20.91it/s]
eval model::  95%|█████████▍| 474/500 [00:24<00:01, 20.61it/s]
eval model::  95%|█████████▌| 477/500 [00:24<00:01, 21.65it/s]
eval model::  96%|█████████▌| 480/500 [00:25<00:00, 20.18it/s]
eval model::  97%|█████████▋| 483/500 [00:25<00:00, 20.73it/s]
eval model::  97%|█████████▋| 486/500 [00:25<00:00, 18.69it/s]
eval model::  98%|█████████▊| 489/500 [00:25<00:00, 20.51it/s]
eval model::  98%|█████████▊| 492/500 [00:25<00:00, 18.74it/s]
eval model::  99%|█████████▉| 495/500 [00:25<00:00, 19.85it/s]
eval model:: 100%|█████████▉| 498/500 [00:25<00:00, 21.15it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 19.20it/s]
[2024/07/28 00:44:16] ppocr INFO: cur metric, precision: 0.7261836851112379, recall: 0.6129032258064516, hmean: 0.6647519582245431, fps: 45.61024509760744
[2024/07/28 00:44:16] ppocr INFO: best metric, hmean: 0.6696288552012545, precision: 0.7324185248713551, recall: 0.6167549350024073, fps: 45.42158780325782, best_epoch: 460
[2024/07/28 00:44:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:44:24] ppocr INFO: epoch: [521/1500], global_step: 1563, lr: 0.001000, loss: 1.501168, loss_shrink_maps: 0.796721, loss_threshold_maps: 0.568927, loss_binary_maps: 0.158166, avg_reader_cost: 1.73373 s, avg_batch_cost: 2.08716 s, avg_samples: 12.5, ips: 5.98901 samples/s, eta: 4:59:44
[2024/07/28 00:44:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:44:32] ppocr INFO: epoch: [522/1500], global_step: 1566, lr: 0.001000, loss: 1.473543, loss_shrink_maps: 0.775840, loss_threshold_maps: 0.561880, loss_binary_maps: 0.154122, avg_reader_cost: 1.51767 s, avg_batch_cost: 1.74697 s, avg_samples: 12.5, ips: 7.15524 samples/s, eta: 4:59:24
[2024/07/28 00:44:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:44:40] ppocr INFO: epoch: [523/1500], global_step: 1569, lr: 0.001000, loss: 1.473543, loss_shrink_maps: 0.775840, loss_threshold_maps: 0.561880, loss_binary_maps: 0.154122, avg_reader_cost: 1.53491 s, avg_batch_cost: 1.76441 s, avg_samples: 12.5, ips: 7.08453 samples/s, eta: 4:59:04
[2024/07/28 00:44:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:44:47] ppocr INFO: epoch: [524/1500], global_step: 1570, lr: 0.001000, loss: 1.470053, loss_shrink_maps: 0.770045, loss_threshold_maps: 0.555542, loss_binary_maps: 0.152863, avg_reader_cost: 0.42963 s, avg_batch_cost: 0.51636 s, avg_samples: 4.8, ips: 9.29592 samples/s, eta: 4:58:56
[2024/07/28 00:44:48] ppocr INFO: epoch: [524/1500], global_step: 1572, lr: 0.001000, loss: 1.470053, loss_shrink_maps: 0.770045, loss_threshold_maps: 0.546262, loss_binary_maps: 0.152863, avg_reader_cost: 1.12382 s, avg_batch_cost: 1.26953 s, avg_samples: 7.7, ips: 6.06522 samples/s, eta: 4:58:45
[2024/07/28 00:44:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:44:57] ppocr INFO: epoch: [525/1500], global_step: 1575, lr: 0.001000, loss: 1.470053, loss_shrink_maps: 0.775840, loss_threshold_maps: 0.547187, loss_binary_maps: 0.154122, avg_reader_cost: 1.56320 s, avg_batch_cost: 1.79144 s, avg_samples: 12.5, ips: 6.97763 samples/s, eta: 4:58:26
[2024/07/28 00:44:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:45:05] ppocr INFO: epoch: [526/1500], global_step: 1578, lr: 0.001000, loss: 1.474398, loss_shrink_maps: 0.770045, loss_threshold_maps: 0.547187, loss_binary_maps: 0.152863, avg_reader_cost: 1.60803 s, avg_batch_cost: 1.86807 s, avg_samples: 12.5, ips: 6.69140 samples/s, eta: 4:58:08
[2024/07/28 00:45:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:45:13] ppocr INFO: epoch: [527/1500], global_step: 1580, lr: 0.001000, loss: 1.470944, loss_shrink_maps: 0.754259, loss_threshold_maps: 0.551886, loss_binary_maps: 0.149787, avg_reader_cost: 0.94013 s, avg_batch_cost: 1.17293 s, avg_samples: 9.6, ips: 8.18462 samples/s, eta: 4:57:55
[2024/07/28 00:45:14] ppocr INFO: epoch: [527/1500], global_step: 1581, lr: 0.001000, loss: 1.470944, loss_shrink_maps: 0.739655, loss_threshold_maps: 0.551886, loss_binary_maps: 0.146667, avg_reader_cost: 0.63214 s, avg_batch_cost: 0.68716 s, avg_samples: 2.9, ips: 4.22025 samples/s, eta: 4:57:50
[2024/07/28 00:45:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:45:22] ppocr INFO: epoch: [528/1500], global_step: 1584, lr: 0.001000, loss: 1.470944, loss_shrink_maps: 0.748529, loss_threshold_maps: 0.544050, loss_binary_maps: 0.148759, avg_reader_cost: 1.52158 s, avg_batch_cost: 1.79449 s, avg_samples: 12.5, ips: 6.96579 samples/s, eta: 4:57:31
[2024/07/28 00:45:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:45:30] ppocr INFO: epoch: [529/1500], global_step: 1587, lr: 0.001000, loss: 1.482073, loss_shrink_maps: 0.768896, loss_threshold_maps: 0.554076, loss_binary_maps: 0.153105, avg_reader_cost: 1.50310 s, avg_batch_cost: 1.75612 s, avg_samples: 12.5, ips: 7.11796 samples/s, eta: 4:57:11
[2024/07/28 00:45:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:45:38] ppocr INFO: epoch: [530/1500], global_step: 1590, lr: 0.001000, loss: 1.482073, loss_shrink_maps: 0.768896, loss_threshold_maps: 0.544050, loss_binary_maps: 0.153105, avg_reader_cost: 1.51303 s, avg_batch_cost: 1.74954 s, avg_samples: 12.5, ips: 7.14473 samples/s, eta: 4:56:51
[2024/07/28 00:45:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:45:47] ppocr INFO: epoch: [531/1500], global_step: 1593, lr: 0.001000, loss: 1.462749, loss_shrink_maps: 0.747936, loss_threshold_maps: 0.544050, loss_binary_maps: 0.148371, avg_reader_cost: 1.60706 s, avg_batch_cost: 1.83588 s, avg_samples: 12.5, ips: 6.80872 samples/s, eta: 4:56:33
[2024/07/28 00:45:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:45:55] ppocr INFO: epoch: [532/1500], global_step: 1596, lr: 0.001000, loss: 1.457856, loss_shrink_maps: 0.747249, loss_threshold_maps: 0.540899, loss_binary_maps: 0.148277, avg_reader_cost: 1.53157 s, avg_batch_cost: 1.77026 s, avg_samples: 12.5, ips: 7.06111 samples/s, eta: 4:56:13
[2024/07/28 00:45:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:46:03] ppocr INFO: epoch: [533/1500], global_step: 1599, lr: 0.001000, loss: 1.478471, loss_shrink_maps: 0.769643, loss_threshold_maps: 0.546240, loss_binary_maps: 0.153049, avg_reader_cost: 1.59873 s, avg_batch_cost: 1.82731 s, avg_samples: 12.5, ips: 6.84064 samples/s, eta: 4:55:55
[2024/07/28 00:46:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:46:10] ppocr INFO: epoch: [534/1500], global_step: 1600, lr: 0.001000, loss: 1.478471, loss_shrink_maps: 0.769643, loss_threshold_maps: 0.546240, loss_binary_maps: 0.153049, avg_reader_cost: 0.42534 s, avg_batch_cost: 0.50813 s, avg_samples: 4.8, ips: 9.44647 samples/s, eta: 4:55:47
[2024/07/28 00:46:12] ppocr INFO: epoch: [534/1500], global_step: 1602, lr: 0.001000, loss: 1.482836, loss_shrink_maps: 0.769050, loss_threshold_maps: 0.551617, loss_binary_maps: 0.152747, avg_reader_cost: 1.10748 s, avg_batch_cost: 1.25340 s, avg_samples: 7.7, ips: 6.14328 samples/s, eta: 4:55:35
[2024/07/28 00:46:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:46:20] ppocr INFO: epoch: [535/1500], global_step: 1605, lr: 0.001000, loss: 1.482836, loss_shrink_maps: 0.763024, loss_threshold_maps: 0.551993, loss_binary_maps: 0.151629, avg_reader_cost: 1.50388 s, avg_batch_cost: 1.76028 s, avg_samples: 12.5, ips: 7.10113 samples/s, eta: 4:55:15
[2024/07/28 00:46:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:46:28] ppocr INFO: epoch: [536/1500], global_step: 1608, lr: 0.001000, loss: 1.466704, loss_shrink_maps: 0.752143, loss_threshold_maps: 0.551993, loss_binary_maps: 0.149542, avg_reader_cost: 1.50704 s, avg_batch_cost: 1.75800 s, avg_samples: 12.5, ips: 7.11036 samples/s, eta: 4:54:55
[2024/07/28 00:46:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:46:35] ppocr INFO: epoch: [537/1500], global_step: 1610, lr: 0.001000, loss: 1.482836, loss_shrink_maps: 0.763024, loss_threshold_maps: 0.559144, loss_binary_maps: 0.151629, avg_reader_cost: 0.94377 s, avg_batch_cost: 1.11781 s, avg_samples: 9.6, ips: 8.58819 samples/s, eta: 4:54:41
[2024/07/28 00:46:36] ppocr INFO: epoch: [537/1500], global_step: 1611, lr: 0.001000, loss: 1.482836, loss_shrink_maps: 0.765995, loss_threshold_maps: 0.559144, loss_binary_maps: 0.152326, avg_reader_cost: 0.60485 s, avg_batch_cost: 0.65982 s, avg_samples: 2.9, ips: 4.39514 samples/s, eta: 4:54:36
[2024/07/28 00:46:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:46:44] ppocr INFO: epoch: [538/1500], global_step: 1614, lr: 0.001000, loss: 1.482836, loss_shrink_maps: 0.769771, loss_threshold_maps: 0.559144, loss_binary_maps: 0.152906, avg_reader_cost: 1.57124 s, avg_batch_cost: 1.79936 s, avg_samples: 12.5, ips: 6.94692 samples/s, eta: 4:54:17
[2024/07/28 00:46:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:46:52] ppocr INFO: epoch: [539/1500], global_step: 1617, lr: 0.001000, loss: 1.471976, loss_shrink_maps: 0.769771, loss_threshold_maps: 0.552145, loss_binary_maps: 0.152906, avg_reader_cost: 1.50837 s, avg_batch_cost: 1.74055 s, avg_samples: 12.5, ips: 7.18166 samples/s, eta: 4:53:57
[2024/07/28 00:46:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:47:01] ppocr INFO: epoch: [540/1500], global_step: 1620, lr: 0.001000, loss: 1.471976, loss_shrink_maps: 0.769771, loss_threshold_maps: 0.555886, loss_binary_maps: 0.152906, avg_reader_cost: 1.49094 s, avg_batch_cost: 1.72612 s, avg_samples: 12.5, ips: 7.24169 samples/s, eta: 4:53:37

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<01:00,  8.21it/s]
eval model::   1%|          | 4/500 [00:00<00:33, 14.62it/s]
eval model::   1%|          | 6/500 [00:00<00:30, 16.22it/s]
eval model::   2%|▏         | 8/500 [00:00<00:29, 16.43it/s]
eval model::   2%|▏         | 11/500 [00:00<00:33, 14.65it/s]
eval model::   3%|▎         | 14/500 [00:00<00:29, 16.71it/s]
eval model::   3%|▎         | 17/500 [00:01<00:25, 19.03it/s]
eval model::   4%|▍         | 20/500 [00:01<00:24, 19.80it/s]
eval model::   5%|▍         | 23/500 [00:01<00:21, 21.91it/s]
eval model::   5%|▌         | 26/500 [00:01<00:22, 21.42it/s]
eval model::   6%|▌         | 29/500 [00:01<00:22, 21.39it/s]
eval model::   6%|▋         | 32/500 [00:01<00:23, 20.21it/s]
eval model::   7%|▋         | 35/500 [00:01<00:24, 19.34it/s]
eval model::   8%|▊         | 38/500 [00:02<00:22, 20.20it/s]
eval model::   8%|▊         | 41/500 [00:02<00:23, 19.82it/s]
eval model::   9%|▉         | 44/500 [00:02<00:24, 18.72it/s]
eval model::   9%|▉         | 46/500 [00:02<00:25, 17.66it/s]
eval model::  10%|▉         | 49/500 [00:02<00:22, 19.79it/s]
eval model::  10%|█         | 52/500 [00:02<00:22, 19.58it/s]
eval model::  11%|█         | 55/500 [00:02<00:21, 20.32it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:24, 18.22it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:27, 15.95it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:27, 15.88it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:23, 18.43it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:20, 20.75it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:19, 21.55it/s]
eval model::  15%|█▌        | 75/500 [00:03<00:19, 22.35it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:19, 21.32it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:17, 24.00it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:17, 23.45it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:19, 21.23it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:21, 19.34it/s]
eval model::  19%|█▉        | 94/500 [00:04<00:19, 20.41it/s]
eval model::  19%|█▉        | 97/500 [00:04<00:19, 20.59it/s]
eval model::  20%|██        | 100/500 [00:05<00:20, 19.39it/s]
eval model::  21%|██        | 103/500 [00:05<00:18, 21.51it/s]
eval model::  21%|██▏       | 107/500 [00:05<00:17, 22.94it/s]
eval model::  22%|██▏       | 110/500 [00:05<00:18, 20.78it/s]
eval model::  23%|██▎       | 113/500 [00:05<00:18, 21.16it/s]
eval model::  23%|██▎       | 116/500 [00:05<00:18, 21.19it/s]
eval model::  24%|██▍       | 119/500 [00:06<00:17, 21.46it/s]
eval model::  24%|██▍       | 122/500 [00:06<00:17, 22.15it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:20, 18.35it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:17, 21.06it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:20, 18.39it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:17, 20.63it/s]
eval model::  28%|██▊       | 138/500 [00:06<00:17, 20.77it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:17, 20.86it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:15, 22.41it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:18, 19.05it/s]
eval model::  30%|███       | 150/500 [00:07<00:17, 19.78it/s]
eval model::  31%|███       | 153/500 [00:07<00:18, 18.42it/s]
eval model::  31%|███       | 156/500 [00:07<00:16, 20.81it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:17, 19.39it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:20, 16.80it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:19, 17.25it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:18, 17.77it/s]
eval model::  34%|███▍      | 170/500 [00:08<00:16, 20.25it/s]
eval model::  35%|███▍      | 173/500 [00:08<00:16, 19.34it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:22, 14.37it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:19, 16.76it/s]
eval model::  36%|███▋      | 182/500 [00:09<00:20, 15.27it/s]
eval model::  37%|███▋      | 185/500 [00:09<00:17, 17.92it/s]
eval model::  38%|███▊      | 188/500 [00:09<00:17, 18.25it/s]
eval model::  38%|███▊      | 191/500 [00:09<00:15, 19.65it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:15, 20.20it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:14, 20.38it/s]
eval model::  40%|████      | 201/500 [00:10<00:14, 20.61it/s]
eval model::  41%|████      | 205/500 [00:10<00:21, 13.48it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:20, 14.06it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:20, 14.18it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.30it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:21, 13.35it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:21, 13.14it/s]
eval model::  44%|████▍     | 219/500 [00:11<00:19, 14.33it/s]
eval model::  44%|████▍     | 221/500 [00:11<00:20, 13.65it/s]
eval model::  45%|████▍     | 224/500 [00:12<00:17, 15.83it/s]
eval model::  45%|████▌     | 227/500 [00:12<00:15, 17.81it/s]
eval model::  46%|████▌     | 231/500 [00:12<00:12, 21.90it/s]
eval model::  47%|████▋     | 234/500 [00:12<00:12, 21.40it/s]
eval model::  47%|████▋     | 237/500 [00:12<00:11, 22.14it/s]
eval model::  48%|████▊     | 240/500 [00:12<00:11, 21.79it/s]
eval model::  49%|████▊     | 243/500 [00:12<00:13, 19.45it/s]
eval model::  49%|████▉     | 247/500 [00:13<00:11, 22.44it/s]
eval model::  50%|█████     | 250/500 [00:13<00:12, 20.70it/s]
eval model::  51%|█████     | 253/500 [00:13<00:11, 21.82it/s]
eval model::  51%|█████     | 256/500 [00:13<00:11, 21.42it/s]
eval model::  52%|█████▏    | 259/500 [00:13<00:11, 21.49it/s]
eval model::  52%|█████▏    | 262/500 [00:13<00:11, 20.55it/s]
eval model::  53%|█████▎    | 265/500 [00:13<00:11, 20.48it/s]
eval model::  54%|█████▎    | 268/500 [00:14<00:10, 21.23it/s]
eval model::  54%|█████▍    | 271/500 [00:14<00:12, 18.86it/s]
eval model::  55%|█████▍    | 273/500 [00:14<00:12, 17.98it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:12, 17.87it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:10, 20.33it/s]
eval model::  56%|█████▌    | 281/500 [00:14<00:10, 21.39it/s]
eval model::  57%|█████▋    | 284/500 [00:14<00:09, 22.70it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:17, 12.23it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:13, 15.86it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:12, 16.11it/s]
eval model::  59%|█████▉    | 297/500 [00:15<00:14, 14.12it/s]
eval model::  60%|██████    | 300/500 [00:16<00:12, 15.40it/s]
eval model::  61%|██████    | 303/500 [00:16<00:11, 17.13it/s]
eval model::  61%|██████    | 306/500 [00:16<00:10, 18.44it/s]
eval model::  62%|██████▏   | 309/500 [00:16<00:09, 19.84it/s]
eval model::  62%|██████▏   | 312/500 [00:16<00:08, 21.32it/s]
eval model::  63%|██████▎   | 315/500 [00:16<00:08, 21.56it/s]
eval model::  64%|██████▎   | 318/500 [00:16<00:08, 21.70it/s]
eval model::  64%|██████▍   | 321/500 [00:17<00:08, 20.57it/s]
eval model::  65%|██████▍   | 324/500 [00:17<00:08, 19.81it/s]
eval model::  65%|██████▌   | 327/500 [00:17<00:08, 21.38it/s]
eval model::  66%|██████▌   | 330/500 [00:17<00:08, 19.71it/s]
eval model::  67%|██████▋   | 333/500 [00:17<00:07, 21.12it/s]
eval model::  67%|██████▋   | 336/500 [00:17<00:07, 21.56it/s]
eval model::  68%|██████▊   | 339/500 [00:17<00:08, 20.03it/s]
eval model::  68%|██████▊   | 342/500 [00:18<00:10, 14.77it/s]
eval model::  69%|██████▉   | 346/500 [00:18<00:08, 18.27it/s]
eval model::  70%|██████▉   | 349/500 [00:18<00:07, 20.48it/s]
eval model::  70%|███████   | 352/500 [00:18<00:06, 21.90it/s]
eval model::  71%|███████   | 355/500 [00:18<00:06, 22.16it/s]
eval model::  72%|███████▏  | 358/500 [00:18<00:06, 21.80it/s]
eval model::  72%|███████▏  | 361/500 [00:19<00:07, 19.25it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:07, 18.10it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:07, 17.15it/s]
eval model::  74%|███████▍  | 369/500 [00:19<00:07, 18.71it/s]
eval model::  74%|███████▍  | 372/500 [00:19<00:06, 19.15it/s]
eval model::  75%|███████▌  | 375/500 [00:19<00:06, 20.34it/s]
eval model::  76%|███████▌  | 379/500 [00:19<00:05, 23.82it/s]
eval model::  76%|███████▋  | 382/500 [00:20<00:05, 22.52it/s]
eval model::  77%|███████▋  | 385/500 [00:20<00:04, 23.85it/s]
eval model::  78%|███████▊  | 388/500 [00:20<00:08, 12.82it/s]
eval model::  78%|███████▊  | 391/500 [00:20<00:07, 14.57it/s]
eval model::  79%|███████▉  | 394/500 [00:20<00:06, 16.50it/s]
eval model::  79%|███████▉  | 397/500 [00:21<00:05, 18.84it/s]
eval model::  80%|████████  | 400/500 [00:21<00:05, 19.17it/s]
eval model::  81%|████████  | 403/500 [00:21<00:04, 20.42it/s]
eval model::  81%|████████  | 406/500 [00:21<00:04, 21.12it/s]
eval model::  82%|████████▏ | 410/500 [00:21<00:03, 23.02it/s]
eval model::  83%|████████▎ | 413/500 [00:21<00:03, 22.63it/s]
eval model::  83%|████████▎ | 416/500 [00:21<00:03, 22.49it/s]
eval model::  84%|████████▍ | 419/500 [00:22<00:04, 19.96it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:05, 13.79it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:05, 13.25it/s]
eval model::  85%|████████▌ | 426/500 [00:22<00:05, 13.85it/s]
eval model::  86%|████████▌ | 429/500 [00:22<00:04, 16.72it/s]
eval model::  86%|████████▌ | 431/500 [00:22<00:04, 16.54it/s]
eval model::  87%|████████▋ | 435/500 [00:23<00:03, 21.33it/s]
eval model::  88%|████████▊ | 438/500 [00:23<00:02, 22.05it/s]
eval model::  88%|████████▊ | 441/500 [00:23<00:02, 21.32it/s]
eval model::  89%|████████▉ | 444/500 [00:23<00:02, 22.78it/s]
eval model::  89%|████████▉ | 447/500 [00:23<00:02, 23.62it/s]
eval model::  90%|█████████ | 450/500 [00:23<00:02, 21.46it/s]
eval model::  91%|█████████ | 453/500 [00:23<00:02, 23.24it/s]
eval model::  91%|█████████ | 456/500 [00:23<00:01, 23.23it/s]
eval model::  92%|█████████▏| 459/500 [00:24<00:01, 24.50it/s]
eval model::  92%|█████████▏| 462/500 [00:24<00:01, 20.60it/s]
eval model::  93%|█████████▎| 465/500 [00:24<00:01, 18.94it/s]
eval model::  94%|█████████▎| 468/500 [00:24<00:01, 20.52it/s]
eval model::  94%|█████████▍| 471/500 [00:24<00:01, 21.74it/s]
eval model::  95%|█████████▍| 474/500 [00:24<00:01, 21.30it/s]
eval model::  95%|█████████▌| 477/500 [00:24<00:01, 21.93it/s]
eval model::  96%|█████████▌| 480/500 [00:25<00:00, 21.70it/s]
eval model::  97%|█████████▋| 483/500 [00:25<00:00, 21.53it/s]
eval model::  97%|█████████▋| 486/500 [00:25<00:00, 19.37it/s]
eval model::  98%|█████████▊| 489/500 [00:25<00:00, 20.95it/s]
eval model::  98%|█████████▊| 492/500 [00:25<00:00, 20.75it/s]
eval model::  99%|█████████▉| 495/500 [00:25<00:00, 21.81it/s]
eval model:: 100%|█████████▉| 498/500 [00:25<00:00, 23.53it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 19.21it/s]
[2024/07/28 00:47:27] ppocr INFO: cur metric, precision: 0.7039957939011566, recall: 0.6446798266730862, hmean: 0.67303342548379, fps: 47.18240125447044
[2024/07/28 00:47:27] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/28 00:47:27] ppocr INFO: best metric, hmean: 0.67303342548379, precision: 0.7039957939011566, recall: 0.6446798266730862, fps: 47.18240125447044, best_epoch: 540
[2024/07/28 00:47:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:47:35] ppocr INFO: epoch: [541/1500], global_step: 1623, lr: 0.001000, loss: 1.515855, loss_shrink_maps: 0.785415, loss_threshold_maps: 0.571882, loss_binary_maps: 0.156507, avg_reader_cost: 1.72635 s, avg_batch_cost: 2.00643 s, avg_samples: 12.5, ips: 6.22998 samples/s, eta: 4:53:21
[2024/07/28 00:47:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:47:43] ppocr INFO: epoch: [542/1500], global_step: 1626, lr: 0.001000, loss: 1.525031, loss_shrink_maps: 0.793041, loss_threshold_maps: 0.571882, loss_binary_maps: 0.158021, avg_reader_cost: 1.63732 s, avg_batch_cost: 1.86679 s, avg_samples: 12.5, ips: 6.69598 samples/s, eta: 4:53:04
[2024/07/28 00:47:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:47:52] ppocr INFO: epoch: [543/1500], global_step: 1629, lr: 0.001000, loss: 1.497808, loss_shrink_maps: 0.779059, loss_threshold_maps: 0.564090, loss_binary_maps: 0.155372, avg_reader_cost: 1.51560 s, avg_batch_cost: 1.74519 s, avg_samples: 12.5, ips: 7.16253 samples/s, eta: 4:52:44
[2024/07/28 00:47:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:47:58] ppocr INFO: epoch: [544/1500], global_step: 1630, lr: 0.001000, loss: 1.470832, loss_shrink_maps: 0.770229, loss_threshold_maps: 0.559466, loss_binary_maps: 0.153286, avg_reader_cost: 0.43414 s, avg_batch_cost: 0.51889 s, avg_samples: 4.8, ips: 9.25050 samples/s, eta: 4:52:36
[2024/07/28 00:48:00] ppocr INFO: epoch: [544/1500], global_step: 1632, lr: 0.001000, loss: 1.537154, loss_shrink_maps: 0.794106, loss_threshold_maps: 0.575043, loss_binary_maps: 0.158193, avg_reader_cost: 1.12920 s, avg_batch_cost: 1.27520 s, avg_samples: 7.7, ips: 6.03827 samples/s, eta: 4:52:25
[2024/07/28 00:48:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:48:08] ppocr INFO: epoch: [545/1500], global_step: 1635, lr: 0.001000, loss: 1.537154, loss_shrink_maps: 0.794106, loss_threshold_maps: 0.572653, loss_binary_maps: 0.158193, avg_reader_cost: 1.53402 s, avg_batch_cost: 1.77250 s, avg_samples: 12.5, ips: 7.05217 samples/s, eta: 4:52:05
[2024/07/28 00:48:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:48:16] ppocr INFO: epoch: [546/1500], global_step: 1638, lr: 0.001000, loss: 1.498054, loss_shrink_maps: 0.770778, loss_threshold_maps: 0.567251, loss_binary_maps: 0.153729, avg_reader_cost: 1.52604 s, avg_batch_cost: 1.75899 s, avg_samples: 12.5, ips: 7.10636 samples/s, eta: 4:51:45
[2024/07/28 00:48:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:48:24] ppocr INFO: epoch: [547/1500], global_step: 1640, lr: 0.001000, loss: 1.537154, loss_shrink_maps: 0.794106, loss_threshold_maps: 0.567251, loss_binary_maps: 0.158193, avg_reader_cost: 0.90522 s, avg_batch_cost: 1.08202 s, avg_samples: 9.6, ips: 8.87231 samples/s, eta: 4:51:31
[2024/07/28 00:48:24] ppocr INFO: epoch: [547/1500], global_step: 1641, lr: 0.001000, loss: 1.572597, loss_shrink_maps: 0.808178, loss_threshold_maps: 0.568818, loss_binary_maps: 0.160610, avg_reader_cost: 0.58667 s, avg_batch_cost: 0.64137 s, avg_samples: 2.9, ips: 4.52159 samples/s, eta: 4:51:25
[2024/07/28 00:48:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:48:33] ppocr INFO: epoch: [548/1500], global_step: 1644, lr: 0.001000, loss: 1.537154, loss_shrink_maps: 0.794106, loss_threshold_maps: 0.568818, loss_binary_maps: 0.158193, avg_reader_cost: 1.57999 s, avg_batch_cost: 1.84087 s, avg_samples: 12.5, ips: 6.79026 samples/s, eta: 4:51:07
[2024/07/28 00:48:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:48:41] ppocr INFO: epoch: [549/1500], global_step: 1647, lr: 0.001000, loss: 1.558770, loss_shrink_maps: 0.808178, loss_threshold_maps: 0.568818, loss_binary_maps: 0.160610, avg_reader_cost: 1.51019 s, avg_batch_cost: 1.74115 s, avg_samples: 12.5, ips: 7.17916 samples/s, eta: 4:50:47
[2024/07/28 00:48:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:48:50] ppocr INFO: epoch: [550/1500], global_step: 1650, lr: 0.001000, loss: 1.530367, loss_shrink_maps: 0.800463, loss_threshold_maps: 0.565029, loss_binary_maps: 0.159330, avg_reader_cost: 1.52728 s, avg_batch_cost: 1.82010 s, avg_samples: 12.5, ips: 6.86776 samples/s, eta: 4:50:28
[2024/07/28 00:48:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:48:58] ppocr INFO: epoch: [551/1500], global_step: 1653, lr: 0.001000, loss: 1.498114, loss_shrink_maps: 0.784873, loss_threshold_maps: 0.561846, loss_binary_maps: 0.155993, avg_reader_cost: 1.56722 s, avg_batch_cost: 1.79608 s, avg_samples: 12.5, ips: 6.95961 samples/s, eta: 4:50:09
[2024/07/28 00:49:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:49:07] ppocr INFO: epoch: [552/1500], global_step: 1656, lr: 0.001000, loss: 1.491523, loss_shrink_maps: 0.781287, loss_threshold_maps: 0.558868, loss_binary_maps: 0.155206, avg_reader_cost: 1.66176 s, avg_batch_cost: 1.89073 s, avg_samples: 12.5, ips: 6.61120 samples/s, eta: 4:49:52
[2024/07/28 00:49:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:49:15] ppocr INFO: epoch: [553/1500], global_step: 1659, lr: 0.001000, loss: 1.491523, loss_shrink_maps: 0.781287, loss_threshold_maps: 0.558868, loss_binary_maps: 0.155206, avg_reader_cost: 1.56787 s, avg_batch_cost: 1.79715 s, avg_samples: 12.5, ips: 6.95548 samples/s, eta: 4:49:33
[2024/07/28 00:49:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:49:22] ppocr INFO: epoch: [554/1500], global_step: 1660, lr: 0.001000, loss: 1.488370, loss_shrink_maps: 0.773643, loss_threshold_maps: 0.552983, loss_binary_maps: 0.153740, avg_reader_cost: 0.43822 s, avg_batch_cost: 0.52027 s, avg_samples: 4.8, ips: 9.22601 samples/s, eta: 4:49:25
[2024/07/28 00:49:23] ppocr INFO: epoch: [554/1500], global_step: 1662, lr: 0.001000, loss: 1.488370, loss_shrink_maps: 0.773643, loss_threshold_maps: 0.547243, loss_binary_maps: 0.153740, avg_reader_cost: 1.13225 s, avg_batch_cost: 1.27853 s, avg_samples: 7.7, ips: 6.02253 samples/s, eta: 4:49:14
[2024/07/28 00:49:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:49:32] ppocr INFO: epoch: [555/1500], global_step: 1665, lr: 0.001000, loss: 1.477059, loss_shrink_maps: 0.773643, loss_threshold_maps: 0.544527, loss_binary_maps: 0.153740, avg_reader_cost: 1.56405 s, avg_batch_cost: 1.79217 s, avg_samples: 12.5, ips: 6.97477 samples/s, eta: 4:48:55
[2024/07/28 00:49:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:49:40] ppocr INFO: epoch: [556/1500], global_step: 1668, lr: 0.001000, loss: 1.461368, loss_shrink_maps: 0.764073, loss_threshold_maps: 0.548192, loss_binary_maps: 0.152103, avg_reader_cost: 1.50722 s, avg_batch_cost: 1.74445 s, avg_samples: 12.5, ips: 7.16557 samples/s, eta: 4:48:35
[2024/07/28 00:49:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:49:48] ppocr INFO: epoch: [557/1500], global_step: 1670, lr: 0.001000, loss: 1.477059, loss_shrink_maps: 0.773643, loss_threshold_maps: 0.555010, loss_binary_maps: 0.153740, avg_reader_cost: 0.95701 s, avg_batch_cost: 1.16285 s, avg_samples: 9.6, ips: 8.25556 samples/s, eta: 4:48:22
[2024/07/28 00:49:48] ppocr INFO: epoch: [557/1500], global_step: 1671, lr: 0.001000, loss: 1.480212, loss_shrink_maps: 0.782357, loss_threshold_maps: 0.555010, loss_binary_maps: 0.155206, avg_reader_cost: 0.62704 s, avg_batch_cost: 0.68207 s, avg_samples: 2.9, ips: 4.25174 samples/s, eta: 4:48:17
[2024/07/28 00:49:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:49:57] ppocr INFO: epoch: [558/1500], global_step: 1674, lr: 0.001000, loss: 1.503486, loss_shrink_maps: 0.793094, loss_threshold_maps: 0.553558, loss_binary_maps: 0.157842, avg_reader_cost: 1.60753 s, avg_batch_cost: 1.84249 s, avg_samples: 12.5, ips: 6.78431 samples/s, eta: 4:47:59
[2024/07/28 00:49:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:50:05] ppocr INFO: epoch: [559/1500], global_step: 1677, lr: 0.001000, loss: 1.522092, loss_shrink_maps: 0.806200, loss_threshold_maps: 0.562235, loss_binary_maps: 0.160921, avg_reader_cost: 1.52050 s, avg_batch_cost: 1.75289 s, avg_samples: 12.5, ips: 7.13109 samples/s, eta: 4:47:39
[2024/07/28 00:50:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:50:14] ppocr INFO: epoch: [560/1500], global_step: 1680, lr: 0.001000, loss: 1.532104, loss_shrink_maps: 0.806200, loss_threshold_maps: 0.567070, loss_binary_maps: 0.160921, avg_reader_cost: 1.54110 s, avg_batch_cost: 1.78842 s, avg_samples: 12.5, ips: 6.98942 samples/s, eta: 4:47:20

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:51,  9.67it/s]
eval model::   1%|          | 4/500 [00:00<00:26, 18.74it/s]
eval model::   1%|          | 6/500 [00:00<00:26, 18.70it/s]
eval model::   2%|▏         | 8/500 [00:00<00:28, 17.15it/s]
eval model::   2%|▏         | 11/500 [00:00<00:27, 17.76it/s]
eval model::   3%|▎         | 14/500 [00:00<00:26, 18.46it/s]
eval model::   3%|▎         | 16/500 [00:00<00:25, 18.69it/s]
eval model::   4%|▍         | 19/500 [00:01<00:24, 19.92it/s]
eval model::   4%|▍         | 21/500 [00:01<00:24, 19.82it/s]
eval model::   5%|▍         | 24/500 [00:01<00:21, 22.32it/s]
eval model::   5%|▌         | 27/500 [00:01<00:20, 22.86it/s]
eval model::   6%|▌         | 30/500 [00:01<00:20, 22.95it/s]
eval model::   7%|▋         | 33/500 [00:01<00:21, 21.79it/s]
eval model::   7%|▋         | 36/500 [00:01<00:22, 20.47it/s]
eval model::   8%|▊         | 39/500 [00:02<00:27, 16.86it/s]
eval model::   8%|▊         | 42/500 [00:02<00:27, 16.81it/s]
eval model::   9%|▉         | 45/500 [00:02<00:24, 18.85it/s]
eval model::  10%|▉         | 48/500 [00:02<00:26, 17.32it/s]
eval model::  10%|█         | 51/500 [00:02<00:24, 18.27it/s]
eval model::  11%|█         | 54/500 [00:02<00:22, 20.04it/s]
eval model::  11%|█▏        | 57/500 [00:02<00:21, 21.03it/s]
eval model::  12%|█▏        | 60/500 [00:03<00:21, 20.62it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:29, 14.99it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:25, 17.23it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:22, 19.02it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:21, 20.20it/s]
eval model::  15%|█▌        | 75/500 [00:03<00:20, 20.43it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:20, 20.88it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:19, 21.94it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:18, 22.54it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:19, 20.79it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:22, 18.45it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:21, 19.00it/s]
eval model::  19%|█▉        | 96/500 [00:04<00:20, 20.17it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:19, 20.45it/s]
eval model::  20%|██        | 102/500 [00:05<00:20, 19.20it/s]
eval model::  21%|██        | 106/500 [00:05<00:17, 22.04it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:18, 20.86it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:19, 19.93it/s]
eval model::  23%|██▎       | 115/500 [00:05<00:19, 19.96it/s]
eval model::  24%|██▎       | 118/500 [00:06<00:18, 20.69it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:18, 20.23it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:19, 19.60it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:19, 19.35it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:18, 20.54it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:20, 17.74it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:18, 20.22it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:17, 21.13it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:17, 20.09it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:17, 20.93it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:18, 18.62it/s]
eval model::  30%|███       | 150/500 [00:07<00:17, 20.24it/s]
eval model::  31%|███       | 153/500 [00:07<00:17, 19.45it/s]
eval model::  31%|███       | 156/500 [00:07<00:15, 21.55it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:15, 22.03it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:18, 18.52it/s]
eval model::  33%|███▎      | 165/500 [00:08<00:17, 18.71it/s]
eval model::  34%|███▎      | 168/500 [00:08<00:17, 19.49it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:16, 20.28it/s]
eval model::  35%|███▍      | 174/500 [00:08<00:16, 19.60it/s]
eval model::  35%|███▌      | 177/500 [00:08<00:15, 20.30it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:19, 16.20it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:18, 17.20it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:16, 18.94it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:15, 20.53it/s]
eval model::  38%|███▊      | 192/500 [00:09<00:14, 21.21it/s]
eval model::  39%|███▉      | 195/500 [00:09<00:14, 20.58it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:13, 21.86it/s]
eval model::  40%|████      | 201/500 [00:10<00:14, 21.15it/s]
eval model::  41%|████      | 204/500 [00:10<00:13, 22.37it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:21, 13.50it/s]
eval model::  42%|████▏     | 210/500 [00:10<00:20, 14.14it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.50it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:19, 14.27it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:21, 12.91it/s]
eval model::  44%|████▍     | 219/500 [00:11<00:20, 13.82it/s]
eval model::  44%|████▍     | 221/500 [00:11<00:21, 12.89it/s]
eval model::  45%|████▍     | 224/500 [00:11<00:17, 15.66it/s]
eval model::  45%|████▌     | 227/500 [00:12<00:15, 17.40it/s]
eval model::  46%|████▌     | 231/500 [00:12<00:12, 22.10it/s]
eval model::  47%|████▋     | 234/500 [00:12<00:11, 22.25it/s]
eval model::  47%|████▋     | 237/500 [00:12<00:11, 23.42it/s]
eval model::  48%|████▊     | 240/500 [00:12<00:10, 23.76it/s]
eval model::  49%|████▊     | 243/500 [00:12<00:13, 18.66it/s]
eval model::  49%|████▉     | 246/500 [00:12<00:12, 20.35it/s]
eval model::  50%|████▉     | 249/500 [00:13<00:12, 19.93it/s]
eval model::  50%|█████     | 252/500 [00:13<00:12, 20.53it/s]
eval model::  51%|█████     | 255/500 [00:13<00:11, 21.46it/s]
eval model::  52%|█████▏    | 258/500 [00:13<00:10, 22.20it/s]
eval model::  52%|█████▏    | 261/500 [00:13<00:10, 22.78it/s]
eval model::  53%|█████▎    | 264/500 [00:13<00:12, 19.34it/s]
eval model::  53%|█████▎    | 267/500 [00:13<00:11, 20.13it/s]
eval model::  54%|█████▍    | 270/500 [00:14<00:11, 20.17it/s]
eval model::  55%|█████▍    | 273/500 [00:14<00:11, 19.63it/s]
eval model::  55%|█████▌    | 276/500 [00:14<00:13, 17.08it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:12, 17.34it/s]
eval model::  56%|█████▌    | 280/500 [00:14<00:12, 17.63it/s]
eval model::  57%|█████▋    | 283/500 [00:14<00:11, 19.20it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:23,  9.31it/s]
eval model::  58%|█████▊    | 288/500 [00:15<00:17, 11.83it/s]
eval model::  58%|█████▊    | 292/500 [00:15<00:13, 15.60it/s]
eval model::  59%|█████▉    | 295/500 [00:15<00:15, 13.61it/s]
eval model::  60%|█████▉    | 299/500 [00:15<00:11, 17.26it/s]
eval model::  60%|██████    | 302/500 [00:16<00:11, 17.47it/s]
eval model::  61%|██████    | 305/500 [00:16<00:10, 19.42it/s]
eval model::  62%|██████▏   | 308/500 [00:16<00:09, 20.45it/s]
eval model::  62%|██████▏   | 311/500 [00:16<00:08, 21.43it/s]
eval model::  63%|██████▎   | 314/500 [00:16<00:08, 20.90it/s]
eval model::  63%|██████▎   | 317/500 [00:16<00:08, 21.71it/s]
eval model::  64%|██████▍   | 320/500 [00:16<00:07, 22.61it/s]
eval model::  65%|██████▍   | 323/500 [00:17<00:09, 19.55it/s]
eval model::  65%|██████▌   | 326/500 [00:17<00:08, 21.04it/s]
eval model::  66%|██████▌   | 329/500 [00:17<00:08, 21.23it/s]
eval model::  66%|██████▋   | 332/500 [00:17<00:07, 21.38it/s]
eval model::  67%|██████▋   | 336/500 [00:17<00:07, 22.08it/s]
eval model::  68%|██████▊   | 339/500 [00:17<00:07, 20.58it/s]
eval model::  68%|██████▊   | 342/500 [00:18<00:09, 16.04it/s]
eval model::  69%|██████▉   | 345/500 [00:18<00:08, 18.23it/s]
eval model::  70%|██████▉   | 348/500 [00:18<00:08, 18.86it/s]
eval model::  70%|███████   | 351/500 [00:18<00:07, 20.67it/s]
eval model::  71%|███████   | 354/500 [00:18<00:06, 22.31it/s]
eval model::  71%|███████▏  | 357/500 [00:18<00:06, 20.44it/s]
eval model::  72%|███████▏  | 360/500 [00:18<00:06, 21.79it/s]
eval model::  73%|███████▎  | 363/500 [00:19<00:07, 19.47it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:07, 17.78it/s]
eval model::  74%|███████▎  | 368/500 [00:19<00:07, 18.20it/s]
eval model::  74%|███████▍  | 370/500 [00:19<00:07, 18.19it/s]
eval model::  75%|███████▍  | 373/500 [00:19<00:06, 19.28it/s]
eval model::  75%|███████▌  | 376/500 [00:19<00:06, 19.50it/s]
eval model::  76%|███████▌  | 379/500 [00:19<00:05, 21.35it/s]
eval model::  76%|███████▋  | 382/500 [00:20<00:05, 19.79it/s]
eval model::  77%|███████▋  | 385/500 [00:20<00:05, 22.01it/s]
eval model::  78%|███████▊  | 388/500 [00:20<00:08, 13.67it/s]
eval model::  78%|███████▊  | 391/500 [00:20<00:06, 15.97it/s]
eval model::  79%|███████▉  | 394/500 [00:20<00:06, 17.35it/s]
eval model::  79%|███████▉  | 397/500 [00:20<00:05, 19.20it/s]
eval model::  80%|████████  | 400/500 [00:21<00:05, 19.04it/s]
eval model::  81%|████████  | 403/500 [00:21<00:05, 19.11it/s]
eval model::  81%|████████  | 406/500 [00:21<00:04, 20.29it/s]
eval model::  82%|████████▏ | 409/500 [00:21<00:04, 21.55it/s]
eval model::  82%|████████▏ | 412/500 [00:21<00:04, 21.95it/s]
eval model::  83%|████████▎ | 415/500 [00:21<00:04, 20.08it/s]
eval model::  84%|████████▎ | 418/500 [00:22<00:04, 18.12it/s]
eval model::  84%|████████▍ | 420/500 [00:22<00:05, 14.29it/s]
eval model::  85%|████████▍ | 423/500 [00:22<00:04, 15.98it/s]
eval model::  85%|████████▌ | 425/500 [00:22<00:04, 15.21it/s]
eval model::  86%|████████▌ | 428/500 [00:22<00:04, 17.60it/s]
eval model::  86%|████████▌ | 431/500 [00:22<00:03, 18.88it/s]
eval model::  87%|████████▋ | 435/500 [00:22<00:02, 21.95it/s]
eval model::  88%|████████▊ | 438/500 [00:23<00:02, 23.49it/s]
eval model::  88%|████████▊ | 441/500 [00:23<00:02, 22.32it/s]
eval model::  89%|████████▉ | 445/500 [00:23<00:02, 23.87it/s]
eval model::  90%|████████▉ | 448/500 [00:23<00:02, 23.24it/s]
eval model::  90%|█████████ | 451/500 [00:23<00:02, 22.02it/s]
eval model::  91%|█████████ | 454/500 [00:23<00:02, 22.73it/s]
eval model::  91%|█████████▏| 457/500 [00:23<00:01, 24.01it/s]
eval model::  92%|█████████▏| 460/500 [00:24<00:01, 23.02it/s]
eval model::  93%|█████████▎| 463/500 [00:24<00:01, 19.36it/s]
eval model::  93%|█████████▎| 466/500 [00:24<00:01, 18.78it/s]
eval model::  94%|█████████▎| 468/500 [00:24<00:01, 18.56it/s]
eval model::  94%|█████████▍| 471/500 [00:24<00:01, 20.20it/s]
eval model::  95%|█████████▍| 474/500 [00:24<00:01, 19.58it/s]
eval model::  95%|█████████▌| 477/500 [00:24<00:01, 20.85it/s]
eval model::  96%|█████████▌| 480/500 [00:25<00:00, 22.19it/s]
eval model::  97%|█████████▋| 483/500 [00:25<00:00, 21.28it/s]
eval model::  97%|█████████▋| 486/500 [00:25<00:00, 21.27it/s]
eval model::  98%|█████████▊| 489/500 [00:25<00:00, 22.27it/s]
eval model::  98%|█████████▊| 492/500 [00:25<00:00, 18.73it/s]
eval model::  99%|█████████▉| 494/500 [00:25<00:00, 18.76it/s]
eval model::  99%|█████████▉| 496/500 [00:25<00:00, 18.94it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 22.03it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 19.21it/s]
[2024/07/28 00:50:40] ppocr INFO: cur metric, precision: 0.7055427251732102, recall: 0.588348579682234, hmean: 0.6416382252559727, fps: 44.10649999193438
[2024/07/28 00:50:40] ppocr INFO: best metric, hmean: 0.67303342548379, precision: 0.7039957939011566, recall: 0.6446798266730862, fps: 47.18240125447044, best_epoch: 540
[2024/07/28 00:50:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:50:48] ppocr INFO: epoch: [561/1500], global_step: 1683, lr: 0.001000, loss: 1.522092, loss_shrink_maps: 0.805542, loss_threshold_maps: 0.563463, loss_binary_maps: 0.160331, avg_reader_cost: 1.78106 s, avg_batch_cost: 2.11149 s, avg_samples: 12.5, ips: 5.91998 samples/s, eta: 4:47:06
[2024/07/28 00:50:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:50:56] ppocr INFO: epoch: [562/1500], global_step: 1686, lr: 0.001000, loss: 1.532104, loss_shrink_maps: 0.804571, loss_threshold_maps: 0.567070, loss_binary_maps: 0.159245, avg_reader_cost: 1.57707 s, avg_batch_cost: 1.81753 s, avg_samples: 12.5, ips: 6.87746 samples/s, eta: 4:46:48
[2024/07/28 00:50:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:51:04] ppocr INFO: epoch: [563/1500], global_step: 1689, lr: 0.001000, loss: 1.525178, loss_shrink_maps: 0.795988, loss_threshold_maps: 0.565666, loss_binary_maps: 0.158063, avg_reader_cost: 1.59484 s, avg_batch_cost: 1.82601 s, avg_samples: 12.5, ips: 6.84553 samples/s, eta: 4:46:29
[2024/07/28 00:51:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:51:11] ppocr INFO: epoch: [564/1500], global_step: 1690, lr: 0.001000, loss: 1.532104, loss_shrink_maps: 0.804571, loss_threshold_maps: 0.567171, loss_binary_maps: 0.159245, avg_reader_cost: 0.42095 s, avg_batch_cost: 0.50359 s, avg_samples: 4.8, ips: 9.53160 samples/s, eta: 4:46:21
[2024/07/28 00:51:13] ppocr INFO: epoch: [564/1500], global_step: 1692, lr: 0.001000, loss: 1.532104, loss_shrink_maps: 0.795988, loss_threshold_maps: 0.567171, loss_binary_maps: 0.158063, avg_reader_cost: 1.09838 s, avg_batch_cost: 1.24407 s, avg_samples: 7.7, ips: 6.18937 samples/s, eta: 4:46:09
[2024/07/28 00:51:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:51:21] ppocr INFO: epoch: [565/1500], global_step: 1695, lr: 0.001000, loss: 1.533345, loss_shrink_maps: 0.795988, loss_threshold_maps: 0.584605, loss_binary_maps: 0.158063, avg_reader_cost: 1.58131 s, avg_batch_cost: 1.80965 s, avg_samples: 12.5, ips: 6.90742 samples/s, eta: 4:45:51
[2024/07/28 00:51:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:51:30] ppocr INFO: epoch: [566/1500], global_step: 1698, lr: 0.001000, loss: 1.534520, loss_shrink_maps: 0.790645, loss_threshold_maps: 0.586275, loss_binary_maps: 0.156884, avg_reader_cost: 1.55075 s, avg_batch_cost: 1.83471 s, avg_samples: 12.5, ips: 6.81307 samples/s, eta: 4:45:32
[2024/07/28 00:51:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:51:37] ppocr INFO: epoch: [567/1500], global_step: 1700, lr: 0.001000, loss: 1.500569, loss_shrink_maps: 0.776056, loss_threshold_maps: 0.572288, loss_binary_maps: 0.154428, avg_reader_cost: 0.97519 s, avg_batch_cost: 1.16054 s, avg_samples: 9.6, ips: 8.27203 samples/s, eta: 4:45:19
[2024/07/28 00:51:38] ppocr INFO: epoch: [567/1500], global_step: 1701, lr: 0.001000, loss: 1.514577, loss_shrink_maps: 0.777291, loss_threshold_maps: 0.581668, loss_binary_maps: 0.154903, avg_reader_cost: 0.62600 s, avg_batch_cost: 0.68083 s, avg_samples: 2.9, ips: 4.25948 samples/s, eta: 4:45:14
[2024/07/28 00:51:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:51:46] ppocr INFO: epoch: [568/1500], global_step: 1704, lr: 0.001000, loss: 1.513011, loss_shrink_maps: 0.777291, loss_threshold_maps: 0.580529, loss_binary_maps: 0.154903, avg_reader_cost: 1.53664 s, avg_batch_cost: 1.77256 s, avg_samples: 12.5, ips: 7.05196 samples/s, eta: 4:44:55
[2024/07/28 00:51:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:51:55] ppocr INFO: epoch: [569/1500], global_step: 1707, lr: 0.001000, loss: 1.513011, loss_shrink_maps: 0.783129, loss_threshold_maps: 0.580529, loss_binary_maps: 0.155630, avg_reader_cost: 1.53418 s, avg_batch_cost: 1.77723 s, avg_samples: 12.5, ips: 7.03341 samples/s, eta: 4:44:35
[2024/07/28 00:51:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:52:03] ppocr INFO: epoch: [570/1500], global_step: 1710, lr: 0.001000, loss: 1.513011, loss_shrink_maps: 0.793806, loss_threshold_maps: 0.572129, loss_binary_maps: 0.158223, avg_reader_cost: 1.65588 s, avg_batch_cost: 1.89035 s, avg_samples: 12.5, ips: 6.61252 samples/s, eta: 4:44:18
[2024/07/28 00:52:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:52:12] ppocr INFO: epoch: [571/1500], global_step: 1713, lr: 0.001000, loss: 1.545939, loss_shrink_maps: 0.816326, loss_threshold_maps: 0.577773, loss_binary_maps: 0.162090, avg_reader_cost: 1.58249 s, avg_batch_cost: 1.81059 s, avg_samples: 12.5, ips: 6.90382 samples/s, eta: 4:43:59
[2024/07/28 00:52:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:52:20] ppocr INFO: epoch: [572/1500], global_step: 1716, lr: 0.001000, loss: 1.513011, loss_shrink_maps: 0.793806, loss_threshold_maps: 0.568974, loss_binary_maps: 0.158223, avg_reader_cost: 1.51828 s, avg_batch_cost: 1.75186 s, avg_samples: 12.5, ips: 7.13529 samples/s, eta: 4:43:40
[2024/07/28 00:52:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:52:28] ppocr INFO: epoch: [573/1500], global_step: 1719, lr: 0.001000, loss: 1.500378, loss_shrink_maps: 0.778582, loss_threshold_maps: 0.560957, loss_binary_maps: 0.154592, avg_reader_cost: 1.53265 s, avg_batch_cost: 1.79888 s, avg_samples: 12.5, ips: 6.94877 samples/s, eta: 4:43:21
[2024/07/28 00:52:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:52:35] ppocr INFO: epoch: [574/1500], global_step: 1720, lr: 0.001000, loss: 1.500378, loss_shrink_maps: 0.778582, loss_threshold_maps: 0.560957, loss_binary_maps: 0.154592, avg_reader_cost: 0.42428 s, avg_batch_cost: 0.52003 s, avg_samples: 4.8, ips: 9.23026 samples/s, eta: 4:43:13
[2024/07/28 00:52:37] ppocr INFO: epoch: [574/1500], global_step: 1722, lr: 0.001000, loss: 1.493351, loss_shrink_maps: 0.767984, loss_threshold_maps: 0.554754, loss_binary_maps: 0.152856, avg_reader_cost: 1.13137 s, avg_batch_cost: 1.27701 s, avg_samples: 7.7, ips: 6.02970 samples/s, eta: 4:43:02
[2024/07/28 00:52:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:52:45] ppocr INFO: epoch: [575/1500], global_step: 1725, lr: 0.001000, loss: 1.493351, loss_shrink_maps: 0.767984, loss_threshold_maps: 0.557097, loss_binary_maps: 0.152856, avg_reader_cost: 1.57001 s, avg_batch_cost: 1.79807 s, avg_samples: 12.5, ips: 6.95191 samples/s, eta: 4:42:43
[2024/07/28 00:52:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:52:53] ppocr INFO: epoch: [576/1500], global_step: 1728, lr: 0.001000, loss: 1.493351, loss_shrink_maps: 0.767984, loss_threshold_maps: 0.557097, loss_binary_maps: 0.152856, avg_reader_cost: 1.56754 s, avg_batch_cost: 1.79625 s, avg_samples: 12.5, ips: 6.95893 samples/s, eta: 4:42:24
[2024/07/28 00:52:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:53:01] ppocr INFO: epoch: [577/1500], global_step: 1730, lr: 0.001000, loss: 1.493351, loss_shrink_maps: 0.767984, loss_threshold_maps: 0.557763, loss_binary_maps: 0.152856, avg_reader_cost: 0.92038 s, avg_batch_cost: 1.13368 s, avg_samples: 9.6, ips: 8.46800 samples/s, eta: 4:42:10
[2024/07/28 00:53:02] ppocr INFO: epoch: [577/1500], global_step: 1731, lr: 0.001000, loss: 1.489478, loss_shrink_maps: 0.767984, loss_threshold_maps: 0.553453, loss_binary_maps: 0.152856, avg_reader_cost: 0.61242 s, avg_batch_cost: 0.66764 s, avg_samples: 2.9, ips: 4.34366 samples/s, eta: 4:42:05
[2024/07/28 00:53:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:53:10] ppocr INFO: epoch: [578/1500], global_step: 1734, lr: 0.001000, loss: 1.489478, loss_shrink_maps: 0.767984, loss_threshold_maps: 0.557763, loss_binary_maps: 0.152856, avg_reader_cost: 1.54349 s, avg_batch_cost: 1.79421 s, avg_samples: 12.5, ips: 6.96686 samples/s, eta: 4:41:46
[2024/07/28 00:53:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:53:19] ppocr INFO: epoch: [579/1500], global_step: 1737, lr: 0.001000, loss: 1.514850, loss_shrink_maps: 0.789572, loss_threshold_maps: 0.557763, loss_binary_maps: 0.156935, avg_reader_cost: 1.64688 s, avg_batch_cost: 1.92972 s, avg_samples: 12.5, ips: 6.47764 samples/s, eta: 4:41:29
[2024/07/28 00:53:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:53:27] ppocr INFO: epoch: [580/1500], global_step: 1740, lr: 0.001000, loss: 1.544334, loss_shrink_maps: 0.807585, loss_threshold_maps: 0.560939, loss_binary_maps: 0.160337, avg_reader_cost: 1.50864 s, avg_batch_cost: 1.75183 s, avg_samples: 12.5, ips: 7.13538 samples/s, eta: 4:41:10

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 2/500 [00:00<00:37, 13.39it/s]
eval model::   1%|          | 5/500 [00:00<00:26, 18.87it/s]
eval model::   1%|▏         | 7/500 [00:00<00:28, 17.36it/s]
eval model::   2%|▏         | 10/500 [00:00<00:26, 18.59it/s]
eval model::   2%|▏         | 12/500 [00:00<00:27, 17.91it/s]
eval model::   3%|▎         | 14/500 [00:00<00:27, 17.71it/s]
eval model::   3%|▎         | 17/500 [00:00<00:25, 18.77it/s]
eval model::   4%|▍         | 20/500 [00:01<00:24, 19.40it/s]
eval model::   5%|▍         | 23/500 [00:01<00:23, 20.46it/s]
eval model::   5%|▌         | 26/500 [00:01<00:23, 19.82it/s]
eval model::   6%|▌         | 29/500 [00:01<00:22, 20.98it/s]
eval model::   6%|▋         | 32/500 [00:01<00:24, 18.85it/s]
eval model::   7%|▋         | 34/500 [00:01<00:25, 18.25it/s]
eval model::   7%|▋         | 37/500 [00:01<00:22, 20.15it/s]
eval model::   8%|▊         | 40/500 [00:02<00:27, 17.03it/s]
eval model::   8%|▊         | 42/500 [00:02<00:27, 16.53it/s]
eval model::   9%|▉         | 45/500 [00:02<00:25, 18.13it/s]
eval model::   9%|▉         | 47/500 [00:02<00:26, 17.11it/s]
eval model::  10%|█         | 50/500 [00:02<00:25, 18.00it/s]
eval model::  11%|█         | 53/500 [00:02<00:23, 19.34it/s]
eval model::  11%|█         | 56/500 [00:02<00:21, 20.28it/s]
eval model::  12%|█▏        | 59/500 [00:03<00:22, 19.32it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:30, 14.63it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:30, 14.44it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:22, 18.88it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:20, 20.99it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:21, 20.15it/s]
eval model::  15%|█▌        | 76/500 [00:04<00:20, 20.99it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:19, 21.11it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:18, 22.13it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:19, 21.19it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:21, 19.13it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:23, 17.37it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:21, 18.91it/s]
eval model::  19%|█▉        | 95/500 [00:05<00:21, 19.14it/s]
eval model::  20%|█▉        | 98/500 [00:05<00:19, 21.07it/s]
eval model::  20%|██        | 101/500 [00:05<00:20, 19.84it/s]
eval model::  21%|██        | 104/500 [00:05<00:18, 21.39it/s]
eval model::  21%|██▏       | 107/500 [00:05<00:17, 23.02it/s]
eval model::  22%|██▏       | 110/500 [00:05<00:16, 23.77it/s]
eval model::  23%|██▎       | 113/500 [00:05<00:15, 24.70it/s]
eval model::  23%|██▎       | 116/500 [00:05<00:17, 22.57it/s]
eval model::  24%|██▍       | 119/500 [00:06<00:17, 22.41it/s]
eval model::  24%|██▍       | 122/500 [00:06<00:16, 22.24it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:21, 17.19it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:20, 18.52it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:19, 18.50it/s]
eval model::  27%|██▋       | 133/500 [00:06<00:20, 17.84it/s]
eval model::  27%|██▋       | 136/500 [00:07<00:18, 19.68it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:18, 19.77it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:16, 21.30it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:17, 20.86it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:18, 18.76it/s]
eval model::  30%|███       | 151/500 [00:07<00:19, 17.74it/s]
eval model::  31%|███       | 154/500 [00:07<00:17, 19.48it/s]
eval model::  31%|███▏      | 157/500 [00:08<00:15, 21.53it/s]
eval model::  32%|███▏      | 160/500 [00:08<00:18, 17.95it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:17, 19.20it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:17, 19.61it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:16, 19.94it/s]
eval model::  34%|███▍      | 172/500 [00:08<00:17, 18.75it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:20, 15.94it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:19, 16.33it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:17, 18.41it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:22, 13.90it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:19, 16.60it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:18, 17.29it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:16, 18.48it/s]
eval model::  38%|███▊      | 191/500 [00:10<00:17, 18.10it/s]
eval model::  39%|███▉      | 194/500 [00:10<00:14, 20.52it/s]
eval model::  39%|███▉      | 197/500 [00:10<00:15, 18.95it/s]
eval model::  40%|████      | 200/500 [00:10<00:14, 21.13it/s]
eval model::  41%|████      | 203/500 [00:10<00:13, 21.41it/s]
eval model::  41%|████      | 206/500 [00:10<00:19, 15.34it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:18, 15.44it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:19, 14.94it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:17, 16.22it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:19, 14.49it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:20, 14.13it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:17, 16.32it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:19, 14.10it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:15, 17.69it/s]
eval model::  46%|████▌     | 229/500 [00:12<00:13, 20.08it/s]
eval model::  46%|████▋     | 232/500 [00:12<00:12, 22.04it/s]
eval model::  47%|████▋     | 235/500 [00:12<00:12, 20.80it/s]
eval model::  48%|████▊     | 238/500 [00:12<00:11, 22.44it/s]
eval model::  48%|████▊     | 241/500 [00:12<00:11, 23.25it/s]
eval model::  49%|████▉     | 244/500 [00:12<00:11, 21.52it/s]
eval model::  49%|████▉     | 247/500 [00:13<00:10, 23.06it/s]
eval model::  50%|█████     | 250/500 [00:13<00:11, 22.65it/s]
eval model::  51%|█████     | 253/500 [00:13<00:10, 23.05it/s]
eval model::  51%|█████     | 256/500 [00:13<00:11, 21.98it/s]
eval model::  52%|█████▏    | 259/500 [00:13<00:10, 23.02it/s]
eval model::  52%|█████▏    | 262/500 [00:13<00:10, 21.65it/s]
eval model::  53%|█████▎    | 265/500 [00:13<00:11, 20.56it/s]
eval model::  54%|█████▎    | 268/500 [00:14<00:11, 20.72it/s]
eval model::  54%|█████▍    | 271/500 [00:14<00:11, 19.20it/s]
eval model::  55%|█████▍    | 273/500 [00:14<00:12, 17.84it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:13, 16.92it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:11, 18.89it/s]
eval model::  56%|█████▌    | 281/500 [00:14<00:10, 20.12it/s]
eval model::  57%|█████▋    | 284/500 [00:14<00:10, 20.42it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:17, 12.45it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:12, 16.26it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:12, 16.42it/s]
eval model::  59%|█████▉    | 297/500 [00:15<00:13, 14.88it/s]
eval model::  60%|██████    | 300/500 [00:16<00:13, 15.27it/s]
eval model::  61%|██████    | 303/500 [00:16<00:11, 17.61it/s]
eval model::  61%|██████    | 306/500 [00:16<00:10, 18.93it/s]
eval model::  62%|██████▏   | 309/500 [00:16<00:09, 20.28it/s]
eval model::  62%|██████▏   | 312/500 [00:16<00:09, 20.78it/s]
eval model::  63%|██████▎   | 315/500 [00:16<00:08, 20.59it/s]
eval model::  64%|██████▎   | 318/500 [00:16<00:08, 22.18it/s]
eval model::  64%|██████▍   | 321/500 [00:16<00:08, 21.97it/s]
eval model::  65%|██████▍   | 324/500 [00:17<00:08, 20.51it/s]
eval model::  65%|██████▌   | 327/500 [00:17<00:07, 22.27it/s]
eval model::  66%|██████▌   | 330/500 [00:17<00:07, 21.35it/s]
eval model::  67%|██████▋   | 333/500 [00:17<00:07, 22.29it/s]
eval model::  67%|██████▋   | 336/500 [00:17<00:06, 23.90it/s]
eval model::  68%|██████▊   | 339/500 [00:17<00:07, 20.89it/s]
eval model::  68%|██████▊   | 342/500 [00:18<00:10, 14.87it/s]
eval model::  69%|██████▉   | 345/500 [00:18<00:09, 17.22it/s]
eval model::  70%|██████▉   | 348/500 [00:18<00:08, 18.85it/s]
eval model::  70%|███████   | 351/500 [00:18<00:07, 21.01it/s]
eval model::  71%|███████   | 355/500 [00:18<00:06, 22.71it/s]
eval model::  72%|███████▏  | 358/500 [00:18<00:06, 22.22it/s]
eval model::  72%|███████▏  | 361/500 [00:18<00:06, 20.01it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:07, 18.32it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:07, 17.79it/s]
eval model::  74%|███████▎  | 368/500 [00:19<00:07, 18.16it/s]
eval model::  74%|███████▍  | 371/500 [00:19<00:06, 19.70it/s]
eval model::  75%|███████▍  | 374/500 [00:19<00:06, 19.91it/s]
eval model::  75%|███████▌  | 377/500 [00:19<00:05, 21.55it/s]
eval model::  76%|███████▌  | 380/500 [00:19<00:06, 17.89it/s]
eval model::  77%|███████▋  | 384/500 [00:20<00:05, 20.94it/s]
eval model::  77%|███████▋  | 387/500 [00:20<00:09, 11.86it/s]
eval model::  78%|███████▊  | 390/500 [00:20<00:07, 14.37it/s]
eval model::  79%|███████▊  | 393/500 [00:20<00:06, 16.43it/s]
eval model::  79%|███████▉  | 396/500 [00:21<00:06, 16.63it/s]
eval model::  80%|███████▉  | 399/500 [00:21<00:05, 17.50it/s]
eval model::  80%|████████  | 402/500 [00:21<00:05, 18.71it/s]
eval model::  81%|████████  | 405/500 [00:21<00:04, 20.45it/s]
eval model::  82%|████████▏ | 408/500 [00:21<00:04, 20.97it/s]
eval model::  82%|████████▏ | 411/500 [00:21<00:03, 22.76it/s]
eval model::  83%|████████▎ | 414/500 [00:21<00:03, 23.45it/s]
eval model::  83%|████████▎ | 417/500 [00:21<00:03, 21.10it/s]
eval model::  84%|████████▍ | 420/500 [00:22<00:04, 16.83it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:04, 16.88it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:04, 17.42it/s]
eval model::  85%|████████▌ | 427/500 [00:22<00:03, 19.18it/s]
eval model::  86%|████████▌ | 430/500 [00:22<00:03, 21.09it/s]
eval model::  87%|████████▋ | 433/500 [00:22<00:03, 20.89it/s]
eval model::  87%|████████▋ | 436/500 [00:22<00:02, 22.13it/s]
eval model::  88%|████████▊ | 439/500 [00:23<00:02, 22.29it/s]
eval model::  88%|████████▊ | 442/500 [00:23<00:02, 21.28it/s]
eval model::  89%|████████▉ | 445/500 [00:23<00:02, 22.28it/s]
eval model::  90%|████████▉ | 448/500 [00:23<00:02, 22.47it/s]
eval model::  90%|█████████ | 451/500 [00:23<00:02, 22.11it/s]
eval model::  91%|█████████ | 454/500 [00:23<00:02, 21.96it/s]
eval model::  91%|█████████▏| 457/500 [00:23<00:01, 21.67it/s]
eval model::  92%|█████████▏| 460/500 [00:24<00:02, 19.08it/s]
eval model::  92%|█████████▏| 462/500 [00:24<00:02, 16.38it/s]
eval model::  93%|█████████▎| 465/500 [00:24<00:02, 16.60it/s]
eval model::  93%|█████████▎| 467/500 [00:24<00:01, 16.87it/s]
eval model::  94%|█████████▍| 470/500 [00:24<00:01, 19.61it/s]
eval model::  95%|█████████▍| 473/500 [00:24<00:01, 18.91it/s]
eval model::  95%|█████████▌| 476/500 [00:25<00:01, 19.88it/s]
eval model::  96%|█████████▌| 479/500 [00:25<00:01, 20.99it/s]
eval model::  96%|█████████▋| 482/500 [00:25<00:00, 21.15it/s]
eval model::  97%|█████████▋| 485/500 [00:25<00:00, 23.19it/s]
eval model::  98%|█████████▊| 488/500 [00:25<00:00, 21.62it/s]
eval model::  98%|█████████▊| 491/500 [00:25<00:00, 21.30it/s]
eval model::  99%|█████████▉| 494/500 [00:25<00:00, 19.89it/s]
eval model::  99%|█████████▉| 497/500 [00:25<00:00, 20.63it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 19.17it/s]
[2024/07/28 00:53:53] ppocr INFO: cur metric, precision: 0.7438502673796792, recall: 0.6697159364467983, hmean: 0.7048391183177097, fps: 46.08540547152116
[2024/07/28 00:53:53] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/28 00:53:53] ppocr INFO: best metric, hmean: 0.7048391183177097, precision: 0.7438502673796792, recall: 0.6697159364467983, fps: 46.08540547152116, best_epoch: 580
[2024/07/28 00:53:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:54:01] ppocr INFO: epoch: [581/1500], global_step: 1743, lr: 0.001000, loss: 1.514850, loss_shrink_maps: 0.789572, loss_threshold_maps: 0.559681, loss_binary_maps: 0.156935, avg_reader_cost: 1.76938 s, avg_batch_cost: 2.10128 s, avg_samples: 12.5, ips: 5.94876 samples/s, eta: 4:40:55
[2024/07/28 00:54:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:54:10] ppocr INFO: epoch: [582/1500], global_step: 1746, lr: 0.001000, loss: 1.472762, loss_shrink_maps: 0.770313, loss_threshold_maps: 0.555116, loss_binary_maps: 0.153426, avg_reader_cost: 1.54159 s, avg_batch_cost: 1.79803 s, avg_samples: 12.5, ips: 6.95203 samples/s, eta: 4:40:37
[2024/07/28 00:54:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:54:18] ppocr INFO: epoch: [583/1500], global_step: 1749, lr: 0.001000, loss: 1.468454, loss_shrink_maps: 0.760191, loss_threshold_maps: 0.555116, loss_binary_maps: 0.150876, avg_reader_cost: 1.53446 s, avg_batch_cost: 1.77002 s, avg_samples: 12.5, ips: 7.06206 samples/s, eta: 4:40:17
[2024/07/28 00:54:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:54:25] ppocr INFO: epoch: [584/1500], global_step: 1750, lr: 0.001000, loss: 1.440799, loss_shrink_maps: 0.735086, loss_threshold_maps: 0.551803, loss_binary_maps: 0.146033, avg_reader_cost: 0.43055 s, avg_batch_cost: 0.51326 s, avg_samples: 4.8, ips: 9.35204 samples/s, eta: 4:40:10
[2024/07/28 00:54:26] ppocr INFO: epoch: [584/1500], global_step: 1752, lr: 0.001000, loss: 1.430452, loss_shrink_maps: 0.731668, loss_threshold_maps: 0.548612, loss_binary_maps: 0.145347, avg_reader_cost: 1.11798 s, avg_batch_cost: 1.26423 s, avg_samples: 7.7, ips: 6.09068 samples/s, eta: 4:39:58
[2024/07/28 00:54:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:54:35] ppocr INFO: epoch: [585/1500], global_step: 1755, lr: 0.001000, loss: 1.440799, loss_shrink_maps: 0.740744, loss_threshold_maps: 0.547148, loss_binary_maps: 0.147182, avg_reader_cost: 1.50825 s, avg_batch_cost: 1.74497 s, avg_samples: 12.5, ips: 7.16344 samples/s, eta: 4:39:38
[2024/07/28 00:54:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:54:43] ppocr INFO: epoch: [586/1500], global_step: 1758, lr: 0.001000, loss: 1.440799, loss_shrink_maps: 0.740744, loss_threshold_maps: 0.549958, loss_binary_maps: 0.147182, avg_reader_cost: 1.51498 s, avg_batch_cost: 1.74423 s, avg_samples: 12.5, ips: 7.16647 samples/s, eta: 4:39:18
[2024/07/28 00:54:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:54:51] ppocr INFO: epoch: [587/1500], global_step: 1760, lr: 0.001000, loss: 1.439852, loss_shrink_maps: 0.748142, loss_threshold_maps: 0.547148, loss_binary_maps: 0.148912, avg_reader_cost: 0.98134 s, avg_batch_cost: 1.15436 s, avg_samples: 9.6, ips: 8.31629 samples/s, eta: 4:39:05
[2024/07/28 00:54:52] ppocr INFO: epoch: [587/1500], global_step: 1761, lr: 0.001000, loss: 1.425199, loss_shrink_maps: 0.744724, loss_threshold_maps: 0.547148, loss_binary_maps: 0.148226, avg_reader_cost: 0.62285 s, avg_batch_cost: 0.67783 s, avg_samples: 2.9, ips: 4.27835 samples/s, eta: 4:39:00
[2024/07/28 00:54:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:55:00] ppocr INFO: epoch: [588/1500], global_step: 1764, lr: 0.001000, loss: 1.468869, loss_shrink_maps: 0.766926, loss_threshold_maps: 0.553028, loss_binary_maps: 0.152672, avg_reader_cost: 1.58476 s, avg_batch_cost: 1.81307 s, avg_samples: 12.5, ips: 6.89438 samples/s, eta: 4:38:41
[2024/07/28 00:55:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:55:09] ppocr INFO: epoch: [589/1500], global_step: 1767, lr: 0.001000, loss: 1.425199, loss_shrink_maps: 0.744724, loss_threshold_maps: 0.547148, loss_binary_maps: 0.148226, avg_reader_cost: 1.58982 s, avg_batch_cost: 1.88129 s, avg_samples: 12.5, ips: 6.64437 samples/s, eta: 4:38:24
[2024/07/28 00:55:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:55:18] ppocr INFO: epoch: [590/1500], global_step: 1770, lr: 0.001000, loss: 1.440305, loss_shrink_maps: 0.755780, loss_threshold_maps: 0.549958, loss_binary_maps: 0.150708, avg_reader_cost: 1.62648 s, avg_batch_cost: 1.87582 s, avg_samples: 12.5, ips: 6.66375 samples/s, eta: 4:38:06
[2024/07/28 00:55:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:55:26] ppocr INFO: epoch: [591/1500], global_step: 1773, lr: 0.001000, loss: 1.418812, loss_shrink_maps: 0.746555, loss_threshold_maps: 0.549958, loss_binary_maps: 0.148648, avg_reader_cost: 1.51754 s, avg_batch_cost: 1.74634 s, avg_samples: 12.5, ips: 7.15784 samples/s, eta: 4:37:47
[2024/07/28 00:55:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:55:34] ppocr INFO: epoch: [592/1500], global_step: 1776, lr: 0.001000, loss: 1.418863, loss_shrink_maps: 0.744047, loss_threshold_maps: 0.538382, loss_binary_maps: 0.148013, avg_reader_cost: 1.52449 s, avg_batch_cost: 1.76308 s, avg_samples: 12.5, ips: 7.08988 samples/s, eta: 4:37:27
[2024/07/28 00:55:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:55:43] ppocr INFO: epoch: [593/1500], global_step: 1779, lr: 0.001000, loss: 1.415306, loss_shrink_maps: 0.712699, loss_threshold_maps: 0.538382, loss_binary_maps: 0.141513, avg_reader_cost: 1.59172 s, avg_batch_cost: 1.84921 s, avg_samples: 12.5, ips: 6.75964 samples/s, eta: 4:37:09
[2024/07/28 00:55:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:55:50] ppocr INFO: epoch: [594/1500], global_step: 1780, lr: 0.001000, loss: 1.415306, loss_shrink_maps: 0.712699, loss_threshold_maps: 0.538382, loss_binary_maps: 0.141513, avg_reader_cost: 0.50245 s, avg_batch_cost: 0.58473 s, avg_samples: 4.8, ips: 8.20896 samples/s, eta: 4:37:02
[2024/07/28 00:55:52] ppocr INFO: epoch: [594/1500], global_step: 1782, lr: 0.001000, loss: 1.427531, loss_shrink_maps: 0.744047, loss_threshold_maps: 0.554784, loss_binary_maps: 0.148013, avg_reader_cost: 1.26122 s, avg_batch_cost: 1.40673 s, avg_samples: 7.7, ips: 5.47367 samples/s, eta: 4:36:53
[2024/07/28 00:55:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:56:00] ppocr INFO: epoch: [595/1500], global_step: 1785, lr: 0.001000, loss: 1.415306, loss_shrink_maps: 0.725267, loss_threshold_maps: 0.526898, loss_binary_maps: 0.144316, avg_reader_cost: 1.53203 s, avg_batch_cost: 1.76144 s, avg_samples: 12.5, ips: 7.09649 samples/s, eta: 4:36:34
[2024/07/28 00:56:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:56:09] ppocr INFO: epoch: [596/1500], global_step: 1788, lr: 0.001000, loss: 1.422162, loss_shrink_maps: 0.737489, loss_threshold_maps: 0.560218, loss_binary_maps: 0.147074, avg_reader_cost: 1.58446 s, avg_batch_cost: 1.83551 s, avg_samples: 12.5, ips: 6.81010 samples/s, eta: 4:36:15
[2024/07/28 00:56:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:56:17] ppocr INFO: epoch: [597/1500], global_step: 1790, lr: 0.001000, loss: 1.422162, loss_shrink_maps: 0.737489, loss_threshold_maps: 0.546982, loss_binary_maps: 0.147074, avg_reader_cost: 0.91347 s, avg_batch_cost: 1.08898 s, avg_samples: 9.6, ips: 8.81559 samples/s, eta: 4:36:01
[2024/07/28 00:56:17] ppocr INFO: epoch: [597/1500], global_step: 1791, lr: 0.001000, loss: 1.427531, loss_shrink_maps: 0.740548, loss_threshold_maps: 0.564111, loss_binary_maps: 0.147746, avg_reader_cost: 0.59019 s, avg_batch_cost: 0.64499 s, avg_samples: 2.9, ips: 4.49618 samples/s, eta: 4:35:55
[2024/07/28 00:56:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:56:26] ppocr INFO: epoch: [598/1500], global_step: 1794, lr: 0.001000, loss: 1.437749, loss_shrink_maps: 0.752136, loss_threshold_maps: 0.546916, loss_binary_maps: 0.149655, avg_reader_cost: 1.56194 s, avg_batch_cost: 1.79159 s, avg_samples: 12.5, ips: 6.97705 samples/s, eta: 4:35:37
[2024/07/28 00:56:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:56:34] ppocr INFO: epoch: [599/1500], global_step: 1797, lr: 0.001000, loss: 1.442896, loss_shrink_maps: 0.750592, loss_threshold_maps: 0.545849, loss_binary_maps: 0.149463, avg_reader_cost: 1.54259 s, avg_batch_cost: 1.77673 s, avg_samples: 12.5, ips: 7.03539 samples/s, eta: 4:35:17
[2024/07/28 00:56:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:56:42] ppocr INFO: epoch: [600/1500], global_step: 1800, lr: 0.001000, loss: 1.442896, loss_shrink_maps: 0.754105, loss_threshold_maps: 0.539680, loss_binary_maps: 0.150404, avg_reader_cost: 1.52434 s, avg_batch_cost: 1.76989 s, avg_samples: 12.5, ips: 7.06260 samples/s, eta: 4:34:58

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:56,  8.79it/s]
eval model::   1%|          | 4/500 [00:00<00:28, 17.32it/s]
eval model::   1%|          | 6/500 [00:00<00:29, 16.84it/s]
eval model::   2%|▏         | 8/500 [00:00<00:29, 16.71it/s]
eval model::   2%|▏         | 10/500 [00:00<00:28, 17.16it/s]
eval model::   2%|▏         | 12/500 [00:00<00:27, 17.99it/s]
eval model::   3%|▎         | 14/500 [00:00<00:28, 17.22it/s]
eval model::   3%|▎         | 17/500 [00:00<00:24, 19.91it/s]
eval model::   4%|▍         | 20/500 [00:01<00:24, 19.65it/s]
eval model::   5%|▍         | 23/500 [00:01<00:22, 21.38it/s]
eval model::   5%|▌         | 26/500 [00:01<00:23, 20.04it/s]
eval model::   6%|▌         | 29/500 [00:01<00:22, 21.24it/s]
eval model::   6%|▋         | 32/500 [00:01<00:23, 20.00it/s]
eval model::   7%|▋         | 35/500 [00:01<00:24, 19.06it/s]
eval model::   8%|▊         | 38/500 [00:01<00:23, 19.81it/s]
eval model::   8%|▊         | 41/500 [00:02<00:25, 17.98it/s]
eval model::   9%|▊         | 43/500 [00:02<00:28, 16.21it/s]
eval model::   9%|▉         | 46/500 [00:02<00:27, 16.54it/s]
eval model::  10%|▉         | 49/500 [00:02<00:24, 18.21it/s]
eval model::  10%|█         | 52/500 [00:02<00:23, 19.20it/s]
eval model::  11%|█         | 55/500 [00:02<00:22, 19.99it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:23, 19.17it/s]
eval model::  12%|█▏        | 60/500 [00:03<00:22, 19.24it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:27, 15.87it/s]
eval model::  13%|█▎        | 64/500 [00:03<00:26, 16.73it/s]
eval model::  14%|█▎        | 68/500 [00:03<00:20, 20.88it/s]
eval model::  14%|█▍        | 71/500 [00:03<00:20, 20.48it/s]
eval model::  15%|█▍        | 74/500 [00:03<00:21, 19.68it/s]
eval model::  15%|█▌        | 77/500 [00:04<00:21, 19.64it/s]
eval model::  16%|█▌        | 80/500 [00:04<00:20, 20.77it/s]
eval model::  17%|█▋        | 83/500 [00:04<00:19, 21.88it/s]
eval model::  17%|█▋        | 86/500 [00:04<00:19, 21.03it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:21, 18.86it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:23, 17.53it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:23, 17.51it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:20, 19.51it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:20, 19.97it/s]
eval model::  20%|██        | 102/500 [00:05<00:20, 19.45it/s]
eval model::  21%|██        | 106/500 [00:05<00:18, 21.81it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:16, 23.29it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:16, 23.06it/s]
eval model::  23%|██▎       | 115/500 [00:05<00:18, 20.34it/s]
eval model::  24%|██▎       | 118/500 [00:06<00:18, 20.95it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:19, 19.68it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:19, 19.33it/s]
eval model::  25%|██▌       | 127/500 [00:06<00:18, 20.25it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:19, 19.05it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:19, 18.43it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:17, 20.97it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:16, 21.41it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:17, 20.26it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:16, 21.01it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:17, 19.97it/s]
eval model::  30%|███       | 150/500 [00:07<00:15, 21.93it/s]
eval model::  31%|███       | 153/500 [00:07<00:17, 19.56it/s]
eval model::  31%|███       | 156/500 [00:07<00:15, 21.57it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:16, 20.31it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:22, 14.86it/s]
eval model::  33%|███▎      | 165/500 [00:08<00:20, 16.56it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:19, 16.93it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:19, 17.24it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:19, 17.17it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:18, 17.32it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:18, 17.77it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:16, 19.15it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:19, 16.49it/s]
eval model::  37%|███▋      | 185/500 [00:09<00:15, 20.49it/s]
eval model::  38%|███▊      | 188/500 [00:09<00:15, 19.62it/s]
eval model::  38%|███▊      | 191/500 [00:09<00:15, 19.57it/s]
eval model::  39%|███▉      | 194/500 [00:10<00:14, 21.82it/s]
eval model::  39%|███▉      | 197/500 [00:10<00:14, 20.40it/s]
eval model::  40%|████      | 200/500 [00:10<00:13, 22.03it/s]
eval model::  41%|████      | 203/500 [00:10<00:13, 21.46it/s]
eval model::  41%|████      | 206/500 [00:10<00:21, 13.82it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:20, 14.29it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:20, 14.25it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:17, 16.07it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:19, 14.31it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:20, 14.05it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:17, 16.44it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:21, 13.10it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:16, 16.91it/s]
eval model::  46%|████▌     | 229/500 [00:12<00:14, 18.90it/s]
eval model::  46%|████▋     | 232/500 [00:12<00:12, 21.02it/s]
eval model::  47%|████▋     | 235/500 [00:12<00:12, 20.71it/s]
eval model::  48%|████▊     | 238/500 [00:12<00:12, 21.09it/s]
eval model::  48%|████▊     | 241/500 [00:12<00:11, 21.91it/s]
eval model::  49%|████▉     | 244/500 [00:12<00:13, 19.45it/s]
eval model::  49%|████▉     | 247/500 [00:13<00:12, 21.03it/s]
eval model::  50%|█████     | 250/500 [00:13<00:12, 20.43it/s]
eval model::  51%|█████     | 254/500 [00:13<00:10, 22.58it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:10, 22.60it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:10, 22.40it/s]
eval model::  53%|█████▎    | 263/500 [00:13<00:11, 20.84it/s]
eval model::  53%|█████▎    | 266/500 [00:14<00:12, 18.51it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:12, 18.15it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:12, 18.11it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:12, 18.11it/s]
eval model::  55%|█████▌    | 277/500 [00:14<00:12, 17.40it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:13, 16.94it/s]
eval model::  56%|█████▋    | 282/500 [00:14<00:12, 17.81it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:18, 11.59it/s]
eval model::  58%|█████▊    | 288/500 [00:15<00:15, 14.02it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:12, 16.57it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:12, 16.00it/s]
eval model::  59%|█████▉    | 296/500 [00:16<00:14, 14.30it/s]
eval model::  60%|█████▉    | 299/500 [00:16<00:11, 17.16it/s]
eval model::  60%|██████    | 302/500 [00:16<00:11, 17.46it/s]
eval model::  61%|██████    | 304/500 [00:16<00:10, 17.91it/s]
eval model::  61%|██████▏   | 307/500 [00:16<00:09, 19.90it/s]
eval model::  62%|██████▏   | 310/500 [00:16<00:09, 20.59it/s]
eval model::  63%|██████▎   | 313/500 [00:16<00:09, 19.76it/s]
eval model::  63%|██████▎   | 316/500 [00:16<00:09, 19.01it/s]
eval model::  64%|██████▍   | 319/500 [00:17<00:08, 20.45it/s]
eval model::  64%|██████▍   | 322/500 [00:17<00:09, 19.49it/s]
eval model::  65%|██████▌   | 325/500 [00:17<00:08, 21.58it/s]
eval model::  66%|██████▌   | 328/500 [00:17<00:08, 20.01it/s]
eval model::  66%|██████▌   | 331/500 [00:17<00:09, 18.28it/s]
eval model::  67%|██████▋   | 334/500 [00:17<00:08, 20.25it/s]
eval model::  67%|██████▋   | 337/500 [00:18<00:08, 18.80it/s]
eval model::  68%|██████▊   | 339/500 [00:18<00:08, 18.36it/s]
eval model::  68%|██████▊   | 341/500 [00:18<00:11, 13.49it/s]
eval model::  69%|██████▉   | 344/500 [00:18<00:09, 16.24it/s]
eval model::  69%|██████▉   | 347/500 [00:18<00:08, 18.11it/s]
eval model::  70%|███████   | 350/500 [00:18<00:07, 19.58it/s]
eval model::  71%|███████   | 353/500 [00:18<00:06, 21.17it/s]
eval model::  71%|███████   | 356/500 [00:19<00:07, 20.46it/s]
eval model::  72%|███████▏  | 359/500 [00:19<00:06, 20.40it/s]
eval model::  72%|███████▏  | 362/500 [00:19<00:07, 19.48it/s]
eval model::  73%|███████▎  | 365/500 [00:19<00:07, 19.06it/s]
eval model::  73%|███████▎  | 367/500 [00:19<00:07, 18.06it/s]
eval model::  74%|███████▍  | 370/500 [00:19<00:06, 19.04it/s]
eval model::  74%|███████▍  | 372/500 [00:19<00:06, 18.40it/s]
eval model::  75%|███████▌  | 375/500 [00:20<00:05, 20.87it/s]
eval model::  76%|███████▌  | 378/500 [00:20<00:05, 21.12it/s]
eval model::  76%|███████▌  | 381/500 [00:20<00:06, 19.75it/s]
eval model::  77%|███████▋  | 384/500 [00:20<00:05, 21.83it/s]
eval model::  77%|███████▋  | 387/500 [00:20<00:08, 12.61it/s]
eval model::  78%|███████▊  | 390/500 [00:21<00:07, 15.16it/s]
eval model::  79%|███████▊  | 393/500 [00:21<00:06, 16.14it/s]
eval model::  79%|███████▉  | 396/500 [00:21<00:06, 16.77it/s]
eval model::  80%|███████▉  | 399/500 [00:21<00:05, 18.20it/s]
eval model::  80%|████████  | 402/500 [00:21<00:05, 18.42it/s]
eval model::  81%|████████  | 405/500 [00:21<00:04, 20.30it/s]
eval model::  82%|████████▏ | 408/500 [00:21<00:04, 21.02it/s]
eval model::  82%|████████▏ | 411/500 [00:21<00:03, 22.68it/s]
eval model::  83%|████████▎ | 414/500 [00:22<00:03, 21.67it/s]
eval model::  83%|████████▎ | 417/500 [00:22<00:04, 19.47it/s]
eval model::  84%|████████▍ | 420/500 [00:22<00:04, 16.07it/s]
eval model::  85%|████████▍ | 423/500 [00:22<00:04, 18.12it/s]
eval model::  85%|████████▌ | 426/500 [00:23<00:05, 14.12it/s]
eval model::  86%|████████▌ | 429/500 [00:23<00:04, 16.69it/s]
eval model::  86%|████████▋ | 432/500 [00:23<00:03, 18.01it/s]
eval model::  87%|████████▋ | 435/500 [00:23<00:03, 20.33it/s]
eval model::  88%|████████▊ | 438/500 [00:23<00:02, 21.77it/s]
eval model::  88%|████████▊ | 441/500 [00:23<00:02, 21.25it/s]
eval model::  89%|████████▉ | 444/500 [00:23<00:02, 21.38it/s]
eval model::  89%|████████▉ | 447/500 [00:23<00:02, 21.97it/s]
eval model::  90%|█████████ | 450/500 [00:24<00:02, 20.13it/s]
eval model::  91%|█████████ | 453/500 [00:24<00:02, 20.91it/s]
eval model::  91%|█████████ | 456/500 [00:24<00:02, 20.48it/s]
eval model::  92%|█████████▏| 459/500 [00:24<00:01, 22.05it/s]
eval model::  92%|█████████▏| 462/500 [00:24<00:02, 18.81it/s]
eval model::  93%|█████████▎| 465/500 [00:24<00:01, 18.26it/s]
eval model::  94%|█████████▎| 468/500 [00:24<00:01, 19.87it/s]
eval model::  94%|█████████▍| 472/500 [00:25<00:01, 22.07it/s]
eval model::  95%|█████████▌| 475/500 [00:25<00:01, 22.08it/s]
eval model::  96%|█████████▌| 478/500 [00:25<00:01, 21.02it/s]
eval model::  96%|█████████▌| 481/500 [00:25<00:00, 21.42it/s]
eval model::  97%|█████████▋| 484/500 [00:25<00:00, 20.95it/s]
eval model::  97%|█████████▋| 487/500 [00:25<00:00, 20.32it/s]
eval model::  98%|█████████▊| 490/500 [00:25<00:00, 22.01it/s]
eval model::  99%|█████████▊| 493/500 [00:26<00:00, 20.19it/s]
eval model::  99%|█████████▉| 496/500 [00:26<00:00, 19.99it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 22.78it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.90it/s]
[2024/07/28 00:57:09] ppocr INFO: cur metric, precision: 0.7193717277486911, recall: 0.6615310544053924, hmean: 0.6892400300978179, fps: 45.01795833047385
[2024/07/28 00:57:09] ppocr INFO: best metric, hmean: 0.7048391183177097, precision: 0.7438502673796792, recall: 0.6697159364467983, fps: 46.08540547152116, best_epoch: 580
[2024/07/28 00:57:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:57:16] ppocr INFO: epoch: [601/1500], global_step: 1803, lr: 0.001000, loss: 1.426101, loss_shrink_maps: 0.739003, loss_threshold_maps: 0.533669, loss_binary_maps: 0.147555, avg_reader_cost: 1.67218 s, avg_batch_cost: 2.03044 s, avg_samples: 12.5, ips: 6.15630 samples/s, eta: 4:34:43
[2024/07/28 00:57:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:57:25] ppocr INFO: epoch: [602/1500], global_step: 1806, lr: 0.001000, loss: 1.442896, loss_shrink_maps: 0.754105, loss_threshold_maps: 0.539680, loss_binary_maps: 0.150404, avg_reader_cost: 1.58888 s, avg_batch_cost: 1.84313 s, avg_samples: 12.5, ips: 6.78194 samples/s, eta: 4:34:24
[2024/07/28 00:57:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:57:34] ppocr INFO: epoch: [603/1500], global_step: 1809, lr: 0.001000, loss: 1.442896, loss_shrink_maps: 0.765478, loss_threshold_maps: 0.537087, loss_binary_maps: 0.152503, avg_reader_cost: 1.63248 s, avg_batch_cost: 1.88532 s, avg_samples: 12.5, ips: 6.63016 samples/s, eta: 4:34:07
[2024/07/28 00:57:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:57:41] ppocr INFO: epoch: [604/1500], global_step: 1810, lr: 0.001000, loss: 1.442896, loss_shrink_maps: 0.765478, loss_threshold_maps: 0.537087, loss_binary_maps: 0.152503, avg_reader_cost: 0.39909 s, avg_batch_cost: 0.51824 s, avg_samples: 4.8, ips: 9.26203 samples/s, eta: 4:33:59
[2024/07/28 00:57:42] ppocr INFO: epoch: [604/1500], global_step: 1812, lr: 0.001000, loss: 1.442896, loss_shrink_maps: 0.765478, loss_threshold_maps: 0.535185, loss_binary_maps: 0.152503, avg_reader_cost: 1.12819 s, avg_batch_cost: 1.27394 s, avg_samples: 7.7, ips: 6.04423 samples/s, eta: 4:33:48
[2024/07/28 00:57:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:57:51] ppocr INFO: epoch: [605/1500], global_step: 1815, lr: 0.001000, loss: 1.458083, loss_shrink_maps: 0.768916, loss_threshold_maps: 0.537087, loss_binary_maps: 0.153116, avg_reader_cost: 1.50148 s, avg_batch_cost: 1.76209 s, avg_samples: 12.5, ips: 7.09386 samples/s, eta: 4:33:29
[2024/07/28 00:57:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:57:59] ppocr INFO: epoch: [606/1500], global_step: 1818, lr: 0.001000, loss: 1.434665, loss_shrink_maps: 0.768373, loss_threshold_maps: 0.530106, loss_binary_maps: 0.153033, avg_reader_cost: 1.57657 s, avg_batch_cost: 1.83925 s, avg_samples: 12.5, ips: 6.79623 samples/s, eta: 4:33:10
[2024/07/28 00:58:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:58:07] ppocr INFO: epoch: [607/1500], global_step: 1820, lr: 0.001000, loss: 1.414807, loss_shrink_maps: 0.750273, loss_threshold_maps: 0.530106, loss_binary_maps: 0.148872, avg_reader_cost: 0.93806 s, avg_batch_cost: 1.12025 s, avg_samples: 9.6, ips: 8.56948 samples/s, eta: 4:32:57
[2024/07/28 00:58:08] ppocr INFO: epoch: [607/1500], global_step: 1821, lr: 0.001000, loss: 1.414807, loss_shrink_maps: 0.750273, loss_threshold_maps: 0.532340, loss_binary_maps: 0.148872, avg_reader_cost: 0.60582 s, avg_batch_cost: 0.66060 s, avg_samples: 2.9, ips: 4.38996 samples/s, eta: 4:32:51
[2024/07/28 00:58:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:58:16] ppocr INFO: epoch: [608/1500], global_step: 1824, lr: 0.001000, loss: 1.414807, loss_shrink_maps: 0.750273, loss_threshold_maps: 0.532340, loss_binary_maps: 0.148872, avg_reader_cost: 1.49719 s, avg_batch_cost: 1.73558 s, avg_samples: 12.5, ips: 7.20219 samples/s, eta: 4:32:31
[2024/07/28 00:58:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:58:24] ppocr INFO: epoch: [609/1500], global_step: 1827, lr: 0.001000, loss: 1.414807, loss_shrink_maps: 0.750273, loss_threshold_maps: 0.528184, loss_binary_maps: 0.148872, avg_reader_cost: 1.47474 s, avg_batch_cost: 1.71893 s, avg_samples: 12.5, ips: 7.27195 samples/s, eta: 4:32:11
[2024/07/28 00:58:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:58:33] ppocr INFO: epoch: [610/1500], global_step: 1830, lr: 0.001000, loss: 1.398323, loss_shrink_maps: 0.728711, loss_threshold_maps: 0.528184, loss_binary_maps: 0.144918, avg_reader_cost: 1.52875 s, avg_batch_cost: 1.77810 s, avg_samples: 12.5, ips: 7.02998 samples/s, eta: 4:31:52
[2024/07/28 00:58:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:58:41] ppocr INFO: epoch: [611/1500], global_step: 1833, lr: 0.001000, loss: 1.381503, loss_shrink_maps: 0.713640, loss_threshold_maps: 0.531383, loss_binary_maps: 0.142682, avg_reader_cost: 1.59669 s, avg_batch_cost: 1.82437 s, avg_samples: 12.5, ips: 6.85168 samples/s, eta: 4:31:34
[2024/07/28 00:58:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:58:50] ppocr INFO: epoch: [612/1500], global_step: 1836, lr: 0.001000, loss: 1.412563, loss_shrink_maps: 0.736693, loss_threshold_maps: 0.537388, loss_binary_maps: 0.146324, avg_reader_cost: 1.54905 s, avg_batch_cost: 1.78817 s, avg_samples: 12.5, ips: 6.99040 samples/s, eta: 4:31:15
[2024/07/28 00:58:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:58:58] ppocr INFO: epoch: [613/1500], global_step: 1839, lr: 0.001000, loss: 1.458898, loss_shrink_maps: 0.763421, loss_threshold_maps: 0.539673, loss_binary_maps: 0.151780, avg_reader_cost: 1.50670 s, avg_batch_cost: 1.73742 s, avg_samples: 12.5, ips: 7.19459 samples/s, eta: 4:30:55
[2024/07/28 00:59:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:59:05] ppocr INFO: epoch: [614/1500], global_step: 1840, lr: 0.001000, loss: 1.458898, loss_shrink_maps: 0.763421, loss_threshold_maps: 0.539673, loss_binary_maps: 0.151780, avg_reader_cost: 0.41256 s, avg_batch_cost: 0.53082 s, avg_samples: 4.8, ips: 9.04262 samples/s, eta: 4:30:48
[2024/07/28 00:59:07] ppocr INFO: epoch: [614/1500], global_step: 1842, lr: 0.001000, loss: 1.458898, loss_shrink_maps: 0.763421, loss_threshold_maps: 0.539673, loss_binary_maps: 0.151780, avg_reader_cost: 1.15323 s, avg_batch_cost: 1.29935 s, avg_samples: 7.7, ips: 5.92604 samples/s, eta: 4:30:37
[2024/07/28 00:59:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:59:15] ppocr INFO: epoch: [615/1500], global_step: 1845, lr: 0.001000, loss: 1.451280, loss_shrink_maps: 0.763421, loss_threshold_maps: 0.537388, loss_binary_maps: 0.151780, avg_reader_cost: 1.51661 s, avg_batch_cost: 1.75239 s, avg_samples: 12.5, ips: 7.13313 samples/s, eta: 4:30:17
[2024/07/28 00:59:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:59:24] ppocr INFO: epoch: [616/1500], global_step: 1848, lr: 0.001000, loss: 1.451280, loss_shrink_maps: 0.762680, loss_threshold_maps: 0.541042, loss_binary_maps: 0.151656, avg_reader_cost: 1.55728 s, avg_batch_cost: 1.78622 s, avg_samples: 12.5, ips: 6.99801 samples/s, eta: 4:29:58
[2024/07/28 00:59:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:59:32] ppocr INFO: epoch: [617/1500], global_step: 1850, lr: 0.001000, loss: 1.451280, loss_shrink_maps: 0.762680, loss_threshold_maps: 0.544263, loss_binary_maps: 0.151656, avg_reader_cost: 1.03498 s, avg_batch_cost: 1.29301 s, avg_samples: 9.6, ips: 7.42456 samples/s, eta: 4:29:47
[2024/07/28 00:59:33] ppocr INFO: epoch: [617/1500], global_step: 1851, lr: 0.001000, loss: 1.443414, loss_shrink_maps: 0.763412, loss_threshold_maps: 0.541828, loss_binary_maps: 0.151919, avg_reader_cost: 0.69169 s, avg_batch_cost: 0.74674 s, avg_samples: 2.9, ips: 3.88355 samples/s, eta: 4:29:43
[2024/07/28 00:59:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:59:41] ppocr INFO: epoch: [618/1500], global_step: 1854, lr: 0.001000, loss: 1.451904, loss_shrink_maps: 0.772519, loss_threshold_maps: 0.546576, loss_binary_maps: 0.153978, avg_reader_cost: 1.52032 s, avg_batch_cost: 1.77443 s, avg_samples: 12.5, ips: 7.04452 samples/s, eta: 4:29:24
[2024/07/28 00:59:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 00:59:51] ppocr INFO: epoch: [619/1500], global_step: 1857, lr: 0.001000, loss: 1.451904, loss_shrink_maps: 0.763412, loss_threshold_maps: 0.550367, loss_binary_maps: 0.151919, avg_reader_cost: 1.87327 s, avg_batch_cost: 2.13010 s, avg_samples: 12.5, ips: 5.86827 samples/s, eta: 4:29:10
[2024/07/28 00:59:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:00:00] ppocr INFO: epoch: [620/1500], global_step: 1860, lr: 0.001000, loss: 1.443414, loss_shrink_maps: 0.762883, loss_threshold_maps: 0.558833, loss_binary_maps: 0.151369, avg_reader_cost: 1.48856 s, avg_batch_cost: 1.73684 s, avg_samples: 12.5, ips: 7.19696 samples/s, eta: 4:28:50

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:51,  9.68it/s]
eval model::   1%|          | 4/500 [00:00<00:25, 19.69it/s]
eval model::   1%|          | 6/500 [00:00<00:27, 18.29it/s]
eval model::   2%|▏         | 8/500 [00:00<00:27, 18.17it/s]
eval model::   2%|▏         | 10/500 [00:00<00:26, 18.54it/s]
eval model::   3%|▎         | 13/500 [00:00<00:25, 19.42it/s]
eval model::   3%|▎         | 15/500 [00:00<00:25, 19.15it/s]
eval model::   4%|▎         | 18/500 [00:00<00:24, 19.80it/s]
eval model::   4%|▍         | 20/500 [00:01<00:28, 17.01it/s]
eval model::   5%|▍         | 23/500 [00:01<00:26, 18.34it/s]
eval model::   5%|▌         | 25/500 [00:01<00:27, 17.57it/s]
eval model::   5%|▌         | 27/500 [00:01<00:27, 17.46it/s]
eval model::   6%|▌         | 30/500 [00:01<00:23, 19.77it/s]
eval model::   6%|▋         | 32/500 [00:01<00:25, 18.28it/s]
eval model::   7%|▋         | 34/500 [00:01<00:26, 17.74it/s]
eval model::   8%|▊         | 38/500 [00:02<00:23, 19.56it/s]
eval model::   8%|▊         | 40/500 [00:02<00:26, 17.44it/s]
eval model::   8%|▊         | 42/500 [00:02<00:28, 16.10it/s]
eval model::   9%|▉         | 44/500 [00:02<00:26, 16.94it/s]
eval model::   9%|▉         | 46/500 [00:02<00:29, 15.36it/s]
eval model::  10%|█         | 50/500 [00:02<00:23, 19.11it/s]
eval model::  10%|█         | 52/500 [00:02<00:24, 18.38it/s]
eval model::  11%|█         | 55/500 [00:02<00:21, 21.06it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:23, 19.16it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:25, 17.03it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:26, 16.56it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:21, 20.27it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:19, 22.06it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:18, 22.90it/s]
eval model::  15%|█▌        | 76/500 [00:04<00:18, 22.91it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:20, 20.73it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:19, 21.92it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:18, 21.96it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:19, 20.70it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:22, 18.42it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:22, 18.03it/s]
eval model::  19%|█▉        | 95/500 [00:05<00:22, 18.38it/s]
eval model::  20%|█▉        | 98/500 [00:05<00:20, 20.05it/s]
eval model::  20%|██        | 101/500 [00:05<00:19, 20.27it/s]
eval model::  21%|██        | 104/500 [00:05<00:17, 22.02it/s]
eval model::  21%|██▏       | 107/500 [00:05<00:17, 22.50it/s]
eval model::  22%|██▏       | 110/500 [00:05<00:17, 22.23it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:15, 24.35it/s]
eval model::  23%|██▎       | 117/500 [00:05<00:17, 21.67it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:18, 20.41it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:17, 21.42it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:20, 18.02it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:19, 19.38it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:19, 18.81it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:17, 20.33it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:17, 20.17it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:18, 19.26it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:17, 20.67it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:18, 19.13it/s]
eval model::  30%|███       | 150/500 [00:07<00:16, 20.90it/s]
eval model::  31%|███       | 153/500 [00:07<00:17, 20.15it/s]
eval model::  31%|███▏      | 157/500 [00:07<00:14, 23.04it/s]
eval model::  32%|███▏      | 160/500 [00:08<00:20, 16.21it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:19, 17.06it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:18, 18.42it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:17, 18.69it/s]
eval model::  34%|███▍      | 172/500 [00:08<00:17, 18.22it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:20, 15.53it/s]
eval model::  35%|███▌      | 177/500 [00:09<00:18, 17.48it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:20, 15.63it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:18, 17.52it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:17, 17.96it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:16, 19.11it/s]
eval model::  38%|███▊      | 192/500 [00:10<00:16, 19.05it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:16, 18.95it/s]
eval model::  39%|███▉      | 197/500 [00:10<00:16, 18.68it/s]
eval model::  40%|████      | 200/500 [00:10<00:14, 20.56it/s]
eval model::  41%|████      | 203/500 [00:10<00:14, 19.86it/s]
eval model::  41%|████      | 206/500 [00:10<00:20, 14.62it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:20, 14.45it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:19, 14.78it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.82it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:19, 14.95it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:19, 14.21it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:17, 16.35it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:18, 14.71it/s]
eval model::  45%|████▌     | 225/500 [00:12<00:15, 17.73it/s]
eval model::  45%|████▌     | 227/500 [00:12<00:15, 17.29it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:13, 20.08it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:12, 21.46it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:12, 21.05it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:11, 22.24it/s]
eval model::  48%|████▊     | 242/500 [00:12<00:12, 19.96it/s]
eval model::  49%|████▉     | 246/500 [00:13<00:11, 22.77it/s]
eval model::  50%|████▉     | 249/500 [00:13<00:11, 22.10it/s]
eval model::  50%|█████     | 252/500 [00:13<00:10, 23.07it/s]
eval model::  51%|█████     | 255/500 [00:13<00:10, 24.37it/s]
eval model::  52%|█████▏    | 258/500 [00:13<00:10, 23.06it/s]
eval model::  52%|█████▏    | 261/500 [00:13<00:10, 22.09it/s]
eval model::  53%|█████▎    | 264/500 [00:13<00:10, 22.16it/s]
eval model::  53%|█████▎    | 267/500 [00:13<00:10, 22.74it/s]
eval model::  54%|█████▍    | 270/500 [00:14<00:10, 22.08it/s]
eval model::  55%|█████▍    | 273/500 [00:14<00:11, 20.40it/s]
eval model::  55%|█████▌    | 276/500 [00:14<00:11, 19.88it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:10, 21.35it/s]
eval model::  56%|█████▋    | 282/500 [00:14<00:09, 22.37it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:14, 14.38it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:14, 14.87it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:11, 18.47it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:11, 17.55it/s]
eval model::  59%|█████▉    | 296/500 [00:15<00:13, 15.50it/s]
eval model::  60%|██████    | 300/500 [00:15<00:10, 18.20it/s]
eval model::  61%|██████    | 303/500 [00:15<00:09, 20.05it/s]
eval model::  61%|██████    | 306/500 [00:16<00:09, 20.56it/s]
eval model::  62%|██████▏   | 309/500 [00:16<00:08, 21.25it/s]
eval model::  62%|██████▏   | 312/500 [00:16<00:08, 21.28it/s]
eval model::  63%|██████▎   | 315/500 [00:16<00:09, 20.34it/s]
eval model::  64%|██████▎   | 318/500 [00:16<00:08, 20.37it/s]
eval model::  64%|██████▍   | 321/500 [00:16<00:08, 20.47it/s]
eval model::  65%|██████▍   | 324/500 [00:16<00:08, 20.32it/s]
eval model::  65%|██████▌   | 327/500 [00:17<00:08, 21.33it/s]
eval model::  66%|██████▌   | 330/500 [00:17<00:08, 21.01it/s]
eval model::  67%|██████▋   | 333/500 [00:17<00:07, 22.22it/s]
eval model::  67%|██████▋   | 336/500 [00:17<00:07, 23.27it/s]
eval model::  68%|██████▊   | 339/500 [00:17<00:07, 21.87it/s]
eval model::  68%|██████▊   | 342/500 [00:17<00:09, 17.28it/s]
eval model::  69%|██████▉   | 345/500 [00:17<00:07, 19.63it/s]
eval model::  70%|██████▉   | 348/500 [00:18<00:07, 21.00it/s]
eval model::  70%|███████   | 351/500 [00:18<00:06, 22.27it/s]
eval model::  71%|███████   | 355/500 [00:18<00:06, 23.66it/s]
eval model::  72%|███████▏  | 358/500 [00:18<00:06, 22.67it/s]
eval model::  72%|███████▏  | 361/500 [00:18<00:06, 21.01it/s]
eval model::  73%|███████▎  | 364/500 [00:18<00:07, 19.14it/s]
eval model::  73%|███████▎  | 366/500 [00:18<00:07, 18.09it/s]
eval model::  74%|███████▍  | 369/500 [00:19<00:06, 19.57it/s]
eval model::  74%|███████▍  | 372/500 [00:19<00:06, 20.38it/s]
eval model::  75%|███████▌  | 375/500 [00:19<00:05, 22.37it/s]
eval model::  76%|███████▌  | 378/500 [00:19<00:05, 23.94it/s]
eval model::  76%|███████▌  | 381/500 [00:19<00:05, 23.29it/s]
eval model::  77%|███████▋  | 384/500 [00:19<00:05, 21.29it/s]
eval model::  77%|███████▋  | 387/500 [00:20<00:08, 13.47it/s]
eval model::  78%|███████▊  | 390/500 [00:20<00:07, 15.60it/s]
eval model::  79%|███████▊  | 393/500 [00:20<00:06, 17.27it/s]
eval model::  79%|███████▉  | 396/500 [00:20<00:05, 18.71it/s]
eval model::  80%|███████▉  | 399/500 [00:20<00:04, 20.75it/s]
eval model::  80%|████████  | 402/500 [00:20<00:04, 20.07it/s]
eval model::  81%|████████  | 405/500 [00:20<00:04, 21.25it/s]
eval model::  82%|████████▏ | 408/500 [00:21<00:04, 21.06it/s]
eval model::  82%|████████▏ | 411/500 [00:21<00:03, 22.71it/s]
eval model::  83%|████████▎ | 414/500 [00:21<00:03, 22.97it/s]
eval model::  83%|████████▎ | 417/500 [00:21<00:04, 20.58it/s]
eval model::  84%|████████▍ | 420/500 [00:21<00:04, 17.64it/s]
eval model::  84%|████████▍ | 422/500 [00:21<00:04, 17.39it/s]
eval model::  85%|████████▍ | 424/500 [00:21<00:04, 17.28it/s]
eval model::  85%|████████▌ | 427/500 [00:22<00:03, 18.91it/s]
eval model::  86%|████████▌ | 430/500 [00:22<00:03, 21.23it/s]
eval model::  87%|████████▋ | 433/500 [00:22<00:03, 22.23it/s]
eval model::  87%|████████▋ | 436/500 [00:22<00:02, 23.66it/s]
eval model::  88%|████████▊ | 439/500 [00:22<00:02, 23.40it/s]
eval model::  88%|████████▊ | 442/500 [00:22<00:02, 23.11it/s]
eval model::  89%|████████▉ | 445/500 [00:22<00:02, 23.98it/s]
eval model::  90%|████████▉ | 448/500 [00:23<00:02, 20.47it/s]
eval model::  90%|█████████ | 451/500 [00:23<00:02, 21.06it/s]
eval model::  91%|█████████ | 454/500 [00:23<00:02, 21.07it/s]
eval model::  91%|█████████▏| 457/500 [00:23<00:01, 21.89it/s]
eval model::  92%|█████████▏| 460/500 [00:23<00:02, 19.69it/s]
eval model::  93%|█████████▎| 463/500 [00:23<00:02, 17.32it/s]
eval model::  93%|█████████▎| 465/500 [00:23<00:02, 16.83it/s]
eval model::  94%|█████████▎| 468/500 [00:24<00:01, 18.22it/s]
eval model::  94%|█████████▍| 471/500 [00:24<00:01, 20.10it/s]
eval model::  95%|█████████▍| 474/500 [00:24<00:01, 19.72it/s]
eval model::  95%|█████████▌| 477/500 [00:24<00:01, 21.36it/s]
eval model::  96%|█████████▌| 480/500 [00:24<00:00, 20.95it/s]
eval model::  97%|█████████▋| 483/500 [00:24<00:00, 21.47it/s]
eval model::  97%|█████████▋| 486/500 [00:24<00:00, 20.94it/s]
eval model::  98%|█████████▊| 489/500 [00:25<00:00, 22.25it/s]
eval model::  98%|█████████▊| 492/500 [00:25<00:00, 19.85it/s]
eval model::  99%|█████████▉| 495/500 [00:25<00:00, 20.06it/s]
eval model:: 100%|█████████▉| 498/500 [00:25<00:00, 21.04it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.55it/s]
[2024/07/28 01:00:25] ppocr INFO: cur metric, precision: 0.6710227272727273, recall: 0.568608570052961, hmean: 0.615585092520198, fps: 45.37646374197571
[2024/07/28 01:00:25] ppocr INFO: best metric, hmean: 0.7048391183177097, precision: 0.7438502673796792, recall: 0.6697159364467983, fps: 46.08540547152116, best_epoch: 580
[2024/07/28 01:00:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:00:33] ppocr INFO: epoch: [621/1500], global_step: 1863, lr: 0.001000, loss: 1.443414, loss_shrink_maps: 0.762883, loss_threshold_maps: 0.557205, loss_binary_maps: 0.151323, avg_reader_cost: 1.70269 s, avg_batch_cost: 2.05246 s, avg_samples: 12.5, ips: 6.09024 samples/s, eta: 4:28:35
[2024/07/28 01:00:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:00:42] ppocr INFO: epoch: [622/1500], global_step: 1866, lr: 0.001000, loss: 1.471868, loss_shrink_maps: 0.772976, loss_threshold_maps: 0.572629, loss_binary_maps: 0.153932, avg_reader_cost: 1.54056 s, avg_batch_cost: 1.77462 s, avg_samples: 12.5, ips: 7.04375 samples/s, eta: 4:28:16
[2024/07/28 01:00:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:00:50] ppocr INFO: epoch: [623/1500], global_step: 1869, lr: 0.001000, loss: 1.507028, loss_shrink_maps: 0.797016, loss_threshold_maps: 0.572629, loss_binary_maps: 0.158221, avg_reader_cost: 1.52648 s, avg_batch_cost: 1.76738 s, avg_samples: 12.5, ips: 7.07261 samples/s, eta: 4:27:56
[2024/07/28 01:00:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:00:57] ppocr INFO: epoch: [624/1500], global_step: 1870, lr: 0.001000, loss: 1.507028, loss_shrink_maps: 0.797016, loss_threshold_maps: 0.572629, loss_binary_maps: 0.158221, avg_reader_cost: 0.41731 s, avg_batch_cost: 0.50945 s, avg_samples: 4.8, ips: 9.42195 samples/s, eta: 4:27:49
[2024/07/28 01:00:58] ppocr INFO: epoch: [624/1500], global_step: 1872, lr: 0.001000, loss: 1.507028, loss_shrink_maps: 0.789411, loss_threshold_maps: 0.572629, loss_binary_maps: 0.156530, avg_reader_cost: 1.11006 s, avg_batch_cost: 1.25577 s, avg_samples: 7.7, ips: 6.13172 samples/s, eta: 4:27:37
[2024/07/28 01:01:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:01:07] ppocr INFO: epoch: [625/1500], global_step: 1875, lr: 0.001000, loss: 1.503615, loss_shrink_maps: 0.763340, loss_threshold_maps: 0.574121, loss_binary_maps: 0.151323, avg_reader_cost: 1.66551 s, avg_batch_cost: 1.89342 s, avg_samples: 12.5, ips: 6.60183 samples/s, eta: 4:27:20
[2024/07/28 01:01:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:01:16] ppocr INFO: epoch: [626/1500], global_step: 1878, lr: 0.001000, loss: 1.503615, loss_shrink_maps: 0.755980, loss_threshold_maps: 0.569380, loss_binary_maps: 0.150804, avg_reader_cost: 1.56029 s, avg_batch_cost: 1.80250 s, avg_samples: 12.5, ips: 6.93482 samples/s, eta: 4:27:01
[2024/07/28 01:01:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:01:23] ppocr INFO: epoch: [627/1500], global_step: 1880, lr: 0.001000, loss: 1.503615, loss_shrink_maps: 0.755980, loss_threshold_maps: 0.569380, loss_binary_maps: 0.150804, avg_reader_cost: 0.94125 s, avg_batch_cost: 1.11458 s, avg_samples: 9.6, ips: 8.61309 samples/s, eta: 4:26:47
[2024/07/28 01:01:24] ppocr INFO: epoch: [627/1500], global_step: 1881, lr: 0.001000, loss: 1.493848, loss_shrink_maps: 0.743406, loss_threshold_maps: 0.569380, loss_binary_maps: 0.148356, avg_reader_cost: 0.60287 s, avg_batch_cost: 0.65748 s, avg_samples: 2.9, ips: 4.41076 samples/s, eta: 4:26:42
[2024/07/28 01:01:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:01:32] ppocr INFO: epoch: [628/1500], global_step: 1884, lr: 0.001000, loss: 1.488555, loss_shrink_maps: 0.743406, loss_threshold_maps: 0.556962, loss_binary_maps: 0.148356, avg_reader_cost: 1.50906 s, avg_batch_cost: 1.77051 s, avg_samples: 12.5, ips: 7.06010 samples/s, eta: 4:26:22
[2024/07/28 01:01:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:01:41] ppocr INFO: epoch: [629/1500], global_step: 1887, lr: 0.001000, loss: 1.421605, loss_shrink_maps: 0.729602, loss_threshold_maps: 0.531114, loss_binary_maps: 0.144801, avg_reader_cost: 1.54043 s, avg_batch_cost: 1.76852 s, avg_samples: 12.5, ips: 7.06806 samples/s, eta: 4:26:03
[2024/07/28 01:01:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:01:49] ppocr INFO: epoch: [630/1500], global_step: 1890, lr: 0.001000, loss: 1.421605, loss_shrink_maps: 0.729602, loss_threshold_maps: 0.540589, loss_binary_maps: 0.144801, avg_reader_cost: 1.53772 s, avg_batch_cost: 1.78207 s, avg_samples: 12.5, ips: 7.01430 samples/s, eta: 4:25:44
[2024/07/28 01:01:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:01:58] ppocr INFO: epoch: [631/1500], global_step: 1893, lr: 0.001000, loss: 1.371811, loss_shrink_maps: 0.710996, loss_threshold_maps: 0.516201, loss_binary_maps: 0.141101, avg_reader_cost: 1.56466 s, avg_batch_cost: 1.81085 s, avg_samples: 12.5, ips: 6.90285 samples/s, eta: 4:25:26
[2024/07/28 01:02:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:02:07] ppocr INFO: epoch: [632/1500], global_step: 1896, lr: 0.001000, loss: 1.348360, loss_shrink_maps: 0.686744, loss_threshold_maps: 0.512638, loss_binary_maps: 0.136701, avg_reader_cost: 1.59484 s, avg_batch_cost: 1.84466 s, avg_samples: 12.5, ips: 6.77632 samples/s, eta: 4:25:07
[2024/07/28 01:02:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:02:15] ppocr INFO: epoch: [633/1500], global_step: 1899, lr: 0.001000, loss: 1.357762, loss_shrink_maps: 0.693730, loss_threshold_maps: 0.513144, loss_binary_maps: 0.138168, avg_reader_cost: 1.52673 s, avg_batch_cost: 1.75424 s, avg_samples: 12.5, ips: 7.12559 samples/s, eta: 4:24:48
[2024/07/28 01:02:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:02:22] ppocr INFO: epoch: [634/1500], global_step: 1900, lr: 0.001000, loss: 1.368374, loss_shrink_maps: 0.694343, loss_threshold_maps: 0.516201, loss_binary_maps: 0.138561, avg_reader_cost: 0.43091 s, avg_batch_cost: 0.54955 s, avg_samples: 4.8, ips: 8.73446 samples/s, eta: 4:24:41
[2024/07/28 01:02:24] ppocr INFO: epoch: [634/1500], global_step: 1902, lr: 0.001000, loss: 1.357762, loss_shrink_maps: 0.693730, loss_threshold_maps: 0.516201, loss_binary_maps: 0.138168, avg_reader_cost: 1.19061 s, avg_batch_cost: 1.33650 s, avg_samples: 7.7, ips: 5.76130 samples/s, eta: 4:24:30
[2024/07/28 01:02:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:02:32] ppocr INFO: epoch: [635/1500], global_step: 1905, lr: 0.001000, loss: 1.368374, loss_shrink_maps: 0.694054, loss_threshold_maps: 0.516924, loss_binary_maps: 0.138561, avg_reader_cost: 1.55141 s, avg_batch_cost: 1.77938 s, avg_samples: 12.5, ips: 7.02491 samples/s, eta: 4:24:11
[2024/07/28 01:02:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:02:41] ppocr INFO: epoch: [636/1500], global_step: 1908, lr: 0.001000, loss: 1.372529, loss_shrink_maps: 0.698631, loss_threshold_maps: 0.520794, loss_binary_maps: 0.139032, avg_reader_cost: 1.51753 s, avg_batch_cost: 1.74783 s, avg_samples: 12.5, ips: 7.15171 samples/s, eta: 4:23:52
[2024/07/28 01:02:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:02:49] ppocr INFO: epoch: [637/1500], global_step: 1910, lr: 0.001000, loss: 1.375966, loss_shrink_maps: 0.706310, loss_threshold_maps: 0.520794, loss_binary_maps: 0.140514, avg_reader_cost: 0.94246 s, avg_batch_cost: 1.11702 s, avg_samples: 9.6, ips: 8.59427 samples/s, eta: 4:23:38
[2024/07/28 01:02:49] ppocr INFO: epoch: [637/1500], global_step: 1911, lr: 0.001000, loss: 1.372529, loss_shrink_maps: 0.698631, loss_threshold_maps: 0.520794, loss_binary_maps: 0.139032, avg_reader_cost: 0.60460 s, avg_batch_cost: 0.65914 s, avg_samples: 2.9, ips: 4.39967 samples/s, eta: 4:23:33
[2024/07/28 01:02:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:02:58] ppocr INFO: epoch: [638/1500], global_step: 1914, lr: 0.001000, loss: 1.427301, loss_shrink_maps: 0.724297, loss_threshold_maps: 0.545300, loss_binary_maps: 0.143826, avg_reader_cost: 1.57939 s, avg_batch_cost: 1.82182 s, avg_samples: 12.5, ips: 6.86126 samples/s, eta: 4:23:14
[2024/07/28 01:03:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:03:06] ppocr INFO: epoch: [639/1500], global_step: 1917, lr: 0.001000, loss: 1.465831, loss_shrink_maps: 0.756785, loss_threshold_maps: 0.548765, loss_binary_maps: 0.150581, avg_reader_cost: 1.53087 s, avg_batch_cost: 1.76034 s, avg_samples: 12.5, ips: 7.10089 samples/s, eta: 4:22:55
[2024/07/28 01:03:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:03:15] ppocr INFO: epoch: [640/1500], global_step: 1920, lr: 0.001000, loss: 1.434342, loss_shrink_maps: 0.740406, loss_threshold_maps: 0.545903, loss_binary_maps: 0.146870, avg_reader_cost: 1.53636 s, avg_batch_cost: 1.76375 s, avg_samples: 12.5, ips: 7.08717 samples/s, eta: 4:22:36

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:57,  8.69it/s]
eval model::   1%|          | 4/500 [00:00<00:28, 17.47it/s]
eval model::   1%|          | 6/500 [00:00<00:27, 17.86it/s]
eval model::   2%|▏         | 8/500 [00:00<00:27, 17.73it/s]
eval model::   2%|▏         | 11/500 [00:00<00:27, 18.08it/s]
eval model::   3%|▎         | 14/500 [00:00<00:26, 18.41it/s]
eval model::   3%|▎         | 17/500 [00:00<00:25, 18.94it/s]
eval model::   4%|▍         | 19/500 [00:01<00:25, 18.57it/s]
eval model::   4%|▍         | 21/500 [00:01<00:26, 18.42it/s]
eval model::   5%|▍         | 24/500 [00:01<00:23, 20.61it/s]
eval model::   5%|▌         | 27/500 [00:01<00:24, 19.71it/s]
eval model::   6%|▌         | 30/500 [00:01<00:22, 21.00it/s]
eval model::   7%|▋         | 33/500 [00:01<00:22, 20.32it/s]
eval model::   7%|▋         | 36/500 [00:01<00:24, 19.24it/s]
eval model::   8%|▊         | 38/500 [00:02<00:23, 19.33it/s]
eval model::   8%|▊         | 40/500 [00:02<00:25, 18.17it/s]
eval model::   8%|▊         | 42/500 [00:02<00:28, 16.06it/s]
eval model::   9%|▉         | 44/500 [00:02<00:27, 16.55it/s]
eval model::   9%|▉         | 46/500 [00:02<00:31, 14.53it/s]
eval model::  10%|▉         | 49/500 [00:02<00:26, 17.28it/s]
eval model::  10%|█         | 51/500 [00:02<00:25, 17.56it/s]
eval model::  11%|█         | 54/500 [00:02<00:23, 19.29it/s]
eval model::  11%|█▏        | 57/500 [00:03<00:22, 20.08it/s]
eval model::  12%|█▏        | 60/500 [00:03<00:23, 18.87it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:28, 15.13it/s]
eval model::  13%|█▎        | 64/500 [00:03<00:28, 15.43it/s]
eval model::  14%|█▎        | 68/500 [00:03<00:21, 20.12it/s]
eval model::  14%|█▍        | 71/500 [00:03<00:20, 20.77it/s]
eval model::  15%|█▍        | 74/500 [00:03<00:19, 21.44it/s]
eval model::  15%|█▌        | 77/500 [00:04<00:18, 22.53it/s]
eval model::  16%|█▌        | 80/500 [00:04<00:17, 23.49it/s]
eval model::  17%|█▋        | 83/500 [00:04<00:17, 24.07it/s]
eval model::  17%|█▋        | 86/500 [00:04<00:20, 20.35it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:24, 16.76it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:25, 16.06it/s]
eval model::  19%|█▊        | 93/500 [00:05<00:24, 16.38it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:21, 18.50it/s]
eval model::  20%|█▉        | 98/500 [00:05<00:21, 18.60it/s]
eval model::  20%|██        | 100/500 [00:05<00:23, 17.28it/s]
eval model::  21%|██        | 103/500 [00:05<00:19, 20.04it/s]
eval model::  21%|██        | 106/500 [00:05<00:17, 22.38it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:16, 23.17it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:17, 22.62it/s]
eval model::  23%|██▎       | 115/500 [00:06<00:18, 20.90it/s]
eval model::  24%|██▎       | 118/500 [00:06<00:17, 21.98it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:18, 20.06it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:18, 20.18it/s]
eval model::  25%|██▌       | 127/500 [00:06<00:19, 19.22it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:20, 17.86it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:23, 15.51it/s]
eval model::  27%|██▋       | 133/500 [00:07<00:24, 15.22it/s]
eval model::  27%|██▋       | 135/500 [00:07<00:22, 16.06it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:20, 18.01it/s]
eval model::  28%|██▊       | 140/500 [00:07<00:20, 17.51it/s]
eval model::  29%|██▊       | 143/500 [00:07<00:18, 19.22it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:18, 19.06it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:19, 17.87it/s]
eval model::  30%|██▉       | 149/500 [00:07<00:19, 18.36it/s]
eval model::  30%|███       | 151/500 [00:08<00:20, 16.76it/s]
eval model::  31%|███       | 154/500 [00:08<00:17, 19.45it/s]
eval model::  31%|███▏      | 157/500 [00:08<00:17, 19.38it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:18, 18.53it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:28, 11.94it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:25, 13.02it/s]
eval model::  33%|███▎      | 165/500 [00:09<00:23, 14.28it/s]
eval model::  34%|███▎      | 168/500 [00:09<00:21, 15.59it/s]
eval model::  34%|███▍      | 171/500 [00:09<00:20, 16.22it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:22, 14.43it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:21, 14.74it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:19, 16.51it/s]
eval model::  36%|███▌      | 181/500 [00:10<00:21, 14.73it/s]
eval model::  37%|███▋      | 184/500 [00:10<00:18, 17.28it/s]
eval model::  37%|███▋      | 186/500 [00:10<00:17, 17.79it/s]
eval model::  38%|███▊      | 189/500 [00:10<00:15, 19.60it/s]
eval model::  38%|███▊      | 192/500 [00:10<00:14, 21.53it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:15, 20.23it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:15, 19.37it/s]
eval model::  40%|████      | 201/500 [00:11<00:14, 20.29it/s]
eval model::  41%|████      | 204/500 [00:11<00:13, 22.01it/s]
eval model::  41%|████▏     | 207/500 [00:11<00:20, 14.00it/s]
eval model::  42%|████▏     | 209/500 [00:11<00:21, 13.78it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:20, 13.86it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:20, 14.18it/s]
eval model::  43%|████▎     | 215/500 [00:12<00:23, 12.05it/s]
eval model::  43%|████▎     | 217/500 [00:12<00:23, 12.28it/s]
eval model::  44%|████▍     | 219/500 [00:12<00:20, 13.54it/s]
eval model::  44%|████▍     | 221/500 [00:12<00:21, 13.09it/s]
eval model::  45%|████▍     | 224/500 [00:12<00:16, 16.35it/s]
eval model::  45%|████▌     | 227/500 [00:12<00:15, 17.90it/s]
eval model::  46%|████▌     | 231/500 [00:12<00:12, 21.67it/s]
eval model::  47%|████▋     | 234/500 [00:13<00:12, 21.31it/s]
eval model::  47%|████▋     | 237/500 [00:13<00:12, 21.28it/s]
eval model::  48%|████▊     | 240/500 [00:13<00:12, 21.31it/s]
eval model::  49%|████▊     | 243/500 [00:13<00:13, 18.58it/s]
eval model::  49%|████▉     | 245/500 [00:13<00:13, 18.78it/s]
eval model::  49%|████▉     | 247/500 [00:13<00:13, 18.65it/s]
eval model::  50%|████▉     | 249/500 [00:13<00:13, 18.15it/s]
eval model::  50%|█████     | 251/500 [00:14<00:13, 18.53it/s]
eval model::  51%|█████     | 254/500 [00:14<00:12, 19.52it/s]
eval model::  51%|█████▏    | 257/500 [00:14<00:12, 20.09it/s]
eval model::  52%|█████▏    | 260/500 [00:14<00:11, 21.47it/s]
eval model::  53%|█████▎    | 263/500 [00:14<00:10, 22.36it/s]
eval model::  53%|█████▎    | 266/500 [00:14<00:11, 20.12it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:12, 18.67it/s]
eval model::  54%|█████▍    | 272/500 [00:15<00:12, 18.58it/s]
eval model::  55%|█████▌    | 275/500 [00:15<00:12, 17.51it/s]
eval model::  56%|█████▌    | 278/500 [00:15<00:11, 18.94it/s]
eval model::  56%|█████▌    | 281/500 [00:15<00:10, 20.34it/s]
eval model::  57%|█████▋    | 284/500 [00:15<00:09, 21.88it/s]
eval model::  57%|█████▋    | 287/500 [00:16<00:17, 12.25it/s]
eval model::  58%|█████▊    | 291/500 [00:16<00:13, 15.95it/s]
eval model::  59%|█████▉    | 294/500 [00:16<00:13, 14.88it/s]
eval model::  59%|█████▉    | 296/500 [00:16<00:15, 13.06it/s]
eval model::  60%|█████▉    | 299/500 [00:16<00:13, 15.12it/s]
eval model::  60%|██████    | 301/500 [00:17<00:13, 14.38it/s]
eval model::  61%|██████    | 304/500 [00:17<00:12, 16.12it/s]
eval model::  61%|██████▏   | 307/500 [00:17<00:10, 18.04it/s]
eval model::  62%|██████▏   | 309/500 [00:17<00:11, 16.92it/s]
eval model::  62%|██████▏   | 311/500 [00:17<00:10, 17.35it/s]
eval model::  63%|██████▎   | 313/500 [00:17<00:10, 17.51it/s]
eval model::  63%|██████▎   | 315/500 [00:17<00:11, 15.50it/s]
eval model::  64%|██████▎   | 318/500 [00:17<00:10, 18.19it/s]
eval model::  64%|██████▍   | 321/500 [00:18<00:09, 19.68it/s]
eval model::  65%|██████▍   | 324/500 [00:18<00:08, 19.83it/s]
eval model::  65%|██████▌   | 327/500 [00:18<00:08, 21.37it/s]
eval model::  66%|██████▌   | 330/500 [00:18<00:08, 19.38it/s]
eval model::  67%|██████▋   | 333/500 [00:18<00:08, 19.73it/s]
eval model::  67%|██████▋   | 336/500 [00:18<00:07, 20.83it/s]
eval model::  68%|██████▊   | 339/500 [00:18<00:07, 20.16it/s]
eval model::  68%|██████▊   | 342/500 [00:19<00:10, 15.45it/s]
eval model::  69%|██████▉   | 345/500 [00:19<00:08, 18.07it/s]
eval model::  70%|██████▉   | 348/500 [00:19<00:08, 18.52it/s]
eval model::  70%|███████   | 352/500 [00:19<00:06, 21.87it/s]
eval model::  71%|███████   | 355/500 [00:19<00:06, 21.55it/s]
eval model::  72%|███████▏  | 358/500 [00:19<00:06, 22.62it/s]
eval model::  72%|███████▏  | 361/500 [00:20<00:07, 18.69it/s]
eval model::  73%|███████▎  | 364/500 [00:20<00:07, 17.07it/s]
eval model::  73%|███████▎  | 366/500 [00:20<00:08, 16.72it/s]
eval model::  74%|███████▍  | 369/500 [00:20<00:07, 17.76it/s]
eval model::  74%|███████▍  | 371/500 [00:20<00:07, 17.79it/s]
eval model::  75%|███████▍  | 373/500 [00:20<00:07, 16.94it/s]
eval model::  75%|███████▌  | 376/500 [00:20<00:06, 19.54it/s]
eval model::  76%|███████▌  | 379/500 [00:21<00:05, 21.26it/s]
eval model::  76%|███████▋  | 382/500 [00:21<00:06, 19.56it/s]
eval model::  77%|███████▋  | 385/500 [00:21<00:05, 21.09it/s]
eval model::  78%|███████▊  | 388/500 [00:21<00:09, 11.61it/s]
eval model::  78%|███████▊  | 391/500 [00:22<00:07, 13.70it/s]
eval model::  79%|███████▉  | 394/500 [00:22<00:06, 15.22it/s]
eval model::  79%|███████▉  | 397/500 [00:22<00:06, 17.02it/s]
eval model::  80%|████████  | 400/500 [00:22<00:06, 16.60it/s]
eval model::  80%|████████  | 402/500 [00:22<00:05, 17.08it/s]
eval model::  81%|████████  | 404/500 [00:22<00:05, 17.39it/s]
eval model::  81%|████████▏ | 407/500 [00:22<00:04, 19.31it/s]
eval model::  82%|████████▏ | 411/500 [00:22<00:03, 23.14it/s]
eval model::  83%|████████▎ | 414/500 [00:23<00:03, 23.68it/s]
eval model::  83%|████████▎ | 417/500 [00:23<00:03, 22.23it/s]
eval model::  84%|████████▍ | 420/500 [00:23<00:05, 14.16it/s]
eval model::  84%|████████▍ | 422/500 [00:23<00:05, 15.13it/s]
eval model::  85%|████████▍ | 424/500 [00:23<00:05, 14.51it/s]
eval model::  85%|████████▌ | 426/500 [00:23<00:05, 14.51it/s]
eval model::  86%|████████▌ | 429/500 [00:24<00:04, 17.66it/s]
eval model::  86%|████████▋ | 432/500 [00:24<00:03, 17.48it/s]
eval model::  87%|████████▋ | 434/500 [00:24<00:03, 18.00it/s]
eval model::  87%|████████▋ | 437/500 [00:24<00:03, 20.66it/s]
eval model::  88%|████████▊ | 440/500 [00:24<00:03, 19.61it/s]
eval model::  89%|████████▊ | 443/500 [00:24<00:02, 21.46it/s]
eval model::  89%|████████▉ | 446/500 [00:24<00:02, 20.17it/s]
eval model::  90%|████████▉ | 449/500 [00:25<00:02, 20.39it/s]
eval model::  90%|█████████ | 452/500 [00:25<00:02, 21.77it/s]
eval model::  91%|█████████ | 455/500 [00:25<00:02, 21.21it/s]
eval model::  92%|█████████▏| 458/500 [00:25<00:01, 21.21it/s]
eval model::  92%|█████████▏| 461/500 [00:25<00:01, 21.19it/s]
eval model::  93%|█████████▎| 464/500 [00:25<00:01, 18.62it/s]
eval model::  93%|█████████▎| 466/500 [00:25<00:01, 17.62it/s]
eval model::  94%|█████████▎| 468/500 [00:26<00:01, 18.04it/s]
eval model::  94%|█████████▍| 471/500 [00:26<00:01, 20.08it/s]
eval model::  95%|█████████▍| 474/500 [00:26<00:01, 19.79it/s]
eval model::  95%|█████████▌| 477/500 [00:26<00:01, 20.15it/s]
eval model::  96%|█████████▌| 480/500 [00:26<00:00, 20.66it/s]
eval model::  97%|█████████▋| 483/500 [00:26<00:00, 20.73it/s]
eval model::  97%|█████████▋| 486/500 [00:26<00:00, 19.29it/s]
eval model::  98%|█████████▊| 489/500 [00:27<00:00, 21.56it/s]
eval model::  98%|█████████▊| 492/500 [00:27<00:00, 20.15it/s]
eval model::  99%|█████████▉| 495/500 [00:27<00:00, 19.66it/s]
eval model:: 100%|█████████▉| 498/500 [00:27<00:00, 21.12it/s]
eval model:: 100%|██████████| 500/500 [00:27<00:00, 18.15it/s]
[2024/07/28 01:03:42] ppocr INFO: cur metric, precision: 0.6890632663070132, recall: 0.6764564275397208, hmean: 0.6827016520894071, fps: 43.92057256379959
[2024/07/28 01:03:42] ppocr INFO: best metric, hmean: 0.7048391183177097, precision: 0.7438502673796792, recall: 0.6697159364467983, fps: 46.08540547152116, best_epoch: 580
[2024/07/28 01:03:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:03:50] ppocr INFO: epoch: [641/1500], global_step: 1923, lr: 0.001000, loss: 1.455818, loss_shrink_maps: 0.746992, loss_threshold_maps: 0.548765, loss_binary_maps: 0.148594, avg_reader_cost: 1.45477 s, avg_batch_cost: 1.68400 s, avg_samples: 12.5, ips: 7.42281 samples/s, eta: 4:22:16
[2024/07/28 01:03:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:03:58] ppocr INFO: epoch: [642/1500], global_step: 1926, lr: 0.001000, loss: 1.485733, loss_shrink_maps: 0.778196, loss_threshold_maps: 0.545903, loss_binary_maps: 0.154062, avg_reader_cost: 1.52227 s, avg_batch_cost: 1.75186 s, avg_samples: 12.5, ips: 7.13527 samples/s, eta: 4:21:56
[2024/07/28 01:04:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:04:07] ppocr INFO: epoch: [643/1500], global_step: 1929, lr: 0.001000, loss: 1.465855, loss_shrink_maps: 0.761899, loss_threshold_maps: 0.537566, loss_binary_maps: 0.151494, avg_reader_cost: 1.63707 s, avg_batch_cost: 1.88863 s, avg_samples: 12.5, ips: 6.61856 samples/s, eta: 4:21:39
[2024/07/28 01:04:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:04:14] ppocr INFO: epoch: [644/1500], global_step: 1930, lr: 0.001000, loss: 1.434342, loss_shrink_maps: 0.740406, loss_threshold_maps: 0.534412, loss_binary_maps: 0.147236, avg_reader_cost: 0.41482 s, avg_batch_cost: 0.51180 s, avg_samples: 4.8, ips: 9.37866 samples/s, eta: 4:21:31
[2024/07/28 01:04:15] ppocr INFO: epoch: [644/1500], global_step: 1932, lr: 0.001000, loss: 1.434342, loss_shrink_maps: 0.737421, loss_threshold_maps: 0.534412, loss_binary_maps: 0.146436, avg_reader_cost: 1.11477 s, avg_batch_cost: 1.26032 s, avg_samples: 7.7, ips: 6.10958 samples/s, eta: 4:21:19
[2024/07/28 01:04:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:04:24] ppocr INFO: epoch: [645/1500], global_step: 1935, lr: 0.001000, loss: 1.427464, loss_shrink_maps: 0.733479, loss_threshold_maps: 0.536436, loss_binary_maps: 0.146436, avg_reader_cost: 1.50515 s, avg_batch_cost: 1.73676 s, avg_samples: 12.5, ips: 7.19733 samples/s, eta: 4:21:00
[2024/07/28 01:04:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:04:32] ppocr INFO: epoch: [646/1500], global_step: 1938, lr: 0.001000, loss: 1.410127, loss_shrink_maps: 0.727243, loss_threshold_maps: 0.529069, loss_binary_maps: 0.144801, avg_reader_cost: 1.53194 s, avg_batch_cost: 1.78486 s, avg_samples: 12.5, ips: 7.00334 samples/s, eta: 4:20:41
[2024/07/28 01:04:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:04:40] ppocr INFO: epoch: [647/1500], global_step: 1940, lr: 0.001000, loss: 1.393471, loss_shrink_maps: 0.717609, loss_threshold_maps: 0.529069, loss_binary_maps: 0.142419, avg_reader_cost: 0.91745 s, avg_batch_cost: 1.10644 s, avg_samples: 9.6, ips: 8.67645 samples/s, eta: 4:20:27
[2024/07/28 01:04:41] ppocr INFO: epoch: [647/1500], global_step: 1941, lr: 0.001000, loss: 1.380312, loss_shrink_maps: 0.710004, loss_threshold_maps: 0.526070, loss_binary_maps: 0.140958, avg_reader_cost: 0.59878 s, avg_batch_cost: 0.65374 s, avg_samples: 2.9, ips: 4.43600 samples/s, eta: 4:20:22
[2024/07/28 01:04:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:04:49] ppocr INFO: epoch: [648/1500], global_step: 1944, lr: 0.001000, loss: 1.390161, loss_shrink_maps: 0.712214, loss_threshold_maps: 0.532735, loss_binary_maps: 0.141331, avg_reader_cost: 1.57300 s, avg_batch_cost: 1.82497 s, avg_samples: 12.5, ips: 6.84943 samples/s, eta: 4:20:03
[2024/07/28 01:04:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:04:58] ppocr INFO: epoch: [649/1500], global_step: 1947, lr: 0.001000, loss: 1.402430, loss_shrink_maps: 0.719819, loss_threshold_maps: 0.536436, loss_binary_maps: 0.142792, avg_reader_cost: 1.50121 s, avg_batch_cost: 1.72982 s, avg_samples: 12.5, ips: 7.22619 samples/s, eta: 4:19:44
[2024/07/28 01:05:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:05:06] ppocr INFO: epoch: [650/1500], global_step: 1950, lr: 0.001000, loss: 1.404078, loss_shrink_maps: 0.721151, loss_threshold_maps: 0.538359, loss_binary_maps: 0.143808, avg_reader_cost: 1.50763 s, avg_batch_cost: 1.73847 s, avg_samples: 12.5, ips: 7.19023 samples/s, eta: 4:19:24
[2024/07/28 01:05:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:05:15] ppocr INFO: epoch: [651/1500], global_step: 1953, lr: 0.001000, loss: 1.391199, loss_shrink_maps: 0.712214, loss_threshold_maps: 0.534760, loss_binary_maps: 0.141331, avg_reader_cost: 1.54795 s, avg_batch_cost: 1.79112 s, avg_samples: 12.5, ips: 6.97888 samples/s, eta: 4:19:05
[2024/07/28 01:05:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:05:23] ppocr INFO: epoch: [652/1500], global_step: 1956, lr: 0.001000, loss: 1.404078, loss_shrink_maps: 0.721151, loss_threshold_maps: 0.538143, loss_binary_maps: 0.143808, avg_reader_cost: 1.56302 s, avg_batch_cost: 1.85852 s, avg_samples: 12.5, ips: 6.72576 samples/s, eta: 4:18:47
[2024/07/28 01:05:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:05:32] ppocr INFO: epoch: [653/1500], global_step: 1959, lr: 0.001000, loss: 1.404078, loss_shrink_maps: 0.718893, loss_threshold_maps: 0.543930, loss_binary_maps: 0.143111, avg_reader_cost: 1.52449 s, avg_batch_cost: 1.79597 s, avg_samples: 12.5, ips: 6.96002 samples/s, eta: 4:18:29
[2024/07/28 01:05:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:05:39] ppocr INFO: epoch: [654/1500], global_step: 1960, lr: 0.001000, loss: 1.415253, loss_shrink_maps: 0.724748, loss_threshold_maps: 0.547805, loss_binary_maps: 0.144837, avg_reader_cost: 0.41677 s, avg_batch_cost: 0.50157 s, avg_samples: 4.8, ips: 9.56994 samples/s, eta: 4:18:21
[2024/07/28 01:05:40] ppocr INFO: epoch: [654/1500], global_step: 1962, lr: 0.001000, loss: 1.431189, loss_shrink_maps: 0.743513, loss_threshold_maps: 0.547805, loss_binary_maps: 0.148193, avg_reader_cost: 1.09540 s, avg_batch_cost: 1.24221 s, avg_samples: 7.7, ips: 6.19865 samples/s, eta: 4:18:09
[2024/07/28 01:05:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:05:49] ppocr INFO: epoch: [655/1500], global_step: 1965, lr: 0.001000, loss: 1.402373, loss_shrink_maps: 0.718832, loss_threshold_maps: 0.541660, loss_binary_maps: 0.143117, avg_reader_cost: 1.50204 s, avg_batch_cost: 1.73157 s, avg_samples: 12.5, ips: 7.21890 samples/s, eta: 4:17:50
[2024/07/28 01:05:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:05:57] ppocr INFO: epoch: [656/1500], global_step: 1968, lr: 0.001000, loss: 1.385129, loss_shrink_maps: 0.704197, loss_threshold_maps: 0.536054, loss_binary_maps: 0.139984, avg_reader_cost: 1.52320 s, avg_batch_cost: 1.76108 s, avg_samples: 12.5, ips: 7.09792 samples/s, eta: 4:17:30
[2024/07/28 01:05:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:06:05] ppocr INFO: epoch: [657/1500], global_step: 1970, lr: 0.001000, loss: 1.391344, loss_shrink_maps: 0.713993, loss_threshold_maps: 0.536054, loss_binary_maps: 0.141871, avg_reader_cost: 0.95470 s, avg_batch_cost: 1.12819 s, avg_samples: 9.6, ips: 8.50919 samples/s, eta: 4:17:17
[2024/07/28 01:06:06] ppocr INFO: epoch: [657/1500], global_step: 1971, lr: 0.001000, loss: 1.374121, loss_shrink_maps: 0.702223, loss_threshold_maps: 0.530735, loss_binary_maps: 0.139984, avg_reader_cost: 0.60979 s, avg_batch_cost: 0.66472 s, avg_samples: 2.9, ips: 4.36276 samples/s, eta: 4:17:12
[2024/07/28 01:06:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:06:14] ppocr INFO: epoch: [658/1500], global_step: 1974, lr: 0.001000, loss: 1.391344, loss_shrink_maps: 0.713993, loss_threshold_maps: 0.530735, loss_binary_maps: 0.141871, avg_reader_cost: 1.50965 s, avg_batch_cost: 1.74853 s, avg_samples: 12.5, ips: 7.14888 samples/s, eta: 4:16:52
[2024/07/28 01:06:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:06:23] ppocr INFO: epoch: [659/1500], global_step: 1977, lr: 0.001000, loss: 1.391344, loss_shrink_maps: 0.713993, loss_threshold_maps: 0.530735, loss_binary_maps: 0.141871, avg_reader_cost: 1.62646 s, avg_batch_cost: 1.89548 s, avg_samples: 12.5, ips: 6.59462 samples/s, eta: 4:16:35
[2024/07/28 01:06:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:06:32] ppocr INFO: epoch: [660/1500], global_step: 1980, lr: 0.001000, loss: 1.423870, loss_shrink_maps: 0.727884, loss_threshold_maps: 0.518914, loss_binary_maps: 0.144437, avg_reader_cost: 1.54665 s, avg_batch_cost: 1.77644 s, avg_samples: 12.5, ips: 7.03653 samples/s, eta: 4:16:16

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:56,  8.83it/s]
eval model::   1%|          | 4/500 [00:00<00:28, 17.21it/s]
eval model::   1%|          | 6/500 [00:00<00:28, 17.14it/s]
eval model::   2%|▏         | 8/500 [00:00<00:27, 18.06it/s]
eval model::   2%|▏         | 11/500 [00:00<00:26, 18.68it/s]
eval model::   3%|▎         | 13/500 [00:00<00:26, 18.70it/s]
eval model::   3%|▎         | 15/500 [00:00<00:25, 18.70it/s]
eval model::   4%|▎         | 18/500 [00:00<00:23, 20.34it/s]
eval model::   4%|▍         | 21/500 [00:01<00:24, 19.51it/s]
eval model::   5%|▍         | 24/500 [00:01<00:21, 21.85it/s]
eval model::   5%|▌         | 27/500 [00:01<00:21, 21.81it/s]
eval model::   6%|▌         | 30/500 [00:01<00:19, 23.76it/s]
eval model::   7%|▋         | 33/500 [00:01<00:21, 22.16it/s]
eval model::   7%|▋         | 36/500 [00:01<00:23, 19.86it/s]
eval model::   8%|▊         | 39/500 [00:02<00:26, 17.58it/s]
eval model::   8%|▊         | 42/500 [00:02<00:27, 16.63it/s]
eval model::   9%|▉         | 45/500 [00:02<00:23, 19.00it/s]
eval model::  10%|▉         | 48/500 [00:02<00:25, 18.04it/s]
eval model::  10%|█         | 50/500 [00:02<00:24, 18.42it/s]
eval model::  11%|█         | 53/500 [00:02<00:21, 20.48it/s]
eval model::  11%|█         | 56/500 [00:02<00:21, 20.42it/s]
eval model::  12%|█▏        | 59/500 [00:03<00:22, 19.81it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:25, 17.29it/s]
eval model::  13%|█▎        | 64/500 [00:03<00:26, 16.46it/s]
eval model::  14%|█▎        | 68/500 [00:03<00:20, 20.78it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:18, 23.26it/s]
eval model::  15%|█▌        | 75/500 [00:03<00:18, 23.56it/s]
eval model::  16%|█▌        | 78/500 [00:03<00:17, 24.69it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:16, 25.54it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:18, 22.91it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:19, 20.99it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:24, 16.98it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:24, 16.42it/s]
eval model::  19%|█▉        | 96/500 [00:04<00:21, 18.87it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:20, 19.77it/s]
eval model::  20%|██        | 102/500 [00:05<00:21, 18.92it/s]
eval model::  21%|██        | 105/500 [00:05<00:19, 20.62it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:18, 21.40it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:18, 20.87it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:18, 21.01it/s]
eval model::  23%|██▎       | 117/500 [00:05<00:19, 19.79it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:20, 18.87it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:19, 19.83it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:21, 17.08it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:21, 17.19it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:23, 16.05it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:23, 15.70it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:20, 17.65it/s]
eval model::  27%|██▋       | 137/500 [00:07<00:20, 18.12it/s]
eval model::  28%|██▊       | 140/500 [00:07<00:18, 19.43it/s]
eval model::  29%|██▊       | 143/500 [00:07<00:17, 20.80it/s]
eval model::  29%|██▉       | 146/500 [00:07<00:18, 19.60it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:18, 18.83it/s]
eval model::  30%|███       | 151/500 [00:07<00:20, 17.19it/s]
eval model::  31%|███       | 154/500 [00:07<00:17, 19.28it/s]
eval model::  31%|███▏      | 157/500 [00:08<00:17, 20.05it/s]
eval model::  32%|███▏      | 160/500 [00:08<00:22, 14.96it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:20, 16.31it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:17, 19.38it/s]
eval model::  34%|███▍      | 170/500 [00:08<00:15, 21.01it/s]
eval model::  35%|███▍      | 173/500 [00:09<00:17, 18.30it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:21, 15.29it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:20, 15.76it/s]
eval model::  36%|███▋      | 182/500 [00:09<00:19, 16.28it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:16, 19.23it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:15, 20.68it/s]
eval model::  38%|███▊      | 192/500 [00:10<00:14, 21.20it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:15, 20.07it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:14, 20.37it/s]
eval model::  40%|████      | 201/500 [00:10<00:14, 20.22it/s]
eval model::  41%|████      | 204/500 [00:10<00:13, 21.77it/s]
eval model::  41%|████▏     | 207/500 [00:11<00:21, 13.62it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:20, 14.20it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.30it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:20, 14.03it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:21, 13.28it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:18, 15.39it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:18, 14.67it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:14, 18.60it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:12, 22.36it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:11, 23.89it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:11, 23.58it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:10, 24.97it/s]
eval model::  48%|████▊     | 242/500 [00:12<00:12, 20.12it/s]
eval model::  49%|████▉     | 245/500 [00:12<00:12, 21.18it/s]
eval model::  50%|████▉     | 248/500 [00:13<00:11, 22.86it/s]
eval model::  50%|█████     | 251/500 [00:13<00:11, 21.62it/s]
eval model::  51%|█████     | 254/500 [00:13<00:10, 23.32it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:10, 24.20it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:09, 24.28it/s]
eval model::  53%|█████▎    | 263/500 [00:13<00:10, 22.51it/s]
eval model::  53%|█████▎    | 266/500 [00:13<00:12, 18.35it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:12, 17.83it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:12, 17.72it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:13, 17.19it/s]
eval model::  55%|█████▌    | 277/500 [00:14<00:13, 16.81it/s]
eval model::  56%|█████▌    | 280/500 [00:14<00:11, 18.80it/s]
eval model::  57%|█████▋    | 283/500 [00:14<00:11, 19.62it/s]
eval model::  57%|█████▋    | 286/500 [00:15<00:19, 10.95it/s]
eval model::  58%|█████▊    | 289/500 [00:15<00:16, 13.01it/s]
eval model::  58%|█████▊    | 292/500 [00:15<00:13, 14.96it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:13, 15.52it/s]
eval model::  59%|█████▉    | 296/500 [00:15<00:15, 13.56it/s]
eval model::  60%|█████▉    | 299/500 [00:16<00:12, 16.07it/s]
eval model::  60%|██████    | 301/500 [00:16<00:12, 15.81it/s]
eval model::  61%|██████    | 304/500 [00:16<00:10, 18.15it/s]
eval model::  61%|██████▏   | 307/500 [00:16<00:09, 20.74it/s]
eval model::  62%|██████▏   | 310/500 [00:16<00:08, 22.96it/s]
eval model::  63%|██████▎   | 313/500 [00:16<00:07, 24.05it/s]
eval model::  63%|██████▎   | 316/500 [00:16<00:07, 23.35it/s]
eval model::  64%|██████▍   | 319/500 [00:16<00:07, 24.57it/s]
eval model::  64%|██████▍   | 322/500 [00:17<00:07, 22.40it/s]
eval model::  65%|██████▌   | 325/500 [00:17<00:07, 22.34it/s]
eval model::  66%|██████▌   | 328/500 [00:17<00:07, 21.62it/s]
eval model::  66%|██████▌   | 331/500 [00:17<00:08, 19.81it/s]
eval model::  67%|██████▋   | 334/500 [00:17<00:08, 20.61it/s]
eval model::  67%|██████▋   | 337/500 [00:17<00:08, 19.95it/s]
eval model::  68%|██████▊   | 340/500 [00:18<00:11, 13.55it/s]
eval model::  69%|██████▊   | 343/500 [00:18<00:09, 16.14it/s]
eval model::  69%|██████▉   | 347/500 [00:18<00:07, 19.26it/s]
eval model::  70%|███████   | 350/500 [00:18<00:07, 21.13it/s]
eval model::  71%|███████   | 353/500 [00:18<00:06, 22.69it/s]
eval model::  71%|███████   | 356/500 [00:18<00:06, 20.92it/s]
eval model::  72%|███████▏  | 359/500 [00:18<00:06, 21.29it/s]
eval model::  72%|███████▏  | 362/500 [00:19<00:07, 19.55it/s]
eval model::  73%|███████▎  | 365/500 [00:19<00:07, 19.27it/s]
eval model::  74%|███████▎  | 368/500 [00:19<00:08, 14.86it/s]
eval model::  74%|███████▍  | 371/500 [00:19<00:07, 17.02it/s]
eval model::  75%|███████▍  | 374/500 [00:19<00:06, 18.72it/s]
eval model::  75%|███████▌  | 377/500 [00:19<00:05, 20.96it/s]
eval model::  76%|███████▌  | 380/500 [00:20<00:06, 19.53it/s]
eval model::  77%|███████▋  | 383/500 [00:20<00:05, 21.30it/s]
eval model::  77%|███████▋  | 386/500 [00:20<00:08, 13.54it/s]
eval model::  78%|███████▊  | 389/500 [00:20<00:07, 15.52it/s]
eval model::  78%|███████▊  | 391/500 [00:20<00:06, 15.62it/s]
eval model::  79%|███████▊  | 393/500 [00:21<00:06, 16.48it/s]
eval model::  79%|███████▉  | 395/500 [00:21<00:06, 16.80it/s]
eval model::  80%|███████▉  | 398/500 [00:21<00:05, 19.89it/s]
eval model::  80%|████████  | 401/500 [00:21<00:05, 18.83it/s]
eval model::  81%|████████  | 404/500 [00:21<00:04, 20.14it/s]
eval model::  81%|████████▏ | 407/500 [00:21<00:04, 21.22it/s]
eval model::  82%|████████▏ | 410/500 [00:21<00:04, 22.28it/s]
eval model::  83%|████████▎ | 413/500 [00:21<00:04, 20.71it/s]
eval model::  83%|████████▎ | 416/500 [00:22<00:04, 20.73it/s]
eval model::  84%|████████▍ | 419/500 [00:22<00:03, 20.40it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:05, 14.00it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:05, 14.59it/s]
eval model::  85%|████████▌ | 426/500 [00:22<00:04, 15.02it/s]
eval model::  86%|████████▌ | 430/500 [00:22<00:03, 19.36it/s]
eval model::  87%|████████▋ | 433/500 [00:23<00:03, 21.21it/s]
eval model::  87%|████████▋ | 436/500 [00:23<00:02, 23.27it/s]
eval model::  88%|████████▊ | 440/500 [00:23<00:02, 23.78it/s]
eval model::  89%|████████▉ | 444/500 [00:23<00:02, 26.40it/s]
eval model::  89%|████████▉ | 447/500 [00:23<00:02, 25.62it/s]
eval model::  90%|█████████ | 450/500 [00:23<00:02, 22.51it/s]
eval model::  91%|█████████ | 453/500 [00:23<00:01, 23.62it/s]
eval model::  91%|█████████ | 456/500 [00:24<00:01, 24.12it/s]
eval model::  92%|█████████▏| 459/500 [00:24<00:01, 24.00it/s]
eval model::  92%|█████████▏| 462/500 [00:24<00:02, 18.88it/s]
eval model::  93%|█████████▎| 465/500 [00:24<00:01, 17.70it/s]
eval model::  94%|█████████▎| 468/500 [00:24<00:01, 18.87it/s]
eval model::  94%|█████████▍| 471/500 [00:24<00:01, 20.66it/s]
eval model::  95%|█████████▍| 474/500 [00:24<00:01, 21.38it/s]
eval model::  95%|█████████▌| 477/500 [00:25<00:01, 21.82it/s]
eval model::  96%|█████████▌| 480/500 [00:25<00:00, 21.20it/s]
eval model::  97%|█████████▋| 483/500 [00:25<00:00, 19.31it/s]
eval model::  97%|█████████▋| 486/500 [00:25<00:00, 17.55it/s]
eval model::  98%|█████████▊| 490/500 [00:25<00:00, 20.70it/s]
eval model::  99%|█████████▊| 493/500 [00:26<00:00, 16.95it/s]
eval model::  99%|█████████▉| 495/500 [00:26<00:00, 17.02it/s]
eval model:: 100%|█████████▉| 498/500 [00:26<00:00, 19.56it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 19.00it/s]
[2024/07/28 01:06:58] ppocr INFO: cur metric, precision: 0.7127100840336135, recall: 0.6533461723639865, hmean: 0.6817382567194172, fps: 45.30683411941943
[2024/07/28 01:06:58] ppocr INFO: best metric, hmean: 0.7048391183177097, precision: 0.7438502673796792, recall: 0.6697159364467983, fps: 46.08540547152116, best_epoch: 580
[2024/07/28 01:06:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:07:06] ppocr INFO: epoch: [661/1500], global_step: 1983, lr: 0.001000, loss: 1.473654, loss_shrink_maps: 0.764972, loss_threshold_maps: 0.532199, loss_binary_maps: 0.151771, avg_reader_cost: 1.78829 s, avg_batch_cost: 2.15964 s, avg_samples: 12.5, ips: 5.78801 samples/s, eta: 4:16:02
[2024/07/28 01:07:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:07:15] ppocr INFO: epoch: [662/1500], global_step: 1986, lr: 0.001000, loss: 1.509432, loss_shrink_maps: 0.792044, loss_threshold_maps: 0.539634, loss_binary_maps: 0.157456, avg_reader_cost: 1.52992 s, avg_batch_cost: 1.75780 s, avg_samples: 12.5, ips: 7.11117 samples/s, eta: 4:15:42
[2024/07/28 01:07:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:07:23] ppocr INFO: epoch: [663/1500], global_step: 1989, lr: 0.001000, loss: 1.443994, loss_shrink_maps: 0.764151, loss_threshold_maps: 0.539191, loss_binary_maps: 0.152019, avg_reader_cost: 1.52993 s, avg_batch_cost: 1.76391 s, avg_samples: 12.5, ips: 7.08652 samples/s, eta: 4:15:23
[2024/07/28 01:07:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:07:30] ppocr INFO: epoch: [664/1500], global_step: 1990, lr: 0.001000, loss: 1.404331, loss_shrink_maps: 0.710454, loss_threshold_maps: 0.539191, loss_binary_maps: 0.141504, avg_reader_cost: 0.42317 s, avg_batch_cost: 0.51376 s, avg_samples: 4.8, ips: 9.34294 samples/s, eta: 4:15:16
[2024/07/28 01:07:31] ppocr INFO: epoch: [664/1500], global_step: 1992, lr: 0.001000, loss: 1.463866, loss_shrink_maps: 0.754476, loss_threshold_maps: 0.556523, loss_binary_maps: 0.149928, avg_reader_cost: 1.11897 s, avg_batch_cost: 1.26465 s, avg_samples: 7.7, ips: 6.08866 samples/s, eta: 4:15:04
[2024/07/28 01:07:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:07:40] ppocr INFO: epoch: [665/1500], global_step: 1995, lr: 0.001000, loss: 1.473166, loss_shrink_maps: 0.756127, loss_threshold_maps: 0.557548, loss_binary_maps: 0.150351, avg_reader_cost: 1.52475 s, avg_batch_cost: 1.78265 s, avg_samples: 12.5, ips: 7.01201 samples/s, eta: 4:14:45
[2024/07/28 01:07:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:07:48] ppocr INFO: epoch: [666/1500], global_step: 1998, lr: 0.001000, loss: 1.399305, loss_shrink_maps: 0.715993, loss_threshold_maps: 0.543172, loss_binary_maps: 0.142607, avg_reader_cost: 1.55270 s, avg_batch_cost: 1.78332 s, avg_samples: 12.5, ips: 7.00942 samples/s, eta: 4:14:26
[2024/07/28 01:07:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:07:56] ppocr INFO: epoch: [667/1500], global_step: 2000, lr: 0.001000, loss: 1.399305, loss_shrink_maps: 0.715993, loss_threshold_maps: 0.552374, loss_binary_maps: 0.142607, avg_reader_cost: 0.93097 s, avg_batch_cost: 1.15101 s, avg_samples: 9.6, ips: 8.34049 samples/s, eta: 4:14:13
[2024/07/28 01:07:57] ppocr INFO: epoch: [667/1500], global_step: 2001, lr: 0.001000, loss: 1.365364, loss_shrink_maps: 0.688649, loss_threshold_maps: 0.543172, loss_binary_maps: 0.137005, avg_reader_cost: 0.62118 s, avg_batch_cost: 0.67618 s, avg_samples: 2.9, ips: 4.28882 samples/s, eta: 4:14:08
[2024/07/28 01:07:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:08:06] ppocr INFO: epoch: [668/1500], global_step: 2004, lr: 0.001000, loss: 1.351884, loss_shrink_maps: 0.682041, loss_threshold_maps: 0.538814, loss_binary_maps: 0.135901, avg_reader_cost: 1.77021 s, avg_batch_cost: 2.00898 s, avg_samples: 12.5, ips: 6.22205 samples/s, eta: 4:13:52
[2024/07/28 01:08:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:08:15] ppocr INFO: epoch: [669/1500], global_step: 2007, lr: 0.001000, loss: 1.365364, loss_shrink_maps: 0.688649, loss_threshold_maps: 0.538814, loss_binary_maps: 0.137005, avg_reader_cost: 1.50341 s, avg_batch_cost: 1.73189 s, avg_samples: 12.5, ips: 7.21754 samples/s, eta: 4:13:32
[2024/07/28 01:08:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:08:23] ppocr INFO: epoch: [670/1500], global_step: 2010, lr: 0.001000, loss: 1.416919, loss_shrink_maps: 0.733189, loss_threshold_maps: 0.538814, loss_binary_maps: 0.146338, avg_reader_cost: 1.55258 s, avg_batch_cost: 1.78190 s, avg_samples: 12.5, ips: 7.01498 samples/s, eta: 4:13:14
[2024/07/28 01:08:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:08:32] ppocr INFO: epoch: [671/1500], global_step: 2013, lr: 0.001000, loss: 1.335755, loss_shrink_maps: 0.670585, loss_threshold_maps: 0.533254, loss_binary_maps: 0.133415, avg_reader_cost: 1.57468 s, avg_batch_cost: 1.80363 s, avg_samples: 12.5, ips: 6.93046 samples/s, eta: 4:12:55
[2024/07/28 01:08:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:08:40] ppocr INFO: epoch: [672/1500], global_step: 2016, lr: 0.001000, loss: 1.326863, loss_shrink_maps: 0.670249, loss_threshold_maps: 0.528787, loss_binary_maps: 0.133415, avg_reader_cost: 1.53228 s, avg_batch_cost: 1.76214 s, avg_samples: 12.5, ips: 7.09364 samples/s, eta: 4:12:36
[2024/07/28 01:08:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:08:49] ppocr INFO: epoch: [673/1500], global_step: 2019, lr: 0.001000, loss: 1.348995, loss_shrink_maps: 0.685861, loss_threshold_maps: 0.531351, loss_binary_maps: 0.136526, avg_reader_cost: 1.51862 s, avg_batch_cost: 1.78617 s, avg_samples: 12.5, ips: 6.99823 samples/s, eta: 4:12:17
[2024/07/28 01:08:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:08:56] ppocr INFO: epoch: [674/1500], global_step: 2020, lr: 0.001000, loss: 1.310524, loss_shrink_maps: 0.661937, loss_threshold_maps: 0.528787, loss_binary_maps: 0.132034, avg_reader_cost: 0.40077 s, avg_batch_cost: 0.51046 s, avg_samples: 4.8, ips: 9.40324 samples/s, eta: 4:12:10
[2024/07/28 01:08:57] ppocr INFO: epoch: [674/1500], global_step: 2022, lr: 0.001000, loss: 1.342617, loss_shrink_maps: 0.680399, loss_threshold_maps: 0.531351, loss_binary_maps: 0.135442, avg_reader_cost: 1.11243 s, avg_batch_cost: 1.25833 s, avg_samples: 7.7, ips: 6.11920 samples/s, eta: 4:11:58
[2024/07/28 01:08:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:09:06] ppocr INFO: epoch: [675/1500], global_step: 2025, lr: 0.001000, loss: 1.342617, loss_shrink_maps: 0.680399, loss_threshold_maps: 0.529443, loss_binary_maps: 0.135442, avg_reader_cost: 1.51377 s, avg_batch_cost: 1.75416 s, avg_samples: 12.5, ips: 7.12591 samples/s, eta: 4:11:39
[2024/07/28 01:09:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:09:14] ppocr INFO: epoch: [676/1500], global_step: 2028, lr: 0.001000, loss: 1.342617, loss_shrink_maps: 0.680399, loss_threshold_maps: 0.528794, loss_binary_maps: 0.135442, avg_reader_cost: 1.52279 s, avg_batch_cost: 1.77205 s, avg_samples: 12.5, ips: 7.05397 samples/s, eta: 4:11:20
[2024/07/28 01:09:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:09:22] ppocr INFO: epoch: [677/1500], global_step: 2030, lr: 0.001000, loss: 1.349018, loss_shrink_maps: 0.680399, loss_threshold_maps: 0.528794, loss_binary_maps: 0.135442, avg_reader_cost: 0.95648 s, avg_batch_cost: 1.13080 s, avg_samples: 9.6, ips: 8.48954 samples/s, eta: 4:11:06
[2024/07/28 01:09:23] ppocr INFO: epoch: [677/1500], global_step: 2031, lr: 0.001000, loss: 1.349018, loss_shrink_maps: 0.686551, loss_threshold_maps: 0.528794, loss_binary_maps: 0.136688, avg_reader_cost: 0.61150 s, avg_batch_cost: 0.66634 s, avg_samples: 2.9, ips: 4.35214 samples/s, eta: 4:11:01
[2024/07/28 01:09:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:09:32] ppocr INFO: epoch: [678/1500], global_step: 2034, lr: 0.001000, loss: 1.349018, loss_shrink_maps: 0.686551, loss_threshold_maps: 0.527974, loss_binary_maps: 0.136688, avg_reader_cost: 1.54620 s, avg_batch_cost: 1.77873 s, avg_samples: 12.5, ips: 7.02747 samples/s, eta: 4:10:42
[2024/07/28 01:09:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:09:40] ppocr INFO: epoch: [679/1500], global_step: 2037, lr: 0.001000, loss: 1.324067, loss_shrink_maps: 0.680399, loss_threshold_maps: 0.524410, loss_binary_maps: 0.135442, avg_reader_cost: 1.53667 s, avg_batch_cost: 1.76779 s, avg_samples: 12.5, ips: 7.07098 samples/s, eta: 4:10:23
[2024/07/28 01:09:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:09:49] ppocr INFO: epoch: [680/1500], global_step: 2040, lr: 0.001000, loss: 1.349018, loss_shrink_maps: 0.686551, loss_threshold_maps: 0.524410, loss_binary_maps: 0.136688, avg_reader_cost: 1.56562 s, avg_batch_cost: 1.79518 s, avg_samples: 12.5, ips: 6.96309 samples/s, eta: 4:10:04

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<01:03,  7.90it/s]
eval model::   1%|          | 3/500 [00:00<00:37, 13.31it/s]
eval model::   1%|          | 5/500 [00:00<00:31, 15.51it/s]
eval model::   1%|▏         | 7/500 [00:00<00:31, 15.87it/s]
eval model::   2%|▏         | 9/500 [00:00<00:32, 15.10it/s]
eval model::   2%|▏         | 11/500 [00:00<00:34, 14.35it/s]
eval model::   3%|▎         | 14/500 [00:00<00:32, 14.83it/s]
eval model::   3%|▎         | 17/500 [00:01<00:28, 17.21it/s]
eval model::   4%|▍         | 20/500 [00:01<00:28, 17.11it/s]
eval model::   5%|▍         | 23/500 [00:01<00:25, 18.75it/s]
eval model::   5%|▌         | 25/500 [00:01<00:25, 18.33it/s]
eval model::   6%|▌         | 28/500 [00:01<00:24, 19.25it/s]
eval model::   6%|▌         | 30/500 [00:01<00:24, 19.14it/s]
eval model::   6%|▋         | 32/500 [00:01<00:26, 17.66it/s]
eval model::   7%|▋         | 34/500 [00:02<00:26, 17.68it/s]
eval model::   7%|▋         | 37/500 [00:02<00:24, 19.18it/s]
eval model::   8%|▊         | 39/500 [00:02<00:26, 17.31it/s]
eval model::   8%|▊         | 42/500 [00:02<00:27, 16.41it/s]
eval model::   9%|▉         | 45/500 [00:02<00:24, 18.21it/s]
eval model::   9%|▉         | 47/500 [00:02<00:26, 17.09it/s]
eval model::  10%|▉         | 49/500 [00:02<00:26, 17.07it/s]
eval model::  10%|█         | 51/500 [00:02<00:25, 17.53it/s]
eval model::  11%|█         | 54/500 [00:03<00:22, 19.52it/s]
eval model::  11%|█▏        | 57/500 [00:03<00:21, 20.79it/s]
eval model::  12%|█▏        | 60/500 [00:03<00:21, 20.24it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:30, 14.53it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:26, 16.36it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:24, 17.52it/s]
eval model::  14%|█▍        | 71/500 [00:04<00:24, 17.82it/s]
eval model::  15%|█▍        | 73/500 [00:04<00:24, 17.10it/s]
eval model::  15%|█▌        | 76/500 [00:04<00:23, 18.43it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:21, 19.95it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:19, 22.00it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:17, 23.40it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:22, 18.28it/s]
eval model::  18%|█▊        | 91/500 [00:05<00:23, 17.69it/s]
eval model::  19%|█▉        | 94/500 [00:05<00:21, 18.58it/s]
eval model::  19%|█▉        | 97/500 [00:05<00:20, 19.45it/s]
eval model::  20%|██        | 100/500 [00:05<00:22, 17.88it/s]
eval model::  21%|██        | 103/500 [00:05<00:19, 19.99it/s]
eval model::  21%|██        | 106/500 [00:05<00:19, 19.72it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:17, 21.83it/s]
eval model::  22%|██▏       | 112/500 [00:06<00:17, 22.26it/s]
eval model::  23%|██▎       | 115/500 [00:06<00:19, 19.42it/s]
eval model::  24%|██▎       | 118/500 [00:06<00:18, 21.20it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:19, 19.86it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:19, 19.62it/s]
eval model::  25%|██▌       | 127/500 [00:06<00:19, 19.52it/s]
eval model::  26%|██▌       | 130/500 [00:07<00:20, 17.81it/s]
eval model::  26%|██▋       | 132/500 [00:07<00:21, 17.25it/s]
eval model::  27%|██▋       | 135/500 [00:07<00:18, 19.38it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:19, 18.68it/s]
eval model::  28%|██▊       | 140/500 [00:07<00:19, 18.51it/s]
eval model::  29%|██▊       | 143/500 [00:07<00:17, 20.18it/s]
eval model::  29%|██▉       | 146/500 [00:07<00:17, 20.08it/s]
eval model::  30%|██▉       | 149/500 [00:08<00:17, 19.76it/s]
eval model::  30%|███       | 152/500 [00:08<00:20, 17.21it/s]
eval model::  31%|███       | 155/500 [00:08<00:17, 19.39it/s]
eval model::  32%|███▏      | 158/500 [00:08<00:16, 21.02it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:24, 13.80it/s]
eval model::  33%|███▎      | 163/500 [00:09<00:23, 14.26it/s]
eval model::  33%|███▎      | 166/500 [00:09<00:20, 16.06it/s]
eval model::  34%|███▎      | 168/500 [00:09<00:20, 16.19it/s]
eval model::  34%|███▍      | 171/500 [00:09<00:19, 17.07it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:21, 15.23it/s]
eval model::  35%|███▌      | 177/500 [00:09<00:18, 17.54it/s]
eval model::  36%|███▌      | 180/500 [00:10<00:20, 15.46it/s]
eval model::  37%|███▋      | 183/500 [00:10<00:17, 17.95it/s]
eval model::  37%|███▋      | 186/500 [00:10<00:16, 19.38it/s]
eval model::  38%|███▊      | 189/500 [00:10<00:15, 19.55it/s]
eval model::  38%|███▊      | 192/500 [00:10<00:15, 20.03it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:15, 19.90it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:13, 21.70it/s]
eval model::  40%|████      | 201/500 [00:11<00:14, 20.42it/s]
eval model::  41%|████      | 204/500 [00:11<00:13, 22.56it/s]
eval model::  41%|████▏     | 207/500 [00:11<00:19, 15.08it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:18, 15.41it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:17, 16.10it/s]
eval model::  43%|████▎     | 215/500 [00:12<00:21, 13.33it/s]
eval model::  43%|████▎     | 217/500 [00:12<00:22, 12.63it/s]
eval model::  44%|████▍     | 220/500 [00:12<00:18, 14.92it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:19, 14.12it/s]
eval model::  45%|████▌     | 225/500 [00:12<00:16, 16.93it/s]
eval model::  46%|████▌     | 228/500 [00:12<00:14, 18.63it/s]
eval model::  46%|████▌     | 231/500 [00:12<00:12, 20.95it/s]
eval model::  47%|████▋     | 234/500 [00:13<00:13, 19.63it/s]
eval model::  47%|████▋     | 237/500 [00:13<00:12, 20.29it/s]
eval model::  48%|████▊     | 240/500 [00:13<00:13, 19.92it/s]
eval model::  49%|████▊     | 243/500 [00:13<00:14, 18.27it/s]
eval model::  49%|████▉     | 246/500 [00:13<00:13, 19.35it/s]
eval model::  50%|████▉     | 249/500 [00:13<00:12, 19.80it/s]
eval model::  50%|█████     | 252/500 [00:13<00:11, 20.86it/s]
eval model::  51%|█████     | 255/500 [00:14<00:11, 22.04it/s]
eval model::  52%|█████▏    | 258/500 [00:14<00:10, 23.18it/s]
eval model::  52%|█████▏    | 261/500 [00:14<00:09, 23.91it/s]
eval model::  53%|█████▎    | 264/500 [00:14<00:09, 24.22it/s]
eval model::  53%|█████▎    | 267/500 [00:14<00:10, 23.06it/s]
eval model::  54%|█████▍    | 270/500 [00:14<00:11, 19.98it/s]
eval model::  55%|█████▍    | 273/500 [00:14<00:11, 19.70it/s]
eval model::  55%|█████▌    | 276/500 [00:15<00:12, 18.41it/s]
eval model::  56%|█████▌    | 279/500 [00:15<00:10, 20.10it/s]
eval model::  56%|█████▋    | 282/500 [00:15<00:10, 21.64it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:15, 13.67it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:14, 14.59it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:11, 18.65it/s]
eval model::  59%|█████▉    | 294/500 [00:16<00:11, 18.13it/s]
eval model::  59%|█████▉    | 297/500 [00:16<00:12, 16.61it/s]
eval model::  60%|██████    | 300/500 [00:16<00:11, 17.42it/s]
eval model::  61%|██████    | 303/500 [00:16<00:10, 19.06it/s]
eval model::  61%|██████    | 306/500 [00:16<00:11, 17.40it/s]
eval model::  62%|██████▏   | 309/500 [00:16<00:10, 18.98it/s]
eval model::  62%|██████▏   | 312/500 [00:17<00:09, 19.70it/s]
eval model::  63%|██████▎   | 315/500 [00:17<00:09, 20.00it/s]
eval model::  64%|██████▍   | 319/500 [00:17<00:07, 22.92it/s]
eval model::  64%|██████▍   | 322/500 [00:17<00:09, 19.65it/s]
eval model::  65%|██████▌   | 325/500 [00:17<00:08, 20.44it/s]
eval model::  66%|██████▌   | 328/500 [00:17<00:08, 19.48it/s]
eval model::  66%|██████▌   | 331/500 [00:18<00:08, 20.64it/s]
eval model::  67%|██████▋   | 334/500 [00:18<00:07, 21.51it/s]
eval model::  67%|██████▋   | 337/500 [00:18<00:07, 20.96it/s]
eval model::  68%|██████▊   | 340/500 [00:18<00:10, 14.84it/s]
eval model::  69%|██████▊   | 343/500 [00:18<00:09, 16.92it/s]
eval model::  69%|██████▉   | 346/500 [00:18<00:08, 19.07it/s]
eval model::  70%|███████   | 350/500 [00:19<00:06, 21.51it/s]
eval model::  71%|███████   | 353/500 [00:19<00:06, 22.05it/s]
eval model::  71%|███████   | 356/500 [00:19<00:07, 19.85it/s]
eval model::  72%|███████▏  | 359/500 [00:19<00:06, 21.01it/s]
eval model::  72%|███████▏  | 362/500 [00:19<00:07, 18.93it/s]
eval model::  73%|███████▎  | 365/500 [00:19<00:07, 17.19it/s]
eval model::  73%|███████▎  | 367/500 [00:20<00:08, 15.73it/s]
eval model::  74%|███████▍  | 370/500 [00:20<00:07, 16.43it/s]
eval model::  74%|███████▍  | 372/500 [00:20<00:08, 15.87it/s]
eval model::  75%|███████▌  | 376/500 [00:20<00:06, 19.45it/s]
eval model::  76%|███████▌  | 380/500 [00:20<00:06, 19.99it/s]
eval model::  77%|███████▋  | 383/500 [00:20<00:05, 21.70it/s]
eval model::  77%|███████▋  | 386/500 [00:21<00:07, 14.50it/s]
eval model::  78%|███████▊  | 389/500 [00:21<00:06, 16.24it/s]
eval model::  78%|███████▊  | 391/500 [00:21<00:06, 16.81it/s]
eval model::  79%|███████▉  | 394/500 [00:21<00:05, 18.01it/s]
eval model::  79%|███████▉  | 397/500 [00:21<00:05, 19.44it/s]
eval model::  80%|████████  | 400/500 [00:21<00:05, 18.54it/s]
eval model::  81%|████████  | 403/500 [00:21<00:04, 19.87it/s]
eval model::  81%|████████  | 406/500 [00:22<00:04, 20.63it/s]
eval model::  82%|████████▏ | 409/500 [00:22<00:04, 21.35it/s]
eval model::  82%|████████▏ | 412/500 [00:22<00:03, 22.44it/s]
eval model::  83%|████████▎ | 415/500 [00:22<00:04, 20.59it/s]
eval model::  84%|████████▎ | 418/500 [00:22<00:04, 18.55it/s]
eval model::  84%|████████▍ | 420/500 [00:22<00:05, 13.77it/s]
eval model::  85%|████████▍ | 423/500 [00:23<00:04, 15.52it/s]
eval model::  85%|████████▌ | 425/500 [00:23<00:05, 14.57it/s]
eval model::  86%|████████▌ | 428/500 [00:23<00:04, 17.54it/s]
eval model::  86%|████████▌ | 431/500 [00:23<00:03, 18.40it/s]
eval model::  87%|████████▋ | 435/500 [00:23<00:02, 22.09it/s]
eval model::  88%|████████▊ | 438/500 [00:23<00:02, 22.98it/s]
eval model::  88%|████████▊ | 441/500 [00:23<00:02, 22.17it/s]
eval model::  89%|████████▉ | 444/500 [00:24<00:02, 22.46it/s]
eval model::  89%|████████▉ | 447/500 [00:24<00:02, 22.10it/s]
eval model::  90%|█████████ | 450/500 [00:24<00:02, 20.54it/s]
eval model::  91%|█████████ | 453/500 [00:24<00:02, 22.44it/s]
eval model::  91%|█████████ | 456/500 [00:24<00:02, 21.62it/s]
eval model::  92%|█████████▏| 459/500 [00:24<00:01, 21.30it/s]
eval model::  92%|█████████▏| 462/500 [00:25<00:02, 16.80it/s]
eval model::  93%|█████████▎| 465/500 [00:25<00:02, 16.59it/s]
eval model::  94%|█████████▎| 468/500 [00:25<00:01, 18.17it/s]
eval model::  94%|█████████▍| 471/500 [00:25<00:01, 20.39it/s]
eval model::  95%|█████████▍| 474/500 [00:25<00:01, 19.89it/s]
eval model::  95%|█████████▌| 477/500 [00:25<00:01, 20.45it/s]
eval model::  96%|█████████▌| 480/500 [00:25<00:00, 21.22it/s]
eval model::  97%|█████████▋| 483/500 [00:26<00:00, 21.62it/s]
eval model::  97%|█████████▋| 486/500 [00:26<00:00, 18.63it/s]
eval model::  98%|█████████▊| 489/500 [00:26<00:00, 20.16it/s]
eval model::  98%|█████████▊| 492/500 [00:26<00:00, 18.03it/s]
eval model::  99%|█████████▉| 495/500 [00:26<00:00, 19.47it/s]
eval model:: 100%|█████████▉| 498/500 [00:26<00:00, 20.43it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.59it/s]
[2024/07/28 01:10:16] ppocr INFO: cur metric, precision: 0.7399127589967285, recall: 0.6533461723639865, hmean: 0.6939401687547941, fps: 44.31572707159106
[2024/07/28 01:10:16] ppocr INFO: best metric, hmean: 0.7048391183177097, precision: 0.7438502673796792, recall: 0.6697159364467983, fps: 46.08540547152116, best_epoch: 580
[2024/07/28 01:10:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:10:24] ppocr INFO: epoch: [681/1500], global_step: 2043, lr: 0.001000, loss: 1.349284, loss_shrink_maps: 0.693702, loss_threshold_maps: 0.524410, loss_binary_maps: 0.138415, avg_reader_cost: 1.58733 s, avg_batch_cost: 1.81513 s, avg_samples: 12.5, ips: 6.88655 samples/s, eta: 4:09:46
[2024/07/28 01:10:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:10:32] ppocr INFO: epoch: [682/1500], global_step: 2046, lr: 0.001000, loss: 1.376060, loss_shrink_maps: 0.702377, loss_threshold_maps: 0.527988, loss_binary_maps: 0.140166, avg_reader_cost: 1.52323 s, avg_batch_cost: 1.75219 s, avg_samples: 12.5, ips: 7.13393 samples/s, eta: 4:09:26
[2024/07/28 01:10:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:10:41] ppocr INFO: epoch: [683/1500], global_step: 2049, lr: 0.001000, loss: 1.382610, loss_shrink_maps: 0.714100, loss_threshold_maps: 0.536874, loss_binary_maps: 0.142246, avg_reader_cost: 1.53697 s, avg_batch_cost: 1.77507 s, avg_samples: 12.5, ips: 7.04199 samples/s, eta: 4:09:08
[2024/07/28 01:10:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:10:48] ppocr INFO: epoch: [684/1500], global_step: 2050, lr: 0.001000, loss: 1.376136, loss_shrink_maps: 0.702377, loss_threshold_maps: 0.533518, loss_binary_maps: 0.140166, avg_reader_cost: 0.42434 s, avg_batch_cost: 0.50634 s, avg_samples: 4.8, ips: 9.47984 samples/s, eta: 4:09:00
[2024/07/28 01:10:49] ppocr INFO: epoch: [684/1500], global_step: 2052, lr: 0.001000, loss: 1.382610, loss_shrink_maps: 0.714100, loss_threshold_maps: 0.538891, loss_binary_maps: 0.142246, avg_reader_cost: 1.10369 s, avg_batch_cost: 1.24894 s, avg_samples: 7.7, ips: 6.16524 samples/s, eta: 4:08:48
[2024/07/28 01:10:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:10:58] ppocr INFO: epoch: [685/1500], global_step: 2055, lr: 0.001000, loss: 1.406958, loss_shrink_maps: 0.723676, loss_threshold_maps: 0.541794, loss_binary_maps: 0.143787, avg_reader_cost: 1.51289 s, avg_batch_cost: 1.74657 s, avg_samples: 12.5, ips: 7.15690 samples/s, eta: 4:08:29
[2024/07/28 01:11:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:11:06] ppocr INFO: epoch: [686/1500], global_step: 2058, lr: 0.001000, loss: 1.406958, loss_shrink_maps: 0.723676, loss_threshold_maps: 0.541794, loss_binary_maps: 0.143787, avg_reader_cost: 1.54442 s, avg_batch_cost: 1.77306 s, avg_samples: 12.5, ips: 7.04996 samples/s, eta: 4:08:10
[2024/07/28 01:11:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:11:14] ppocr INFO: epoch: [687/1500], global_step: 2060, lr: 0.001000, loss: 1.403795, loss_shrink_maps: 0.716697, loss_threshold_maps: 0.541794, loss_binary_maps: 0.142526, avg_reader_cost: 0.93141 s, avg_batch_cost: 1.10468 s, avg_samples: 9.6, ips: 8.69029 samples/s, eta: 4:07:57
[2024/07/28 01:11:15] ppocr INFO: epoch: [687/1500], global_step: 2061, lr: 0.001000, loss: 1.379447, loss_shrink_maps: 0.707053, loss_threshold_maps: 0.538891, loss_binary_maps: 0.140985, avg_reader_cost: 0.59792 s, avg_batch_cost: 0.65280 s, avg_samples: 2.9, ips: 4.44241 samples/s, eta: 4:07:51
[2024/07/28 01:11:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:11:23] ppocr INFO: epoch: [688/1500], global_step: 2064, lr: 0.001000, loss: 1.415254, loss_shrink_maps: 0.721163, loss_threshold_maps: 0.545312, loss_binary_maps: 0.143135, avg_reader_cost: 1.52756 s, avg_batch_cost: 1.75651 s, avg_samples: 12.5, ips: 7.11637 samples/s, eta: 4:07:32
[2024/07/28 01:11:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:11:32] ppocr INFO: epoch: [689/1500], global_step: 2067, lr: 0.001000, loss: 1.391632, loss_shrink_maps: 0.711520, loss_threshold_maps: 0.545094, loss_binary_maps: 0.141717, avg_reader_cost: 1.54057 s, avg_batch_cost: 1.79368 s, avg_samples: 12.5, ips: 6.96891 samples/s, eta: 4:07:13
[2024/07/28 01:11:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:11:40] ppocr INFO: epoch: [690/1500], global_step: 2070, lr: 0.001000, loss: 1.391632, loss_shrink_maps: 0.711520, loss_threshold_maps: 0.545094, loss_binary_maps: 0.141717, avg_reader_cost: 1.50867 s, avg_batch_cost: 1.74049 s, avg_samples: 12.5, ips: 7.18189 samples/s, eta: 4:06:54
[2024/07/28 01:11:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:11:49] ppocr INFO: epoch: [691/1500], global_step: 2073, lr: 0.001000, loss: 1.412932, loss_shrink_maps: 0.716776, loss_threshold_maps: 0.548644, loss_binary_maps: 0.142573, avg_reader_cost: 1.48849 s, avg_batch_cost: 1.73929 s, avg_samples: 12.5, ips: 7.18682 samples/s, eta: 4:06:34
[2024/07/28 01:11:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:11:57] ppocr INFO: epoch: [692/1500], global_step: 2076, lr: 0.001000, loss: 1.370307, loss_shrink_maps: 0.705099, loss_threshold_maps: 0.545094, loss_binary_maps: 0.140348, avg_reader_cost: 1.52460 s, avg_batch_cost: 1.79694 s, avg_samples: 12.5, ips: 6.95626 samples/s, eta: 4:06:16
[2024/07/28 01:11:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:12:06] ppocr INFO: epoch: [693/1500], global_step: 2079, lr: 0.001000, loss: 1.356842, loss_shrink_maps: 0.686051, loss_threshold_maps: 0.545094, loss_binary_maps: 0.135835, avg_reader_cost: 1.61936 s, avg_batch_cost: 1.84757 s, avg_samples: 12.5, ips: 6.76566 samples/s, eta: 4:05:58
[2024/07/28 01:12:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:12:13] ppocr INFO: epoch: [694/1500], global_step: 2080, lr: 0.001000, loss: 1.356842, loss_shrink_maps: 0.686051, loss_threshold_maps: 0.545094, loss_binary_maps: 0.135835, avg_reader_cost: 0.43030 s, avg_batch_cost: 0.52422 s, avg_samples: 4.8, ips: 9.15647 samples/s, eta: 4:05:51
[2024/07/28 01:12:15] ppocr INFO: epoch: [694/1500], global_step: 2082, lr: 0.001000, loss: 1.356842, loss_shrink_maps: 0.686051, loss_threshold_maps: 0.545094, loss_binary_maps: 0.135835, avg_reader_cost: 1.13975 s, avg_batch_cost: 1.28561 s, avg_samples: 7.7, ips: 5.98936 samples/s, eta: 4:05:39
[2024/07/28 01:12:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:12:23] ppocr INFO: epoch: [695/1500], global_step: 2085, lr: 0.001000, loss: 1.388007, loss_shrink_maps: 0.710355, loss_threshold_maps: 0.548447, loss_binary_maps: 0.141013, avg_reader_cost: 1.56565 s, avg_batch_cost: 1.79951 s, avg_samples: 12.5, ips: 6.94633 samples/s, eta: 4:05:21
[2024/07/28 01:12:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:12:32] ppocr INFO: epoch: [696/1500], global_step: 2088, lr: 0.001000, loss: 1.352241, loss_shrink_maps: 0.684241, loss_threshold_maps: 0.544955, loss_binary_maps: 0.136079, avg_reader_cost: 1.56290 s, avg_batch_cost: 1.83011 s, avg_samples: 12.5, ips: 6.83019 samples/s, eta: 4:05:02
[2024/07/28 01:12:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:12:40] ppocr INFO: epoch: [697/1500], global_step: 2090, lr: 0.001000, loss: 1.365147, loss_shrink_maps: 0.684241, loss_threshold_maps: 0.544955, loss_binary_maps: 0.136079, avg_reader_cost: 0.90366 s, avg_batch_cost: 1.08362 s, avg_samples: 9.6, ips: 8.85916 samples/s, eta: 4:04:49
[2024/07/28 01:12:41] ppocr INFO: epoch: [697/1500], global_step: 2091, lr: 0.001000, loss: 1.365147, loss_shrink_maps: 0.684241, loss_threshold_maps: 0.543139, loss_binary_maps: 0.136079, avg_reader_cost: 0.58732 s, avg_batch_cost: 0.64226 s, avg_samples: 2.9, ips: 4.51529 samples/s, eta: 4:04:43
[2024/07/28 01:12:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:12:49] ppocr INFO: epoch: [698/1500], global_step: 2094, lr: 0.001000, loss: 1.394803, loss_shrink_maps: 0.714446, loss_threshold_maps: 0.543139, loss_binary_maps: 0.141968, avg_reader_cost: 1.54136 s, avg_batch_cost: 1.78795 s, avg_samples: 12.5, ips: 6.99124 samples/s, eta: 4:04:24
[2024/07/28 01:12:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:12:58] ppocr INFO: epoch: [699/1500], global_step: 2097, lr: 0.001000, loss: 1.454337, loss_shrink_maps: 0.738233, loss_threshold_maps: 0.555602, loss_binary_maps: 0.146457, avg_reader_cost: 1.59740 s, avg_batch_cost: 1.89459 s, avg_samples: 12.5, ips: 6.59775 samples/s, eta: 4:04:07
[2024/07/28 01:13:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:13:07] ppocr INFO: epoch: [700/1500], global_step: 2100, lr: 0.001000, loss: 1.434881, loss_shrink_maps: 0.739814, loss_threshold_maps: 0.549794, loss_binary_maps: 0.146797, avg_reader_cost: 1.57618 s, avg_batch_cost: 1.83561 s, avg_samples: 12.5, ips: 6.80972 samples/s, eta: 4:03:48

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:55,  8.94it/s]
eval model::   1%|          | 4/500 [00:00<00:26, 18.87it/s]
eval model::   1%|▏         | 7/500 [00:00<00:22, 22.19it/s]
eval model::   2%|▏         | 10/500 [00:00<00:25, 19.26it/s]
eval model::   2%|▏         | 12/500 [00:00<00:26, 18.44it/s]
eval model::   3%|▎         | 14/500 [00:00<00:27, 17.74it/s]
eval model::   3%|▎         | 17/500 [00:00<00:22, 21.06it/s]
eval model::   4%|▍         | 20/500 [00:00<00:21, 22.13it/s]
eval model::   5%|▍         | 23/500 [00:01<00:20, 23.30it/s]
eval model::   5%|▌         | 26/500 [00:01<00:23, 20.42it/s]
eval model::   6%|▌         | 29/500 [00:01<00:22, 20.57it/s]
eval model::   6%|▋         | 32/500 [00:01<00:24, 19.40it/s]
eval model::   7%|▋         | 35/500 [00:01<00:25, 17.97it/s]
eval model::   8%|▊         | 38/500 [00:01<00:23, 19.45it/s]
eval model::   8%|▊         | 41/500 [00:02<00:25, 17.97it/s]
eval model::   9%|▊         | 43/500 [00:02<00:30, 15.16it/s]
eval model::   9%|▉         | 46/500 [00:02<00:30, 14.75it/s]
eval model::  10%|▉         | 49/500 [00:02<00:26, 16.93it/s]
eval model::  10%|█         | 52/500 [00:02<00:23, 18.72it/s]
eval model::  11%|█         | 55/500 [00:02<00:22, 19.56it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:25, 17.62it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:28, 15.42it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:29, 15.05it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:24, 17.53it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:21, 19.91it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:20, 21.36it/s]
eval model::  15%|█▌        | 75/500 [00:03<00:19, 21.81it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:19, 21.81it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:18, 22.18it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:18, 22.64it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:20, 19.94it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:22, 18.07it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:21, 18.92it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:20, 19.72it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:19, 20.78it/s]
eval model::  20%|██        | 102/500 [00:05<00:19, 20.43it/s]
eval model::  21%|██        | 105/500 [00:05<00:20, 19.57it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:19, 20.09it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:20, 19.36it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:18, 20.86it/s]
eval model::  23%|██▎       | 117/500 [00:06<00:19, 19.61it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:19, 19.23it/s]
eval model::  24%|██▍       | 122/500 [00:06<00:19, 19.37it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:23, 15.96it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:22, 16.53it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:20, 17.79it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:21, 17.31it/s]
eval model::  27%|██▋       | 133/500 [00:07<00:20, 17.81it/s]
eval model::  27%|██▋       | 136/500 [00:07<00:17, 20.39it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:17, 20.94it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:16, 22.15it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:16, 21.62it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:17, 19.75it/s]
eval model::  30%|███       | 151/500 [00:07<00:17, 19.59it/s]
eval model::  31%|███       | 155/500 [00:08<00:15, 22.59it/s]
eval model::  32%|███▏      | 158/500 [00:08<00:14, 24.07it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:20, 16.25it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:20, 16.68it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:18, 18.02it/s]
eval model::  34%|███▍      | 170/500 [00:08<00:16, 19.90it/s]
eval model::  35%|███▍      | 173/500 [00:09<00:17, 18.25it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:20, 16.08it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:19, 16.79it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:18, 17.54it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:16, 18.55it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:15, 19.46it/s]
eval model::  38%|███▊      | 192/500 [00:10<00:15, 19.96it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:15, 19.51it/s]
eval model::  39%|███▉      | 197/500 [00:10<00:16, 18.43it/s]
eval model::  40%|████      | 200/500 [00:10<00:15, 19.46it/s]
eval model::  41%|████      | 203/500 [00:10<00:14, 20.82it/s]
eval model::  41%|████      | 206/500 [00:11<00:21, 13.53it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:20, 14.05it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:20, 14.41it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.67it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:20, 14.19it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:20, 13.53it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:17, 16.00it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:19, 14.42it/s]
eval model::  45%|████▌     | 225/500 [00:12<00:15, 17.61it/s]
eval model::  45%|████▌     | 227/500 [00:12<00:15, 17.69it/s]
eval model::  46%|████▌     | 231/500 [00:12<00:12, 21.85it/s]
eval model::  47%|████▋     | 234/500 [00:12<00:13, 20.12it/s]
eval model::  47%|████▋     | 237/500 [00:12<00:11, 22.17it/s]
eval model::  48%|████▊     | 240/500 [00:12<00:11, 22.53it/s]
eval model::  49%|████▊     | 243/500 [00:13<00:12, 20.27it/s]
eval model::  49%|████▉     | 246/500 [00:13<00:12, 20.02it/s]
eval model::  50%|████▉     | 249/500 [00:13<00:13, 18.42it/s]
eval model::  50%|█████     | 252/500 [00:13<00:12, 19.98it/s]
eval model::  51%|█████     | 255/500 [00:13<00:11, 21.53it/s]
eval model::  52%|█████▏    | 258/500 [00:13<00:11, 21.38it/s]
eval model::  52%|█████▏    | 261/500 [00:13<00:11, 20.61it/s]
eval model::  53%|█████▎    | 264/500 [00:14<00:13, 17.98it/s]
eval model::  53%|█████▎    | 266/500 [00:14<00:13, 17.64it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:12, 18.43it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:12, 18.74it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:12, 18.03it/s]
eval model::  55%|█████▌    | 277/500 [00:14<00:12, 18.09it/s]
eval model::  56%|█████▌    | 280/500 [00:14<00:11, 19.58it/s]
eval model::  57%|█████▋    | 283/500 [00:15<00:10, 20.82it/s]
eval model::  57%|█████▋    | 286/500 [00:15<00:16, 13.05it/s]
eval model::  58%|█████▊    | 289/500 [00:15<00:13, 15.49it/s]
eval model::  58%|█████▊    | 292/500 [00:15<00:11, 17.36it/s]
eval model::  59%|█████▉    | 295/500 [00:16<00:14, 14.32it/s]
eval model::  60%|█████▉    | 298/500 [00:16<00:12, 16.45it/s]
eval model::  60%|██████    | 300/500 [00:16<00:12, 16.51it/s]
eval model::  61%|██████    | 303/500 [00:16<00:10, 18.77it/s]
eval model::  61%|██████    | 306/500 [00:16<00:09, 20.08it/s]
eval model::  62%|██████▏   | 309/500 [00:16<00:09, 21.17it/s]
eval model::  62%|██████▏   | 312/500 [00:16<00:08, 21.63it/s]
eval model::  63%|██████▎   | 315/500 [00:16<00:08, 21.37it/s]
eval model::  64%|██████▎   | 318/500 [00:17<00:07, 23.26it/s]
eval model::  64%|██████▍   | 321/500 [00:17<00:07, 23.30it/s]
eval model::  65%|██████▍   | 324/500 [00:17<00:08, 21.92it/s]
eval model::  65%|██████▌   | 327/500 [00:17<00:07, 22.66it/s]
eval model::  66%|██████▌   | 330/500 [00:17<00:07, 21.40it/s]
eval model::  67%|██████▋   | 333/500 [00:17<00:07, 21.60it/s]
eval model::  67%|██████▋   | 336/500 [00:17<00:07, 20.70it/s]
eval model::  68%|██████▊   | 339/500 [00:18<00:07, 20.26it/s]
eval model::  68%|██████▊   | 342/500 [00:18<00:11, 13.85it/s]
eval model::  69%|██████▉   | 345/500 [00:18<00:09, 16.30it/s]
eval model::  70%|██████▉   | 348/500 [00:18<00:08, 18.25it/s]
eval model::  70%|███████   | 351/500 [00:18<00:07, 19.06it/s]
eval model::  71%|███████   | 354/500 [00:18<00:07, 20.73it/s]
eval model::  71%|███████▏  | 357/500 [00:19<00:07, 17.98it/s]
eval model::  72%|███████▏  | 360/500 [00:19<00:07, 18.49it/s]
eval model::  73%|███████▎  | 363/500 [00:19<00:07, 18.15it/s]
eval model::  73%|███████▎  | 365/500 [00:19<00:07, 18.17it/s]
eval model::  73%|███████▎  | 367/500 [00:19<00:07, 16.86it/s]
eval model::  74%|███████▍  | 370/500 [00:19<00:06, 19.57it/s]
eval model::  75%|███████▍  | 373/500 [00:19<00:05, 21.43it/s]
eval model::  75%|███████▌  | 376/500 [00:20<00:05, 23.47it/s]
eval model::  76%|███████▌  | 380/500 [00:20<00:05, 23.58it/s]
eval model::  77%|███████▋  | 384/500 [00:20<00:04, 24.53it/s]
eval model::  77%|███████▋  | 387/500 [00:20<00:07, 15.04it/s]
eval model::  78%|███████▊  | 390/500 [00:20<00:06, 17.24it/s]
eval model::  79%|███████▊  | 393/500 [00:20<00:05, 18.66it/s]
eval model::  79%|███████▉  | 396/500 [00:21<00:05, 19.53it/s]
eval model::  80%|███████▉  | 399/500 [00:21<00:04, 21.21it/s]
eval model::  80%|████████  | 402/500 [00:21<00:04, 19.61it/s]
eval model::  81%|████████  | 405/500 [00:21<00:04, 20.35it/s]
eval model::  82%|████████▏ | 408/500 [00:21<00:04, 21.31it/s]
eval model::  82%|████████▏ | 411/500 [00:21<00:04, 22.18it/s]
eval model::  83%|████████▎ | 414/500 [00:21<00:03, 22.09it/s]
eval model::  83%|████████▎ | 417/500 [00:22<00:04, 19.81it/s]
eval model::  84%|████████▍ | 420/500 [00:22<00:05, 14.44it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:05, 15.26it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:04, 15.82it/s]
eval model::  85%|████████▌ | 426/500 [00:22<00:04, 16.68it/s]
eval model::  86%|████████▌ | 430/500 [00:22<00:03, 19.84it/s]
eval model::  87%|████████▋ | 433/500 [00:23<00:03, 20.99it/s]
eval model::  87%|████████▋ | 436/500 [00:23<00:02, 22.87it/s]
eval model::  88%|████████▊ | 439/500 [00:23<00:02, 24.50it/s]
eval model::  88%|████████▊ | 442/500 [00:23<00:02, 23.22it/s]
eval model::  89%|████████▉ | 446/500 [00:23<00:02, 24.69it/s]
eval model::  90%|████████▉ | 449/500 [00:23<00:02, 21.44it/s]
eval model::  90%|█████████ | 452/500 [00:23<00:02, 22.55it/s]
eval model::  91%|█████████ | 455/500 [00:23<00:02, 22.46it/s]
eval model::  92%|█████████▏| 458/500 [00:24<00:01, 21.98it/s]
eval model::  92%|█████████▏| 461/500 [00:24<00:01, 21.04it/s]
eval model::  93%|█████████▎| 464/500 [00:24<00:02, 17.63it/s]
eval model::  93%|█████████▎| 466/500 [00:24<00:01, 17.25it/s]
eval model::  94%|█████████▎| 468/500 [00:24<00:01, 17.47it/s]
eval model::  94%|█████████▍| 471/500 [00:24<00:01, 19.92it/s]
eval model::  95%|█████████▍| 474/500 [00:25<00:01, 20.37it/s]
eval model::  96%|█████████▌| 478/500 [00:25<00:00, 22.33it/s]
eval model::  96%|█████████▌| 481/500 [00:25<00:00, 21.79it/s]
eval model::  97%|█████████▋| 484/500 [00:25<00:00, 22.03it/s]
eval model::  97%|█████████▋| 487/500 [00:25<00:00, 18.94it/s]
eval model::  98%|█████████▊| 490/500 [00:25<00:00, 20.95it/s]
eval model::  99%|█████████▊| 493/500 [00:25<00:00, 18.27it/s]
eval model::  99%|█████████▉| 495/500 [00:26<00:00, 17.69it/s]
eval model:: 100%|█████████▉| 498/500 [00:26<00:00, 19.74it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 19.03it/s]
[2024/07/28 01:13:33] ppocr INFO: cur metric, precision: 0.7264202978488693, recall: 0.634087626384208, hmean: 0.6771208226221079, fps: 45.464628264609324
[2024/07/28 01:13:33] ppocr INFO: best metric, hmean: 0.7048391183177097, precision: 0.7438502673796792, recall: 0.6697159364467983, fps: 46.08540547152116, best_epoch: 580
[2024/07/28 01:13:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:13:41] ppocr INFO: epoch: [701/1500], global_step: 2103, lr: 0.001000, loss: 1.462396, loss_shrink_maps: 0.762207, loss_threshold_maps: 0.557303, loss_binary_maps: 0.151689, avg_reader_cost: 1.76150 s, avg_batch_cost: 2.04659 s, avg_samples: 12.5, ips: 6.10773 samples/s, eta: 4:03:33
[2024/07/28 01:13:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:13:50] ppocr INFO: epoch: [702/1500], global_step: 2106, lr: 0.001000, loss: 1.443224, loss_shrink_maps: 0.745183, loss_threshold_maps: 0.555579, loss_binary_maps: 0.148540, avg_reader_cost: 1.51181 s, avg_batch_cost: 1.76091 s, avg_samples: 12.5, ips: 7.09861 samples/s, eta: 4:03:13
[2024/07/28 01:13:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:13:58] ppocr INFO: epoch: [703/1500], global_step: 2109, lr: 0.001000, loss: 1.443224, loss_shrink_maps: 0.745183, loss_threshold_maps: 0.555579, loss_binary_maps: 0.148540, avg_reader_cost: 1.54798 s, avg_batch_cost: 1.78188 s, avg_samples: 12.5, ips: 7.01507 samples/s, eta: 4:02:55
[2024/07/28 01:14:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:14:06] ppocr INFO: epoch: [704/1500], global_step: 2110, lr: 0.001000, loss: 1.443224, loss_shrink_maps: 0.745183, loss_threshold_maps: 0.560668, loss_binary_maps: 0.148540, avg_reader_cost: 0.43432 s, avg_batch_cost: 0.51677 s, avg_samples: 4.8, ips: 9.28850 samples/s, eta: 4:02:48
[2024/07/28 01:14:07] ppocr INFO: epoch: [704/1500], global_step: 2112, lr: 0.001000, loss: 1.463556, loss_shrink_maps: 0.762207, loss_threshold_maps: 0.563141, loss_binary_maps: 0.151689, avg_reader_cost: 1.12548 s, avg_batch_cost: 1.27085 s, avg_samples: 7.7, ips: 6.05891 samples/s, eta: 4:02:36
[2024/07/28 01:14:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:14:16] ppocr INFO: epoch: [705/1500], global_step: 2115, lr: 0.001000, loss: 1.456386, loss_shrink_maps: 0.753502, loss_threshold_maps: 0.559458, loss_binary_maps: 0.148948, avg_reader_cost: 1.59878 s, avg_batch_cost: 1.84855 s, avg_samples: 12.5, ips: 6.76205 samples/s, eta: 4:02:18
[2024/07/28 01:14:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:14:25] ppocr INFO: epoch: [706/1500], global_step: 2118, lr: 0.001000, loss: 1.430206, loss_shrink_maps: 0.732371, loss_threshold_maps: 0.544553, loss_binary_maps: 0.146264, avg_reader_cost: 1.57735 s, avg_batch_cost: 1.80595 s, avg_samples: 12.5, ips: 6.92155 samples/s, eta: 4:01:59
[2024/07/28 01:14:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:14:33] ppocr INFO: epoch: [707/1500], global_step: 2120, lr: 0.001000, loss: 1.406928, loss_shrink_maps: 0.725784, loss_threshold_maps: 0.540157, loss_binary_maps: 0.144902, avg_reader_cost: 0.94626 s, avg_batch_cost: 1.12872 s, avg_samples: 9.6, ips: 8.50520 samples/s, eta: 4:01:46
[2024/07/28 01:14:33] ppocr INFO: epoch: [707/1500], global_step: 2121, lr: 0.001000, loss: 1.402573, loss_shrink_maps: 0.723927, loss_threshold_maps: 0.538166, loss_binary_maps: 0.144396, avg_reader_cost: 0.61013 s, avg_batch_cost: 0.66473 s, avg_samples: 2.9, ips: 4.36269 samples/s, eta: 4:01:41
[2024/07/28 01:14:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:14:42] ppocr INFO: epoch: [708/1500], global_step: 2124, lr: 0.001000, loss: 1.387199, loss_shrink_maps: 0.708842, loss_threshold_maps: 0.535596, loss_binary_maps: 0.140818, avg_reader_cost: 1.55921 s, avg_batch_cost: 1.78964 s, avg_samples: 12.5, ips: 6.98463 samples/s, eta: 4:01:22
[2024/07/28 01:14:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:14:51] ppocr INFO: epoch: [709/1500], global_step: 2127, lr: 0.001000, loss: 1.370435, loss_shrink_maps: 0.688471, loss_threshold_maps: 0.535596, loss_binary_maps: 0.137052, avg_reader_cost: 1.55109 s, avg_batch_cost: 1.78791 s, avg_samples: 12.5, ips: 6.99141 samples/s, eta: 4:01:03
[2024/07/28 01:14:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:14:59] ppocr INFO: epoch: [710/1500], global_step: 2130, lr: 0.001000, loss: 1.387199, loss_shrink_maps: 0.704051, loss_threshold_maps: 0.537473, loss_binary_maps: 0.139692, avg_reader_cost: 1.54244 s, avg_batch_cost: 1.78183 s, avg_samples: 12.5, ips: 7.01526 samples/s, eta: 4:00:44
[2024/07/28 01:15:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:15:08] ppocr INFO: epoch: [711/1500], global_step: 2133, lr: 0.001000, loss: 1.370435, loss_shrink_maps: 0.688471, loss_threshold_maps: 0.537473, loss_binary_maps: 0.137052, avg_reader_cost: 1.57860 s, avg_batch_cost: 1.84981 s, avg_samples: 12.5, ips: 6.75745 samples/s, eta: 4:00:26
[2024/07/28 01:15:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:15:17] ppocr INFO: epoch: [712/1500], global_step: 2136, lr: 0.001000, loss: 1.370435, loss_shrink_maps: 0.688471, loss_threshold_maps: 0.537473, loss_binary_maps: 0.137052, avg_reader_cost: 1.61904 s, avg_batch_cost: 1.87182 s, avg_samples: 12.5, ips: 6.67799 samples/s, eta: 4:00:09
[2024/07/28 01:15:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:15:25] ppocr INFO: epoch: [713/1500], global_step: 2139, lr: 0.001000, loss: 1.391391, loss_shrink_maps: 0.696857, loss_threshold_maps: 0.544919, loss_binary_maps: 0.138334, avg_reader_cost: 1.53900 s, avg_batch_cost: 1.76959 s, avg_samples: 12.5, ips: 7.06377 samples/s, eta: 3:59:50
[2024/07/28 01:15:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:15:33] ppocr INFO: epoch: [714/1500], global_step: 2140, lr: 0.001000, loss: 1.391391, loss_shrink_maps: 0.689714, loss_threshold_maps: 0.544919, loss_binary_maps: 0.137260, avg_reader_cost: 0.39986 s, avg_batch_cost: 0.51083 s, avg_samples: 4.8, ips: 9.39647 samples/s, eta: 3:59:42
[2024/07/28 01:15:34] ppocr INFO: epoch: [714/1500], global_step: 2142, lr: 0.001000, loss: 1.391391, loss_shrink_maps: 0.698764, loss_threshold_maps: 0.551917, loss_binary_maps: 0.138786, avg_reader_cost: 1.11314 s, avg_batch_cost: 1.25882 s, avg_samples: 7.7, ips: 6.11682 samples/s, eta: 3:59:31
[2024/07/28 01:15:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:15:43] ppocr INFO: epoch: [715/1500], global_step: 2145, lr: 0.001000, loss: 1.417416, loss_shrink_maps: 0.731815, loss_threshold_maps: 0.559395, loss_binary_maps: 0.145932, avg_reader_cost: 1.52461 s, avg_batch_cost: 1.76397 s, avg_samples: 12.5, ips: 7.08629 samples/s, eta: 3:59:12
[2024/07/28 01:15:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:15:51] ppocr INFO: epoch: [716/1500], global_step: 2148, lr: 0.001000, loss: 1.417416, loss_shrink_maps: 0.735261, loss_threshold_maps: 0.549698, loss_binary_maps: 0.146663, avg_reader_cost: 1.57172 s, avg_batch_cost: 1.81381 s, avg_samples: 12.5, ips: 6.89157 samples/s, eta: 3:58:53
[2024/07/28 01:15:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:15:59] ppocr INFO: epoch: [717/1500], global_step: 2150, lr: 0.001000, loss: 1.424467, loss_shrink_maps: 0.743372, loss_threshold_maps: 0.548656, loss_binary_maps: 0.148407, avg_reader_cost: 0.92932 s, avg_batch_cost: 1.11931 s, avg_samples: 9.6, ips: 8.57669 samples/s, eta: 3:58:40
[2024/07/28 01:16:00] ppocr INFO: epoch: [717/1500], global_step: 2151, lr: 0.001000, loss: 1.424467, loss_shrink_maps: 0.743372, loss_threshold_maps: 0.548656, loss_binary_maps: 0.148407, avg_reader_cost: 0.60533 s, avg_batch_cost: 0.66009 s, avg_samples: 2.9, ips: 4.39332 samples/s, eta: 3:58:34
[2024/07/28 01:16:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:16:09] ppocr INFO: epoch: [718/1500], global_step: 2154, lr: 0.001000, loss: 1.414016, loss_shrink_maps: 0.743372, loss_threshold_maps: 0.544936, loss_binary_maps: 0.148407, avg_reader_cost: 1.51715 s, avg_batch_cost: 1.77022 s, avg_samples: 12.5, ips: 7.06127 samples/s, eta: 3:58:15
[2024/07/28 01:16:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:16:17] ppocr INFO: epoch: [719/1500], global_step: 2157, lr: 0.001000, loss: 1.414016, loss_shrink_maps: 0.735261, loss_threshold_maps: 0.532091, loss_binary_maps: 0.146663, avg_reader_cost: 1.57984 s, avg_batch_cost: 1.80929 s, avg_samples: 12.5, ips: 6.90879 samples/s, eta: 3:57:57
[2024/07/28 01:16:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:16:26] ppocr INFO: epoch: [720/1500], global_step: 2160, lr: 0.001000, loss: 1.445642, loss_shrink_maps: 0.746758, loss_threshold_maps: 0.546171, loss_binary_maps: 0.149212, avg_reader_cost: 1.53462 s, avg_batch_cost: 1.76295 s, avg_samples: 12.5, ips: 7.09041 samples/s, eta: 3:57:38

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:51,  9.73it/s]
eval model::   1%|          | 4/500 [00:00<00:27, 17.84it/s]
eval model::   1%|          | 6/500 [00:00<00:28, 17.59it/s]
eval model::   2%|▏         | 9/500 [00:00<00:24, 19.94it/s]
eval model::   2%|▏         | 11/500 [00:00<00:28, 17.03it/s]
eval model::   3%|▎         | 14/500 [00:00<00:27, 17.37it/s]
eval model::   3%|▎         | 17/500 [00:00<00:24, 19.99it/s]
eval model::   4%|▍         | 20/500 [00:01<00:24, 19.25it/s]
eval model::   5%|▍         | 23/500 [00:01<00:22, 21.37it/s]
eval model::   5%|▌         | 26/500 [00:01<00:23, 20.18it/s]
eval model::   6%|▌         | 29/500 [00:01<00:22, 21.15it/s]
eval model::   6%|▋         | 32/500 [00:01<00:23, 20.00it/s]
eval model::   7%|▋         | 35/500 [00:01<00:24, 19.27it/s]
eval model::   8%|▊         | 38/500 [00:01<00:24, 19.13it/s]
eval model::   8%|▊         | 40/500 [00:02<00:25, 18.25it/s]
eval model::   8%|▊         | 42/500 [00:02<00:28, 16.32it/s]
eval model::   9%|▉         | 45/500 [00:02<00:25, 18.01it/s]
eval model::   9%|▉         | 47/500 [00:02<00:29, 15.54it/s]
eval model::  10%|█         | 50/500 [00:02<00:26, 16.78it/s]
eval model::  11%|█         | 53/500 [00:02<00:24, 18.38it/s]
eval model::  11%|█         | 56/500 [00:02<00:22, 19.72it/s]
eval model::  12%|█▏        | 59/500 [00:03<00:23, 18.58it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:28, 15.53it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:29, 14.89it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:25, 17.15it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:22, 19.39it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:21, 20.33it/s]
eval model::  15%|█▌        | 75/500 [00:04<00:21, 20.09it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:20, 20.55it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:19, 21.79it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:19, 21.70it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:20, 19.76it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:23, 17.69it/s]
eval model::  18%|█▊        | 92/500 [00:04<00:23, 17.11it/s]
eval model::  19%|█▉        | 94/500 [00:05<00:23, 17.58it/s]
eval model::  19%|█▉        | 97/500 [00:05<00:21, 19.15it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:20, 19.17it/s]
eval model::  20%|██        | 101/500 [00:05<00:22, 17.98it/s]
eval model::  21%|██        | 104/500 [00:05<00:19, 20.06it/s]
eval model::  21%|██▏       | 107/500 [00:05<00:18, 21.73it/s]
eval model::  22%|██▏       | 110/500 [00:05<00:16, 22.98it/s]
eval model::  23%|██▎       | 113/500 [00:05<00:17, 22.00it/s]
eval model::  23%|██▎       | 116/500 [00:06<00:18, 20.87it/s]
eval model::  24%|██▍       | 119/500 [00:06<00:17, 21.73it/s]
eval model::  24%|██▍       | 122/500 [00:06<00:18, 20.69it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:20, 18.68it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:19, 19.58it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:19, 18.57it/s]
eval model::  27%|██▋       | 133/500 [00:07<00:20, 18.18it/s]
eval model::  27%|██▋       | 135/500 [00:07<00:19, 18.38it/s]
eval model::  27%|██▋       | 137/500 [00:07<00:19, 18.56it/s]
eval model::  28%|██▊       | 140/500 [00:07<00:18, 19.21it/s]
eval model::  29%|██▊       | 143/500 [00:07<00:17, 20.52it/s]
eval model::  29%|██▉       | 146/500 [00:07<00:18, 19.51it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:19, 18.26it/s]
eval model::  30%|███       | 151/500 [00:07<00:19, 18.20it/s]
eval model::  31%|███       | 154/500 [00:08<00:16, 20.69it/s]
eval model::  31%|███▏      | 157/500 [00:08<00:16, 21.38it/s]
eval model::  32%|███▏      | 160/500 [00:08<00:20, 16.74it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:19, 17.54it/s]
eval model::  33%|███▎      | 165/500 [00:08<00:18, 17.88it/s]
eval model::  34%|███▎      | 168/500 [00:08<00:17, 18.73it/s]
eval model::  34%|███▍      | 171/500 [00:09<00:17, 18.48it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:19, 16.39it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:19, 16.61it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:18, 17.03it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:16, 19.31it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:15, 19.97it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:14, 21.05it/s]
eval model::  38%|███▊      | 192/500 [00:10<00:14, 21.50it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:15, 19.24it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:15, 20.09it/s]
eval model::  40%|████      | 201/500 [00:10<00:15, 19.60it/s]
eval model::  41%|████      | 204/500 [00:10<00:13, 21.65it/s]
eval model::  41%|████▏     | 207/500 [00:11<00:21, 13.77it/s]
eval model::  42%|████▏     | 209/500 [00:11<00:20, 14.53it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:19, 14.45it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:19, 14.88it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:21, 13.29it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:22, 12.47it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:18, 15.50it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:20, 13.89it/s]
eval model::  45%|████▌     | 225/500 [00:12<00:16, 17.13it/s]
eval model::  46%|████▌     | 228/500 [00:12<00:14, 19.03it/s]
eval model::  46%|████▌     | 231/500 [00:12<00:12, 21.51it/s]
eval model::  47%|████▋     | 234/500 [00:12<00:13, 19.30it/s]
eval model::  47%|████▋     | 237/500 [00:12<00:12, 21.29it/s]
eval model::  48%|████▊     | 240/500 [00:12<00:11, 22.26it/s]
eval model::  49%|████▊     | 243/500 [00:13<00:13, 19.41it/s]
eval model::  49%|████▉     | 246/500 [00:13<00:12, 20.46it/s]
eval model::  50%|████▉     | 249/500 [00:13<00:12, 20.61it/s]
eval model::  50%|█████     | 252/500 [00:13<00:11, 21.76it/s]
eval model::  51%|█████     | 255/500 [00:13<00:10, 23.19it/s]
eval model::  52%|█████▏    | 258/500 [00:13<00:10, 22.71it/s]
eval model::  52%|█████▏    | 261/500 [00:13<00:09, 24.01it/s]
eval model::  53%|█████▎    | 264/500 [00:14<00:10, 21.86it/s]
eval model::  53%|█████▎    | 267/500 [00:14<00:11, 20.42it/s]
eval model::  54%|█████▍    | 270/500 [00:14<00:11, 19.32it/s]
eval model::  55%|█████▍    | 273/500 [00:14<00:11, 20.39it/s]
eval model::  55%|█████▌    | 276/500 [00:14<00:12, 18.24it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:11, 18.52it/s]
eval model::  56%|█████▌    | 281/500 [00:14<00:11, 19.80it/s]
eval model::  57%|█████▋    | 284/500 [00:15<00:10, 20.90it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:19, 10.77it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:14, 14.43it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:13, 14.98it/s]
eval model::  59%|█████▉    | 297/500 [00:16<00:15, 13.44it/s]
eval model::  60%|██████    | 300/500 [00:16<00:13, 14.72it/s]
eval model::  61%|██████    | 303/500 [00:16<00:11, 17.10it/s]
eval model::  61%|██████    | 306/500 [00:16<00:10, 17.69it/s]
eval model::  62%|██████▏   | 309/500 [00:16<00:09, 19.93it/s]
eval model::  62%|██████▏   | 312/500 [00:16<00:09, 19.96it/s]
eval model::  63%|██████▎   | 315/500 [00:17<00:09, 19.60it/s]
eval model::  64%|██████▎   | 318/500 [00:17<00:09, 18.56it/s]
eval model::  64%|██████▍   | 321/500 [00:17<00:09, 19.04it/s]
eval model::  65%|██████▍   | 323/500 [00:17<00:09, 18.75it/s]
eval model::  65%|██████▌   | 326/500 [00:17<00:09, 19.12it/s]
eval model::  66%|██████▌   | 328/500 [00:17<00:08, 19.12it/s]
eval model::  66%|██████▌   | 331/500 [00:17<00:08, 19.16it/s]
eval model::  67%|██████▋   | 334/500 [00:18<00:08, 19.96it/s]
eval model::  67%|██████▋   | 337/500 [00:18<00:08, 18.39it/s]
eval model::  68%|██████▊   | 339/500 [00:18<00:09, 17.67it/s]
eval model::  68%|██████▊   | 341/500 [00:18<00:11, 13.51it/s]
eval model::  69%|██████▉   | 344/500 [00:18<00:09, 15.95it/s]
eval model::  69%|██████▉   | 347/500 [00:18<00:08, 17.70it/s]
eval model::  70%|███████   | 350/500 [00:19<00:07, 19.06it/s]
eval model::  71%|███████   | 353/500 [00:19<00:07, 20.56it/s]
eval model::  71%|███████   | 356/500 [00:19<00:08, 17.96it/s]
eval model::  72%|███████▏  | 359/500 [00:19<00:07, 18.25it/s]
eval model::  72%|███████▏  | 361/500 [00:19<00:08, 16.64it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:08, 16.79it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:08, 16.73it/s]
eval model::  74%|███████▍  | 369/500 [00:20<00:06, 18.84it/s]
eval model::  74%|███████▍  | 372/500 [00:20<00:06, 19.11it/s]
eval model::  75%|███████▌  | 375/500 [00:20<00:05, 21.34it/s]
eval model::  76%|███████▌  | 378/500 [00:20<00:05, 22.48it/s]
eval model::  76%|███████▌  | 381/500 [00:20<00:05, 20.66it/s]
eval model::  77%|███████▋  | 384/500 [00:20<00:05, 22.63it/s]
eval model::  77%|███████▋  | 387/500 [00:21<00:08, 13.76it/s]
eval model::  78%|███████▊  | 391/500 [00:21<00:06, 16.97it/s]
eval model::  79%|███████▉  | 394/500 [00:21<00:05, 17.75it/s]
eval model::  79%|███████▉  | 397/500 [00:21<00:05, 18.87it/s]
eval model::  80%|████████  | 400/500 [00:21<00:05, 17.77it/s]
eval model::  80%|████████  | 402/500 [00:21<00:05, 18.00it/s]
eval model::  81%|████████  | 405/500 [00:21<00:04, 19.44it/s]
eval model::  82%|████████▏ | 408/500 [00:22<00:04, 19.63it/s]
eval model::  82%|████████▏ | 411/500 [00:22<00:04, 21.44it/s]
eval model::  83%|████████▎ | 414/500 [00:22<00:03, 22.63it/s]
eval model::  83%|████████▎ | 417/500 [00:22<00:04, 20.44it/s]
eval model::  84%|████████▍ | 420/500 [00:22<00:05, 14.86it/s]
eval model::  85%|████████▍ | 423/500 [00:22<00:04, 16.71it/s]
eval model::  85%|████████▌ | 425/500 [00:23<00:04, 15.65it/s]
eval model::  86%|████████▌ | 428/500 [00:23<00:03, 18.15it/s]
eval model::  86%|████████▌ | 431/500 [00:23<00:03, 17.99it/s]
eval model::  87%|████████▋ | 434/500 [00:23<00:03, 20.41it/s]
eval model::  87%|████████▋ | 437/500 [00:23<00:03, 20.87it/s]
eval model::  88%|████████▊ | 440/500 [00:23<00:03, 19.28it/s]
eval model::  89%|████████▉ | 444/500 [00:23<00:02, 22.52it/s]
eval model::  89%|████████▉ | 447/500 [00:24<00:02, 21.28it/s]
eval model::  90%|█████████ | 450/500 [00:24<00:02, 19.99it/s]
eval model::  91%|█████████ | 453/500 [00:24<00:02, 21.31it/s]
eval model::  91%|█████████ | 456/500 [00:24<00:01, 22.11it/s]
eval model::  92%|█████████▏| 459/500 [00:24<00:01, 23.70it/s]
eval model::  92%|█████████▏| 462/500 [00:24<00:01, 20.51it/s]
eval model::  93%|█████████▎| 465/500 [00:25<00:01, 19.19it/s]
eval model::  94%|█████████▎| 468/500 [00:25<00:01, 19.95it/s]
eval model::  94%|█████████▍| 471/500 [00:25<00:01, 21.92it/s]
eval model::  95%|█████████▍| 474/500 [00:25<00:01, 21.33it/s]
eval model::  96%|█████████▌| 478/500 [00:25<00:00, 23.89it/s]
eval model::  96%|█████████▌| 481/500 [00:25<00:00, 22.39it/s]
eval model::  97%|█████████▋| 484/500 [00:25<00:00, 22.27it/s]
eval model::  97%|█████████▋| 487/500 [00:25<00:00, 21.70it/s]
eval model::  98%|█████████▊| 490/500 [00:26<00:00, 23.60it/s]
eval model::  99%|█████████▊| 493/500 [00:26<00:00, 18.30it/s]
eval model::  99%|█████████▉| 496/500 [00:26<00:00, 17.91it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 20.77it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.75it/s]
[2024/07/28 01:16:52] ppocr INFO: cur metric, precision: 0.6995255666842383, recall: 0.6389022628791526, hmean: 0.6678409662808253, fps: 44.826133165048375
[2024/07/28 01:16:52] ppocr INFO: best metric, hmean: 0.7048391183177097, precision: 0.7438502673796792, recall: 0.6697159364467983, fps: 46.08540547152116, best_epoch: 580
[2024/07/28 01:16:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:17:01] ppocr INFO: epoch: [721/1500], global_step: 2163, lr: 0.001000, loss: 1.428527, loss_shrink_maps: 0.743952, loss_threshold_maps: 0.542450, loss_binary_maps: 0.148421, avg_reader_cost: 1.76284 s, avg_batch_cost: 2.11111 s, avg_samples: 12.5, ips: 5.92105 samples/s, eta: 3:57:23
[2024/07/28 01:17:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:17:09] ppocr INFO: epoch: [722/1500], global_step: 2166, lr: 0.001000, loss: 1.413342, loss_shrink_maps: 0.735261, loss_threshold_maps: 0.536154, loss_binary_maps: 0.146970, avg_reader_cost: 1.55898 s, avg_batch_cost: 1.80034 s, avg_samples: 12.5, ips: 6.94313 samples/s, eta: 3:57:04
[2024/07/28 01:17:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:17:18] ppocr INFO: epoch: [723/1500], global_step: 2169, lr: 0.001000, loss: 1.388856, loss_shrink_maps: 0.721899, loss_threshold_maps: 0.536407, loss_binary_maps: 0.144240, avg_reader_cost: 1.55451 s, avg_batch_cost: 1.79665 s, avg_samples: 12.5, ips: 6.95741 samples/s, eta: 3:56:46
[2024/07/28 01:17:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:17:25] ppocr INFO: epoch: [724/1500], global_step: 2170, lr: 0.001000, loss: 1.388856, loss_shrink_maps: 0.714886, loss_threshold_maps: 0.536407, loss_binary_maps: 0.142376, avg_reader_cost: 0.41528 s, avg_batch_cost: 0.50682 s, avg_samples: 4.8, ips: 9.47089 samples/s, eta: 3:56:38
[2024/07/28 01:17:26] ppocr INFO: epoch: [724/1500], global_step: 2172, lr: 0.001000, loss: 1.406794, loss_shrink_maps: 0.721899, loss_threshold_maps: 0.544048, loss_binary_maps: 0.144240, avg_reader_cost: 1.10479 s, avg_batch_cost: 1.25038 s, avg_samples: 7.7, ips: 6.15811 samples/s, eta: 3:56:27
[2024/07/28 01:17:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:17:35] ppocr INFO: epoch: [725/1500], global_step: 2175, lr: 0.001000, loss: 1.403288, loss_shrink_maps: 0.714886, loss_threshold_maps: 0.544048, loss_binary_maps: 0.142376, avg_reader_cost: 1.53572 s, avg_batch_cost: 1.76700 s, avg_samples: 12.5, ips: 7.07412 samples/s, eta: 3:56:08
[2024/07/28 01:17:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:17:44] ppocr INFO: epoch: [726/1500], global_step: 2178, lr: 0.001000, loss: 1.367699, loss_shrink_maps: 0.706493, loss_threshold_maps: 0.532981, loss_binary_maps: 0.140599, avg_reader_cost: 1.51532 s, avg_batch_cost: 1.77581 s, avg_samples: 12.5, ips: 7.03905 samples/s, eta: 3:55:49
[2024/07/28 01:17:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:17:52] ppocr INFO: epoch: [727/1500], global_step: 2180, lr: 0.001000, loss: 1.348338, loss_shrink_maps: 0.700941, loss_threshold_maps: 0.516469, loss_binary_maps: 0.139459, avg_reader_cost: 0.93087 s, avg_batch_cost: 1.11625 s, avg_samples: 9.6, ips: 8.60023 samples/s, eta: 3:55:35
[2024/07/28 01:17:52] ppocr INFO: epoch: [727/1500], global_step: 2181, lr: 0.001000, loss: 1.367699, loss_shrink_maps: 0.700941, loss_threshold_maps: 0.532981, loss_binary_maps: 0.139459, avg_reader_cost: 0.60383 s, avg_batch_cost: 0.65865 s, avg_samples: 2.9, ips: 4.40293 samples/s, eta: 3:55:30
[2024/07/28 01:17:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:18:01] ppocr INFO: epoch: [728/1500], global_step: 2184, lr: 0.001000, loss: 1.337649, loss_shrink_maps: 0.674098, loss_threshold_maps: 0.512653, loss_binary_maps: 0.134554, avg_reader_cost: 1.56075 s, avg_batch_cost: 1.79017 s, avg_samples: 12.5, ips: 6.98259 samples/s, eta: 3:55:11
[2024/07/28 01:18:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:18:10] ppocr INFO: epoch: [729/1500], global_step: 2187, lr: 0.001000, loss: 1.348338, loss_shrink_maps: 0.687792, loss_threshold_maps: 0.529164, loss_binary_maps: 0.137039, avg_reader_cost: 1.62353 s, avg_batch_cost: 1.89494 s, avg_samples: 12.5, ips: 6.59651 samples/s, eta: 3:54:54
[2024/07/28 01:18:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:18:19] ppocr INFO: epoch: [730/1500], global_step: 2190, lr: 0.001000, loss: 1.337649, loss_shrink_maps: 0.674098, loss_threshold_maps: 0.529164, loss_binary_maps: 0.134554, avg_reader_cost: 1.53822 s, avg_batch_cost: 1.76644 s, avg_samples: 12.5, ips: 7.07639 samples/s, eta: 3:54:35
[2024/07/28 01:18:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:18:28] ppocr INFO: epoch: [731/1500], global_step: 2193, lr: 0.001000, loss: 1.322624, loss_shrink_maps: 0.670519, loss_threshold_maps: 0.518819, loss_binary_maps: 0.133597, avg_reader_cost: 1.56366 s, avg_batch_cost: 1.79883 s, avg_samples: 12.5, ips: 6.94896 samples/s, eta: 3:54:16
[2024/07/28 01:18:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:18:36] ppocr INFO: epoch: [732/1500], global_step: 2196, lr: 0.001000, loss: 1.322624, loss_shrink_maps: 0.670519, loss_threshold_maps: 0.518819, loss_binary_maps: 0.133597, avg_reader_cost: 1.52949 s, avg_batch_cost: 1.75820 s, avg_samples: 12.5, ips: 7.10956 samples/s, eta: 3:53:57
[2024/07/28 01:18:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:18:45] ppocr INFO: epoch: [733/1500], global_step: 2199, lr: 0.001000, loss: 1.344833, loss_shrink_maps: 0.670519, loss_threshold_maps: 0.531102, loss_binary_maps: 0.133597, avg_reader_cost: 1.52073 s, avg_batch_cost: 1.75839 s, avg_samples: 12.5, ips: 7.10877 samples/s, eta: 3:53:38
[2024/07/28 01:18:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:18:52] ppocr INFO: epoch: [734/1500], global_step: 2200, lr: 0.001000, loss: 1.344833, loss_shrink_maps: 0.670519, loss_threshold_maps: 0.531102, loss_binary_maps: 0.133597, avg_reader_cost: 0.42261 s, avg_batch_cost: 0.50592 s, avg_samples: 4.8, ips: 9.48761 samples/s, eta: 3:53:31
[2024/07/28 01:18:53] ppocr INFO: epoch: [734/1500], global_step: 2202, lr: 0.001000, loss: 1.344959, loss_shrink_maps: 0.678723, loss_threshold_maps: 0.528564, loss_binary_maps: 0.135271, avg_reader_cost: 1.10338 s, avg_batch_cost: 1.24979 s, avg_samples: 7.7, ips: 6.16103 samples/s, eta: 3:53:19
[2024/07/28 01:18:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:19:02] ppocr INFO: epoch: [735/1500], global_step: 2205, lr: 0.001000, loss: 1.307318, loss_shrink_maps: 0.665217, loss_threshold_maps: 0.514137, loss_binary_maps: 0.132745, avg_reader_cost: 1.56778 s, avg_batch_cost: 1.79714 s, avg_samples: 12.5, ips: 6.95549 samples/s, eta: 3:53:01
[2024/07/28 01:19:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:19:11] ppocr INFO: epoch: [736/1500], global_step: 2208, lr: 0.001000, loss: 1.328004, loss_shrink_maps: 0.671610, loss_threshold_maps: 0.512305, loss_binary_maps: 0.132945, avg_reader_cost: 1.53105 s, avg_batch_cost: 1.76556 s, avg_samples: 12.5, ips: 7.07991 samples/s, eta: 3:52:42
[2024/07/28 01:19:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:19:20] ppocr INFO: epoch: [737/1500], global_step: 2210, lr: 0.001000, loss: 1.361203, loss_shrink_maps: 0.685116, loss_threshold_maps: 0.524905, loss_binary_maps: 0.136150, avg_reader_cost: 1.07102 s, avg_batch_cost: 1.25534 s, avg_samples: 9.6, ips: 7.64730 samples/s, eta: 3:52:30
[2024/07/28 01:19:20] ppocr INFO: epoch: [737/1500], global_step: 2211, lr: 0.001000, loss: 1.361203, loss_shrink_maps: 0.692430, loss_threshold_maps: 0.524905, loss_binary_maps: 0.137214, avg_reader_cost: 0.67369 s, avg_batch_cost: 0.72824 s, avg_samples: 2.9, ips: 3.98218 samples/s, eta: 3:52:25
[2024/07/28 01:19:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:19:29] ppocr INFO: epoch: [738/1500], global_step: 2214, lr: 0.001000, loss: 1.381670, loss_shrink_maps: 0.710388, loss_threshold_maps: 0.537188, loss_binary_maps: 0.141106, avg_reader_cost: 1.53390 s, avg_batch_cost: 1.76379 s, avg_samples: 12.5, ips: 7.08702 samples/s, eta: 3:52:06
[2024/07/28 01:19:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:19:38] ppocr INFO: epoch: [739/1500], global_step: 2217, lr: 0.001000, loss: 1.381670, loss_shrink_maps: 0.710388, loss_threshold_maps: 0.537188, loss_binary_maps: 0.141247, avg_reader_cost: 1.53108 s, avg_batch_cost: 1.79928 s, avg_samples: 12.5, ips: 6.94724 samples/s, eta: 3:51:47
[2024/07/28 01:19:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:19:46] ppocr INFO: epoch: [740/1500], global_step: 2220, lr: 0.001000, loss: 1.367188, loss_shrink_maps: 0.708379, loss_threshold_maps: 0.532651, loss_binary_maps: 0.141247, avg_reader_cost: 1.57858 s, avg_batch_cost: 1.83671 s, avg_samples: 12.5, ips: 6.80563 samples/s, eta: 3:51:29

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:51,  9.67it/s]
eval model::   1%|          | 4/500 [00:00<00:27, 18.10it/s]
eval model::   1%|▏         | 7/500 [00:00<00:23, 21.09it/s]
eval model::   2%|▏         | 10/500 [00:00<00:23, 21.17it/s]
eval model::   3%|▎         | 13/500 [00:00<00:25, 19.47it/s]
eval model::   3%|▎         | 16/500 [00:00<00:23, 20.45it/s]
eval model::   4%|▍         | 19/500 [00:00<00:22, 21.02it/s]
eval model::   4%|▍         | 22/500 [00:01<00:23, 20.39it/s]
eval model::   5%|▌         | 25/500 [00:01<00:22, 20.88it/s]
eval model::   6%|▌         | 28/500 [00:01<00:21, 21.75it/s]
eval model::   6%|▌         | 31/500 [00:01<00:25, 18.51it/s]
eval model::   7%|▋         | 34/500 [00:01<00:24, 19.08it/s]
eval model::   7%|▋         | 37/500 [00:01<00:22, 20.38it/s]
eval model::   8%|▊         | 40/500 [00:02<00:25, 17.85it/s]
eval model::   8%|▊         | 42/500 [00:02<00:27, 16.75it/s]
eval model::   9%|▉         | 45/500 [00:02<00:23, 19.05it/s]
eval model::  10%|▉         | 48/500 [00:02<00:23, 19.63it/s]
eval model::  10%|█         | 51/500 [00:02<00:23, 19.35it/s]
eval model::  11%|█         | 54/500 [00:02<00:21, 20.91it/s]
eval model::  11%|█▏        | 57/500 [00:02<00:21, 20.76it/s]
eval model::  12%|█▏        | 60/500 [00:03<00:23, 18.58it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:28, 15.12it/s]
eval model::  13%|█▎        | 65/500 [00:03<00:25, 17.04it/s]
eval model::  14%|█▎        | 68/500 [00:03<00:22, 19.40it/s]
eval model::  14%|█▍        | 71/500 [00:03<00:20, 20.84it/s]
eval model::  15%|█▍        | 74/500 [00:03<00:20, 20.83it/s]
eval model::  15%|█▌        | 77/500 [00:03<00:19, 21.82it/s]
eval model::  16%|█▌        | 80/500 [00:04<00:18, 22.65it/s]
eval model::  17%|█▋        | 83/500 [00:04<00:18, 22.19it/s]
eval model::  17%|█▋        | 86/500 [00:04<00:20, 20.54it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:22, 18.17it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:24, 16.97it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:23, 16.98it/s]
eval model::  19%|█▉        | 96/500 [00:04<00:20, 19.38it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:21, 18.88it/s]
eval model::  20%|██        | 101/500 [00:05<00:21, 18.91it/s]
eval model::  21%|██        | 104/500 [00:05<00:18, 20.91it/s]
eval model::  21%|██▏       | 107/500 [00:05<00:17, 22.28it/s]
eval model::  22%|██▏       | 110/500 [00:05<00:17, 22.56it/s]
eval model::  23%|██▎       | 113/500 [00:05<00:17, 22.24it/s]
eval model::  23%|██▎       | 116/500 [00:05<00:18, 20.24it/s]
eval model::  24%|██▍       | 119/500 [00:06<00:18, 20.69it/s]
eval model::  24%|██▍       | 122/500 [00:06<00:18, 20.56it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:19, 19.12it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:18, 19.89it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:19, 19.03it/s]
eval model::  27%|██▋       | 133/500 [00:06<00:20, 17.80it/s]
eval model::  27%|██▋       | 136/500 [00:06<00:19, 19.06it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:18, 19.72it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:17, 20.90it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:16, 22.07it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:17, 19.98it/s]
eval model::  30%|███       | 151/500 [00:07<00:19, 17.81it/s]
eval model::  31%|███       | 154/500 [00:07<00:17, 20.15it/s]
eval model::  32%|███▏      | 158/500 [00:07<00:14, 22.80it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:22, 15.40it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:19, 16.90it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:18, 18.31it/s]
eval model::  34%|███▍      | 170/500 [00:08<00:16, 19.94it/s]
eval model::  35%|███▍      | 173/500 [00:08<00:17, 18.85it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:19, 16.89it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:16, 19.32it/s]
eval model::  36%|███▋      | 182/500 [00:09<00:18, 16.97it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:16, 19.42it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:14, 20.90it/s]
eval model::  38%|███▊      | 192/500 [00:09<00:14, 21.68it/s]
eval model::  39%|███▉      | 195/500 [00:09<00:14, 21.63it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:14, 21.21it/s]
eval model::  40%|████      | 201/500 [00:10<00:15, 19.85it/s]
eval model::  41%|████      | 204/500 [00:10<00:14, 19.81it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:21, 13.87it/s]
eval model::  42%|████▏     | 209/500 [00:10<00:19, 14.69it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:19, 15.02it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.68it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:21, 13.48it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:21, 13.22it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:18, 15.44it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:20, 13.40it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:15, 17.24it/s]
eval model::  46%|████▌     | 229/500 [00:12<00:13, 19.60it/s]
eval model::  46%|████▋     | 232/500 [00:12<00:12, 21.76it/s]
eval model::  47%|████▋     | 235/500 [00:12<00:12, 21.51it/s]
eval model::  48%|████▊     | 238/500 [00:12<00:11, 23.18it/s]
eval model::  48%|████▊     | 241/500 [00:12<00:11, 23.37it/s]
eval model::  49%|████▉     | 244/500 [00:12<00:13, 18.54it/s]
eval model::  49%|████▉     | 247/500 [00:12<00:12, 20.94it/s]
eval model::  50%|█████     | 250/500 [00:13<00:12, 20.65it/s]
eval model::  51%|█████     | 253/500 [00:13<00:10, 22.67it/s]
eval model::  51%|█████     | 256/500 [00:13<00:10, 23.10it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:09, 24.63it/s]
eval model::  53%|█████▎    | 263/500 [00:13<00:10, 23.17it/s]
eval model::  53%|█████▎    | 266/500 [00:13<00:11, 21.04it/s]
eval model::  54%|█████▍    | 269/500 [00:13<00:12, 18.85it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:12, 18.90it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:12, 18.69it/s]
eval model::  55%|█████▌    | 277/500 [00:14<00:11, 18.60it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:12, 17.26it/s]
eval model::  56%|█████▋    | 282/500 [00:14<00:12, 17.97it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:20, 10.52it/s]
eval model::  58%|█████▊    | 288/500 [00:15<00:16, 12.83it/s]
eval model::  58%|█████▊    | 292/500 [00:15<00:13, 15.95it/s]
eval model::  59%|█████▉    | 295/500 [00:15<00:14, 14.20it/s]
eval model::  60%|█████▉    | 299/500 [00:15<00:11, 17.52it/s]
eval model::  60%|██████    | 302/500 [00:16<00:11, 17.43it/s]
eval model::  61%|██████    | 305/500 [00:16<00:10, 19.43it/s]
eval model::  62%|██████▏   | 309/500 [00:16<00:08, 23.36it/s]
eval model::  62%|██████▏   | 312/500 [00:16<00:07, 24.17it/s]
eval model::  63%|██████▎   | 315/500 [00:16<00:08, 21.90it/s]
eval model::  64%|██████▍   | 319/500 [00:16<00:07, 24.27it/s]
eval model::  64%|██████▍   | 322/500 [00:16<00:07, 22.71it/s]
eval model::  65%|██████▌   | 325/500 [00:16<00:07, 23.65it/s]
eval model::  66%|██████▌   | 328/500 [00:17<00:07, 23.18it/s]
eval model::  66%|██████▌   | 331/500 [00:17<00:08, 21.05it/s]
eval model::  67%|██████▋   | 334/500 [00:17<00:07, 22.30it/s]
eval model::  67%|██████▋   | 337/500 [00:17<00:07, 20.60it/s]
eval model::  68%|██████▊   | 340/500 [00:17<00:11, 13.58it/s]
eval model::  69%|██████▊   | 343/500 [00:18<00:10, 15.34it/s]
eval model::  69%|██████▉   | 346/500 [00:18<00:08, 17.15it/s]
eval model::  70%|██████▉   | 349/500 [00:18<00:08, 17.64it/s]
eval model::  70%|███████   | 352/500 [00:18<00:07, 19.34it/s]
eval model::  71%|███████   | 355/500 [00:18<00:06, 20.76it/s]
eval model::  72%|███████▏  | 358/500 [00:18<00:06, 22.35it/s]
eval model::  72%|███████▏  | 361/500 [00:18<00:07, 18.53it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:07, 17.09it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:07, 16.97it/s]
eval model::  74%|███████▍  | 370/500 [00:19<00:06, 20.05it/s]
eval model::  75%|███████▍  | 373/500 [00:19<00:06, 20.92it/s]
eval model::  75%|███████▌  | 377/500 [00:19<00:05, 24.42it/s]
eval model::  76%|███████▌  | 380/500 [00:19<00:05, 21.69it/s]
eval model::  77%|███████▋  | 383/500 [00:19<00:05, 22.91it/s]
eval model::  77%|███████▋  | 386/500 [00:20<00:08, 12.79it/s]
eval model::  78%|███████▊  | 389/500 [00:20<00:07, 15.05it/s]
eval model::  78%|███████▊  | 392/500 [00:20<00:06, 16.09it/s]
eval model::  79%|███████▉  | 395/500 [00:20<00:06, 16.36it/s]
eval model::  80%|███████▉  | 398/500 [00:21<00:05, 18.52it/s]
eval model::  80%|████████  | 401/500 [00:21<00:05, 18.61it/s]
eval model::  81%|████████  | 405/500 [00:21<00:04, 21.87it/s]
eval model::  82%|████████▏ | 408/500 [00:21<00:04, 22.47it/s]
eval model::  82%|████████▏ | 411/500 [00:21<00:03, 23.71it/s]
eval model::  83%|████████▎ | 414/500 [00:21<00:03, 24.52it/s]
eval model::  83%|████████▎ | 417/500 [00:21<00:03, 21.16it/s]
eval model::  84%|████████▍ | 420/500 [00:22<00:05, 15.92it/s]
eval model::  85%|████████▍ | 423/500 [00:22<00:04, 17.62it/s]
eval model::  85%|████████▌ | 426/500 [00:22<00:04, 16.52it/s]
eval model::  86%|████████▌ | 429/500 [00:22<00:03, 18.91it/s]
eval model::  86%|████████▋ | 432/500 [00:22<00:03, 18.85it/s]
eval model::  87%|████████▋ | 435/500 [00:22<00:03, 20.37it/s]
eval model::  88%|████████▊ | 438/500 [00:22<00:02, 22.09it/s]
eval model::  88%|████████▊ | 441/500 [00:23<00:02, 21.23it/s]
eval model::  89%|████████▉ | 444/500 [00:23<00:02, 23.21it/s]
eval model::  89%|████████▉ | 447/500 [00:23<00:02, 24.32it/s]
eval model::  90%|█████████ | 450/500 [00:23<00:02, 23.63it/s]
eval model::  91%|█████████ | 453/500 [00:23<00:01, 24.89it/s]
eval model::  91%|█████████ | 456/500 [00:23<00:01, 25.09it/s]
eval model::  92%|█████████▏| 460/500 [00:23<00:01, 24.33it/s]
eval model::  93%|█████████▎| 463/500 [00:24<00:01, 19.19it/s]
eval model::  93%|█████████▎| 466/500 [00:24<00:01, 19.64it/s]
eval model::  94%|█████████▍| 469/500 [00:24<00:01, 20.47it/s]
eval model::  94%|█████████▍| 472/500 [00:24<00:01, 21.16it/s]
eval model::  95%|█████████▌| 475/500 [00:24<00:01, 22.81it/s]
eval model::  96%|█████████▌| 479/500 [00:24<00:00, 24.47it/s]
eval model::  96%|█████████▋| 482/500 [00:24<00:00, 23.29it/s]
eval model::  97%|█████████▋| 485/500 [00:25<00:00, 22.62it/s]
eval model::  98%|█████████▊| 488/500 [00:25<00:00, 21.29it/s]
eval model::  98%|█████████▊| 491/500 [00:25<00:00, 19.62it/s]
eval model::  99%|█████████▉| 494/500 [00:25<00:00, 17.67it/s]
eval model::  99%|█████████▉| 496/500 [00:25<00:00, 16.65it/s]
eval model:: 100%|█████████▉| 499/500 [00:25<00:00, 19.09it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.31it/s]
[2024/07/28 01:20:12] ppocr INFO: cur metric, precision: 0.7374364765669114, recall: 0.6287915262397689, hmean: 0.6787941787941788, fps: 46.08851275984581
[2024/07/28 01:20:12] ppocr INFO: best metric, hmean: 0.7048391183177097, precision: 0.7438502673796792, recall: 0.6697159364467983, fps: 46.08540547152116, best_epoch: 580
[2024/07/28 01:20:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:20:21] ppocr INFO: epoch: [741/1500], global_step: 2223, lr: 0.001000, loss: 1.353242, loss_shrink_maps: 0.693905, loss_threshold_maps: 0.523295, loss_binary_maps: 0.138512, avg_reader_cost: 1.91711 s, avg_batch_cost: 2.29030 s, avg_samples: 12.5, ips: 5.45780 samples/s, eta: 3:51:16
[2024/07/28 01:20:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:20:30] ppocr INFO: epoch: [742/1500], global_step: 2226, lr: 0.001000, loss: 1.367188, loss_shrink_maps: 0.708379, loss_threshold_maps: 0.536087, loss_binary_maps: 0.141247, avg_reader_cost: 1.50331 s, avg_batch_cost: 1.73594 s, avg_samples: 12.5, ips: 7.20070 samples/s, eta: 3:50:56
[2024/07/28 01:20:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:20:39] ppocr INFO: epoch: [743/1500], global_step: 2229, lr: 0.001000, loss: 1.372477, loss_shrink_maps: 0.710455, loss_threshold_maps: 0.530506, loss_binary_maps: 0.142106, avg_reader_cost: 1.51452 s, avg_batch_cost: 1.74389 s, avg_samples: 12.5, ips: 7.16790 samples/s, eta: 3:50:37
[2024/07/28 01:20:41] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:20:46] ppocr INFO: epoch: [744/1500], global_step: 2230, lr: 0.001000, loss: 1.348666, loss_shrink_maps: 0.693905, loss_threshold_maps: 0.523422, loss_binary_maps: 0.138512, avg_reader_cost: 0.44436 s, avg_batch_cost: 0.52683 s, avg_samples: 4.8, ips: 9.11105 samples/s, eta: 3:50:30
[2024/07/28 01:20:47] ppocr INFO: epoch: [744/1500], global_step: 2232, lr: 0.001000, loss: 1.348666, loss_shrink_maps: 0.693905, loss_threshold_maps: 0.523904, loss_binary_maps: 0.138512, avg_reader_cost: 1.14503 s, avg_batch_cost: 1.29080 s, avg_samples: 7.7, ips: 5.96528 samples/s, eta: 3:50:19
[2024/07/28 01:20:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:20:56] ppocr INFO: epoch: [745/1500], global_step: 2235, lr: 0.001000, loss: 1.348666, loss_shrink_maps: 0.693905, loss_threshold_maps: 0.523904, loss_binary_maps: 0.138512, avg_reader_cost: 1.52643 s, avg_batch_cost: 1.77026 s, avg_samples: 12.5, ips: 7.06110 samples/s, eta: 3:50:00
[2024/07/28 01:20:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:21:05] ppocr INFO: epoch: [746/1500], global_step: 2238, lr: 0.001000, loss: 1.356292, loss_shrink_maps: 0.690819, loss_threshold_maps: 0.523904, loss_binary_maps: 0.138084, avg_reader_cost: 1.51325 s, avg_batch_cost: 1.75753 s, avg_samples: 12.5, ips: 7.11224 samples/s, eta: 3:49:41
[2024/07/28 01:21:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:21:13] ppocr INFO: epoch: [747/1500], global_step: 2240, lr: 0.001000, loss: 1.334918, loss_shrink_maps: 0.677264, loss_threshold_maps: 0.517550, loss_binary_maps: 0.135303, avg_reader_cost: 0.91014 s, avg_batch_cost: 1.11553 s, avg_samples: 9.6, ips: 8.60579 samples/s, eta: 3:49:28
[2024/07/28 01:21:13] ppocr INFO: epoch: [747/1500], global_step: 2241, lr: 0.001000, loss: 1.322059, loss_shrink_maps: 0.666146, loss_threshold_maps: 0.516967, loss_binary_maps: 0.132611, avg_reader_cost: 0.60337 s, avg_batch_cost: 0.65853 s, avg_samples: 2.9, ips: 4.40378 samples/s, eta: 3:49:22
[2024/07/28 01:21:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:21:22] ppocr INFO: epoch: [748/1500], global_step: 2244, lr: 0.001000, loss: 1.334918, loss_shrink_maps: 0.677264, loss_threshold_maps: 0.517550, loss_binary_maps: 0.135303, avg_reader_cost: 1.71639 s, avg_batch_cost: 1.94404 s, avg_samples: 12.5, ips: 6.42992 samples/s, eta: 3:49:05
[2024/07/28 01:21:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:21:31] ppocr INFO: epoch: [749/1500], global_step: 2247, lr: 0.001000, loss: 1.349334, loss_shrink_maps: 0.681285, loss_threshold_maps: 0.522067, loss_binary_maps: 0.135703, avg_reader_cost: 1.54776 s, avg_batch_cost: 1.77721 s, avg_samples: 12.5, ips: 7.03350 samples/s, eta: 3:48:46
[2024/07/28 01:21:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:21:40] ppocr INFO: epoch: [750/1500], global_step: 2250, lr: 0.001000, loss: 1.360678, loss_shrink_maps: 0.693834, loss_threshold_maps: 0.522067, loss_binary_maps: 0.138419, avg_reader_cost: 1.51223 s, avg_batch_cost: 1.74311 s, avg_samples: 12.5, ips: 7.17108 samples/s, eta: 3:48:27
[2024/07/28 01:21:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:21:49] ppocr INFO: epoch: [751/1500], global_step: 2253, lr: 0.001000, loss: 1.360678, loss_shrink_maps: 0.693356, loss_threshold_maps: 0.522067, loss_binary_maps: 0.138097, avg_reader_cost: 1.69014 s, avg_batch_cost: 1.91932 s, avg_samples: 12.5, ips: 6.51273 samples/s, eta: 3:48:10
[2024/07/28 01:21:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:21:58] ppocr INFO: epoch: [752/1500], global_step: 2256, lr: 0.001000, loss: 1.374516, loss_shrink_maps: 0.699432, loss_threshold_maps: 0.528758, loss_binary_maps: 0.138950, avg_reader_cost: 1.54242 s, avg_batch_cost: 1.77064 s, avg_samples: 12.5, ips: 7.05959 samples/s, eta: 3:47:51
[2024/07/28 01:22:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:22:07] ppocr INFO: epoch: [753/1500], global_step: 2259, lr: 0.001000, loss: 1.363039, loss_shrink_maps: 0.698798, loss_threshold_maps: 0.528509, loss_binary_maps: 0.138574, avg_reader_cost: 1.52394 s, avg_batch_cost: 1.80107 s, avg_samples: 12.5, ips: 6.94030 samples/s, eta: 3:47:33
[2024/07/28 01:22:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:22:14] ppocr INFO: epoch: [754/1500], global_step: 2260, lr: 0.001000, loss: 1.374516, loss_shrink_maps: 0.699432, loss_threshold_maps: 0.530786, loss_binary_maps: 0.138950, avg_reader_cost: 0.42276 s, avg_batch_cost: 0.51643 s, avg_samples: 4.8, ips: 9.29456 samples/s, eta: 3:47:25
[2024/07/28 01:22:15] ppocr INFO: epoch: [754/1500], global_step: 2262, lr: 0.001000, loss: 1.371892, loss_shrink_maps: 0.698798, loss_threshold_maps: 0.530786, loss_binary_maps: 0.138574, avg_reader_cost: 1.12430 s, avg_batch_cost: 1.27052 s, avg_samples: 7.7, ips: 6.06051 samples/s, eta: 3:47:14
[2024/07/28 01:22:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:22:24] ppocr INFO: epoch: [755/1500], global_step: 2265, lr: 0.001000, loss: 1.393532, loss_shrink_maps: 0.702579, loss_threshold_maps: 0.534927, loss_binary_maps: 0.140025, avg_reader_cost: 1.61297 s, avg_batch_cost: 1.85664 s, avg_samples: 12.5, ips: 6.73260 samples/s, eta: 3:46:56
[2024/07/28 01:22:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:22:33] ppocr INFO: epoch: [756/1500], global_step: 2268, lr: 0.001000, loss: 1.393532, loss_shrink_maps: 0.702579, loss_threshold_maps: 0.530942, loss_binary_maps: 0.140025, avg_reader_cost: 1.54903 s, avg_batch_cost: 1.79529 s, avg_samples: 12.5, ips: 6.96268 samples/s, eta: 3:46:37
[2024/07/28 01:22:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:22:41] ppocr INFO: epoch: [757/1500], global_step: 2270, lr: 0.001000, loss: 1.388848, loss_shrink_maps: 0.702579, loss_threshold_maps: 0.530942, loss_binary_maps: 0.140025, avg_reader_cost: 0.98516 s, avg_batch_cost: 1.15851 s, avg_samples: 9.6, ips: 8.28654 samples/s, eta: 3:46:24
[2024/07/28 01:22:42] ppocr INFO: epoch: [757/1500], global_step: 2271, lr: 0.001000, loss: 1.372606, loss_shrink_maps: 0.702423, loss_threshold_maps: 0.526895, loss_binary_maps: 0.139971, avg_reader_cost: 0.62497 s, avg_batch_cost: 0.67977 s, avg_samples: 2.9, ips: 4.26614 samples/s, eta: 3:46:19
[2024/07/28 01:22:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:22:50] ppocr INFO: epoch: [758/1500], global_step: 2274, lr: 0.001000, loss: 1.338786, loss_shrink_maps: 0.690000, loss_threshold_maps: 0.523738, loss_binary_maps: 0.137124, avg_reader_cost: 1.49916 s, avg_batch_cost: 1.73093 s, avg_samples: 12.5, ips: 7.22153 samples/s, eta: 3:46:00
[2024/07/28 01:22:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:22:59] ppocr INFO: epoch: [759/1500], global_step: 2277, lr: 0.001000, loss: 1.311444, loss_shrink_maps: 0.674221, loss_threshold_maps: 0.520939, loss_binary_maps: 0.134243, avg_reader_cost: 1.50866 s, avg_batch_cost: 1.74667 s, avg_samples: 12.5, ips: 7.15646 samples/s, eta: 3:45:41
[2024/07/28 01:23:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:23:08] ppocr INFO: epoch: [760/1500], global_step: 2280, lr: 0.001000, loss: 1.350977, loss_shrink_maps: 0.689000, loss_threshold_maps: 0.520939, loss_binary_maps: 0.137639, avg_reader_cost: 1.56429 s, avg_batch_cost: 1.81137 s, avg_samples: 12.5, ips: 6.90085 samples/s, eta: 3:45:22

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<01:02,  7.98it/s]
eval model::   1%|          | 4/500 [00:00<00:31, 15.98it/s]
eval model::   1%|          | 6/500 [00:00<00:28, 17.11it/s]
eval model::   2%|▏         | 8/500 [00:00<00:28, 17.36it/s]
eval model::   2%|▏         | 11/500 [00:00<00:26, 18.35it/s]
eval model::   3%|▎         | 14/500 [00:00<00:24, 19.85it/s]
eval model::   4%|▎         | 18/500 [00:00<00:20, 23.08it/s]
eval model::   4%|▍         | 21/500 [00:01<00:24, 19.94it/s]
eval model::   5%|▍         | 24/500 [00:01<00:24, 19.20it/s]
eval model::   5%|▌         | 26/500 [00:01<00:27, 17.25it/s]
eval model::   6%|▌         | 28/500 [00:01<00:27, 17.35it/s]
eval model::   6%|▌         | 31/500 [00:01<00:25, 18.25it/s]
eval model::   7%|▋         | 34/500 [00:01<00:25, 18.26it/s]
eval model::   7%|▋         | 37/500 [00:01<00:23, 19.86it/s]
eval model::   8%|▊         | 40/500 [00:02<00:26, 17.15it/s]
eval model::   8%|▊         | 42/500 [00:02<00:29, 15.68it/s]
eval model::   9%|▉         | 45/500 [00:02<00:25, 18.00it/s]
eval model::   9%|▉         | 47/500 [00:02<00:28, 15.85it/s]
eval model::  10%|▉         | 49/500 [00:02<00:27, 16.53it/s]
eval model::  10%|█         | 51/500 [00:02<00:27, 16.06it/s]
eval model::  11%|█         | 53/500 [00:03<00:26, 16.90it/s]
eval model::  11%|█         | 56/500 [00:03<00:24, 18.36it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:24, 18.14it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:27, 16.01it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:29, 15.03it/s]
eval model::  13%|█▎        | 65/500 [00:03<00:27, 16.05it/s]
eval model::  14%|█▎        | 68/500 [00:03<00:23, 18.30it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:23, 18.37it/s]
eval model::  15%|█▍        | 73/500 [00:04<00:22, 19.17it/s]
eval model::  15%|█▌        | 76/500 [00:04<00:20, 20.28it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:21, 19.95it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:20, 20.81it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:19, 21.35it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:20, 19.68it/s]
eval model::  18%|█▊        | 91/500 [00:05<00:22, 17.84it/s]
eval model::  19%|█▊        | 93/500 [00:05<00:22, 17.91it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:20, 19.58it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:19, 20.72it/s]
eval model::  20%|██        | 102/500 [00:05<00:21, 18.85it/s]
eval model::  21%|██        | 105/500 [00:05<00:19, 20.68it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:18, 21.06it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:18, 21.01it/s]
eval model::  23%|██▎       | 114/500 [00:06<00:17, 21.67it/s]
eval model::  23%|██▎       | 117/500 [00:06<00:18, 20.55it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:19, 19.80it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:17, 21.34it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:21, 17.39it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:20, 18.41it/s]
eval model::  26%|██▌       | 131/500 [00:07<00:20, 18.08it/s]
eval model::  27%|██▋       | 133/500 [00:07<00:20, 17.77it/s]
eval model::  27%|██▋       | 136/500 [00:07<00:19, 19.06it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:18, 19.43it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:17, 20.27it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:17, 20.06it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:18, 19.00it/s]
eval model::  30%|███       | 151/500 [00:08<00:19, 18.01it/s]
eval model::  31%|███       | 154/500 [00:08<00:17, 20.20it/s]
eval model::  32%|███▏      | 158/500 [00:08<00:15, 22.75it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:21, 15.60it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:21, 15.95it/s]
eval model::  33%|███▎      | 165/500 [00:08<00:21, 15.78it/s]
eval model::  34%|███▎      | 168/500 [00:09<00:19, 17.17it/s]
eval model::  34%|███▍      | 171/500 [00:09<00:18, 17.90it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:20, 15.97it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:20, 15.52it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:18, 17.13it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:20, 15.45it/s]
eval model::  37%|███▋      | 183/500 [00:10<00:19, 16.31it/s]
eval model::  37%|███▋      | 186/500 [00:10<00:17, 18.43it/s]
eval model::  38%|███▊      | 189/500 [00:10<00:15, 19.67it/s]
eval model::  38%|███▊      | 192/500 [00:10<00:16, 18.91it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:16, 18.91it/s]
eval model::  39%|███▉      | 197/500 [00:10<00:16, 18.78it/s]
eval model::  40%|████      | 200/500 [00:10<00:15, 19.87it/s]
eval model::  41%|████      | 203/500 [00:11<00:15, 19.23it/s]
eval model::  41%|████      | 205/500 [00:11<00:21, 13.82it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:19, 15.16it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:19, 14.79it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.80it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:20, 14.02it/s]
eval model::  43%|████▎     | 217/500 [00:12<00:22, 12.81it/s]
eval model::  44%|████▍     | 219/500 [00:12<00:20, 13.61it/s]
eval model::  44%|████▍     | 221/500 [00:12<00:22, 12.57it/s]
eval model::  45%|████▍     | 224/500 [00:12<00:18, 15.27it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:17, 15.92it/s]
eval model::  46%|████▌     | 229/500 [00:12<00:14, 18.87it/s]
eval model::  46%|████▋     | 232/500 [00:12<00:12, 21.53it/s]
eval model::  47%|████▋     | 235/500 [00:13<00:12, 20.63it/s]
eval model::  48%|████▊     | 238/500 [00:13<00:12, 21.83it/s]
eval model::  48%|████▊     | 241/500 [00:13<00:13, 19.63it/s]
eval model::  49%|████▉     | 244/500 [00:13<00:15, 16.93it/s]
eval model::  49%|████▉     | 247/500 [00:13<00:14, 17.77it/s]
eval model::  50%|████▉     | 249/500 [00:13<00:14, 17.38it/s]
eval model::  50%|█████     | 252/500 [00:14<00:13, 18.30it/s]
eval model::  51%|█████     | 255/500 [00:14<00:12, 19.43it/s]
eval model::  52%|█████▏    | 258/500 [00:14<00:11, 20.31it/s]
eval model::  52%|█████▏    | 261/500 [00:14<00:11, 21.04it/s]
eval model::  53%|█████▎    | 264/500 [00:14<00:11, 21.08it/s]
eval model::  53%|█████▎    | 267/500 [00:14<00:10, 21.22it/s]
eval model::  54%|█████▍    | 270/500 [00:14<00:11, 20.77it/s]
eval model::  55%|█████▍    | 273/500 [00:15<00:11, 20.23it/s]
eval model::  55%|█████▌    | 276/500 [00:15<00:11, 19.12it/s]
eval model::  56%|█████▌    | 279/500 [00:15<00:10, 21.36it/s]
eval model::  56%|█████▋    | 282/500 [00:15<00:09, 21.81it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:16, 12.96it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:15, 13.92it/s]
eval model::  58%|█████▊    | 290/500 [00:16<00:12, 16.81it/s]
eval model::  59%|█████▊    | 293/500 [00:16<00:11, 17.80it/s]
eval model::  59%|█████▉    | 296/500 [00:16<00:13, 14.99it/s]
eval model::  60%|██████    | 300/500 [00:16<00:11, 17.21it/s]
eval model::  61%|██████    | 303/500 [00:16<00:10, 18.80it/s]
eval model::  61%|██████    | 306/500 [00:16<00:09, 19.45it/s]
eval model::  62%|██████▏   | 309/500 [00:17<00:09, 19.78it/s]
eval model::  62%|██████▏   | 312/500 [00:17<00:09, 19.07it/s]
eval model::  63%|██████▎   | 314/500 [00:17<00:10, 18.53it/s]
eval model::  63%|██████▎   | 316/500 [00:17<00:10, 17.51it/s]
eval model::  64%|██████▍   | 319/500 [00:17<00:09, 19.03it/s]
eval model::  64%|██████▍   | 321/500 [00:17<00:10, 17.62it/s]
eval model::  65%|██████▍   | 323/500 [00:17<00:09, 17.95it/s]
eval model::  65%|██████▌   | 326/500 [00:18<00:08, 19.90it/s]
eval model::  66%|██████▌   | 329/500 [00:18<00:08, 20.49it/s]
eval model::  67%|██████▋   | 333/500 [00:18<00:07, 22.92it/s]
eval model::  67%|██████▋   | 336/500 [00:18<00:07, 22.91it/s]
eval model::  68%|██████▊   | 339/500 [00:18<00:08, 19.75it/s]
eval model::  68%|██████▊   | 342/500 [00:18<00:10, 15.70it/s]
eval model::  69%|██████▉   | 346/500 [00:19<00:08, 18.86it/s]
eval model::  70%|██████▉   | 349/500 [00:19<00:07, 20.09it/s]
eval model::  70%|███████   | 352/500 [00:19<00:07, 20.65it/s]
eval model::  71%|███████   | 355/500 [00:19<00:06, 20.81it/s]
eval model::  72%|███████▏  | 358/500 [00:19<00:06, 20.58it/s]
eval model::  72%|███████▏  | 361/500 [00:19<00:07, 18.34it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:07, 18.25it/s]
eval model::  73%|███████▎  | 366/500 [00:20<00:07, 18.01it/s]
eval model::  74%|███████▍  | 369/500 [00:20<00:06, 19.51it/s]
eval model::  74%|███████▍  | 371/500 [00:20<00:06, 18.96it/s]
eval model::  75%|███████▍  | 374/500 [00:20<00:06, 20.14it/s]
eval model::  76%|███████▌  | 378/500 [00:20<00:05, 23.32it/s]
eval model::  76%|███████▌  | 381/500 [00:20<00:05, 22.38it/s]
eval model::  77%|███████▋  | 385/500 [00:20<00:04, 24.73it/s]
eval model::  78%|███████▊  | 388/500 [00:21<00:09, 12.12it/s]
eval model::  78%|███████▊  | 391/500 [00:21<00:07, 13.79it/s]
eval model::  79%|███████▊  | 393/500 [00:21<00:07, 14.50it/s]
eval model::  79%|███████▉  | 395/500 [00:21<00:07, 14.58it/s]
eval model::  80%|███████▉  | 398/500 [00:21<00:06, 16.80it/s]
eval model::  80%|████████  | 400/500 [00:22<00:06, 15.94it/s]
eval model::  81%|████████  | 403/500 [00:22<00:05, 17.78it/s]
eval model::  81%|████████  | 405/500 [00:22<00:05, 18.13it/s]
eval model::  82%|████████▏ | 408/500 [00:22<00:04, 20.59it/s]
eval model::  82%|████████▏ | 411/500 [00:22<00:04, 22.18it/s]
eval model::  83%|████████▎ | 414/500 [00:22<00:03, 22.84it/s]
eval model::  83%|████████▎ | 417/500 [00:22<00:03, 21.46it/s]
eval model::  84%|████████▍ | 420/500 [00:23<00:05, 14.69it/s]
eval model::  84%|████████▍ | 422/500 [00:23<00:04, 15.61it/s]
eval model::  85%|████████▍ | 424/500 [00:23<00:04, 15.70it/s]
eval model::  85%|████████▌ | 426/500 [00:23<00:04, 15.76it/s]
eval model::  86%|████████▌ | 429/500 [00:23<00:03, 18.34it/s]
eval model::  86%|████████▌ | 431/500 [00:23<00:04, 16.15it/s]
eval model::  87%|████████▋ | 434/500 [00:23<00:03, 18.63it/s]
eval model::  87%|████████▋ | 437/500 [00:24<00:03, 19.09it/s]
eval model::  88%|████████▊ | 440/500 [00:24<00:03, 18.39it/s]
eval model::  89%|████████▉ | 444/500 [00:24<00:02, 21.35it/s]
eval model::  89%|████████▉ | 447/500 [00:24<00:02, 22.30it/s]
eval model::  90%|█████████ | 450/500 [00:24<00:02, 19.47it/s]
eval model::  91%|█████████ | 453/500 [00:24<00:02, 19.78it/s]
eval model::  91%|█████████ | 456/500 [00:25<00:02, 20.47it/s]
eval model::  92%|█████████▏| 459/500 [00:25<00:01, 21.28it/s]
eval model::  92%|█████████▏| 462/500 [00:25<00:02, 17.62it/s]
eval model::  93%|█████████▎| 464/500 [00:25<00:02, 17.48it/s]
eval model::  93%|█████████▎| 466/500 [00:25<00:02, 16.70it/s]
eval model::  94%|█████████▎| 468/500 [00:25<00:01, 16.80it/s]
eval model::  94%|█████████▍| 472/500 [00:25<00:01, 20.60it/s]
eval model::  95%|█████████▌| 475/500 [00:26<00:01, 20.71it/s]
eval model::  96%|█████████▌| 478/500 [00:26<00:00, 22.54it/s]
eval model::  96%|█████████▌| 481/500 [00:26<00:00, 23.32it/s]
eval model::  97%|█████████▋| 484/500 [00:26<00:00, 23.40it/s]
eval model::  97%|█████████▋| 487/500 [00:26<00:00, 20.84it/s]
eval model::  98%|█████████▊| 490/500 [00:26<00:00, 22.44it/s]
eval model::  99%|█████████▊| 493/500 [00:26<00:00, 19.26it/s]
eval model::  99%|█████████▉| 496/500 [00:27<00:00, 19.13it/s]
eval model:: 100%|██████████| 500/500 [00:27<00:00, 22.71it/s]
eval model:: 100%|██████████| 500/500 [00:27<00:00, 18.42it/s]
[2024/07/28 01:23:35] ppocr INFO: cur metric, precision: 0.6941529235382309, recall: 0.6687530091478093, hmean: 0.6812162824914173, fps: 44.723747021325366
[2024/07/28 01:23:35] ppocr INFO: best metric, hmean: 0.7048391183177097, precision: 0.7438502673796792, recall: 0.6697159364467983, fps: 46.08540547152116, best_epoch: 580
[2024/07/28 01:23:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:23:43] ppocr INFO: epoch: [761/1500], global_step: 2283, lr: 0.001000, loss: 1.350977, loss_shrink_maps: 0.689000, loss_threshold_maps: 0.521428, loss_binary_maps: 0.137639, avg_reader_cost: 1.65761 s, avg_batch_cost: 1.93483 s, avg_samples: 12.5, ips: 6.46052 samples/s, eta: 3:45:05
[2024/07/28 01:23:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:23:51] ppocr INFO: epoch: [762/1500], global_step: 2286, lr: 0.001000, loss: 1.284797, loss_shrink_maps: 0.654264, loss_threshold_maps: 0.506196, loss_binary_maps: 0.130584, avg_reader_cost: 1.54396 s, avg_batch_cost: 1.78885 s, avg_samples: 12.5, ips: 6.98774 samples/s, eta: 3:44:46
[2024/07/28 01:23:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:24:00] ppocr INFO: epoch: [763/1500], global_step: 2289, lr: 0.001000, loss: 1.297123, loss_shrink_maps: 0.661491, loss_threshold_maps: 0.510863, loss_binary_maps: 0.131932, avg_reader_cost: 1.53983 s, avg_batch_cost: 1.76838 s, avg_samples: 12.5, ips: 7.06862 samples/s, eta: 3:44:28
[2024/07/28 01:24:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:24:08] ppocr INFO: epoch: [764/1500], global_step: 2290, lr: 0.001000, loss: 1.304189, loss_shrink_maps: 0.662497, loss_threshold_maps: 0.510863, loss_binary_maps: 0.132215, avg_reader_cost: 0.44322 s, avg_batch_cost: 0.53917 s, avg_samples: 4.8, ips: 8.90258 samples/s, eta: 3:44:21
[2024/07/28 01:24:09] ppocr INFO: epoch: [764/1500], global_step: 2292, lr: 0.001000, loss: 1.307470, loss_shrink_maps: 0.664749, loss_threshold_maps: 0.512504, loss_binary_maps: 0.132658, avg_reader_cost: 1.16973 s, avg_batch_cost: 1.31552 s, avg_samples: 7.7, ips: 5.85319 samples/s, eta: 3:44:10
[2024/07/28 01:24:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:24:18] ppocr INFO: epoch: [765/1500], global_step: 2295, lr: 0.001000, loss: 1.322806, loss_shrink_maps: 0.680157, loss_threshold_maps: 0.516030, loss_binary_maps: 0.135161, avg_reader_cost: 1.54507 s, avg_batch_cost: 1.78831 s, avg_samples: 12.5, ips: 6.98983 samples/s, eta: 3:43:51
[2024/07/28 01:24:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:24:26] ppocr INFO: epoch: [766/1500], global_step: 2298, lr: 0.001000, loss: 1.325932, loss_shrink_maps: 0.688604, loss_threshold_maps: 0.516030, loss_binary_maps: 0.136594, avg_reader_cost: 1.52147 s, avg_batch_cost: 1.74974 s, avg_samples: 12.5, ips: 7.14392 samples/s, eta: 3:43:32
[2024/07/28 01:24:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:24:35] ppocr INFO: epoch: [767/1500], global_step: 2300, lr: 0.001000, loss: 1.314011, loss_shrink_maps: 0.674821, loss_threshold_maps: 0.516030, loss_binary_maps: 0.134360, avg_reader_cost: 0.91683 s, avg_batch_cost: 1.10733 s, avg_samples: 9.6, ips: 8.66951 samples/s, eta: 3:43:19
[2024/07/28 01:24:35] ppocr INFO: epoch: [767/1500], global_step: 2301, lr: 0.001000, loss: 1.314011, loss_shrink_maps: 0.674821, loss_threshold_maps: 0.517672, loss_binary_maps: 0.134360, avg_reader_cost: 0.59938 s, avg_batch_cost: 0.65418 s, avg_samples: 2.9, ips: 4.43301 samples/s, eta: 3:43:13
[2024/07/28 01:24:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:24:44] ppocr INFO: epoch: [768/1500], global_step: 2304, lr: 0.001000, loss: 1.325932, loss_shrink_maps: 0.688604, loss_threshold_maps: 0.522081, loss_binary_maps: 0.136594, avg_reader_cost: 1.53969 s, avg_batch_cost: 1.76826 s, avg_samples: 12.5, ips: 7.06910 samples/s, eta: 3:42:54
[2024/07/28 01:24:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:24:53] ppocr INFO: epoch: [769/1500], global_step: 2307, lr: 0.001000, loss: 1.347787, loss_shrink_maps: 0.696753, loss_threshold_maps: 0.523625, loss_binary_maps: 0.138379, avg_reader_cost: 1.56994 s, avg_batch_cost: 1.79786 s, avg_samples: 12.5, ips: 6.95271 samples/s, eta: 3:42:36
[2024/07/28 01:24:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:25:02] ppocr INFO: epoch: [770/1500], global_step: 2310, lr: 0.001000, loss: 1.332904, loss_shrink_maps: 0.681504, loss_threshold_maps: 0.523625, loss_binary_maps: 0.135160, avg_reader_cost: 1.56184 s, avg_batch_cost: 1.82364 s, avg_samples: 12.5, ips: 6.85441 samples/s, eta: 3:42:17
[2024/07/28 01:25:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:25:10] ppocr INFO: epoch: [771/1500], global_step: 2313, lr: 0.001000, loss: 1.332904, loss_shrink_maps: 0.690110, loss_threshold_maps: 0.522081, loss_binary_maps: 0.137514, avg_reader_cost: 1.51901 s, avg_batch_cost: 1.76282 s, avg_samples: 12.5, ips: 7.09093 samples/s, eta: 3:41:58
[2024/07/28 01:25:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:25:19] ppocr INFO: epoch: [772/1500], global_step: 2316, lr: 0.001000, loss: 1.316813, loss_shrink_maps: 0.673518, loss_threshold_maps: 0.516730, loss_binary_maps: 0.133718, avg_reader_cost: 1.53301 s, avg_batch_cost: 1.77357 s, avg_samples: 12.5, ips: 7.04793 samples/s, eta: 3:41:40
[2024/07/28 01:25:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:25:28] ppocr INFO: epoch: [773/1500], global_step: 2319, lr: 0.001000, loss: 1.314028, loss_shrink_maps: 0.665285, loss_threshold_maps: 0.522500, loss_binary_maps: 0.132351, avg_reader_cost: 1.53649 s, avg_batch_cost: 1.77350 s, avg_samples: 12.5, ips: 7.04819 samples/s, eta: 3:41:21
[2024/07/28 01:25:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:25:35] ppocr INFO: epoch: [774/1500], global_step: 2320, lr: 0.001000, loss: 1.318998, loss_shrink_maps: 0.673518, loss_threshold_maps: 0.519634, loss_binary_maps: 0.133718, avg_reader_cost: 0.45218 s, avg_batch_cost: 0.53499 s, avg_samples: 4.8, ips: 8.97209 samples/s, eta: 3:41:14
[2024/07/28 01:25:37] ppocr INFO: epoch: [774/1500], global_step: 2322, lr: 0.001000, loss: 1.318998, loss_shrink_maps: 0.673518, loss_threshold_maps: 0.514282, loss_binary_maps: 0.133718, avg_reader_cost: 1.16192 s, avg_batch_cost: 1.30825 s, avg_samples: 7.7, ips: 5.88573 samples/s, eta: 3:41:03
[2024/07/28 01:25:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:25:45] ppocr INFO: epoch: [775/1500], global_step: 2325, lr: 0.001000, loss: 1.327712, loss_shrink_maps: 0.684715, loss_threshold_maps: 0.514282, loss_binary_maps: 0.135740, avg_reader_cost: 1.50766 s, avg_batch_cost: 1.77246 s, avg_samples: 12.5, ips: 7.05236 samples/s, eta: 3:40:44
[2024/07/28 01:25:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:25:54] ppocr INFO: epoch: [776/1500], global_step: 2328, lr: 0.001000, loss: 1.327712, loss_shrink_maps: 0.693320, loss_threshold_maps: 0.514282, loss_binary_maps: 0.138094, avg_reader_cost: 1.59233 s, avg_batch_cost: 1.86439 s, avg_samples: 12.5, ips: 6.70461 samples/s, eta: 3:40:26
[2024/07/28 01:25:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:26:03] ppocr INFO: epoch: [777/1500], global_step: 2330, lr: 0.001000, loss: 1.354162, loss_shrink_maps: 0.698783, loss_threshold_maps: 0.519889, loss_binary_maps: 0.139692, avg_reader_cost: 0.94722 s, avg_batch_cost: 1.17063 s, avg_samples: 9.6, ips: 8.20072 samples/s, eta: 3:40:13
[2024/07/28 01:26:03] ppocr INFO: epoch: [777/1500], global_step: 2331, lr: 0.001000, loss: 1.354162, loss_shrink_maps: 0.695153, loss_threshold_maps: 0.519889, loss_binary_maps: 0.138550, avg_reader_cost: 0.63082 s, avg_batch_cost: 0.68613 s, avg_samples: 2.9, ips: 4.22660 samples/s, eta: 3:40:08
[2024/07/28 01:26:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:26:12] ppocr INFO: epoch: [778/1500], global_step: 2334, lr: 0.001000, loss: 1.354162, loss_shrink_maps: 0.695153, loss_threshold_maps: 0.523789, loss_binary_maps: 0.138550, avg_reader_cost: 1.62540 s, avg_batch_cost: 1.89015 s, avg_samples: 12.5, ips: 6.61325 samples/s, eta: 3:39:50
[2024/07/28 01:26:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:26:21] ppocr INFO: epoch: [779/1500], global_step: 2337, lr: 0.001000, loss: 1.373259, loss_shrink_maps: 0.701454, loss_threshold_maps: 0.523789, loss_binary_maps: 0.140056, avg_reader_cost: 1.55031 s, avg_batch_cost: 1.77902 s, avg_samples: 12.5, ips: 7.02634 samples/s, eta: 3:39:32
[2024/07/28 01:26:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:26:30] ppocr INFO: epoch: [780/1500], global_step: 2340, lr: 0.001000, loss: 1.373259, loss_shrink_maps: 0.701454, loss_threshold_maps: 0.526061, loss_binary_maps: 0.140056, avg_reader_cost: 1.58431 s, avg_batch_cost: 1.81885 s, avg_samples: 12.5, ips: 6.87247 samples/s, eta: 3:39:13

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:50,  9.90it/s]
eval model::   1%|          | 4/500 [00:00<00:26, 18.74it/s]
eval model::   1%|▏         | 7/500 [00:00<00:22, 21.65it/s]
eval model::   2%|▏         | 10/500 [00:00<00:28, 17.48it/s]
eval model::   2%|▏         | 12/500 [00:00<00:28, 16.94it/s]
eval model::   3%|▎         | 14/500 [00:00<00:28, 17.10it/s]
eval model::   3%|▎         | 17/500 [00:00<00:24, 19.55it/s]
eval model::   4%|▍         | 20/500 [00:01<00:24, 19.91it/s]
eval model::   5%|▍         | 23/500 [00:01<00:21, 21.73it/s]
eval model::   5%|▌         | 26/500 [00:01<00:21, 22.56it/s]
eval model::   6%|▌         | 29/500 [00:01<00:21, 21.89it/s]
eval model::   6%|▋         | 32/500 [00:01<00:24, 18.97it/s]
eval model::   7%|▋         | 34/500 [00:01<00:25, 18.01it/s]
eval model::   7%|▋         | 37/500 [00:01<00:23, 19.63it/s]
eval model::   8%|▊         | 40/500 [00:02<00:24, 18.53it/s]
eval model::   8%|▊         | 42/500 [00:02<00:25, 17.83it/s]
eval model::   9%|▉         | 45/500 [00:02<00:23, 19.22it/s]
eval model::   9%|▉         | 47/500 [00:02<00:26, 16.99it/s]
eval model::  10%|█         | 50/500 [00:02<00:25, 17.80it/s]
eval model::  10%|█         | 52/500 [00:02<00:25, 17.83it/s]
eval model::  11%|█         | 55/500 [00:02<00:22, 20.04it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:24, 18.23it/s]
eval model::  12%|█▏        | 60/500 [00:03<00:24, 18.01it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:30, 14.28it/s]
eval model::  13%|█▎        | 64/500 [00:03<00:28, 15.25it/s]
eval model::  14%|█▎        | 68/500 [00:03<00:21, 19.69it/s]
eval model::  14%|█▍        | 71/500 [00:03<00:20, 20.88it/s]
eval model::  15%|█▍        | 74/500 [00:03<00:21, 20.04it/s]
eval model::  15%|█▌        | 77/500 [00:04<00:21, 19.73it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:19, 22.02it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:18, 22.57it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:19, 21.49it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:22, 18.38it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:20, 19.45it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:21, 19.14it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:19, 20.25it/s]
eval model::  20%|██        | 102/500 [00:05<00:21, 18.34it/s]
eval model::  21%|██        | 105/500 [00:05<00:19, 20.37it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:18, 21.14it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:18, 21.26it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:16, 22.79it/s]
eval model::  23%|██▎       | 117/500 [00:06<00:17, 21.89it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:18, 20.37it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:17, 21.53it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:20, 18.07it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:19, 19.45it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:22, 16.56it/s]
eval model::  27%|██▋       | 136/500 [00:07<00:18, 19.99it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:17, 20.14it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:17, 21.03it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:17, 20.77it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:18, 18.72it/s]
eval model::  30%|███       | 151/500 [00:07<00:20, 16.77it/s]
eval model::  31%|███       | 154/500 [00:07<00:18, 18.79it/s]
eval model::  31%|███▏      | 157/500 [00:08<00:17, 19.97it/s]
eval model::  32%|███▏      | 160/500 [00:08<00:26, 13.06it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:23, 14.54it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:20, 16.55it/s]
eval model::  34%|███▎      | 168/500 [00:08<00:19, 16.79it/s]
eval model::  34%|███▍      | 171/500 [00:09<00:19, 16.53it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:21, 15.02it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:21, 15.05it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:18, 17.76it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:20, 15.55it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:17, 17.66it/s]
eval model::  37%|███▋      | 187/500 [00:10<00:17, 18.38it/s]
eval model::  38%|███▊      | 190/500 [00:10<00:16, 18.40it/s]
eval model::  39%|███▊      | 193/500 [00:10<00:15, 19.55it/s]
eval model::  39%|███▉      | 196/500 [00:10<00:17, 17.78it/s]
eval model::  40%|███▉      | 199/500 [00:10<00:16, 18.56it/s]
eval model::  40%|████      | 201/500 [00:10<00:16, 18.11it/s]
eval model::  41%|████      | 204/500 [00:10<00:14, 20.31it/s]
eval model::  41%|████▏     | 207/500 [00:11<00:22, 13.26it/s]
eval model::  42%|████▏     | 209/500 [00:11<00:22, 13.16it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:23, 12.35it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:22, 12.99it/s]
eval model::  43%|████▎     | 215/500 [00:12<00:25, 11.19it/s]
eval model::  43%|████▎     | 217/500 [00:12<00:28,  9.98it/s]
eval model::  44%|████▍     | 220/500 [00:12<00:22, 12.60it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:23, 11.73it/s]
eval model::  45%|████▌     | 225/500 [00:12<00:18, 14.52it/s]
eval model::  45%|████▌     | 227/500 [00:12<00:18, 14.69it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:15, 17.65it/s]
eval model::  47%|████▋     | 233/500 [00:13<00:14, 18.72it/s]
eval model::  47%|████▋     | 236/500 [00:13<00:14, 17.94it/s]
eval model::  48%|████▊     | 239/500 [00:13<00:13, 19.96it/s]
eval model::  48%|████▊     | 242/500 [00:13<00:13, 18.47it/s]
eval model::  49%|████▉     | 245/500 [00:13<00:12, 19.68it/s]
eval model::  50%|████▉     | 248/500 [00:13<00:11, 21.18it/s]
eval model::  50%|█████     | 251/500 [00:14<00:13, 18.27it/s]
eval model::  51%|█████     | 254/500 [00:14<00:12, 19.87it/s]
eval model::  51%|█████▏    | 257/500 [00:14<00:12, 20.20it/s]
eval model::  52%|█████▏    | 261/500 [00:14<00:10, 22.86it/s]
eval model::  53%|█████▎    | 264/500 [00:14<00:10, 23.23it/s]
eval model::  53%|█████▎    | 267/500 [00:14<00:10, 21.49it/s]
eval model::  54%|█████▍    | 270/500 [00:14<00:10, 21.13it/s]
eval model::  55%|█████▍    | 273/500 [00:15<00:11, 20.22it/s]
eval model::  55%|█████▌    | 276/500 [00:15<00:11, 19.18it/s]
eval model::  56%|█████▌    | 279/500 [00:15<00:11, 20.05it/s]
eval model::  56%|█████▋    | 282/500 [00:15<00:10, 21.13it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:17, 12.10it/s]
eval model::  58%|█████▊    | 288/500 [00:16<00:14, 14.25it/s]
eval model::  58%|█████▊    | 291/500 [00:16<00:12, 16.78it/s]
eval model::  59%|█████▉    | 294/500 [00:16<00:13, 15.28it/s]
eval model::  59%|█████▉    | 296/500 [00:16<00:14, 13.69it/s]
eval model::  60%|█████▉    | 299/500 [00:16<00:12, 15.54it/s]
eval model::  60%|██████    | 301/500 [00:16<00:14, 14.10it/s]
eval model::  61%|██████    | 304/500 [00:17<00:12, 15.71it/s]
eval model::  61%|██████▏   | 307/500 [00:17<00:11, 17.35it/s]
eval model::  62%|██████▏   | 310/500 [00:17<00:10, 18.81it/s]
eval model::  63%|██████▎   | 313/500 [00:17<00:09, 19.55it/s]
eval model::  63%|██████▎   | 316/500 [00:17<00:10, 18.39it/s]
eval model::  64%|██████▍   | 319/500 [00:17<00:09, 19.58it/s]
eval model::  64%|██████▍   | 322/500 [00:18<00:10, 17.34it/s]
eval model::  65%|██████▌   | 325/500 [00:18<00:09, 18.82it/s]
eval model::  66%|██████▌   | 328/500 [00:18<00:08, 19.74it/s]
eval model::  66%|██████▌   | 331/500 [00:18<00:08, 19.05it/s]
eval model::  67%|██████▋   | 334/500 [00:18<00:08, 20.30it/s]
eval model::  67%|██████▋   | 337/500 [00:18<00:08, 19.91it/s]
eval model::  68%|██████▊   | 340/500 [00:19<00:10, 15.61it/s]
eval model::  69%|██████▊   | 343/500 [00:19<00:08, 17.66it/s]
eval model::  69%|██████▉   | 346/500 [00:19<00:07, 20.13it/s]
eval model::  70%|██████▉   | 349/500 [00:19<00:06, 22.06it/s]
eval model::  70%|███████   | 352/500 [00:19<00:07, 21.01it/s]
eval model::  71%|███████   | 355/500 [00:19<00:07, 20.10it/s]
eval model::  72%|███████▏  | 358/500 [00:19<00:07, 20.22it/s]
eval model::  72%|███████▏  | 361/500 [00:20<00:08, 16.84it/s]
eval model::  73%|███████▎  | 364/500 [00:20<00:08, 16.61it/s]
eval model::  73%|███████▎  | 366/500 [00:20<00:08, 14.94it/s]
eval model::  74%|███████▎  | 368/500 [00:20<00:08, 15.82it/s]
eval model::  74%|███████▍  | 371/500 [00:20<00:07, 17.68it/s]
eval model::  75%|███████▍  | 374/500 [00:20<00:06, 19.50it/s]
eval model::  75%|███████▌  | 377/500 [00:20<00:05, 20.98it/s]
eval model::  76%|███████▌  | 380/500 [00:21<00:05, 20.02it/s]
eval model::  77%|███████▋  | 383/500 [00:21<00:05, 21.19it/s]
eval model::  77%|███████▋  | 386/500 [00:21<00:09, 12.17it/s]
eval model::  78%|███████▊  | 389/500 [00:21<00:07, 14.19it/s]
eval model::  78%|███████▊  | 391/500 [00:21<00:07, 15.01it/s]
eval model::  79%|███████▉  | 394/500 [00:22<00:06, 16.11it/s]
eval model::  79%|███████▉  | 396/500 [00:22<00:06, 16.79it/s]
eval model::  80%|███████▉  | 399/500 [00:22<00:05, 18.91it/s]
eval model::  80%|████████  | 402/500 [00:22<00:05, 17.91it/s]
eval model::  81%|████████  | 405/500 [00:22<00:05, 18.81it/s]
eval model::  82%|████████▏ | 408/500 [00:22<00:04, 19.86it/s]
eval model::  82%|████████▏ | 411/500 [00:22<00:04, 20.54it/s]
eval model::  83%|████████▎ | 414/500 [00:23<00:04, 20.79it/s]
eval model::  83%|████████▎ | 417/500 [00:23<00:04, 20.30it/s]
eval model::  84%|████████▍ | 420/500 [00:23<00:05, 13.71it/s]
eval model::  84%|████████▍ | 422/500 [00:23<00:05, 14.07it/s]
eval model::  85%|████████▍ | 424/500 [00:23<00:05, 13.17it/s]
eval model::  85%|████████▌ | 426/500 [00:24<00:05, 13.87it/s]
eval model::  86%|████████▌ | 429/500 [00:24<00:04, 16.68it/s]
eval model::  86%|████████▌ | 431/500 [00:24<00:04, 15.33it/s]
eval model::  87%|████████▋ | 434/500 [00:24<00:03, 18.20it/s]
eval model::  88%|████████▊ | 438/500 [00:24<00:02, 21.05it/s]
eval model::  88%|████████▊ | 441/500 [00:24<00:03, 18.27it/s]
eval model::  89%|████████▉ | 444/500 [00:24<00:02, 19.13it/s]
eval model::  89%|████████▉ | 447/500 [00:25<00:02, 21.13it/s]
eval model::  90%|█████████ | 450/500 [00:25<00:02, 19.46it/s]
eval model::  91%|█████████ | 453/500 [00:25<00:02, 20.24it/s]
eval model::  91%|█████████ | 456/500 [00:25<00:02, 21.07it/s]
eval model::  92%|█████████▏| 459/500 [00:25<00:01, 22.55it/s]
eval model::  92%|█████████▏| 462/500 [00:25<00:01, 20.12it/s]
eval model::  93%|█████████▎| 465/500 [00:25<00:01, 19.31it/s]
eval model::  94%|█████████▎| 468/500 [00:26<00:01, 20.27it/s]
eval model::  94%|█████████▍| 471/500 [00:26<00:01, 22.04it/s]
eval model::  95%|█████████▍| 474/500 [00:26<00:01, 21.35it/s]
eval model::  95%|█████████▌| 477/500 [00:26<00:01, 22.25it/s]
eval model::  96%|█████████▌| 480/500 [00:26<00:00, 22.93it/s]
eval model::  97%|█████████▋| 483/500 [00:26<00:00, 22.83it/s]
eval model::  97%|█████████▋| 486/500 [00:26<00:00, 20.86it/s]
eval model::  98%|█████████▊| 489/500 [00:27<00:00, 22.30it/s]
eval model::  98%|█████████▊| 492/500 [00:27<00:00, 19.84it/s]
eval model::  99%|█████████▉| 495/500 [00:27<00:00, 19.85it/s]
eval model:: 100%|█████████▉| 499/500 [00:27<00:00, 23.62it/s]
eval model:: 100%|██████████| 500/500 [00:27<00:00, 18.18it/s]
[2024/07/28 01:26:57] ppocr INFO: cur metric, precision: 0.7010710808179162, recall: 0.693307655272027, hmean: 0.6971677559912853, fps: 44.311767166971606
[2024/07/28 01:26:57] ppocr INFO: best metric, hmean: 0.7048391183177097, precision: 0.7438502673796792, recall: 0.6697159364467983, fps: 46.08540547152116, best_epoch: 580
[2024/07/28 01:26:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:27:05] ppocr INFO: epoch: [781/1500], global_step: 2343, lr: 0.001000, loss: 1.377588, loss_shrink_maps: 0.703354, loss_threshold_maps: 0.526061, loss_binary_maps: 0.140180, avg_reader_cost: 1.48035 s, avg_batch_cost: 1.73888 s, avg_samples: 12.5, ips: 7.18854 samples/s, eta: 3:38:54
[2024/07/28 01:27:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:27:14] ppocr INFO: epoch: [782/1500], global_step: 2346, lr: 0.001000, loss: 1.356306, loss_shrink_maps: 0.699977, loss_threshold_maps: 0.522337, loss_binary_maps: 0.139385, avg_reader_cost: 1.66390 s, avg_batch_cost: 1.92139 s, avg_samples: 12.5, ips: 6.50572 samples/s, eta: 3:38:37
[2024/07/28 01:27:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:27:23] ppocr INFO: epoch: [783/1500], global_step: 2349, lr: 0.001000, loss: 1.377588, loss_shrink_maps: 0.703354, loss_threshold_maps: 0.527584, loss_binary_maps: 0.140180, avg_reader_cost: 1.54228 s, avg_batch_cost: 1.77759 s, avg_samples: 12.5, ips: 7.03198 samples/s, eta: 3:38:18
[2024/07/28 01:27:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:27:31] ppocr INFO: epoch: [784/1500], global_step: 2350, lr: 0.001000, loss: 1.356306, loss_shrink_maps: 0.699977, loss_threshold_maps: 0.527584, loss_binary_maps: 0.139385, avg_reader_cost: 0.44165 s, avg_batch_cost: 0.52567 s, avg_samples: 4.8, ips: 9.13118 samples/s, eta: 3:38:11
[2024/07/28 01:27:32] ppocr INFO: epoch: [784/1500], global_step: 2352, lr: 0.001000, loss: 1.372042, loss_shrink_maps: 0.703354, loss_threshold_maps: 0.527584, loss_binary_maps: 0.140180, avg_reader_cost: 1.14269 s, avg_batch_cost: 1.28880 s, avg_samples: 7.7, ips: 5.97454 samples/s, eta: 3:38:00
[2024/07/28 01:27:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:27:41] ppocr INFO: epoch: [785/1500], global_step: 2355, lr: 0.001000, loss: 1.356236, loss_shrink_maps: 0.699977, loss_threshold_maps: 0.525464, loss_binary_maps: 0.139385, avg_reader_cost: 1.61360 s, avg_batch_cost: 1.85823 s, avg_samples: 12.5, ips: 6.72682 samples/s, eta: 3:37:42
[2024/07/28 01:27:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:27:50] ppocr INFO: epoch: [786/1500], global_step: 2358, lr: 0.001000, loss: 1.356236, loss_shrink_maps: 0.702579, loss_threshold_maps: 0.525464, loss_binary_maps: 0.140111, avg_reader_cost: 1.56643 s, avg_batch_cost: 1.80749 s, avg_samples: 12.5, ips: 6.91569 samples/s, eta: 3:37:23
[2024/07/28 01:27:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:27:58] ppocr INFO: epoch: [787/1500], global_step: 2360, lr: 0.001000, loss: 1.369891, loss_shrink_maps: 0.709748, loss_threshold_maps: 0.525464, loss_binary_maps: 0.141491, avg_reader_cost: 0.95543 s, avg_batch_cost: 1.12854 s, avg_samples: 9.6, ips: 8.50658 samples/s, eta: 3:37:10
[2024/07/28 01:27:59] ppocr INFO: epoch: [787/1500], global_step: 2361, lr: 0.001000, loss: 1.354156, loss_shrink_maps: 0.702579, loss_threshold_maps: 0.525464, loss_binary_maps: 0.140111, avg_reader_cost: 0.60989 s, avg_batch_cost: 0.66491 s, avg_samples: 2.9, ips: 4.36150 samples/s, eta: 3:37:05
[2024/07/28 01:28:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:28:08] ppocr INFO: epoch: [788/1500], global_step: 2364, lr: 0.001000, loss: 1.354156, loss_shrink_maps: 0.702579, loss_threshold_maps: 0.518651, loss_binary_maps: 0.140111, avg_reader_cost: 1.64320 s, avg_batch_cost: 1.88490 s, avg_samples: 12.5, ips: 6.63166 samples/s, eta: 3:36:47
[2024/07/28 01:28:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:28:16] ppocr INFO: epoch: [789/1500], global_step: 2367, lr: 0.001000, loss: 1.333153, loss_shrink_maps: 0.671032, loss_threshold_maps: 0.518651, loss_binary_maps: 0.133464, avg_reader_cost: 1.51788 s, avg_batch_cost: 1.75029 s, avg_samples: 12.5, ips: 7.14166 samples/s, eta: 3:36:28
[2024/07/28 01:28:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:28:25] ppocr INFO: epoch: [790/1500], global_step: 2370, lr: 0.001000, loss: 1.308871, loss_shrink_maps: 0.654896, loss_threshold_maps: 0.522931, loss_binary_maps: 0.130595, avg_reader_cost: 1.56459 s, avg_batch_cost: 1.81643 s, avg_samples: 12.5, ips: 6.88162 samples/s, eta: 3:36:10
[2024/07/28 01:28:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:28:34] ppocr INFO: epoch: [791/1500], global_step: 2373, lr: 0.001000, loss: 1.299752, loss_shrink_maps: 0.648664, loss_threshold_maps: 0.511087, loss_binary_maps: 0.129495, avg_reader_cost: 1.53630 s, avg_batch_cost: 1.78020 s, avg_samples: 12.5, ips: 7.02170 samples/s, eta: 3:35:51
[2024/07/28 01:28:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:28:43] ppocr INFO: epoch: [792/1500], global_step: 2376, lr: 0.001000, loss: 1.333153, loss_shrink_maps: 0.660729, loss_threshold_maps: 0.525571, loss_binary_maps: 0.131423, avg_reader_cost: 1.54301 s, avg_batch_cost: 1.77250 s, avg_samples: 12.5, ips: 7.05220 samples/s, eta: 3:35:32
[2024/07/28 01:28:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:28:51] ppocr INFO: epoch: [793/1500], global_step: 2379, lr: 0.001000, loss: 1.333153, loss_shrink_maps: 0.660729, loss_threshold_maps: 0.527903, loss_binary_maps: 0.131423, avg_reader_cost: 1.53903 s, avg_batch_cost: 1.77036 s, avg_samples: 12.5, ips: 7.06072 samples/s, eta: 3:35:14
[2024/07/28 01:28:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:28:59] ppocr INFO: epoch: [794/1500], global_step: 2380, lr: 0.001000, loss: 1.333153, loss_shrink_maps: 0.660729, loss_threshold_maps: 0.527903, loss_binary_maps: 0.131423, avg_reader_cost: 0.46345 s, avg_batch_cost: 0.54567 s, avg_samples: 4.8, ips: 8.79657 samples/s, eta: 3:35:07
[2024/07/28 01:29:01] ppocr INFO: epoch: [794/1500], global_step: 2382, lr: 0.001000, loss: 1.352754, loss_shrink_maps: 0.673358, loss_threshold_maps: 0.528438, loss_binary_maps: 0.134447, avg_reader_cost: 1.18261 s, avg_batch_cost: 1.32831 s, avg_samples: 7.7, ips: 5.79682 samples/s, eta: 3:34:56
[2024/07/28 01:29:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:29:10] ppocr INFO: epoch: [795/1500], global_step: 2385, lr: 0.001000, loss: 1.371121, loss_shrink_maps: 0.693197, loss_threshold_maps: 0.528438, loss_binary_maps: 0.138249, avg_reader_cost: 1.53997 s, avg_batch_cost: 1.80920 s, avg_samples: 12.5, ips: 6.90913 samples/s, eta: 3:34:37
[2024/07/28 01:29:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:29:18] ppocr INFO: epoch: [796/1500], global_step: 2388, lr: 0.001000, loss: 1.391492, loss_shrink_maps: 0.720763, loss_threshold_maps: 0.534625, loss_binary_maps: 0.143051, avg_reader_cost: 1.55425 s, avg_batch_cost: 1.81288 s, avg_samples: 12.5, ips: 6.89509 samples/s, eta: 3:34:19
[2024/07/28 01:29:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:29:27] ppocr INFO: epoch: [797/1500], global_step: 2390, lr: 0.001000, loss: 1.391492, loss_shrink_maps: 0.720763, loss_threshold_maps: 0.534625, loss_binary_maps: 0.143051, avg_reader_cost: 0.94697 s, avg_batch_cost: 1.14027 s, avg_samples: 9.6, ips: 8.41903 samples/s, eta: 3:34:06
[2024/07/28 01:29:27] ppocr INFO: epoch: [797/1500], global_step: 2391, lr: 0.001000, loss: 1.391492, loss_shrink_maps: 0.720763, loss_threshold_maps: 0.534625, loss_binary_maps: 0.143051, avg_reader_cost: 0.61567 s, avg_batch_cost: 0.67099 s, avg_samples: 2.9, ips: 4.32200 samples/s, eta: 3:34:00
[2024/07/28 01:29:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:29:36] ppocr INFO: epoch: [798/1500], global_step: 2394, lr: 0.001000, loss: 1.391492, loss_shrink_maps: 0.733184, loss_threshold_maps: 0.534625, loss_binary_maps: 0.145195, avg_reader_cost: 1.55239 s, avg_batch_cost: 1.78622 s, avg_samples: 12.5, ips: 6.99803 samples/s, eta: 3:33:42
[2024/07/28 01:29:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:29:45] ppocr INFO: epoch: [799/1500], global_step: 2397, lr: 0.001000, loss: 1.355339, loss_shrink_maps: 0.709740, loss_threshold_maps: 0.505836, loss_binary_maps: 0.140967, avg_reader_cost: 1.54508 s, avg_batch_cost: 1.78387 s, avg_samples: 12.5, ips: 7.00724 samples/s, eta: 3:33:23
[2024/07/28 01:29:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:29:54] ppocr INFO: epoch: [800/1500], global_step: 2400, lr: 0.001000, loss: 1.342052, loss_shrink_maps: 0.688344, loss_threshold_maps: 0.503194, loss_binary_maps: 0.137689, avg_reader_cost: 1.56733 s, avg_batch_cost: 1.83983 s, avg_samples: 12.5, ips: 6.79410 samples/s, eta: 3:33:05

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 2/500 [00:00<00:33, 14.76it/s]
eval model::   1%|          | 5/500 [00:00<00:24, 20.08it/s]
eval model::   2%|▏         | 8/500 [00:00<00:27, 17.71it/s]
eval model::   2%|▏         | 11/500 [00:00<00:25, 19.40it/s]
eval model::   3%|▎         | 14/500 [00:00<00:24, 20.14it/s]
eval model::   3%|▎         | 17/500 [00:00<00:21, 22.06it/s]
eval model::   4%|▍         | 20/500 [00:01<00:23, 20.25it/s]
eval model::   5%|▍         | 23/500 [00:01<00:21, 21.72it/s]
eval model::   5%|▌         | 26/500 [00:01<00:23, 20.34it/s]
eval model::   6%|▌         | 29/500 [00:01<00:23, 20.14it/s]
eval model::   6%|▋         | 32/500 [00:01<00:24, 19.43it/s]
eval model::   7%|▋         | 34/500 [00:01<00:24, 18.66it/s]
eval model::   7%|▋         | 37/500 [00:01<00:23, 20.11it/s]
eval model::   8%|▊         | 40/500 [00:02<00:24, 18.50it/s]
eval model::   8%|▊         | 42/500 [00:02<00:26, 17.61it/s]
eval model::   9%|▉         | 45/500 [00:02<00:22, 20.03it/s]
eval model::  10%|▉         | 48/500 [00:02<00:23, 19.43it/s]
eval model::  10%|█         | 51/500 [00:02<00:21, 20.99it/s]
eval model::  11%|█         | 54/500 [00:02<00:20, 21.39it/s]
eval model::  11%|█▏        | 57/500 [00:02<00:20, 21.29it/s]
eval model::  12%|█▏        | 60/500 [00:03<00:22, 19.64it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:30, 14.55it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:23, 18.08it/s]
eval model::  14%|█▍        | 71/500 [00:03<00:20, 20.96it/s]
eval model::  15%|█▍        | 74/500 [00:03<00:20, 20.81it/s]
eval model::  15%|█▌        | 77/500 [00:03<00:19, 21.70it/s]
eval model::  16%|█▌        | 80/500 [00:04<00:19, 21.72it/s]
eval model::  17%|█▋        | 83/500 [00:04<00:18, 22.48it/s]
eval model::  17%|█▋        | 86/500 [00:04<00:19, 20.85it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:22, 18.34it/s]
eval model::  18%|█▊        | 92/500 [00:04<00:21, 18.80it/s]
eval model::  19%|█▉        | 94/500 [00:04<00:21, 19.03it/s]
eval model::  19%|█▉        | 97/500 [00:04<00:20, 19.99it/s]
eval model::  20%|██        | 100/500 [00:05<00:20, 19.05it/s]
eval model::  21%|██        | 104/500 [00:05<00:18, 21.83it/s]
eval model::  21%|██▏       | 107/500 [00:05<00:17, 22.86it/s]
eval model::  22%|██▏       | 110/500 [00:05<00:16, 23.29it/s]
eval model::  23%|██▎       | 113/500 [00:05<00:16, 23.35it/s]
eval model::  23%|██▎       | 116/500 [00:05<00:17, 22.11it/s]
eval model::  24%|██▍       | 119/500 [00:05<00:16, 23.16it/s]
eval model::  24%|██▍       | 122/500 [00:05<00:16, 22.76it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:18, 20.23it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:17, 21.38it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:18, 20.45it/s]
eval model::  27%|██▋       | 134/500 [00:06<00:17, 21.24it/s]
eval model::  27%|██▋       | 137/500 [00:06<00:17, 21.16it/s]
eval model::  28%|██▊       | 140/500 [00:06<00:18, 19.49it/s]
eval model::  29%|██▊       | 143/500 [00:07<00:17, 19.99it/s]
eval model::  29%|██▉       | 146/500 [00:07<00:17, 19.95it/s]
eval model::  30%|██▉       | 149/500 [00:07<00:19, 18.04it/s]
eval model::  30%|███       | 151/500 [00:07<00:20, 17.08it/s]
eval model::  31%|███       | 154/500 [00:07<00:17, 19.54it/s]
eval model::  32%|███▏      | 158/500 [00:07<00:15, 22.40it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:22, 15.25it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:21, 15.85it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:18, 18.45it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:16, 20.03it/s]
eval model::  34%|███▍      | 172/500 [00:08<00:16, 19.86it/s]
eval model::  35%|███▌      | 175/500 [00:08<00:19, 16.48it/s]
eval model::  36%|███▌      | 178/500 [00:09<00:17, 18.00it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:20, 15.54it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:17, 18.00it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:15, 20.32it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:14, 21.63it/s]
eval model::  38%|███▊      | 192/500 [00:09<00:14, 21.88it/s]
eval model::  39%|███▉      | 195/500 [00:09<00:13, 22.02it/s]
eval model::  40%|███▉      | 198/500 [00:09<00:13, 22.09it/s]
eval model::  40%|████      | 201/500 [00:10<00:15, 19.60it/s]
eval model::  41%|████      | 204/500 [00:10<00:13, 21.17it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:20, 14.14it/s]
eval model::  42%|████▏     | 209/500 [00:10<00:20, 14.34it/s]
eval model::  42%|████▏     | 211/500 [00:10<00:20, 13.91it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:19, 14.49it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:20, 13.94it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:20, 13.51it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:17, 16.32it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:20, 13.87it/s]
eval model::  45%|████▌     | 226/500 [00:11<00:15, 17.80it/s]
eval model::  46%|████▌     | 230/500 [00:11<00:12, 21.38it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:12, 21.90it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:12, 21.50it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:11, 22.29it/s]
eval model::  48%|████▊     | 242/500 [00:12<00:13, 18.43it/s]
eval model::  49%|████▉     | 245/500 [00:12<00:12, 19.94it/s]
eval model::  50%|████▉     | 248/500 [00:12<00:12, 20.41it/s]
eval model::  50%|█████     | 251/500 [00:12<00:12, 20.16it/s]
eval model::  51%|█████     | 254/500 [00:13<00:11, 21.68it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:10, 22.47it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:10, 23.28it/s]
eval model::  53%|█████▎    | 263/500 [00:13<00:11, 20.97it/s]
eval model::  53%|█████▎    | 266/500 [00:13<00:12, 19.40it/s]
eval model::  54%|█████▍    | 269/500 [00:13<00:11, 19.65it/s]
eval model::  54%|█████▍    | 272/500 [00:13<00:11, 20.28it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:11, 19.22it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:11, 19.99it/s]
eval model::  56%|█████▌    | 281/500 [00:14<00:10, 21.00it/s]
eval model::  57%|█████▋    | 284/500 [00:14<00:09, 21.74it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:20, 10.38it/s]
eval model::  58%|█████▊    | 290/500 [00:15<00:16, 12.91it/s]
eval model::  59%|█████▊    | 293/500 [00:15<00:14, 14.67it/s]
eval model::  59%|█████▉    | 296/500 [00:15<00:15, 13.11it/s]
eval model::  60%|█████▉    | 299/500 [00:15<00:12, 15.55it/s]
eval model::  60%|██████    | 302/500 [00:16<00:12, 16.08it/s]
eval model::  61%|██████    | 304/500 [00:16<00:11, 16.49it/s]
eval model::  61%|██████▏   | 307/500 [00:16<00:10, 19.04it/s]
eval model::  62%|██████▏   | 310/500 [00:16<00:09, 20.68it/s]
eval model::  63%|██████▎   | 313/500 [00:16<00:08, 21.08it/s]
eval model::  63%|██████▎   | 316/500 [00:16<00:09, 19.37it/s]
eval model::  64%|██████▍   | 319/500 [00:16<00:08, 21.58it/s]
eval model::  64%|██████▍   | 322/500 [00:16<00:08, 20.28it/s]
eval model::  65%|██████▌   | 325/500 [00:17<00:08, 20.12it/s]
eval model::  66%|██████▌   | 328/500 [00:17<00:08, 19.58it/s]
eval model::  66%|██████▌   | 331/500 [00:17<00:09, 18.17it/s]
eval model::  67%|██████▋   | 334/500 [00:17<00:08, 20.29it/s]
eval model::  67%|██████▋   | 337/500 [00:17<00:08, 20.01it/s]
eval model::  68%|██████▊   | 340/500 [00:17<00:10, 15.31it/s]
eval model::  69%|██████▊   | 343/500 [00:18<00:09, 16.96it/s]
eval model::  69%|██████▉   | 346/500 [00:18<00:08, 18.37it/s]
eval model::  70%|██████▉   | 349/500 [00:18<00:07, 20.07it/s]
eval model::  70%|███████   | 352/500 [00:18<00:06, 21.61it/s]
eval model::  71%|███████   | 355/500 [00:18<00:06, 22.05it/s]
eval model::  72%|███████▏  | 358/500 [00:18<00:06, 22.22it/s]
eval model::  72%|███████▏  | 361/500 [00:18<00:07, 18.53it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:07, 17.93it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:07, 18.07it/s]
eval model::  74%|███████▍  | 369/500 [00:19<00:06, 19.52it/s]
eval model::  74%|███████▍  | 372/500 [00:19<00:06, 20.13it/s]
eval model::  75%|███████▌  | 375/500 [00:19<00:05, 21.38it/s]
eval model::  76%|███████▌  | 379/500 [00:19<00:05, 24.07it/s]
eval model::  76%|███████▋  | 382/500 [00:19<00:05, 22.44it/s]
eval model::  77%|███████▋  | 385/500 [00:20<00:05, 21.77it/s]
eval model::  78%|███████▊  | 388/500 [00:20<00:08, 13.38it/s]
eval model::  78%|███████▊  | 391/500 [00:20<00:06, 15.63it/s]
eval model::  79%|███████▉  | 394/500 [00:20<00:06, 16.74it/s]
eval model::  80%|███████▉  | 398/500 [00:20<00:05, 20.37it/s]
eval model::  80%|████████  | 401/500 [00:21<00:05, 19.69it/s]
eval model::  81%|████████  | 404/500 [00:21<00:04, 21.58it/s]
eval model::  81%|████████▏ | 407/500 [00:21<00:04, 22.60it/s]
eval model::  82%|████████▏ | 410/500 [00:21<00:03, 23.57it/s]
eval model::  83%|████████▎ | 413/500 [00:21<00:04, 21.01it/s]
eval model::  83%|████████▎ | 416/500 [00:21<00:04, 19.52it/s]
eval model::  84%|████████▍ | 419/500 [00:21<00:04, 17.10it/s]
eval model::  84%|████████▍ | 421/500 [00:22<00:06, 12.32it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:05, 14.16it/s]
eval model::  85%|████████▌ | 426/500 [00:22<00:05, 14.75it/s]
eval model::  86%|████████▌ | 429/500 [00:22<00:04, 17.63it/s]
eval model::  86%|████████▋ | 432/500 [00:22<00:03, 18.11it/s]
eval model::  87%|████████▋ | 436/500 [00:22<00:02, 21.53it/s]
eval model::  88%|████████▊ | 439/500 [00:23<00:02, 22.72it/s]
eval model::  88%|████████▊ | 442/500 [00:23<00:02, 22.96it/s]
eval model::  89%|████████▉ | 446/500 [00:23<00:02, 24.81it/s]
eval model::  90%|████████▉ | 449/500 [00:23<00:02, 21.62it/s]
eval model::  90%|█████████ | 452/500 [00:23<00:02, 22.73it/s]
eval model::  91%|█████████ | 455/500 [00:23<00:02, 21.10it/s]
eval model::  92%|█████████▏| 458/500 [00:23<00:02, 20.34it/s]
eval model::  92%|█████████▏| 461/500 [00:24<00:01, 19.62it/s]
eval model::  93%|█████████▎| 464/500 [00:24<00:02, 16.53it/s]
eval model::  93%|█████████▎| 466/500 [00:24<00:02, 16.14it/s]
eval model::  94%|█████████▎| 468/500 [00:24<00:02, 15.71it/s]
eval model::  94%|█████████▍| 470/500 [00:24<00:01, 16.45it/s]
eval model::  94%|█████████▍| 472/500 [00:24<00:01, 17.13it/s]
eval model::  95%|█████████▍| 474/500 [00:24<00:01, 17.80it/s]
eval model::  95%|█████████▌| 477/500 [00:25<00:01, 19.95it/s]
eval model::  96%|█████████▌| 480/500 [00:25<00:00, 20.21it/s]
eval model::  97%|█████████▋| 483/500 [00:25<00:00, 21.18it/s]
eval model::  97%|█████████▋| 486/500 [00:25<00:00, 20.28it/s]
eval model::  98%|█████████▊| 489/500 [00:25<00:00, 21.00it/s]
eval model::  98%|█████████▊| 492/500 [00:25<00:00, 17.21it/s]
eval model::  99%|█████████▉| 494/500 [00:26<00:00, 17.19it/s]
eval model::  99%|█████████▉| 496/500 [00:26<00:00, 16.58it/s]
eval model:: 100%|█████████▉| 499/500 [00:26<00:00, 19.34it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 19.01it/s]
[2024/07/28 01:30:20] ppocr INFO: cur metric, precision: 0.7630979498861048, recall: 0.6451612903225806, hmean: 0.6991912340203496, fps: 44.63727256701821
[2024/07/28 01:30:20] ppocr INFO: best metric, hmean: 0.7048391183177097, precision: 0.7438502673796792, recall: 0.6697159364467983, fps: 46.08540547152116, best_epoch: 580
[2024/07/28 01:30:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:30:29] ppocr INFO: epoch: [801/1500], global_step: 2403, lr: 0.001000, loss: 1.342052, loss_shrink_maps: 0.688344, loss_threshold_maps: 0.498335, loss_binary_maps: 0.137689, avg_reader_cost: 1.73859 s, avg_batch_cost: 2.10674 s, avg_samples: 12.5, ips: 5.93334 samples/s, eta: 3:32:49
[2024/07/28 01:30:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:30:37] ppocr INFO: epoch: [802/1500], global_step: 2406, lr: 0.001000, loss: 1.352140, loss_shrink_maps: 0.700414, loss_threshold_maps: 0.502725, loss_binary_maps: 0.140085, avg_reader_cost: 1.52497 s, avg_batch_cost: 1.77295 s, avg_samples: 12.5, ips: 7.05040 samples/s, eta: 3:32:31
[2024/07/28 01:30:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:30:46] ppocr INFO: epoch: [803/1500], global_step: 2409, lr: 0.001000, loss: 1.352856, loss_shrink_maps: 0.705074, loss_threshold_maps: 0.497867, loss_binary_maps: 0.140200, avg_reader_cost: 1.54448 s, avg_batch_cost: 1.77320 s, avg_samples: 12.5, ips: 7.04941 samples/s, eta: 3:32:12
[2024/07/28 01:30:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:30:54] ppocr INFO: epoch: [804/1500], global_step: 2410, lr: 0.001000, loss: 1.356056, loss_shrink_maps: 0.710700, loss_threshold_maps: 0.515726, loss_binary_maps: 0.141742, avg_reader_cost: 0.40861 s, avg_batch_cost: 0.51918 s, avg_samples: 4.8, ips: 9.24542 samples/s, eta: 3:32:05
[2024/07/28 01:30:55] ppocr INFO: epoch: [804/1500], global_step: 2412, lr: 0.001000, loss: 1.367582, loss_shrink_maps: 0.710700, loss_threshold_maps: 0.532336, loss_binary_maps: 0.141742, avg_reader_cost: 1.12941 s, avg_batch_cost: 1.27498 s, avg_samples: 7.7, ips: 6.03929 samples/s, eta: 3:31:53
[2024/07/28 01:30:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:31:04] ppocr INFO: epoch: [805/1500], global_step: 2415, lr: 0.001000, loss: 1.417033, loss_shrink_maps: 0.720722, loss_threshold_maps: 0.535677, loss_binary_maps: 0.143755, avg_reader_cost: 1.54461 s, avg_batch_cost: 1.79897 s, avg_samples: 12.5, ips: 6.94844 samples/s, eta: 3:31:35
[2024/07/28 01:31:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:31:13] ppocr INFO: epoch: [806/1500], global_step: 2418, lr: 0.001000, loss: 1.417033, loss_shrink_maps: 0.720722, loss_threshold_maps: 0.538035, loss_binary_maps: 0.143755, avg_reader_cost: 1.56034 s, avg_batch_cost: 1.78818 s, avg_samples: 12.5, ips: 6.99035 samples/s, eta: 3:31:16
[2024/07/28 01:31:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:31:21] ppocr INFO: epoch: [807/1500], global_step: 2420, lr: 0.001000, loss: 1.398779, loss_shrink_maps: 0.718764, loss_threshold_maps: 0.535677, loss_binary_maps: 0.143688, avg_reader_cost: 0.89952 s, avg_batch_cost: 1.11591 s, avg_samples: 9.6, ips: 8.60283 samples/s, eta: 3:31:03
[2024/07/28 01:31:22] ppocr INFO: epoch: [807/1500], global_step: 2421, lr: 0.001000, loss: 1.367582, loss_shrink_maps: 0.705074, loss_threshold_maps: 0.532336, loss_binary_maps: 0.140328, avg_reader_cost: 0.60346 s, avg_batch_cost: 0.65947 s, avg_samples: 2.9, ips: 4.39750 samples/s, eta: 3:30:57
[2024/07/28 01:31:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:31:31] ppocr INFO: epoch: [808/1500], global_step: 2424, lr: 0.001000, loss: 1.353270, loss_shrink_maps: 0.692840, loss_threshold_maps: 0.524332, loss_binary_maps: 0.137412, avg_reader_cost: 1.53883 s, avg_batch_cost: 1.79155 s, avg_samples: 12.5, ips: 6.97722 samples/s, eta: 3:30:39
[2024/07/28 01:31:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:31:40] ppocr INFO: epoch: [809/1500], global_step: 2427, lr: 0.001000, loss: 1.325925, loss_shrink_maps: 0.657306, loss_threshold_maps: 0.517376, loss_binary_maps: 0.131140, avg_reader_cost: 1.56760 s, avg_batch_cost: 1.79547 s, avg_samples: 12.5, ips: 6.96198 samples/s, eta: 3:30:20
[2024/07/28 01:31:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:31:49] ppocr INFO: epoch: [810/1500], global_step: 2430, lr: 0.001000, loss: 1.320754, loss_shrink_maps: 0.657306, loss_threshold_maps: 0.517157, loss_binary_maps: 0.131140, avg_reader_cost: 1.55666 s, avg_batch_cost: 1.78940 s, avg_samples: 12.5, ips: 6.98558 samples/s, eta: 3:30:02
[2024/07/28 01:31:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:31:57] ppocr INFO: epoch: [811/1500], global_step: 2433, lr: 0.001000, loss: 1.320754, loss_shrink_maps: 0.657306, loss_threshold_maps: 0.517157, loss_binary_maps: 0.131140, avg_reader_cost: 1.54538 s, avg_batch_cost: 1.79000 s, avg_samples: 12.5, ips: 6.98322 samples/s, eta: 3:29:43
[2024/07/28 01:32:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:32:07] ppocr INFO: epoch: [812/1500], global_step: 2436, lr: 0.001000, loss: 1.274835, loss_shrink_maps: 0.635743, loss_threshold_maps: 0.515338, loss_binary_maps: 0.126347, avg_reader_cost: 1.65925 s, avg_batch_cost: 1.88824 s, avg_samples: 12.5, ips: 6.61991 samples/s, eta: 3:29:25
[2024/07/28 01:32:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:32:15] ppocr INFO: epoch: [813/1500], global_step: 2439, lr: 0.001000, loss: 1.309042, loss_shrink_maps: 0.662653, loss_threshold_maps: 0.517157, loss_binary_maps: 0.131743, avg_reader_cost: 1.56821 s, avg_batch_cost: 1.81215 s, avg_samples: 12.5, ips: 6.89789 samples/s, eta: 3:29:07
[2024/07/28 01:32:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:32:23] ppocr INFO: epoch: [814/1500], global_step: 2440, lr: 0.001000, loss: 1.330383, loss_shrink_maps: 0.680726, loss_threshold_maps: 0.519130, loss_binary_maps: 0.135213, avg_reader_cost: 0.44244 s, avg_batch_cost: 0.52496 s, avg_samples: 4.8, ips: 9.14352 samples/s, eta: 3:29:00
[2024/07/28 01:32:24] ppocr INFO: epoch: [814/1500], global_step: 2442, lr: 0.001000, loss: 1.330383, loss_shrink_maps: 0.680726, loss_threshold_maps: 0.519130, loss_binary_maps: 0.135213, avg_reader_cost: 1.14157 s, avg_batch_cost: 1.28775 s, avg_samples: 7.7, ips: 5.97941 samples/s, eta: 3:28:49
[2024/07/28 01:32:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:32:33] ppocr INFO: epoch: [815/1500], global_step: 2445, lr: 0.001000, loss: 1.333720, loss_shrink_maps: 0.676407, loss_threshold_maps: 0.520419, loss_binary_maps: 0.134533, avg_reader_cost: 1.56157 s, avg_batch_cost: 1.80638 s, avg_samples: 12.5, ips: 6.91992 samples/s, eta: 3:28:30
[2024/07/28 01:32:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:32:42] ppocr INFO: epoch: [816/1500], global_step: 2448, lr: 0.001000, loss: 1.296914, loss_shrink_maps: 0.657815, loss_threshold_maps: 0.516788, loss_binary_maps: 0.130852, avg_reader_cost: 1.56874 s, avg_batch_cost: 1.80086 s, avg_samples: 12.5, ips: 6.94114 samples/s, eta: 3:28:12
[2024/07/28 01:32:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:32:50] ppocr INFO: epoch: [817/1500], global_step: 2450, lr: 0.001000, loss: 1.296914, loss_shrink_maps: 0.657815, loss_threshold_maps: 0.518077, loss_binary_maps: 0.130852, avg_reader_cost: 0.92609 s, avg_batch_cost: 1.10993 s, avg_samples: 9.6, ips: 8.64918 samples/s, eta: 3:27:59
[2024/07/28 01:32:51] ppocr INFO: epoch: [817/1500], global_step: 2451, lr: 0.001000, loss: 1.296914, loss_shrink_maps: 0.657815, loss_threshold_maps: 0.518077, loss_binary_maps: 0.130852, avg_reader_cost: 0.60124 s, avg_batch_cost: 0.65608 s, avg_samples: 2.9, ips: 4.42016 samples/s, eta: 3:27:53
[2024/07/28 01:32:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:33:00] ppocr INFO: epoch: [818/1500], global_step: 2454, lr: 0.001000, loss: 1.254657, loss_shrink_maps: 0.635540, loss_threshold_maps: 0.501115, loss_binary_maps: 0.126024, avg_reader_cost: 1.52496 s, avg_batch_cost: 1.75723 s, avg_samples: 12.5, ips: 7.11347 samples/s, eta: 3:27:34
[2024/07/28 01:33:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:33:09] ppocr INFO: epoch: [819/1500], global_step: 2457, lr: 0.001000, loss: 1.280367, loss_shrink_maps: 0.646569, loss_threshold_maps: 0.501547, loss_binary_maps: 0.128676, avg_reader_cost: 1.57327 s, avg_batch_cost: 1.80135 s, avg_samples: 12.5, ips: 6.93925 samples/s, eta: 3:27:16
[2024/07/28 01:33:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:33:17] ppocr INFO: epoch: [820/1500], global_step: 2460, lr: 0.001000, loss: 1.238869, loss_shrink_maps: 0.633158, loss_threshold_maps: 0.491785, loss_binary_maps: 0.126017, avg_reader_cost: 1.51978 s, avg_batch_cost: 1.74966 s, avg_samples: 12.5, ips: 7.14424 samples/s, eta: 3:26:57

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 2/500 [00:00<00:38, 13.10it/s]
eval model::   1%|          | 5/500 [00:00<00:25, 19.58it/s]
eval model::   2%|▏         | 8/500 [00:00<00:26, 18.48it/s]
eval model::   2%|▏         | 11/500 [00:00<00:26, 18.79it/s]
eval model::   3%|▎         | 14/500 [00:00<00:24, 19.53it/s]
eval model::   3%|▎         | 17/500 [00:00<00:22, 21.62it/s]
eval model::   4%|▍         | 20/500 [00:01<00:23, 20.40it/s]
eval model::   5%|▍         | 23/500 [00:01<00:24, 19.72it/s]
eval model::   5%|▌         | 26/500 [00:01<00:24, 19.04it/s]
eval model::   6%|▌         | 29/500 [00:01<00:23, 20.14it/s]
eval model::   6%|▋         | 32/500 [00:01<00:27, 17.31it/s]
eval model::   7%|▋         | 34/500 [00:01<00:28, 16.37it/s]
eval model::   7%|▋         | 36/500 [00:01<00:28, 16.56it/s]
eval model::   8%|▊         | 39/500 [00:02<00:28, 16.17it/s]
eval model::   8%|▊         | 42/500 [00:02<00:27, 16.53it/s]
eval model::   9%|▉         | 45/500 [00:02<00:24, 18.59it/s]
eval model::   9%|▉         | 47/500 [00:02<00:24, 18.60it/s]
eval model::  10%|▉         | 49/500 [00:02<00:24, 18.25it/s]
eval model::  10%|█         | 51/500 [00:02<00:25, 17.84it/s]
eval model::  11%|█         | 53/500 [00:02<00:24, 18.31it/s]
eval model::  11%|█         | 56/500 [00:03<00:22, 19.73it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:23, 19.12it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:27, 16.15it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:27, 15.67it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:22, 19.38it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:20, 20.96it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:20, 20.88it/s]
eval model::  15%|█▌        | 76/500 [00:04<00:19, 21.58it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:18, 22.51it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:17, 23.37it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:19, 21.71it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:21, 18.85it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:21, 18.75it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:22, 18.35it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:20, 19.31it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:20, 19.91it/s]
eval model::  20%|██        | 102/500 [00:05<00:20, 19.84it/s]
eval model::  21%|██        | 105/500 [00:05<00:20, 19.19it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:19, 20.41it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:18, 20.83it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:17, 22.43it/s]
eval model::  23%|██▎       | 117/500 [00:06<00:17, 21.58it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:18, 20.39it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:17, 21.76it/s]
eval model::  25%|██▌       | 127/500 [00:06<00:18, 20.64it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:20, 18.43it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:21, 16.87it/s]
eval model::  27%|██▋       | 135/500 [00:07<00:19, 18.88it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:18, 19.99it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:17, 20.68it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:18, 19.36it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:18, 18.86it/s]
eval model::  30%|███       | 150/500 [00:07<00:17, 20.18it/s]
eval model::  31%|███       | 153/500 [00:07<00:18, 18.39it/s]
eval model::  31%|███       | 156/500 [00:08<00:17, 19.21it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:18, 18.74it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:21, 15.70it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:20, 16.12it/s]
eval model::  33%|███▎      | 165/500 [00:08<00:19, 16.82it/s]
eval model::  34%|███▎      | 168/500 [00:08<00:18, 17.73it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:17, 18.60it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:18, 17.36it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:18, 17.59it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:16, 19.58it/s]
eval model::  36%|███▋      | 182/500 [00:09<00:18, 17.35it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:15, 19.67it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:15, 19.51it/s]
eval model::  38%|███▊      | 191/500 [00:10<00:15, 19.56it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:14, 20.72it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:14, 21.46it/s]
eval model::  40%|████      | 201/500 [00:10<00:14, 21.32it/s]
eval model::  41%|████      | 204/500 [00:10<00:12, 22.78it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:19, 15.31it/s]
eval model::  42%|████▏     | 209/500 [00:11<00:18, 15.97it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:17, 16.24it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:17, 16.66it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:17, 15.91it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:18, 15.23it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:15, 17.70it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:17, 15.62it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:14, 18.37it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:12, 21.96it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:11, 23.47it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:10, 24.17it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:10, 25.60it/s]
eval model::  48%|████▊     | 242/500 [00:12<00:13, 19.60it/s]
eval model::  49%|████▉     | 245/500 [00:12<00:12, 20.18it/s]
eval model::  50%|████▉     | 248/500 [00:12<00:11, 21.08it/s]
eval model::  50%|█████     | 251/500 [00:13<00:11, 21.43it/s]
eval model::  51%|█████     | 254/500 [00:13<00:11, 22.31it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:11, 21.53it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:10, 23.34it/s]
eval model::  53%|█████▎    | 263/500 [00:13<00:10, 23.11it/s]
eval model::  53%|█████▎    | 266/500 [00:13<00:09, 23.59it/s]
eval model::  54%|█████▍    | 269/500 [00:13<00:12, 18.36it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:11, 20.29it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:11, 19.41it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:11, 19.85it/s]
eval model::  56%|█████▌    | 281/500 [00:14<00:10, 20.55it/s]
eval model::  57%|█████▋    | 284/500 [00:14<00:11, 18.87it/s]
eval model::  57%|█████▋    | 286/500 [00:15<00:20, 10.32it/s]
eval model::  58%|█████▊    | 290/500 [00:15<00:14, 14.06it/s]
eval model::  59%|█████▊    | 293/500 [00:15<00:13, 15.81it/s]
eval model::  59%|█████▉    | 296/500 [00:15<00:16, 12.56it/s]
eval model::  60%|█████▉    | 299/500 [00:15<00:13, 14.87it/s]
eval model::  60%|██████    | 301/500 [00:16<00:13, 14.34it/s]
eval model::  61%|██████    | 304/500 [00:16<00:11, 16.66it/s]
eval model::  62%|██████▏   | 308/500 [00:16<00:09, 20.32it/s]
eval model::  62%|██████▏   | 311/500 [00:16<00:08, 21.60it/s]
eval model::  63%|██████▎   | 314/500 [00:16<00:08, 20.81it/s]
eval model::  63%|██████▎   | 317/500 [00:16<00:08, 21.33it/s]
eval model::  64%|██████▍   | 320/500 [00:16<00:07, 22.73it/s]
eval model::  65%|██████▍   | 323/500 [00:17<00:08, 21.99it/s]
eval model::  65%|██████▌   | 326/500 [00:17<00:08, 21.02it/s]
eval model::  66%|██████▌   | 329/500 [00:17<00:08, 19.73it/s]
eval model::  66%|██████▋   | 332/500 [00:17<00:08, 20.11it/s]
eval model::  67%|██████▋   | 335/500 [00:17<00:07, 22.08it/s]
eval model::  68%|██████▊   | 338/500 [00:17<00:07, 20.28it/s]
eval model::  68%|██████▊   | 341/500 [00:18<00:09, 16.20it/s]
eval model::  69%|██████▉   | 345/500 [00:18<00:08, 19.19it/s]
eval model::  70%|██████▉   | 348/500 [00:18<00:07, 20.36it/s]
eval model::  70%|███████   | 351/500 [00:18<00:07, 20.29it/s]
eval model::  71%|███████   | 354/500 [00:18<00:06, 22.28it/s]
eval model::  71%|███████▏  | 357/500 [00:18<00:07, 20.35it/s]
eval model::  72%|███████▏  | 360/500 [00:18<00:06, 21.80it/s]
eval model::  73%|███████▎  | 363/500 [00:19<00:07, 19.38it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:07, 17.55it/s]
eval model::  74%|███████▍  | 369/500 [00:19<00:06, 18.96it/s]
eval model::  74%|███████▍  | 372/500 [00:19<00:06, 19.28it/s]
eval model::  75%|███████▌  | 376/500 [00:19<00:05, 21.72it/s]
eval model::  76%|███████▌  | 379/500 [00:19<00:05, 22.48it/s]
eval model::  76%|███████▋  | 382/500 [00:20<00:05, 20.07it/s]
eval model::  77%|███████▋  | 385/500 [00:20<00:06, 18.82it/s]
eval model::  77%|███████▋  | 387/500 [00:20<00:10, 11.13it/s]
eval model::  78%|███████▊  | 390/500 [00:20<00:08, 13.72it/s]
eval model::  78%|███████▊  | 392/500 [00:20<00:07, 14.73it/s]
eval model::  79%|███████▉  | 395/500 [00:20<00:06, 16.83it/s]
eval model::  80%|███████▉  | 398/500 [00:21<00:05, 17.49it/s]
eval model::  80%|████████  | 400/500 [00:21<00:06, 16.02it/s]
eval model::  81%|████████  | 403/500 [00:21<00:05, 17.96it/s]
eval model::  81%|████████  | 406/500 [00:21<00:04, 19.46it/s]
eval model::  82%|████████▏ | 409/500 [00:21<00:04, 19.65it/s]
eval model::  82%|████████▏ | 412/500 [00:21<00:04, 21.58it/s]
eval model::  83%|████████▎ | 415/500 [00:22<00:04, 18.22it/s]
eval model::  83%|████████▎ | 417/500 [00:22<00:04, 18.13it/s]
eval model::  84%|████████▍ | 419/500 [00:22<00:04, 18.27it/s]
eval model::  84%|████████▍ | 421/500 [00:22<00:05, 14.82it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:04, 15.87it/s]
eval model::  85%|████████▌ | 426/500 [00:22<00:04, 16.66it/s]
eval model::  86%|████████▌ | 429/500 [00:22<00:03, 19.49it/s]
eval model::  86%|████████▋ | 432/500 [00:22<00:03, 20.29it/s]
eval model::  87%|████████▋ | 435/500 [00:23<00:03, 21.07it/s]
eval model::  88%|████████▊ | 438/500 [00:23<00:02, 21.05it/s]
eval model::  88%|████████▊ | 441/500 [00:23<00:02, 20.80it/s]
eval model::  89%|████████▉ | 444/500 [00:23<00:02, 22.79it/s]
eval model::  89%|████████▉ | 447/500 [00:23<00:02, 24.54it/s]
eval model::  90%|█████████ | 450/500 [00:23<00:02, 19.68it/s]
eval model::  91%|█████████ | 453/500 [00:23<00:02, 21.64it/s]
eval model::  91%|█████████ | 456/500 [00:24<00:01, 22.26it/s]
eval model::  92%|█████████▏| 459/500 [00:24<00:01, 20.72it/s]
eval model::  92%|█████████▏| 462/500 [00:24<00:02, 18.86it/s]
eval model::  93%|█████████▎| 465/500 [00:24<00:01, 18.33it/s]
eval model::  93%|█████████▎| 467/500 [00:24<00:01, 17.33it/s]
eval model::  94%|█████████▍| 469/500 [00:24<00:01, 17.85it/s]
eval model::  94%|█████████▍| 472/500 [00:24<00:01, 19.37it/s]
eval model::  95%|█████████▌| 475/500 [00:25<00:01, 20.90it/s]
eval model::  96%|█████████▌| 478/500 [00:25<00:01, 21.57it/s]
eval model::  96%|█████████▌| 481/500 [00:25<00:00, 21.12it/s]
eval model::  97%|█████████▋| 484/500 [00:25<00:00, 19.32it/s]
eval model::  97%|█████████▋| 486/500 [00:25<00:00, 16.92it/s]
eval model::  98%|█████████▊| 489/500 [00:25<00:00, 19.52it/s]
eval model::  98%|█████████▊| 492/500 [00:26<00:00, 17.02it/s]
eval model::  99%|█████████▉| 495/500 [00:26<00:00, 17.66it/s]
eval model::  99%|█████████▉| 497/500 [00:26<00:00, 17.94it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.96it/s]
[2024/07/28 01:33:44] ppocr INFO: cur metric, precision: 0.7643610785463072, recall: 0.62782859894078, hmean: 0.6893999471319059, fps: 43.292583246357054
[2024/07/28 01:33:44] ppocr INFO: best metric, hmean: 0.7048391183177097, precision: 0.7438502673796792, recall: 0.6697159364467983, fps: 46.08540547152116, best_epoch: 580
[2024/07/28 01:33:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:33:52] ppocr INFO: epoch: [821/1500], global_step: 2463, lr: 0.001000, loss: 1.317818, loss_shrink_maps: 0.671569, loss_threshold_maps: 0.494285, loss_binary_maps: 0.133642, avg_reader_cost: 1.83671 s, avg_batch_cost: 2.17750 s, avg_samples: 12.5, ips: 5.74054 samples/s, eta: 3:26:41
[2024/07/28 01:33:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:34:01] ppocr INFO: epoch: [822/1500], global_step: 2466, lr: 0.001000, loss: 1.272983, loss_shrink_maps: 0.658650, loss_threshold_maps: 0.491785, loss_binary_maps: 0.131085, avg_reader_cost: 1.56457 s, avg_batch_cost: 1.79276 s, avg_samples: 12.5, ips: 6.97247 samples/s, eta: 3:26:23
[2024/07/28 01:34:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:34:10] ppocr INFO: epoch: [823/1500], global_step: 2469, lr: 0.001000, loss: 1.313762, loss_shrink_maps: 0.675768, loss_threshold_maps: 0.494285, loss_binary_maps: 0.134421, avg_reader_cost: 1.53408 s, avg_batch_cost: 1.76281 s, avg_samples: 12.5, ips: 7.09094 samples/s, eta: 3:26:04
[2024/07/28 01:34:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:34:17] ppocr INFO: epoch: [824/1500], global_step: 2470, lr: 0.001000, loss: 1.324260, loss_shrink_maps: 0.677524, loss_threshold_maps: 0.500367, loss_binary_maps: 0.134993, avg_reader_cost: 0.41805 s, avg_batch_cost: 0.50346 s, avg_samples: 4.8, ips: 9.53395 samples/s, eta: 3:25:57
[2024/07/28 01:34:19] ppocr INFO: epoch: [824/1500], global_step: 2472, lr: 0.001000, loss: 1.324260, loss_shrink_maps: 0.675284, loss_threshold_maps: 0.500367, loss_binary_maps: 0.134267, avg_reader_cost: 1.09928 s, avg_batch_cost: 1.24617 s, avg_samples: 7.7, ips: 6.17893 samples/s, eta: 3:25:45
[2024/07/28 01:34:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:34:28] ppocr INFO: epoch: [825/1500], global_step: 2475, lr: 0.001000, loss: 1.324260, loss_shrink_maps: 0.675284, loss_threshold_maps: 0.507457, loss_binary_maps: 0.134267, avg_reader_cost: 1.52122 s, avg_batch_cost: 1.75759 s, avg_samples: 12.5, ips: 7.11203 samples/s, eta: 3:25:26
[2024/07/28 01:34:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:34:36] ppocr INFO: epoch: [826/1500], global_step: 2478, lr: 0.001000, loss: 1.324260, loss_shrink_maps: 0.670492, loss_threshold_maps: 0.515130, loss_binary_maps: 0.133790, avg_reader_cost: 1.56921 s, avg_batch_cost: 1.81871 s, avg_samples: 12.5, ips: 6.87300 samples/s, eta: 3:25:08
[2024/07/28 01:34:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:34:45] ppocr INFO: epoch: [827/1500], global_step: 2480, lr: 0.001000, loss: 1.324260, loss_shrink_maps: 0.665286, loss_threshold_maps: 0.515130, loss_binary_maps: 0.132529, avg_reader_cost: 1.01436 s, avg_batch_cost: 1.18779 s, avg_samples: 9.6, ips: 8.08226 samples/s, eta: 3:24:56
[2024/07/28 01:34:46] ppocr INFO: epoch: [827/1500], global_step: 2481, lr: 0.001000, loss: 1.314424, loss_shrink_maps: 0.665286, loss_threshold_maps: 0.507457, loss_binary_maps: 0.132529, avg_reader_cost: 0.63961 s, avg_batch_cost: 0.69447 s, avg_samples: 2.9, ips: 4.17584 samples/s, eta: 3:24:50
[2024/07/28 01:34:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:34:55] ppocr INFO: epoch: [828/1500], global_step: 2484, lr: 0.001000, loss: 1.325829, loss_shrink_maps: 0.670492, loss_threshold_maps: 0.524094, loss_binary_maps: 0.133790, avg_reader_cost: 1.62681 s, avg_batch_cost: 1.85582 s, avg_samples: 12.5, ips: 6.73557 samples/s, eta: 3:24:32
[2024/07/28 01:34:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:35:04] ppocr INFO: epoch: [829/1500], global_step: 2487, lr: 0.001000, loss: 1.314424, loss_shrink_maps: 0.665286, loss_threshold_maps: 0.524094, loss_binary_maps: 0.132529, avg_reader_cost: 1.50750 s, avg_batch_cost: 1.73794 s, avg_samples: 12.5, ips: 7.19242 samples/s, eta: 3:24:13
[2024/07/28 01:35:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:35:12] ppocr INFO: epoch: [830/1500], global_step: 2490, lr: 0.001000, loss: 1.324228, loss_shrink_maps: 0.674762, loss_threshold_maps: 0.523132, loss_binary_maps: 0.134648, avg_reader_cost: 1.54260 s, avg_batch_cost: 1.79007 s, avg_samples: 12.5, ips: 6.98295 samples/s, eta: 3:23:55
[2024/07/28 01:35:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:35:21] ppocr INFO: epoch: [831/1500], global_step: 2493, lr: 0.001000, loss: 1.340136, loss_shrink_maps: 0.685302, loss_threshold_maps: 0.506248, loss_binary_maps: 0.136676, avg_reader_cost: 1.52240 s, avg_batch_cost: 1.75154 s, avg_samples: 12.5, ips: 7.13658 samples/s, eta: 3:23:36
[2024/07/28 01:35:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:35:31] ppocr INFO: epoch: [832/1500], global_step: 2496, lr: 0.001000, loss: 1.351400, loss_shrink_maps: 0.706166, loss_threshold_maps: 0.513652, loss_binary_maps: 0.140570, avg_reader_cost: 1.54743 s, avg_batch_cost: 1.86753 s, avg_samples: 12.5, ips: 6.69334 samples/s, eta: 3:23:18
[2024/07/28 01:35:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:35:39] ppocr INFO: epoch: [833/1500], global_step: 2499, lr: 0.001000, loss: 1.324228, loss_shrink_maps: 0.686629, loss_threshold_maps: 0.499357, loss_binary_maps: 0.136998, avg_reader_cost: 1.54631 s, avg_batch_cost: 1.80083 s, avg_samples: 12.5, ips: 6.94124 samples/s, eta: 3:22:59
[2024/07/28 01:35:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:35:47] ppocr INFO: epoch: [834/1500], global_step: 2500, lr: 0.001000, loss: 1.337293, loss_shrink_maps: 0.688247, loss_threshold_maps: 0.506248, loss_binary_maps: 0.137283, avg_reader_cost: 0.42424 s, avg_batch_cost: 0.52579 s, avg_samples: 4.8, ips: 9.12911 samples/s, eta: 3:22:53
[2024/07/28 01:35:48] ppocr INFO: epoch: [834/1500], global_step: 2502, lr: 0.001000, loss: 1.337293, loss_shrink_maps: 0.677198, loss_threshold_maps: 0.499357, loss_binary_maps: 0.135102, avg_reader_cost: 1.14258 s, avg_batch_cost: 1.28803 s, avg_samples: 7.7, ips: 5.97811 samples/s, eta: 3:22:41
[2024/07/28 01:35:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:35:57] ppocr INFO: epoch: [835/1500], global_step: 2505, lr: 0.001000, loss: 1.348558, loss_shrink_maps: 0.688247, loss_threshold_maps: 0.499357, loss_binary_maps: 0.137283, avg_reader_cost: 1.54885 s, avg_batch_cost: 1.78201 s, avg_samples: 12.5, ips: 7.01456 samples/s, eta: 3:22:22
[2024/07/28 01:36:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:36:06] ppocr INFO: epoch: [836/1500], global_step: 2508, lr: 0.001000, loss: 1.368041, loss_shrink_maps: 0.710639, loss_threshold_maps: 0.521682, loss_binary_maps: 0.141469, avg_reader_cost: 1.57988 s, avg_batch_cost: 1.80770 s, avg_samples: 12.5, ips: 6.91488 samples/s, eta: 3:22:04
[2024/07/28 01:36:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:36:15] ppocr INFO: epoch: [837/1500], global_step: 2510, lr: 0.001000, loss: 1.348558, loss_shrink_maps: 0.688247, loss_threshold_maps: 0.501613, loss_binary_maps: 0.137283, avg_reader_cost: 0.93154 s, avg_batch_cost: 1.13769 s, avg_samples: 9.6, ips: 8.43818 samples/s, eta: 3:21:51
[2024/07/28 01:36:15] ppocr INFO: epoch: [837/1500], global_step: 2511, lr: 0.001000, loss: 1.348558, loss_shrink_maps: 0.688247, loss_threshold_maps: 0.501613, loss_binary_maps: 0.137283, avg_reader_cost: 0.61456 s, avg_batch_cost: 0.66977 s, avg_samples: 2.9, ips: 4.32986 samples/s, eta: 3:21:46
[2024/07/28 01:36:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:36:24] ppocr INFO: epoch: [838/1500], global_step: 2514, lr: 0.001000, loss: 1.310685, loss_shrink_maps: 0.655271, loss_threshold_maps: 0.526753, loss_binary_maps: 0.130200, avg_reader_cost: 1.49298 s, avg_batch_cost: 1.72435 s, avg_samples: 12.5, ips: 7.24910 samples/s, eta: 3:21:27
[2024/07/28 01:36:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:36:33] ppocr INFO: epoch: [839/1500], global_step: 2517, lr: 0.001000, loss: 1.346354, loss_shrink_maps: 0.678288, loss_threshold_maps: 0.530775, loss_binary_maps: 0.134739, avg_reader_cost: 1.55918 s, avg_batch_cost: 1.78737 s, avg_samples: 12.5, ips: 6.99353 samples/s, eta: 3:21:08
[2024/07/28 01:36:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:36:42] ppocr INFO: epoch: [840/1500], global_step: 2520, lr: 0.001000, loss: 1.366861, loss_shrink_maps: 0.683230, loss_threshold_maps: 0.530775, loss_binary_maps: 0.135668, avg_reader_cost: 1.57453 s, avg_batch_cost: 1.81634 s, avg_samples: 12.5, ips: 6.88199 samples/s, eta: 3:20:50

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:56,  8.89it/s]
eval model::   1%|          | 3/500 [00:00<00:33, 15.05it/s]
eval model::   1%|          | 6/500 [00:00<00:27, 18.29it/s]
eval model::   2%|▏         | 8/500 [00:00<00:26, 18.73it/s]
eval model::   2%|▏         | 11/500 [00:00<00:26, 18.22it/s]
eval model::   3%|▎         | 14/500 [00:00<00:25, 18.70it/s]
eval model::   3%|▎         | 17/500 [00:00<00:23, 20.37it/s]
eval model::   4%|▍         | 20/500 [00:01<00:23, 20.73it/s]
eval model::   5%|▍         | 23/500 [00:01<00:21, 22.63it/s]
eval model::   5%|▌         | 26/500 [00:01<00:20, 22.77it/s]
eval model::   6%|▌         | 29/500 [00:01<00:19, 23.96it/s]
eval model::   6%|▋         | 32/500 [00:01<00:20, 22.30it/s]
eval model::   7%|▋         | 35/500 [00:01<00:21, 21.25it/s]
eval model::   8%|▊         | 38/500 [00:01<00:21, 21.05it/s]
eval model::   8%|▊         | 41/500 [00:02<00:24, 19.06it/s]
eval model::   9%|▊         | 43/500 [00:02<00:26, 17.13it/s]
eval model::   9%|▉         | 46/500 [00:02<00:24, 18.70it/s]
eval model::  10%|▉         | 49/500 [00:02<00:23, 19.57it/s]
eval model::  10%|█         | 51/500 [00:02<00:23, 19.04it/s]
eval model::  11%|█         | 54/500 [00:02<00:21, 20.34it/s]
eval model::  11%|█▏        | 57/500 [00:02<00:22, 20.09it/s]
eval model::  12%|█▏        | 60/500 [00:03<00:21, 20.01it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:28, 15.24it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:24, 17.83it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:21, 19.60it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:21, 20.03it/s]
eval model::  15%|█▌        | 75/500 [00:03<00:21, 19.87it/s]
eval model::  16%|█▌        | 78/500 [00:03<00:19, 21.13it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:18, 22.29it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:25, 16.20it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:24, 16.72it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:24, 16.82it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:24, 16.78it/s]
eval model::  19%|█▉        | 94/500 [00:04<00:22, 17.97it/s]
eval model::  19%|█▉        | 97/500 [00:05<00:20, 19.36it/s]
eval model::  20%|██        | 100/500 [00:05<00:21, 18.35it/s]
eval model::  20%|██        | 102/500 [00:05<00:21, 18.61it/s]
eval model::  21%|██        | 106/500 [00:05<00:18, 21.73it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:17, 22.06it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:19, 19.62it/s]
eval model::  23%|██▎       | 115/500 [00:05<00:20, 18.39it/s]
eval model::  24%|██▎       | 118/500 [00:06<00:18, 20.49it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:19, 19.22it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:23, 16.06it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:22, 16.61it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:20, 18.30it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:22, 16.16it/s]
eval model::  27%|██▋       | 133/500 [00:07<00:22, 16.07it/s]
eval model::  27%|██▋       | 136/500 [00:07<00:19, 18.39it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:18, 19.23it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:17, 20.61it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:18, 19.57it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:18, 18.96it/s]
eval model::  30%|███       | 151/500 [00:07<00:18, 18.61it/s]
eval model::  31%|███       | 155/500 [00:08<00:15, 21.71it/s]
eval model::  32%|███▏      | 158/500 [00:08<00:14, 23.50it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:20, 16.61it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:19, 17.15it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:18, 17.67it/s]
eval model::  34%|███▎      | 168/500 [00:08<00:18, 17.75it/s]
eval model::  34%|███▍      | 171/500 [00:09<00:18, 17.84it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:20, 16.28it/s]
eval model::  35%|███▌      | 177/500 [00:09<00:17, 18.08it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:19, 16.48it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:17, 17.88it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:16, 18.90it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:15, 20.22it/s]
eval model::  38%|███▊      | 192/500 [00:10<00:14, 20.76it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:14, 21.22it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:13, 21.63it/s]
eval model::  40%|████      | 201/500 [00:10<00:13, 21.93it/s]
eval model::  41%|████      | 205/500 [00:10<00:18, 15.77it/s]
eval model::  41%|████▏     | 207/500 [00:11<00:17, 16.43it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:17, 16.15it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:16, 17.20it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:18, 15.77it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:20, 13.89it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:17, 16.19it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:20, 13.60it/s]
eval model::  45%|████▌     | 225/500 [00:12<00:16, 16.75it/s]
eval model::  45%|████▌     | 227/500 [00:12<00:15, 17.20it/s]
eval model::  46%|████▌     | 231/500 [00:12<00:12, 21.67it/s]
eval model::  47%|████▋     | 234/500 [00:12<00:13, 20.15it/s]
eval model::  47%|████▋     | 237/500 [00:12<00:12, 20.56it/s]
eval model::  48%|████▊     | 240/500 [00:12<00:11, 21.95it/s]
eval model::  49%|████▊     | 243/500 [00:12<00:12, 20.01it/s]
eval model::  49%|████▉     | 246/500 [00:13<00:12, 21.03it/s]
eval model::  50%|████▉     | 249/500 [00:13<00:12, 20.72it/s]
eval model::  50%|█████     | 252/500 [00:13<00:11, 21.93it/s]
eval model::  51%|█████     | 255/500 [00:13<00:12, 20.32it/s]
eval model::  52%|█████▏    | 258/500 [00:13<00:11, 20.67it/s]
eval model::  52%|█████▏    | 261/500 [00:13<00:11, 20.62it/s]
eval model::  53%|█████▎    | 264/500 [00:13<00:11, 21.38it/s]
eval model::  53%|█████▎    | 267/500 [00:14<00:11, 20.32it/s]
eval model::  54%|█████▍    | 270/500 [00:14<00:12, 18.22it/s]
eval model::  55%|█████▍    | 273/500 [00:14<00:11, 19.08it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:13, 16.86it/s]
eval model::  55%|█████▌    | 277/500 [00:14<00:12, 17.39it/s]
eval model::  56%|█████▌    | 280/500 [00:14<00:11, 19.94it/s]
eval model::  57%|█████▋    | 283/500 [00:14<00:09, 22.10it/s]
eval model::  57%|█████▋    | 286/500 [00:15<00:17, 12.55it/s]
eval model::  58%|█████▊    | 290/500 [00:15<00:12, 16.39it/s]
eval model::  59%|█████▊    | 293/500 [00:15<00:11, 18.20it/s]
eval model::  59%|█████▉    | 296/500 [00:15<00:13, 15.32it/s]
eval model::  60%|██████    | 300/500 [00:16<00:11, 18.03it/s]
eval model::  61%|██████    | 303/500 [00:16<00:10, 19.35it/s]
eval model::  61%|██████    | 306/500 [00:16<00:10, 19.16it/s]
eval model::  62%|██████▏   | 309/500 [00:16<00:09, 20.05it/s]
eval model::  62%|██████▏   | 312/500 [00:16<00:08, 21.01it/s]
eval model::  63%|██████▎   | 315/500 [00:16<00:08, 22.06it/s]
eval model::  64%|██████▎   | 318/500 [00:16<00:07, 23.49it/s]
eval model::  64%|██████▍   | 321/500 [00:17<00:08, 20.99it/s]
eval model::  65%|██████▍   | 324/500 [00:17<00:08, 20.19it/s]
eval model::  65%|██████▌   | 327/500 [00:17<00:07, 22.23it/s]
eval model::  66%|██████▌   | 330/500 [00:17<00:08, 21.09it/s]
eval model::  67%|██████▋   | 333/500 [00:17<00:07, 21.43it/s]
eval model::  67%|██████▋   | 336/500 [00:17<00:07, 21.78it/s]
eval model::  68%|██████▊   | 339/500 [00:17<00:07, 21.06it/s]
eval model::  68%|██████▊   | 342/500 [00:18<00:10, 15.58it/s]
eval model::  69%|██████▉   | 345/500 [00:18<00:08, 17.62it/s]
eval model::  70%|██████▉   | 348/500 [00:18<00:08, 18.21it/s]
eval model::  70%|███████   | 351/500 [00:18<00:07, 19.61it/s]
eval model::  71%|███████   | 355/500 [00:18<00:06, 20.73it/s]
eval model::  72%|███████▏  | 358/500 [00:18<00:06, 20.92it/s]
eval model::  72%|███████▏  | 361/500 [00:19<00:07, 17.69it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:07, 17.76it/s]
eval model::  73%|███████▎  | 367/500 [00:19<00:07, 17.54it/s]
eval model::  74%|███████▍  | 369/500 [00:19<00:07, 17.89it/s]
eval model::  74%|███████▍  | 371/500 [00:19<00:07, 18.08it/s]
eval model::  75%|███████▍  | 374/500 [00:19<00:06, 20.04it/s]
eval model::  75%|███████▌  | 377/500 [00:19<00:05, 21.70it/s]
eval model::  76%|███████▌  | 380/500 [00:20<00:05, 20.23it/s]
eval model::  77%|███████▋  | 383/500 [00:20<00:05, 21.85it/s]
eval model::  77%|███████▋  | 386/500 [00:20<00:09, 12.54it/s]
eval model::  78%|███████▊  | 389/500 [00:20<00:07, 14.47it/s]
eval model::  78%|███████▊  | 391/500 [00:20<00:07, 15.43it/s]
eval model::  79%|███████▊  | 393/500 [00:21<00:06, 16.21it/s]
eval model::  79%|███████▉  | 395/500 [00:21<00:06, 16.82it/s]
eval model::  80%|███████▉  | 398/500 [00:21<00:05, 19.03it/s]
eval model::  80%|████████  | 401/500 [00:21<00:05, 18.02it/s]
eval model::  81%|████████  | 404/500 [00:21<00:05, 18.84it/s]
eval model::  81%|████████▏ | 407/500 [00:21<00:04, 18.68it/s]
eval model::  82%|████████▏ | 410/500 [00:21<00:04, 20.86it/s]
eval model::  83%|████████▎ | 413/500 [00:21<00:03, 21.82it/s]
eval model::  83%|████████▎ | 416/500 [00:22<00:03, 21.71it/s]
eval model::  84%|████████▍ | 419/500 [00:22<00:03, 21.59it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:05, 13.93it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:05, 13.78it/s]
eval model::  85%|████████▌ | 426/500 [00:22<00:05, 14.73it/s]
eval model::  86%|████████▌ | 429/500 [00:23<00:04, 16.37it/s]
eval model::  86%|████████▌ | 431/500 [00:23<00:04, 15.82it/s]
eval model::  87%|████████▋ | 435/500 [00:23<00:03, 19.29it/s]
eval model::  88%|████████▊ | 438/500 [00:23<00:02, 21.24it/s]
eval model::  88%|████████▊ | 441/500 [00:23<00:02, 20.11it/s]
eval model::  89%|████████▉ | 444/500 [00:23<00:02, 22.13it/s]
eval model::  89%|████████▉ | 447/500 [00:23<00:02, 21.65it/s]
eval model::  90%|█████████ | 450/500 [00:24<00:02, 18.55it/s]
eval model::  91%|█████████ | 453/500 [00:24<00:02, 20.74it/s]
eval model::  91%|█████████ | 456/500 [00:24<00:01, 22.14it/s]
eval model::  92%|█████████▏| 459/500 [00:24<00:01, 20.77it/s]
eval model::  92%|█████████▏| 462/500 [00:24<00:02, 18.72it/s]
eval model::  93%|█████████▎| 464/500 [00:24<00:01, 18.63it/s]
eval model::  93%|█████████▎| 466/500 [00:24<00:02, 16.35it/s]
eval model::  94%|█████████▎| 468/500 [00:25<00:01, 16.59it/s]
eval model::  94%|█████████▍| 471/500 [00:25<00:01, 19.41it/s]
eval model::  95%|█████████▍| 474/500 [00:25<00:01, 17.61it/s]
eval model::  95%|█████████▌| 477/500 [00:25<00:01, 19.41it/s]
eval model::  96%|█████████▌| 480/500 [00:25<00:00, 20.14it/s]
eval model::  97%|█████████▋| 483/500 [00:25<00:00, 21.58it/s]
eval model::  97%|█████████▋| 486/500 [00:25<00:00, 21.37it/s]
eval model::  98%|█████████▊| 489/500 [00:25<00:00, 22.73it/s]
eval model::  98%|█████████▊| 492/500 [00:26<00:00, 20.43it/s]
eval model::  99%|█████████▉| 495/500 [00:26<00:00, 21.53it/s]
eval model:: 100%|█████████▉| 498/500 [00:26<00:00, 22.82it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.88it/s]
[2024/07/28 01:37:08] ppocr INFO: cur metric, precision: 0.755056179775281, recall: 0.6470871449205585, hmean: 0.6969147005444646, fps: 44.47852025577219
[2024/07/28 01:37:08] ppocr INFO: best metric, hmean: 0.7048391183177097, precision: 0.7438502673796792, recall: 0.6697159364467983, fps: 46.08540547152116, best_epoch: 580
[2024/07/28 01:37:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:37:17] ppocr INFO: epoch: [841/1500], global_step: 2523, lr: 0.001000, loss: 1.366861, loss_shrink_maps: 0.695516, loss_threshold_maps: 0.530775, loss_binary_maps: 0.138080, avg_reader_cost: 1.61216 s, avg_batch_cost: 1.88366 s, avg_samples: 12.5, ips: 6.63603 samples/s, eta: 3:20:32
[2024/07/28 01:37:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:37:25] ppocr INFO: epoch: [842/1500], global_step: 2526, lr: 0.001000, loss: 1.337947, loss_shrink_maps: 0.675387, loss_threshold_maps: 0.513723, loss_binary_maps: 0.134208, avg_reader_cost: 1.51415 s, avg_batch_cost: 1.74291 s, avg_samples: 12.5, ips: 7.17192 samples/s, eta: 3:20:13
[2024/07/28 01:37:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:37:34] ppocr INFO: epoch: [843/1500], global_step: 2529, lr: 0.001000, loss: 1.337947, loss_shrink_maps: 0.675387, loss_threshold_maps: 0.513723, loss_binary_maps: 0.134208, avg_reader_cost: 1.53275 s, avg_batch_cost: 1.76531 s, avg_samples: 12.5, ips: 7.08090 samples/s, eta: 3:19:54
[2024/07/28 01:37:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:37:42] ppocr INFO: epoch: [844/1500], global_step: 2530, lr: 0.001000, loss: 1.353928, loss_shrink_maps: 0.683230, loss_threshold_maps: 0.523625, loss_binary_maps: 0.135784, avg_reader_cost: 0.41101 s, avg_batch_cost: 0.49405 s, avg_samples: 4.8, ips: 9.71564 samples/s, eta: 3:19:47
[2024/07/28 01:37:43] ppocr INFO: epoch: [844/1500], global_step: 2532, lr: 0.001000, loss: 1.368995, loss_shrink_maps: 0.697981, loss_threshold_maps: 0.530100, loss_binary_maps: 0.139005, avg_reader_cost: 1.07937 s, avg_batch_cost: 1.22524 s, avg_samples: 7.7, ips: 6.28448 samples/s, eta: 3:19:35
[2024/07/28 01:37:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:37:52] ppocr INFO: epoch: [845/1500], global_step: 2535, lr: 0.001000, loss: 1.356063, loss_shrink_maps: 0.685005, loss_threshold_maps: 0.513723, loss_binary_maps: 0.136619, avg_reader_cost: 1.51618 s, avg_batch_cost: 1.74658 s, avg_samples: 12.5, ips: 7.15683 samples/s, eta: 3:19:16
[2024/07/28 01:37:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:38:01] ppocr INFO: epoch: [846/1500], global_step: 2538, lr: 0.001000, loss: 1.356063, loss_shrink_maps: 0.685005, loss_threshold_maps: 0.511718, loss_binary_maps: 0.136619, avg_reader_cost: 1.52222 s, avg_batch_cost: 1.75463 s, avg_samples: 12.5, ips: 7.12400 samples/s, eta: 3:18:58
[2024/07/28 01:38:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:38:09] ppocr INFO: epoch: [847/1500], global_step: 2540, lr: 0.001000, loss: 1.355139, loss_shrink_maps: 0.685005, loss_threshold_maps: 0.513656, loss_binary_maps: 0.136619, avg_reader_cost: 0.95069 s, avg_batch_cost: 1.14627 s, avg_samples: 9.6, ips: 8.37496 samples/s, eta: 3:18:45
[2024/07/28 01:38:10] ppocr INFO: epoch: [847/1500], global_step: 2541, lr: 0.001000, loss: 1.358306, loss_shrink_maps: 0.697981, loss_threshold_maps: 0.515707, loss_binary_maps: 0.139005, avg_reader_cost: 0.61909 s, avg_batch_cost: 0.67398 s, avg_samples: 2.9, ips: 4.30277 samples/s, eta: 3:18:39
[2024/07/28 01:38:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:38:18] ppocr INFO: epoch: [848/1500], global_step: 2544, lr: 0.001000, loss: 1.360404, loss_shrink_maps: 0.697981, loss_threshold_maps: 0.519463, loss_binary_maps: 0.139202, avg_reader_cost: 1.53926 s, avg_batch_cost: 1.79241 s, avg_samples: 12.5, ips: 6.97385 samples/s, eta: 3:18:21
[2024/07/28 01:38:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:38:27] ppocr INFO: epoch: [849/1500], global_step: 2547, lr: 0.001000, loss: 1.358306, loss_shrink_maps: 0.692447, loss_threshold_maps: 0.519463, loss_binary_maps: 0.138182, avg_reader_cost: 1.56150 s, avg_batch_cost: 1.80853 s, avg_samples: 12.5, ips: 6.91168 samples/s, eta: 3:18:02
[2024/07/28 01:38:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:38:37] ppocr INFO: epoch: [850/1500], global_step: 2550, lr: 0.001000, loss: 1.358306, loss_shrink_maps: 0.692447, loss_threshold_maps: 0.519463, loss_binary_maps: 0.138182, avg_reader_cost: 1.60027 s, avg_batch_cost: 1.88434 s, avg_samples: 12.5, ips: 6.63363 samples/s, eta: 3:17:45
[2024/07/28 01:38:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:38:46] ppocr INFO: epoch: [851/1500], global_step: 2553, lr: 0.001000, loss: 1.357101, loss_shrink_maps: 0.689646, loss_threshold_maps: 0.519463, loss_binary_maps: 0.137267, avg_reader_cost: 1.55276 s, avg_batch_cost: 1.79461 s, avg_samples: 12.5, ips: 6.96531 samples/s, eta: 3:17:26
[2024/07/28 01:38:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:38:55] ppocr INFO: epoch: [852/1500], global_step: 2556, lr: 0.001000, loss: 1.357101, loss_shrink_maps: 0.695782, loss_threshold_maps: 0.519463, loss_binary_maps: 0.138490, avg_reader_cost: 1.58439 s, avg_batch_cost: 1.81508 s, avg_samples: 12.5, ips: 6.88675 samples/s, eta: 3:17:08
[2024/07/28 01:38:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:39:04] ppocr INFO: epoch: [853/1500], global_step: 2559, lr: 0.001000, loss: 1.348328, loss_shrink_maps: 0.691144, loss_threshold_maps: 0.514952, loss_binary_maps: 0.137432, avg_reader_cost: 1.58246 s, avg_batch_cost: 1.86984 s, avg_samples: 12.5, ips: 6.68507 samples/s, eta: 3:16:50
[2024/07/28 01:39:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:39:11] ppocr INFO: epoch: [854/1500], global_step: 2560, lr: 0.001000, loss: 1.348328, loss_shrink_maps: 0.691144, loss_threshold_maps: 0.514952, loss_binary_maps: 0.137432, avg_reader_cost: 0.41726 s, avg_batch_cost: 0.49956 s, avg_samples: 4.8, ips: 9.60846 samples/s, eta: 3:16:43
[2024/07/28 01:39:13] ppocr INFO: epoch: [854/1500], global_step: 2562, lr: 0.001000, loss: 1.360988, loss_shrink_maps: 0.693830, loss_threshold_maps: 0.524182, loss_binary_maps: 0.138059, avg_reader_cost: 1.09046 s, avg_batch_cost: 1.23639 s, avg_samples: 7.7, ips: 6.22781 samples/s, eta: 3:16:31
[2024/07/28 01:39:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:39:22] ppocr INFO: epoch: [855/1500], global_step: 2565, lr: 0.001000, loss: 1.348328, loss_shrink_maps: 0.691144, loss_threshold_maps: 0.519962, loss_binary_maps: 0.137432, avg_reader_cost: 1.59443 s, avg_batch_cost: 1.82925 s, avg_samples: 12.5, ips: 6.83342 samples/s, eta: 3:16:13
[2024/07/28 01:39:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:39:31] ppocr INFO: epoch: [856/1500], global_step: 2568, lr: 0.001000, loss: 1.348298, loss_shrink_maps: 0.693830, loss_threshold_maps: 0.516358, loss_binary_maps: 0.138059, avg_reader_cost: 1.55258 s, avg_batch_cost: 1.83203 s, avg_samples: 12.5, ips: 6.82304 samples/s, eta: 3:15:54
[2024/07/28 01:39:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:39:39] ppocr INFO: epoch: [857/1500], global_step: 2570, lr: 0.001000, loss: 1.335016, loss_shrink_maps: 0.678357, loss_threshold_maps: 0.510732, loss_binary_maps: 0.135009, avg_reader_cost: 0.92491 s, avg_batch_cost: 1.11892 s, avg_samples: 9.6, ips: 8.57971 samples/s, eta: 3:15:42
[2024/07/28 01:39:40] ppocr INFO: epoch: [857/1500], global_step: 2571, lr: 0.001000, loss: 1.338347, loss_shrink_maps: 0.686030, loss_threshold_maps: 0.516358, loss_binary_maps: 0.136496, avg_reader_cost: 0.60565 s, avg_batch_cost: 0.66046 s, avg_samples: 2.9, ips: 4.39089 samples/s, eta: 3:15:36
[2024/07/28 01:39:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:39:48] ppocr INFO: epoch: [858/1500], global_step: 2574, lr: 0.001000, loss: 1.318220, loss_shrink_maps: 0.676130, loss_threshold_maps: 0.505955, loss_binary_maps: 0.134519, avg_reader_cost: 1.53744 s, avg_batch_cost: 1.76613 s, avg_samples: 12.5, ips: 7.07764 samples/s, eta: 3:15:17
[2024/07/28 01:39:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:39:58] ppocr INFO: epoch: [859/1500], global_step: 2577, lr: 0.001000, loss: 1.318220, loss_shrink_maps: 0.670048, loss_threshold_maps: 0.505955, loss_binary_maps: 0.133616, avg_reader_cost: 1.52816 s, avg_batch_cost: 1.77948 s, avg_samples: 12.5, ips: 7.02453 samples/s, eta: 3:14:59
[2024/07/28 01:40:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:40:07] ppocr INFO: epoch: [860/1500], global_step: 2580, lr: 0.001000, loss: 1.304200, loss_shrink_maps: 0.657449, loss_threshold_maps: 0.500332, loss_binary_maps: 0.131105, avg_reader_cost: 1.59951 s, avg_batch_cost: 1.85395 s, avg_samples: 12.5, ips: 6.74236 samples/s, eta: 3:14:41

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 2/500 [00:00<00:40, 12.38it/s]
eval model::   1%|          | 5/500 [00:00<00:28, 17.68it/s]
eval model::   2%|▏         | 8/500 [00:00<00:27, 17.61it/s]
eval model::   2%|▏         | 11/500 [00:00<00:27, 17.68it/s]
eval model::   3%|▎         | 14/500 [00:00<00:26, 18.18it/s]
eval model::   3%|▎         | 17/500 [00:00<00:24, 19.52it/s]
eval model::   4%|▍         | 20/500 [00:01<00:25, 18.84it/s]
eval model::   5%|▍         | 23/500 [00:01<00:22, 21.22it/s]
eval model::   5%|▌         | 26/500 [00:01<00:25, 18.90it/s]
eval model::   6%|▌         | 29/500 [00:01<00:24, 19.11it/s]
eval model::   6%|▌         | 31/500 [00:01<00:24, 19.15it/s]
eval model::   7%|▋         | 34/500 [00:01<00:23, 19.74it/s]
eval model::   7%|▋         | 37/500 [00:01<00:22, 20.67it/s]
eval model::   8%|▊         | 40/500 [00:02<00:29, 15.79it/s]
eval model::   8%|▊         | 42/500 [00:02<00:29, 15.73it/s]
eval model::   9%|▉         | 45/500 [00:02<00:25, 17.73it/s]
eval model::   9%|▉         | 47/500 [00:02<00:26, 17.38it/s]
eval model::  10%|█         | 50/500 [00:02<00:24, 18.59it/s]
eval model::  11%|█         | 53/500 [00:02<00:21, 21.13it/s]
eval model::  11%|█         | 56/500 [00:02<00:20, 21.36it/s]
eval model::  12%|█▏        | 59/500 [00:03<00:22, 19.24it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:27, 15.94it/s]
eval model::  13%|█▎        | 64/500 [00:03<00:27, 16.05it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:24, 17.65it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:21, 19.90it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:20, 20.51it/s]
eval model::  15%|█▌        | 76/500 [00:04<00:20, 21.09it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:19, 21.60it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:18, 22.01it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:18, 22.89it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:19, 21.10it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:22, 18.55it/s]
eval model::  19%|█▉        | 94/500 [00:04<00:20, 19.52it/s]
eval model::  19%|█▉        | 97/500 [00:05<00:20, 20.12it/s]
eval model::  20%|██        | 100/500 [00:05<00:20, 19.22it/s]
eval model::  21%|██        | 104/500 [00:05<00:18, 21.94it/s]
eval model::  21%|██▏       | 107/500 [00:05<00:17, 22.76it/s]
eval model::  22%|██▏       | 110/500 [00:05<00:17, 22.18it/s]
eval model::  23%|██▎       | 113/500 [00:05<00:16, 22.98it/s]
eval model::  23%|██▎       | 116/500 [00:05<00:17, 21.69it/s]
eval model::  24%|██▍       | 119/500 [00:06<00:17, 21.72it/s]
eval model::  24%|██▍       | 122/500 [00:06<00:17, 21.31it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:20, 18.09it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:18, 20.26it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:20, 18.10it/s]
eval model::  27%|██▋       | 133/500 [00:06<00:20, 18.24it/s]
eval model::  27%|██▋       | 136/500 [00:06<00:18, 20.02it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:17, 20.39it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:17, 20.81it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:18, 18.81it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:19, 18.27it/s]
eval model::  30%|███       | 150/500 [00:07<00:17, 19.89it/s]
eval model::  31%|███       | 153/500 [00:07<00:18, 19.03it/s]
eval model::  31%|███       | 156/500 [00:07<00:16, 20.45it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:18, 18.93it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:24, 13.74it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:23, 14.55it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:19, 17.03it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:17, 18.42it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:18, 17.51it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:20, 15.78it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:20, 16.18it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:17, 18.16it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:19, 16.71it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:17, 18.27it/s]
eval model::  37%|███▋      | 187/500 [00:09<00:17, 18.24it/s]
eval model::  38%|███▊      | 190/500 [00:10<00:15, 19.44it/s]
eval model::  39%|███▊      | 193/500 [00:10<00:14, 21.05it/s]
eval model::  39%|███▉      | 196/500 [00:10<00:15, 19.71it/s]
eval model::  40%|███▉      | 199/500 [00:10<00:14, 21.06it/s]
eval model::  40%|████      | 202/500 [00:10<00:13, 22.02it/s]
eval model::  41%|████      | 205/500 [00:10<00:20, 14.41it/s]
eval model::  41%|████▏     | 207/500 [00:11<00:19, 15.06it/s]
eval model::  42%|████▏     | 209/500 [00:11<00:18, 15.52it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:19, 15.09it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.67it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:20, 14.17it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:22, 12.66it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:18, 15.11it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:21, 13.15it/s]
eval model::  45%|████▌     | 225/500 [00:12<00:17, 15.88it/s]
eval model::  45%|████▌     | 227/500 [00:12<00:16, 16.34it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:13, 19.33it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:13, 20.17it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:12, 20.91it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:11, 22.69it/s]
eval model::  48%|████▊     | 242/500 [00:13<00:13, 19.50it/s]
eval model::  49%|████▉     | 245/500 [00:13<00:11, 21.51it/s]
eval model::  50%|████▉     | 248/500 [00:13<00:11, 21.97it/s]
eval model::  50%|█████     | 251/500 [00:13<00:11, 21.20it/s]
eval model::  51%|█████     | 254/500 [00:13<00:10, 22.99it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:11, 21.86it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:10, 21.86it/s]
eval model::  53%|█████▎    | 263/500 [00:13<00:11, 21.31it/s]
eval model::  53%|█████▎    | 266/500 [00:14<00:11, 20.28it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:13, 17.35it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:12, 18.59it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:11, 18.89it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:11, 20.14it/s]
eval model::  56%|█████▌    | 281/500 [00:14<00:10, 20.31it/s]
eval model::  57%|█████▋    | 284/500 [00:15<00:10, 20.69it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:17, 12.52it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:12, 16.15it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:12, 15.97it/s]
eval model::  59%|█████▉    | 296/500 [00:16<00:14, 14.20it/s]
eval model::  60%|██████    | 300/500 [00:16<00:12, 16.28it/s]
eval model::  60%|██████    | 302/500 [00:16<00:11, 16.93it/s]
eval model::  61%|██████    | 304/500 [00:16<00:11, 17.50it/s]
eval model::  61%|██████▏   | 307/500 [00:16<00:09, 19.96it/s]
eval model::  62%|██████▏   | 310/500 [00:16<00:08, 21.58it/s]
eval model::  63%|██████▎   | 313/500 [00:16<00:08, 21.00it/s]
eval model::  63%|██████▎   | 316/500 [00:16<00:08, 21.12it/s]
eval model::  64%|██████▍   | 319/500 [00:17<00:08, 21.67it/s]
eval model::  64%|██████▍   | 322/500 [00:17<00:08, 19.84it/s]
eval model::  65%|██████▌   | 325/500 [00:17<00:08, 20.33it/s]
eval model::  66%|██████▌   | 328/500 [00:17<00:08, 19.14it/s]
eval model::  66%|██████▌   | 331/500 [00:17<00:08, 19.70it/s]
eval model::  67%|██████▋   | 334/500 [00:17<00:08, 20.72it/s]
eval model::  67%|██████▋   | 337/500 [00:17<00:08, 20.18it/s]
eval model::  68%|██████▊   | 340/500 [00:18<00:10, 15.06it/s]
eval model::  69%|██████▊   | 343/500 [00:18<00:09, 16.82it/s]
eval model::  69%|██████▉   | 346/500 [00:18<00:08, 19.18it/s]
eval model::  70%|██████▉   | 349/500 [00:18<00:07, 20.40it/s]
eval model::  70%|███████   | 352/500 [00:18<00:06, 21.42it/s]
eval model::  71%|███████   | 355/500 [00:18<00:07, 20.57it/s]
eval model::  72%|███████▏  | 358/500 [00:19<00:06, 21.03it/s]
eval model::  72%|███████▏  | 361/500 [00:19<00:07, 18.62it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:07, 18.45it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:07, 17.56it/s]
eval model::  74%|███████▍  | 369/500 [00:19<00:06, 19.33it/s]
eval model::  74%|███████▍  | 371/500 [00:19<00:06, 18.80it/s]
eval model::  75%|███████▍  | 374/500 [00:19<00:06, 20.81it/s]
eval model::  75%|███████▌  | 377/500 [00:20<00:05, 22.72it/s]
eval model::  76%|███████▌  | 380/500 [00:20<00:05, 20.96it/s]
eval model::  77%|███████▋  | 384/500 [00:20<00:04, 24.80it/s]
eval model::  77%|███████▋  | 387/500 [00:20<00:07, 15.74it/s]
eval model::  78%|███████▊  | 390/500 [00:20<00:06, 18.24it/s]
eval model::  79%|███████▊  | 393/500 [00:20<00:05, 19.43it/s]
eval model::  79%|███████▉  | 396/500 [00:21<00:05, 19.37it/s]
eval model::  80%|███████▉  | 399/500 [00:21<00:05, 19.98it/s]
eval model::  80%|████████  | 402/500 [00:21<00:05, 19.55it/s]
eval model::  81%|████████  | 405/500 [00:21<00:04, 20.50it/s]
eval model::  82%|████████▏ | 408/500 [00:21<00:04, 21.11it/s]
eval model::  82%|████████▏ | 411/500 [00:21<00:04, 22.20it/s]
eval model::  83%|████████▎ | 414/500 [00:21<00:03, 22.44it/s]
eval model::  83%|████████▎ | 417/500 [00:22<00:04, 20.48it/s]
eval model::  84%|████████▍ | 420/500 [00:22<00:05, 15.81it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:04, 16.23it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:04, 16.55it/s]
eval model::  85%|████████▌ | 427/500 [00:22<00:03, 18.47it/s]
eval model::  86%|████████▌ | 430/500 [00:22<00:03, 19.79it/s]
eval model::  87%|████████▋ | 433/500 [00:22<00:03, 19.53it/s]
eval model::  87%|████████▋ | 436/500 [00:23<00:02, 21.44it/s]
eval model::  88%|████████▊ | 439/500 [00:23<00:02, 22.37it/s]
eval model::  88%|████████▊ | 442/500 [00:23<00:02, 21.04it/s]
eval model::  89%|████████▉ | 445/500 [00:23<00:02, 21.74it/s]
eval model::  90%|████████▉ | 448/500 [00:23<00:02, 21.28it/s]
eval model::  90%|█████████ | 451/500 [00:23<00:02, 21.92it/s]
eval model::  91%|█████████ | 454/500 [00:23<00:02, 22.38it/s]
eval model::  91%|█████████▏| 457/500 [00:24<00:01, 21.77it/s]
eval model::  92%|█████████▏| 460/500 [00:24<00:01, 20.97it/s]
eval model::  93%|█████████▎| 463/500 [00:24<00:01, 18.93it/s]
eval model::  93%|█████████▎| 465/500 [00:24<00:02, 17.47it/s]
eval model::  94%|█████████▎| 468/500 [00:24<00:01, 18.94it/s]
eval model::  94%|█████████▍| 471/500 [00:24<00:01, 20.63it/s]
eval model::  95%|█████████▍| 474/500 [00:24<00:01, 20.46it/s]
eval model::  95%|█████████▌| 477/500 [00:25<00:01, 21.43it/s]
eval model::  96%|█████████▌| 480/500 [00:25<00:01, 19.07it/s]
eval model::  96%|█████████▋| 482/500 [00:25<00:00, 18.97it/s]
eval model::  97%|█████████▋| 485/500 [00:25<00:00, 20.96it/s]
eval model::  98%|█████████▊| 488/500 [00:25<00:00, 19.94it/s]
eval model::  98%|█████████▊| 491/500 [00:25<00:00, 18.57it/s]
eval model::  99%|█████████▊| 493/500 [00:26<00:00, 16.86it/s]
eval model::  99%|█████████▉| 495/500 [00:26<00:00, 17.46it/s]
eval model:: 100%|█████████▉| 499/500 [00:26<00:00, 21.33it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 19.03it/s]
[2024/07/28 01:40:33] ppocr INFO: cur metric, precision: 0.7364939360529217, recall: 0.6432354357246028, hmean: 0.6867129272680546, fps: 44.881520197478075
[2024/07/28 01:40:33] ppocr INFO: best metric, hmean: 0.7048391183177097, precision: 0.7438502673796792, recall: 0.6697159364467983, fps: 46.08540547152116, best_epoch: 580
[2024/07/28 01:40:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:40:41] ppocr INFO: epoch: [861/1500], global_step: 2583, lr: 0.001000, loss: 1.284791, loss_shrink_maps: 0.646363, loss_threshold_maps: 0.487865, loss_binary_maps: 0.128742, avg_reader_cost: 1.59415 s, avg_batch_cost: 1.87571 s, avg_samples: 12.5, ips: 6.66416 samples/s, eta: 3:14:23
[2024/07/28 01:40:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:40:50] ppocr INFO: epoch: [862/1500], global_step: 2586, lr: 0.001000, loss: 1.298666, loss_shrink_maps: 0.652776, loss_threshold_maps: 0.500332, loss_binary_maps: 0.130411, avg_reader_cost: 1.55584 s, avg_batch_cost: 1.80725 s, avg_samples: 12.5, ips: 6.91659 samples/s, eta: 3:14:04
[2024/07/28 01:40:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:40:59] ppocr INFO: epoch: [863/1500], global_step: 2589, lr: 0.001000, loss: 1.279258, loss_shrink_maps: 0.646363, loss_threshold_maps: 0.491053, loss_binary_maps: 0.128742, avg_reader_cost: 1.65174 s, avg_batch_cost: 1.87970 s, avg_samples: 12.5, ips: 6.65001 samples/s, eta: 3:13:46
[2024/07/28 01:41:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:41:08] ppocr INFO: epoch: [864/1500], global_step: 2590, lr: 0.001000, loss: 1.279258, loss_shrink_maps: 0.646363, loss_threshold_maps: 0.494580, loss_binary_maps: 0.128742, avg_reader_cost: 0.42650 s, avg_batch_cost: 0.57786 s, avg_samples: 4.8, ips: 8.30656 samples/s, eta: 3:13:40
[2024/07/28 01:41:09] ppocr INFO: epoch: [864/1500], global_step: 2592, lr: 0.001000, loss: 1.279258, loss_shrink_maps: 0.646363, loss_threshold_maps: 0.494580, loss_binary_maps: 0.128742, avg_reader_cost: 1.24682 s, avg_batch_cost: 1.39238 s, avg_samples: 7.7, ips: 5.53011 samples/s, eta: 3:13:29
[2024/07/28 01:41:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:41:18] ppocr INFO: epoch: [865/1500], global_step: 2595, lr: 0.001000, loss: 1.282797, loss_shrink_maps: 0.649374, loss_threshold_maps: 0.500591, loss_binary_maps: 0.129758, avg_reader_cost: 1.55919 s, avg_batch_cost: 1.81531 s, avg_samples: 12.5, ips: 6.88587 samples/s, eta: 3:13:11
[2024/07/28 01:41:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:41:27] ppocr INFO: epoch: [866/1500], global_step: 2598, lr: 0.001000, loss: 1.308485, loss_shrink_maps: 0.673008, loss_threshold_maps: 0.512863, loss_binary_maps: 0.133301, avg_reader_cost: 1.54357 s, avg_batch_cost: 1.77134 s, avg_samples: 12.5, ips: 7.05680 samples/s, eta: 3:12:52
[2024/07/28 01:41:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:41:35] ppocr INFO: epoch: [867/1500], global_step: 2600, lr: 0.001000, loss: 1.343094, loss_shrink_maps: 0.673008, loss_threshold_maps: 0.523852, loss_binary_maps: 0.133301, avg_reader_cost: 0.96365 s, avg_batch_cost: 1.13651 s, avg_samples: 9.6, ips: 8.44691 samples/s, eta: 3:12:39
[2024/07/28 01:41:36] ppocr INFO: epoch: [867/1500], global_step: 2601, lr: 0.001000, loss: 1.370275, loss_shrink_maps: 0.685234, loss_threshold_maps: 0.528305, loss_binary_maps: 0.135932, avg_reader_cost: 0.61379 s, avg_batch_cost: 0.66854 s, avg_samples: 2.9, ips: 4.33783 samples/s, eta: 3:12:34
[2024/07/28 01:41:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:41:45] ppocr INFO: epoch: [868/1500], global_step: 2604, lr: 0.001000, loss: 1.335812, loss_shrink_maps: 0.673008, loss_threshold_maps: 0.523852, loss_binary_maps: 0.133301, avg_reader_cost: 1.55739 s, avg_batch_cost: 1.78710 s, avg_samples: 12.5, ips: 6.99456 samples/s, eta: 3:12:15
[2024/07/28 01:41:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:41:54] ppocr INFO: epoch: [869/1500], global_step: 2607, lr: 0.001000, loss: 1.357440, loss_shrink_maps: 0.685234, loss_threshold_maps: 0.528305, loss_binary_maps: 0.135514, avg_reader_cost: 1.55736 s, avg_batch_cost: 1.79289 s, avg_samples: 12.5, ips: 6.97199 samples/s, eta: 3:11:57
[2024/07/28 01:41:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:42:03] ppocr INFO: epoch: [870/1500], global_step: 2610, lr: 0.001000, loss: 1.367462, loss_shrink_maps: 0.701188, loss_threshold_maps: 0.528305, loss_binary_maps: 0.139478, avg_reader_cost: 1.56944 s, avg_batch_cost: 1.81271 s, avg_samples: 12.5, ips: 6.89576 samples/s, eta: 3:11:38
[2024/07/28 01:42:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:42:12] ppocr INFO: epoch: [871/1500], global_step: 2613, lr: 0.001000, loss: 1.367462, loss_shrink_maps: 0.709006, loss_threshold_maps: 0.528305, loss_binary_maps: 0.141401, avg_reader_cost: 1.51397 s, avg_batch_cost: 1.76267 s, avg_samples: 12.5, ips: 7.09152 samples/s, eta: 3:11:20
[2024/07/28 01:42:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:42:21] ppocr INFO: epoch: [872/1500], global_step: 2616, lr: 0.001000, loss: 1.384086, loss_shrink_maps: 0.711432, loss_threshold_maps: 0.528305, loss_binary_maps: 0.142224, avg_reader_cost: 1.51257 s, avg_batch_cost: 1.75135 s, avg_samples: 12.5, ips: 7.13735 samples/s, eta: 3:11:01
[2024/07/28 01:42:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:42:30] ppocr INFO: epoch: [873/1500], global_step: 2619, lr: 0.001000, loss: 1.384086, loss_shrink_maps: 0.711432, loss_threshold_maps: 0.519512, loss_binary_maps: 0.142224, avg_reader_cost: 1.52489 s, avg_batch_cost: 1.80331 s, avg_samples: 12.5, ips: 6.93170 samples/s, eta: 3:10:43
[2024/07/28 01:42:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:42:37] ppocr INFO: epoch: [874/1500], global_step: 2620, lr: 0.001000, loss: 1.357747, loss_shrink_maps: 0.709006, loss_threshold_maps: 0.516685, loss_binary_maps: 0.141401, avg_reader_cost: 0.42500 s, avg_batch_cost: 0.52761 s, avg_samples: 4.8, ips: 9.09768 samples/s, eta: 3:10:36
[2024/07/28 01:42:39] ppocr INFO: epoch: [874/1500], global_step: 2622, lr: 0.001000, loss: 1.322270, loss_shrink_maps: 0.669452, loss_threshold_maps: 0.510468, loss_binary_maps: 0.132485, avg_reader_cost: 1.14654 s, avg_batch_cost: 1.29227 s, avg_samples: 7.7, ips: 5.95851 samples/s, eta: 3:10:24
[2024/07/28 01:42:41] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:42:48] ppocr INFO: epoch: [875/1500], global_step: 2625, lr: 0.001000, loss: 1.307418, loss_shrink_maps: 0.652734, loss_threshold_maps: 0.509849, loss_binary_maps: 0.129938, avg_reader_cost: 1.54306 s, avg_batch_cost: 1.77313 s, avg_samples: 12.5, ips: 7.04968 samples/s, eta: 3:10:06
[2024/07/28 01:42:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:42:57] ppocr INFO: epoch: [876/1500], global_step: 2628, lr: 0.001000, loss: 1.299998, loss_shrink_maps: 0.652734, loss_threshold_maps: 0.487526, loss_binary_maps: 0.129938, avg_reader_cost: 1.50490 s, avg_batch_cost: 1.75777 s, avg_samples: 12.5, ips: 7.11127 samples/s, eta: 3:09:47
[2024/07/28 01:42:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:43:05] ppocr INFO: epoch: [877/1500], global_step: 2630, lr: 0.001000, loss: 1.255786, loss_shrink_maps: 0.641068, loss_threshold_maps: 0.480872, loss_binary_maps: 0.127565, avg_reader_cost: 0.92416 s, avg_batch_cost: 1.10259 s, avg_samples: 9.6, ips: 8.70679 samples/s, eta: 3:09:34
[2024/07/28 01:43:06] ppocr INFO: epoch: [877/1500], global_step: 2631, lr: 0.001000, loss: 1.255786, loss_shrink_maps: 0.641068, loss_threshold_maps: 0.485509, loss_binary_maps: 0.127565, avg_reader_cost: 0.59689 s, avg_batch_cost: 0.65159 s, avg_samples: 2.9, ips: 4.45067 samples/s, eta: 3:09:28
[2024/07/28 01:43:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:43:15] ppocr INFO: epoch: [878/1500], global_step: 2634, lr: 0.001000, loss: 1.215341, loss_shrink_maps: 0.621636, loss_threshold_maps: 0.478193, loss_binary_maps: 0.123727, avg_reader_cost: 1.52349 s, avg_batch_cost: 1.79803 s, avg_samples: 12.5, ips: 6.95204 samples/s, eta: 3:09:10
[2024/07/28 01:43:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:43:23] ppocr INFO: epoch: [879/1500], global_step: 2637, lr: 0.001000, loss: 1.211913, loss_shrink_maps: 0.621636, loss_threshold_maps: 0.476063, loss_binary_maps: 0.123727, avg_reader_cost: 1.51592 s, avg_batch_cost: 1.74591 s, avg_samples: 12.5, ips: 7.15961 samples/s, eta: 3:08:51
[2024/07/28 01:43:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:43:33] ppocr INFO: epoch: [880/1500], global_step: 2640, lr: 0.001000, loss: 1.202169, loss_shrink_maps: 0.604932, loss_threshold_maps: 0.478985, loss_binary_maps: 0.120490, avg_reader_cost: 1.61346 s, avg_batch_cost: 1.88064 s, avg_samples: 12.5, ips: 6.64666 samples/s, eta: 3:08:33

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:58,  8.55it/s]
eval model::   1%|          | 4/500 [00:00<00:29, 16.68it/s]
eval model::   1%|          | 6/500 [00:00<00:28, 17.19it/s]
eval model::   2%|▏         | 8/500 [00:00<00:28, 17.39it/s]
eval model::   2%|▏         | 11/500 [00:00<00:26, 18.53it/s]
eval model::   3%|▎         | 14/500 [00:00<00:25, 19.18it/s]
eval model::   4%|▎         | 18/500 [00:00<00:20, 22.99it/s]
eval model::   4%|▍         | 21/500 [00:01<00:23, 19.98it/s]
eval model::   5%|▍         | 24/500 [00:01<00:21, 21.82it/s]
eval model::   5%|▌         | 27/500 [00:01<00:22, 20.70it/s]
eval model::   6%|▌         | 30/500 [00:01<00:21, 21.77it/s]
eval model::   7%|▋         | 33/500 [00:01<00:24, 18.93it/s]
eval model::   7%|▋         | 36/500 [00:01<00:24, 18.62it/s]
eval model::   8%|▊         | 39/500 [00:02<00:25, 17.93it/s]
eval model::   8%|▊         | 42/500 [00:02<00:27, 16.79it/s]
eval model::   9%|▉         | 45/500 [00:02<00:23, 19.31it/s]
eval model::  10%|▉         | 48/500 [00:02<00:23, 19.02it/s]
eval model::  10%|█         | 51/500 [00:02<00:22, 20.10it/s]
eval model::  11%|█         | 54/500 [00:02<00:21, 21.19it/s]
eval model::  11%|█▏        | 57/500 [00:02<00:20, 22.06it/s]
eval model::  12%|█▏        | 60/500 [00:03<00:21, 20.40it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:29, 14.88it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:23, 18.49it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:21, 19.73it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:21, 19.61it/s]
eval model::  15%|█▌        | 76/500 [00:03<00:20, 20.31it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:19, 21.28it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:20, 19.97it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:21, 19.56it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:22, 18.71it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:24, 17.04it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:21, 18.58it/s]
eval model::  19%|█▉        | 96/500 [00:04<00:19, 20.77it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:18, 21.38it/s]
eval model::  20%|██        | 102/500 [00:05<00:20, 19.45it/s]
eval model::  21%|██        | 105/500 [00:05<00:18, 21.41it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:18, 21.23it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:19, 19.54it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:18, 21.19it/s]
eval model::  23%|██▎       | 117/500 [00:06<00:21, 17.96it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:20, 18.41it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:20, 18.43it/s]
eval model::  25%|██▌       | 127/500 [00:06<00:18, 19.65it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:21, 17.19it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:21, 17.03it/s]
eval model::  27%|██▋       | 136/500 [00:07<00:17, 20.50it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:17, 20.75it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:17, 20.49it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:16, 21.69it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:18, 19.27it/s]
eval model::  30%|███       | 151/500 [00:07<00:19, 17.77it/s]
eval model::  31%|███       | 154/500 [00:07<00:17, 20.16it/s]
eval model::  31%|███▏      | 157/500 [00:08<00:15, 21.51it/s]
eval model::  32%|███▏      | 160/500 [00:08<00:23, 14.64it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:21, 15.97it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:18, 17.87it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:17, 19.12it/s]
eval model::  34%|███▍      | 172/500 [00:09<00:18, 18.09it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:23, 14.03it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:22, 14.51it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:19, 16.39it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:21, 14.87it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:17, 17.79it/s]
eval model::  37%|███▋      | 187/500 [00:09<00:16, 19.12it/s]
eval model::  38%|███▊      | 190/500 [00:10<00:15, 19.83it/s]
eval model::  39%|███▊      | 193/500 [00:10<00:14, 20.95it/s]
eval model::  39%|███▉      | 196/500 [00:10<00:16, 18.57it/s]
eval model::  40%|███▉      | 199/500 [00:10<00:14, 20.10it/s]
eval model::  40%|████      | 202/500 [00:10<00:14, 21.26it/s]
eval model::  41%|████      | 205/500 [00:11<00:21, 13.82it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:19, 14.95it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:19, 14.72it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:17, 15.95it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:20, 13.87it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:22, 12.81it/s]
eval model::  44%|████▍     | 220/500 [00:12<00:18, 15.21it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:21, 13.18it/s]
eval model::  45%|████▌     | 225/500 [00:12<00:17, 16.12it/s]
eval model::  46%|████▌     | 228/500 [00:12<00:15, 17.80it/s]
eval model::  46%|████▌     | 231/500 [00:12<00:13, 20.10it/s]
eval model::  47%|████▋     | 234/500 [00:12<00:13, 19.34it/s]
eval model::  47%|████▋     | 237/500 [00:12<00:12, 21.40it/s]
eval model::  48%|████▊     | 240/500 [00:12<00:11, 21.91it/s]
eval model::  49%|████▊     | 243/500 [00:13<00:12, 19.94it/s]
eval model::  49%|████▉     | 246/500 [00:13<00:11, 21.31it/s]
eval model::  50%|████▉     | 249/500 [00:13<00:12, 19.60it/s]
eval model::  50%|█████     | 252/500 [00:13<00:11, 20.84it/s]
eval model::  51%|█████     | 255/500 [00:13<00:10, 22.40it/s]
eval model::  52%|█████▏    | 258/500 [00:13<00:11, 21.33it/s]
eval model::  52%|█████▏    | 261/500 [00:13<00:10, 21.97it/s]
eval model::  53%|█████▎    | 264/500 [00:14<00:11, 21.32it/s]
eval model::  53%|█████▎    | 267/500 [00:14<00:11, 20.74it/s]
eval model::  54%|█████▍    | 270/500 [00:14<00:12, 18.26it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:13, 17.12it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:13, 16.88it/s]
eval model::  55%|█████▌    | 277/500 [00:14<00:12, 17.46it/s]
eval model::  56%|█████▌    | 279/500 [00:15<00:12, 18.01it/s]
eval model::  56%|█████▋    | 282/500 [00:15<00:10, 20.25it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:17, 11.96it/s]
eval model::  58%|█████▊    | 288/500 [00:15<00:14, 14.22it/s]
eval model::  58%|█████▊    | 292/500 [00:15<00:11, 17.38it/s]
eval model::  59%|█████▉    | 295/500 [00:16<00:14, 14.23it/s]
eval model::  60%|█████▉    | 299/500 [00:16<00:11, 17.51it/s]
eval model::  60%|██████    | 302/500 [00:16<00:11, 17.09it/s]
eval model::  61%|██████    | 304/500 [00:16<00:11, 17.43it/s]
eval model::  61%|██████▏   | 307/500 [00:16<00:10, 19.20it/s]
eval model::  62%|██████▏   | 310/500 [00:16<00:09, 19.65it/s]
eval model::  63%|██████▎   | 313/500 [00:16<00:08, 20.97it/s]
eval model::  63%|██████▎   | 316/500 [00:17<00:09, 20.40it/s]
eval model::  64%|██████▍   | 319/500 [00:17<00:08, 21.71it/s]
eval model::  64%|██████▍   | 322/500 [00:17<00:08, 20.75it/s]
eval model::  65%|██████▌   | 325/500 [00:17<00:08, 21.52it/s]
eval model::  66%|██████▌   | 328/500 [00:17<00:08, 21.06it/s]
eval model::  66%|██████▌   | 331/500 [00:17<00:08, 20.06it/s]
eval model::  67%|██████▋   | 334/500 [00:17<00:07, 21.60it/s]
eval model::  67%|██████▋   | 337/500 [00:18<00:07, 21.72it/s]
eval model::  68%|██████▊   | 340/500 [00:18<00:10, 15.41it/s]
eval model::  69%|██████▊   | 343/500 [00:18<00:09, 17.34it/s]
eval model::  69%|██████▉   | 346/500 [00:18<00:07, 19.54it/s]
eval model::  70%|██████▉   | 349/500 [00:18<00:07, 20.90it/s]
eval model::  70%|███████   | 352/500 [00:18<00:06, 21.52it/s]
eval model::  71%|███████   | 355/500 [00:19<00:06, 21.77it/s]
eval model::  72%|███████▏  | 358/500 [00:19<00:06, 21.36it/s]
eval model::  72%|███████▏  | 361/500 [00:19<00:07, 18.54it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:07, 17.80it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:08, 16.38it/s]
eval model::  74%|███████▍  | 369/500 [00:19<00:07, 18.46it/s]
eval model::  74%|███████▍  | 372/500 [00:20<00:06, 18.62it/s]
eval model::  75%|███████▌  | 375/500 [00:20<00:05, 21.09it/s]
eval model::  76%|███████▌  | 378/500 [00:20<00:05, 22.93it/s]
eval model::  76%|███████▌  | 381/500 [00:20<00:05, 20.92it/s]
eval model::  77%|███████▋  | 384/500 [00:20<00:05, 22.40it/s]
eval model::  77%|███████▋  | 387/500 [00:20<00:07, 15.16it/s]
eval model::  78%|███████▊  | 390/500 [00:20<00:06, 17.38it/s]
eval model::  79%|███████▊  | 393/500 [00:21<00:05, 18.66it/s]
eval model::  79%|███████▉  | 396/500 [00:21<00:05, 20.46it/s]
eval model::  80%|███████▉  | 399/500 [00:21<00:04, 20.84it/s]
eval model::  80%|████████  | 402/500 [00:21<00:04, 20.32it/s]
eval model::  81%|████████  | 405/500 [00:21<00:04, 21.32it/s]
eval model::  82%|████████▏ | 408/500 [00:21<00:04, 20.76it/s]
eval model::  82%|████████▏ | 411/500 [00:21<00:04, 21.69it/s]
eval model::  83%|████████▎ | 414/500 [00:22<00:03, 22.41it/s]
eval model::  83%|████████▎ | 417/500 [00:22<00:03, 20.82it/s]
eval model::  84%|████████▍ | 420/500 [00:22<00:05, 13.59it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:05, 14.50it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:05, 15.05it/s]
eval model::  85%|████████▌ | 426/500 [00:22<00:04, 15.77it/s]
eval model::  86%|████████▌ | 428/500 [00:23<00:04, 16.40it/s]
eval model::  86%|████████▌ | 430/500 [00:23<00:04, 17.02it/s]
eval model::  86%|████████▋ | 432/500 [00:23<00:04, 15.02it/s]
eval model::  87%|████████▋ | 435/500 [00:23<00:03, 17.61it/s]
eval model::  88%|████████▊ | 439/500 [00:23<00:02, 20.51it/s]
eval model::  88%|████████▊ | 442/500 [00:23<00:02, 19.59it/s]
eval model::  89%|████████▉ | 445/500 [00:23<00:02, 20.36it/s]
eval model::  90%|████████▉ | 448/500 [00:24<00:02, 20.31it/s]
eval model::  90%|█████████ | 451/500 [00:24<00:02, 20.29it/s]
eval model::  91%|█████████ | 454/500 [00:24<00:02, 21.75it/s]
eval model::  91%|█████████▏| 457/500 [00:24<00:01, 23.35it/s]
eval model::  92%|█████████▏| 460/500 [00:24<00:01, 21.62it/s]
eval model::  93%|█████████▎| 463/500 [00:24<00:01, 18.79it/s]
eval model::  93%|█████████▎| 465/500 [00:24<00:02, 16.58it/s]
eval model::  93%|█████████▎| 467/500 [00:25<00:01, 16.85it/s]
eval model::  94%|█████████▍| 471/500 [00:25<00:01, 20.27it/s]
eval model::  95%|█████████▍| 474/500 [00:25<00:01, 20.32it/s]
eval model::  95%|█████████▌| 477/500 [00:25<00:01, 20.68it/s]
eval model::  96%|█████████▌| 480/500 [00:25<00:01, 19.98it/s]
eval model::  97%|█████████▋| 483/500 [00:25<00:00, 18.26it/s]
eval model::  97%|█████████▋| 486/500 [00:26<00:00, 17.41it/s]
eval model::  98%|█████████▊| 489/500 [00:26<00:00, 19.07it/s]
eval model::  98%|█████████▊| 491/500 [00:26<00:00, 19.20it/s]
eval model::  99%|█████████▊| 493/500 [00:26<00:00, 18.71it/s]
eval model::  99%|█████████▉| 495/500 [00:26<00:00, 18.83it/s]
eval model:: 100%|█████████▉| 498/500 [00:26<00:00, 21.42it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.76it/s]
[2024/07/28 01:43:59] ppocr INFO: cur metric, precision: 0.7382087970323264, recall: 0.6706788637457872, hmean: 0.7028254288597378, fps: 45.28646058667262
[2024/07/28 01:43:59] ppocr INFO: best metric, hmean: 0.7048391183177097, precision: 0.7438502673796792, recall: 0.6697159364467983, fps: 46.08540547152116, best_epoch: 580
[2024/07/28 01:44:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:44:08] ppocr INFO: epoch: [881/1500], global_step: 2643, lr: 0.001000, loss: 1.219072, loss_shrink_maps: 0.627529, loss_threshold_maps: 0.481664, loss_binary_maps: 0.125026, avg_reader_cost: 1.56302 s, avg_batch_cost: 1.80272 s, avg_samples: 12.5, ips: 6.93397 samples/s, eta: 3:08:15
[2024/07/28 01:44:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:44:17] ppocr INFO: epoch: [882/1500], global_step: 2646, lr: 0.001000, loss: 1.228506, loss_shrink_maps: 0.627529, loss_threshold_maps: 0.485425, loss_binary_maps: 0.125026, avg_reader_cost: 1.60469 s, avg_batch_cost: 1.84778 s, avg_samples: 12.5, ips: 6.76489 samples/s, eta: 3:07:57
[2024/07/28 01:44:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:44:26] ppocr INFO: epoch: [883/1500], global_step: 2649, lr: 0.001000, loss: 1.258486, loss_shrink_maps: 0.625132, loss_threshold_maps: 0.495393, loss_binary_maps: 0.124684, avg_reader_cost: 1.53400 s, avg_batch_cost: 1.81083 s, avg_samples: 12.5, ips: 6.90293 samples/s, eta: 3:07:38
[2024/07/28 01:44:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:44:33] ppocr INFO: epoch: [884/1500], global_step: 2650, lr: 0.001000, loss: 1.258486, loss_shrink_maps: 0.625132, loss_threshold_maps: 0.495393, loss_binary_maps: 0.124684, avg_reader_cost: 0.39875 s, avg_batch_cost: 0.52487 s, avg_samples: 4.8, ips: 9.14520 samples/s, eta: 3:07:32
[2024/07/28 01:44:35] ppocr INFO: epoch: [884/1500], global_step: 2652, lr: 0.001000, loss: 1.217559, loss_shrink_maps: 0.609346, loss_threshold_maps: 0.478985, loss_binary_maps: 0.121581, avg_reader_cost: 1.14082 s, avg_batch_cost: 1.28659 s, avg_samples: 7.7, ips: 5.98479 samples/s, eta: 3:07:20
[2024/07/28 01:44:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:44:44] ppocr INFO: epoch: [885/1500], global_step: 2655, lr: 0.001000, loss: 1.284518, loss_shrink_maps: 0.643802, loss_threshold_maps: 0.500002, loss_binary_maps: 0.128550, avg_reader_cost: 1.56230 s, avg_batch_cost: 1.79039 s, avg_samples: 12.5, ips: 6.98173 samples/s, eta: 3:07:01
[2024/07/28 01:44:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:44:53] ppocr INFO: epoch: [886/1500], global_step: 2658, lr: 0.001000, loss: 1.284518, loss_shrink_maps: 0.643802, loss_threshold_maps: 0.500002, loss_binary_maps: 0.128550, avg_reader_cost: 1.56480 s, avg_batch_cost: 1.82822 s, avg_samples: 12.5, ips: 6.83726 samples/s, eta: 3:06:43
[2024/07/28 01:44:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:45:01] ppocr INFO: epoch: [887/1500], global_step: 2660, lr: 0.001000, loss: 1.298308, loss_shrink_maps: 0.652770, loss_threshold_maps: 0.500002, loss_binary_maps: 0.130325, avg_reader_cost: 0.95120 s, avg_batch_cost: 1.17417 s, avg_samples: 9.6, ips: 8.17598 samples/s, eta: 3:06:31
[2024/07/28 01:45:02] ppocr INFO: epoch: [887/1500], global_step: 2661, lr: 0.001000, loss: 1.267617, loss_shrink_maps: 0.650300, loss_threshold_maps: 0.497007, loss_binary_maps: 0.129538, avg_reader_cost: 0.63283 s, avg_batch_cost: 0.68753 s, avg_samples: 2.9, ips: 4.21801 samples/s, eta: 3:06:25
[2024/07/28 01:45:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:45:11] ppocr INFO: epoch: [888/1500], global_step: 2664, lr: 0.001000, loss: 1.241584, loss_shrink_maps: 0.631248, loss_threshold_maps: 0.483082, loss_binary_maps: 0.125672, avg_reader_cost: 1.52072 s, avg_batch_cost: 1.75140 s, avg_samples: 12.5, ips: 7.13714 samples/s, eta: 3:06:06
[2024/07/28 01:45:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:45:20] ppocr INFO: epoch: [889/1500], global_step: 2667, lr: 0.001000, loss: 1.207163, loss_shrink_maps: 0.605096, loss_threshold_maps: 0.468843, loss_binary_maps: 0.120285, avg_reader_cost: 1.56614 s, avg_batch_cost: 1.79455 s, avg_samples: 12.5, ips: 6.96553 samples/s, eta: 3:05:48
[2024/07/28 01:45:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:45:29] ppocr INFO: epoch: [890/1500], global_step: 2670, lr: 0.001000, loss: 1.207656, loss_shrink_maps: 0.605096, loss_threshold_maps: 0.473648, loss_binary_maps: 0.120285, avg_reader_cost: 1.56382 s, avg_batch_cost: 1.83524 s, avg_samples: 12.5, ips: 6.81109 samples/s, eta: 3:05:30
[2024/07/28 01:45:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:45:38] ppocr INFO: epoch: [891/1500], global_step: 2673, lr: 0.001000, loss: 1.277465, loss_shrink_maps: 0.650300, loss_threshold_maps: 0.488549, loss_binary_maps: 0.129538, avg_reader_cost: 1.54559 s, avg_batch_cost: 1.82379 s, avg_samples: 12.5, ips: 6.85386 samples/s, eta: 3:05:12
[2024/07/28 01:45:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:45:47] ppocr INFO: epoch: [892/1500], global_step: 2676, lr: 0.001000, loss: 1.272546, loss_shrink_maps: 0.634553, loss_threshold_maps: 0.488549, loss_binary_maps: 0.126133, avg_reader_cost: 1.51526 s, avg_batch_cost: 1.75790 s, avg_samples: 12.5, ips: 7.11074 samples/s, eta: 3:04:53
[2024/07/28 01:45:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:45:56] ppocr INFO: epoch: [893/1500], global_step: 2679, lr: 0.001000, loss: 1.218798, loss_shrink_maps: 0.613092, loss_threshold_maps: 0.475081, loss_binary_maps: 0.122087, avg_reader_cost: 1.56991 s, avg_batch_cost: 1.82927 s, avg_samples: 12.5, ips: 6.83333 samples/s, eta: 3:04:35
[2024/07/28 01:45:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:46:04] ppocr INFO: epoch: [894/1500], global_step: 2680, lr: 0.001000, loss: 1.199186, loss_shrink_maps: 0.605096, loss_threshold_maps: 0.465466, loss_binary_maps: 0.120277, avg_reader_cost: 0.43726 s, avg_batch_cost: 0.54001 s, avg_samples: 4.8, ips: 8.88871 samples/s, eta: 3:04:28
[2024/07/28 01:46:05] ppocr INFO: epoch: [894/1500], global_step: 2682, lr: 0.001000, loss: 1.268118, loss_shrink_maps: 0.641607, loss_threshold_maps: 0.479115, loss_binary_maps: 0.127989, avg_reader_cost: 1.17104 s, avg_batch_cost: 1.31669 s, avg_samples: 7.7, ips: 5.84800 samples/s, eta: 3:04:17
[2024/07/28 01:46:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:46:14] ppocr INFO: epoch: [895/1500], global_step: 2685, lr: 0.001000, loss: 1.298214, loss_shrink_maps: 0.658718, loss_threshold_maps: 0.505945, loss_binary_maps: 0.131147, avg_reader_cost: 1.60255 s, avg_batch_cost: 1.84333 s, avg_samples: 12.5, ips: 6.78119 samples/s, eta: 3:03:59
[2024/07/28 01:46:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:46:24] ppocr INFO: epoch: [896/1500], global_step: 2688, lr: 0.001000, loss: 1.304093, loss_shrink_maps: 0.667384, loss_threshold_maps: 0.504696, loss_binary_maps: 0.133209, avg_reader_cost: 1.53458 s, avg_batch_cost: 1.77638 s, avg_samples: 12.5, ips: 7.03680 samples/s, eta: 3:03:40
[2024/07/28 01:46:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:46:32] ppocr INFO: epoch: [897/1500], global_step: 2690, lr: 0.001000, loss: 1.302101, loss_shrink_maps: 0.659842, loss_threshold_maps: 0.504696, loss_binary_maps: 0.131987, avg_reader_cost: 0.92647 s, avg_batch_cost: 1.10168 s, avg_samples: 9.6, ips: 8.71396 samples/s, eta: 3:03:27
[2024/07/28 01:46:32] ppocr INFO: epoch: [897/1500], global_step: 2691, lr: 0.001000, loss: 1.298214, loss_shrink_maps: 0.652191, loss_threshold_maps: 0.497306, loss_binary_maps: 0.130185, avg_reader_cost: 0.59636 s, avg_batch_cost: 0.65106 s, avg_samples: 2.9, ips: 4.45425 samples/s, eta: 3:03:21
[2024/07/28 01:46:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:46:42] ppocr INFO: epoch: [898/1500], global_step: 2694, lr: 0.001000, loss: 1.298214, loss_shrink_maps: 0.652191, loss_threshold_maps: 0.512395, loss_binary_maps: 0.130185, avg_reader_cost: 1.56050 s, avg_batch_cost: 1.79874 s, avg_samples: 12.5, ips: 6.94930 samples/s, eta: 3:03:03
[2024/07/28 01:46:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:46:51] ppocr INFO: epoch: [899/1500], global_step: 2697, lr: 0.001000, loss: 1.307877, loss_shrink_maps: 0.667384, loss_threshold_maps: 0.517421, loss_binary_maps: 0.132984, avg_reader_cost: 1.56010 s, avg_batch_cost: 1.80594 s, avg_samples: 12.5, ips: 6.92161 samples/s, eta: 3:02:44
[2024/07/28 01:46:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:47:00] ppocr INFO: epoch: [900/1500], global_step: 2700, lr: 0.001000, loss: 1.310161, loss_shrink_maps: 0.668278, loss_threshold_maps: 0.519288, loss_binary_maps: 0.133049, avg_reader_cost: 1.51595 s, avg_batch_cost: 1.76829 s, avg_samples: 12.5, ips: 7.06896 samples/s, eta: 3:02:26

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:51,  9.64it/s]
eval model::   1%|          | 4/500 [00:00<00:26, 18.67it/s]
eval model::   1%|          | 6/500 [00:00<00:26, 19.00it/s]
eval model::   2%|▏         | 8/500 [00:00<00:25, 19.06it/s]
eval model::   2%|▏         | 11/500 [00:00<00:26, 18.45it/s]
eval model::   3%|▎         | 14/500 [00:00<00:24, 19.73it/s]
eval model::   3%|▎         | 17/500 [00:00<00:21, 22.32it/s]
eval model::   4%|▍         | 20/500 [00:01<00:23, 20.78it/s]
eval model::   5%|▍         | 23/500 [00:01<00:21, 22.34it/s]
eval model::   5%|▌         | 26/500 [00:01<00:23, 20.60it/s]
eval model::   6%|▌         | 29/500 [00:01<00:21, 22.02it/s]
eval model::   6%|▋         | 32/500 [00:01<00:21, 21.33it/s]
eval model::   7%|▋         | 35/500 [00:01<00:23, 19.83it/s]
eval model::   8%|▊         | 38/500 [00:01<00:22, 20.12it/s]
eval model::   8%|▊         | 41/500 [00:02<00:24, 18.40it/s]
eval model::   9%|▊         | 43/500 [00:02<00:28, 16.12it/s]
eval model::   9%|▉         | 46/500 [00:02<00:28, 15.74it/s]
eval model::  10%|▉         | 48/500 [00:02<00:28, 15.99it/s]
eval model::  10%|█         | 50/500 [00:02<00:27, 16.49it/s]
eval model::  11%|█         | 53/500 [00:02<00:24, 18.16it/s]
eval model::  11%|█         | 56/500 [00:02<00:23, 19.17it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:24, 18.17it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:27, 15.68it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:29, 15.01it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:22, 19.22it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:20, 20.59it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:22, 19.18it/s]
eval model::  15%|█▌        | 76/500 [00:04<00:22, 18.52it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:20, 20.31it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:20, 20.71it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:19, 21.02it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:21, 19.13it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:24, 16.89it/s]
eval model::  18%|█▊        | 92/500 [00:04<00:24, 16.87it/s]
eval model::  19%|█▉        | 94/500 [00:05<00:24, 16.71it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:23, 17.05it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:21, 18.68it/s]
eval model::  20%|██        | 101/500 [00:05<00:22, 17.84it/s]
eval model::  21%|██        | 104/500 [00:05<00:20, 19.03it/s]
eval model::  21%|██▏       | 107/500 [00:05<00:18, 21.65it/s]
eval model::  22%|██▏       | 110/500 [00:05<00:17, 22.66it/s]
eval model::  23%|██▎       | 113/500 [00:05<00:16, 23.20it/s]
eval model::  23%|██▎       | 116/500 [00:06<00:17, 22.56it/s]
eval model::  24%|██▍       | 119/500 [00:06<00:16, 22.77it/s]
eval model::  24%|██▍       | 122/500 [00:06<00:17, 22.00it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:21, 17.79it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:19, 18.90it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:21, 17.14it/s]
eval model::  27%|██▋       | 133/500 [00:07<00:21, 17.41it/s]
eval model::  27%|██▋       | 136/500 [00:07<00:19, 18.63it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:17, 20.26it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:16, 21.45it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:17, 19.87it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:18, 19.44it/s]
eval model::  30%|███       | 151/500 [00:07<00:18, 19.37it/s]
eval model::  31%|███       | 155/500 [00:08<00:15, 22.50it/s]
eval model::  32%|███▏      | 158/500 [00:08<00:15, 22.43it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:20, 16.29it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:18, 17.90it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:17, 18.96it/s]
eval model::  34%|███▍      | 170/500 [00:08<00:16, 19.85it/s]
eval model::  35%|███▍      | 173/500 [00:09<00:16, 19.43it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:18, 17.21it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:16, 19.58it/s]
eval model::  36%|███▋      | 182/500 [00:09<00:18, 16.85it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:16, 19.26it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:15, 20.30it/s]
eval model::  38%|███▊      | 192/500 [00:10<00:15, 19.88it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:15, 20.13it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:14, 21.19it/s]
eval model::  40%|████      | 201/500 [00:10<00:13, 21.57it/s]
eval model::  41%|████      | 204/500 [00:10<00:12, 23.34it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:21, 13.59it/s]
eval model::  42%|████▏     | 209/500 [00:11<00:20, 14.13it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:20, 14.43it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:19, 14.67it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:21, 13.33it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:22, 12.63it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:18, 14.84it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:21, 13.16it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:16, 16.25it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:13, 20.51it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:11, 22.29it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:12, 21.94it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:11, 22.69it/s]
eval model::  48%|████▊     | 242/500 [00:12<00:13, 19.08it/s]
eval model::  49%|████▉     | 245/500 [00:13<00:12, 20.96it/s]
eval model::  50%|████▉     | 248/500 [00:13<00:11, 22.20it/s]
eval model::  50%|█████     | 251/500 [00:13<00:11, 21.34it/s]
eval model::  51%|█████     | 254/500 [00:13<00:10, 22.39it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:11, 21.83it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:10, 23.35it/s]
eval model::  53%|█████▎    | 263/500 [00:13<00:10, 23.54it/s]
eval model::  53%|█████▎    | 266/500 [00:14<00:11, 20.72it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:12, 18.67it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:11, 19.16it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:12, 17.82it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:11, 18.74it/s]
eval model::  56%|█████▌    | 280/500 [00:14<00:11, 18.70it/s]
eval model::  56%|█████▋    | 282/500 [00:14<00:11, 18.91it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:22,  9.71it/s]
eval model::  58%|█████▊    | 288/500 [00:15<00:17, 12.07it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:14, 14.63it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:14, 14.53it/s]
eval model::  59%|█████▉    | 296/500 [00:16<00:16, 12.75it/s]
eval model::  60%|██████    | 300/500 [00:16<00:12, 15.83it/s]
eval model::  61%|██████    | 304/500 [00:16<00:11, 17.47it/s]
eval model::  61%|██████▏   | 307/500 [00:16<00:09, 19.57it/s]
eval model::  62%|██████▏   | 310/500 [00:16<00:09, 20.24it/s]
eval model::  63%|██████▎   | 313/500 [00:16<00:08, 20.85it/s]
eval model::  63%|██████▎   | 316/500 [00:17<00:08, 21.13it/s]
eval model::  64%|██████▍   | 319/500 [00:17<00:08, 21.52it/s]
eval model::  64%|██████▍   | 322/500 [00:17<00:08, 20.41it/s]
eval model::  65%|██████▌   | 325/500 [00:17<00:07, 22.26it/s]
eval model::  66%|██████▌   | 328/500 [00:17<00:08, 21.40it/s]
eval model::  66%|██████▌   | 331/500 [00:17<00:07, 21.15it/s]
eval model::  67%|██████▋   | 334/500 [00:17<00:07, 22.70it/s]
eval model::  67%|██████▋   | 337/500 [00:17<00:07, 21.68it/s]
eval model::  68%|██████▊   | 340/500 [00:18<00:09, 16.26it/s]
eval model::  69%|██████▊   | 343/500 [00:18<00:08, 18.44it/s]
eval model::  69%|██████▉   | 346/500 [00:18<00:07, 20.84it/s]
eval model::  70%|██████▉   | 349/500 [00:18<00:06, 22.08it/s]
eval model::  70%|███████   | 352/500 [00:18<00:06, 22.54it/s]
eval model::  71%|███████   | 355/500 [00:18<00:06, 21.70it/s]
eval model::  72%|███████▏  | 358/500 [00:19<00:07, 19.40it/s]
eval model::  72%|███████▏  | 361/500 [00:19<00:08, 16.99it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:08, 16.88it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:07, 16.84it/s]
eval model::  74%|███████▍  | 369/500 [00:19<00:07, 18.68it/s]
eval model::  74%|███████▍  | 371/500 [00:19<00:06, 18.56it/s]
eval model::  75%|███████▍  | 374/500 [00:19<00:06, 19.24it/s]
eval model::  75%|███████▌  | 377/500 [00:20<00:05, 20.93it/s]
eval model::  76%|███████▌  | 380/500 [00:20<00:06, 18.64it/s]
eval model::  77%|███████▋  | 383/500 [00:20<00:05, 20.55it/s]
eval model::  77%|███████▋  | 386/500 [00:20<00:08, 13.16it/s]
eval model::  78%|███████▊  | 389/500 [00:20<00:07, 15.49it/s]
eval model::  78%|███████▊  | 392/500 [00:21<00:06, 17.04it/s]
eval model::  79%|███████▉  | 395/500 [00:21<00:05, 18.60it/s]
eval model::  80%|███████▉  | 398/500 [00:21<00:04, 20.75it/s]
eval model::  80%|████████  | 401/500 [00:21<00:05, 17.14it/s]
eval model::  81%|████████  | 404/500 [00:21<00:05, 19.16it/s]
eval model::  81%|████████▏ | 407/500 [00:21<00:04, 20.36it/s]
eval model::  82%|████████▏ | 410/500 [00:21<00:04, 22.07it/s]
eval model::  83%|████████▎ | 413/500 [00:22<00:04, 21.58it/s]
eval model::  83%|████████▎ | 416/500 [00:22<00:03, 22.02it/s]
eval model::  84%|████████▍ | 419/500 [00:22<00:03, 20.56it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:05, 13.89it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:05, 13.85it/s]
eval model::  85%|████████▌ | 426/500 [00:23<00:05, 14.16it/s]
eval model::  86%|████████▌ | 429/500 [00:23<00:04, 17.26it/s]
eval model::  86%|████████▋ | 432/500 [00:23<00:03, 18.29it/s]
eval model::  87%|████████▋ | 435/500 [00:23<00:03, 20.28it/s]
eval model::  88%|████████▊ | 439/500 [00:23<00:02, 22.72it/s]
eval model::  88%|████████▊ | 442/500 [00:23<00:02, 21.73it/s]
eval model::  89%|████████▉ | 445/500 [00:23<00:02, 22.19it/s]
eval model::  90%|████████▉ | 448/500 [00:23<00:02, 21.37it/s]
eval model::  90%|█████████ | 451/500 [00:24<00:02, 20.75it/s]
eval model::  91%|█████████ | 454/500 [00:24<00:02, 22.59it/s]
eval model::  92%|█████████▏| 458/500 [00:24<00:01, 24.96it/s]
eval model::  92%|█████████▏| 461/500 [00:24<00:01, 22.08it/s]
eval model::  93%|█████████▎| 464/500 [00:24<00:01, 19.25it/s]
eval model::  93%|█████████▎| 467/500 [00:24<00:01, 17.26it/s]
eval model::  94%|█████████▍| 470/500 [00:25<00:01, 18.70it/s]
eval model::  95%|█████████▍| 473/500 [00:25<00:01, 19.96it/s]
eval model::  95%|█████████▌| 476/500 [00:25<00:01, 20.47it/s]
eval model::  96%|█████████▌| 479/500 [00:25<00:00, 21.01it/s]
eval model::  96%|█████████▋| 482/500 [00:25<00:00, 19.93it/s]
eval model::  97%|█████████▋| 485/500 [00:25<00:00, 21.56it/s]
eval model::  98%|█████████▊| 488/500 [00:25<00:00, 20.72it/s]
eval model::  98%|█████████▊| 491/500 [00:26<00:00, 19.57it/s]
eval model::  99%|█████████▉| 494/500 [00:26<00:00, 18.32it/s]
eval model::  99%|█████████▉| 496/500 [00:26<00:00, 18.57it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 22.93it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.89it/s]
[2024/07/28 01:47:26] ppocr INFO: cur metric, precision: 0.722684703433923, recall: 0.6687530091478093, hmean: 0.6946736684171043, fps: 45.70817006252084
[2024/07/28 01:47:26] ppocr INFO: best metric, hmean: 0.7048391183177097, precision: 0.7438502673796792, recall: 0.6697159364467983, fps: 46.08540547152116, best_epoch: 580
[2024/07/28 01:47:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:47:35] ppocr INFO: epoch: [901/1500], global_step: 2703, lr: 0.001000, loss: 1.307877, loss_shrink_maps: 0.659732, loss_threshold_maps: 0.515301, loss_binary_maps: 0.131828, avg_reader_cost: 1.87752 s, avg_batch_cost: 2.26342 s, avg_samples: 12.5, ips: 5.52262 samples/s, eta: 3:02:10
[2024/07/28 01:47:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:47:44] ppocr INFO: epoch: [902/1500], global_step: 2706, lr: 0.001000, loss: 1.307877, loss_shrink_maps: 0.655600, loss_threshold_maps: 0.515301, loss_binary_maps: 0.130918, avg_reader_cost: 1.53072 s, avg_batch_cost: 1.77392 s, avg_samples: 12.5, ips: 7.04656 samples/s, eta: 3:01:52
[2024/07/28 01:47:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:47:54] ppocr INFO: epoch: [903/1500], global_step: 2709, lr: 0.001000, loss: 1.275032, loss_shrink_maps: 0.635526, loss_threshold_maps: 0.520781, loss_binary_maps: 0.126710, avg_reader_cost: 1.71320 s, avg_batch_cost: 1.94089 s, avg_samples: 12.5, ips: 6.44033 samples/s, eta: 3:01:34
[2024/07/28 01:47:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:48:01] ppocr INFO: epoch: [904/1500], global_step: 2710, lr: 0.001000, loss: 1.252762, loss_shrink_maps: 0.632583, loss_threshold_maps: 0.515301, loss_binary_maps: 0.125661, avg_reader_cost: 0.45048 s, avg_batch_cost: 0.53399 s, avg_samples: 4.8, ips: 8.98894 samples/s, eta: 3:01:28
[2024/07/28 01:48:03] ppocr INFO: epoch: [904/1500], global_step: 2712, lr: 0.001000, loss: 1.333040, loss_shrink_maps: 0.664147, loss_threshold_maps: 0.522647, loss_binary_maps: 0.131915, avg_reader_cost: 1.15913 s, avg_batch_cost: 1.30458 s, avg_samples: 7.7, ips: 5.90230 samples/s, eta: 3:01:16
[2024/07/28 01:48:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:48:12] ppocr INFO: epoch: [905/1500], global_step: 2715, lr: 0.001000, loss: 1.242284, loss_shrink_maps: 0.632583, loss_threshold_maps: 0.505561, loss_binary_maps: 0.125661, avg_reader_cost: 1.54726 s, avg_batch_cost: 1.78106 s, avg_samples: 12.5, ips: 7.01829 samples/s, eta: 3:00:58
[2024/07/28 01:48:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:48:21] ppocr INFO: epoch: [906/1500], global_step: 2718, lr: 0.001000, loss: 1.219982, loss_shrink_maps: 0.606660, loss_threshold_maps: 0.493664, loss_binary_maps: 0.120824, avg_reader_cost: 1.64748 s, avg_batch_cost: 1.95747 s, avg_samples: 12.5, ips: 6.38579 samples/s, eta: 3:00:40
[2024/07/28 01:48:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:48:30] ppocr INFO: epoch: [907/1500], global_step: 2720, lr: 0.001000, loss: 1.242284, loss_shrink_maps: 0.632583, loss_threshold_maps: 0.489970, loss_binary_maps: 0.125661, avg_reader_cost: 1.02144 s, avg_batch_cost: 1.19464 s, avg_samples: 9.6, ips: 8.03592 samples/s, eta: 3:00:28
[2024/07/28 01:48:31] ppocr INFO: epoch: [907/1500], global_step: 2721, lr: 0.001000, loss: 1.221887, loss_shrink_maps: 0.615545, loss_threshold_maps: 0.486334, loss_binary_maps: 0.122162, avg_reader_cost: 0.64299 s, avg_batch_cost: 0.69804 s, avg_samples: 2.9, ips: 4.15450 samples/s, eta: 3:00:23
[2024/07/28 01:48:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:48:40] ppocr INFO: epoch: [908/1500], global_step: 2724, lr: 0.001000, loss: 1.222410, loss_shrink_maps: 0.615545, loss_threshold_maps: 0.489970, loss_binary_maps: 0.122162, avg_reader_cost: 1.54229 s, avg_batch_cost: 1.78009 s, avg_samples: 12.5, ips: 7.02212 samples/s, eta: 3:00:04
[2024/07/28 01:48:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:48:49] ppocr INFO: epoch: [909/1500], global_step: 2727, lr: 0.001000, loss: 1.241470, loss_shrink_maps: 0.625519, loss_threshold_maps: 0.486334, loss_binary_maps: 0.124910, avg_reader_cost: 1.51219 s, avg_batch_cost: 1.74026 s, avg_samples: 12.5, ips: 7.18284 samples/s, eta: 2:59:45
[2024/07/28 01:48:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:48:58] ppocr INFO: epoch: [910/1500], global_step: 2730, lr: 0.001000, loss: 1.245347, loss_shrink_maps: 0.625519, loss_threshold_maps: 0.485742, loss_binary_maps: 0.124910, avg_reader_cost: 1.54115 s, avg_batch_cost: 1.81527 s, avg_samples: 12.5, ips: 6.88603 samples/s, eta: 2:59:27
[2024/07/28 01:49:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:49:07] ppocr INFO: epoch: [911/1500], global_step: 2733, lr: 0.001000, loss: 1.220506, loss_shrink_maps: 0.608922, loss_threshold_maps: 0.484331, loss_binary_maps: 0.120954, avg_reader_cost: 1.50694 s, avg_batch_cost: 1.73663 s, avg_samples: 12.5, ips: 7.19785 samples/s, eta: 2:59:08
[2024/07/28 01:49:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:49:16] ppocr INFO: epoch: [912/1500], global_step: 2736, lr: 0.001000, loss: 1.245347, loss_shrink_maps: 0.627961, loss_threshold_maps: 0.488132, loss_binary_maps: 0.125577, avg_reader_cost: 1.59183 s, avg_batch_cost: 1.86045 s, avg_samples: 12.5, ips: 6.71881 samples/s, eta: 2:58:50
[2024/07/28 01:49:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:49:25] ppocr INFO: epoch: [913/1500], global_step: 2739, lr: 0.001000, loss: 1.255790, loss_shrink_maps: 0.627961, loss_threshold_maps: 0.498550, loss_binary_maps: 0.125577, avg_reader_cost: 1.53278 s, avg_batch_cost: 1.76239 s, avg_samples: 12.5, ips: 7.09266 samples/s, eta: 2:58:31
[2024/07/28 01:49:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:49:33] ppocr INFO: epoch: [914/1500], global_step: 2740, lr: 0.001000, loss: 1.232040, loss_shrink_maps: 0.616255, loss_threshold_maps: 0.498550, loss_binary_maps: 0.122706, avg_reader_cost: 0.43161 s, avg_batch_cost: 0.52036 s, avg_samples: 4.8, ips: 9.22445 samples/s, eta: 2:58:25
[2024/07/28 01:49:34] ppocr INFO: epoch: [914/1500], global_step: 2742, lr: 0.001000, loss: 1.284361, loss_shrink_maps: 0.646579, loss_threshold_maps: 0.506051, loss_binary_maps: 0.129209, avg_reader_cost: 1.13202 s, avg_batch_cost: 1.27788 s, avg_samples: 7.7, ips: 6.02561 samples/s, eta: 2:58:13
[2024/07/28 01:49:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:49:43] ppocr INFO: epoch: [915/1500], global_step: 2745, lr: 0.001000, loss: 1.311650, loss_shrink_maps: 0.679809, loss_threshold_maps: 0.512377, loss_binary_maps: 0.135003, avg_reader_cost: 1.53827 s, avg_batch_cost: 1.76802 s, avg_samples: 12.5, ips: 7.07004 samples/s, eta: 2:57:54
[2024/07/28 01:49:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:49:52] ppocr INFO: epoch: [916/1500], global_step: 2748, lr: 0.001000, loss: 1.323784, loss_shrink_maps: 0.684162, loss_threshold_maps: 0.513383, loss_binary_maps: 0.136754, avg_reader_cost: 1.56696 s, avg_batch_cost: 1.82896 s, avg_samples: 12.5, ips: 6.83449 samples/s, eta: 2:57:36
[2024/07/28 01:49:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:50:01] ppocr INFO: epoch: [917/1500], global_step: 2750, lr: 0.001000, loss: 1.275262, loss_shrink_maps: 0.644336, loss_threshold_maps: 0.510544, loss_binary_maps: 0.128216, avg_reader_cost: 0.93219 s, avg_batch_cost: 1.10745 s, avg_samples: 9.6, ips: 8.66856 samples/s, eta: 2:57:23
[2024/07/28 01:50:02] ppocr INFO: epoch: [917/1500], global_step: 2751, lr: 0.001000, loss: 1.326183, loss_shrink_maps: 0.679797, loss_threshold_maps: 0.510544, loss_binary_maps: 0.135181, avg_reader_cost: 0.59927 s, avg_batch_cost: 0.65416 s, avg_samples: 2.9, ips: 4.43317 samples/s, eta: 2:57:17
[2024/07/28 01:50:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:50:10] ppocr INFO: epoch: [918/1500], global_step: 2754, lr: 0.001000, loss: 1.290523, loss_shrink_maps: 0.658770, loss_threshold_maps: 0.510544, loss_binary_maps: 0.131083, avg_reader_cost: 1.51231 s, avg_batch_cost: 1.74160 s, avg_samples: 12.5, ips: 7.17731 samples/s, eta: 2:56:59
[2024/07/28 01:50:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:50:20] ppocr INFO: epoch: [919/1500], global_step: 2757, lr: 0.001000, loss: 1.327885, loss_shrink_maps: 0.674249, loss_threshold_maps: 0.516048, loss_binary_maps: 0.134359, avg_reader_cost: 1.54686 s, avg_batch_cost: 1.79227 s, avg_samples: 12.5, ips: 6.97440 samples/s, eta: 2:56:40
[2024/07/28 01:50:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:50:29] ppocr INFO: epoch: [920/1500], global_step: 2760, lr: 0.001000, loss: 1.327885, loss_shrink_maps: 0.674249, loss_threshold_maps: 0.516048, loss_binary_maps: 0.134359, avg_reader_cost: 1.55827 s, avg_batch_cost: 1.78606 s, avg_samples: 12.5, ips: 6.99865 samples/s, eta: 2:56:22

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:58,  8.46it/s]
eval model::   1%|          | 4/500 [00:00<00:29, 16.76it/s]
eval model::   1%|          | 6/500 [00:00<00:27, 17.99it/s]
eval model::   2%|▏         | 8/500 [00:00<00:31, 15.47it/s]
eval model::   2%|▏         | 11/500 [00:00<00:27, 17.74it/s]
eval model::   3%|▎         | 14/500 [00:00<00:26, 18.52it/s]
eval model::   4%|▎         | 18/500 [00:00<00:22, 21.43it/s]
eval model::   4%|▍         | 21/500 [00:01<00:25, 18.50it/s]
eval model::   5%|▍         | 24/500 [00:01<00:25, 18.61it/s]
eval model::   5%|▌         | 26/500 [00:01<00:25, 18.48it/s]
eval model::   6%|▌         | 29/500 [00:01<00:24, 19.14it/s]
eval model::   6%|▌         | 31/500 [00:01<00:25, 18.75it/s]
eval model::   7%|▋         | 34/500 [00:01<00:24, 18.88it/s]
eval model::   7%|▋         | 37/500 [00:01<00:22, 20.30it/s]
eval model::   8%|▊         | 40/500 [00:02<00:25, 18.07it/s]
eval model::   8%|▊         | 42/500 [00:02<00:30, 14.85it/s]
eval model::   9%|▉         | 44/500 [00:02<00:28, 15.73it/s]
eval model::   9%|▉         | 46/500 [00:02<00:28, 15.86it/s]
eval model::  10%|▉         | 49/500 [00:02<00:24, 18.71it/s]
eval model::  10%|█         | 52/500 [00:02<00:23, 19.23it/s]
eval model::  11%|█         | 55/500 [00:02<00:21, 20.68it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:23, 18.79it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:28, 15.63it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:28, 15.60it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:21, 20.15it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:19, 21.67it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:20, 21.01it/s]
eval model::  15%|█▌        | 76/500 [00:04<00:19, 21.82it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:18, 22.59it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:19, 21.71it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:19, 21.81it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:20, 19.83it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:21, 18.73it/s]
eval model::  19%|█▊        | 93/500 [00:05<00:25, 16.19it/s]
eval model::  19%|█▉        | 95/500 [00:05<00:23, 16.91it/s]
eval model::  20%|█▉        | 98/500 [00:05<00:20, 19.39it/s]
eval model::  20%|██        | 101/500 [00:05<00:21, 18.64it/s]
eval model::  21%|██        | 104/500 [00:05<00:20, 19.50it/s]
eval model::  21%|██▏       | 107/500 [00:05<00:18, 21.54it/s]
eval model::  22%|██▏       | 110/500 [00:05<00:17, 22.09it/s]
eval model::  23%|██▎       | 113/500 [00:05<00:16, 22.90it/s]
eval model::  23%|██▎       | 116/500 [00:06<00:16, 22.84it/s]
eval model::  24%|██▍       | 119/500 [00:06<00:18, 20.76it/s]
eval model::  24%|██▍       | 122/500 [00:06<00:18, 20.69it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:19, 19.27it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:17, 20.77it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:19, 18.46it/s]
eval model::  27%|██▋       | 133/500 [00:06<00:20, 18.28it/s]
eval model::  27%|██▋       | 136/500 [00:07<00:17, 20.39it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:17, 20.87it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:17, 20.83it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:17, 19.90it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:17, 19.65it/s]
eval model::  30%|███       | 151/500 [00:07<00:18, 18.87it/s]
eval model::  31%|███       | 155/500 [00:08<00:15, 21.89it/s]
eval model::  32%|███▏      | 158/500 [00:08<00:16, 21.13it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:25, 13.53it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:23, 14.17it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:20, 16.50it/s]
eval model::  34%|███▎      | 168/500 [00:08<00:20, 16.42it/s]
eval model::  34%|███▍      | 171/500 [00:09<00:19, 16.75it/s]
eval model::  35%|███▍      | 173/500 [00:09<00:18, 17.39it/s]
eval model::  35%|███▌      | 175/500 [00:09<00:24, 13.36it/s]
eval model::  35%|███▌      | 177/500 [00:09<00:22, 14.45it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:23, 13.35it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:20, 15.39it/s]
eval model::  37%|███▋      | 186/500 [00:10<00:18, 16.99it/s]
eval model::  38%|███▊      | 188/500 [00:10<00:18, 17.20it/s]
eval model::  38%|███▊      | 191/500 [00:10<00:16, 19.14it/s]
eval model::  39%|███▉      | 194/500 [00:10<00:14, 21.41it/s]
eval model::  39%|███▉      | 197/500 [00:10<00:15, 19.97it/s]
eval model::  40%|████      | 200/500 [00:10<00:13, 21.53it/s]
eval model::  41%|████      | 203/500 [00:10<00:13, 21.39it/s]
eval model::  41%|████      | 206/500 [00:11<00:21, 13.55it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:21, 13.87it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:20, 14.21it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.26it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:20, 13.77it/s]
eval model::  43%|████▎     | 217/500 [00:12<00:23, 12.19it/s]
eval model::  44%|████▍     | 220/500 [00:12<00:19, 14.47it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:20, 13.74it/s]
eval model::  45%|████▌     | 225/500 [00:12<00:16, 16.71it/s]
eval model::  45%|████▌     | 227/500 [00:12<00:15, 17.26it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:13, 19.79it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:13, 20.23it/s]
eval model::  47%|████▋     | 236/500 [00:13<00:13, 20.27it/s]
eval model::  48%|████▊     | 239/500 [00:13<00:12, 21.58it/s]
eval model::  48%|████▊     | 242/500 [00:13<00:13, 18.81it/s]
eval model::  49%|████▉     | 245/500 [00:13<00:13, 19.39it/s]
eval model::  50%|████▉     | 248/500 [00:13<00:13, 19.20it/s]
eval model::  50%|█████     | 250/500 [00:13<00:13, 19.20it/s]
eval model::  50%|█████     | 252/500 [00:13<00:14, 17.53it/s]
eval model::  51%|█████     | 255/500 [00:14<00:12, 19.79it/s]
eval model::  52%|█████▏    | 258/500 [00:14<00:11, 21.29it/s]
eval model::  52%|█████▏    | 261/500 [00:14<00:11, 21.72it/s]
eval model::  53%|█████▎    | 264/500 [00:14<00:12, 18.84it/s]
eval model::  53%|█████▎    | 266/500 [00:14<00:12, 18.38it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:12, 19.02it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:12, 18.84it/s]
eval model::  55%|█████▌    | 275/500 [00:15<00:11, 19.30it/s]
eval model::  55%|█████▌    | 277/500 [00:15<00:11, 18.83it/s]
eval model::  56%|█████▌    | 279/500 [00:15<00:11, 18.78it/s]
eval model::  56%|█████▋    | 282/500 [00:15<00:10, 21.09it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:17, 12.05it/s]
eval model::  58%|█████▊    | 288/500 [00:15<00:14, 14.45it/s]
eval model::  58%|█████▊    | 292/500 [00:16<00:12, 17.20it/s]
eval model::  59%|█████▉    | 295/500 [00:16<00:14, 14.32it/s]
eval model::  60%|█████▉    | 298/500 [00:16<00:12, 16.17it/s]
eval model::  60%|██████    | 300/500 [00:16<00:13, 15.23it/s]
eval model::  60%|██████    | 302/500 [00:16<00:12, 15.46it/s]
eval model::  61%|██████    | 304/500 [00:16<00:12, 15.72it/s]
eval model::  61%|██████    | 306/500 [00:17<00:12, 15.99it/s]
eval model::  62%|██████▏   | 309/500 [00:17<00:10, 18.02it/s]
eval model::  62%|██████▏   | 312/500 [00:17<00:09, 18.98it/s]
eval model::  63%|██████▎   | 315/500 [00:17<00:09, 18.90it/s]
eval model::  64%|██████▎   | 318/500 [00:17<00:09, 19.44it/s]
eval model::  64%|██████▍   | 321/500 [00:17<00:08, 20.40it/s]
eval model::  65%|██████▍   | 324/500 [00:17<00:09, 19.31it/s]
eval model::  65%|██████▌   | 327/500 [00:18<00:08, 20.54it/s]
eval model::  66%|██████▌   | 330/500 [00:18<00:08, 19.80it/s]
eval model::  67%|██████▋   | 333/500 [00:18<00:08, 20.39it/s]
eval model::  67%|██████▋   | 336/500 [00:18<00:07, 22.17it/s]
eval model::  68%|██████▊   | 339/500 [00:18<00:07, 21.66it/s]
eval model::  68%|██████▊   | 342/500 [00:18<00:09, 15.81it/s]
eval model::  69%|██████▉   | 345/500 [00:19<00:08, 17.82it/s]
eval model::  70%|██████▉   | 348/500 [00:19<00:08, 18.65it/s]
eval model::  70%|███████   | 351/500 [00:19<00:07, 19.83it/s]
eval model::  71%|███████   | 355/500 [00:19<00:06, 21.28it/s]
eval model::  72%|███████▏  | 358/500 [00:19<00:06, 21.84it/s]
eval model::  72%|███████▏  | 361/500 [00:19<00:07, 18.63it/s]
eval model::  73%|███████▎  | 364/500 [00:20<00:07, 17.63it/s]
eval model::  73%|███████▎  | 366/500 [00:20<00:08, 16.22it/s]
eval model::  74%|███████▍  | 369/500 [00:20<00:07, 17.61it/s]
eval model::  74%|███████▍  | 372/500 [00:20<00:07, 18.02it/s]
eval model::  75%|███████▌  | 376/500 [00:20<00:05, 22.14it/s]
eval model::  76%|███████▌  | 379/500 [00:20<00:05, 23.88it/s]
eval model::  76%|███████▋  | 382/500 [00:20<00:05, 21.64it/s]
eval model::  77%|███████▋  | 386/500 [00:21<00:07, 15.67it/s]
eval model::  78%|███████▊  | 389/500 [00:21<00:06, 17.31it/s]
eval model::  78%|███████▊  | 392/500 [00:21<00:06, 17.90it/s]
eval model::  79%|███████▉  | 395/500 [00:21<00:05, 19.55it/s]
eval model::  80%|███████▉  | 398/500 [00:21<00:04, 21.48it/s]
eval model::  80%|████████  | 401/500 [00:21<00:05, 18.46it/s]
eval model::  81%|████████  | 404/500 [00:22<00:04, 19.67it/s]
eval model::  81%|████████▏ | 407/500 [00:22<00:04, 20.92it/s]
eval model::  82%|████████▏ | 410/500 [00:22<00:04, 22.44it/s]
eval model::  83%|████████▎ | 413/500 [00:22<00:04, 21.61it/s]
eval model::  83%|████████▎ | 416/500 [00:22<00:04, 20.68it/s]
eval model::  84%|████████▍ | 419/500 [00:22<00:04, 19.52it/s]
eval model::  84%|████████▍ | 422/500 [00:23<00:05, 14.89it/s]
eval model::  85%|████████▍ | 424/500 [00:23<00:05, 14.65it/s]
eval model::  85%|████████▌ | 426/500 [00:23<00:05, 14.78it/s]
eval model::  86%|████████▌ | 429/500 [00:23<00:03, 17.84it/s]
eval model::  86%|████████▋ | 432/500 [00:23<00:03, 17.76it/s]
eval model::  87%|████████▋ | 435/500 [00:23<00:03, 19.90it/s]
eval model::  88%|████████▊ | 439/500 [00:23<00:02, 20.52it/s]
eval model::  88%|████████▊ | 442/500 [00:24<00:02, 20.12it/s]
eval model::  89%|████████▉ | 445/500 [00:24<00:03, 17.91it/s]
eval model::  89%|████████▉ | 447/500 [00:24<00:02, 18.01it/s]
eval model::  90%|████████▉ | 449/500 [00:24<00:02, 17.10it/s]
eval model::  90%|█████████ | 452/500 [00:24<00:02, 19.69it/s]
eval model::  91%|█████████ | 455/500 [00:24<00:02, 21.65it/s]
eval model::  92%|█████████▏| 458/500 [00:24<00:01, 21.58it/s]
eval model::  92%|█████████▏| 461/500 [00:25<00:01, 20.17it/s]
eval model::  93%|█████████▎| 464/500 [00:25<00:02, 17.71it/s]
eval model::  93%|█████████▎| 467/500 [00:25<00:01, 18.65it/s]
eval model::  94%|█████████▍| 471/500 [00:25<00:01, 21.39it/s]
eval model::  95%|█████████▍| 474/500 [00:25<00:01, 20.16it/s]
eval model::  96%|█████████▌| 478/500 [00:25<00:00, 23.02it/s]
eval model::  96%|█████████▌| 481/500 [00:26<00:00, 22.23it/s]
eval model::  97%|█████████▋| 484/500 [00:26<00:00, 21.77it/s]
eval model::  97%|█████████▋| 487/500 [00:26<00:00, 20.78it/s]
eval model::  98%|█████████▊| 490/500 [00:26<00:00, 21.22it/s]
eval model::  99%|█████████▊| 493/500 [00:26<00:00, 18.58it/s]
eval model::  99%|█████████▉| 496/500 [00:26<00:00, 19.35it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 23.04it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.53it/s]
[2024/07/28 01:50:56] ppocr INFO: cur metric, precision: 0.6967011324470704, recall: 0.6812710640346654, hmean: 0.6888997078870497, fps: 45.71231374099964
[2024/07/28 01:50:56] ppocr INFO: best metric, hmean: 0.7048391183177097, precision: 0.7438502673796792, recall: 0.6697159364467983, fps: 46.08540547152116, best_epoch: 580
[2024/07/28 01:50:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:51:03] ppocr INFO: epoch: [921/1500], global_step: 2763, lr: 0.001000, loss: 1.306734, loss_shrink_maps: 0.671631, loss_threshold_maps: 0.515282, loss_binary_maps: 0.133881, avg_reader_cost: 1.44793 s, avg_batch_cost: 1.67611 s, avg_samples: 12.5, ips: 7.45776 samples/s, eta: 2:56:03
[2024/07/28 01:51:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:51:12] ppocr INFO: epoch: [922/1500], global_step: 2766, lr: 0.001000, loss: 1.306734, loss_shrink_maps: 0.671631, loss_threshold_maps: 0.515282, loss_binary_maps: 0.133881, avg_reader_cost: 1.56046 s, avg_batch_cost: 1.83197 s, avg_samples: 12.5, ips: 6.82325 samples/s, eta: 2:55:44
[2024/07/28 01:51:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:51:21] ppocr INFO: epoch: [923/1500], global_step: 2769, lr: 0.001000, loss: 1.306734, loss_shrink_maps: 0.668799, loss_threshold_maps: 0.509059, loss_binary_maps: 0.133439, avg_reader_cost: 1.53401 s, avg_batch_cost: 1.77802 s, avg_samples: 12.5, ips: 7.03031 samples/s, eta: 2:55:26
[2024/07/28 01:51:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:51:29] ppocr INFO: epoch: [924/1500], global_step: 2770, lr: 0.001000, loss: 1.306734, loss_shrink_maps: 0.668799, loss_threshold_maps: 0.509059, loss_binary_maps: 0.133439, avg_reader_cost: 0.42505 s, avg_batch_cost: 0.52182 s, avg_samples: 4.8, ips: 9.19857 samples/s, eta: 2:55:19
[2024/07/28 01:51:30] ppocr INFO: epoch: [924/1500], global_step: 2772, lr: 0.001000, loss: 1.290458, loss_shrink_maps: 0.660485, loss_threshold_maps: 0.492151, loss_binary_maps: 0.131839, avg_reader_cost: 1.13472 s, avg_batch_cost: 1.28050 s, avg_samples: 7.7, ips: 6.01328 samples/s, eta: 2:55:07
[2024/07/28 01:51:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:51:40] ppocr INFO: epoch: [925/1500], global_step: 2775, lr: 0.001000, loss: 1.324932, loss_shrink_maps: 0.674692, loss_threshold_maps: 0.511905, loss_binary_maps: 0.134669, avg_reader_cost: 1.59919 s, avg_batch_cost: 1.85443 s, avg_samples: 12.5, ips: 6.74063 samples/s, eta: 2:54:49
[2024/07/28 01:51:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:51:48] ppocr INFO: epoch: [926/1500], global_step: 2778, lr: 0.001000, loss: 1.314458, loss_shrink_maps: 0.674692, loss_threshold_maps: 0.505182, loss_binary_maps: 0.134669, avg_reader_cost: 1.51917 s, avg_batch_cost: 1.74933 s, avg_samples: 12.5, ips: 7.14560 samples/s, eta: 2:54:31
[2024/07/28 01:51:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:51:57] ppocr INFO: epoch: [927/1500], global_step: 2780, lr: 0.001000, loss: 1.314458, loss_shrink_maps: 0.674692, loss_threshold_maps: 0.505182, loss_binary_maps: 0.134669, avg_reader_cost: 0.94260 s, avg_batch_cost: 1.11776 s, avg_samples: 9.6, ips: 8.58860 samples/s, eta: 2:54:18
[2024/07/28 01:51:57] ppocr INFO: epoch: [927/1500], global_step: 2781, lr: 0.001000, loss: 1.296176, loss_shrink_maps: 0.663546, loss_threshold_maps: 0.505182, loss_binary_maps: 0.132628, avg_reader_cost: 0.60433 s, avg_batch_cost: 0.65908 s, avg_samples: 2.9, ips: 4.40008 samples/s, eta: 2:54:12
[2024/07/28 01:52:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:52:07] ppocr INFO: epoch: [928/1500], global_step: 2784, lr: 0.001000, loss: 1.257685, loss_shrink_maps: 0.640139, loss_threshold_maps: 0.495461, loss_binary_maps: 0.127725, avg_reader_cost: 1.46942 s, avg_batch_cost: 1.70669 s, avg_samples: 12.5, ips: 7.32412 samples/s, eta: 2:53:53
[2024/07/28 01:52:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:52:16] ppocr INFO: epoch: [929/1500], global_step: 2787, lr: 0.001000, loss: 1.257685, loss_shrink_maps: 0.640139, loss_threshold_maps: 0.498972, loss_binary_maps: 0.127725, avg_reader_cost: 1.54550 s, avg_batch_cost: 1.79079 s, avg_samples: 12.5, ips: 6.98015 samples/s, eta: 2:53:35
[2024/07/28 01:52:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:52:25] ppocr INFO: epoch: [930/1500], global_step: 2790, lr: 0.001000, loss: 1.222816, loss_shrink_maps: 0.608711, loss_threshold_maps: 0.489045, loss_binary_maps: 0.120966, avg_reader_cost: 1.48447 s, avg_batch_cost: 1.71396 s, avg_samples: 12.5, ips: 7.29307 samples/s, eta: 2:53:16
[2024/07/28 01:52:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:52:34] ppocr INFO: epoch: [931/1500], global_step: 2793, lr: 0.001000, loss: 1.222816, loss_shrink_maps: 0.608711, loss_threshold_maps: 0.498972, loss_binary_maps: 0.120966, avg_reader_cost: 1.62776 s, avg_batch_cost: 1.86150 s, avg_samples: 12.5, ips: 6.71502 samples/s, eta: 2:52:58
[2024/07/28 01:52:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:52:44] ppocr INFO: epoch: [932/1500], global_step: 2796, lr: 0.001000, loss: 1.222816, loss_shrink_maps: 0.614742, loss_threshold_maps: 0.492556, loss_binary_maps: 0.122265, avg_reader_cost: 1.58651 s, avg_batch_cost: 1.86155 s, avg_samples: 12.5, ips: 6.71484 samples/s, eta: 2:52:40
[2024/07/28 01:52:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:52:53] ppocr INFO: epoch: [933/1500], global_step: 2799, lr: 0.001000, loss: 1.231124, loss_shrink_maps: 0.618975, loss_threshold_maps: 0.490042, loss_binary_maps: 0.123384, avg_reader_cost: 1.70305 s, avg_batch_cost: 1.97547 s, avg_samples: 12.5, ips: 6.32762 samples/s, eta: 2:52:23
[2024/07/28 01:52:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:53:01] ppocr INFO: epoch: [934/1500], global_step: 2800, lr: 0.001000, loss: 1.213244, loss_shrink_maps: 0.601092, loss_threshold_maps: 0.482847, loss_binary_maps: 0.119620, avg_reader_cost: 0.44217 s, avg_batch_cost: 0.52605 s, avg_samples: 4.8, ips: 9.12466 samples/s, eta: 2:52:16
[2024/07/28 01:53:03] ppocr INFO: epoch: [934/1500], global_step: 2802, lr: 0.001000, loss: 1.231124, loss_shrink_maps: 0.618975, loss_threshold_maps: 0.490042, loss_binary_maps: 0.123384, avg_reader_cost: 1.14489 s, avg_batch_cost: 1.29215 s, avg_samples: 7.7, ips: 5.95904 samples/s, eta: 2:52:04
[2024/07/28 01:53:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:53:12] ppocr INFO: epoch: [935/1500], global_step: 2805, lr: 0.001000, loss: 1.254550, loss_shrink_maps: 0.624179, loss_threshold_maps: 0.498474, loss_binary_maps: 0.124138, avg_reader_cost: 1.58406 s, avg_batch_cost: 1.81300 s, avg_samples: 12.5, ips: 6.89467 samples/s, eta: 2:51:46
[2024/07/28 01:53:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:53:21] ppocr INFO: epoch: [936/1500], global_step: 2808, lr: 0.001000, loss: 1.290953, loss_shrink_maps: 0.652794, loss_threshold_maps: 0.500319, loss_binary_maps: 0.129869, avg_reader_cost: 1.55354 s, avg_batch_cost: 1.79958 s, avg_samples: 12.5, ips: 6.94606 samples/s, eta: 2:51:28
[2024/07/28 01:53:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:53:30] ppocr INFO: epoch: [937/1500], global_step: 2810, lr: 0.001000, loss: 1.301866, loss_shrink_maps: 0.671115, loss_threshold_maps: 0.515141, loss_binary_maps: 0.133882, avg_reader_cost: 0.96141 s, avg_batch_cost: 1.14809 s, avg_samples: 9.6, ips: 8.36168 samples/s, eta: 2:51:15
[2024/07/28 01:53:30] ppocr INFO: epoch: [937/1500], global_step: 2811, lr: 0.001000, loss: 1.301866, loss_shrink_maps: 0.671115, loss_threshold_maps: 0.514192, loss_binary_maps: 0.133882, avg_reader_cost: 0.61922 s, avg_batch_cost: 0.67390 s, avg_samples: 2.9, ips: 4.30329 samples/s, eta: 2:51:09
[2024/07/28 01:53:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:53:39] ppocr INFO: epoch: [938/1500], global_step: 2814, lr: 0.001000, loss: 1.277455, loss_shrink_maps: 0.643709, loss_threshold_maps: 0.508986, loss_binary_maps: 0.127941, avg_reader_cost: 1.59786 s, avg_batch_cost: 1.83886 s, avg_samples: 12.5, ips: 6.79769 samples/s, eta: 2:50:51
[2024/07/28 01:53:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:53:48] ppocr INFO: epoch: [939/1500], global_step: 2817, lr: 0.001000, loss: 1.236163, loss_shrink_maps: 0.612401, loss_threshold_maps: 0.492942, loss_binary_maps: 0.121750, avg_reader_cost: 1.53506 s, avg_batch_cost: 1.77095 s, avg_samples: 12.5, ips: 7.05837 samples/s, eta: 2:50:33
[2024/07/28 01:53:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:53:57] ppocr INFO: epoch: [940/1500], global_step: 2820, lr: 0.001000, loss: 1.292886, loss_shrink_maps: 0.654999, loss_threshold_maps: 0.508612, loss_binary_maps: 0.130459, avg_reader_cost: 1.52250 s, avg_batch_cost: 1.76385 s, avg_samples: 12.5, ips: 7.08676 samples/s, eta: 2:50:14

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<01:07,  7.43it/s]
eval model::   1%|          | 4/500 [00:00<00:32, 15.14it/s]
eval model::   1%|          | 6/500 [00:00<00:31, 15.65it/s]
eval model::   2%|▏         | 8/500 [00:00<00:32, 15.26it/s]
eval model::   2%|▏         | 11/500 [00:00<00:29, 16.39it/s]
eval model::   3%|▎         | 14/500 [00:00<00:27, 17.39it/s]
eval model::   3%|▎         | 17/500 [00:00<00:25, 19.31it/s]
eval model::   4%|▍         | 19/500 [00:01<00:27, 17.56it/s]
eval model::   4%|▍         | 22/500 [00:01<00:25, 18.88it/s]
eval model::   5%|▍         | 24/500 [00:01<00:27, 17.26it/s]
eval model::   5%|▌         | 26/500 [00:01<00:28, 16.57it/s]
eval model::   6%|▌         | 29/500 [00:01<00:25, 18.41it/s]
eval model::   6%|▌         | 31/500 [00:01<00:27, 17.05it/s]
eval model::   7%|▋         | 34/500 [00:01<00:27, 17.15it/s]
eval model::   7%|▋         | 36/500 [00:02<00:28, 16.49it/s]
eval model::   8%|▊         | 38/500 [00:02<00:28, 16.13it/s]
eval model::   8%|▊         | 40/500 [00:02<00:29, 15.43it/s]
eval model::   8%|▊         | 42/500 [00:02<00:31, 14.49it/s]
eval model::   9%|▉         | 44/500 [00:02<00:29, 15.37it/s]
eval model::   9%|▉         | 46/500 [00:02<00:31, 14.28it/s]
eval model::  10%|▉         | 49/500 [00:02<00:27, 16.66it/s]
eval model::  10%|█         | 52/500 [00:03<00:23, 18.68it/s]
eval model::  11%|█         | 55/500 [00:03<00:21, 20.75it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:22, 19.26it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:26, 16.61it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:29, 14.59it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:25, 17.00it/s]
eval model::  14%|█▍        | 69/500 [00:04<00:22, 19.32it/s]
eval model::  14%|█▍        | 72/500 [00:04<00:20, 21.05it/s]
eval model::  15%|█▌        | 75/500 [00:04<00:20, 21.04it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:19, 21.93it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:18, 23.12it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:17, 23.81it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:19, 21.68it/s]
eval model::  18%|█▊        | 90/500 [00:05<00:21, 19.12it/s]
eval model::  19%|█▊        | 93/500 [00:05<00:22, 18.49it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:19, 20.29it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:18, 21.24it/s]
eval model::  20%|██        | 102/500 [00:05<00:19, 20.87it/s]
eval model::  21%|██        | 105/500 [00:05<00:18, 21.23it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:19, 20.14it/s]
eval model::  22%|██▏       | 111/500 [00:06<00:19, 20.11it/s]
eval model::  23%|██▎       | 115/500 [00:06<00:17, 22.10it/s]
eval model::  24%|██▍       | 119/500 [00:06<00:16, 22.97it/s]
eval model::  24%|██▍       | 122/500 [00:06<00:16, 22.84it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:21, 17.33it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:19, 19.01it/s]
eval model::  26%|██▌       | 131/500 [00:07<00:19, 18.65it/s]
eval model::  27%|██▋       | 134/500 [00:07<00:19, 18.82it/s]
eval model::  27%|██▋       | 137/500 [00:07<00:18, 19.68it/s]
eval model::  28%|██▊       | 140/500 [00:07<00:18, 19.73it/s]
eval model::  29%|██▊       | 143/500 [00:07<00:16, 21.01it/s]
eval model::  29%|██▉       | 146/500 [00:07<00:19, 18.32it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:20, 17.47it/s]
eval model::  30%|███       | 151/500 [00:08<00:20, 17.07it/s]
eval model::  31%|███       | 155/500 [00:08<00:17, 20.25it/s]
eval model::  32%|███▏      | 158/500 [00:08<00:15, 22.16it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:22, 15.15it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:22, 15.16it/s]
eval model::  33%|███▎      | 165/500 [00:08<00:21, 15.85it/s]
eval model::  34%|███▎      | 168/500 [00:09<00:19, 17.20it/s]
eval model::  34%|███▍      | 171/500 [00:09<00:18, 17.72it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:19, 16.41it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:19, 16.85it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:18, 17.81it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:19, 15.96it/s]
eval model::  37%|███▋      | 184/500 [00:10<00:17, 17.82it/s]
eval model::  37%|███▋      | 187/500 [00:10<00:16, 19.06it/s]
eval model::  38%|███▊      | 190/500 [00:10<00:15, 20.27it/s]
eval model::  39%|███▊      | 193/500 [00:10<00:13, 21.94it/s]
eval model::  39%|███▉      | 196/500 [00:10<00:14, 20.56it/s]
eval model::  40%|███▉      | 199/500 [00:10<00:13, 22.20it/s]
eval model::  40%|████      | 202/500 [00:10<00:12, 23.17it/s]
eval model::  41%|████      | 205/500 [00:11<00:20, 14.43it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:18, 15.63it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:18, 15.75it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:16, 17.18it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:17, 15.87it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:19, 14.22it/s]
eval model::  44%|████▍     | 220/500 [00:12<00:16, 16.52it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:18, 15.14it/s]
eval model::  45%|████▌     | 225/500 [00:12<00:15, 18.14it/s]
eval model::  45%|████▌     | 227/500 [00:12<00:14, 18.53it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:12, 21.34it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:11, 22.65it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:11, 22.68it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:11, 23.02it/s]
eval model::  48%|████▊     | 242/500 [00:13<00:13, 19.20it/s]
eval model::  49%|████▉     | 245/500 [00:13<00:12, 20.08it/s]
eval model::  50%|████▉     | 248/500 [00:13<00:11, 21.83it/s]
eval model::  50%|█████     | 251/500 [00:13<00:12, 20.67it/s]
eval model::  51%|█████     | 254/500 [00:13<00:11, 21.72it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:10, 23.52it/s]
eval model::  52%|█████▏    | 261/500 [00:13<00:10, 23.79it/s]
eval model::  53%|█████▎    | 264/500 [00:14<00:11, 20.89it/s]
eval model::  53%|█████▎    | 267/500 [00:14<00:10, 21.42it/s]
eval model::  54%|█████▍    | 270/500 [00:14<00:12, 18.73it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:12, 18.34it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:12, 17.83it/s]
eval model::  55%|█████▌    | 277/500 [00:14<00:12, 17.93it/s]
eval model::  56%|█████▌    | 279/500 [00:15<00:12, 17.67it/s]
eval model::  56%|█████▋    | 282/500 [00:15<00:11, 19.65it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:20, 10.27it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:18, 11.50it/s]
eval model::  58%|█████▊    | 290/500 [00:15<00:14, 14.14it/s]
eval model::  58%|█████▊    | 292/500 [00:16<00:14, 14.71it/s]
eval model::  59%|█████▉    | 294/500 [00:16<00:13, 15.31it/s]
eval model::  59%|█████▉    | 296/500 [00:16<00:14, 14.06it/s]
eval model::  60%|█████▉    | 299/500 [00:16<00:11, 17.23it/s]
eval model::  60%|██████    | 301/500 [00:16<00:12, 15.77it/s]
eval model::  61%|██████    | 304/500 [00:16<00:11, 16.91it/s]
eval model::  61%|██████▏   | 307/500 [00:16<00:10, 18.89it/s]
eval model::  62%|██████▏   | 310/500 [00:16<00:09, 20.65it/s]
eval model::  63%|██████▎   | 313/500 [00:17<00:09, 19.50it/s]
eval model::  63%|██████▎   | 316/500 [00:17<00:09, 19.40it/s]
eval model::  64%|██████▍   | 319/500 [00:17<00:08, 20.44it/s]
eval model::  64%|██████▍   | 322/500 [00:17<00:09, 19.62it/s]
eval model::  65%|██████▌   | 325/500 [00:17<00:08, 21.65it/s]
eval model::  66%|██████▌   | 328/500 [00:17<00:07, 22.12it/s]
eval model::  66%|██████▌   | 331/500 [00:17<00:07, 23.15it/s]
eval model::  67%|██████▋   | 334/500 [00:18<00:06, 24.63it/s]
eval model::  67%|██████▋   | 337/500 [00:18<00:07, 23.23it/s]
eval model::  68%|██████▊   | 340/500 [00:18<00:10, 15.80it/s]
eval model::  69%|██████▊   | 343/500 [00:18<00:09, 17.30it/s]
eval model::  69%|██████▉   | 346/500 [00:18<00:08, 18.58it/s]
eval model::  70%|██████▉   | 349/500 [00:18<00:07, 20.20it/s]
eval model::  70%|███████   | 352/500 [00:19<00:06, 21.32it/s]
eval model::  71%|███████   | 355/500 [00:19<00:06, 21.06it/s]
eval model::  72%|███████▏  | 358/500 [00:19<00:06, 21.44it/s]
eval model::  72%|███████▏  | 361/500 [00:19<00:07, 19.71it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:07, 18.38it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:07, 18.01it/s]
eval model::  74%|███████▍  | 369/500 [00:19<00:06, 19.24it/s]
eval model::  74%|███████▍  | 372/500 [00:20<00:06, 19.37it/s]
eval model::  75%|███████▌  | 375/500 [00:20<00:06, 20.62it/s]
eval model::  76%|███████▌  | 378/500 [00:20<00:05, 22.19it/s]
eval model::  76%|███████▌  | 381/500 [00:20<00:05, 20.70it/s]
eval model::  77%|███████▋  | 384/500 [00:20<00:05, 22.10it/s]
eval model::  77%|███████▋  | 387/500 [00:21<00:08, 13.26it/s]
eval model::  78%|███████▊  | 389/500 [00:21<00:07, 14.28it/s]
eval model::  78%|███████▊  | 391/500 [00:21<00:07, 14.60it/s]
eval model::  79%|███████▊  | 393/500 [00:21<00:06, 15.60it/s]
eval model::  79%|███████▉  | 395/500 [00:21<00:06, 16.52it/s]
eval model::  80%|███████▉  | 398/500 [00:21<00:05, 19.42it/s]
eval model::  80%|████████  | 401/500 [00:21<00:05, 17.63it/s]
eval model::  81%|████████  | 404/500 [00:21<00:04, 20.00it/s]
eval model::  81%|████████▏ | 407/500 [00:22<00:04, 21.16it/s]
eval model::  82%|████████▏ | 410/500 [00:22<00:04, 22.41it/s]
eval model::  83%|████████▎ | 413/500 [00:22<00:03, 21.91it/s]
eval model::  83%|████████▎ | 416/500 [00:22<00:03, 21.10it/s]
eval model::  84%|████████▍ | 419/500 [00:22<00:03, 20.30it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:05, 14.88it/s]
eval model::  85%|████████▍ | 424/500 [00:23<00:05, 13.97it/s]
eval model::  85%|████████▌ | 426/500 [00:23<00:05, 14.60it/s]
eval model::  86%|████████▌ | 429/500 [00:23<00:04, 16.19it/s]
eval model::  86%|████████▌ | 431/500 [00:23<00:04, 15.54it/s]
eval model::  87%|████████▋ | 434/500 [00:23<00:03, 18.10it/s]
eval model::  87%|████████▋ | 437/500 [00:23<00:03, 18.94it/s]
eval model::  88%|████████▊ | 440/500 [00:23<00:03, 18.59it/s]
eval model::  89%|████████▊ | 443/500 [00:24<00:02, 20.87it/s]
eval model::  89%|████████▉ | 446/500 [00:24<00:02, 21.60it/s]
eval model::  90%|████████▉ | 449/500 [00:24<00:02, 20.51it/s]
eval model::  90%|█████████ | 452/500 [00:24<00:02, 21.71it/s]
eval model::  91%|█████████ | 455/500 [00:24<00:02, 22.18it/s]
eval model::  92%|█████████▏| 458/500 [00:24<00:01, 22.37it/s]
eval model::  92%|█████████▏| 461/500 [00:24<00:01, 20.92it/s]
eval model::  93%|█████████▎| 464/500 [00:25<00:02, 17.32it/s]
eval model::  93%|█████████▎| 466/500 [00:25<00:01, 17.09it/s]
eval model::  94%|█████████▎| 468/500 [00:25<00:01, 17.54it/s]
eval model::  94%|█████████▍| 471/500 [00:25<00:01, 19.65it/s]
eval model::  95%|█████████▍| 474/500 [00:25<00:01, 18.88it/s]
eval model::  95%|█████████▌| 477/500 [00:25<00:01, 20.72it/s]
eval model::  96%|█████████▌| 480/500 [00:25<00:00, 21.36it/s]
eval model::  97%|█████████▋| 483/500 [00:26<00:00, 21.48it/s]
eval model::  97%|█████████▋| 486/500 [00:26<00:00, 20.64it/s]
eval model::  98%|█████████▊| 489/500 [00:26<00:00, 21.37it/s]
eval model::  98%|█████████▊| 492/500 [00:26<00:00, 18.30it/s]
eval model::  99%|█████████▉| 495/500 [00:26<00:00, 19.77it/s]
eval model:: 100%|█████████▉| 498/500 [00:26<00:00, 21.91it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.63it/s]
[2024/07/28 01:54:24] ppocr INFO: cur metric, precision: 0.7254164427727029, recall: 0.6499759268175253, hmean: 0.6856272219400711, fps: 44.36748244379876
[2024/07/28 01:54:24] ppocr INFO: best metric, hmean: 0.7048391183177097, precision: 0.7438502673796792, recall: 0.6697159364467983, fps: 46.08540547152116, best_epoch: 580
[2024/07/28 01:54:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:54:32] ppocr INFO: epoch: [941/1500], global_step: 2823, lr: 0.001000, loss: 1.292886, loss_shrink_maps: 0.654999, loss_threshold_maps: 0.508612, loss_binary_maps: 0.130459, avg_reader_cost: 1.47972 s, avg_batch_cost: 1.71284 s, avg_samples: 12.5, ips: 7.29780 samples/s, eta: 2:49:55
[2024/07/28 01:54:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:54:41] ppocr INFO: epoch: [942/1500], global_step: 2826, lr: 0.001000, loss: 1.276544, loss_shrink_maps: 0.647546, loss_threshold_maps: 0.497301, loss_binary_maps: 0.128735, avg_reader_cost: 1.57573 s, avg_batch_cost: 1.81786 s, avg_samples: 12.5, ips: 6.87623 samples/s, eta: 2:49:37
[2024/07/28 01:54:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:54:50] ppocr INFO: epoch: [943/1500], global_step: 2829, lr: 0.001000, loss: 1.261449, loss_shrink_maps: 0.637255, loss_threshold_maps: 0.488457, loss_binary_maps: 0.127065, avg_reader_cost: 1.58494 s, avg_batch_cost: 1.81422 s, avg_samples: 12.5, ips: 6.89003 samples/s, eta: 2:49:18
[2024/07/28 01:54:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:54:58] ppocr INFO: epoch: [944/1500], global_step: 2830, lr: 0.001000, loss: 1.276544, loss_shrink_maps: 0.647546, loss_threshold_maps: 0.488457, loss_binary_maps: 0.128735, avg_reader_cost: 0.41179 s, avg_batch_cost: 0.52457 s, avg_samples: 4.8, ips: 9.15044 samples/s, eta: 2:49:12
[2024/07/28 01:54:59] ppocr INFO: epoch: [944/1500], global_step: 2832, lr: 0.001000, loss: 1.270631, loss_shrink_maps: 0.637255, loss_threshold_maps: 0.488457, loss_binary_maps: 0.127065, avg_reader_cost: 1.14056 s, avg_batch_cost: 1.28624 s, avg_samples: 7.7, ips: 5.98645 samples/s, eta: 2:49:00
[2024/07/28 01:55:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:55:09] ppocr INFO: epoch: [945/1500], global_step: 2835, lr: 0.001000, loss: 1.237921, loss_shrink_maps: 0.627256, loss_threshold_maps: 0.497357, loss_binary_maps: 0.125378, avg_reader_cost: 1.61883 s, avg_batch_cost: 1.84703 s, avg_samples: 12.5, ips: 6.76762 samples/s, eta: 2:48:42
[2024/07/28 01:55:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:55:18] ppocr INFO: epoch: [946/1500], global_step: 2838, lr: 0.001000, loss: 1.237921, loss_shrink_maps: 0.627256, loss_threshold_maps: 0.497020, loss_binary_maps: 0.125378, avg_reader_cost: 1.66031 s, avg_batch_cost: 2.00550 s, avg_samples: 12.5, ips: 6.23286 samples/s, eta: 2:48:25
[2024/07/28 01:55:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:55:27] ppocr INFO: epoch: [947/1500], global_step: 2840, lr: 0.001000, loss: 1.237921, loss_shrink_maps: 0.627256, loss_threshold_maps: 0.506312, loss_binary_maps: 0.125378, avg_reader_cost: 1.05666 s, avg_batch_cost: 1.23278 s, avg_samples: 9.6, ips: 7.78728 samples/s, eta: 2:48:13
[2024/07/28 01:55:28] ppocr INFO: epoch: [947/1500], global_step: 2841, lr: 0.001000, loss: 1.268462, loss_shrink_maps: 0.635506, loss_threshold_maps: 0.506792, loss_binary_maps: 0.126644, avg_reader_cost: 0.66227 s, avg_batch_cost: 0.71698 s, avg_samples: 2.9, ips: 4.04476 samples/s, eta: 2:48:07
[2024/07/28 01:55:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:55:37] ppocr INFO: epoch: [948/1500], global_step: 2844, lr: 0.001000, loss: 1.268462, loss_shrink_maps: 0.635506, loss_threshold_maps: 0.506792, loss_binary_maps: 0.126644, avg_reader_cost: 1.55183 s, avg_batch_cost: 1.78141 s, avg_samples: 12.5, ips: 7.01691 samples/s, eta: 2:47:49
[2024/07/28 01:55:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:55:46] ppocr INFO: epoch: [949/1500], global_step: 2847, lr: 0.001000, loss: 1.286148, loss_shrink_maps: 0.650028, loss_threshold_maps: 0.509279, loss_binary_maps: 0.129506, avg_reader_cost: 1.53601 s, avg_batch_cost: 1.77523 s, avg_samples: 12.5, ips: 7.04134 samples/s, eta: 2:47:30
[2024/07/28 01:55:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:55:55] ppocr INFO: epoch: [950/1500], global_step: 2850, lr: 0.001000, loss: 1.279020, loss_shrink_maps: 0.637894, loss_threshold_maps: 0.508371, loss_binary_maps: 0.127115, avg_reader_cost: 1.52579 s, avg_batch_cost: 1.76213 s, avg_samples: 12.5, ips: 7.09368 samples/s, eta: 2:47:12
[2024/07/28 01:55:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:56:04] ppocr INFO: epoch: [951/1500], global_step: 2853, lr: 0.001000, loss: 1.274150, loss_shrink_maps: 0.637894, loss_threshold_maps: 0.506454, loss_binary_maps: 0.127115, avg_reader_cost: 1.53795 s, avg_batch_cost: 1.77122 s, avg_samples: 12.5, ips: 7.05727 samples/s, eta: 2:46:53
[2024/07/28 01:56:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:56:14] ppocr INFO: epoch: [952/1500], global_step: 2856, lr: 0.001000, loss: 1.279020, loss_shrink_maps: 0.650028, loss_threshold_maps: 0.508371, loss_binary_maps: 0.129506, avg_reader_cost: 1.66165 s, avg_batch_cost: 1.89053 s, avg_samples: 12.5, ips: 6.61191 samples/s, eta: 2:46:35
[2024/07/28 01:56:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:56:23] ppocr INFO: epoch: [953/1500], global_step: 2859, lr: 0.001000, loss: 1.273222, loss_shrink_maps: 0.641046, loss_threshold_maps: 0.505898, loss_binary_maps: 0.128084, avg_reader_cost: 1.51852 s, avg_batch_cost: 1.76481 s, avg_samples: 12.5, ips: 7.08293 samples/s, eta: 2:46:17
[2024/07/28 01:56:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:56:31] ppocr INFO: epoch: [954/1500], global_step: 2860, lr: 0.001000, loss: 1.273222, loss_shrink_maps: 0.642473, loss_threshold_maps: 0.507334, loss_binary_maps: 0.128084, avg_reader_cost: 0.38194 s, avg_batch_cost: 0.55702 s, avg_samples: 4.8, ips: 8.61724 samples/s, eta: 2:46:10
[2024/07/28 01:56:32] ppocr INFO: epoch: [954/1500], global_step: 2862, lr: 0.001000, loss: 1.261507, loss_shrink_maps: 0.626826, loss_threshold_maps: 0.501068, loss_binary_maps: 0.125198, avg_reader_cost: 1.20507 s, avg_batch_cost: 1.35055 s, avg_samples: 7.7, ips: 5.70136 samples/s, eta: 2:45:59
[2024/07/28 01:56:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:56:41] ppocr INFO: epoch: [955/1500], global_step: 2865, lr: 0.001000, loss: 1.261507, loss_shrink_maps: 0.630079, loss_threshold_maps: 0.501068, loss_binary_maps: 0.125524, avg_reader_cost: 1.48620 s, avg_batch_cost: 1.71662 s, avg_samples: 12.5, ips: 7.28174 samples/s, eta: 2:45:40
[2024/07/28 01:56:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:56:51] ppocr INFO: epoch: [956/1500], global_step: 2868, lr: 0.001000, loss: 1.271223, loss_shrink_maps: 0.646896, loss_threshold_maps: 0.511668, loss_binary_maps: 0.128879, avg_reader_cost: 1.57854 s, avg_batch_cost: 1.82579 s, avg_samples: 12.5, ips: 6.84636 samples/s, eta: 2:45:22
[2024/07/28 01:56:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:56:59] ppocr INFO: epoch: [957/1500], global_step: 2870, lr: 0.001000, loss: 1.271223, loss_shrink_maps: 0.637942, loss_threshold_maps: 0.510955, loss_binary_maps: 0.127022, avg_reader_cost: 0.92808 s, avg_batch_cost: 1.12166 s, avg_samples: 9.6, ips: 8.55876 samples/s, eta: 2:45:09
[2024/07/28 01:57:00] ppocr INFO: epoch: [957/1500], global_step: 2871, lr: 0.001000, loss: 1.273222, loss_shrink_maps: 0.649421, loss_threshold_maps: 0.510955, loss_binary_maps: 0.129555, avg_reader_cost: 0.60655 s, avg_batch_cost: 0.66186 s, avg_samples: 2.9, ips: 4.38156 samples/s, eta: 2:45:03
[2024/07/28 01:57:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:57:09] ppocr INFO: epoch: [958/1500], global_step: 2874, lr: 0.001000, loss: 1.272796, loss_shrink_maps: 0.637942, loss_threshold_maps: 0.506949, loss_binary_maps: 0.127022, avg_reader_cost: 1.52122 s, avg_batch_cost: 1.75135 s, avg_samples: 12.5, ips: 7.13734 samples/s, eta: 2:44:45
[2024/07/28 01:57:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:57:18] ppocr INFO: epoch: [959/1500], global_step: 2877, lr: 0.001000, loss: 1.277918, loss_shrink_maps: 0.647749, loss_threshold_maps: 0.505649, loss_binary_maps: 0.128940, avg_reader_cost: 1.59336 s, avg_batch_cost: 1.82368 s, avg_samples: 12.5, ips: 6.85427 samples/s, eta: 2:44:27
[2024/07/28 01:57:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:57:27] ppocr INFO: epoch: [960/1500], global_step: 2880, lr: 0.001000, loss: 1.275919, loss_shrink_maps: 0.637942, loss_threshold_maps: 0.504896, loss_binary_maps: 0.127022, avg_reader_cost: 1.55705 s, avg_batch_cost: 1.80457 s, avg_samples: 12.5, ips: 6.92687 samples/s, eta: 2:44:08

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:53,  9.34it/s]
eval model::   1%|          | 4/500 [00:00<00:26, 18.85it/s]
eval model::   1%|          | 6/500 [00:00<00:27, 17.88it/s]
eval model::   2%|▏         | 8/500 [00:00<00:28, 17.29it/s]
eval model::   2%|▏         | 11/500 [00:00<00:27, 17.94it/s]
eval model::   3%|▎         | 14/500 [00:00<00:26, 18.50it/s]
eval model::   4%|▎         | 18/500 [00:00<00:22, 21.18it/s]
eval model::   4%|▍         | 21/500 [00:01<00:25, 18.62it/s]
eval model::   5%|▍         | 24/500 [00:01<00:23, 20.15it/s]
eval model::   5%|▌         | 27/500 [00:01<00:23, 20.06it/s]
eval model::   6%|▌         | 30/500 [00:01<00:21, 21.60it/s]
eval model::   7%|▋         | 33/500 [00:01<00:23, 20.29it/s]
eval model::   7%|▋         | 36/500 [00:01<00:23, 19.74it/s]
eval model::   8%|▊         | 39/500 [00:02<00:25, 18.28it/s]
eval model::   8%|▊         | 42/500 [00:02<00:26, 17.41it/s]
eval model::   9%|▉         | 45/500 [00:02<00:23, 19.34it/s]
eval model::  10%|▉         | 48/500 [00:02<00:25, 17.48it/s]
eval model::  10%|█         | 50/500 [00:02<00:25, 17.90it/s]
eval model::  11%|█         | 53/500 [00:02<00:22, 19.88it/s]
eval model::  11%|█         | 56/500 [00:02<00:20, 21.22it/s]
eval model::  12%|█▏        | 59/500 [00:03<00:23, 19.07it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:28, 15.58it/s]
eval model::  13%|█▎        | 64/500 [00:03<00:27, 15.69it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:23, 18.16it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:22, 19.45it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:21, 20.10it/s]
eval model::  15%|█▌        | 76/500 [00:03<00:19, 21.68it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:20, 20.41it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:19, 21.04it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:19, 21.13it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:21, 19.59it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:22, 17.89it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:22, 17.84it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:20, 19.88it/s]
eval model::  20%|██        | 100/500 [00:05<00:19, 20.55it/s]
eval model::  21%|██        | 103/500 [00:05<00:18, 22.01it/s]
eval model::  21%|██        | 106/500 [00:05<00:17, 22.39it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:17, 22.01it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:19, 19.69it/s]
eval model::  23%|██▎       | 115/500 [00:05<00:19, 19.67it/s]
eval model::  24%|██▎       | 118/500 [00:06<00:18, 20.74it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:19, 19.51it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:20, 18.55it/s]
eval model::  25%|██▌       | 127/500 [00:06<00:18, 20.01it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:20, 18.29it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:20, 17.70it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:18, 19.59it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:17, 20.42it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:17, 20.86it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:16, 21.96it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:16, 20.80it/s]
eval model::  30%|███       | 150/500 [00:07<00:15, 22.46it/s]
eval model::  31%|███       | 153/500 [00:07<00:16, 20.78it/s]
eval model::  31%|███       | 156/500 [00:07<00:15, 22.35it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:15, 22.52it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:22, 15.11it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:21, 15.90it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:18, 17.84it/s]
eval model::  34%|███▍      | 170/500 [00:08<00:16, 19.97it/s]
eval model::  35%|███▍      | 173/500 [00:08<00:16, 19.26it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:18, 17.45it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:16, 19.95it/s]
eval model::  36%|███▋      | 182/500 [00:09<00:18, 17.31it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:15, 20.83it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:14, 21.75it/s]
eval model::  38%|███▊      | 192/500 [00:09<00:13, 23.12it/s]
eval model::  39%|███▉      | 195/500 [00:09<00:12, 24.08it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:12, 24.17it/s]
eval model::  40%|████      | 201/500 [00:10<00:13, 21.44it/s]
eval model::  41%|████      | 204/500 [00:10<00:13, 22.11it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:21, 13.55it/s]
eval model::  42%|████▏     | 209/500 [00:10<00:21, 13.43it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:21, 13.50it/s]
eval model::  43%|████▎     | 214/500 [00:11<00:17, 15.89it/s]
eval model::  43%|████▎     | 216/500 [00:11<00:19, 14.75it/s]
eval model::  44%|████▎     | 218/500 [00:11<00:20, 13.67it/s]
eval model::  44%|████▍     | 221/500 [00:11<00:19, 14.20it/s]
eval model::  45%|████▍     | 224/500 [00:11<00:16, 16.66it/s]
eval model::  45%|████▌     | 227/500 [00:11<00:14, 19.45it/s]
eval model::  46%|████▋     | 232/500 [00:12<00:10, 25.05it/s]
eval model::  47%|████▋     | 235/500 [00:12<00:10, 25.48it/s]
eval model::  48%|████▊     | 238/500 [00:12<00:09, 26.49it/s]
eval model::  48%|████▊     | 241/500 [00:12<00:09, 26.86it/s]
eval model::  49%|████▉     | 244/500 [00:12<00:11, 21.46it/s]
eval model::  49%|████▉     | 247/500 [00:12<00:11, 22.62it/s]
eval model::  50%|█████     | 250/500 [00:12<00:11, 21.58it/s]
eval model::  51%|█████     | 253/500 [00:12<00:10, 22.86it/s]
eval model::  51%|█████     | 256/500 [00:13<00:11, 20.42it/s]
eval model::  52%|█████▏    | 259/500 [00:13<00:10, 22.23it/s]
eval model::  52%|█████▏    | 262/500 [00:13<00:11, 20.65it/s]
eval model::  53%|█████▎    | 265/500 [00:13<00:11, 20.39it/s]
eval model::  54%|█████▎    | 268/500 [00:13<00:10, 21.55it/s]
eval model::  54%|█████▍    | 271/500 [00:13<00:11, 20.12it/s]
eval model::  55%|█████▍    | 274/500 [00:14<00:11, 18.88it/s]
eval model::  55%|█████▌    | 276/500 [00:14<00:13, 16.04it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:13, 16.53it/s]
eval model::  56%|█████▌    | 280/500 [00:14<00:13, 16.55it/s]
eval model::  56%|█████▋    | 282/500 [00:14<00:12, 17.08it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:22,  9.69it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:19, 11.08it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:13, 15.31it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:13, 14.92it/s]
eval model::  59%|█████▉    | 296/500 [00:15<00:14, 13.61it/s]
eval model::  60%|██████    | 300/500 [00:15<00:12, 16.03it/s]
eval model::  60%|██████    | 302/500 [00:16<00:11, 16.56it/s]
eval model::  61%|██████    | 305/500 [00:16<00:10, 18.87it/s]
eval model::  62%|██████▏   | 308/500 [00:16<00:09, 20.52it/s]
eval model::  62%|██████▏   | 311/500 [00:16<00:08, 21.57it/s]
eval model::  63%|██████▎   | 314/500 [00:16<00:08, 21.01it/s]
eval model::  63%|██████▎   | 317/500 [00:16<00:08, 22.43it/s]
eval model::  64%|██████▍   | 320/500 [00:16<00:07, 23.36it/s]
eval model::  65%|██████▍   | 323/500 [00:16<00:08, 20.43it/s]
eval model::  65%|██████▌   | 326/500 [00:17<00:08, 20.22it/s]
eval model::  66%|██████▌   | 329/500 [00:17<00:08, 19.39it/s]
eval model::  66%|██████▋   | 332/500 [00:17<00:09, 18.54it/s]
eval model::  67%|██████▋   | 335/500 [00:17<00:08, 19.86it/s]
eval model::  68%|██████▊   | 338/500 [00:17<00:09, 17.82it/s]
eval model::  68%|██████▊   | 340/500 [00:18<00:11, 13.52it/s]
eval model::  69%|██████▊   | 343/500 [00:18<00:10, 15.16it/s]
eval model::  69%|██████▉   | 346/500 [00:18<00:08, 17.17it/s]
eval model::  70%|██████▉   | 348/500 [00:18<00:08, 17.71it/s]
eval model::  70%|███████   | 351/500 [00:18<00:07, 19.08it/s]
eval model::  71%|███████   | 355/500 [00:18<00:06, 21.23it/s]
eval model::  72%|███████▏  | 358/500 [00:18<00:06, 20.47it/s]
eval model::  72%|███████▏  | 361/500 [00:19<00:07, 18.35it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:07, 17.81it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:08, 16.44it/s]
eval model::  74%|███████▍  | 369/500 [00:19<00:07, 18.15it/s]
eval model::  74%|███████▍  | 372/500 [00:19<00:06, 18.86it/s]
eval model::  75%|███████▌  | 375/500 [00:19<00:06, 20.64it/s]
eval model::  76%|███████▌  | 378/500 [00:19<00:05, 22.43it/s]
eval model::  76%|███████▌  | 381/500 [00:20<00:05, 21.96it/s]
eval model::  77%|███████▋  | 384/500 [00:20<00:05, 23.13it/s]
eval model::  77%|███████▋  | 387/500 [00:20<00:08, 13.98it/s]
eval model::  78%|███████▊  | 390/500 [00:20<00:06, 16.04it/s]
eval model::  79%|███████▊  | 393/500 [00:20<00:06, 16.46it/s]
eval model::  79%|███████▉  | 396/500 [00:21<00:05, 17.85it/s]
eval model::  80%|███████▉  | 399/500 [00:21<00:05, 18.85it/s]
eval model::  80%|████████  | 402/500 [00:21<00:05, 16.68it/s]
eval model::  81%|████████  | 405/500 [00:21<00:05, 18.85it/s]
eval model::  82%|████████▏ | 408/500 [00:21<00:04, 20.70it/s]
eval model::  82%|████████▏ | 411/500 [00:21<00:03, 22.37it/s]
eval model::  83%|████████▎ | 414/500 [00:21<00:03, 21.85it/s]
eval model::  83%|████████▎ | 417/500 [00:22<00:04, 18.34it/s]
eval model::  84%|████████▍ | 420/500 [00:22<00:05, 13.51it/s]
eval model::  85%|████████▍ | 423/500 [00:22<00:05, 15.26it/s]
eval model::  85%|████████▌ | 425/500 [00:22<00:05, 13.83it/s]
eval model::  86%|████████▌ | 428/500 [00:22<00:04, 15.49it/s]
eval model::  86%|████████▌ | 431/500 [00:23<00:04, 16.08it/s]
eval model::  87%|████████▋ | 434/500 [00:23<00:03, 18.27it/s]
eval model::  87%|████████▋ | 437/500 [00:23<00:03, 20.30it/s]
eval model::  88%|████████▊ | 440/500 [00:23<00:02, 21.54it/s]
eval model::  89%|████████▉ | 445/500 [00:23<00:02, 26.45it/s]
eval model::  90%|████████▉ | 448/500 [00:23<00:02, 25.08it/s]
eval model::  90%|█████████ | 451/500 [00:23<00:02, 24.41it/s]
eval model::  91%|█████████ | 454/500 [00:24<00:01, 23.13it/s]
eval model::  91%|█████████▏| 457/500 [00:24<00:02, 21.38it/s]
eval model::  92%|█████████▏| 460/500 [00:24<00:01, 21.07it/s]
eval model::  93%|█████████▎| 463/500 [00:24<00:01, 18.85it/s]
eval model::  93%|█████████▎| 465/500 [00:24<00:02, 17.16it/s]
eval model::  94%|█████████▎| 468/500 [00:24<00:01, 18.51it/s]
eval model::  94%|█████████▍| 471/500 [00:24<00:01, 19.98it/s]
eval model::  95%|█████████▍| 474/500 [00:25<00:01, 20.05it/s]
eval model::  95%|█████████▌| 477/500 [00:25<00:01, 19.62it/s]
eval model::  96%|█████████▌| 479/500 [00:25<00:01, 18.72it/s]
eval model::  96%|█████████▋| 482/500 [00:25<00:00, 19.71it/s]
eval model::  97%|█████████▋| 485/500 [00:25<00:00, 20.79it/s]
eval model::  98%|█████████▊| 488/500 [00:25<00:00, 19.48it/s]
eval model::  98%|█████████▊| 490/500 [00:25<00:00, 19.37it/s]
eval model::  98%|█████████▊| 492/500 [00:26<00:00, 15.89it/s]
eval model::  99%|█████████▉| 495/500 [00:26<00:00, 17.13it/s]
eval model:: 100%|█████████▉| 498/500 [00:26<00:00, 19.79it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.92it/s]
[2024/07/28 01:57:54] ppocr INFO: cur metric, precision: 0.7571902654867256, recall: 0.6591237361579201, hmean: 0.7047619047619048, fps: 44.329671492959086
[2024/07/28 01:57:54] ppocr INFO: best metric, hmean: 0.7048391183177097, precision: 0.7438502673796792, recall: 0.6697159364467983, fps: 46.08540547152116, best_epoch: 580
[2024/07/28 01:57:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:58:03] ppocr INFO: epoch: [961/1500], global_step: 2883, lr: 0.001000, loss: 1.281718, loss_shrink_maps: 0.643205, loss_threshold_maps: 0.504896, loss_binary_maps: 0.127900, avg_reader_cost: 2.00777 s, avg_batch_cost: 2.38727 s, avg_samples: 12.5, ips: 5.23612 samples/s, eta: 2:43:53
[2024/07/28 01:58:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:58:12] ppocr INFO: epoch: [962/1500], global_step: 2886, lr: 0.001000, loss: 1.275214, loss_shrink_maps: 0.641261, loss_threshold_maps: 0.500268, loss_binary_maps: 0.127737, avg_reader_cost: 1.54951 s, avg_batch_cost: 1.79849 s, avg_samples: 12.5, ips: 6.95027 samples/s, eta: 2:43:35
[2024/07/28 01:58:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:58:21] ppocr INFO: epoch: [963/1500], global_step: 2889, lr: 0.001000, loss: 1.251210, loss_shrink_maps: 0.636832, loss_threshold_maps: 0.492788, loss_binary_maps: 0.126717, avg_reader_cost: 1.54615 s, avg_batch_cost: 1.78390 s, avg_samples: 12.5, ips: 7.00711 samples/s, eta: 2:43:16
[2024/07/28 01:58:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:58:29] ppocr INFO: epoch: [964/1500], global_step: 2890, lr: 0.001000, loss: 1.263982, loss_shrink_maps: 0.643205, loss_threshold_maps: 0.498618, loss_binary_maps: 0.127900, avg_reader_cost: 0.43922 s, avg_batch_cost: 0.52141 s, avg_samples: 4.8, ips: 9.20587 samples/s, eta: 2:43:10
[2024/07/28 01:58:31] ppocr INFO: epoch: [964/1500], global_step: 2892, lr: 0.001000, loss: 1.251210, loss_shrink_maps: 0.636832, loss_threshold_maps: 0.493039, loss_binary_maps: 0.126717, avg_reader_cost: 1.13450 s, avg_batch_cost: 1.28060 s, avg_samples: 7.7, ips: 6.01279 samples/s, eta: 2:42:58
[2024/07/28 01:58:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:58:40] ppocr INFO: epoch: [965/1500], global_step: 2895, lr: 0.001000, loss: 1.251210, loss_shrink_maps: 0.636832, loss_threshold_maps: 0.493394, loss_binary_maps: 0.126717, avg_reader_cost: 1.55294 s, avg_batch_cost: 1.78954 s, avg_samples: 12.5, ips: 6.98505 samples/s, eta: 2:42:40
[2024/07/28 01:58:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:58:49] ppocr INFO: epoch: [966/1500], global_step: 2898, lr: 0.001000, loss: 1.251210, loss_shrink_maps: 0.636832, loss_threshold_maps: 0.493322, loss_binary_maps: 0.126674, avg_reader_cost: 1.55025 s, avg_batch_cost: 1.82072 s, avg_samples: 12.5, ips: 6.86542 samples/s, eta: 2:42:21
[2024/07/28 01:58:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:58:58] ppocr INFO: epoch: [967/1500], global_step: 2900, lr: 0.001000, loss: 1.251210, loss_shrink_maps: 0.635591, loss_threshold_maps: 0.493322, loss_binary_maps: 0.126581, avg_reader_cost: 0.93254 s, avg_batch_cost: 1.10887 s, avg_samples: 9.6, ips: 8.65743 samples/s, eta: 2:42:08
[2024/07/28 01:58:58] ppocr INFO: epoch: [967/1500], global_step: 2901, lr: 0.001000, loss: 1.251210, loss_shrink_maps: 0.635591, loss_threshold_maps: 0.493322, loss_binary_maps: 0.126581, avg_reader_cost: 0.60030 s, avg_batch_cost: 0.65527 s, avg_samples: 2.9, ips: 4.42565 samples/s, eta: 2:42:03
[2024/07/28 01:59:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:59:08] ppocr INFO: epoch: [968/1500], global_step: 2904, lr: 0.001000, loss: 1.261522, loss_shrink_maps: 0.635591, loss_threshold_maps: 0.493322, loss_binary_maps: 0.126581, avg_reader_cost: 1.57655 s, avg_batch_cost: 1.83291 s, avg_samples: 12.5, ips: 6.81975 samples/s, eta: 2:41:44
[2024/07/28 01:59:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:59:17] ppocr INFO: epoch: [969/1500], global_step: 2907, lr: 0.001000, loss: 1.249211, loss_shrink_maps: 0.623008, loss_threshold_maps: 0.491018, loss_binary_maps: 0.123978, avg_reader_cost: 1.58298 s, avg_batch_cost: 1.81136 s, avg_samples: 12.5, ips: 6.90090 samples/s, eta: 2:41:26
[2024/07/28 01:59:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:59:26] ppocr INFO: epoch: [970/1500], global_step: 2910, lr: 0.001000, loss: 1.214300, loss_shrink_maps: 0.609493, loss_threshold_maps: 0.488373, loss_binary_maps: 0.121476, avg_reader_cost: 1.62455 s, avg_batch_cost: 1.86396 s, avg_samples: 12.5, ips: 6.70615 samples/s, eta: 2:41:08
[2024/07/28 01:59:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:59:35] ppocr INFO: epoch: [971/1500], global_step: 2913, lr: 0.001000, loss: 1.226004, loss_shrink_maps: 0.617517, loss_threshold_maps: 0.486216, loss_binary_maps: 0.122952, avg_reader_cost: 1.57452 s, avg_batch_cost: 1.80333 s, avg_samples: 12.5, ips: 6.93163 samples/s, eta: 2:40:50
[2024/07/28 01:59:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:59:45] ppocr INFO: epoch: [972/1500], global_step: 2916, lr: 0.001000, loss: 1.277899, loss_shrink_maps: 0.641133, loss_threshold_maps: 0.494807, loss_binary_maps: 0.127595, avg_reader_cost: 1.52770 s, avg_batch_cost: 1.78718 s, avg_samples: 12.5, ips: 6.99426 samples/s, eta: 2:40:31
[2024/07/28 01:59:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 01:59:54] ppocr INFO: epoch: [973/1500], global_step: 2919, lr: 0.001000, loss: 1.257561, loss_shrink_maps: 0.643701, loss_threshold_maps: 0.490495, loss_binary_maps: 0.128308, avg_reader_cost: 1.55242 s, avg_batch_cost: 1.80680 s, avg_samples: 12.5, ips: 6.91832 samples/s, eta: 2:40:13
[2024/07/28 01:59:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:00:02] ppocr INFO: epoch: [974/1500], global_step: 2920, lr: 0.001000, loss: 1.262229, loss_shrink_maps: 0.643701, loss_threshold_maps: 0.494807, loss_binary_maps: 0.128308, avg_reader_cost: 0.44512 s, avg_batch_cost: 0.54449 s, avg_samples: 4.8, ips: 8.81557 samples/s, eta: 2:40:07
[2024/07/28 02:00:03] ppocr INFO: epoch: [974/1500], global_step: 2922, lr: 0.001000, loss: 1.232121, loss_shrink_maps: 0.625991, loss_threshold_maps: 0.490495, loss_binary_maps: 0.124649, avg_reader_cost: 1.18033 s, avg_batch_cost: 1.32613 s, avg_samples: 7.7, ips: 5.80635 samples/s, eta: 2:39:55
[2024/07/28 02:00:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:00:13] ppocr INFO: epoch: [975/1500], global_step: 2925, lr: 0.001000, loss: 1.231281, loss_shrink_maps: 0.618771, loss_threshold_maps: 0.494807, loss_binary_maps: 0.123133, avg_reader_cost: 1.51649 s, avg_batch_cost: 1.74534 s, avg_samples: 12.5, ips: 7.16192 samples/s, eta: 2:39:36
[2024/07/28 02:00:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:00:21] ppocr INFO: epoch: [976/1500], global_step: 2928, lr: 0.001000, loss: 1.235949, loss_shrink_maps: 0.625991, loss_threshold_maps: 0.495416, loss_binary_maps: 0.124649, avg_reader_cost: 1.50775 s, avg_batch_cost: 1.73842 s, avg_samples: 12.5, ips: 7.19044 samples/s, eta: 2:39:18
[2024/07/28 02:00:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:00:30] ppocr INFO: epoch: [977/1500], global_step: 2930, lr: 0.001000, loss: 1.262229, loss_shrink_maps: 0.651612, loss_threshold_maps: 0.507086, loss_binary_maps: 0.129770, avg_reader_cost: 0.97231 s, avg_batch_cost: 1.14543 s, avg_samples: 9.6, ips: 8.38113 samples/s, eta: 2:39:05
[2024/07/28 02:00:31] ppocr INFO: epoch: [977/1500], global_step: 2931, lr: 0.001000, loss: 1.284674, loss_shrink_maps: 0.652698, loss_threshold_maps: 0.513841, loss_binary_maps: 0.129770, avg_reader_cost: 0.61837 s, avg_batch_cost: 0.67324 s, avg_samples: 2.9, ips: 4.30754 samples/s, eta: 2:38:59
[2024/07/28 02:00:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:00:40] ppocr INFO: epoch: [978/1500], global_step: 2934, lr: 0.001000, loss: 1.235949, loss_shrink_maps: 0.624134, loss_threshold_maps: 0.507086, loss_binary_maps: 0.124175, avg_reader_cost: 1.49471 s, avg_batch_cost: 1.72860 s, avg_samples: 12.5, ips: 7.23131 samples/s, eta: 2:38:41
[2024/07/28 02:00:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:00:49] ppocr INFO: epoch: [979/1500], global_step: 2937, lr: 0.001000, loss: 1.250864, loss_shrink_maps: 0.630580, loss_threshold_maps: 0.505805, loss_binary_maps: 0.125706, avg_reader_cost: 1.58038 s, avg_batch_cost: 1.83596 s, avg_samples: 12.5, ips: 6.80843 samples/s, eta: 2:38:22
[2024/07/28 02:00:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:00:58] ppocr INFO: epoch: [980/1500], global_step: 2940, lr: 0.001000, loss: 1.227724, loss_shrink_maps: 0.605952, loss_threshold_maps: 0.491843, loss_binary_maps: 0.120496, avg_reader_cost: 1.52741 s, avg_batch_cost: 1.76647 s, avg_samples: 12.5, ips: 7.07627 samples/s, eta: 2:38:04

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:56,  8.90it/s]
eval model::   1%|          | 4/500 [00:00<00:26, 19.05it/s]
eval model::   1%|▏         | 7/500 [00:00<00:23, 21.19it/s]
eval model::   2%|▏         | 10/500 [00:00<00:23, 20.77it/s]
eval model::   3%|▎         | 13/500 [00:00<00:25, 18.77it/s]
eval model::   3%|▎         | 15/500 [00:00<00:26, 18.03it/s]
eval model::   4%|▎         | 18/500 [00:00<00:23, 20.82it/s]
eval model::   4%|▍         | 21/500 [00:01<00:24, 19.39it/s]
eval model::   5%|▍         | 24/500 [00:01<00:23, 20.65it/s]
eval model::   5%|▌         | 27/500 [00:01<00:22, 20.82it/s]
eval model::   6%|▌         | 30/500 [00:01<00:21, 22.29it/s]
eval model::   7%|▋         | 33/500 [00:01<00:23, 19.57it/s]
eval model::   7%|▋         | 36/500 [00:01<00:25, 18.28it/s]
eval model::   8%|▊         | 39/500 [00:02<00:26, 17.60it/s]
eval model::   8%|▊         | 42/500 [00:02<00:26, 17.24it/s]
eval model::   9%|▉         | 45/500 [00:02<00:25, 18.17it/s]
eval model::   9%|▉         | 47/500 [00:02<00:25, 17.72it/s]
eval model::  10%|█         | 50/500 [00:02<00:23, 19.30it/s]
eval model::  11%|█         | 53/500 [00:02<00:22, 19.77it/s]
eval model::  11%|█         | 56/500 [00:02<00:22, 19.32it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:24, 17.87it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:28, 15.61it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:27, 15.97it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:23, 18.19it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:21, 20.32it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:20, 20.86it/s]
eval model::  15%|█▌        | 75/500 [00:03<00:21, 19.93it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:19, 21.18it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:19, 21.74it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:19, 21.63it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:20, 20.27it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:22, 18.15it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:22, 18.24it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:20, 19.53it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:21, 18.92it/s]
eval model::  20%|██        | 101/500 [00:05<00:22, 18.13it/s]
eval model::  21%|██        | 104/500 [00:05<00:20, 19.58it/s]
eval model::  21%|██▏       | 107/500 [00:05<00:18, 20.82it/s]
eval model::  22%|██▏       | 110/500 [00:05<00:19, 19.78it/s]
eval model::  23%|██▎       | 113/500 [00:05<00:19, 20.08it/s]
eval model::  23%|██▎       | 116/500 [00:06<00:20, 19.07it/s]
eval model::  24%|██▍       | 119/500 [00:06<00:18, 20.81it/s]
eval model::  24%|██▍       | 122/500 [00:06<00:17, 21.30it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:20, 18.04it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:19, 19.50it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:21, 17.34it/s]
eval model::  27%|██▋       | 133/500 [00:07<00:22, 16.64it/s]
eval model::  27%|██▋       | 136/500 [00:07<00:20, 17.67it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:18, 19.13it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:18, 19.50it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:17, 20.65it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:18, 19.52it/s]
eval model::  30%|███       | 151/500 [00:07<00:20, 17.30it/s]
eval model::  31%|███       | 154/500 [00:08<00:17, 19.26it/s]
eval model::  32%|███▏      | 158/500 [00:08<00:15, 22.04it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:21, 16.14it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:20, 16.68it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:17, 18.90it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:17, 18.92it/s]
eval model::  34%|███▍      | 172/500 [00:09<00:17, 18.50it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:20, 15.92it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:19, 16.72it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:17, 18.32it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:20, 15.57it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:17, 17.92it/s]
eval model::  37%|███▋      | 187/500 [00:09<00:16, 18.72it/s]
eval model::  38%|███▊      | 190/500 [00:10<00:15, 20.11it/s]
eval model::  39%|███▊      | 193/500 [00:10<00:14, 21.66it/s]
eval model::  39%|███▉      | 196/500 [00:10<00:14, 20.43it/s]
eval model::  40%|███▉      | 199/500 [00:10<00:14, 21.13it/s]
eval model::  40%|████      | 202/500 [00:10<00:14, 20.86it/s]
eval model::  41%|████      | 205/500 [00:11<00:21, 13.65it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:19, 14.65it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:19, 14.59it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:17, 16.26it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:18, 15.04it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:20, 13.95it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:16, 16.69it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:20, 13.33it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:16, 16.27it/s]
eval model::  46%|████▌     | 229/500 [00:12<00:14, 18.81it/s]
eval model::  46%|████▋     | 232/500 [00:12<00:12, 20.96it/s]
eval model::  47%|████▋     | 235/500 [00:12<00:12, 20.41it/s]
eval model::  48%|████▊     | 238/500 [00:12<00:12, 21.80it/s]
eval model::  48%|████▊     | 241/500 [00:12<00:12, 20.97it/s]
eval model::  49%|████▉     | 244/500 [00:13<00:14, 17.72it/s]
eval model::  49%|████▉     | 247/500 [00:13<00:13, 19.01it/s]
eval model::  50%|█████     | 250/500 [00:13<00:13, 18.71it/s]
eval model::  51%|█████     | 253/500 [00:13<00:12, 19.63it/s]
eval model::  51%|█████     | 256/500 [00:13<00:12, 18.81it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:11, 21.34it/s]
eval model::  53%|█████▎    | 263/500 [00:14<00:11, 20.34it/s]
eval model::  53%|█████▎    | 266/500 [00:14<00:12, 19.49it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:12, 18.06it/s]
eval model::  54%|█████▍    | 271/500 [00:14<00:12, 18.34it/s]
eval model::  55%|█████▍    | 273/500 [00:14<00:12, 18.41it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:12, 17.43it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:11, 18.82it/s]
eval model::  56%|█████▌    | 281/500 [00:15<00:10, 20.22it/s]
eval model::  57%|█████▋    | 284/500 [00:15<00:10, 20.45it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:17, 12.22it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:13, 15.93it/s]
eval model::  59%|█████▉    | 294/500 [00:16<00:13, 15.66it/s]
eval model::  59%|█████▉    | 296/500 [00:16<00:15, 13.14it/s]
eval model::  60%|█████▉    | 299/500 [00:16<00:12, 15.67it/s]
eval model::  60%|██████    | 301/500 [00:16<00:13, 15.14it/s]
eval model::  61%|██████    | 304/500 [00:16<00:11, 16.57it/s]
eval model::  61%|██████▏   | 307/500 [00:16<00:10, 18.84it/s]
eval model::  62%|██████▏   | 310/500 [00:16<00:09, 19.79it/s]
eval model::  63%|██████▎   | 313/500 [00:17<00:08, 21.04it/s]
eval model::  63%|██████▎   | 316/500 [00:17<00:08, 20.85it/s]
eval model::  64%|██████▍   | 319/500 [00:17<00:07, 22.84it/s]
eval model::  64%|██████▍   | 322/500 [00:17<00:08, 21.80it/s]
eval model::  65%|██████▌   | 326/500 [00:17<00:07, 23.57it/s]
eval model::  66%|██████▌   | 329/500 [00:17<00:07, 22.06it/s]
eval model::  66%|██████▋   | 332/500 [00:17<00:07, 23.38it/s]
eval model::  67%|██████▋   | 336/500 [00:17<00:06, 24.25it/s]
eval model::  68%|██████▊   | 339/500 [00:18<00:07, 22.06it/s]
eval model::  68%|██████▊   | 342/500 [00:18<00:09, 16.60it/s]
eval model::  69%|██████▉   | 344/500 [00:18<00:09, 17.06it/s]
eval model::  69%|██████▉   | 347/500 [00:18<00:08, 18.87it/s]
eval model::  70%|███████   | 351/500 [00:18<00:06, 21.41it/s]
eval model::  71%|███████   | 354/500 [00:18<00:06, 21.30it/s]
eval model::  71%|███████▏  | 357/500 [00:19<00:07, 20.04it/s]
eval model::  72%|███████▏  | 360/500 [00:19<00:06, 21.01it/s]
eval model::  73%|███████▎  | 363/500 [00:19<00:06, 19.90it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:07, 16.92it/s]
eval model::  74%|███████▍  | 369/500 [00:19<00:06, 19.18it/s]
eval model::  74%|███████▍  | 372/500 [00:19<00:06, 18.90it/s]
eval model::  75%|███████▌  | 375/500 [00:20<00:05, 21.13it/s]
eval model::  76%|███████▌  | 378/500 [00:20<00:05, 22.95it/s]
eval model::  76%|███████▌  | 381/500 [00:20<00:05, 20.24it/s]
eval model::  77%|███████▋  | 384/500 [00:20<00:05, 22.43it/s]
eval model::  77%|███████▋  | 387/500 [00:20<00:07, 15.10it/s]
eval model::  78%|███████▊  | 390/500 [00:20<00:06, 17.35it/s]
eval model::  79%|███████▊  | 393/500 [00:21<00:05, 18.09it/s]
eval model::  79%|███████▉  | 396/500 [00:21<00:05, 17.90it/s]
eval model::  80%|███████▉  | 399/500 [00:21<00:05, 18.51it/s]
eval model::  80%|████████  | 402/500 [00:21<00:05, 16.64it/s]
eval model::  81%|████████  | 405/500 [00:21<00:05, 18.13it/s]
eval model::  82%|████████▏ | 408/500 [00:21<00:04, 19.79it/s]
eval model::  82%|████████▏ | 412/500 [00:21<00:03, 22.57it/s]
eval model::  83%|████████▎ | 415/500 [00:22<00:03, 21.37it/s]
eval model::  84%|████████▎ | 418/500 [00:22<00:04, 18.53it/s]
eval model::  84%|████████▍ | 420/500 [00:22<00:05, 15.05it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:05, 15.58it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:04, 16.37it/s]
eval model::  85%|████████▌ | 426/500 [00:22<00:04, 15.85it/s]
eval model::  86%|████████▌ | 429/500 [00:23<00:03, 17.88it/s]
eval model::  86%|████████▌ | 431/500 [00:23<00:03, 17.33it/s]
eval model::  87%|████████▋ | 434/500 [00:23<00:03, 20.30it/s]
eval model::  87%|████████▋ | 437/500 [00:23<00:02, 21.50it/s]
eval model::  88%|████████▊ | 440/500 [00:23<00:02, 20.19it/s]
eval model::  89%|████████▉ | 444/500 [00:23<00:02, 22.24it/s]
eval model::  89%|████████▉ | 447/500 [00:23<00:02, 23.28it/s]
eval model::  90%|█████████ | 450/500 [00:24<00:02, 20.05it/s]
eval model::  91%|█████████ | 454/500 [00:24<00:01, 23.19it/s]
eval model::  91%|█████████▏| 457/500 [00:24<00:01, 22.56it/s]
eval model::  92%|█████████▏| 460/500 [00:24<00:01, 21.24it/s]
eval model::  93%|█████████▎| 463/500 [00:24<00:02, 18.09it/s]
eval model::  93%|█████████▎| 465/500 [00:24<00:02, 16.96it/s]
eval model::  94%|█████████▎| 468/500 [00:24<00:01, 18.49it/s]
eval model::  94%|█████████▍| 471/500 [00:25<00:01, 19.01it/s]
eval model::  95%|█████████▍| 473/500 [00:25<00:01, 18.84it/s]
eval model::  95%|█████████▌| 476/500 [00:25<00:01, 20.62it/s]
eval model::  96%|█████████▌| 479/500 [00:25<00:00, 21.83it/s]
eval model::  96%|█████████▋| 482/500 [00:25<00:00, 21.99it/s]
eval model::  97%|█████████▋| 485/500 [00:25<00:00, 22.57it/s]
eval model::  98%|█████████▊| 488/500 [00:25<00:00, 21.58it/s]
eval model::  98%|█████████▊| 491/500 [00:26<00:00, 21.73it/s]
eval model::  99%|█████████▉| 494/500 [00:26<00:00, 18.28it/s]
eval model::  99%|█████████▉| 497/500 [00:26<00:00, 20.03it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.90it/s]
[2024/07/28 02:01:24] ppocr INFO: cur metric, precision: 0.7534321801208127, recall: 0.6605681271064034, hmean: 0.7039507439712672, fps: 44.18426473663336
[2024/07/28 02:01:24] ppocr INFO: best metric, hmean: 0.7048391183177097, precision: 0.7438502673796792, recall: 0.6697159364467983, fps: 46.08540547152116, best_epoch: 580
[2024/07/28 02:01:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:01:33] ppocr INFO: epoch: [981/1500], global_step: 2943, lr: 0.001000, loss: 1.227724, loss_shrink_maps: 0.605952, loss_threshold_maps: 0.482909, loss_binary_maps: 0.120496, avg_reader_cost: 1.66421 s, avg_batch_cost: 1.96747 s, avg_samples: 12.5, ips: 6.35333 samples/s, eta: 2:37:46
[2024/07/28 02:01:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:01:43] ppocr INFO: epoch: [982/1500], global_step: 2946, lr: 0.001000, loss: 1.188825, loss_shrink_maps: 0.590441, loss_threshold_maps: 0.474798, loss_binary_maps: 0.117106, avg_reader_cost: 1.51799 s, avg_batch_cost: 1.74636 s, avg_samples: 12.5, ips: 7.15774 samples/s, eta: 2:37:28
[2024/07/28 02:01:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:01:52] ppocr INFO: epoch: [983/1500], global_step: 2949, lr: 0.001000, loss: 1.188825, loss_shrink_maps: 0.590441, loss_threshold_maps: 0.474798, loss_binary_maps: 0.117106, avg_reader_cost: 1.56970 s, avg_batch_cost: 1.79957 s, avg_samples: 12.5, ips: 6.94611 samples/s, eta: 2:37:09
[2024/07/28 02:01:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:01:59] ppocr INFO: epoch: [984/1500], global_step: 2950, lr: 0.001000, loss: 1.229458, loss_shrink_maps: 0.625962, loss_threshold_maps: 0.483633, loss_binary_maps: 0.124834, avg_reader_cost: 0.42275 s, avg_batch_cost: 0.50495 s, avg_samples: 4.8, ips: 9.50587 samples/s, eta: 2:37:03
[2024/07/28 02:02:01] ppocr INFO: epoch: [984/1500], global_step: 2952, lr: 0.001000, loss: 1.229458, loss_shrink_maps: 0.625216, loss_threshold_maps: 0.483633, loss_binary_maps: 0.124507, avg_reader_cost: 1.10150 s, avg_batch_cost: 1.24760 s, avg_samples: 7.7, ips: 6.17185 samples/s, eta: 2:36:51
[2024/07/28 02:02:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:02:10] ppocr INFO: epoch: [985/1500], global_step: 2955, lr: 0.001000, loss: 1.176024, loss_shrink_maps: 0.590570, loss_threshold_maps: 0.472576, loss_binary_maps: 0.117568, avg_reader_cost: 1.51878 s, avg_batch_cost: 1.77656 s, avg_samples: 12.5, ips: 7.03608 samples/s, eta: 2:36:32
[2024/07/28 02:02:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:02:20] ppocr INFO: epoch: [986/1500], global_step: 2958, lr: 0.001000, loss: 1.160490, loss_shrink_maps: 0.581985, loss_threshold_maps: 0.467693, loss_binary_maps: 0.116037, avg_reader_cost: 1.60043 s, avg_batch_cost: 1.87276 s, avg_samples: 12.5, ips: 6.67464 samples/s, eta: 2:36:14
[2024/07/28 02:02:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:02:28] ppocr INFO: epoch: [987/1500], global_step: 2960, lr: 0.001000, loss: 1.160490, loss_shrink_maps: 0.581985, loss_threshold_maps: 0.467693, loss_binary_maps: 0.116037, avg_reader_cost: 0.96197 s, avg_batch_cost: 1.13711 s, avg_samples: 9.6, ips: 8.44248 samples/s, eta: 2:36:02
[2024/07/28 02:02:29] ppocr INFO: epoch: [987/1500], global_step: 2961, lr: 0.001000, loss: 1.176024, loss_shrink_maps: 0.590895, loss_threshold_maps: 0.468024, loss_binary_maps: 0.117836, avg_reader_cost: 0.61424 s, avg_batch_cost: 0.66890 s, avg_samples: 2.9, ips: 4.33551 samples/s, eta: 2:35:56
[2024/07/28 02:02:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:02:38] ppocr INFO: epoch: [988/1500], global_step: 2964, lr: 0.001000, loss: 1.213846, loss_shrink_maps: 0.605247, loss_threshold_maps: 0.473300, loss_binary_maps: 0.120406, avg_reader_cost: 1.56387 s, avg_batch_cost: 1.79200 s, avg_samples: 12.5, ips: 6.97545 samples/s, eta: 2:35:38
[2024/07/28 02:02:41] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:02:47] ppocr INFO: epoch: [989/1500], global_step: 2967, lr: 0.001000, loss: 1.253483, loss_shrink_maps: 0.624872, loss_threshold_maps: 0.494010, loss_binary_maps: 0.124561, avg_reader_cost: 1.55446 s, avg_batch_cost: 1.78925 s, avg_samples: 12.5, ips: 6.98615 samples/s, eta: 2:35:19
[2024/07/28 02:02:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:02:56] ppocr INFO: epoch: [990/1500], global_step: 2970, lr: 0.001000, loss: 1.268064, loss_shrink_maps: 0.634020, loss_threshold_maps: 0.495727, loss_binary_maps: 0.126343, avg_reader_cost: 1.51957 s, avg_batch_cost: 1.74748 s, avg_samples: 12.5, ips: 7.15315 samples/s, eta: 2:35:01
[2024/07/28 02:02:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:03:06] ppocr INFO: epoch: [991/1500], global_step: 2973, lr: 0.001000, loss: 1.300737, loss_shrink_maps: 0.644659, loss_threshold_maps: 0.512480, loss_binary_maps: 0.128808, avg_reader_cost: 1.53492 s, avg_batch_cost: 1.78366 s, avg_samples: 12.5, ips: 7.00808 samples/s, eta: 2:34:42
[2024/07/28 02:03:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:03:15] ppocr INFO: epoch: [992/1500], global_step: 2976, lr: 0.001000, loss: 1.305337, loss_shrink_maps: 0.661328, loss_threshold_maps: 0.517929, loss_binary_maps: 0.131281, avg_reader_cost: 1.55161 s, avg_batch_cost: 1.78166 s, avg_samples: 12.5, ips: 7.01594 samples/s, eta: 2:34:24
[2024/07/28 02:03:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:03:24] ppocr INFO: epoch: [993/1500], global_step: 2979, lr: 0.001000, loss: 1.318960, loss_shrink_maps: 0.681665, loss_threshold_maps: 0.522575, loss_binary_maps: 0.135150, avg_reader_cost: 1.52998 s, avg_batch_cost: 1.77616 s, avg_samples: 12.5, ips: 7.03767 samples/s, eta: 2:34:05
[2024/07/28 02:03:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:03:32] ppocr INFO: epoch: [994/1500], global_step: 2980, lr: 0.001000, loss: 1.318960, loss_shrink_maps: 0.681665, loss_threshold_maps: 0.522575, loss_binary_maps: 0.135150, avg_reader_cost: 0.44598 s, avg_batch_cost: 0.52874 s, avg_samples: 4.8, ips: 9.07821 samples/s, eta: 2:33:59
[2024/07/28 02:03:33] ppocr INFO: epoch: [994/1500], global_step: 2982, lr: 0.001000, loss: 1.318960, loss_shrink_maps: 0.681665, loss_threshold_maps: 0.518507, loss_binary_maps: 0.135150, avg_reader_cost: 1.14884 s, avg_batch_cost: 1.29462 s, avg_samples: 7.7, ips: 5.94769 samples/s, eta: 2:33:47
[2024/07/28 02:03:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:03:43] ppocr INFO: epoch: [995/1500], global_step: 2985, lr: 0.001000, loss: 1.314598, loss_shrink_maps: 0.681665, loss_threshold_maps: 0.508785, loss_binary_maps: 0.135150, avg_reader_cost: 1.60379 s, avg_batch_cost: 1.83537 s, avg_samples: 12.5, ips: 6.81062 samples/s, eta: 2:33:29
[2024/07/28 02:03:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:03:52] ppocr INFO: epoch: [996/1500], global_step: 2988, lr: 0.001000, loss: 1.333186, loss_shrink_maps: 0.696661, loss_threshold_maps: 0.509363, loss_binary_maps: 0.138848, avg_reader_cost: 1.54078 s, avg_batch_cost: 1.77905 s, avg_samples: 12.5, ips: 7.02623 samples/s, eta: 2:33:10
[2024/07/28 02:03:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:04:01] ppocr INFO: epoch: [997/1500], global_step: 2990, lr: 0.001000, loss: 1.327742, loss_shrink_maps: 0.691152, loss_threshold_maps: 0.503713, loss_binary_maps: 0.137184, avg_reader_cost: 0.91636 s, avg_batch_cost: 1.10316 s, avg_samples: 9.6, ips: 8.70225 samples/s, eta: 2:32:58
[2024/07/28 02:04:01] ppocr INFO: epoch: [997/1500], global_step: 2991, lr: 0.001000, loss: 1.327742, loss_shrink_maps: 0.691152, loss_threshold_maps: 0.500980, loss_binary_maps: 0.137184, avg_reader_cost: 0.59703 s, avg_batch_cost: 0.65215 s, avg_samples: 2.9, ips: 4.44680 samples/s, eta: 2:32:52
[2024/07/28 02:04:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:04:10] ppocr INFO: epoch: [998/1500], global_step: 2994, lr: 0.001000, loss: 1.320345, loss_shrink_maps: 0.672755, loss_threshold_maps: 0.508437, loss_binary_maps: 0.134162, avg_reader_cost: 1.53943 s, avg_batch_cost: 1.80419 s, avg_samples: 12.5, ips: 6.92831 samples/s, eta: 2:32:33
[2024/07/28 02:04:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:04:20] ppocr INFO: epoch: [999/1500], global_step: 2997, lr: 0.001000, loss: 1.314496, loss_shrink_maps: 0.659276, loss_threshold_maps: 0.508437, loss_binary_maps: 0.131724, avg_reader_cost: 1.55256 s, avg_batch_cost: 1.78159 s, avg_samples: 12.5, ips: 7.01620 samples/s, eta: 2:32:15
[2024/07/28 02:04:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:04:29] ppocr INFO: epoch: [1000/1500], global_step: 3000, lr: 0.001000, loss: 1.309451, loss_shrink_maps: 0.659276, loss_threshold_maps: 0.509496, loss_binary_maps: 0.131724, avg_reader_cost: 1.54068 s, avg_batch_cost: 1.76941 s, avg_samples: 12.5, ips: 7.06449 samples/s, eta: 2:31:56

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:51,  9.72it/s]
eval model::   1%|          | 4/500 [00:00<00:24, 20.22it/s]
eval model::   1%|          | 6/500 [00:00<00:25, 19.67it/s]
eval model::   2%|▏         | 8/500 [00:00<00:26, 18.47it/s]
eval model::   2%|▏         | 11/500 [00:00<00:29, 16.86it/s]
eval model::   3%|▎         | 14/500 [00:00<00:27, 17.51it/s]
eval model::   3%|▎         | 17/500 [00:00<00:24, 19.33it/s]
eval model::   4%|▍         | 19/500 [00:01<00:28, 16.81it/s]
eval model::   4%|▍         | 21/500 [00:01<00:27, 17.20it/s]
eval model::   5%|▍         | 24/500 [00:01<00:23, 20.24it/s]
eval model::   5%|▌         | 27/500 [00:01<00:24, 18.99it/s]
eval model::   6%|▌         | 30/500 [00:01<00:23, 20.10it/s]
eval model::   7%|▋         | 33/500 [00:01<00:23, 19.78it/s]
eval model::   7%|▋         | 36/500 [00:01<00:24, 19.01it/s]
eval model::   8%|▊         | 39/500 [00:02<00:25, 17.98it/s]
eval model::   8%|▊         | 41/500 [00:02<00:25, 18.22it/s]
eval model::   9%|▊         | 43/500 [00:02<00:28, 16.07it/s]
eval model::   9%|▉         | 46/500 [00:02<00:26, 17.30it/s]
eval model::  10%|▉         | 49/500 [00:02<00:22, 19.84it/s]
eval model::  10%|█         | 52/500 [00:02<00:21, 20.52it/s]
eval model::  11%|█         | 55/500 [00:02<00:21, 21.17it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:22, 20.06it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:26, 16.58it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:27, 15.88it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:23, 18.58it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:20, 20.88it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:20, 21.28it/s]
eval model::  15%|█▌        | 75/500 [00:03<00:20, 20.54it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:19, 21.97it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:18, 22.36it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:18, 22.40it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:20, 19.73it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:21, 18.85it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:21, 18.76it/s]
eval model::  19%|█▉        | 96/500 [00:04<00:19, 20.79it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:18, 21.69it/s]
eval model::  20%|██        | 102/500 [00:05<00:19, 20.60it/s]
eval model::  21%|██        | 106/500 [00:05<00:16, 23.47it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:16, 23.81it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:16, 23.10it/s]
eval model::  23%|██▎       | 115/500 [00:05<00:17, 21.90it/s]
eval model::  24%|██▎       | 118/500 [00:05<00:17, 22.34it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:17, 22.04it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:18, 20.49it/s]
eval model::  25%|██▌       | 127/500 [00:06<00:18, 20.10it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:19, 19.12it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:19, 18.66it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:17, 20.30it/s]
eval model::  28%|██▊       | 138/500 [00:06<00:17, 20.16it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:16, 21.32it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:15, 22.56it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:19, 18.36it/s]
eval model::  30%|███       | 150/500 [00:07<00:17, 19.57it/s]
eval model::  31%|███       | 153/500 [00:07<00:18, 18.64it/s]
eval model::  31%|███▏      | 157/500 [00:07<00:15, 21.63it/s]
eval model::  32%|███▏      | 160/500 [00:08<00:21, 15.64it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:20, 16.80it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:17, 18.76it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:16, 20.50it/s]
eval model::  34%|███▍      | 172/500 [00:08<00:17, 18.41it/s]
eval model::  35%|███▌      | 175/500 [00:09<00:20, 15.86it/s]
eval model::  35%|███▌      | 177/500 [00:09<00:20, 15.98it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:21, 14.91it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:18, 17.34it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:16, 18.64it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:16, 19.30it/s]
eval model::  38%|███▊      | 192/500 [00:09<00:14, 20.59it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:15, 20.17it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:14, 21.24it/s]
eval model::  40%|████      | 201/500 [00:10<00:14, 20.86it/s]
eval model::  41%|████      | 204/500 [00:10<00:13, 21.67it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:23, 12.28it/s]
eval model::  42%|████▏     | 209/500 [00:11<00:22, 12.86it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:21, 13.42it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:19, 14.36it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:21, 13.08it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:24, 11.66it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:19, 14.25it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:19, 13.95it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:15, 17.86it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:12, 22.13it/s]
eval model::  47%|████▋     | 234/500 [00:12<00:11, 23.85it/s]
eval model::  47%|████▋     | 237/500 [00:12<00:10, 25.24it/s]
eval model::  48%|████▊     | 240/500 [00:12<00:10, 24.36it/s]
eval model::  49%|████▊     | 243/500 [00:12<00:12, 21.27it/s]
eval model::  49%|████▉     | 246/500 [00:12<00:11, 22.94it/s]
eval model::  50%|████▉     | 249/500 [00:13<00:11, 21.12it/s]
eval model::  50%|█████     | 252/500 [00:13<00:11, 22.14it/s]
eval model::  51%|█████     | 255/500 [00:13<00:11, 21.94it/s]
eval model::  52%|█████▏    | 258/500 [00:13<00:11, 21.86it/s]
eval model::  52%|█████▏    | 261/500 [00:13<00:11, 20.65it/s]
eval model::  53%|█████▎    | 264/500 [00:13<00:12, 19.05it/s]
eval model::  53%|█████▎    | 266/500 [00:13<00:12, 19.01it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:12, 18.47it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:11, 19.77it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:11, 18.98it/s]
eval model::  55%|█████▌    | 277/500 [00:14<00:12, 18.43it/s]
eval model::  56%|█████▌    | 280/500 [00:14<00:10, 20.08it/s]
eval model::  57%|█████▋    | 283/500 [00:14<00:10, 20.34it/s]
eval model::  57%|█████▋    | 286/500 [00:15<00:18, 11.46it/s]
eval model::  58%|█████▊    | 289/500 [00:15<00:15, 13.87it/s]
eval model::  58%|█████▊    | 292/500 [00:15<00:13, 15.74it/s]
eval model::  59%|█████▉    | 295/500 [00:15<00:14, 14.04it/s]
eval model::  60%|█████▉    | 299/500 [00:15<00:11, 17.96it/s]
eval model::  60%|██████    | 302/500 [00:16<00:11, 17.53it/s]
eval model::  61%|██████    | 305/500 [00:16<00:10, 18.55it/s]
eval model::  62%|██████▏   | 309/500 [00:16<00:08, 21.40it/s]
eval model::  62%|██████▏   | 312/500 [00:16<00:09, 20.45it/s]
eval model::  63%|██████▎   | 315/500 [00:16<00:09, 20.03it/s]
eval model::  64%|██████▎   | 318/500 [00:16<00:08, 20.75it/s]
eval model::  64%|██████▍   | 321/500 [00:17<00:08, 21.08it/s]
eval model::  65%|██████▍   | 324/500 [00:17<00:08, 21.56it/s]
eval model::  65%|██████▌   | 327/500 [00:17<00:07, 22.16it/s]
eval model::  66%|██████▌   | 330/500 [00:17<00:08, 20.74it/s]
eval model::  67%|██████▋   | 333/500 [00:17<00:08, 20.64it/s]
eval model::  67%|██████▋   | 336/500 [00:17<00:07, 21.41it/s]
eval model::  68%|██████▊   | 339/500 [00:17<00:08, 20.08it/s]
eval model::  68%|██████▊   | 342/500 [00:18<00:10, 15.47it/s]
eval model::  69%|██████▉   | 345/500 [00:18<00:08, 17.31it/s]
eval model::  69%|██████▉   | 347/500 [00:18<00:08, 17.21it/s]
eval model::  70%|███████   | 350/500 [00:18<00:07, 19.05it/s]
eval model::  71%|███████   | 353/500 [00:18<00:06, 21.23it/s]
eval model::  71%|███████   | 356/500 [00:18<00:06, 20.67it/s]
eval model::  72%|███████▏  | 359/500 [00:18<00:06, 22.10it/s]
eval model::  72%|███████▏  | 362/500 [00:19<00:06, 20.04it/s]
eval model::  73%|███████▎  | 365/500 [00:19<00:07, 19.22it/s]
eval model::  74%|███████▎  | 368/500 [00:19<00:07, 18.74it/s]
eval model::  74%|███████▍  | 371/500 [00:19<00:06, 20.17it/s]
eval model::  75%|███████▍  | 374/500 [00:19<00:06, 19.84it/s]
eval model::  75%|███████▌  | 377/500 [00:19<00:06, 20.37it/s]
eval model::  76%|███████▌  | 380/500 [00:20<00:05, 20.52it/s]
eval model::  77%|███████▋  | 384/500 [00:20<00:04, 23.89it/s]
eval model::  77%|███████▋  | 387/500 [00:20<00:07, 14.40it/s]
eval model::  78%|███████▊  | 390/500 [00:20<00:06, 16.29it/s]
eval model::  79%|███████▊  | 393/500 [00:20<00:06, 17.21it/s]
eval model::  79%|███████▉  | 396/500 [00:20<00:06, 17.22it/s]
eval model::  80%|███████▉  | 399/500 [00:21<00:05, 18.95it/s]
eval model::  80%|████████  | 402/500 [00:21<00:04, 19.73it/s]
eval model::  81%|████████  | 405/500 [00:21<00:04, 21.28it/s]
eval model::  82%|████████▏ | 408/500 [00:21<00:04, 21.32it/s]
eval model::  82%|████████▏ | 411/500 [00:21<00:04, 21.95it/s]
eval model::  83%|████████▎ | 414/500 [00:21<00:03, 22.98it/s]
eval model::  83%|████████▎ | 417/500 [00:21<00:03, 21.40it/s]
eval model::  84%|████████▍ | 420/500 [00:22<00:05, 15.27it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:04, 16.09it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:05, 14.60it/s]
eval model::  85%|████████▌ | 426/500 [00:22<00:04, 14.94it/s]
eval model::  86%|████████▌ | 429/500 [00:22<00:03, 17.86it/s]
eval model::  86%|████████▌ | 431/500 [00:22<00:04, 16.70it/s]
eval model::  87%|████████▋ | 435/500 [00:22<00:02, 21.97it/s]
eval model::  88%|████████▊ | 439/500 [00:23<00:02, 24.53it/s]
eval model::  88%|████████▊ | 442/500 [00:23<00:02, 23.58it/s]
eval model::  89%|████████▉ | 445/500 [00:23<00:02, 24.26it/s]
eval model::  90%|████████▉ | 448/500 [00:23<00:02, 23.41it/s]
eval model::  90%|█████████ | 451/500 [00:23<00:02, 21.39it/s]
eval model::  91%|█████████ | 454/500 [00:23<00:01, 23.00it/s]
eval model::  91%|█████████▏| 457/500 [00:23<00:01, 22.07it/s]
eval model::  92%|█████████▏| 460/500 [00:24<00:01, 22.18it/s]
eval model::  93%|█████████▎| 463/500 [00:24<00:01, 20.63it/s]
eval model::  93%|█████████▎| 466/500 [00:24<00:01, 20.15it/s]
eval model::  94%|█████████▍| 469/500 [00:24<00:01, 20.70it/s]
eval model::  94%|█████████▍| 472/500 [00:24<00:01, 22.32it/s]
eval model::  95%|█████████▌| 475/500 [00:24<00:01, 21.02it/s]
eval model::  96%|█████████▌| 478/500 [00:24<00:01, 21.11it/s]
eval model::  96%|█████████▌| 481/500 [00:25<00:00, 20.66it/s]
eval model::  97%|█████████▋| 484/500 [00:25<00:00, 19.99it/s]
eval model::  97%|█████████▋| 487/500 [00:25<00:00, 20.56it/s]
eval model::  98%|█████████▊| 490/500 [00:25<00:00, 20.31it/s]
eval model::  99%|█████████▊| 493/500 [00:25<00:00, 17.19it/s]
eval model::  99%|█████████▉| 495/500 [00:25<00:00, 17.26it/s]
eval model:: 100%|█████████▉| 498/500 [00:26<00:00, 19.19it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 19.16it/s]
[2024/07/28 02:04:55] ppocr INFO: cur metric, precision: 0.7003058103975535, recall: 0.6615310544053924, hmean: 0.6803664273334983, fps: 47.04513578458488
[2024/07/28 02:04:55] ppocr INFO: best metric, hmean: 0.7048391183177097, precision: 0.7438502673796792, recall: 0.6697159364467983, fps: 46.08540547152116, best_epoch: 580
[2024/07/28 02:04:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:05:04] ppocr INFO: epoch: [1001/1500], global_step: 3003, lr: 0.001000, loss: 1.309451, loss_shrink_maps: 0.655358, loss_threshold_maps: 0.509496, loss_binary_maps: 0.130805, avg_reader_cost: 1.94310 s, avg_batch_cost: 2.37008 s, avg_samples: 12.5, ips: 5.27409 samples/s, eta: 2:31:41
[2024/07/28 02:05:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:05:14] ppocr INFO: epoch: [1002/1500], global_step: 3006, lr: 0.001000, loss: 1.295505, loss_shrink_maps: 0.649877, loss_threshold_maps: 0.507045, loss_binary_maps: 0.129518, avg_reader_cost: 1.53811 s, avg_batch_cost: 1.76945 s, avg_samples: 12.5, ips: 7.06434 samples/s, eta: 2:31:22
[2024/07/28 02:05:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:05:23] ppocr INFO: epoch: [1003/1500], global_step: 3009, lr: 0.001000, loss: 1.264618, loss_shrink_maps: 0.634030, loss_threshold_maps: 0.503254, loss_binary_maps: 0.126076, avg_reader_cost: 1.48983 s, avg_batch_cost: 1.73451 s, avg_samples: 12.5, ips: 7.20665 samples/s, eta: 2:31:04
[2024/07/28 02:05:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:05:30] ppocr INFO: epoch: [1004/1500], global_step: 3010, lr: 0.001000, loss: 1.264618, loss_shrink_maps: 0.634030, loss_threshold_maps: 0.500011, loss_binary_maps: 0.126076, avg_reader_cost: 0.42597 s, avg_batch_cost: 0.50859 s, avg_samples: 4.8, ips: 9.43781 samples/s, eta: 2:30:57
[2024/07/28 02:05:32] ppocr INFO: epoch: [1004/1500], global_step: 3012, lr: 0.001000, loss: 1.267984, loss_shrink_maps: 0.634030, loss_threshold_maps: 0.493939, loss_binary_maps: 0.126076, avg_reader_cost: 1.10840 s, avg_batch_cost: 1.25404 s, avg_samples: 7.7, ips: 6.14014 samples/s, eta: 2:30:45
[2024/07/28 02:05:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:05:41] ppocr INFO: epoch: [1005/1500], global_step: 3015, lr: 0.001000, loss: 1.212736, loss_shrink_maps: 0.619868, loss_threshold_maps: 0.475732, loss_binary_maps: 0.122980, avg_reader_cost: 1.55690 s, avg_batch_cost: 1.79275 s, avg_samples: 12.5, ips: 6.97252 samples/s, eta: 2:30:27
[2024/07/28 02:05:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:05:50] ppocr INFO: epoch: [1006/1500], global_step: 3018, lr: 0.001000, loss: 1.193096, loss_shrink_maps: 0.602340, loss_threshold_maps: 0.472421, loss_binary_maps: 0.119832, avg_reader_cost: 1.53430 s, avg_batch_cost: 1.76430 s, avg_samples: 12.5, ips: 7.08494 samples/s, eta: 2:30:08
[2024/07/28 02:05:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:05:59] ppocr INFO: epoch: [1007/1500], global_step: 3020, lr: 0.001000, loss: 1.193096, loss_shrink_maps: 0.602340, loss_threshold_maps: 0.472421, loss_binary_maps: 0.119832, avg_reader_cost: 0.92088 s, avg_batch_cost: 1.09406 s, avg_samples: 9.6, ips: 8.77462 samples/s, eta: 2:29:56
[2024/07/28 02:06:00] ppocr INFO: epoch: [1007/1500], global_step: 3021, lr: 0.001000, loss: 1.186129, loss_shrink_maps: 0.587517, loss_threshold_maps: 0.472421, loss_binary_maps: 0.117097, avg_reader_cost: 0.59262 s, avg_batch_cost: 0.64746 s, avg_samples: 2.9, ips: 4.47901 samples/s, eta: 2:29:50
[2024/07/28 02:06:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:06:09] ppocr INFO: epoch: [1008/1500], global_step: 3024, lr: 0.001000, loss: 1.212736, loss_shrink_maps: 0.609736, loss_threshold_maps: 0.474399, loss_binary_maps: 0.121448, avg_reader_cost: 1.55776 s, avg_batch_cost: 1.81153 s, avg_samples: 12.5, ips: 6.90023 samples/s, eta: 2:29:31
[2024/07/28 02:06:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:06:18] ppocr INFO: epoch: [1009/1500], global_step: 3027, lr: 0.001000, loss: 1.217816, loss_shrink_maps: 0.595761, loss_threshold_maps: 0.476069, loss_binary_maps: 0.118811, avg_reader_cost: 1.52656 s, avg_batch_cost: 1.75964 s, avg_samples: 12.5, ips: 7.10372 samples/s, eta: 2:29:13
[2024/07/28 02:06:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:06:27] ppocr INFO: epoch: [1010/1500], global_step: 3030, lr: 0.001000, loss: 1.252552, loss_shrink_maps: 0.609736, loss_threshold_maps: 0.483916, loss_binary_maps: 0.121448, avg_reader_cost: 1.50008 s, avg_batch_cost: 1.72829 s, avg_samples: 12.5, ips: 7.23259 samples/s, eta: 2:28:54
[2024/07/28 02:06:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:06:37] ppocr INFO: epoch: [1011/1500], global_step: 3033, lr: 0.001000, loss: 1.217816, loss_shrink_maps: 0.595761, loss_threshold_maps: 0.477317, loss_binary_maps: 0.118713, avg_reader_cost: 1.53961 s, avg_batch_cost: 1.80586 s, avg_samples: 12.5, ips: 6.92192 samples/s, eta: 2:28:36
[2024/07/28 02:06:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:06:46] ppocr INFO: epoch: [1012/1500], global_step: 3036, lr: 0.001000, loss: 1.263831, loss_shrink_maps: 0.624476, loss_threshold_maps: 0.502133, loss_binary_maps: 0.124462, avg_reader_cost: 1.50990 s, avg_batch_cost: 1.77025 s, avg_samples: 12.5, ips: 7.06115 samples/s, eta: 2:28:17
[2024/07/28 02:06:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:06:56] ppocr INFO: epoch: [1013/1500], global_step: 3039, lr: 0.001000, loss: 1.320330, loss_shrink_maps: 0.672170, loss_threshold_maps: 0.508350, loss_binary_maps: 0.133975, avg_reader_cost: 1.56755 s, avg_batch_cost: 1.79664 s, avg_samples: 12.5, ips: 6.95745 samples/s, eta: 2:27:59
[2024/07/28 02:06:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:07:04] ppocr INFO: epoch: [1014/1500], global_step: 3040, lr: 0.001000, loss: 1.285534, loss_shrink_maps: 0.642278, loss_threshold_maps: 0.511362, loss_binary_maps: 0.127973, avg_reader_cost: 0.47539 s, avg_batch_cost: 0.55979 s, avg_samples: 4.8, ips: 8.57462 samples/s, eta: 2:27:53
[2024/07/28 02:07:05] ppocr INFO: epoch: [1014/1500], global_step: 3042, lr: 0.001000, loss: 1.320330, loss_shrink_maps: 0.672170, loss_threshold_maps: 0.511648, loss_binary_maps: 0.133975, avg_reader_cost: 1.21102 s, avg_batch_cost: 1.35715 s, avg_samples: 7.7, ips: 5.67364 samples/s, eta: 2:27:41
[2024/07/28 02:07:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:07:14] ppocr INFO: epoch: [1015/1500], global_step: 3045, lr: 0.001000, loss: 1.269183, loss_shrink_maps: 0.626099, loss_threshold_maps: 0.499219, loss_binary_maps: 0.124923, avg_reader_cost: 1.52857 s, avg_batch_cost: 1.75686 s, avg_samples: 12.5, ips: 7.11496 samples/s, eta: 2:27:23
[2024/07/28 02:07:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:07:24] ppocr INFO: epoch: [1016/1500], global_step: 3048, lr: 0.001000, loss: 1.201767, loss_shrink_maps: 0.608244, loss_threshold_maps: 0.492766, loss_binary_maps: 0.121243, avg_reader_cost: 1.54136 s, avg_batch_cost: 1.76944 s, avg_samples: 12.5, ips: 7.06438 samples/s, eta: 2:27:04
[2024/07/28 02:07:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:07:33] ppocr INFO: epoch: [1017/1500], global_step: 3050, lr: 0.001000, loss: 1.201767, loss_shrink_maps: 0.608244, loss_threshold_maps: 0.492766, loss_binary_maps: 0.121243, avg_reader_cost: 0.97761 s, avg_batch_cost: 1.20193 s, avg_samples: 9.6, ips: 7.98713 samples/s, eta: 2:26:52
[2024/07/28 02:07:33] ppocr INFO: epoch: [1017/1500], global_step: 3051, lr: 0.001000, loss: 1.237056, loss_shrink_maps: 0.631918, loss_threshold_maps: 0.492766, loss_binary_maps: 0.126266, avg_reader_cost: 0.64663 s, avg_batch_cost: 0.70142 s, avg_samples: 2.9, ips: 4.13446 samples/s, eta: 2:26:46
[2024/07/28 02:07:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:07:43] ppocr INFO: epoch: [1018/1500], global_step: 3054, lr: 0.001000, loss: 1.237056, loss_shrink_maps: 0.631918, loss_threshold_maps: 0.492766, loss_binary_maps: 0.126266, avg_reader_cost: 1.49868 s, avg_batch_cost: 1.74297 s, avg_samples: 12.5, ips: 7.17166 samples/s, eta: 2:26:28
[2024/07/28 02:07:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:07:52] ppocr INFO: epoch: [1019/1500], global_step: 3057, lr: 0.001000, loss: 1.237056, loss_shrink_maps: 0.631918, loss_threshold_maps: 0.492766, loss_binary_maps: 0.126266, avg_reader_cost: 1.52943 s, avg_batch_cost: 1.80305 s, avg_samples: 12.5, ips: 6.93269 samples/s, eta: 2:26:09
[2024/07/28 02:07:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:08:01] ppocr INFO: epoch: [1020/1500], global_step: 3060, lr: 0.001000, loss: 1.196820, loss_shrink_maps: 0.612281, loss_threshold_maps: 0.480438, loss_binary_maps: 0.122442, avg_reader_cost: 1.49705 s, avg_batch_cost: 1.72700 s, avg_samples: 12.5, ips: 7.23800 samples/s, eta: 2:25:51

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<01:02,  7.94it/s]
eval model::   1%|          | 3/500 [00:00<00:35, 14.13it/s]
eval model::   1%|          | 6/500 [00:00<00:26, 18.39it/s]
eval model::   2%|▏         | 8/500 [00:00<00:30, 16.30it/s]
eval model::   2%|▏         | 11/500 [00:00<00:31, 15.61it/s]
eval model::   3%|▎         | 13/500 [00:00<00:31, 15.54it/s]
eval model::   3%|▎         | 15/500 [00:00<00:31, 15.53it/s]
eval model::   4%|▎         | 18/500 [00:01<00:26, 18.19it/s]
eval model::   4%|▍         | 20/500 [00:01<00:27, 17.57it/s]
eval model::   5%|▍         | 23/500 [00:01<00:24, 19.32it/s]
eval model::   5%|▌         | 25/500 [00:01<00:26, 18.10it/s]
eval model::   6%|▌         | 28/500 [00:01<00:25, 18.58it/s]
eval model::   6%|▌         | 31/500 [00:01<00:26, 17.61it/s]
eval model::   7%|▋         | 34/500 [00:01<00:26, 17.78it/s]
eval model::   7%|▋         | 36/500 [00:02<00:26, 17.47it/s]
eval model::   8%|▊         | 38/500 [00:02<00:28, 16.21it/s]
eval model::   8%|▊         | 40/500 [00:02<00:29, 15.70it/s]
eval model::   8%|▊         | 42/500 [00:02<00:29, 15.73it/s]
eval model::   9%|▉         | 45/500 [00:02<00:25, 17.87it/s]
eval model::   9%|▉         | 47/500 [00:02<00:26, 16.91it/s]
eval model::  10%|█         | 50/500 [00:02<00:24, 18.28it/s]
eval model::  11%|█         | 53/500 [00:03<00:22, 19.92it/s]
eval model::  11%|█         | 56/500 [00:03<00:21, 20.68it/s]
eval model::  12%|█▏        | 59/500 [00:03<00:22, 19.79it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:27, 16.05it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:28, 15.31it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:24, 17.53it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:22, 19.19it/s]
eval model::  14%|█▍        | 72/500 [00:04<00:21, 19.97it/s]
eval model::  15%|█▌        | 75/500 [00:04<00:21, 19.39it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:20, 21.00it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:18, 22.18it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:20, 20.16it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:22, 18.38it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:23, 17.54it/s]
eval model::  18%|█▊        | 91/500 [00:05<00:22, 18.04it/s]
eval model::  19%|█▊        | 93/500 [00:05<00:22, 18.18it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:19, 20.78it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:18, 21.53it/s]
eval model::  20%|██        | 102/500 [00:05<00:19, 20.08it/s]
eval model::  21%|██        | 105/500 [00:05<00:17, 22.03it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:18, 21.12it/s]
eval model::  22%|██▏       | 111/500 [00:06<00:20, 19.11it/s]
eval model::  23%|██▎       | 114/500 [00:06<00:19, 19.67it/s]
eval model::  23%|██▎       | 117/500 [00:06<00:20, 18.87it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:20, 18.56it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:19, 19.23it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:22, 16.72it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:20, 18.04it/s]
eval model::  26%|██▌       | 130/500 [00:07<00:22, 16.72it/s]
eval model::  26%|██▋       | 132/500 [00:07<00:21, 17.12it/s]
eval model::  27%|██▋       | 135/500 [00:07<00:18, 19.63it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:19, 18.85it/s]
eval model::  28%|██▊       | 140/500 [00:07<00:18, 18.97it/s]
eval model::  29%|██▊       | 143/500 [00:07<00:17, 20.41it/s]
eval model::  29%|██▉       | 146/500 [00:07<00:18, 18.90it/s]
eval model::  30%|██▉       | 148/500 [00:08<00:19, 18.29it/s]
eval model::  30%|███       | 151/500 [00:08<00:19, 17.53it/s]
eval model::  31%|███       | 155/500 [00:08<00:16, 20.55it/s]
eval model::  32%|███▏      | 158/500 [00:08<00:15, 21.68it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:23, 14.25it/s]
eval model::  33%|███▎      | 164/500 [00:09<00:20, 16.22it/s]
eval model::  33%|███▎      | 167/500 [00:09<00:18, 17.85it/s]
eval model::  34%|███▍      | 170/500 [00:09<00:16, 19.49it/s]
eval model::  35%|███▍      | 173/500 [00:09<00:19, 16.90it/s]
eval model::  35%|███▌      | 175/500 [00:09<00:22, 14.35it/s]
eval model::  36%|███▌      | 178/500 [00:09<00:19, 16.19it/s]
eval model::  36%|███▌      | 180/500 [00:10<00:22, 14.08it/s]
eval model::  37%|███▋      | 183/500 [00:10<00:19, 16.33it/s]
eval model::  37%|███▋      | 186/500 [00:10<00:17, 18.31it/s]
eval model::  38%|███▊      | 189/500 [00:10<00:16, 18.97it/s]
eval model::  38%|███▊      | 192/500 [00:10<00:15, 19.65it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:15, 19.92it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:14, 20.34it/s]
eval model::  40%|████      | 201/500 [00:11<00:14, 21.16it/s]
eval model::  41%|████      | 205/500 [00:11<00:17, 16.86it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:17, 17.16it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:17, 16.32it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:16, 17.02it/s]
eval model::  43%|████▎     | 215/500 [00:12<00:20, 13.94it/s]
eval model::  43%|████▎     | 217/500 [00:12<00:22, 12.76it/s]
eval model::  44%|████▍     | 219/500 [00:12<00:20, 13.94it/s]
eval model::  44%|████▍     | 221/500 [00:12<00:20, 13.61it/s]
eval model::  45%|████▍     | 224/500 [00:12<00:17, 16.08it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:16, 16.65it/s]
eval model::  46%|████▌     | 229/500 [00:12<00:13, 19.64it/s]
eval model::  46%|████▋     | 232/500 [00:12<00:12, 21.68it/s]
eval model::  47%|████▋     | 235/500 [00:13<00:13, 19.76it/s]
eval model::  48%|████▊     | 239/500 [00:13<00:12, 21.74it/s]
eval model::  48%|████▊     | 242/500 [00:13<00:14, 18.08it/s]
eval model::  49%|████▉     | 245/500 [00:13<00:13, 19.51it/s]
eval model::  50%|████▉     | 248/500 [00:13<00:11, 21.03it/s]
eval model::  50%|█████     | 251/500 [00:13<00:12, 20.68it/s]
eval model::  51%|█████     | 254/500 [00:14<00:11, 22.33it/s]
eval model::  51%|█████▏    | 257/500 [00:14<00:11, 20.56it/s]
eval model::  52%|█████▏    | 260/500 [00:14<00:11, 21.57it/s]
eval model::  53%|█████▎    | 263/500 [00:14<00:11, 21.05it/s]
eval model::  53%|█████▎    | 266/500 [00:14<00:11, 20.44it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:14, 16.50it/s]
eval model::  54%|█████▍    | 272/500 [00:15<00:12, 17.65it/s]
eval model::  55%|█████▌    | 275/500 [00:15<00:12, 17.91it/s]
eval model::  56%|█████▌    | 278/500 [00:15<00:11, 19.42it/s]
eval model::  56%|█████▌    | 281/500 [00:15<00:10, 20.80it/s]
eval model::  57%|█████▋    | 284/500 [00:15<00:09, 21.94it/s]
eval model::  57%|█████▋    | 287/500 [00:16<00:17, 12.43it/s]
eval model::  58%|█████▊    | 290/500 [00:16<00:14, 14.61it/s]
eval model::  58%|█████▊    | 292/500 [00:16<00:14, 14.43it/s]
eval model::  59%|█████▉    | 294/500 [00:16<00:14, 14.21it/s]
eval model::  59%|█████▉    | 296/500 [00:16<00:16, 12.32it/s]
eval model::  60%|█████▉    | 299/500 [00:16<00:13, 15.46it/s]
eval model::  60%|██████    | 301/500 [00:16<00:13, 15.10it/s]
eval model::  61%|██████    | 304/500 [00:17<00:11, 16.87it/s]
eval model::  61%|██████▏   | 307/500 [00:17<00:10, 18.62it/s]
eval model::  62%|██████▏   | 310/500 [00:17<00:10, 18.90it/s]
eval model::  62%|██████▏   | 312/500 [00:17<00:10, 18.61it/s]
eval model::  63%|██████▎   | 315/500 [00:17<00:09, 18.73it/s]
eval model::  64%|██████▎   | 318/500 [00:17<00:09, 19.74it/s]
eval model::  64%|██████▍   | 321/500 [00:17<00:08, 20.06it/s]
eval model::  65%|██████▍   | 324/500 [00:18<00:09, 19.39it/s]
eval model::  65%|██████▌   | 327/500 [00:18<00:08, 21.56it/s]
eval model::  66%|██████▌   | 330/500 [00:18<00:08, 20.55it/s]
eval model::  67%|██████▋   | 333/500 [00:18<00:08, 20.61it/s]
eval model::  67%|██████▋   | 336/500 [00:18<00:08, 19.99it/s]
eval model::  68%|██████▊   | 339/500 [00:18<00:08, 19.64it/s]
eval model::  68%|██████▊   | 341/500 [00:19<00:10, 14.60it/s]
eval model::  69%|██████▉   | 344/500 [00:19<00:09, 16.52it/s]
eval model::  69%|██████▉   | 347/500 [00:19<00:08, 17.60it/s]
eval model::  70%|███████   | 350/500 [00:19<00:07, 18.87it/s]
eval model::  71%|███████   | 353/500 [00:19<00:07, 20.93it/s]
eval model::  71%|███████   | 356/500 [00:19<00:06, 21.06it/s]
eval model::  72%|███████▏  | 359/500 [00:19<00:06, 22.42it/s]
eval model::  72%|███████▏  | 362/500 [00:20<00:07, 18.72it/s]
eval model::  73%|███████▎  | 365/500 [00:20<00:07, 18.48it/s]
eval model::  73%|███████▎  | 367/500 [00:20<00:08, 16.19it/s]
eval model::  74%|███████▍  | 370/500 [00:20<00:07, 18.43it/s]
eval model::  74%|███████▍  | 372/500 [00:20<00:07, 17.58it/s]
eval model::  75%|███████▌  | 375/500 [00:20<00:06, 20.09it/s]
eval model::  76%|███████▌  | 379/500 [00:20<00:05, 23.04it/s]
eval model::  76%|███████▋  | 382/500 [00:21<00:05, 21.06it/s]
eval model::  77%|███████▋  | 385/500 [00:21<00:05, 22.71it/s]
eval model::  78%|███████▊  | 388/500 [00:21<00:08, 13.90it/s]
eval model::  78%|███████▊  | 391/500 [00:21<00:07, 15.47it/s]
eval model::  79%|███████▊  | 393/500 [00:21<00:06, 16.23it/s]
eval model::  79%|███████▉  | 395/500 [00:21<00:06, 16.62it/s]
eval model::  80%|███████▉  | 398/500 [00:22<00:05, 18.76it/s]
eval model::  80%|████████  | 401/500 [00:22<00:05, 17.84it/s]
eval model::  81%|████████  | 404/500 [00:22<00:04, 19.52it/s]
eval model::  81%|████████▏ | 407/500 [00:22<00:04, 20.45it/s]
eval model::  82%|████████▏ | 410/500 [00:22<00:03, 22.51it/s]
eval model::  83%|████████▎ | 413/500 [00:22<00:04, 21.61it/s]
eval model::  83%|████████▎ | 416/500 [00:22<00:04, 20.60it/s]
eval model::  84%|████████▍ | 419/500 [00:23<00:04, 19.84it/s]
eval model::  84%|████████▍ | 422/500 [00:23<00:05, 14.50it/s]
eval model::  85%|████████▍ | 424/500 [00:23<00:05, 14.08it/s]
eval model::  85%|████████▌ | 426/500 [00:23<00:05, 14.42it/s]
eval model::  86%|████████▌ | 429/500 [00:23<00:04, 17.35it/s]
eval model::  86%|████████▌ | 431/500 [00:23<00:04, 16.16it/s]
eval model::  87%|████████▋ | 435/500 [00:24<00:03, 20.29it/s]
eval model::  88%|████████▊ | 438/500 [00:24<00:02, 22.06it/s]
eval model::  88%|████████▊ | 441/500 [00:24<00:02, 20.46it/s]
eval model::  89%|████████▉ | 444/500 [00:24<00:02, 22.28it/s]
eval model::  89%|████████▉ | 447/500 [00:24<00:02, 23.46it/s]
eval model::  90%|█████████ | 450/500 [00:24<00:02, 20.40it/s]
eval model::  91%|█████████ | 453/500 [00:24<00:02, 21.72it/s]
eval model::  91%|█████████ | 456/500 [00:25<00:02, 21.10it/s]
eval model::  92%|█████████▏| 459/500 [00:25<00:02, 18.46it/s]
eval model::  92%|█████████▏| 462/500 [00:25<00:02, 17.06it/s]
eval model::  93%|█████████▎| 465/500 [00:25<00:02, 17.05it/s]
eval model::  94%|█████████▎| 468/500 [00:25<00:01, 18.54it/s]
eval model::  94%|█████████▍| 471/500 [00:25<00:01, 18.63it/s]
eval model::  95%|█████████▍| 474/500 [00:26<00:01, 17.99it/s]
eval model::  95%|█████████▌| 477/500 [00:26<00:01, 19.55it/s]
eval model::  96%|█████████▌| 480/500 [00:26<00:00, 20.83it/s]
eval model::  97%|█████████▋| 483/500 [00:26<00:00, 20.56it/s]
eval model::  97%|█████████▋| 486/500 [00:26<00:00, 19.42it/s]
eval model::  98%|█████████▊| 489/500 [00:26<00:00, 20.50it/s]
eval model::  98%|█████████▊| 492/500 [00:26<00:00, 17.55it/s]
eval model::  99%|█████████▉| 495/500 [00:27<00:00, 18.33it/s]
eval model:: 100%|█████████▉| 498/500 [00:27<00:00, 20.21it/s]
eval model:: 100%|██████████| 500/500 [00:27<00:00, 18.29it/s]
[2024/07/28 02:08:28] ppocr INFO: cur metric, precision: 0.6714628297362111, recall: 0.6740491092922485, hmean: 0.6727534839019702, fps: 46.95328828980308
[2024/07/28 02:08:28] ppocr INFO: best metric, hmean: 0.7048391183177097, precision: 0.7438502673796792, recall: 0.6697159364467983, fps: 46.08540547152116, best_epoch: 580
[2024/07/28 02:08:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:08:36] ppocr INFO: epoch: [1021/1500], global_step: 3063, lr: 0.001000, loss: 1.178416, loss_shrink_maps: 0.596659, loss_threshold_maps: 0.479192, loss_binary_maps: 0.119176, avg_reader_cost: 1.59551 s, avg_batch_cost: 1.90836 s, avg_samples: 12.5, ips: 6.55012 samples/s, eta: 2:25:33
[2024/07/28 02:08:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:08:46] ppocr INFO: epoch: [1022/1500], global_step: 3066, lr: 0.001000, loss: 1.216134, loss_shrink_maps: 0.612281, loss_threshold_maps: 0.481932, loss_binary_maps: 0.122442, avg_reader_cost: 1.60999 s, avg_batch_cost: 1.91293 s, avg_samples: 12.5, ips: 6.53449 samples/s, eta: 2:25:15
[2024/07/28 02:08:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:08:56] ppocr INFO: epoch: [1023/1500], global_step: 3069, lr: 0.001000, loss: 1.216134, loss_shrink_maps: 0.605467, loss_threshold_maps: 0.481932, loss_binary_maps: 0.121190, avg_reader_cost: 1.60965 s, avg_batch_cost: 1.86130 s, avg_samples: 12.5, ips: 6.71574 samples/s, eta: 2:24:57
[2024/07/28 02:08:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:09:03] ppocr INFO: epoch: [1024/1500], global_step: 3070, lr: 0.001000, loss: 1.216134, loss_shrink_maps: 0.605467, loss_threshold_maps: 0.481932, loss_binary_maps: 0.121190, avg_reader_cost: 0.41921 s, avg_batch_cost: 0.50508 s, avg_samples: 4.8, ips: 9.50344 samples/s, eta: 2:24:50
[2024/07/28 02:09:05] ppocr INFO: epoch: [1024/1500], global_step: 3072, lr: 0.001000, loss: 1.177151, loss_shrink_maps: 0.591278, loss_threshold_maps: 0.481932, loss_binary_maps: 0.117745, avg_reader_cost: 1.10202 s, avg_batch_cost: 1.24869 s, avg_samples: 7.7, ips: 6.16646 samples/s, eta: 2:24:38
[2024/07/28 02:09:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:09:14] ppocr INFO: epoch: [1025/1500], global_step: 3075, lr: 0.001000, loss: 1.177151, loss_shrink_maps: 0.596659, loss_threshold_maps: 0.481932, loss_binary_maps: 0.119176, avg_reader_cost: 1.52199 s, avg_batch_cost: 1.75812 s, avg_samples: 12.5, ips: 7.10987 samples/s, eta: 2:24:20
[2024/07/28 02:09:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:09:24] ppocr INFO: epoch: [1026/1500], global_step: 3078, lr: 0.001000, loss: 1.176161, loss_shrink_maps: 0.596659, loss_threshold_maps: 0.476141, loss_binary_maps: 0.119176, avg_reader_cost: 1.58672 s, avg_batch_cost: 1.89465 s, avg_samples: 12.5, ips: 6.59753 samples/s, eta: 2:24:02
[2024/07/28 02:09:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:09:33] ppocr INFO: epoch: [1027/1500], global_step: 3080, lr: 0.001000, loss: 1.176161, loss_shrink_maps: 0.596659, loss_threshold_maps: 0.475740, loss_binary_maps: 0.118928, avg_reader_cost: 0.96032 s, avg_batch_cost: 1.14433 s, avg_samples: 9.6, ips: 8.38918 samples/s, eta: 2:23:49
[2024/07/28 02:09:33] ppocr INFO: epoch: [1027/1500], global_step: 3081, lr: 0.001000, loss: 1.163992, loss_shrink_maps: 0.595055, loss_threshold_maps: 0.470612, loss_binary_maps: 0.118402, avg_reader_cost: 0.61793 s, avg_batch_cost: 0.67264 s, avg_samples: 2.9, ips: 4.31139 samples/s, eta: 2:23:44
[2024/07/28 02:09:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:09:43] ppocr INFO: epoch: [1028/1500], global_step: 3084, lr: 0.001000, loss: 1.211006, loss_shrink_maps: 0.617683, loss_threshold_maps: 0.468120, loss_binary_maps: 0.123044, avg_reader_cost: 1.54957 s, avg_batch_cost: 1.77786 s, avg_samples: 12.5, ips: 7.03094 samples/s, eta: 2:23:25
[2024/07/28 02:09:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:09:52] ppocr INFO: epoch: [1029/1500], global_step: 3087, lr: 0.001000, loss: 1.192017, loss_shrink_maps: 0.607430, loss_threshold_maps: 0.468120, loss_binary_maps: 0.120856, avg_reader_cost: 1.56669 s, avg_batch_cost: 1.81330 s, avg_samples: 12.5, ips: 6.89351 samples/s, eta: 2:23:07
[2024/07/28 02:09:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:10:02] ppocr INFO: epoch: [1030/1500], global_step: 3090, lr: 0.001000, loss: 1.211006, loss_shrink_maps: 0.617683, loss_threshold_maps: 0.477804, loss_binary_maps: 0.123044, avg_reader_cost: 1.57073 s, avg_batch_cost: 1.81156 s, avg_samples: 12.5, ips: 6.90012 samples/s, eta: 2:22:49
[2024/07/28 02:10:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:10:12] ppocr INFO: epoch: [1031/1500], global_step: 3093, lr: 0.001000, loss: 1.246340, loss_shrink_maps: 0.629549, loss_threshold_maps: 0.480345, loss_binary_maps: 0.125209, avg_reader_cost: 1.72889 s, avg_batch_cost: 1.97162 s, avg_samples: 12.5, ips: 6.33998 samples/s, eta: 2:22:31
[2024/07/28 02:10:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:10:21] ppocr INFO: epoch: [1032/1500], global_step: 3096, lr: 0.001000, loss: 1.246340, loss_shrink_maps: 0.629549, loss_threshold_maps: 0.480345, loss_binary_maps: 0.125209, avg_reader_cost: 1.50182 s, avg_batch_cost: 1.75136 s, avg_samples: 12.5, ips: 7.13729 samples/s, eta: 2:22:13
[2024/07/28 02:10:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:10:31] ppocr INFO: epoch: [1033/1500], global_step: 3099, lr: 0.001000, loss: 1.285873, loss_shrink_maps: 0.644076, loss_threshold_maps: 0.486397, loss_binary_maps: 0.128235, avg_reader_cost: 1.54133 s, avg_batch_cost: 1.76915 s, avg_samples: 12.5, ips: 7.06556 samples/s, eta: 2:21:54
[2024/07/28 02:10:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:10:38] ppocr INFO: epoch: [1034/1500], global_step: 3100, lr: 0.001000, loss: 1.297879, loss_shrink_maps: 0.644076, loss_threshold_maps: 0.493310, loss_binary_maps: 0.128235, avg_reader_cost: 0.41871 s, avg_batch_cost: 0.52137 s, avg_samples: 4.8, ips: 9.20658 samples/s, eta: 2:21:48
[2024/07/28 02:10:40] ppocr INFO: epoch: [1034/1500], global_step: 3102, lr: 0.001000, loss: 1.285873, loss_shrink_maps: 0.643206, loss_threshold_maps: 0.495084, loss_binary_maps: 0.127753, avg_reader_cost: 1.13383 s, avg_batch_cost: 1.27934 s, avg_samples: 7.7, ips: 6.01874 samples/s, eta: 2:21:36
[2024/07/28 02:10:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:10:49] ppocr INFO: epoch: [1035/1500], global_step: 3105, lr: 0.001000, loss: 1.257668, loss_shrink_maps: 0.627883, loss_threshold_maps: 0.495084, loss_binary_maps: 0.124367, avg_reader_cost: 1.54401 s, avg_batch_cost: 1.80390 s, avg_samples: 12.5, ips: 6.92944 samples/s, eta: 2:21:17
[2024/07/28 02:10:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:10:59] ppocr INFO: epoch: [1036/1500], global_step: 3108, lr: 0.001000, loss: 1.252431, loss_shrink_maps: 0.627883, loss_threshold_maps: 0.489978, loss_binary_maps: 0.124367, avg_reader_cost: 1.67163 s, avg_batch_cost: 1.90009 s, avg_samples: 12.5, ips: 6.57863 samples/s, eta: 2:21:00
[2024/07/28 02:11:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:11:08] ppocr INFO: epoch: [1037/1500], global_step: 3110, lr: 0.001000, loss: 1.230310, loss_shrink_maps: 0.619199, loss_threshold_maps: 0.487076, loss_binary_maps: 0.123360, avg_reader_cost: 0.93904 s, avg_batch_cost: 1.11316 s, avg_samples: 9.6, ips: 8.62407 samples/s, eta: 2:20:47
[2024/07/28 02:11:08] ppocr INFO: epoch: [1037/1500], global_step: 3111, lr: 0.001000, loss: 1.231018, loss_shrink_maps: 0.619199, loss_threshold_maps: 0.489978, loss_binary_maps: 0.123360, avg_reader_cost: 0.60226 s, avg_batch_cost: 0.65764 s, avg_samples: 2.9, ips: 4.40971 samples/s, eta: 2:20:41
[2024/07/28 02:11:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:11:17] ppocr INFO: epoch: [1038/1500], global_step: 3114, lr: 0.001000, loss: 1.231018, loss_shrink_maps: 0.624721, loss_threshold_maps: 0.487890, loss_binary_maps: 0.124154, avg_reader_cost: 1.54289 s, avg_batch_cost: 1.77556 s, avg_samples: 12.5, ips: 7.04005 samples/s, eta: 2:20:23
[2024/07/28 02:11:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:11:27] ppocr INFO: epoch: [1039/1500], global_step: 3117, lr: 0.001000, loss: 1.231018, loss_shrink_maps: 0.624721, loss_threshold_maps: 0.487890, loss_binary_maps: 0.124154, avg_reader_cost: 1.58579 s, avg_batch_cost: 1.87903 s, avg_samples: 12.5, ips: 6.65238 samples/s, eta: 2:20:05
[2024/07/28 02:11:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:11:36] ppocr INFO: epoch: [1040/1500], global_step: 3120, lr: 0.001000, loss: 1.221574, loss_shrink_maps: 0.613674, loss_threshold_maps: 0.478956, loss_binary_maps: 0.122126, avg_reader_cost: 1.51277 s, avg_batch_cost: 1.74151 s, avg_samples: 12.5, ips: 7.17769 samples/s, eta: 2:19:46

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<01:04,  7.79it/s]
eval model::   1%|          | 4/500 [00:00<00:29, 16.88it/s]
eval model::   1%|          | 6/500 [00:00<00:28, 17.39it/s]
eval model::   2%|▏         | 8/500 [00:00<00:28, 17.52it/s]
eval model::   2%|▏         | 11/500 [00:00<00:31, 15.43it/s]
eval model::   3%|▎         | 13/500 [00:00<00:30, 15.88it/s]
eval model::   3%|▎         | 15/500 [00:00<00:30, 16.00it/s]
eval model::   4%|▎         | 18/500 [00:01<00:26, 18.31it/s]
eval model::   4%|▍         | 20/500 [00:01<00:29, 16.54it/s]
eval model::   5%|▍         | 23/500 [00:01<00:26, 18.32it/s]
eval model::   5%|▌         | 25/500 [00:01<00:29, 16.25it/s]
eval model::   6%|▌         | 28/500 [00:01<00:26, 17.52it/s]
eval model::   6%|▌         | 31/500 [00:01<00:26, 17.53it/s]
eval model::   7%|▋         | 34/500 [00:01<00:25, 18.31it/s]
eval model::   7%|▋         | 37/500 [00:02<00:24, 18.79it/s]
eval model::   8%|▊         | 39/500 [00:02<00:28, 16.30it/s]
eval model::   8%|▊         | 42/500 [00:02<00:27, 16.79it/s]
eval model::   9%|▉         | 45/500 [00:02<00:24, 18.95it/s]
eval model::   9%|▉         | 47/500 [00:02<00:26, 17.35it/s]
eval model::  10%|█         | 50/500 [00:02<00:23, 18.92it/s]
eval model::  11%|█         | 53/500 [00:03<00:22, 19.70it/s]
eval model::  11%|█         | 56/500 [00:03<00:21, 20.29it/s]
eval model::  12%|█▏        | 59/500 [00:03<00:21, 20.49it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:25, 17.19it/s]
eval model::  13%|█▎        | 64/500 [00:03<00:26, 16.33it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:22, 19.13it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:20, 21.26it/s]
eval model::  15%|█▍        | 73/500 [00:04<00:19, 21.98it/s]
eval model::  15%|█▌        | 76/500 [00:04<00:19, 21.55it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:19, 21.73it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:19, 21.18it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:20, 20.47it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:22, 18.71it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:24, 16.72it/s]
eval model::  19%|█▊        | 93/500 [00:05<00:23, 17.40it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:20, 19.30it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:19, 20.13it/s]
eval model::  20%|██        | 102/500 [00:05<00:20, 19.62it/s]
eval model::  21%|██        | 105/500 [00:05<00:18, 21.83it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:18, 20.92it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:20, 19.22it/s]
eval model::  23%|██▎       | 114/500 [00:06<00:18, 20.97it/s]
eval model::  23%|██▎       | 117/500 [00:06<00:19, 19.41it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:21, 17.93it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:19, 19.25it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:20, 18.18it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:18, 19.61it/s]
eval model::  26%|██▋       | 132/500 [00:07<00:21, 17.34it/s]
eval model::  27%|██▋       | 135/500 [00:07<00:18, 19.71it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:17, 20.37it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:17, 20.59it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:17, 20.71it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:19, 18.31it/s]
eval model::  30%|███       | 150/500 [00:07<00:17, 19.80it/s]
eval model::  31%|███       | 153/500 [00:08<00:18, 18.34it/s]
eval model::  31%|███       | 156/500 [00:08<00:16, 20.61it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:15, 21.74it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:19, 17.63it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:20, 16.78it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:19, 17.41it/s]
eval model::  34%|███▍      | 169/500 [00:09<00:17, 19.38it/s]
eval model::  34%|███▍      | 172/500 [00:09<00:17, 19.17it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:19, 16.98it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:19, 16.62it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:16, 19.44it/s]
eval model::  36%|███▋      | 182/500 [00:09<00:18, 16.92it/s]
eval model::  37%|███▋      | 185/500 [00:09<00:16, 19.40it/s]
eval model::  38%|███▊      | 188/500 [00:10<00:15, 19.73it/s]
eval model::  38%|███▊      | 191/500 [00:10<00:14, 20.77it/s]
eval model::  39%|███▉      | 194/500 [00:10<00:13, 22.05it/s]
eval model::  39%|███▉      | 197/500 [00:10<00:16, 18.29it/s]
eval model::  40%|████      | 200/500 [00:10<00:15, 19.79it/s]
eval model::  41%|████      | 203/500 [00:10<00:14, 19.86it/s]
eval model::  41%|████      | 206/500 [00:11<00:22, 12.91it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:22, 13.18it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:21, 13.52it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:19, 14.58it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:20, 13.58it/s]
eval model::  43%|████▎     | 217/500 [00:12<00:22, 12.45it/s]
eval model::  44%|████▍     | 220/500 [00:12<00:18, 14.85it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:20, 13.25it/s]
eval model::  45%|████▌     | 225/500 [00:12<00:17, 15.92it/s]
eval model::  45%|████▌     | 227/500 [00:12<00:16, 16.70it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:13, 19.41it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:14, 18.53it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:13, 19.69it/s]
eval model::  48%|████▊     | 239/500 [00:13<00:12, 20.94it/s]
eval model::  48%|████▊     | 242/500 [00:13<00:14, 17.47it/s]
eval model::  49%|████▉     | 245/500 [00:13<00:13, 18.50it/s]
eval model::  50%|████▉     | 248/500 [00:13<00:12, 19.67it/s]
eval model::  50%|█████     | 251/500 [00:13<00:13, 19.13it/s]
eval model::  51%|█████     | 253/500 [00:13<00:12, 19.16it/s]
eval model::  51%|█████     | 256/500 [00:14<00:11, 20.57it/s]
eval model::  52%|█████▏    | 260/500 [00:14<00:10, 23.54it/s]
eval model::  53%|█████▎    | 263/500 [00:14<00:10, 23.17it/s]
eval model::  53%|█████▎    | 266/500 [00:14<00:11, 21.05it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:11, 19.74it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:10, 20.80it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:12, 18.67it/s]
eval model::  55%|█████▌    | 277/500 [00:15<00:11, 18.86it/s]
eval model::  56%|█████▌    | 279/500 [00:15<00:11, 18.78it/s]
eval model::  56%|█████▋    | 282/500 [00:15<00:10, 20.24it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:18, 11.51it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:17, 12.47it/s]
eval model::  58%|█████▊    | 290/500 [00:16<00:13, 15.05it/s]
eval model::  58%|█████▊    | 292/500 [00:16<00:13, 15.80it/s]
eval model::  59%|█████▉    | 294/500 [00:16<00:13, 15.64it/s]
eval model::  59%|█████▉    | 296/500 [00:16<00:14, 13.87it/s]
eval model::  60%|█████▉    | 299/500 [00:16<00:11, 16.77it/s]
eval model::  60%|██████    | 301/500 [00:16<00:14, 13.89it/s]
eval model::  61%|██████    | 304/500 [00:16<00:12, 15.86it/s]
eval model::  61%|██████▏   | 307/500 [00:17<00:10, 18.02it/s]
eval model::  62%|██████▏   | 310/500 [00:17<00:09, 19.30it/s]
eval model::  63%|██████▎   | 313/500 [00:17<00:09, 20.43it/s]
eval model::  63%|██████▎   | 316/500 [00:17<00:09, 19.43it/s]
eval model::  64%|██████▍   | 319/500 [00:17<00:08, 20.61it/s]
eval model::  64%|██████▍   | 322/500 [00:17<00:09, 19.13it/s]
eval model::  65%|██████▌   | 325/500 [00:17<00:08, 20.32it/s]
eval model::  66%|██████▌   | 328/500 [00:18<00:08, 19.53it/s]
eval model::  66%|██████▌   | 331/500 [00:18<00:08, 19.95it/s]
eval model::  67%|██████▋   | 334/500 [00:18<00:07, 21.49it/s]
eval model::  67%|██████▋   | 337/500 [00:18<00:08, 20.29it/s]
eval model::  68%|██████▊   | 340/500 [00:18<00:10, 16.00it/s]
eval model::  69%|██████▊   | 343/500 [00:18<00:09, 17.30it/s]
eval model::  69%|██████▉   | 346/500 [00:19<00:08, 18.41it/s]
eval model::  70%|██████▉   | 349/500 [00:19<00:07, 19.42it/s]
eval model::  70%|███████   | 352/500 [00:19<00:06, 21.20it/s]
eval model::  71%|███████   | 355/500 [00:19<00:06, 21.14it/s]
eval model::  72%|███████▏  | 358/500 [00:19<00:06, 21.07it/s]
eval model::  72%|███████▏  | 361/500 [00:19<00:07, 18.34it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:07, 18.47it/s]
eval model::  73%|███████▎  | 366/500 [00:20<00:07, 18.07it/s]
eval model::  74%|███████▍  | 369/500 [00:20<00:06, 18.89it/s]
eval model::  74%|███████▍  | 371/500 [00:20<00:06, 18.84it/s]
eval model::  75%|███████▍  | 373/500 [00:20<00:06, 18.39it/s]
eval model::  75%|███████▌  | 376/500 [00:20<00:05, 21.01it/s]
eval model::  76%|███████▌  | 379/500 [00:20<00:05, 23.32it/s]
eval model::  76%|███████▋  | 382/500 [00:20<00:05, 20.38it/s]
eval model::  77%|███████▋  | 385/500 [00:20<00:05, 22.68it/s]
eval model::  78%|███████▊  | 388/500 [00:21<00:08, 13.56it/s]
eval model::  78%|███████▊  | 391/500 [00:21<00:07, 15.56it/s]
eval model::  79%|███████▉  | 394/500 [00:21<00:06, 16.27it/s]
eval model::  79%|███████▉  | 396/500 [00:21<00:06, 16.90it/s]
eval model::  80%|███████▉  | 399/500 [00:21<00:05, 18.38it/s]
eval model::  80%|████████  | 402/500 [00:22<00:05, 17.00it/s]
eval model::  81%|████████  | 405/500 [00:22<00:05, 18.44it/s]
eval model::  82%|████████▏ | 408/500 [00:22<00:04, 19.77it/s]
eval model::  82%|████████▏ | 411/500 [00:22<00:04, 21.32it/s]
eval model::  83%|████████▎ | 414/500 [00:22<00:03, 22.78it/s]
eval model::  83%|████████▎ | 417/500 [00:22<00:04, 20.27it/s]
eval model::  84%|████████▍ | 420/500 [00:23<00:05, 13.96it/s]
eval model::  84%|████████▍ | 422/500 [00:23<00:05, 14.81it/s]
eval model::  85%|████████▍ | 424/500 [00:23<00:05, 14.77it/s]
eval model::  85%|████████▌ | 426/500 [00:23<00:04, 15.21it/s]
eval model::  86%|████████▌ | 429/500 [00:23<00:04, 17.27it/s]
eval model::  86%|████████▌ | 431/500 [00:23<00:04, 16.26it/s]
eval model::  87%|████████▋ | 434/500 [00:23<00:03, 19.19it/s]
eval model::  87%|████████▋ | 437/500 [00:23<00:02, 21.73it/s]
eval model::  88%|████████▊ | 440/500 [00:24<00:02, 20.11it/s]
eval model::  89%|████████▉ | 444/500 [00:24<00:02, 22.27it/s]
eval model::  89%|████████▉ | 447/500 [00:24<00:02, 22.93it/s]
eval model::  90%|█████████ | 450/500 [00:24<00:02, 19.83it/s]
eval model::  91%|█████████ | 453/500 [00:24<00:02, 21.65it/s]
eval model::  91%|█████████ | 456/500 [00:24<00:01, 23.29it/s]
eval model::  92%|█████████▏| 459/500 [00:24<00:01, 24.86it/s]
eval model::  92%|█████████▏| 462/500 [00:25<00:01, 19.97it/s]
eval model::  93%|█████████▎| 465/500 [00:25<00:01, 17.97it/s]
eval model::  94%|█████████▎| 468/500 [00:25<00:01, 18.38it/s]
eval model::  94%|█████████▍| 471/500 [00:25<00:01, 18.94it/s]
eval model::  95%|█████████▍| 474/500 [00:25<00:01, 18.97it/s]
eval model::  95%|█████████▌| 477/500 [00:25<00:01, 20.64it/s]
eval model::  96%|█████████▌| 480/500 [00:26<00:00, 21.67it/s]
eval model::  97%|█████████▋| 483/500 [00:26<00:00, 22.74it/s]
eval model::  97%|█████████▋| 486/500 [00:26<00:00, 22.15it/s]
eval model::  98%|█████████▊| 489/500 [00:26<00:00, 22.67it/s]
eval model::  98%|█████████▊| 492/500 [00:26<00:00, 19.11it/s]
eval model::  99%|█████████▉| 495/500 [00:26<00:00, 20.08it/s]
eval model:: 100%|█████████▉| 498/500 [00:26<00:00, 22.14it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.54it/s]
[2024/07/28 02:12:03] ppocr INFO: cur metric, precision: 0.727589641434263, recall: 0.7034183919114106, hmean: 0.7152998776009791, fps: 45.69782460781328
[2024/07/28 02:12:03] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/28 02:12:03] ppocr INFO: best metric, hmean: 0.7152998776009791, precision: 0.727589641434263, recall: 0.7034183919114106, fps: 45.69782460781328, best_epoch: 1040
[2024/07/28 02:12:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:12:12] ppocr INFO: epoch: [1041/1500], global_step: 3123, lr: 0.001000, loss: 1.221574, loss_shrink_maps: 0.615238, loss_threshold_maps: 0.475283, loss_binary_maps: 0.123029, avg_reader_cost: 1.58941 s, avg_batch_cost: 1.92428 s, avg_samples: 12.5, ips: 6.49593 samples/s, eta: 2:19:28
[2024/07/28 02:12:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:12:22] ppocr INFO: epoch: [1042/1500], global_step: 3126, lr: 0.001000, loss: 1.230446, loss_shrink_maps: 0.631328, loss_threshold_maps: 0.476695, loss_binary_maps: 0.125783, avg_reader_cost: 1.59413 s, avg_batch_cost: 1.87794 s, avg_samples: 12.5, ips: 6.65624 samples/s, eta: 2:19:10
[2024/07/28 02:12:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:12:31] ppocr INFO: epoch: [1043/1500], global_step: 3129, lr: 0.001000, loss: 1.248200, loss_shrink_maps: 0.636098, loss_threshold_maps: 0.480995, loss_binary_maps: 0.126258, avg_reader_cost: 1.62183 s, avg_batch_cost: 1.88721 s, avg_samples: 12.5, ips: 6.62352 samples/s, eta: 2:18:52
[2024/07/28 02:12:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:12:40] ppocr INFO: epoch: [1044/1500], global_step: 3130, lr: 0.001000, loss: 1.260409, loss_shrink_maps: 0.636571, loss_threshold_maps: 0.486009, loss_binary_maps: 0.126258, avg_reader_cost: 0.43474 s, avg_batch_cost: 0.54224 s, avg_samples: 4.8, ips: 8.85218 samples/s, eta: 2:18:46
[2024/07/28 02:12:41] ppocr INFO: epoch: [1044/1500], global_step: 3132, lr: 0.001000, loss: 1.264644, loss_shrink_maps: 0.640888, loss_threshold_maps: 0.491752, loss_binary_maps: 0.127961, avg_reader_cost: 1.17620 s, avg_batch_cost: 1.32206 s, avg_samples: 7.7, ips: 5.82427 samples/s, eta: 2:18:34
[2024/07/28 02:12:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:12:51] ppocr INFO: epoch: [1045/1500], global_step: 3135, lr: 0.001000, loss: 1.264644, loss_shrink_maps: 0.650413, loss_threshold_maps: 0.498226, loss_binary_maps: 0.129958, avg_reader_cost: 1.61449 s, avg_batch_cost: 1.84247 s, avg_samples: 12.5, ips: 6.78437 samples/s, eta: 2:18:16
[2024/07/28 02:12:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:13:00] ppocr INFO: epoch: [1046/1500], global_step: 3138, lr: 0.001000, loss: 1.281904, loss_shrink_maps: 0.662912, loss_threshold_maps: 0.498226, loss_binary_maps: 0.132486, avg_reader_cost: 1.51806 s, avg_batch_cost: 1.76198 s, avg_samples: 12.5, ips: 7.09430 samples/s, eta: 2:17:58
[2024/07/28 02:13:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:13:09] ppocr INFO: epoch: [1047/1500], global_step: 3140, lr: 0.001000, loss: 1.264644, loss_shrink_maps: 0.650413, loss_threshold_maps: 0.498226, loss_binary_maps: 0.129958, avg_reader_cost: 0.94481 s, avg_batch_cost: 1.14688 s, avg_samples: 9.6, ips: 8.37054 samples/s, eta: 2:17:45
[2024/07/28 02:13:09] ppocr INFO: epoch: [1047/1500], global_step: 3141, lr: 0.001000, loss: 1.267846, loss_shrink_maps: 0.651514, loss_threshold_maps: 0.500670, loss_binary_maps: 0.129958, avg_reader_cost: 0.61905 s, avg_batch_cost: 0.67374 s, avg_samples: 2.9, ips: 4.30436 samples/s, eta: 2:17:39
[2024/07/28 02:13:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:13:19] ppocr INFO: epoch: [1048/1500], global_step: 3144, lr: 0.001000, loss: 1.283658, loss_shrink_maps: 0.662423, loss_threshold_maps: 0.500670, loss_binary_maps: 0.132154, avg_reader_cost: 1.50495 s, avg_batch_cost: 1.73417 s, avg_samples: 12.5, ips: 7.20807 samples/s, eta: 2:17:21
[2024/07/28 02:13:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:13:28] ppocr INFO: epoch: [1049/1500], global_step: 3147, lr: 0.001000, loss: 1.310687, loss_shrink_maps: 0.665542, loss_threshold_maps: 0.501400, loss_binary_maps: 0.132377, avg_reader_cost: 1.56105 s, avg_batch_cost: 1.79019 s, avg_samples: 12.5, ips: 6.98251 samples/s, eta: 2:17:02
[2024/07/28 02:13:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:13:37] ppocr INFO: epoch: [1050/1500], global_step: 3150, lr: 0.001000, loss: 1.288370, loss_shrink_maps: 0.651027, loss_threshold_maps: 0.501400, loss_binary_maps: 0.129849, avg_reader_cost: 1.49268 s, avg_batch_cost: 1.75332 s, avg_samples: 12.5, ips: 7.12931 samples/s, eta: 2:16:44
[2024/07/28 02:13:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:13:47] ppocr INFO: epoch: [1051/1500], global_step: 3153, lr: 0.001000, loss: 1.274312, loss_shrink_maps: 0.639191, loss_threshold_maps: 0.500546, loss_binary_maps: 0.127121, avg_reader_cost: 1.52112 s, avg_batch_cost: 1.78529 s, avg_samples: 12.5, ips: 7.00166 samples/s, eta: 2:16:25
[2024/07/28 02:13:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:13:56] ppocr INFO: epoch: [1052/1500], global_step: 3156, lr: 0.001000, loss: 1.251564, loss_shrink_maps: 0.624319, loss_threshold_maps: 0.492829, loss_binary_maps: 0.124851, avg_reader_cost: 1.50609 s, avg_batch_cost: 1.75779 s, avg_samples: 12.5, ips: 7.11119 samples/s, eta: 2:16:07
[2024/07/28 02:13:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:14:06] ppocr INFO: epoch: [1053/1500], global_step: 3159, lr: 0.001000, loss: 1.246918, loss_shrink_maps: 0.620887, loss_threshold_maps: 0.491440, loss_binary_maps: 0.123909, avg_reader_cost: 1.49959 s, avg_batch_cost: 1.73342 s, avg_samples: 12.5, ips: 7.21119 samples/s, eta: 2:15:48
[2024/07/28 02:14:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:14:13] ppocr INFO: epoch: [1054/1500], global_step: 3160, lr: 0.001000, loss: 1.246918, loss_shrink_maps: 0.620887, loss_threshold_maps: 0.491440, loss_binary_maps: 0.123909, avg_reader_cost: 0.41671 s, avg_batch_cost: 0.51214 s, avg_samples: 4.8, ips: 9.37243 samples/s, eta: 2:15:42
[2024/07/28 02:14:15] ppocr INFO: epoch: [1054/1500], global_step: 3162, lr: 0.001000, loss: 1.214264, loss_shrink_maps: 0.606155, loss_threshold_maps: 0.488114, loss_binary_maps: 0.121523, avg_reader_cost: 1.11553 s, avg_batch_cost: 1.26113 s, avg_samples: 7.7, ips: 6.10565 samples/s, eta: 2:15:30
[2024/07/28 02:14:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:14:24] ppocr INFO: epoch: [1055/1500], global_step: 3165, lr: 0.001000, loss: 1.188984, loss_shrink_maps: 0.601555, loss_threshold_maps: 0.484066, loss_binary_maps: 0.120061, avg_reader_cost: 1.54258 s, avg_batch_cost: 1.77367 s, avg_samples: 12.5, ips: 7.04754 samples/s, eta: 2:15:11
[2024/07/28 02:14:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:14:34] ppocr INFO: epoch: [1056/1500], global_step: 3168, lr: 0.001000, loss: 1.181847, loss_shrink_maps: 0.586720, loss_threshold_maps: 0.485916, loss_binary_maps: 0.116662, avg_reader_cost: 1.51172 s, avg_batch_cost: 1.76013 s, avg_samples: 12.5, ips: 7.10174 samples/s, eta: 2:14:53
[2024/07/28 02:14:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:14:43] ppocr INFO: epoch: [1057/1500], global_step: 3170, lr: 0.001000, loss: 1.172354, loss_shrink_maps: 0.571536, loss_threshold_maps: 0.477054, loss_binary_maps: 0.113591, avg_reader_cost: 0.95316 s, avg_batch_cost: 1.19369 s, avg_samples: 9.6, ips: 8.04231 samples/s, eta: 2:14:41
[2024/07/28 02:14:43] ppocr INFO: epoch: [1057/1500], global_step: 3171, lr: 0.001000, loss: 1.172354, loss_shrink_maps: 0.571536, loss_threshold_maps: 0.477054, loss_binary_maps: 0.113591, avg_reader_cost: 0.64240 s, avg_batch_cost: 0.69747 s, avg_samples: 2.9, ips: 4.15787 samples/s, eta: 2:14:35
[2024/07/28 02:14:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:14:53] ppocr INFO: epoch: [1058/1500], global_step: 3174, lr: 0.001000, loss: 1.172354, loss_shrink_maps: 0.571536, loss_threshold_maps: 0.477054, loss_binary_maps: 0.113591, avg_reader_cost: 1.55472 s, avg_batch_cost: 1.79030 s, avg_samples: 12.5, ips: 6.98205 samples/s, eta: 2:14:17
[2024/07/28 02:14:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:15:02] ppocr INFO: epoch: [1059/1500], global_step: 3177, lr: 0.001000, loss: 1.188984, loss_shrink_maps: 0.586720, loss_threshold_maps: 0.481868, loss_binary_maps: 0.116662, avg_reader_cost: 1.50298 s, avg_batch_cost: 1.73446 s, avg_samples: 12.5, ips: 7.20685 samples/s, eta: 2:13:58
[2024/07/28 02:15:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:15:11] ppocr INFO: epoch: [1060/1500], global_step: 3180, lr: 0.001000, loss: 1.194971, loss_shrink_maps: 0.586720, loss_threshold_maps: 0.485929, loss_binary_maps: 0.116662, avg_reader_cost: 1.51553 s, avg_batch_cost: 1.75845 s, avg_samples: 12.5, ips: 7.10852 samples/s, eta: 2:13:40

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:50,  9.79it/s]
eval model::   1%|          | 4/500 [00:00<00:27, 18.23it/s]
eval model::   1%|          | 6/500 [00:00<00:26, 18.51it/s]
eval model::   2%|▏         | 8/500 [00:00<00:27, 18.15it/s]
eval model::   2%|▏         | 10/500 [00:00<00:26, 18.66it/s]
eval model::   2%|▏         | 12/500 [00:00<00:27, 17.74it/s]
eval model::   3%|▎         | 14/500 [00:00<00:27, 17.49it/s]
eval model::   3%|▎         | 17/500 [00:00<00:23, 20.60it/s]
eval model::   4%|▍         | 20/500 [00:01<00:23, 20.14it/s]
eval model::   5%|▍         | 24/500 [00:01<00:20, 22.81it/s]
eval model::   5%|▌         | 27/500 [00:01<00:23, 20.27it/s]
eval model::   6%|▌         | 30/500 [00:01<00:22, 20.59it/s]
eval model::   7%|▋         | 33/500 [00:01<00:24, 19.08it/s]
eval model::   7%|▋         | 35/500 [00:01<00:25, 18.22it/s]
eval model::   8%|▊         | 38/500 [00:01<00:24, 18.61it/s]
eval model::   8%|▊         | 40/500 [00:02<00:26, 17.37it/s]
eval model::   8%|▊         | 42/500 [00:02<00:27, 16.78it/s]
eval model::   9%|▉         | 45/500 [00:02<00:23, 19.20it/s]
eval model::   9%|▉         | 47/500 [00:02<00:25, 17.65it/s]
eval model::  10%|▉         | 49/500 [00:02<00:25, 17.64it/s]
eval model::  10%|█         | 51/500 [00:02<00:25, 17.87it/s]
eval model::  11%|█         | 54/500 [00:02<00:24, 18.56it/s]
eval model::  11%|█▏        | 57/500 [00:03<00:21, 20.21it/s]
eval model::  12%|█▏        | 60/500 [00:03<00:22, 19.40it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:27, 15.77it/s]
eval model::  13%|█▎        | 65/500 [00:03<00:24, 17.93it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:19, 21.70it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:18, 23.01it/s]
eval model::  15%|█▌        | 75/500 [00:03<00:18, 22.94it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:18, 22.88it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:18, 22.91it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:20, 20.04it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:21, 18.79it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:21, 18.80it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:22, 18.00it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:23, 17.40it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:21, 18.83it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:20, 19.67it/s]
eval model::  20%|██        | 101/500 [00:05<00:22, 17.51it/s]
eval model::  21%|██        | 104/500 [00:05<00:19, 19.92it/s]
eval model::  21%|██▏       | 107/500 [00:05<00:18, 20.71it/s]
eval model::  22%|██▏       | 110/500 [00:05<00:18, 20.53it/s]
eval model::  23%|██▎       | 113/500 [00:05<00:18, 20.83it/s]
eval model::  23%|██▎       | 116/500 [00:05<00:18, 21.33it/s]
eval model::  24%|██▍       | 119/500 [00:06<00:17, 21.24it/s]
eval model::  24%|██▍       | 122/500 [00:06<00:17, 21.22it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:20, 17.95it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:17, 20.71it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:19, 18.47it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:19, 19.06it/s]
eval model::  27%|██▋       | 137/500 [00:07<00:19, 18.40it/s]
eval model::  28%|██▊       | 140/500 [00:07<00:18, 19.69it/s]
eval model::  29%|██▊       | 143/500 [00:07<00:16, 21.68it/s]
eval model::  29%|██▉       | 146/500 [00:07<00:16, 21.00it/s]
eval model::  30%|██▉       | 149/500 [00:07<00:18, 18.69it/s]
eval model::  30%|███       | 151/500 [00:07<00:20, 16.84it/s]
eval model::  31%|███       | 154/500 [00:07<00:17, 19.34it/s]
eval model::  31%|███▏      | 157/500 [00:08<00:16, 20.97it/s]
eval model::  32%|███▏      | 160/500 [00:08<00:24, 13.74it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:21, 15.36it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:19, 16.93it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:17, 18.99it/s]
eval model::  34%|███▍      | 172/500 [00:09<00:18, 18.18it/s]
eval model::  35%|███▌      | 175/500 [00:09<00:20, 15.97it/s]
eval model::  36%|███▌      | 178/500 [00:09<00:18, 17.65it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:20, 15.46it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:17, 17.69it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:15, 19.76it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:14, 21.34it/s]
eval model::  38%|███▊      | 192/500 [00:10<00:14, 21.32it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:15, 19.14it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:15, 19.30it/s]
eval model::  40%|████      | 201/500 [00:10<00:14, 20.60it/s]
eval model::  41%|████      | 205/500 [00:10<00:18, 15.55it/s]
eval model::  41%|████▏     | 207/500 [00:11<00:18, 16.22it/s]
eval model::  42%|████▏     | 209/500 [00:11<00:18, 16.01it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:18, 15.95it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.64it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:19, 14.83it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:22, 12.65it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:18, 15.14it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:20, 13.30it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:16, 17.00it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:12, 21.30it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:11, 22.71it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:11, 22.31it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:11, 22.34it/s]
eval model::  48%|████▊     | 242/500 [00:12<00:12, 19.89it/s]
eval model::  49%|████▉     | 245/500 [00:13<00:11, 21.69it/s]
eval model::  50%|████▉     | 248/500 [00:13<00:11, 21.61it/s]
eval model::  50%|█████     | 251/500 [00:13<00:12, 20.58it/s]
eval model::  51%|█████     | 254/500 [00:13<00:11, 20.80it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:11, 20.45it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:11, 20.78it/s]
eval model::  53%|█████▎    | 263/500 [00:13<00:11, 20.02it/s]
eval model::  53%|█████▎    | 266/500 [00:14<00:12, 18.19it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:13, 17.37it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:12, 18.25it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:12, 17.32it/s]
eval model::  55%|█████▌    | 277/500 [00:14<00:13, 17.09it/s]
eval model::  56%|█████▌    | 280/500 [00:14<00:11, 18.97it/s]
eval model::  57%|█████▋    | 283/500 [00:15<00:10, 20.16it/s]
eval model::  57%|█████▋    | 286/500 [00:15<00:19, 10.71it/s]
eval model::  58%|█████▊    | 289/500 [00:15<00:15, 13.33it/s]
eval model::  58%|█████▊    | 292/500 [00:15<00:13, 15.32it/s]
eval model::  59%|█████▉    | 295/500 [00:16<00:16, 12.79it/s]
eval model::  60%|█████▉    | 299/500 [00:16<00:12, 16.20it/s]
eval model::  60%|██████    | 302/500 [00:16<00:12, 16.23it/s]
eval model::  61%|██████    | 304/500 [00:16<00:11, 16.58it/s]
eval model::  61%|██████▏   | 307/500 [00:16<00:10, 18.38it/s]
eval model::  62%|██████▏   | 310/500 [00:16<00:09, 19.37it/s]
eval model::  63%|██████▎   | 313/500 [00:16<00:09, 20.51it/s]
eval model::  63%|██████▎   | 316/500 [00:17<00:09, 20.05it/s]
eval model::  64%|██████▍   | 319/500 [00:17<00:08, 21.33it/s]
eval model::  64%|██████▍   | 322/500 [00:17<00:08, 20.43it/s]
eval model::  65%|██████▌   | 325/500 [00:17<00:08, 21.50it/s]
eval model::  66%|██████▌   | 328/500 [00:17<00:08, 21.16it/s]
eval model::  66%|██████▌   | 331/500 [00:17<00:08, 20.24it/s]
eval model::  67%|██████▋   | 334/500 [00:17<00:07, 21.11it/s]
eval model::  67%|██████▋   | 337/500 [00:18<00:07, 20.61it/s]
eval model::  68%|██████▊   | 340/500 [00:18<00:10, 15.61it/s]
eval model::  69%|██████▊   | 343/500 [00:18<00:08, 17.81it/s]
eval model::  69%|██████▉   | 346/500 [00:18<00:07, 19.64it/s]
eval model::  70%|██████▉   | 349/500 [00:18<00:07, 21.55it/s]
eval model::  70%|███████   | 352/500 [00:18<00:06, 21.24it/s]
eval model::  71%|███████   | 355/500 [00:19<00:06, 21.05it/s]
eval model::  72%|███████▏  | 358/500 [00:19<00:06, 21.65it/s]
eval model::  72%|███████▏  | 361/500 [00:19<00:07, 18.71it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:08, 16.73it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:08, 16.67it/s]
eval model::  74%|███████▍  | 369/500 [00:19<00:07, 18.38it/s]
eval model::  74%|███████▍  | 371/500 [00:19<00:07, 18.25it/s]
eval model::  75%|███████▍  | 374/500 [00:20<00:06, 19.75it/s]
eval model::  75%|███████▌  | 377/500 [00:20<00:05, 22.15it/s]
eval model::  76%|███████▌  | 380/500 [00:20<00:05, 21.40it/s]
eval model::  77%|███████▋  | 384/500 [00:20<00:04, 24.51it/s]
eval model::  77%|███████▋  | 387/500 [00:20<00:07, 15.86it/s]
eval model::  78%|███████▊  | 390/500 [00:20<00:06, 17.89it/s]
eval model::  79%|███████▊  | 393/500 [00:21<00:05, 18.70it/s]
eval model::  79%|███████▉  | 396/500 [00:21<00:05, 19.07it/s]
eval model::  80%|███████▉  | 399/500 [00:21<00:05, 19.94it/s]
eval model::  80%|████████  | 402/500 [00:21<00:05, 19.47it/s]
eval model::  81%|████████  | 405/500 [00:21<00:04, 20.33it/s]
eval model::  82%|████████▏ | 408/500 [00:21<00:04, 21.29it/s]
eval model::  82%|████████▏ | 411/500 [00:21<00:03, 22.93it/s]
eval model::  83%|████████▎ | 414/500 [00:22<00:03, 24.27it/s]
eval model::  83%|████████▎ | 417/500 [00:22<00:03, 21.50it/s]
eval model::  84%|████████▍ | 420/500 [00:22<00:05, 14.99it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:04, 15.84it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:04, 15.23it/s]
eval model::  85%|████████▌ | 426/500 [00:22<00:04, 16.21it/s]
eval model::  86%|████████▌ | 429/500 [00:23<00:03, 18.92it/s]
eval model::  86%|████████▋ | 432/500 [00:23<00:03, 17.18it/s]
eval model::  87%|████████▋ | 436/500 [00:23<00:03, 20.97it/s]
eval model::  88%|████████▊ | 439/500 [00:23<00:02, 22.96it/s]
eval model::  88%|████████▊ | 442/500 [00:23<00:02, 23.43it/s]
eval model::  89%|████████▉ | 445/500 [00:23<00:02, 23.49it/s]
eval model::  90%|████████▉ | 448/500 [00:23<00:02, 23.20it/s]
eval model::  90%|█████████ | 451/500 [00:23<00:02, 23.15it/s]
eval model::  91%|█████████ | 454/500 [00:24<00:01, 23.01it/s]
eval model::  91%|█████████▏| 457/500 [00:24<00:01, 22.95it/s]
eval model::  92%|█████████▏| 460/500 [00:24<00:01, 20.99it/s]
eval model::  93%|█████████▎| 463/500 [00:24<00:02, 17.96it/s]
eval model::  93%|█████████▎| 465/500 [00:24<00:02, 16.88it/s]
eval model::  94%|█████████▎| 468/500 [00:24<00:01, 18.78it/s]
eval model::  94%|█████████▍| 471/500 [00:24<00:01, 20.75it/s]
eval model::  95%|█████████▍| 474/500 [00:25<00:01, 19.43it/s]
eval model::  95%|█████████▌| 477/500 [00:25<00:01, 20.49it/s]
eval model::  96%|█████████▌| 480/500 [00:25<00:00, 21.51it/s]
eval model::  97%|█████████▋| 483/500 [00:25<00:00, 20.78it/s]
eval model::  97%|█████████▋| 486/500 [00:25<00:00, 19.57it/s]
eval model::  98%|█████████▊| 489/500 [00:25<00:00, 21.81it/s]
eval model::  98%|█████████▊| 492/500 [00:26<00:00, 17.39it/s]
eval model::  99%|█████████▉| 495/500 [00:26<00:00, 18.77it/s]
eval model:: 100%|█████████▉| 498/500 [00:26<00:00, 20.80it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.93it/s]
[2024/07/28 02:15:38] ppocr INFO: cur metric, precision: 0.7350608143839239, recall: 0.6692344727973039, hmean: 0.7006048387096775, fps: 46.07790838244493
[2024/07/28 02:15:38] ppocr INFO: best metric, hmean: 0.7152998776009791, precision: 0.727589641434263, recall: 0.7034183919114106, fps: 45.69782460781328, best_epoch: 1040
[2024/07/28 02:15:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:15:46] ppocr INFO: epoch: [1061/1500], global_step: 3183, lr: 0.001000, loss: 1.189730, loss_shrink_maps: 0.581114, loss_threshold_maps: 0.485929, loss_binary_maps: 0.115696, avg_reader_cost: 1.82177 s, avg_batch_cost: 2.14703 s, avg_samples: 12.5, ips: 5.82200 samples/s, eta: 2:13:23
[2024/07/28 02:15:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:15:55] ppocr INFO: epoch: [1062/1500], global_step: 3186, lr: 0.001000, loss: 1.213994, loss_shrink_maps: 0.618473, loss_threshold_maps: 0.493752, loss_binary_maps: 0.123025, avg_reader_cost: 1.50218 s, avg_batch_cost: 1.73048 s, avg_samples: 12.5, ips: 7.22341 samples/s, eta: 2:13:04
[2024/07/28 02:15:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:16:05] ppocr INFO: epoch: [1063/1500], global_step: 3189, lr: 0.001000, loss: 1.226635, loss_shrink_maps: 0.626288, loss_threshold_maps: 0.493752, loss_binary_maps: 0.124477, avg_reader_cost: 1.57322 s, avg_batch_cost: 1.83053 s, avg_samples: 12.5, ips: 6.82864 samples/s, eta: 2:12:46
[2024/07/28 02:16:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:16:13] ppocr INFO: epoch: [1064/1500], global_step: 3190, lr: 0.001000, loss: 1.229184, loss_shrink_maps: 0.626288, loss_threshold_maps: 0.493752, loss_binary_maps: 0.124477, avg_reader_cost: 0.43346 s, avg_batch_cost: 0.55476 s, avg_samples: 4.8, ips: 8.65245 samples/s, eta: 2:12:40
[2024/07/28 02:16:15] ppocr INFO: epoch: [1064/1500], global_step: 3192, lr: 0.001000, loss: 1.234466, loss_shrink_maps: 0.630178, loss_threshold_maps: 0.493752, loss_binary_maps: 0.125050, avg_reader_cost: 1.20169 s, avg_batch_cost: 1.34812 s, avg_samples: 7.7, ips: 5.71167 samples/s, eta: 2:12:28
[2024/07/28 02:16:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:16:24] ppocr INFO: epoch: [1065/1500], global_step: 3195, lr: 0.001000, loss: 1.225718, loss_shrink_maps: 0.615986, loss_threshold_maps: 0.486913, loss_binary_maps: 0.122654, avg_reader_cost: 1.51866 s, avg_batch_cost: 1.75085 s, avg_samples: 12.5, ips: 7.13938 samples/s, eta: 2:12:09
[2024/07/28 02:16:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:16:33] ppocr INFO: epoch: [1066/1500], global_step: 3198, lr: 0.001000, loss: 1.205225, loss_shrink_maps: 0.610015, loss_threshold_maps: 0.475961, loss_binary_maps: 0.121709, avg_reader_cost: 1.50859 s, avg_batch_cost: 1.73660 s, avg_samples: 12.5, ips: 7.19797 samples/s, eta: 2:11:51
[2024/07/28 02:16:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:16:42] ppocr INFO: epoch: [1067/1500], global_step: 3200, lr: 0.001000, loss: 1.178357, loss_shrink_maps: 0.588635, loss_threshold_maps: 0.469199, loss_binary_maps: 0.117503, avg_reader_cost: 0.95497 s, avg_batch_cost: 1.13143 s, avg_samples: 9.6, ips: 8.48487 samples/s, eta: 2:11:38
[2024/07/28 02:16:43] ppocr INFO: epoch: [1067/1500], global_step: 3201, lr: 0.001000, loss: 1.189289, loss_shrink_maps: 0.595626, loss_threshold_maps: 0.469199, loss_binary_maps: 0.118842, avg_reader_cost: 0.61131 s, avg_batch_cost: 0.66600 s, avg_samples: 2.9, ips: 4.35438 samples/s, eta: 2:11:32
[2024/07/28 02:16:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:16:52] ppocr INFO: epoch: [1068/1500], global_step: 3204, lr: 0.001000, loss: 1.200538, loss_shrink_maps: 0.601939, loss_threshold_maps: 0.475497, loss_binary_maps: 0.120183, avg_reader_cost: 1.57927 s, avg_batch_cost: 1.82893 s, avg_samples: 12.5, ips: 6.83462 samples/s, eta: 2:11:14
[2024/07/28 02:16:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:17:01] ppocr INFO: epoch: [1069/1500], global_step: 3207, lr: 0.001000, loss: 1.189289, loss_shrink_maps: 0.595626, loss_threshold_maps: 0.470289, loss_binary_maps: 0.118842, avg_reader_cost: 1.56325 s, avg_batch_cost: 1.80588 s, avg_samples: 12.5, ips: 6.92183 samples/s, eta: 2:10:56
[2024/07/28 02:17:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:17:11] ppocr INFO: epoch: [1070/1500], global_step: 3210, lr: 0.001000, loss: 1.204558, loss_shrink_maps: 0.601935, loss_threshold_maps: 0.475497, loss_binary_maps: 0.120158, avg_reader_cost: 1.55184 s, avg_batch_cost: 1.80721 s, avg_samples: 12.5, ips: 6.91676 samples/s, eta: 2:10:38
[2024/07/28 02:17:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:17:21] ppocr INFO: epoch: [1071/1500], global_step: 3213, lr: 0.001000, loss: 1.191154, loss_shrink_maps: 0.594546, loss_threshold_maps: 0.470481, loss_binary_maps: 0.118534, avg_reader_cost: 1.59566 s, avg_batch_cost: 1.85827 s, avg_samples: 12.5, ips: 6.72669 samples/s, eta: 2:10:20
[2024/07/28 02:17:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:17:30] ppocr INFO: epoch: [1072/1500], global_step: 3216, lr: 0.001000, loss: 1.204558, loss_shrink_maps: 0.601935, loss_threshold_maps: 0.480019, loss_binary_maps: 0.120158, avg_reader_cost: 1.66171 s, avg_batch_cost: 1.89003 s, avg_samples: 12.5, ips: 6.61367 samples/s, eta: 2:10:02
[2024/07/28 02:17:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:17:40] ppocr INFO: epoch: [1073/1500], global_step: 3219, lr: 0.001000, loss: 1.215515, loss_shrink_maps: 0.608385, loss_threshold_maps: 0.486203, loss_binary_maps: 0.120846, avg_reader_cost: 1.53848 s, avg_batch_cost: 1.83165 s, avg_samples: 12.5, ips: 6.82446 samples/s, eta: 2:09:43
[2024/07/28 02:17:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:17:48] ppocr INFO: epoch: [1074/1500], global_step: 3220, lr: 0.001000, loss: 1.215515, loss_shrink_maps: 0.608385, loss_threshold_maps: 0.486203, loss_binary_maps: 0.120846, avg_reader_cost: 0.41075 s, avg_batch_cost: 0.52673 s, avg_samples: 4.8, ips: 9.11280 samples/s, eta: 2:09:37
[2024/07/28 02:17:50] ppocr INFO: epoch: [1074/1500], global_step: 3222, lr: 0.001000, loss: 1.215515, loss_shrink_maps: 0.608385, loss_threshold_maps: 0.485009, loss_binary_maps: 0.120846, avg_reader_cost: 1.14500 s, avg_batch_cost: 1.29113 s, avg_samples: 7.7, ips: 5.96375 samples/s, eta: 2:09:25
[2024/07/28 02:17:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:17:59] ppocr INFO: epoch: [1075/1500], global_step: 3225, lr: 0.001000, loss: 1.219404, loss_shrink_maps: 0.608795, loss_threshold_maps: 0.486203, loss_binary_maps: 0.121268, avg_reader_cost: 1.53455 s, avg_batch_cost: 1.79499 s, avg_samples: 12.5, ips: 6.96384 samples/s, eta: 2:09:07
[2024/07/28 02:18:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:18:09] ppocr INFO: epoch: [1076/1500], global_step: 3228, lr: 0.001000, loss: 1.233167, loss_shrink_maps: 0.625293, loss_threshold_maps: 0.485992, loss_binary_maps: 0.124524, avg_reader_cost: 1.59404 s, avg_batch_cost: 1.82306 s, avg_samples: 12.5, ips: 6.85659 samples/s, eta: 2:08:49
[2024/07/28 02:18:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:18:17] ppocr INFO: epoch: [1077/1500], global_step: 3230, lr: 0.001000, loss: 1.210982, loss_shrink_maps: 0.603476, loss_threshold_maps: 0.483530, loss_binary_maps: 0.120423, avg_reader_cost: 0.91448 s, avg_batch_cost: 1.08826 s, avg_samples: 9.6, ips: 8.82144 samples/s, eta: 2:08:36
[2024/07/28 02:18:18] ppocr INFO: epoch: [1077/1500], global_step: 3231, lr: 0.001000, loss: 1.204607, loss_shrink_maps: 0.603476, loss_threshold_maps: 0.478208, loss_binary_maps: 0.120423, avg_reader_cost: 0.58954 s, avg_batch_cost: 0.64515 s, avg_samples: 2.9, ips: 4.49505 samples/s, eta: 2:08:30
[2024/07/28 02:18:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:18:27] ppocr INFO: epoch: [1078/1500], global_step: 3234, lr: 0.001000, loss: 1.172057, loss_shrink_maps: 0.576362, loss_threshold_maps: 0.470793, loss_binary_maps: 0.114790, avg_reader_cost: 1.52159 s, avg_batch_cost: 1.76486 s, avg_samples: 12.5, ips: 7.08272 samples/s, eta: 2:08:12
[2024/07/28 02:18:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:18:37] ppocr INFO: epoch: [1079/1500], global_step: 3237, lr: 0.001000, loss: 1.189506, loss_shrink_maps: 0.583835, loss_threshold_maps: 0.473346, loss_binary_maps: 0.116319, avg_reader_cost: 1.61814 s, avg_batch_cost: 1.84568 s, avg_samples: 12.5, ips: 6.77256 samples/s, eta: 2:07:53
[2024/07/28 02:18:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:18:46] ppocr INFO: epoch: [1080/1500], global_step: 3240, lr: 0.001000, loss: 1.189506, loss_shrink_maps: 0.583835, loss_threshold_maps: 0.472029, loss_binary_maps: 0.116319, avg_reader_cost: 1.51063 s, avg_batch_cost: 1.75624 s, avg_samples: 12.5, ips: 7.11750 samples/s, eta: 2:07:35

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 2/500 [00:00<00:38, 12.88it/s]
eval model::   1%|          | 5/500 [00:00<00:24, 19.86it/s]
eval model::   2%|▏         | 8/500 [00:00<00:27, 18.00it/s]
eval model::   2%|▏         | 11/500 [00:00<00:27, 17.60it/s]
eval model::   3%|▎         | 13/500 [00:00<00:26, 18.08it/s]
eval model::   3%|▎         | 15/500 [00:00<00:26, 18.30it/s]
eval model::   4%|▍         | 19/500 [00:00<00:22, 20.95it/s]
eval model::   4%|▍         | 22/500 [00:01<00:23, 20.45it/s]
eval model::   5%|▌         | 25/500 [00:01<00:22, 20.76it/s]
eval model::   6%|▌         | 28/500 [00:01<00:23, 19.97it/s]
eval model::   6%|▌         | 31/500 [00:01<00:23, 20.10it/s]
eval model::   7%|▋         | 34/500 [00:01<00:23, 19.85it/s]
eval model::   7%|▋         | 37/500 [00:01<00:22, 20.36it/s]
eval model::   8%|▊         | 40/500 [00:02<00:26, 17.10it/s]
eval model::   8%|▊         | 42/500 [00:02<00:28, 15.90it/s]
eval model::   9%|▉         | 45/500 [00:02<00:25, 18.13it/s]
eval model::   9%|▉         | 47/500 [00:02<00:27, 16.39it/s]
eval model::  10%|▉         | 49/500 [00:02<00:26, 17.12it/s]
eval model::  10%|█         | 52/500 [00:02<00:23, 18.86it/s]
eval model::  11%|█         | 55/500 [00:02<00:22, 19.98it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:26, 16.65it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:27, 15.82it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:27, 15.78it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:23, 18.35it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:21, 19.73it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:20, 21.03it/s]
eval model::  15%|█▌        | 75/500 [00:04<00:20, 21.02it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:17, 23.98it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:16, 24.70it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:16, 24.52it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:19, 20.91it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:22, 18.51it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:21, 18.79it/s]
eval model::  19%|█▉        | 96/500 [00:04<00:19, 20.49it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:18, 21.99it/s]
eval model::  20%|██        | 102/500 [00:05<00:19, 20.40it/s]
eval model::  21%|██        | 105/500 [00:05<00:17, 21.96it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:18, 21.50it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:17, 21.75it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:16, 23.62it/s]
eval model::  23%|██▎       | 117/500 [00:05<00:17, 22.07it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:18, 20.62it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:17, 21.67it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:21, 17.36it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:19, 18.77it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:22, 16.53it/s]
eval model::  27%|██▋       | 136/500 [00:06<00:18, 19.83it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:18, 19.99it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:16, 21.12it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:19, 18.23it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:21, 16.43it/s]
eval model::  30%|███       | 150/500 [00:07<00:19, 18.34it/s]
eval model::  30%|███       | 152/500 [00:07<00:21, 16.32it/s]
eval model::  31%|███       | 155/500 [00:08<00:19, 17.73it/s]
eval model::  32%|███▏      | 158/500 [00:08<00:17, 19.25it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:23, 14.61it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:22, 15.10it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:19, 17.32it/s]
eval model::  34%|███▎      | 168/500 [00:08<00:19, 17.47it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:17, 18.35it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:17, 19.12it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:17, 18.14it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:16, 19.56it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:19, 16.32it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:17, 18.41it/s]
eval model::  37%|███▋      | 187/500 [00:09<00:15, 20.14it/s]
eval model::  38%|███▊      | 190/500 [00:09<00:14, 21.72it/s]
eval model::  39%|███▊      | 193/500 [00:10<00:13, 22.70it/s]
eval model::  39%|███▉      | 196/500 [00:10<00:14, 20.45it/s]
eval model::  40%|███▉      | 199/500 [00:10<00:13, 22.64it/s]
eval model::  40%|████      | 202/500 [00:10<00:12, 23.99it/s]
eval model::  41%|████      | 205/500 [00:10<00:19, 15.01it/s]
eval model::  42%|████▏     | 208/500 [00:10<00:18, 15.73it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:18, 15.46it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.60it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:21, 13.00it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:22, 12.73it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:18, 15.05it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:21, 12.65it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:16, 16.17it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:13, 19.90it/s]
eval model::  47%|████▋     | 234/500 [00:12<00:12, 21.61it/s]
eval model::  48%|████▊     | 238/500 [00:12<00:11, 23.33it/s]
eval model::  48%|████▊     | 241/500 [00:12<00:12, 21.37it/s]
eval model::  49%|████▉     | 244/500 [00:13<00:15, 16.32it/s]
eval model::  50%|████▉     | 248/500 [00:13<00:12, 19.69it/s]
eval model::  50%|█████     | 251/500 [00:13<00:11, 21.04it/s]
eval model::  51%|█████     | 254/500 [00:13<00:12, 19.51it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:11, 20.38it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:11, 21.01it/s]
eval model::  53%|█████▎    | 263/500 [00:13<00:12, 19.39it/s]
eval model::  53%|█████▎    | 266/500 [00:14<00:12, 19.30it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:12, 18.63it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:12, 18.16it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:12, 17.40it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:11, 19.47it/s]
eval model::  56%|█████▌    | 281/500 [00:14<00:10, 20.93it/s]
eval model::  57%|█████▋    | 284/500 [00:15<00:10, 21.01it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:19, 11.17it/s]
eval model::  58%|█████▊    | 290/500 [00:15<00:15, 13.57it/s]
eval model::  58%|█████▊    | 292/500 [00:15<00:14, 14.36it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:13, 14.81it/s]
eval model::  59%|█████▉    | 296/500 [00:16<00:15, 13.51it/s]
eval model::  60%|█████▉    | 299/500 [00:16<00:12, 16.75it/s]
eval model::  60%|██████    | 302/500 [00:16<00:13, 15.04it/s]
eval model::  61%|██████    | 304/500 [00:16<00:12, 15.74it/s]
eval model::  62%|██████▏   | 308/500 [00:16<00:09, 19.90it/s]
eval model::  62%|██████▏   | 311/500 [00:16<00:08, 22.15it/s]
eval model::  63%|██████▎   | 314/500 [00:16<00:08, 22.73it/s]
eval model::  63%|██████▎   | 317/500 [00:17<00:07, 23.35it/s]
eval model::  64%|██████▍   | 320/500 [00:17<00:07, 23.85it/s]
eval model::  65%|██████▍   | 323/500 [00:17<00:07, 22.21it/s]
eval model::  65%|██████▌   | 326/500 [00:17<00:07, 21.88it/s]
eval model::  66%|██████▌   | 329/500 [00:17<00:08, 20.10it/s]
eval model::  66%|██████▋   | 332/500 [00:17<00:08, 20.49it/s]
eval model::  67%|██████▋   | 335/500 [00:17<00:07, 21.74it/s]
eval model::  68%|██████▊   | 338/500 [00:18<00:07, 20.90it/s]
eval model::  68%|██████▊   | 341/500 [00:18<00:11, 14.35it/s]
eval model::  69%|██████▉   | 344/500 [00:18<00:09, 16.52it/s]
eval model::  69%|██████▉   | 347/500 [00:18<00:08, 17.89it/s]
eval model::  70%|███████   | 350/500 [00:18<00:07, 19.81it/s]
eval model::  71%|███████   | 353/500 [00:18<00:06, 21.14it/s]
eval model::  71%|███████   | 356/500 [00:19<00:07, 18.99it/s]
eval model::  72%|███████▏  | 359/500 [00:19<00:07, 19.65it/s]
eval model::  72%|███████▏  | 362/500 [00:19<00:08, 16.96it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:08, 15.16it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:09, 14.20it/s]
eval model::  74%|███████▍  | 369/500 [00:19<00:07, 16.41it/s]
eval model::  74%|███████▍  | 371/500 [00:20<00:07, 17.03it/s]
eval model::  75%|███████▍  | 374/500 [00:20<00:06, 19.05it/s]
eval model::  76%|███████▌  | 378/500 [00:20<00:05, 23.37it/s]
eval model::  76%|███████▌  | 381/500 [00:20<00:05, 22.54it/s]
eval model::  77%|███████▋  | 385/500 [00:20<00:04, 24.50it/s]
eval model::  78%|███████▊  | 388/500 [00:21<00:07, 14.43it/s]
eval model::  78%|███████▊  | 391/500 [00:21<00:06, 16.46it/s]
eval model::  79%|███████▉  | 394/500 [00:21<00:06, 17.48it/s]
eval model::  79%|███████▉  | 397/500 [00:21<00:05, 17.73it/s]
eval model::  80%|████████  | 400/500 [00:21<00:05, 17.21it/s]
eval model::  80%|████████  | 402/500 [00:21<00:05, 17.65it/s]
eval model::  81%|████████  | 404/500 [00:21<00:05, 17.83it/s]
eval model::  81%|████████▏ | 407/500 [00:21<00:04, 19.90it/s]
eval model::  82%|████████▏ | 410/500 [00:22<00:04, 20.94it/s]
eval model::  83%|████████▎ | 413/500 [00:22<00:03, 21.86it/s]
eval model::  83%|████████▎ | 416/500 [00:22<00:03, 22.26it/s]
eval model::  84%|████████▍ | 419/500 [00:22<00:04, 20.19it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:05, 15.17it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:05, 14.57it/s]
eval model::  85%|████████▌ | 426/500 [00:23<00:04, 15.18it/s]
eval model::  86%|████████▌ | 429/500 [00:23<00:03, 18.20it/s]
eval model::  86%|████████▋ | 432/500 [00:23<00:03, 17.73it/s]
eval model::  87%|████████▋ | 435/500 [00:23<00:03, 20.26it/s]
eval model::  88%|████████▊ | 438/500 [00:23<00:02, 22.35it/s]
eval model::  88%|████████▊ | 441/500 [00:23<00:02, 21.06it/s]
eval model::  89%|████████▉ | 445/500 [00:23<00:02, 24.15it/s]
eval model::  90%|████████▉ | 448/500 [00:24<00:02, 20.54it/s]
eval model::  90%|█████████ | 451/500 [00:24<00:02, 20.91it/s]
eval model::  91%|█████████ | 454/500 [00:24<00:02, 21.92it/s]
eval model::  91%|█████████▏| 457/500 [00:24<00:01, 21.69it/s]
eval model::  92%|█████████▏| 460/500 [00:24<00:02, 19.73it/s]
eval model::  93%|█████████▎| 463/500 [00:24<00:02, 17.95it/s]
eval model::  93%|█████████▎| 465/500 [00:25<00:02, 14.84it/s]
eval model::  93%|█████████▎| 467/500 [00:25<00:02, 15.20it/s]
eval model::  94%|█████████▍| 470/500 [00:25<00:01, 17.33it/s]
eval model::  95%|█████████▍| 473/500 [00:25<00:01, 18.73it/s]
eval model::  95%|█████████▌| 475/500 [00:25<00:01, 17.97it/s]
eval model::  95%|█████████▌| 477/500 [00:25<00:01, 18.38it/s]
eval model::  96%|█████████▌| 480/500 [00:25<00:01, 19.40it/s]
eval model::  96%|█████████▋| 482/500 [00:25<00:00, 19.10it/s]
eval model::  97%|█████████▋| 485/500 [00:26<00:00, 21.59it/s]
eval model::  98%|█████████▊| 488/500 [00:26<00:00, 21.85it/s]
eval model::  98%|█████████▊| 491/500 [00:26<00:00, 21.18it/s]
eval model::  99%|█████████▉| 494/500 [00:26<00:00, 19.15it/s]
eval model::  99%|█████████▉| 497/500 [00:26<00:00, 21.43it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 21.35it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.68it/s]
[2024/07/28 02:19:13] ppocr INFO: cur metric, precision: 0.7654794520547945, recall: 0.672604718343765, hmean: 0.7160430548436699, fps: 44.8783209422934
[2024/07/28 02:19:13] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/28 02:19:13] ppocr INFO: best metric, hmean: 0.7160430548436699, precision: 0.7654794520547945, recall: 0.672604718343765, fps: 44.8783209422934, best_epoch: 1080
[2024/07/28 02:19:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:19:21] ppocr INFO: epoch: [1081/1500], global_step: 3243, lr: 0.001000, loss: 1.189506, loss_shrink_maps: 0.583835, loss_threshold_maps: 0.472029, loss_binary_maps: 0.116319, avg_reader_cost: 1.56364 s, avg_batch_cost: 1.79238 s, avg_samples: 12.5, ips: 6.97395 samples/s, eta: 2:07:17
[2024/07/28 02:19:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:19:30] ppocr INFO: epoch: [1082/1500], global_step: 3246, lr: 0.001000, loss: 1.189506, loss_shrink_maps: 0.581406, loss_threshold_maps: 0.473039, loss_binary_maps: 0.115860, avg_reader_cost: 1.52490 s, avg_batch_cost: 1.75317 s, avg_samples: 12.5, ips: 7.12993 samples/s, eta: 2:06:58
[2024/07/28 02:19:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:19:40] ppocr INFO: epoch: [1083/1500], global_step: 3249, lr: 0.001000, loss: 1.239222, loss_shrink_maps: 0.625414, loss_threshold_maps: 0.483229, loss_binary_maps: 0.124520, avg_reader_cost: 1.59915 s, avg_batch_cost: 1.84626 s, avg_samples: 12.5, ips: 6.77043 samples/s, eta: 2:06:40
[2024/07/28 02:19:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:19:48] ppocr INFO: epoch: [1084/1500], global_step: 3250, lr: 0.001000, loss: 1.232944, loss_shrink_maps: 0.625414, loss_threshold_maps: 0.482644, loss_binary_maps: 0.124368, avg_reader_cost: 0.42311 s, avg_batch_cost: 0.50806 s, avg_samples: 4.8, ips: 9.44773 samples/s, eta: 2:06:34
[2024/07/28 02:19:49] ppocr INFO: epoch: [1084/1500], global_step: 3252, lr: 0.001000, loss: 1.254514, loss_shrink_maps: 0.634883, loss_threshold_maps: 0.484241, loss_binary_maps: 0.126479, avg_reader_cost: 1.10755 s, avg_batch_cost: 1.25342 s, avg_samples: 7.7, ips: 6.14318 samples/s, eta: 2:06:22
[2024/07/28 02:19:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:19:59] ppocr INFO: epoch: [1085/1500], global_step: 3255, lr: 0.001000, loss: 1.261442, loss_shrink_maps: 0.645208, loss_threshold_maps: 0.479063, loss_binary_maps: 0.128059, avg_reader_cost: 1.61950 s, avg_batch_cost: 1.87487 s, avg_samples: 12.5, ips: 6.66712 samples/s, eta: 2:06:04
[2024/07/28 02:20:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:20:08] ppocr INFO: epoch: [1086/1500], global_step: 3258, lr: 0.001000, loss: 1.254514, loss_shrink_maps: 0.634883, loss_threshold_maps: 0.492188, loss_binary_maps: 0.126479, avg_reader_cost: 1.61960 s, avg_batch_cost: 1.84827 s, avg_samples: 12.5, ips: 6.76307 samples/s, eta: 2:05:45
[2024/07/28 02:20:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:20:18] ppocr INFO: epoch: [1087/1500], global_step: 3260, lr: 0.001000, loss: 1.260877, loss_shrink_maps: 0.645208, loss_threshold_maps: 0.486426, loss_binary_maps: 0.128059, avg_reader_cost: 1.06860 s, avg_batch_cost: 1.29165 s, avg_samples: 9.6, ips: 7.43233 samples/s, eta: 2:05:34
[2024/07/28 02:20:19] ppocr INFO: epoch: [1087/1500], global_step: 3261, lr: 0.001000, loss: 1.248237, loss_shrink_maps: 0.640839, loss_threshold_maps: 0.481153, loss_binary_maps: 0.127469, avg_reader_cost: 0.69156 s, avg_batch_cost: 0.74650 s, avg_samples: 2.9, ips: 3.88481 samples/s, eta: 2:05:28
[2024/07/28 02:20:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:20:28] ppocr INFO: epoch: [1088/1500], global_step: 3264, lr: 0.001000, loss: 1.241827, loss_shrink_maps: 0.632042, loss_threshold_maps: 0.478969, loss_binary_maps: 0.125975, avg_reader_cost: 1.53083 s, avg_batch_cost: 1.76507 s, avg_samples: 12.5, ips: 7.08188 samples/s, eta: 2:05:10
[2024/07/28 02:20:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:20:38] ppocr INFO: epoch: [1089/1500], global_step: 3267, lr: 0.001000, loss: 1.241827, loss_shrink_maps: 0.632042, loss_threshold_maps: 0.481153, loss_binary_maps: 0.125975, avg_reader_cost: 1.56635 s, avg_batch_cost: 1.80068 s, avg_samples: 12.5, ips: 6.94182 samples/s, eta: 2:04:51
[2024/07/28 02:20:41] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:20:47] ppocr INFO: epoch: [1090/1500], global_step: 3270, lr: 0.001000, loss: 1.240038, loss_shrink_maps: 0.621240, loss_threshold_maps: 0.475355, loss_binary_maps: 0.123651, avg_reader_cost: 1.63123 s, avg_batch_cost: 1.90642 s, avg_samples: 12.5, ips: 6.55680 samples/s, eta: 2:04:33
[2024/07/28 02:20:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:20:58] ppocr INFO: epoch: [1091/1500], global_step: 3273, lr: 0.001000, loss: 1.188123, loss_shrink_maps: 0.596850, loss_threshold_maps: 0.471862, loss_binary_maps: 0.118963, avg_reader_cost: 1.75647 s, avg_batch_cost: 1.98455 s, avg_samples: 12.5, ips: 6.29865 samples/s, eta: 2:04:16
[2024/07/28 02:21:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:21:07] ppocr INFO: epoch: [1092/1500], global_step: 3276, lr: 0.001000, loss: 1.184929, loss_shrink_maps: 0.580863, loss_threshold_maps: 0.467765, loss_binary_maps: 0.116060, avg_reader_cost: 1.52638 s, avg_batch_cost: 1.76996 s, avg_samples: 12.5, ips: 7.06232 samples/s, eta: 2:03:57
[2024/07/28 02:21:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:21:17] ppocr INFO: epoch: [1093/1500], global_step: 3279, lr: 0.001000, loss: 1.135063, loss_shrink_maps: 0.567055, loss_threshold_maps: 0.462839, loss_binary_maps: 0.113318, avg_reader_cost: 1.52626 s, avg_batch_cost: 1.76984 s, avg_samples: 12.5, ips: 7.06279 samples/s, eta: 2:03:39
[2024/07/28 02:21:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:21:25] ppocr INFO: epoch: [1094/1500], global_step: 3280, lr: 0.001000, loss: 1.135063, loss_shrink_maps: 0.567055, loss_threshold_maps: 0.462839, loss_binary_maps: 0.113318, avg_reader_cost: 0.41633 s, avg_batch_cost: 0.50324 s, avg_samples: 4.8, ips: 9.53811 samples/s, eta: 2:03:32
[2024/07/28 02:21:26] ppocr INFO: epoch: [1094/1500], global_step: 3282, lr: 0.001000, loss: 1.135063, loss_shrink_maps: 0.567055, loss_threshold_maps: 0.462839, loss_binary_maps: 0.113318, avg_reader_cost: 1.09779 s, avg_batch_cost: 1.24364 s, avg_samples: 7.7, ips: 6.19153 samples/s, eta: 2:03:20
[2024/07/28 02:21:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:21:36] ppocr INFO: epoch: [1095/1500], global_step: 3285, lr: 0.001000, loss: 1.160865, loss_shrink_maps: 0.575492, loss_threshold_maps: 0.464237, loss_binary_maps: 0.115107, avg_reader_cost: 1.74989 s, avg_batch_cost: 1.97999 s, avg_samples: 12.5, ips: 6.31316 samples/s, eta: 2:03:03
[2024/07/28 02:21:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:21:46] ppocr INFO: epoch: [1096/1500], global_step: 3288, lr: 0.001000, loss: 1.169874, loss_shrink_maps: 0.582766, loss_threshold_maps: 0.462264, loss_binary_maps: 0.116386, avg_reader_cost: 1.53370 s, avg_batch_cost: 1.78606 s, avg_samples: 12.5, ips: 6.99864 samples/s, eta: 2:02:44
[2024/07/28 02:21:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:21:55] ppocr INFO: epoch: [1097/1500], global_step: 3290, lr: 0.001000, loss: 1.166117, loss_shrink_maps: 0.582766, loss_threshold_maps: 0.462264, loss_binary_maps: 0.116139, avg_reader_cost: 0.96521 s, avg_batch_cost: 1.16956 s, avg_samples: 9.6, ips: 8.20822 samples/s, eta: 2:02:32
[2024/07/28 02:21:56] ppocr INFO: epoch: [1097/1500], global_step: 3291, lr: 0.001000, loss: 1.182424, loss_shrink_maps: 0.586722, loss_threshold_maps: 0.462887, loss_binary_maps: 0.116391, avg_reader_cost: 0.63034 s, avg_batch_cost: 0.68535 s, avg_samples: 2.9, ips: 4.23142 samples/s, eta: 2:02:26
[2024/07/28 02:21:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:22:05] ppocr INFO: epoch: [1098/1500], global_step: 3294, lr: 0.001000, loss: 1.203354, loss_shrink_maps: 0.590260, loss_threshold_maps: 0.472226, loss_binary_maps: 0.117726, avg_reader_cost: 1.54625 s, avg_batch_cost: 1.77467 s, avg_samples: 12.5, ips: 7.04356 samples/s, eta: 2:02:08
[2024/07/28 02:22:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:22:14] ppocr INFO: epoch: [1099/1500], global_step: 3297, lr: 0.001000, loss: 1.218849, loss_shrink_maps: 0.622319, loss_threshold_maps: 0.479194, loss_binary_maps: 0.124833, avg_reader_cost: 1.52748 s, avg_batch_cost: 1.76456 s, avg_samples: 12.5, ips: 7.08393 samples/s, eta: 2:01:49
[2024/07/28 02:22:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:22:24] ppocr INFO: epoch: [1100/1500], global_step: 3300, lr: 0.001000, loss: 1.230256, loss_shrink_maps: 0.622319, loss_threshold_maps: 0.484449, loss_binary_maps: 0.124833, avg_reader_cost: 1.60195 s, avg_batch_cost: 1.82937 s, avg_samples: 12.5, ips: 6.83294 samples/s, eta: 2:01:31

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:50,  9.85it/s]
eval model::   1%|          | 4/500 [00:00<00:28, 17.57it/s]
eval model::   1%|          | 6/500 [00:00<00:27, 17.95it/s]
eval model::   2%|▏         | 8/500 [00:00<00:27, 17.85it/s]
eval model::   2%|▏         | 10/500 [00:00<00:27, 17.82it/s]
eval model::   2%|▏         | 12/500 [00:00<00:28, 16.97it/s]
eval model::   3%|▎         | 14/500 [00:00<00:29, 16.63it/s]
eval model::   3%|▎         | 16/500 [00:00<00:27, 17.49it/s]
eval model::   4%|▍         | 19/500 [00:01<00:26, 17.91it/s]
eval model::   4%|▍         | 21/500 [00:01<00:26, 18.16it/s]
eval model::   5%|▍         | 24/500 [00:01<00:24, 19.40it/s]
eval model::   5%|▌         | 26/500 [00:01<00:24, 19.34it/s]
eval model::   6%|▌         | 29/500 [00:01<00:23, 19.90it/s]
eval model::   6%|▌         | 31/500 [00:01<00:26, 17.39it/s]
eval model::   7%|▋         | 34/500 [00:01<00:24, 18.73it/s]
eval model::   7%|▋         | 37/500 [00:01<00:22, 20.74it/s]
eval model::   8%|▊         | 40/500 [00:02<00:24, 18.53it/s]
eval model::   8%|▊         | 42/500 [00:02<00:27, 16.62it/s]
eval model::   9%|▉         | 44/500 [00:02<00:26, 16.95it/s]
eval model::   9%|▉         | 46/500 [00:02<00:26, 16.96it/s]
eval model::  10%|▉         | 49/500 [00:02<00:24, 18.44it/s]
eval model::  10%|█         | 51/500 [00:02<00:24, 18.62it/s]
eval model::  11%|█         | 54/500 [00:02<00:20, 21.38it/s]
eval model::  11%|█▏        | 57/500 [00:03<00:19, 22.24it/s]
eval model::  12%|█▏        | 60/500 [00:03<00:20, 21.31it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:27, 16.13it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:21, 19.95it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:20, 21.37it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:20, 20.35it/s]
eval model::  15%|█▌        | 76/500 [00:04<00:20, 20.78it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:19, 21.38it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:17, 23.30it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:17, 23.29it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:20, 20.13it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:20, 20.18it/s]
eval model::  19%|█▉        | 94/500 [00:04<00:19, 21.36it/s]
eval model::  19%|█▉        | 97/500 [00:04<00:18, 22.26it/s]
eval model::  20%|██        | 100/500 [00:05<00:19, 20.92it/s]
eval model::  21%|██        | 103/500 [00:05<00:18, 21.55it/s]
eval model::  21%|██        | 106/500 [00:05<00:18, 21.29it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:17, 22.32it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:18, 20.84it/s]
eval model::  23%|██▎       | 115/500 [00:05<00:19, 19.82it/s]
eval model::  24%|██▍       | 119/500 [00:06<00:18, 21.15it/s]
eval model::  24%|██▍       | 122/500 [00:06<00:18, 20.65it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:21, 17.52it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:19, 18.95it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:20, 18.04it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:20, 17.81it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:18, 19.61it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:18, 19.78it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:18, 19.04it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:17, 20.16it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:18, 19.35it/s]
eval model::  30%|███       | 150/500 [00:07<00:16, 20.71it/s]
eval model::  31%|███       | 153/500 [00:07<00:18, 18.39it/s]
eval model::  31%|███       | 156/500 [00:07<00:16, 20.77it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:16, 20.29it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:19, 16.90it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:19, 17.01it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:17, 18.66it/s]
eval model::  34%|███▍      | 170/500 [00:08<00:17, 19.28it/s]
eval model::  35%|███▍      | 173/500 [00:08<00:18, 17.46it/s]
eval model::  35%|███▌      | 175/500 [00:09<00:20, 15.89it/s]
eval model::  36%|███▌      | 178/500 [00:09<00:17, 17.91it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:19, 16.38it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:16, 19.26it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:14, 21.72it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:14, 21.98it/s]
eval model::  38%|███▊      | 192/500 [00:09<00:13, 22.80it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:13, 22.30it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:14, 21.32it/s]
eval model::  40%|████      | 201/500 [00:10<00:13, 21.58it/s]
eval model::  41%|████      | 204/500 [00:10<00:13, 22.49it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:20, 14.43it/s]
eval model::  42%|████▏     | 209/500 [00:10<00:19, 14.98it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:19, 14.73it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:19, 14.75it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:22, 12.52it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:23, 12.26it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:18, 15.34it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:20, 13.64it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:16, 16.91it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:13, 20.71it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:12, 22.04it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:12, 21.90it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:11, 23.08it/s]
eval model::  48%|████▊     | 242/500 [00:12<00:13, 19.28it/s]
eval model::  49%|████▉     | 245/500 [00:12<00:12, 20.63it/s]
eval model::  50%|████▉     | 248/500 [00:13<00:11, 21.18it/s]
eval model::  50%|█████     | 251/500 [00:13<00:11, 20.92it/s]
eval model::  51%|█████     | 254/500 [00:13<00:11, 21.41it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:12, 19.81it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:11, 21.23it/s]
eval model::  53%|█████▎    | 263/500 [00:13<00:10, 21.83it/s]
eval model::  53%|█████▎    | 266/500 [00:13<00:11, 20.03it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:11, 19.26it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:11, 20.27it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:11, 19.30it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:10, 20.79it/s]
eval model::  56%|█████▌    | 281/500 [00:14<00:10, 20.66it/s]
eval model::  57%|█████▋    | 284/500 [00:14<00:10, 21.27it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:18, 11.22it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:14, 14.91it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:13, 15.28it/s]
eval model::  59%|█████▉    | 297/500 [00:15<00:14, 14.17it/s]
eval model::  60%|██████    | 300/500 [00:16<00:13, 15.30it/s]
eval model::  60%|██████    | 302/500 [00:16<00:12, 15.93it/s]
eval model::  61%|██████    | 304/500 [00:16<00:11, 16.49it/s]
eval model::  61%|██████▏   | 307/500 [00:16<00:10, 18.84it/s]
eval model::  62%|██████▏   | 311/500 [00:16<00:08, 22.04it/s]
eval model::  63%|██████▎   | 314/500 [00:16<00:08, 21.94it/s]
eval model::  63%|██████▎   | 317/500 [00:16<00:09, 20.26it/s]
eval model::  64%|██████▍   | 321/500 [00:16<00:08, 22.36it/s]
eval model::  65%|██████▍   | 324/500 [00:17<00:08, 21.90it/s]
eval model::  65%|██████▌   | 327/500 [00:17<00:07, 23.11it/s]
eval model::  66%|██████▌   | 330/500 [00:17<00:07, 22.51it/s]
eval model::  67%|██████▋   | 333/500 [00:17<00:07, 22.82it/s]
eval model::  67%|██████▋   | 336/500 [00:17<00:06, 23.96it/s]
eval model::  68%|██████▊   | 339/500 [00:17<00:07, 22.51it/s]
eval model::  68%|██████▊   | 342/500 [00:18<00:09, 17.25it/s]
eval model::  69%|██████▉   | 345/500 [00:18<00:07, 19.47it/s]
eval model::  70%|██████▉   | 348/500 [00:18<00:07, 20.85it/s]
eval model::  70%|███████   | 351/500 [00:18<00:06, 22.24it/s]
eval model::  71%|███████   | 354/500 [00:18<00:06, 23.12it/s]
eval model::  71%|███████▏  | 357/500 [00:18<00:07, 20.27it/s]
eval model::  72%|███████▏  | 360/500 [00:18<00:06, 21.51it/s]
eval model::  73%|███████▎  | 363/500 [00:18<00:07, 18.89it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:08, 16.46it/s]
eval model::  74%|███████▍  | 369/500 [00:19<00:07, 18.04it/s]
eval model::  74%|███████▍  | 372/500 [00:19<00:06, 19.34it/s]
eval model::  75%|███████▌  | 375/500 [00:19<00:05, 21.46it/s]
eval model::  76%|███████▌  | 378/500 [00:19<00:05, 22.36it/s]
eval model::  76%|███████▌  | 381/500 [00:19<00:05, 21.54it/s]
eval model::  77%|███████▋  | 384/500 [00:19<00:05, 23.14it/s]
eval model::  77%|███████▋  | 387/500 [00:20<00:08, 14.07it/s]
eval model::  78%|███████▊  | 390/500 [00:20<00:06, 16.30it/s]
eval model::  79%|███████▊  | 393/500 [00:20<00:06, 17.40it/s]
eval model::  79%|███████▉  | 396/500 [00:20<00:05, 19.14it/s]
eval model::  80%|███████▉  | 399/500 [00:20<00:04, 20.64it/s]
eval model::  80%|████████  | 402/500 [00:21<00:04, 19.61it/s]
eval model::  81%|████████  | 405/500 [00:21<00:04, 20.89it/s]
eval model::  82%|████████▏ | 408/500 [00:21<00:04, 21.38it/s]
eval model::  82%|████████▏ | 411/500 [00:21<00:04, 21.96it/s]
eval model::  83%|████████▎ | 414/500 [00:21<00:04, 20.27it/s]
eval model::  83%|████████▎ | 417/500 [00:21<00:04, 18.97it/s]
eval model::  84%|████████▍ | 419/500 [00:21<00:04, 19.14it/s]
eval model::  84%|████████▍ | 421/500 [00:22<00:04, 16.19it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:04, 18.34it/s]
eval model::  85%|████████▌ | 427/500 [00:22<00:03, 19.56it/s]
eval model::  86%|████████▌ | 430/500 [00:22<00:03, 20.18it/s]
eval model::  87%|████████▋ | 433/500 [00:22<00:03, 19.28it/s]
eval model::  87%|████████▋ | 436/500 [00:22<00:03, 19.96it/s]
eval model::  88%|████████▊ | 439/500 [00:22<00:02, 20.50it/s]
eval model::  88%|████████▊ | 442/500 [00:23<00:02, 20.65it/s]
eval model::  89%|████████▉ | 445/500 [00:23<00:02, 21.79it/s]
eval model::  90%|████████▉ | 448/500 [00:23<00:02, 20.89it/s]
eval model::  90%|█████████ | 451/500 [00:23<00:02, 20.89it/s]
eval model::  91%|█████████ | 454/500 [00:23<00:02, 22.55it/s]
eval model::  91%|█████████▏| 457/500 [00:23<00:01, 24.35it/s]
eval model::  92%|█████████▏| 460/500 [00:23<00:01, 24.36it/s]
eval model::  93%|█████████▎| 463/500 [00:23<00:01, 20.54it/s]
eval model::  93%|█████████▎| 466/500 [00:24<00:01, 18.93it/s]
eval model::  94%|█████████▍| 469/500 [00:24<00:01, 19.84it/s]
eval model::  94%|█████████▍| 472/500 [00:24<00:01, 20.88it/s]
eval model::  95%|█████████▌| 475/500 [00:24<00:01, 20.89it/s]
eval model::  96%|█████████▌| 478/500 [00:24<00:00, 22.60it/s]
eval model::  96%|█████████▌| 481/500 [00:24<00:00, 23.61it/s]
eval model::  97%|█████████▋| 484/500 [00:24<00:00, 24.88it/s]
eval model::  97%|█████████▋| 487/500 [00:25<00:00, 24.57it/s]
eval model::  98%|█████████▊| 490/500 [00:25<00:00, 23.68it/s]
eval model::  99%|█████████▊| 493/500 [00:25<00:00, 21.14it/s]
eval model::  99%|█████████▉| 496/500 [00:25<00:00, 20.75it/s]
eval model:: 100%|█████████▉| 499/500 [00:25<00:00, 21.45it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.47it/s]
[2024/07/28 02:22:50] ppocr INFO: cur metric, precision: 0.7856294536817102, recall: 0.6369764082811747, hmean: 0.7035362935389523, fps: 45.97610735469473
[2024/07/28 02:22:50] ppocr INFO: best metric, hmean: 0.7160430548436699, precision: 0.7654794520547945, recall: 0.672604718343765, fps: 44.8783209422934, best_epoch: 1080
[2024/07/28 02:22:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:22:58] ppocr INFO: epoch: [1101/1500], global_step: 3303, lr: 0.001000, loss: 1.247001, loss_shrink_maps: 0.637774, loss_threshold_maps: 0.500630, loss_binary_maps: 0.126744, avg_reader_cost: 1.85307 s, avg_batch_cost: 2.21275 s, avg_samples: 12.5, ips: 5.64907 samples/s, eta: 2:01:14
[2024/07/28 02:23:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:23:08] ppocr INFO: epoch: [1102/1500], global_step: 3306, lr: 0.001000, loss: 1.247001, loss_shrink_maps: 0.630447, loss_threshold_maps: 0.500630, loss_binary_maps: 0.125882, avg_reader_cost: 1.56244 s, avg_batch_cost: 1.79836 s, avg_samples: 12.5, ips: 6.95078 samples/s, eta: 2:00:56
[2024/07/28 02:23:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:23:17] ppocr INFO: epoch: [1103/1500], global_step: 3309, lr: 0.001000, loss: 1.268326, loss_shrink_maps: 0.654742, loss_threshold_maps: 0.505883, loss_binary_maps: 0.130104, avg_reader_cost: 1.63331 s, avg_batch_cost: 1.86871 s, avg_samples: 12.5, ips: 6.68912 samples/s, eta: 2:00:38
[2024/07/28 02:23:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:23:25] ppocr INFO: epoch: [1104/1500], global_step: 3310, lr: 0.001000, loss: 1.268326, loss_shrink_maps: 0.654742, loss_threshold_maps: 0.505883, loss_binary_maps: 0.130104, avg_reader_cost: 0.42201 s, avg_batch_cost: 0.50668 s, avg_samples: 4.8, ips: 9.47349 samples/s, eta: 2:00:31
[2024/07/28 02:23:27] ppocr INFO: epoch: [1104/1500], global_step: 3312, lr: 0.001000, loss: 1.239013, loss_shrink_maps: 0.620490, loss_threshold_maps: 0.499517, loss_binary_maps: 0.123991, avg_reader_cost: 1.10516 s, avg_batch_cost: 1.25124 s, avg_samples: 7.7, ips: 6.15391 samples/s, eta: 2:00:19
[2024/07/28 02:23:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:23:36] ppocr INFO: epoch: [1105/1500], global_step: 3315, lr: 0.001000, loss: 1.239013, loss_shrink_maps: 0.611789, loss_threshold_maps: 0.499517, loss_binary_maps: 0.121479, avg_reader_cost: 1.50186 s, avg_batch_cost: 1.74904 s, avg_samples: 12.5, ips: 7.14679 samples/s, eta: 2:00:01
[2024/07/28 02:23:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:23:46] ppocr INFO: epoch: [1106/1500], global_step: 3318, lr: 0.001000, loss: 1.208930, loss_shrink_maps: 0.598083, loss_threshold_maps: 0.490188, loss_binary_maps: 0.119642, avg_reader_cost: 1.52283 s, avg_batch_cost: 1.77061 s, avg_samples: 12.5, ips: 7.05970 samples/s, eta: 1:59:43
[2024/07/28 02:23:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:23:54] ppocr INFO: epoch: [1107/1500], global_step: 3320, lr: 0.001000, loss: 1.208930, loss_shrink_maps: 0.598083, loss_threshold_maps: 0.488264, loss_binary_maps: 0.119593, avg_reader_cost: 0.90435 s, avg_batch_cost: 1.07908 s, avg_samples: 9.6, ips: 8.89644 samples/s, eta: 1:59:30
[2024/07/28 02:23:55] ppocr INFO: epoch: [1107/1500], global_step: 3321, lr: 0.001000, loss: 1.208930, loss_shrink_maps: 0.598083, loss_threshold_maps: 0.488264, loss_binary_maps: 0.119593, avg_reader_cost: 0.58555 s, avg_batch_cost: 0.64063 s, avg_samples: 2.9, ips: 4.52676 samples/s, eta: 1:59:24
[2024/07/28 02:23:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:24:05] ppocr INFO: epoch: [1108/1500], global_step: 3324, lr: 0.001000, loss: 1.208930, loss_shrink_maps: 0.596964, loss_threshold_maps: 0.488264, loss_binary_maps: 0.119326, avg_reader_cost: 1.62379 s, avg_batch_cost: 1.85288 s, avg_samples: 12.5, ips: 6.74625 samples/s, eta: 1:59:06
[2024/07/28 02:24:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:24:14] ppocr INFO: epoch: [1109/1500], global_step: 3327, lr: 0.001000, loss: 1.186326, loss_shrink_maps: 0.593796, loss_threshold_maps: 0.484573, loss_binary_maps: 0.118348, avg_reader_cost: 1.56283 s, avg_batch_cost: 1.80164 s, avg_samples: 12.5, ips: 6.93814 samples/s, eta: 1:58:48
[2024/07/28 02:24:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:24:24] ppocr INFO: epoch: [1110/1500], global_step: 3330, lr: 0.001000, loss: 1.160749, loss_shrink_maps: 0.576203, loss_threshold_maps: 0.482126, loss_binary_maps: 0.114192, avg_reader_cost: 1.53528 s, avg_batch_cost: 1.76571 s, avg_samples: 12.5, ips: 7.07931 samples/s, eta: 1:58:29
[2024/07/28 02:24:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:24:34] ppocr INFO: epoch: [1111/1500], global_step: 3333, lr: 0.001000, loss: 1.234140, loss_shrink_maps: 0.619886, loss_threshold_maps: 0.486052, loss_binary_maps: 0.122788, avg_reader_cost: 1.59641 s, avg_batch_cost: 1.83654 s, avg_samples: 12.5, ips: 6.80628 samples/s, eta: 1:58:11
[2024/07/28 02:24:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:24:43] ppocr INFO: epoch: [1112/1500], global_step: 3336, lr: 0.001000, loss: 1.238964, loss_shrink_maps: 0.619503, loss_threshold_maps: 0.492448, loss_binary_maps: 0.122715, avg_reader_cost: 1.55394 s, avg_batch_cost: 1.78750 s, avg_samples: 12.5, ips: 6.99300 samples/s, eta: 1:57:53
[2024/07/28 02:24:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:24:53] ppocr INFO: epoch: [1113/1500], global_step: 3339, lr: 0.001000, loss: 1.210144, loss_shrink_maps: 0.610002, loss_threshold_maps: 0.485972, loss_binary_maps: 0.121424, avg_reader_cost: 1.56867 s, avg_batch_cost: 1.80447 s, avg_samples: 12.5, ips: 6.92724 samples/s, eta: 1:57:34
[2024/07/28 02:24:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:25:01] ppocr INFO: epoch: [1114/1500], global_step: 3340, lr: 0.001000, loss: 1.210144, loss_shrink_maps: 0.610002, loss_threshold_maps: 0.485972, loss_binary_maps: 0.121424, avg_reader_cost: 0.42328 s, avg_batch_cost: 0.50678 s, avg_samples: 4.8, ips: 9.47162 samples/s, eta: 1:57:28
[2024/07/28 02:25:02] ppocr INFO: epoch: [1114/1500], global_step: 3342, lr: 0.001000, loss: 1.190858, loss_shrink_maps: 0.594167, loss_threshold_maps: 0.481841, loss_binary_maps: 0.117974, avg_reader_cost: 1.10518 s, avg_batch_cost: 1.25123 s, avg_samples: 7.7, ips: 6.15395 samples/s, eta: 1:57:16
[2024/07/28 02:25:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:25:12] ppocr INFO: epoch: [1115/1500], global_step: 3345, lr: 0.001000, loss: 1.184625, loss_shrink_maps: 0.591687, loss_threshold_maps: 0.480552, loss_binary_maps: 0.117372, avg_reader_cost: 1.53770 s, avg_batch_cost: 1.76648 s, avg_samples: 12.5, ips: 7.07620 samples/s, eta: 1:56:57
[2024/07/28 02:25:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:25:21] ppocr INFO: epoch: [1116/1500], global_step: 3348, lr: 0.001000, loss: 1.198678, loss_shrink_maps: 0.597507, loss_threshold_maps: 0.477900, loss_binary_maps: 0.118508, avg_reader_cost: 1.56668 s, avg_batch_cost: 1.80743 s, avg_samples: 12.5, ips: 6.91589 samples/s, eta: 1:56:39
[2024/07/28 02:25:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:25:30] ppocr INFO: epoch: [1117/1500], global_step: 3350, lr: 0.001000, loss: 1.198678, loss_shrink_maps: 0.602686, loss_threshold_maps: 0.477900, loss_binary_maps: 0.119581, avg_reader_cost: 0.94678 s, avg_batch_cost: 1.11958 s, avg_samples: 9.6, ips: 8.57468 samples/s, eta: 1:56:27
[2024/07/28 02:25:31] ppocr INFO: epoch: [1117/1500], global_step: 3351, lr: 0.001000, loss: 1.192445, loss_shrink_maps: 0.597507, loss_threshold_maps: 0.477900, loss_binary_maps: 0.118508, avg_reader_cost: 0.60547 s, avg_batch_cost: 0.66033 s, avg_samples: 2.9, ips: 4.39174 samples/s, eta: 1:56:21
[2024/07/28 02:25:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:25:40] ppocr INFO: epoch: [1118/1500], global_step: 3354, lr: 0.001000, loss: 1.192445, loss_shrink_maps: 0.596122, loss_threshold_maps: 0.477900, loss_binary_maps: 0.118902, avg_reader_cost: 1.57377 s, avg_batch_cost: 1.81991 s, avg_samples: 12.5, ips: 6.86848 samples/s, eta: 1:56:02
[2024/07/28 02:25:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:25:50] ppocr INFO: epoch: [1119/1500], global_step: 3357, lr: 0.001000, loss: 1.186398, loss_shrink_maps: 0.595390, loss_threshold_maps: 0.473759, loss_binary_maps: 0.118670, avg_reader_cost: 1.54039 s, avg_batch_cost: 1.76892 s, avg_samples: 12.5, ips: 7.06647 samples/s, eta: 1:55:44
[2024/07/28 02:25:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:25:59] ppocr INFO: epoch: [1120/1500], global_step: 3360, lr: 0.001000, loss: 1.186398, loss_shrink_maps: 0.593642, loss_threshold_maps: 0.477900, loss_binary_maps: 0.118300, avg_reader_cost: 1.53044 s, avg_batch_cost: 1.77791 s, avg_samples: 12.5, ips: 7.03073 samples/s, eta: 1:55:26

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:50,  9.79it/s]
eval model::   1%|          | 4/500 [00:00<00:25, 19.39it/s]
eval model::   1%|▏         | 7/500 [00:00<00:22, 21.53it/s]
eval model::   2%|▏         | 10/500 [00:00<00:24, 20.26it/s]
eval model::   3%|▎         | 13/500 [00:00<00:26, 18.44it/s]
eval model::   3%|▎         | 15/500 [00:00<00:27, 17.49it/s]
eval model::   4%|▎         | 18/500 [00:00<00:23, 20.29it/s]
eval model::   4%|▍         | 21/500 [00:01<00:24, 19.74it/s]
eval model::   5%|▌         | 25/500 [00:01<00:22, 21.26it/s]
eval model::   6%|▌         | 28/500 [00:01<00:23, 20.37it/s]
eval model::   6%|▌         | 31/500 [00:01<00:25, 18.48it/s]
eval model::   7%|▋         | 33/500 [00:01<00:24, 18.72it/s]
eval model::   7%|▋         | 36/500 [00:01<00:24, 19.32it/s]
eval model::   8%|▊         | 39/500 [00:02<00:25, 17.86it/s]
eval model::   8%|▊         | 42/500 [00:02<00:27, 16.67it/s]
eval model::   9%|▉         | 44/500 [00:02<00:26, 17.02it/s]
eval model::   9%|▉         | 46/500 [00:02<00:28, 16.00it/s]
eval model::  10%|▉         | 49/500 [00:02<00:25, 17.80it/s]
eval model::  10%|█         | 51/500 [00:02<00:24, 18.27it/s]
eval model::  11%|█         | 54/500 [00:02<00:22, 19.71it/s]
eval model::  11%|█▏        | 57/500 [00:03<00:23, 18.75it/s]
eval model::  12%|█▏        | 59/500 [00:03<00:26, 16.37it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:33, 13.26it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:34, 12.58it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:29, 14.91it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:25, 16.63it/s]
eval model::  14%|█▍        | 72/500 [00:04<00:23, 18.60it/s]
eval model::  15%|█▍        | 74/500 [00:04<00:22, 18.80it/s]
eval model::  15%|█▌        | 77/500 [00:04<00:21, 19.40it/s]
eval model::  16%|█▌        | 80/500 [00:04<00:19, 21.75it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:19, 21.65it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:21, 19.50it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:22, 18.37it/s]
eval model::  19%|█▊        | 93/500 [00:05<00:21, 19.05it/s]
eval model::  19%|█▉        | 95/500 [00:05<00:21, 18.59it/s]
eval model::  19%|█▉        | 97/500 [00:05<00:21, 18.62it/s]
eval model::  20%|██        | 100/500 [00:05<00:23, 17.36it/s]
eval model::  21%|██        | 103/500 [00:05<00:20, 18.91it/s]
eval model::  21%|██        | 106/500 [00:05<00:19, 20.71it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:18, 20.96it/s]
eval model::  22%|██▏       | 112/500 [00:06<00:19, 19.47it/s]
eval model::  23%|██▎       | 115/500 [00:06<00:23, 16.57it/s]
eval model::  23%|██▎       | 117/500 [00:06<00:22, 16.87it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:20, 18.27it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:19, 19.69it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:22, 16.51it/s]
eval model::  26%|██▌       | 128/500 [00:07<00:21, 17.19it/s]
eval model::  26%|██▌       | 130/500 [00:07<00:25, 14.55it/s]
eval model::  26%|██▋       | 132/500 [00:07<00:31, 11.73it/s]
eval model::  27%|██▋       | 135/500 [00:07<00:26, 13.82it/s]
eval model::  27%|██▋       | 137/500 [00:07<00:26, 13.47it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:24, 14.47it/s]
eval model::  28%|██▊       | 142/500 [00:08<00:21, 16.50it/s]
eval model::  29%|██▉       | 145/500 [00:08<00:19, 18.59it/s]
eval model::  29%|██▉       | 147/500 [00:08<00:19, 17.86it/s]
eval model::  30%|███       | 150/500 [00:08<00:17, 20.16it/s]
eval model::  31%|███       | 153/500 [00:08<00:17, 20.39it/s]
eval model::  31%|███       | 156/500 [00:08<00:15, 22.71it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:16, 21.25it/s]
eval model::  32%|███▏      | 162/500 [00:09<00:23, 14.46it/s]
eval model::  33%|███▎      | 165/500 [00:09<00:21, 15.56it/s]
eval model::  34%|███▎      | 168/500 [00:09<00:19, 17.04it/s]
eval model::  34%|███▍      | 171/500 [00:09<00:19, 17.29it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:20, 15.68it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:19, 16.28it/s]
eval model::  36%|███▌      | 179/500 [00:10<00:17, 18.16it/s]
eval model::  36%|███▌      | 181/500 [00:10<00:19, 16.19it/s]
eval model::  37%|███▋      | 184/500 [00:10<00:17, 18.26it/s]
eval model::  37%|███▋      | 187/500 [00:10<00:16, 19.37it/s]
eval model::  38%|███▊      | 190/500 [00:10<00:14, 20.82it/s]
eval model::  39%|███▊      | 193/500 [00:10<00:13, 22.54it/s]
eval model::  39%|███▉      | 196/500 [00:10<00:13, 21.93it/s]
eval model::  40%|███▉      | 199/500 [00:11<00:12, 23.65it/s]
eval model::  40%|████      | 202/500 [00:11<00:12, 24.29it/s]
eval model::  41%|████      | 205/500 [00:11<00:19, 15.22it/s]
eval model::  41%|████▏     | 207/500 [00:11<00:18, 15.79it/s]
eval model::  42%|████▏     | 209/500 [00:11<00:17, 16.58it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:18, 15.92it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:17, 16.30it/s]
eval model::  43%|████▎     | 215/500 [00:12<00:18, 15.31it/s]
eval model::  43%|████▎     | 217/500 [00:12<00:21, 13.41it/s]
eval model::  44%|████▍     | 219/500 [00:12<00:19, 14.72it/s]
eval model::  44%|████▍     | 221/500 [00:12<00:22, 12.35it/s]
eval model::  45%|████▍     | 223/500 [00:12<00:21, 12.74it/s]
eval model::  45%|████▌     | 225/500 [00:12<00:19, 14.25it/s]
eval model::  45%|████▌     | 227/500 [00:13<00:17, 15.20it/s]
eval model::  46%|████▌     | 230/500 [00:13<00:14, 18.58it/s]
eval model::  47%|████▋     | 233/500 [00:13<00:13, 20.20it/s]
eval model::  47%|████▋     | 236/500 [00:13<00:13, 20.13it/s]
eval model::  48%|████▊     | 239/500 [00:13<00:12, 21.65it/s]
eval model::  48%|████▊     | 242/500 [00:13<00:12, 19.97it/s]
eval model::  49%|████▉     | 245/500 [00:13<00:12, 20.36it/s]
eval model::  50%|████▉     | 248/500 [00:13<00:12, 20.46it/s]
eval model::  50%|█████     | 251/500 [00:14<00:12, 20.14it/s]
eval model::  51%|█████     | 254/500 [00:14<00:11, 20.94it/s]
eval model::  51%|█████▏    | 257/500 [00:14<00:11, 20.30it/s]
eval model::  52%|█████▏    | 261/500 [00:14<00:10, 22.42it/s]
eval model::  53%|█████▎    | 264/500 [00:14<00:11, 20.10it/s]
eval model::  53%|█████▎    | 267/500 [00:14<00:11, 20.56it/s]
eval model::  54%|█████▍    | 270/500 [00:15<00:11, 19.92it/s]
eval model::  55%|█████▍    | 273/500 [00:15<00:11, 20.42it/s]
eval model::  55%|█████▌    | 276/500 [00:15<00:11, 19.78it/s]
eval model::  56%|█████▌    | 279/500 [00:15<00:11, 19.76it/s]
eval model::  57%|█████▋    | 283/500 [00:15<00:09, 21.78it/s]
eval model::  57%|█████▋    | 286/500 [00:16<00:16, 13.00it/s]
eval model::  58%|█████▊    | 289/500 [00:16<00:13, 15.24it/s]
eval model::  58%|█████▊    | 292/500 [00:16<00:12, 16.40it/s]
eval model::  59%|█████▉    | 295/500 [00:16<00:15, 13.09it/s]
eval model::  60%|█████▉    | 299/500 [00:16<00:12, 16.19it/s]
eval model::  60%|██████    | 302/500 [00:17<00:13, 14.94it/s]
eval model::  61%|██████    | 304/500 [00:17<00:12, 15.30it/s]
eval model::  61%|██████▏   | 307/500 [00:17<00:11, 17.40it/s]
eval model::  62%|██████▏   | 310/500 [00:17<00:09, 19.03it/s]
eval model::  63%|██████▎   | 313/500 [00:17<00:09, 18.96it/s]
eval model::  63%|██████▎   | 316/500 [00:17<00:10, 17.31it/s]
eval model::  64%|██████▍   | 319/500 [00:17<00:09, 19.58it/s]
eval model::  64%|██████▍   | 322/500 [00:18<00:09, 18.78it/s]
eval model::  65%|██████▌   | 325/500 [00:18<00:09, 19.41it/s]
eval model::  66%|██████▌   | 328/500 [00:18<00:09, 17.98it/s]
eval model::  66%|██████▌   | 330/500 [00:18<00:09, 18.34it/s]
eval model::  66%|██████▋   | 332/500 [00:18<00:09, 17.87it/s]
eval model::  67%|██████▋   | 335/500 [00:18<00:08, 19.72it/s]
eval model::  68%|██████▊   | 338/500 [00:18<00:08, 19.31it/s]
eval model::  68%|██████▊   | 340/500 [00:19<00:10, 14.88it/s]
eval model::  69%|██████▊   | 343/500 [00:19<00:09, 17.44it/s]
eval model::  69%|██████▉   | 346/500 [00:19<00:07, 19.50it/s]
eval model::  70%|██████▉   | 349/500 [00:19<00:07, 19.36it/s]
eval model::  70%|███████   | 352/500 [00:19<00:07, 19.79it/s]
eval model::  71%|███████   | 355/500 [00:19<00:07, 20.05it/s]
eval model::  72%|███████▏  | 358/500 [00:20<00:06, 20.29it/s]
eval model::  72%|███████▏  | 361/500 [00:20<00:07, 18.25it/s]
eval model::  73%|███████▎  | 364/500 [00:20<00:07, 17.78it/s]
eval model::  73%|███████▎  | 366/500 [00:20<00:08, 16.65it/s]
eval model::  74%|███████▍  | 369/500 [00:20<00:06, 18.82it/s]
eval model::  74%|███████▍  | 371/500 [00:20<00:06, 18.57it/s]
eval model::  75%|███████▍  | 373/500 [00:20<00:06, 18.86it/s]
eval model::  75%|███████▌  | 376/500 [00:20<00:05, 21.66it/s]
eval model::  76%|███████▌  | 380/500 [00:21<00:05, 21.70it/s]
eval model::  77%|███████▋  | 383/500 [00:21<00:05, 23.17it/s]
eval model::  77%|███████▋  | 386/500 [00:21<00:07, 14.85it/s]
eval model::  78%|███████▊  | 389/500 [00:21<00:06, 17.10it/s]
eval model::  78%|███████▊  | 392/500 [00:21<00:05, 18.34it/s]
eval model::  79%|███████▉  | 395/500 [00:22<00:05, 19.63it/s]
eval model::  80%|███████▉  | 398/500 [00:22<00:04, 21.49it/s]
eval model::  80%|████████  | 401/500 [00:22<00:04, 20.53it/s]
eval model::  81%|████████  | 404/500 [00:22<00:04, 21.96it/s]
eval model::  81%|████████▏ | 407/500 [00:22<00:04, 21.25it/s]
eval model::  82%|████████▏ | 411/500 [00:22<00:03, 23.55it/s]
eval model::  83%|████████▎ | 414/500 [00:22<00:03, 23.62it/s]
eval model::  83%|████████▎ | 417/500 [00:22<00:03, 22.16it/s]
eval model::  84%|████████▍ | 420/500 [00:23<00:05, 15.06it/s]
eval model::  84%|████████▍ | 422/500 [00:23<00:05, 15.46it/s]
eval model::  85%|████████▍ | 424/500 [00:23<00:05, 14.80it/s]
eval model::  85%|████████▌ | 427/500 [00:23<00:04, 16.92it/s]
eval model::  86%|████████▌ | 430/500 [00:23<00:03, 19.11it/s]
eval model::  87%|████████▋ | 433/500 [00:24<00:03, 18.59it/s]
eval model::  87%|████████▋ | 436/500 [00:24<00:03, 19.68it/s]
eval model::  88%|████████▊ | 439/500 [00:24<00:03, 19.49it/s]
eval model::  88%|████████▊ | 442/500 [00:24<00:02, 19.49it/s]
eval model::  89%|████████▉ | 445/500 [00:24<00:02, 20.48it/s]
eval model::  90%|████████▉ | 448/500 [00:24<00:02, 19.36it/s]
eval model::  90%|█████████ | 450/500 [00:24<00:02, 18.52it/s]
eval model::  91%|█████████ | 453/500 [00:24<00:02, 20.09it/s]
eval model::  91%|█████████ | 456/500 [00:25<00:02, 21.66it/s]
eval model::  92%|█████████▏| 459/500 [00:25<00:01, 21.52it/s]
eval model::  92%|█████████▏| 462/500 [00:25<00:01, 19.92it/s]
eval model::  93%|█████████▎| 465/500 [00:25<00:01, 17.88it/s]
eval model::  93%|█████████▎| 467/500 [00:25<00:01, 18.28it/s]
eval model::  94%|█████████▍| 470/500 [00:25<00:01, 20.04it/s]
eval model::  95%|█████████▍| 473/500 [00:25<00:01, 20.79it/s]
eval model::  95%|█████████▌| 476/500 [00:26<00:01, 21.01it/s]
eval model::  96%|█████████▌| 479/500 [00:26<00:00, 21.50it/s]
eval model::  96%|█████████▋| 482/500 [00:26<00:00, 21.12it/s]
eval model::  97%|█████████▋| 485/500 [00:26<00:00, 23.02it/s]
eval model::  98%|█████████▊| 488/500 [00:26<00:00, 22.02it/s]
eval model::  98%|█████████▊| 491/500 [00:26<00:00, 21.42it/s]
eval model::  99%|█████████▉| 494/500 [00:26<00:00, 19.97it/s]
eval model::  99%|█████████▉| 497/500 [00:27<00:00, 20.81it/s]
eval model:: 100%|██████████| 500/500 [00:27<00:00, 18.38it/s]
[2024/07/28 02:26:27] ppocr INFO: cur metric, precision: 0.7218508997429306, recall: 0.6759749638902263, hmean: 0.6981601193436101, fps: 43.506547862498984
[2024/07/28 02:26:27] ppocr INFO: best metric, hmean: 0.7160430548436699, precision: 0.7654794520547945, recall: 0.672604718343765, fps: 44.8783209422934, best_epoch: 1080
[2024/07/28 02:26:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:26:35] ppocr INFO: epoch: [1121/1500], global_step: 3363, lr: 0.001000, loss: 1.198798, loss_shrink_maps: 0.607078, loss_threshold_maps: 0.484785, loss_binary_maps: 0.120910, avg_reader_cost: 1.48948 s, avg_batch_cost: 1.74024 s, avg_samples: 12.5, ips: 7.18292 samples/s, eta: 1:55:07
[2024/07/28 02:26:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:26:44] ppocr INFO: epoch: [1122/1500], global_step: 3366, lr: 0.001000, loss: 1.198798, loss_shrink_maps: 0.605763, loss_threshold_maps: 0.492366, loss_binary_maps: 0.120687, avg_reader_cost: 1.55187 s, avg_batch_cost: 1.83032 s, avg_samples: 12.5, ips: 6.82941 samples/s, eta: 1:54:49
[2024/07/28 02:26:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:26:54] ppocr INFO: epoch: [1123/1500], global_step: 3369, lr: 0.001000, loss: 1.243986, loss_shrink_maps: 0.630872, loss_threshold_maps: 0.499739, loss_binary_maps: 0.125489, avg_reader_cost: 1.53697 s, avg_batch_cost: 1.76726 s, avg_samples: 12.5, ips: 7.07310 samples/s, eta: 1:54:31
[2024/07/28 02:26:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:27:02] ppocr INFO: epoch: [1124/1500], global_step: 3370, lr: 0.001000, loss: 1.234070, loss_shrink_maps: 0.617586, loss_threshold_maps: 0.495162, loss_binary_maps: 0.123048, avg_reader_cost: 0.37846 s, avg_batch_cost: 0.52660 s, avg_samples: 4.8, ips: 9.11512 samples/s, eta: 1:54:24
[2024/07/28 02:27:03] ppocr INFO: epoch: [1124/1500], global_step: 3372, lr: 0.001000, loss: 1.234070, loss_shrink_maps: 0.617586, loss_threshold_maps: 0.487625, loss_binary_maps: 0.123048, avg_reader_cost: 1.14438 s, avg_batch_cost: 1.29023 s, avg_samples: 7.7, ips: 5.96792 samples/s, eta: 1:54:12
[2024/07/28 02:27:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:27:13] ppocr INFO: epoch: [1125/1500], global_step: 3375, lr: 0.001000, loss: 1.234070, loss_shrink_maps: 0.617586, loss_threshold_maps: 0.487625, loss_binary_maps: 0.123048, avg_reader_cost: 1.49782 s, avg_batch_cost: 1.73039 s, avg_samples: 12.5, ips: 7.22380 samples/s, eta: 1:53:54
[2024/07/28 02:27:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:27:22] ppocr INFO: epoch: [1126/1500], global_step: 3378, lr: 0.001000, loss: 1.242893, loss_shrink_maps: 0.641649, loss_threshold_maps: 0.489084, loss_binary_maps: 0.127710, avg_reader_cost: 1.52314 s, avg_batch_cost: 1.77849 s, avg_samples: 12.5, ips: 7.02842 samples/s, eta: 1:53:35
[2024/07/28 02:27:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:27:31] ppocr INFO: epoch: [1127/1500], global_step: 3380, lr: 0.001000, loss: 1.242893, loss_shrink_maps: 0.624170, loss_threshold_maps: 0.489084, loss_binary_maps: 0.124095, avg_reader_cost: 0.95986 s, avg_batch_cost: 1.13334 s, avg_samples: 9.6, ips: 8.47050 samples/s, eta: 1:53:23
[2024/07/28 02:27:32] ppocr INFO: epoch: [1127/1500], global_step: 3381, lr: 0.001000, loss: 1.242893, loss_shrink_maps: 0.624170, loss_threshold_maps: 0.489084, loss_binary_maps: 0.124095, avg_reader_cost: 0.61238 s, avg_batch_cost: 0.66762 s, avg_samples: 2.9, ips: 4.34379 samples/s, eta: 1:53:17
[2024/07/28 02:27:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:27:42] ppocr INFO: epoch: [1128/1500], global_step: 3384, lr: 0.001000, loss: 1.242893, loss_shrink_maps: 0.624170, loss_threshold_maps: 0.485090, loss_binary_maps: 0.124095, avg_reader_cost: 1.52880 s, avg_batch_cost: 1.77181 s, avg_samples: 12.5, ips: 7.05494 samples/s, eta: 1:52:59
[2024/07/28 02:27:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:27:51] ppocr INFO: epoch: [1129/1500], global_step: 3387, lr: 0.001000, loss: 1.230682, loss_shrink_maps: 0.623779, loss_threshold_maps: 0.476971, loss_binary_maps: 0.124089, avg_reader_cost: 1.57338 s, avg_batch_cost: 1.80768 s, avg_samples: 12.5, ips: 6.91494 samples/s, eta: 1:52:40
[2024/07/28 02:27:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:28:01] ppocr INFO: epoch: [1130/1500], global_step: 3390, lr: 0.001000, loss: 1.209952, loss_shrink_maps: 0.617430, loss_threshold_maps: 0.476971, loss_binary_maps: 0.122710, avg_reader_cost: 1.52964 s, avg_batch_cost: 1.75940 s, avg_samples: 12.5, ips: 7.10468 samples/s, eta: 1:52:22
[2024/07/28 02:28:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:28:11] ppocr INFO: epoch: [1131/1500], global_step: 3393, lr: 0.001000, loss: 1.213006, loss_shrink_maps: 0.617430, loss_threshold_maps: 0.476971, loss_binary_maps: 0.122710, avg_reader_cost: 1.61478 s, avg_batch_cost: 1.93965 s, avg_samples: 12.5, ips: 6.44445 samples/s, eta: 1:52:04
[2024/07/28 02:28:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:28:21] ppocr INFO: epoch: [1132/1500], global_step: 3396, lr: 0.001000, loss: 1.209564, loss_shrink_maps: 0.613711, loss_threshold_maps: 0.480477, loss_binary_maps: 0.122170, avg_reader_cost: 1.63428 s, avg_batch_cost: 1.88993 s, avg_samples: 12.5, ips: 6.61401 samples/s, eta: 1:51:46
[2024/07/28 02:28:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:28:30] ppocr INFO: epoch: [1133/1500], global_step: 3399, lr: 0.001000, loss: 1.198314, loss_shrink_maps: 0.602473, loss_threshold_maps: 0.474155, loss_binary_maps: 0.120393, avg_reader_cost: 1.50933 s, avg_batch_cost: 1.75689 s, avg_samples: 12.5, ips: 7.11485 samples/s, eta: 1:51:28
[2024/07/28 02:28:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:28:38] ppocr INFO: epoch: [1134/1500], global_step: 3400, lr: 0.001000, loss: 1.198314, loss_shrink_maps: 0.602473, loss_threshold_maps: 0.472770, loss_binary_maps: 0.120393, avg_reader_cost: 0.43350 s, avg_batch_cost: 0.52278 s, avg_samples: 4.8, ips: 9.18166 samples/s, eta: 1:51:21
[2024/07/28 02:28:40] ppocr INFO: epoch: [1134/1500], global_step: 3402, lr: 0.001000, loss: 1.198314, loss_shrink_maps: 0.599383, loss_threshold_maps: 0.472770, loss_binary_maps: 0.119314, avg_reader_cost: 1.13682 s, avg_batch_cost: 1.28292 s, avg_samples: 7.7, ips: 6.00194 samples/s, eta: 1:51:09
[2024/07/28 02:28:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:28:50] ppocr INFO: epoch: [1135/1500], global_step: 3405, lr: 0.001000, loss: 1.197371, loss_shrink_maps: 0.594774, loss_threshold_maps: 0.474155, loss_binary_maps: 0.118635, avg_reader_cost: 1.69116 s, avg_batch_cost: 1.93830 s, avg_samples: 12.5, ips: 6.44895 samples/s, eta: 1:50:52
[2024/07/28 02:28:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:29:00] ppocr INFO: epoch: [1136/1500], global_step: 3408, lr: 0.001000, loss: 1.191938, loss_shrink_maps: 0.586472, loss_threshold_maps: 0.475519, loss_binary_maps: 0.116945, avg_reader_cost: 1.53925 s, avg_batch_cost: 1.80038 s, avg_samples: 12.5, ips: 6.94299 samples/s, eta: 1:50:33
[2024/07/28 02:29:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:29:08] ppocr INFO: epoch: [1137/1500], global_step: 3410, lr: 0.001000, loss: 1.176448, loss_shrink_maps: 0.576948, loss_threshold_maps: 0.472770, loss_binary_maps: 0.114952, avg_reader_cost: 0.94289 s, avg_batch_cost: 1.11617 s, avg_samples: 9.6, ips: 8.60082 samples/s, eta: 1:50:21
[2024/07/28 02:29:09] ppocr INFO: epoch: [1137/1500], global_step: 3411, lr: 0.001000, loss: 1.161826, loss_shrink_maps: 0.573837, loss_threshold_maps: 0.470281, loss_binary_maps: 0.114168, avg_reader_cost: 0.60376 s, avg_batch_cost: 0.65862 s, avg_samples: 2.9, ips: 4.40318 samples/s, eta: 1:50:15
[2024/07/28 02:29:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:29:19] ppocr INFO: epoch: [1138/1500], global_step: 3414, lr: 0.001000, loss: 1.161826, loss_shrink_maps: 0.573837, loss_threshold_maps: 0.470281, loss_binary_maps: 0.114168, avg_reader_cost: 1.52255 s, avg_batch_cost: 1.75124 s, avg_samples: 12.5, ips: 7.13780 samples/s, eta: 1:49:57
[2024/07/28 02:29:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:29:28] ppocr INFO: epoch: [1139/1500], global_step: 3417, lr: 0.001000, loss: 1.177340, loss_shrink_maps: 0.582888, loss_threshold_maps: 0.471314, loss_binary_maps: 0.116178, avg_reader_cost: 1.57335 s, avg_batch_cost: 1.80200 s, avg_samples: 12.5, ips: 6.93672 samples/s, eta: 1:49:38
[2024/07/28 02:29:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:29:38] ppocr INFO: epoch: [1140/1500], global_step: 3420, lr: 0.001000, loss: 1.155703, loss_shrink_maps: 0.568524, loss_threshold_maps: 0.471314, loss_binary_maps: 0.113053, avg_reader_cost: 1.52145 s, avg_batch_cost: 1.75073 s, avg_samples: 12.5, ips: 7.13986 samples/s, eta: 1:49:20

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:57,  8.62it/s]
eval model::   1%|          | 4/500 [00:00<00:26, 18.48it/s]
eval model::   1%|▏         | 7/500 [00:00<00:24, 19.90it/s]
eval model::   2%|▏         | 9/500 [00:00<00:26, 18.67it/s]
eval model::   2%|▏         | 11/500 [00:00<00:26, 18.45it/s]
eval model::   3%|▎         | 14/500 [00:00<00:26, 18.47it/s]
eval model::   3%|▎         | 17/500 [00:00<00:23, 20.61it/s]
eval model::   4%|▍         | 20/500 [00:01<00:25, 19.19it/s]
eval model::   5%|▍         | 23/500 [00:01<00:23, 20.32it/s]
eval model::   5%|▌         | 26/500 [00:01<00:23, 19.92it/s]
eval model::   6%|▌         | 29/500 [00:01<00:21, 21.66it/s]
eval model::   6%|▋         | 32/500 [00:01<00:25, 18.40it/s]
eval model::   7%|▋         | 34/500 [00:01<00:27, 16.94it/s]
eval model::   7%|▋         | 36/500 [00:01<00:27, 16.79it/s]
eval model::   8%|▊         | 38/500 [00:02<00:27, 16.88it/s]
eval model::   8%|▊         | 40/500 [00:02<00:28, 16.10it/s]
eval model::   8%|▊         | 42/500 [00:02<00:30, 14.92it/s]
eval model::   9%|▉         | 45/500 [00:02<00:26, 17.28it/s]
eval model::   9%|▉         | 47/500 [00:02<00:27, 16.20it/s]
eval model::  10%|█         | 50/500 [00:02<00:24, 18.40it/s]
eval model::  11%|█         | 53/500 [00:02<00:22, 19.51it/s]
eval model::  11%|█         | 56/500 [00:03<00:24, 18.09it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:25, 17.19it/s]
eval model::  12%|█▏        | 60/500 [00:03<00:24, 17.74it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:30, 14.16it/s]
eval model::  13%|█▎        | 64/500 [00:03<00:29, 14.85it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:25, 17.28it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:24, 17.32it/s]
eval model::  14%|█▍        | 72/500 [00:04<00:23, 18.02it/s]
eval model::  15%|█▍        | 74/500 [00:04<00:23, 17.97it/s]
eval model::  15%|█▌        | 77/500 [00:04<00:20, 20.27it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:17, 23.81it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:16, 25.14it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:18, 22.79it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:21, 19.49it/s]
eval model::  19%|█▊        | 93/500 [00:05<00:22, 18.14it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:20, 19.88it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:19, 20.10it/s]
eval model::  20%|██        | 102/500 [00:05<00:19, 19.94it/s]
eval model::  21%|██        | 106/500 [00:05<00:18, 21.22it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:17, 22.45it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:18, 20.92it/s]
eval model::  23%|██▎       | 115/500 [00:06<00:19, 19.78it/s]
eval model::  24%|██▎       | 118/500 [00:06<00:18, 20.18it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:18, 19.97it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:19, 19.23it/s]
eval model::  25%|██▌       | 127/500 [00:06<00:18, 19.74it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:20, 18.26it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:21, 17.54it/s]
eval model::  27%|██▋       | 134/500 [00:07<00:18, 19.35it/s]
eval model::  27%|██▋       | 137/500 [00:07<00:18, 19.83it/s]
eval model::  28%|██▊       | 140/500 [00:07<00:17, 20.26it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:16, 21.57it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:18, 18.91it/s]
eval model::  30%|███       | 150/500 [00:07<00:17, 20.37it/s]
eval model::  31%|███       | 153/500 [00:08<00:18, 18.58it/s]
eval model::  31%|███       | 156/500 [00:08<00:16, 20.89it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:15, 21.76it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:20, 16.39it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:20, 16.65it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:18, 18.20it/s]
eval model::  34%|███▍      | 170/500 [00:08<00:16, 19.73it/s]
eval model::  35%|███▍      | 173/500 [00:09<00:17, 18.93it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:19, 16.42it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:17, 18.02it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:19, 16.04it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:19, 16.52it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:16, 18.49it/s]
eval model::  38%|███▊      | 188/500 [00:10<00:17, 18.08it/s]
eval model::  38%|███▊      | 190/500 [00:10<00:16, 18.48it/s]
eval model::  39%|███▊      | 193/500 [00:10<00:15, 19.98it/s]
eval model::  39%|███▉      | 196/500 [00:10<00:15, 19.44it/s]
eval model::  40%|███▉      | 199/500 [00:10<00:14, 21.15it/s]
eval model::  40%|████      | 202/500 [00:10<00:12, 23.12it/s]
eval model::  41%|████      | 205/500 [00:11<00:22, 13.34it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:19, 14.91it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:18, 15.38it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:17, 16.67it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:19, 14.86it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:20, 13.56it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:17, 15.89it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:19, 14.22it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:15, 17.90it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:12, 20.82it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:13, 20.02it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:12, 20.87it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:11, 22.02it/s]
eval model::  48%|████▊     | 242/500 [00:13<00:14, 17.60it/s]
eval model::  49%|████▉     | 245/500 [00:13<00:12, 19.93it/s]
eval model::  50%|████▉     | 248/500 [00:13<00:11, 21.73it/s]
eval model::  50%|█████     | 251/500 [00:13<00:11, 21.36it/s]
eval model::  51%|█████     | 254/500 [00:13<00:11, 21.69it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:12, 18.93it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:12, 18.99it/s]
eval model::  53%|█████▎    | 263/500 [00:14<00:11, 19.81it/s]
eval model::  53%|█████▎    | 266/500 [00:14<00:12, 19.11it/s]
eval model::  54%|█████▎    | 268/500 [00:14<00:12, 18.34it/s]
eval model::  54%|█████▍    | 270/500 [00:14<00:12, 17.91it/s]
eval model::  55%|█████▍    | 273/500 [00:14<00:11, 19.66it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:12, 18.24it/s]
eval model::  55%|█████▌    | 277/500 [00:14<00:12, 18.40it/s]
eval model::  56%|█████▌    | 279/500 [00:15<00:13, 16.62it/s]
eval model::  56%|█████▋    | 282/500 [00:15<00:12, 17.60it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:21, 10.10it/s]
eval model::  58%|█████▊    | 288/500 [00:15<00:16, 12.48it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:14, 14.45it/s]
eval model::  59%|█████▊    | 293/500 [00:16<00:14, 13.90it/s]
eval model::  59%|█████▉    | 295/500 [00:16<00:17, 11.88it/s]
eval model::  60%|█████▉    | 298/500 [00:16<00:13, 14.46it/s]
eval model::  60%|██████    | 300/500 [00:16<00:13, 15.00it/s]
eval model::  61%|██████    | 303/500 [00:16<00:11, 17.47it/s]
eval model::  61%|██████    | 305/500 [00:16<00:10, 17.95it/s]
eval model::  62%|██████▏   | 308/500 [00:16<00:09, 20.22it/s]
eval model::  62%|██████▏   | 311/500 [00:17<00:09, 20.09it/s]
eval model::  63%|██████▎   | 314/500 [00:17<00:09, 20.45it/s]
eval model::  63%|██████▎   | 317/500 [00:17<00:08, 21.09it/s]
eval model::  64%|██████▍   | 320/500 [00:17<00:08, 21.97it/s]
eval model::  65%|██████▍   | 323/500 [00:17<00:08, 21.22it/s]
eval model::  65%|██████▌   | 326/500 [00:17<00:08, 20.89it/s]
eval model::  66%|██████▌   | 329/500 [00:17<00:08, 20.24it/s]
eval model::  66%|██████▋   | 332/500 [00:18<00:08, 20.87it/s]
eval model::  67%|██████▋   | 335/500 [00:18<00:07, 22.68it/s]
eval model::  68%|██████▊   | 338/500 [00:18<00:08, 20.05it/s]
eval model::  68%|██████▊   | 341/500 [00:18<00:10, 14.72it/s]
eval model::  69%|██████▉   | 345/500 [00:18<00:08, 17.60it/s]
eval model::  70%|██████▉   | 348/500 [00:19<00:08, 18.32it/s]
eval model::  70%|███████   | 351/500 [00:19<00:07, 19.88it/s]
eval model::  71%|███████   | 355/500 [00:19<00:06, 21.25it/s]
eval model::  72%|███████▏  | 358/500 [00:19<00:06, 21.96it/s]
eval model::  72%|███████▏  | 361/500 [00:19<00:07, 18.92it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:07, 18.15it/s]
eval model::  73%|███████▎  | 366/500 [00:20<00:08, 16.40it/s]
eval model::  74%|███████▍  | 369/500 [00:20<00:07, 17.10it/s]
eval model::  74%|███████▍  | 371/500 [00:20<00:07, 17.58it/s]
eval model::  75%|███████▍  | 374/500 [00:20<00:06, 19.00it/s]
eval model::  75%|███████▌  | 377/500 [00:20<00:06, 20.18it/s]
eval model::  76%|███████▌  | 380/500 [00:20<00:06, 17.94it/s]
eval model::  77%|███████▋  | 383/500 [00:20<00:05, 20.27it/s]
eval model::  77%|███████▋  | 386/500 [00:21<00:08, 13.39it/s]
eval model::  78%|███████▊  | 390/500 [00:21<00:06, 16.90it/s]
eval model::  79%|███████▊  | 393/500 [00:21<00:05, 18.16it/s]
eval model::  79%|███████▉  | 396/500 [00:21<00:05, 18.81it/s]
eval model::  80%|███████▉  | 399/500 [00:21<00:04, 21.00it/s]
eval model::  80%|████████  | 402/500 [00:21<00:04, 20.68it/s]
eval model::  81%|████████  | 405/500 [00:22<00:04, 22.40it/s]
eval model::  82%|████████▏ | 408/500 [00:22<00:04, 21.74it/s]
eval model::  82%|████████▏ | 411/500 [00:22<00:04, 21.96it/s]
eval model::  83%|████████▎ | 414/500 [00:22<00:04, 19.55it/s]
eval model::  83%|████████▎ | 417/500 [00:22<00:04, 18.22it/s]
eval model::  84%|████████▍ | 419/500 [00:22<00:04, 18.24it/s]
eval model::  84%|████████▍ | 421/500 [00:23<00:06, 12.63it/s]
eval model::  85%|████████▍ | 424/500 [00:23<00:05, 14.23it/s]
eval model::  85%|████████▌ | 426/500 [00:23<00:05, 14.78it/s]
eval model::  86%|████████▌ | 429/500 [00:23<00:04, 17.31it/s]
eval model::  86%|████████▌ | 431/500 [00:23<00:04, 16.94it/s]
eval model::  87%|████████▋ | 434/500 [00:23<00:03, 19.91it/s]
eval model::  87%|████████▋ | 437/500 [00:23<00:02, 21.04it/s]
eval model::  88%|████████▊ | 440/500 [00:24<00:03, 17.80it/s]
eval model::  89%|████████▊ | 443/500 [00:24<00:02, 19.61it/s]
eval model::  89%|████████▉ | 446/500 [00:24<00:02, 20.01it/s]
eval model::  90%|████████▉ | 449/500 [00:24<00:02, 17.21it/s]
eval model::  90%|█████████ | 452/500 [00:24<00:02, 18.43it/s]
eval model::  91%|█████████ | 455/500 [00:24<00:02, 20.08it/s]
eval model::  92%|█████████▏| 458/500 [00:24<00:01, 21.72it/s]
eval model::  92%|█████████▏| 461/500 [00:25<00:01, 20.84it/s]
eval model::  93%|█████████▎| 464/500 [00:25<00:01, 18.63it/s]
eval model::  93%|█████████▎| 466/500 [00:25<00:02, 16.62it/s]
eval model::  94%|█████████▎| 468/500 [00:25<00:01, 16.68it/s]
eval model::  94%|█████████▍| 471/500 [00:25<00:01, 17.49it/s]
eval model::  95%|█████████▍| 473/500 [00:25<00:01, 17.63it/s]
eval model::  95%|█████████▌| 476/500 [00:25<00:01, 19.35it/s]
eval model::  96%|█████████▌| 479/500 [00:26<00:01, 20.63it/s]
eval model::  96%|█████████▋| 482/500 [00:26<00:00, 20.36it/s]
eval model::  97%|█████████▋| 486/500 [00:26<00:00, 22.01it/s]
eval model::  98%|█████████▊| 489/500 [00:26<00:00, 23.28it/s]
eval model::  98%|█████████▊| 492/500 [00:26<00:00, 19.46it/s]
eval model::  99%|█████████▉| 495/500 [00:26<00:00, 20.85it/s]
eval model:: 100%|█████████▉| 498/500 [00:26<00:00, 22.21it/s]
eval model:: 100%|██████████| 500/500 [00:27<00:00, 18.48it/s]
[2024/07/28 02:30:05] ppocr INFO: cur metric, precision: 0.7388978063135366, recall: 0.6649012999518537, hmean: 0.6999493157627978, fps: 44.71578345500319
[2024/07/28 02:30:05] ppocr INFO: best metric, hmean: 0.7160430548436699, precision: 0.7654794520547945, recall: 0.672604718343765, fps: 44.8783209422934, best_epoch: 1080
[2024/07/28 02:30:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:30:13] ppocr INFO: epoch: [1141/1500], global_step: 3423, lr: 0.001000, loss: 1.142617, loss_shrink_maps: 0.566594, loss_threshold_maps: 0.459018, loss_binary_maps: 0.112626, avg_reader_cost: 1.47629 s, avg_batch_cost: 1.70509 s, avg_samples: 12.5, ips: 7.33099 samples/s, eta: 1:49:01
[2024/07/28 02:30:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:30:22] ppocr INFO: epoch: [1142/1500], global_step: 3426, lr: 0.001000, loss: 1.143928, loss_shrink_maps: 0.566594, loss_threshold_maps: 0.474364, loss_binary_maps: 0.112626, avg_reader_cost: 1.52940 s, avg_batch_cost: 1.77057 s, avg_samples: 12.5, ips: 7.05987 samples/s, eta: 1:48:43
[2024/07/28 02:30:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:30:32] ppocr INFO: epoch: [1143/1500], global_step: 3429, lr: 0.001000, loss: 1.177340, loss_shrink_maps: 0.582888, loss_threshold_maps: 0.476123, loss_binary_maps: 0.116178, avg_reader_cost: 1.53282 s, avg_batch_cost: 1.80218 s, avg_samples: 12.5, ips: 6.93604 samples/s, eta: 1:48:25
[2024/07/28 02:30:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:30:40] ppocr INFO: epoch: [1144/1500], global_step: 3430, lr: 0.001000, loss: 1.195960, loss_shrink_maps: 0.590261, loss_threshold_maps: 0.488392, loss_binary_maps: 0.117704, avg_reader_cost: 0.40642 s, avg_batch_cost: 0.50427 s, avg_samples: 4.8, ips: 9.51867 samples/s, eta: 1:48:18
[2024/07/28 02:30:41] ppocr INFO: epoch: [1144/1500], global_step: 3432, lr: 0.001000, loss: 1.210467, loss_shrink_maps: 0.600534, loss_threshold_maps: 0.486082, loss_binary_maps: 0.119408, avg_reader_cost: 1.09951 s, avg_batch_cost: 1.24507 s, avg_samples: 7.7, ips: 6.18437 samples/s, eta: 1:48:06
[2024/07/28 02:30:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:30:51] ppocr INFO: epoch: [1145/1500], global_step: 3435, lr: 0.001000, loss: 1.217997, loss_shrink_maps: 0.605531, loss_threshold_maps: 0.482432, loss_binary_maps: 0.120094, avg_reader_cost: 1.49204 s, avg_batch_cost: 1.74431 s, avg_samples: 12.5, ips: 7.16618 samples/s, eta: 1:47:48
[2024/07/28 02:30:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:31:00] ppocr INFO: epoch: [1146/1500], global_step: 3438, lr: 0.001000, loss: 1.223845, loss_shrink_maps: 0.605531, loss_threshold_maps: 0.486082, loss_binary_maps: 0.120094, avg_reader_cost: 1.52278 s, avg_batch_cost: 1.76968 s, avg_samples: 12.5, ips: 7.06341 samples/s, eta: 1:47:29
[2024/07/28 02:31:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:31:09] ppocr INFO: epoch: [1147/1500], global_step: 3440, lr: 0.001000, loss: 1.223845, loss_shrink_maps: 0.605531, loss_threshold_maps: 0.486082, loss_binary_maps: 0.120094, avg_reader_cost: 0.91109 s, avg_batch_cost: 1.15276 s, avg_samples: 9.6, ips: 8.32783 samples/s, eta: 1:47:17
[2024/07/28 02:31:10] ppocr INFO: epoch: [1147/1500], global_step: 3441, lr: 0.001000, loss: 1.209605, loss_shrink_maps: 0.605465, loss_threshold_maps: 0.482674, loss_binary_maps: 0.119954, avg_reader_cost: 0.62194 s, avg_batch_cost: 0.67679 s, avg_samples: 2.9, ips: 4.28495 samples/s, eta: 1:47:11
[2024/07/28 02:31:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:31:19] ppocr INFO: epoch: [1148/1500], global_step: 3444, lr: 0.001000, loss: 1.223845, loss_shrink_maps: 0.612156, loss_threshold_maps: 0.482674, loss_binary_maps: 0.121206, avg_reader_cost: 1.52000 s, avg_batch_cost: 1.77484 s, avg_samples: 12.5, ips: 7.04291 samples/s, eta: 1:46:53
[2024/07/28 02:31:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:31:29] ppocr INFO: epoch: [1149/1500], global_step: 3447, lr: 0.001000, loss: 1.223845, loss_shrink_maps: 0.612156, loss_threshold_maps: 0.482674, loss_binary_maps: 0.121206, avg_reader_cost: 1.55315 s, avg_batch_cost: 1.78116 s, avg_samples: 12.5, ips: 7.01790 samples/s, eta: 1:46:34
[2024/07/28 02:31:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:31:38] ppocr INFO: epoch: [1150/1500], global_step: 3450, lr: 0.001000, loss: 1.208221, loss_shrink_maps: 0.618092, loss_threshold_maps: 0.480595, loss_binary_maps: 0.122585, avg_reader_cost: 1.48273 s, avg_batch_cost: 1.71082 s, avg_samples: 12.5, ips: 7.30642 samples/s, eta: 1:46:16
[2024/07/28 02:31:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:31:49] ppocr INFO: epoch: [1151/1500], global_step: 3453, lr: 0.001000, loss: 1.201247, loss_shrink_maps: 0.604219, loss_threshold_maps: 0.484035, loss_binary_maps: 0.120331, avg_reader_cost: 1.67087 s, avg_batch_cost: 1.89877 s, avg_samples: 12.5, ips: 6.58319 samples/s, eta: 1:45:58
[2024/07/28 02:31:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:31:58] ppocr INFO: epoch: [1152/1500], global_step: 3456, lr: 0.001000, loss: 1.161994, loss_shrink_maps: 0.587670, loss_threshold_maps: 0.460459, loss_binary_maps: 0.117144, avg_reader_cost: 1.62757 s, avg_batch_cost: 1.87336 s, avg_samples: 12.5, ips: 6.67249 samples/s, eta: 1:45:40
[2024/07/28 02:32:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:32:08] ppocr INFO: epoch: [1153/1500], global_step: 3459, lr: 0.001000, loss: 1.157054, loss_shrink_maps: 0.572418, loss_threshold_maps: 0.471141, loss_binary_maps: 0.114193, avg_reader_cost: 1.52998 s, avg_batch_cost: 1.75939 s, avg_samples: 12.5, ips: 7.10472 samples/s, eta: 1:45:21
[2024/07/28 02:32:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:32:16] ppocr INFO: epoch: [1154/1500], global_step: 3460, lr: 0.001000, loss: 1.157054, loss_shrink_maps: 0.572418, loss_threshold_maps: 0.460459, loss_binary_maps: 0.114203, avg_reader_cost: 0.41578 s, avg_batch_cost: 0.52619 s, avg_samples: 4.8, ips: 9.12214 samples/s, eta: 1:45:15
[2024/07/28 02:32:17] ppocr INFO: epoch: [1154/1500], global_step: 3462, lr: 0.001000, loss: 1.177500, loss_shrink_maps: 0.588288, loss_threshold_maps: 0.471430, loss_binary_maps: 0.117583, avg_reader_cost: 1.14470 s, avg_batch_cost: 1.29142 s, avg_samples: 7.7, ips: 5.96241 samples/s, eta: 1:45:03
[2024/07/28 02:32:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:32:27] ppocr INFO: epoch: [1155/1500], global_step: 3465, lr: 0.001000, loss: 1.197965, loss_shrink_maps: 0.607737, loss_threshold_maps: 0.484324, loss_binary_maps: 0.120977, avg_reader_cost: 1.56514 s, avg_batch_cost: 1.86388 s, avg_samples: 12.5, ips: 6.70643 samples/s, eta: 1:44:45
[2024/07/28 02:32:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:32:37] ppocr INFO: epoch: [1156/1500], global_step: 3468, lr: 0.001000, loss: 1.197965, loss_shrink_maps: 0.607737, loss_threshold_maps: 0.473760, loss_binary_maps: 0.120977, avg_reader_cost: 1.54033 s, avg_batch_cost: 1.79273 s, avg_samples: 12.5, ips: 6.97262 samples/s, eta: 1:44:27
[2024/07/28 02:32:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:32:46] ppocr INFO: epoch: [1157/1500], global_step: 3470, lr: 0.001000, loss: 1.208358, loss_shrink_maps: 0.608307, loss_threshold_maps: 0.482327, loss_binary_maps: 0.121565, avg_reader_cost: 0.92078 s, avg_batch_cost: 1.15517 s, avg_samples: 9.6, ips: 8.31049 samples/s, eta: 1:44:14
[2024/07/28 02:32:46] ppocr INFO: epoch: [1157/1500], global_step: 3471, lr: 0.001000, loss: 1.201474, loss_shrink_maps: 0.593048, loss_threshold_maps: 0.482327, loss_binary_maps: 0.118556, avg_reader_cost: 0.62348 s, avg_batch_cost: 0.67833 s, avg_samples: 2.9, ips: 4.27523 samples/s, eta: 1:44:08
[2024/07/28 02:32:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:32:56] ppocr INFO: epoch: [1158/1500], global_step: 3474, lr: 0.001000, loss: 1.238403, loss_shrink_maps: 0.633880, loss_threshold_maps: 0.486056, loss_binary_maps: 0.126363, avg_reader_cost: 1.58275 s, avg_batch_cost: 1.81071 s, avg_samples: 12.5, ips: 6.90335 samples/s, eta: 1:43:50
[2024/07/28 02:32:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:33:06] ppocr INFO: epoch: [1159/1500], global_step: 3477, lr: 0.001000, loss: 1.277666, loss_shrink_maps: 0.652940, loss_threshold_maps: 0.489545, loss_binary_maps: 0.130266, avg_reader_cost: 1.58108 s, avg_batch_cost: 1.84936 s, avg_samples: 12.5, ips: 6.75911 samples/s, eta: 1:43:32
[2024/07/28 02:33:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:33:16] ppocr INFO: epoch: [1160/1500], global_step: 3480, lr: 0.001000, loss: 1.238403, loss_shrink_maps: 0.633880, loss_threshold_maps: 0.486056, loss_binary_maps: 0.126363, avg_reader_cost: 1.57657 s, avg_batch_cost: 1.81422 s, avg_samples: 12.5, ips: 6.89001 samples/s, eta: 1:43:14

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:51,  9.62it/s]
eval model::   1%|          | 4/500 [00:00<00:25, 19.28it/s]
eval model::   1%|          | 6/500 [00:00<00:25, 19.17it/s]
eval model::   2%|▏         | 8/500 [00:00<00:26, 18.89it/s]
eval model::   2%|▏         | 11/500 [00:00<00:26, 18.18it/s]
eval model::   3%|▎         | 14/500 [00:00<00:26, 18.31it/s]
eval model::   3%|▎         | 17/500 [00:00<00:23, 20.94it/s]
eval model::   4%|▍         | 20/500 [00:01<00:24, 19.84it/s]
eval model::   5%|▍         | 23/500 [00:01<00:21, 22.00it/s]
eval model::   5%|▌         | 26/500 [00:01<00:24, 19.62it/s]
eval model::   6%|▌         | 29/500 [00:01<00:23, 20.14it/s]
eval model::   6%|▋         | 32/500 [00:01<00:24, 19.33it/s]
eval model::   7%|▋         | 34/500 [00:01<00:27, 17.14it/s]
eval model::   7%|▋         | 37/500 [00:01<00:24, 18.94it/s]
eval model::   8%|▊         | 39/500 [00:02<00:26, 17.39it/s]
eval model::   8%|▊         | 42/500 [00:02<00:27, 16.86it/s]
eval model::   9%|▉         | 44/500 [00:02<00:26, 17.44it/s]
eval model::   9%|▉         | 46/500 [00:02<00:27, 16.32it/s]
eval model::  10%|▉         | 49/500 [00:02<00:24, 18.50it/s]
eval model::  10%|█         | 51/500 [00:02<00:26, 16.79it/s]
eval model::  11%|█         | 54/500 [00:02<00:24, 18.29it/s]
eval model::  11%|█▏        | 57/500 [00:03<00:22, 19.38it/s]
eval model::  12%|█▏        | 59/500 [00:03<00:24, 18.10it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:28, 15.61it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:28, 15.22it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:24, 17.47it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:21, 19.84it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:20, 21.36it/s]
eval model::  15%|█▌        | 75/500 [00:04<00:19, 21.40it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:19, 21.85it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:18, 22.11it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:18, 22.27it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:20, 20.20it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:22, 17.99it/s]
eval model::  18%|█▊        | 92/500 [00:04<00:22, 17.86it/s]
eval model::  19%|█▉        | 94/500 [00:05<00:22, 17.68it/s]
eval model::  19%|█▉        | 97/500 [00:05<00:21, 18.75it/s]
eval model::  20%|██        | 100/500 [00:05<00:24, 16.44it/s]
eval model::  20%|██        | 102/500 [00:05<00:23, 16.87it/s]
eval model::  21%|██        | 105/500 [00:05<00:21, 18.67it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:20, 19.18it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:19, 19.53it/s]
eval model::  23%|██▎       | 114/500 [00:06<00:19, 19.97it/s]
eval model::  23%|██▎       | 117/500 [00:06<00:18, 20.39it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:21, 18.05it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:19, 19.82it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:22, 16.40it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:20, 17.82it/s]
eval model::  26%|██▌       | 131/500 [00:07<00:22, 16.27it/s]
eval model::  27%|██▋       | 133/500 [00:07<00:23, 15.81it/s]
eval model::  27%|██▋       | 136/500 [00:07<00:21, 17.18it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:19, 18.26it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:18, 19.73it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:18, 19.47it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:19, 17.73it/s]
eval model::  30%|███       | 150/500 [00:08<00:18, 18.64it/s]
eval model::  30%|███       | 152/500 [00:08<00:19, 17.84it/s]
eval model::  31%|███       | 156/500 [00:08<00:16, 21.29it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:15, 22.31it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:23, 14.09it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:22, 15.04it/s]
eval model::  33%|███▎      | 167/500 [00:09<00:20, 16.24it/s]
eval model::  34%|███▍      | 170/500 [00:09<00:17, 18.79it/s]
eval model::  35%|███▍      | 173/500 [00:09<00:18, 17.93it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:22, 14.34it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:19, 16.88it/s]
eval model::  36%|███▋      | 182/500 [00:10<00:21, 14.76it/s]
eval model::  37%|███▋      | 186/500 [00:10<00:18, 17.05it/s]
eval model::  38%|███▊      | 188/500 [00:10<00:18, 16.62it/s]
eval model::  38%|███▊      | 190/500 [00:10<00:18, 16.82it/s]
eval model::  39%|███▊      | 193/500 [00:10<00:16, 19.00it/s]
eval model::  39%|███▉      | 196/500 [00:10<00:17, 17.45it/s]
eval model::  40%|███▉      | 199/500 [00:10<00:15, 18.87it/s]
eval model::  40%|████      | 202/500 [00:11<00:14, 20.98it/s]
eval model::  41%|████      | 205/500 [00:11<00:21, 13.82it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:19, 14.77it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:19, 14.60it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.78it/s]
eval model::  43%|████▎     | 215/500 [00:12<00:21, 13.37it/s]
eval model::  43%|████▎     | 217/500 [00:12<00:23, 11.79it/s]
eval model::  44%|████▍     | 219/500 [00:12<00:22, 12.50it/s]
eval model::  44%|████▍     | 221/500 [00:12<00:24, 11.62it/s]
eval model::  45%|████▍     | 224/500 [00:12<00:19, 14.27it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:18, 14.87it/s]
eval model::  46%|████▌     | 229/500 [00:13<00:15, 17.91it/s]
eval model::  46%|████▋     | 232/500 [00:13<00:12, 20.70it/s]
eval model::  47%|████▋     | 235/500 [00:13<00:13, 20.09it/s]
eval model::  48%|████▊     | 238/500 [00:13<00:12, 20.33it/s]
eval model::  48%|████▊     | 241/500 [00:13<00:12, 20.95it/s]
eval model::  49%|████▉     | 244/500 [00:13<00:14, 18.28it/s]
eval model::  49%|████▉     | 247/500 [00:13<00:12, 20.68it/s]
eval model::  50%|█████     | 250/500 [00:14<00:12, 19.44it/s]
eval model::  51%|█████     | 253/500 [00:14<00:11, 21.16it/s]
eval model::  51%|█████     | 256/500 [00:14<00:11, 21.73it/s]
eval model::  52%|█████▏    | 259/500 [00:14<00:10, 23.40it/s]
eval model::  52%|█████▏    | 262/500 [00:14<00:10, 23.77it/s]
eval model::  53%|█████▎    | 265/500 [00:14<00:10, 22.32it/s]
eval model::  54%|█████▎    | 268/500 [00:14<00:10, 22.71it/s]
eval model::  54%|█████▍    | 271/500 [00:15<00:11, 19.73it/s]
eval model::  55%|█████▍    | 274/500 [00:15<00:10, 20.71it/s]
eval model::  55%|█████▌    | 277/500 [00:15<00:11, 18.71it/s]
eval model::  56%|█████▌    | 279/500 [00:15<00:11, 18.67it/s]
eval model::  56%|█████▋    | 282/500 [00:15<00:10, 20.93it/s]
eval model::  57%|█████▋    | 285/500 [00:16<00:17, 12.30it/s]
eval model::  58%|█████▊    | 288/500 [00:16<00:14, 14.20it/s]
eval model::  58%|█████▊    | 291/500 [00:16<00:12, 16.82it/s]
eval model::  59%|█████▉    | 294/500 [00:16<00:12, 16.57it/s]
eval model::  59%|█████▉    | 296/500 [00:16<00:13, 15.01it/s]
eval model::  60%|██████    | 300/500 [00:16<00:12, 15.86it/s]
eval model::  61%|██████    | 303/500 [00:16<00:11, 17.66it/s]
eval model::  61%|██████    | 305/500 [00:17<00:11, 17.25it/s]
eval model::  62%|██████▏   | 308/500 [00:17<00:10, 18.46it/s]
eval model::  62%|██████▏   | 311/500 [00:17<00:09, 20.46it/s]
eval model::  63%|██████▎   | 314/500 [00:17<00:09, 19.98it/s]
eval model::  63%|██████▎   | 317/500 [00:17<00:09, 20.11it/s]
eval model::  64%|██████▍   | 320/500 [00:17<00:08, 21.04it/s]
eval model::  65%|██████▍   | 323/500 [00:17<00:09, 19.28it/s]
eval model::  65%|██████▌   | 326/500 [00:18<00:08, 20.68it/s]
eval model::  66%|██████▌   | 329/500 [00:18<00:08, 20.21it/s]
eval model::  66%|██████▋   | 332/500 [00:18<00:08, 20.96it/s]
eval model::  67%|██████▋   | 335/500 [00:18<00:07, 21.15it/s]
eval model::  68%|██████▊   | 338/500 [00:18<00:08, 20.21it/s]
eval model::  68%|██████▊   | 341/500 [00:18<00:10, 15.74it/s]
eval model::  69%|██████▊   | 343/500 [00:19<00:09, 16.48it/s]
eval model::  69%|██████▉   | 346/500 [00:19<00:08, 18.36it/s]
eval model::  70%|██████▉   | 349/500 [00:19<00:07, 19.57it/s]
eval model::  70%|███████   | 352/500 [00:19<00:06, 21.61it/s]
eval model::  71%|███████   | 355/500 [00:19<00:06, 22.26it/s]
eval model::  72%|███████▏  | 358/500 [00:19<00:06, 22.41it/s]
eval model::  72%|███████▏  | 361/500 [00:19<00:07, 18.89it/s]
eval model::  73%|███████▎  | 364/500 [00:20<00:07, 18.42it/s]
eval model::  73%|███████▎  | 366/500 [00:20<00:08, 16.00it/s]
eval model::  74%|███████▍  | 369/500 [00:20<00:07, 18.12it/s]
eval model::  74%|███████▍  | 372/500 [00:20<00:06, 18.40it/s]
eval model::  75%|███████▌  | 375/500 [00:20<00:06, 19.60it/s]
eval model::  76%|███████▌  | 378/500 [00:20<00:06, 20.25it/s]
eval model::  76%|███████▌  | 381/500 [00:20<00:06, 19.46it/s]
eval model::  77%|███████▋  | 384/500 [00:21<00:05, 20.84it/s]
eval model::  77%|███████▋  | 387/500 [00:21<00:08, 13.12it/s]
eval model::  78%|███████▊  | 390/500 [00:21<00:07, 15.25it/s]
eval model::  78%|███████▊  | 392/500 [00:21<00:06, 15.71it/s]
eval model::  79%|███████▉  | 394/500 [00:21<00:06, 16.33it/s]
eval model::  79%|███████▉  | 397/500 [00:22<00:05, 18.42it/s]
eval model::  80%|████████  | 400/500 [00:22<00:05, 17.69it/s]
eval model::  80%|████████  | 402/500 [00:22<00:05, 18.18it/s]
eval model::  81%|████████  | 404/500 [00:22<00:05, 18.56it/s]
eval model::  81%|████████▏ | 407/500 [00:22<00:04, 18.77it/s]
eval model::  82%|████████▏ | 410/500 [00:22<00:04, 21.15it/s]
eval model::  83%|████████▎ | 413/500 [00:22<00:04, 19.76it/s]
eval model::  83%|████████▎ | 416/500 [00:22<00:04, 19.78it/s]
eval model::  84%|████████▍ | 419/500 [00:23<00:04, 18.26it/s]
eval model::  84%|████████▍ | 421/500 [00:23<00:06, 11.45it/s]
eval model::  85%|████████▍ | 424/500 [00:23<00:05, 12.97it/s]
eval model::  85%|████████▌ | 426/500 [00:23<00:05, 13.37it/s]
eval model::  86%|████████▌ | 429/500 [00:23<00:04, 15.79it/s]
eval model::  86%|████████▌ | 431/500 [00:24<00:04, 15.66it/s]
eval model::  87%|████████▋ | 435/500 [00:24<00:03, 19.21it/s]
eval model::  88%|████████▊ | 438/500 [00:24<00:02, 21.36it/s]
eval model::  88%|████████▊ | 441/500 [00:24<00:02, 19.68it/s]
eval model::  89%|████████▉ | 444/500 [00:24<00:02, 21.60it/s]
eval model::  89%|████████▉ | 447/500 [00:24<00:02, 21.87it/s]
eval model::  90%|█████████ | 450/500 [00:24<00:02, 19.66it/s]
eval model::  91%|█████████ | 453/500 [00:25<00:02, 21.28it/s]
eval model::  91%|█████████ | 456/500 [00:25<00:01, 22.25it/s]
eval model::  92%|█████████▏| 459/500 [00:25<00:01, 22.50it/s]
eval model::  92%|█████████▏| 462/500 [00:25<00:02, 16.49it/s]
eval model::  93%|█████████▎| 464/500 [00:25<00:02, 16.61it/s]
eval model::  93%|█████████▎| 466/500 [00:25<00:02, 15.68it/s]
eval model::  94%|█████████▍| 469/500 [00:26<00:01, 17.25it/s]
eval model::  94%|█████████▍| 472/500 [00:26<00:01, 19.24it/s]
eval model::  95%|█████████▌| 475/500 [00:26<00:01, 19.61it/s]
eval model::  96%|█████████▌| 478/500 [00:26<00:01, 20.57it/s]
eval model::  96%|█████████▌| 481/500 [00:26<00:00, 21.81it/s]
eval model::  97%|█████████▋| 484/500 [00:26<00:00, 22.55it/s]
eval model::  97%|█████████▋| 487/500 [00:26<00:00, 22.70it/s]
eval model::  98%|█████████▊| 490/500 [00:26<00:00, 23.75it/s]
eval model::  99%|█████████▊| 493/500 [00:27<00:00, 20.20it/s]
eval model::  99%|█████████▉| 496/500 [00:27<00:00, 20.15it/s]
eval model:: 100%|██████████| 500/500 [00:27<00:00, 23.92it/s]
eval model:: 100%|██████████| 500/500 [00:27<00:00, 18.26it/s]
[2024/07/28 02:33:43] ppocr INFO: cur metric, precision: 0.6982047549733139, recall: 0.6928261916225325, hmean: 0.695505074915418, fps: 44.90063975241479
[2024/07/28 02:33:43] ppocr INFO: best metric, hmean: 0.7160430548436699, precision: 0.7654794520547945, recall: 0.672604718343765, fps: 44.8783209422934, best_epoch: 1080
[2024/07/28 02:33:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:33:50] ppocr INFO: epoch: [1161/1500], global_step: 3483, lr: 0.001000, loss: 1.229315, loss_shrink_maps: 0.628148, loss_threshold_maps: 0.484602, loss_binary_maps: 0.125133, avg_reader_cost: 1.42127 s, avg_batch_cost: 1.65126 s, avg_samples: 12.5, ips: 7.56998 samples/s, eta: 1:42:55
[2024/07/28 02:33:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:34:00] ppocr INFO: epoch: [1162/1500], global_step: 3486, lr: 0.001000, loss: 1.240829, loss_shrink_maps: 0.622882, loss_threshold_maps: 0.484602, loss_binary_maps: 0.123928, avg_reader_cost: 1.64360 s, avg_batch_cost: 1.88883 s, avg_samples: 12.5, ips: 6.61784 samples/s, eta: 1:42:37
[2024/07/28 02:34:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:34:10] ppocr INFO: epoch: [1163/1500], global_step: 3489, lr: 0.001000, loss: 1.219840, loss_shrink_maps: 0.600923, loss_threshold_maps: 0.479640, loss_binary_maps: 0.120041, avg_reader_cost: 1.49732 s, avg_batch_cost: 1.74085 s, avg_samples: 12.5, ips: 7.18040 samples/s, eta: 1:42:19
[2024/07/28 02:34:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:34:18] ppocr INFO: epoch: [1164/1500], global_step: 3490, lr: 0.001000, loss: 1.174239, loss_shrink_maps: 0.581531, loss_threshold_maps: 0.475582, loss_binary_maps: 0.116044, avg_reader_cost: 0.39781 s, avg_batch_cost: 0.49675 s, avg_samples: 4.8, ips: 9.66279 samples/s, eta: 1:42:12
[2024/07/28 02:34:19] ppocr INFO: epoch: [1164/1500], global_step: 3492, lr: 0.001000, loss: 1.152555, loss_shrink_maps: 0.588441, loss_threshold_maps: 0.455728, loss_binary_maps: 0.117351, avg_reader_cost: 1.08476 s, avg_batch_cost: 1.23029 s, avg_samples: 7.7, ips: 6.25868 samples/s, eta: 1:42:00
[2024/07/28 02:34:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:34:29] ppocr INFO: epoch: [1165/1500], global_step: 3495, lr: 0.001000, loss: 1.108559, loss_shrink_maps: 0.561444, loss_threshold_maps: 0.446917, loss_binary_maps: 0.111988, avg_reader_cost: 1.52010 s, avg_batch_cost: 1.75467 s, avg_samples: 12.5, ips: 7.12384 samples/s, eta: 1:41:42
[2024/07/28 02:34:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:34:38] ppocr INFO: epoch: [1166/1500], global_step: 3498, lr: 0.001000, loss: 1.194958, loss_shrink_maps: 0.603342, loss_threshold_maps: 0.469701, loss_binary_maps: 0.120096, avg_reader_cost: 1.51531 s, avg_batch_cost: 1.75497 s, avg_samples: 12.5, ips: 7.12262 samples/s, eta: 1:41:23
[2024/07/28 02:34:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:34:48] ppocr INFO: epoch: [1167/1500], global_step: 3500, lr: 0.001000, loss: 1.216842, loss_shrink_maps: 0.608914, loss_threshold_maps: 0.475861, loss_binary_maps: 0.121348, avg_reader_cost: 1.01311 s, avg_batch_cost: 1.23271 s, avg_samples: 9.6, ips: 7.78773 samples/s, eta: 1:41:11
[2024/07/28 02:34:49] ppocr INFO: epoch: [1167/1500], global_step: 3501, lr: 0.001000, loss: 1.216842, loss_shrink_maps: 0.608914, loss_threshold_maps: 0.475861, loss_binary_maps: 0.121348, avg_reader_cost: 0.66263 s, avg_batch_cost: 0.71705 s, avg_samples: 2.9, ips: 4.04436 samples/s, eta: 1:41:06
[2024/07/28 02:34:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:34:58] ppocr INFO: epoch: [1168/1500], global_step: 3504, lr: 0.001000, loss: 1.194958, loss_shrink_maps: 0.604424, loss_threshold_maps: 0.475861, loss_binary_maps: 0.120096, avg_reader_cost: 1.49526 s, avg_batch_cost: 1.74220 s, avg_samples: 12.5, ips: 7.17486 samples/s, eta: 1:40:47
[2024/07/28 02:35:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:35:08] ppocr INFO: epoch: [1169/1500], global_step: 3507, lr: 0.001000, loss: 1.174302, loss_shrink_maps: 0.599024, loss_threshold_maps: 0.470439, loss_binary_maps: 0.119280, avg_reader_cost: 1.54779 s, avg_batch_cost: 1.77671 s, avg_samples: 12.5, ips: 7.03546 samples/s, eta: 1:40:29
[2024/07/28 02:35:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:35:17] ppocr INFO: epoch: [1170/1500], global_step: 3510, lr: 0.001000, loss: 1.231891, loss_shrink_maps: 0.629867, loss_threshold_maps: 0.481206, loss_binary_maps: 0.125119, avg_reader_cost: 1.53062 s, avg_batch_cost: 1.75905 s, avg_samples: 12.5, ips: 7.10610 samples/s, eta: 1:40:10
[2024/07/28 02:35:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:35:27] ppocr INFO: epoch: [1171/1500], global_step: 3513, lr: 0.001000, loss: 1.286019, loss_shrink_maps: 0.651782, loss_threshold_maps: 0.492605, loss_binary_maps: 0.129416, avg_reader_cost: 1.54125 s, avg_batch_cost: 1.77790 s, avg_samples: 12.5, ips: 7.03075 samples/s, eta: 1:39:52
[2024/07/28 02:35:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:35:37] ppocr INFO: epoch: [1172/1500], global_step: 3516, lr: 0.001000, loss: 1.289562, loss_shrink_maps: 0.651782, loss_threshold_maps: 0.493665, loss_binary_maps: 0.129416, avg_reader_cost: 1.68017 s, avg_batch_cost: 1.92994 s, avg_samples: 12.5, ips: 6.47688 samples/s, eta: 1:39:34
[2024/07/28 02:35:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:35:47] ppocr INFO: epoch: [1173/1500], global_step: 3519, lr: 0.001000, loss: 1.251600, loss_shrink_maps: 0.630093, loss_threshold_maps: 0.493665, loss_binary_maps: 0.125382, avg_reader_cost: 1.52410 s, avg_batch_cost: 1.77682 s, avg_samples: 12.5, ips: 7.03503 samples/s, eta: 1:39:16
[2024/07/28 02:35:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:35:55] ppocr INFO: epoch: [1174/1500], global_step: 3520, lr: 0.001000, loss: 1.227778, loss_shrink_maps: 0.610169, loss_threshold_maps: 0.487485, loss_binary_maps: 0.121303, avg_reader_cost: 0.43475 s, avg_batch_cost: 0.51971 s, avg_samples: 4.8, ips: 9.23590 samples/s, eta: 1:39:09
[2024/07/28 02:35:56] ppocr INFO: epoch: [1174/1500], global_step: 3522, lr: 0.001000, loss: 1.212613, loss_shrink_maps: 0.610169, loss_threshold_maps: 0.485584, loss_binary_maps: 0.121303, avg_reader_cost: 1.13049 s, avg_batch_cost: 1.27592 s, avg_samples: 7.7, ips: 6.03486 samples/s, eta: 1:38:57
[2024/07/28 02:36:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:36:06] ppocr INFO: epoch: [1175/1500], global_step: 3525, lr: 0.001000, loss: 1.212613, loss_shrink_maps: 0.610169, loss_threshold_maps: 0.487485, loss_binary_maps: 0.121303, avg_reader_cost: 1.56457 s, avg_batch_cost: 1.79277 s, avg_samples: 12.5, ips: 6.97246 samples/s, eta: 1:38:39
[2024/07/28 02:36:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:36:16] ppocr INFO: epoch: [1176/1500], global_step: 3528, lr: 0.001000, loss: 1.196890, loss_shrink_maps: 0.601462, loss_threshold_maps: 0.482910, loss_binary_maps: 0.119539, avg_reader_cost: 1.49857 s, avg_batch_cost: 1.72913 s, avg_samples: 12.5, ips: 7.22906 samples/s, eta: 1:38:21
[2024/07/28 02:36:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:36:25] ppocr INFO: epoch: [1177/1500], global_step: 3530, lr: 0.001000, loss: 1.184586, loss_shrink_maps: 0.597582, loss_threshold_maps: 0.478718, loss_binary_maps: 0.119279, avg_reader_cost: 0.89843 s, avg_batch_cost: 1.08255 s, avg_samples: 9.6, ips: 8.86794 samples/s, eta: 1:38:08
[2024/07/28 02:36:25] ppocr INFO: epoch: [1177/1500], global_step: 3531, lr: 0.001000, loss: 1.196890, loss_shrink_maps: 0.603873, loss_threshold_maps: 0.482910, loss_binary_maps: 0.120647, avg_reader_cost: 0.58704 s, avg_batch_cost: 0.64179 s, avg_samples: 2.9, ips: 4.51860 samples/s, eta: 1:38:02
[2024/07/28 02:36:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:36:35] ppocr INFO: epoch: [1178/1500], global_step: 3534, lr: 0.001000, loss: 1.196890, loss_shrink_maps: 0.603873, loss_threshold_maps: 0.473951, loss_binary_maps: 0.120647, avg_reader_cost: 1.58388 s, avg_batch_cost: 1.87126 s, avg_samples: 12.5, ips: 6.68001 samples/s, eta: 1:37:44
[2024/07/28 02:36:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:36:45] ppocr INFO: epoch: [1179/1500], global_step: 3537, lr: 0.001000, loss: 1.184586, loss_shrink_maps: 0.597582, loss_threshold_maps: 0.468432, loss_binary_maps: 0.119279, avg_reader_cost: 1.56633 s, avg_batch_cost: 1.82897 s, avg_samples: 12.5, ips: 6.83444 samples/s, eta: 1:37:26
[2024/07/28 02:36:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:36:54] ppocr INFO: epoch: [1180/1500], global_step: 3540, lr: 0.001000, loss: 1.218692, loss_shrink_maps: 0.615418, loss_threshold_maps: 0.472184, loss_binary_maps: 0.122246, avg_reader_cost: 1.51210 s, avg_batch_cost: 1.74620 s, avg_samples: 12.5, ips: 7.15841 samples/s, eta: 1:37:08

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 2/500 [00:00<00:37, 13.20it/s]
eval model::   1%|          | 5/500 [00:00<00:23, 20.88it/s]
eval model::   2%|▏         | 8/500 [00:00<00:25, 19.57it/s]
eval model::   2%|▏         | 11/500 [00:00<00:24, 20.10it/s]
eval model::   3%|▎         | 14/500 [00:00<00:26, 18.45it/s]
eval model::   3%|▎         | 17/500 [00:00<00:24, 19.42it/s]
eval model::   4%|▍         | 19/500 [00:00<00:24, 19.29it/s]
eval model::   4%|▍         | 21/500 [00:01<00:24, 19.28it/s]
eval model::   5%|▍         | 23/500 [00:01<00:25, 18.94it/s]
eval model::   5%|▌         | 25/500 [00:01<00:29, 16.06it/s]
eval model::   6%|▌         | 28/500 [00:01<00:26, 17.69it/s]
eval model::   6%|▌         | 31/500 [00:01<00:25, 18.40it/s]
eval model::   7%|▋         | 34/500 [00:01<00:25, 18.51it/s]
eval model::   7%|▋         | 37/500 [00:01<00:23, 20.12it/s]
eval model::   8%|▊         | 40/500 [00:02<00:26, 17.62it/s]
eval model::   8%|▊         | 42/500 [00:02<00:28, 16.14it/s]
eval model::   9%|▉         | 45/500 [00:02<00:25, 17.63it/s]
eval model::   9%|▉         | 47/500 [00:02<00:27, 16.42it/s]
eval model::  10%|█         | 50/500 [00:02<00:23, 18.90it/s]
eval model::  11%|█         | 53/500 [00:02<00:21, 20.42it/s]
eval model::  11%|█         | 56/500 [00:03<00:22, 19.60it/s]
eval model::  12%|█▏        | 59/500 [00:03<00:23, 18.86it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:27, 15.75it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:28, 15.34it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:23, 18.37it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:21, 20.44it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:21, 19.72it/s]
eval model::  15%|█▌        | 75/500 [00:04<00:21, 20.17it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:20, 20.87it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:19, 21.72it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:20, 20.14it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:23, 17.40it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:25, 15.95it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:24, 16.61it/s]
eval model::  19%|█▊        | 93/500 [00:05<00:25, 15.98it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:22, 17.95it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:20, 19.29it/s]
eval model::  20%|██        | 101/500 [00:05<00:22, 17.84it/s]
eval model::  21%|██        | 104/500 [00:05<00:19, 19.81it/s]
eval model::  21%|██▏       | 107/500 [00:05<00:17, 22.16it/s]
eval model::  22%|██▏       | 110/500 [00:05<00:17, 21.68it/s]
eval model::  23%|██▎       | 113/500 [00:06<00:17, 22.37it/s]
eval model::  23%|██▎       | 116/500 [00:06<00:17, 21.78it/s]
eval model::  24%|██▍       | 119/500 [00:06<00:16, 22.76it/s]
eval model::  24%|██▍       | 122/500 [00:06<00:17, 21.01it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:22, 16.99it/s]
eval model::  25%|██▌       | 127/500 [00:06<00:21, 17.26it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:21, 17.06it/s]
eval model::  26%|██▌       | 131/500 [00:07<00:23, 15.41it/s]
eval model::  27%|██▋       | 133/500 [00:07<00:25, 14.57it/s]
eval model::  27%|██▋       | 136/500 [00:07<00:22, 16.31it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:21, 16.58it/s]
eval model::  28%|██▊       | 140/500 [00:07<00:20, 17.22it/s]
eval model::  29%|██▊       | 143/500 [00:07<00:19, 18.56it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:20, 17.37it/s]
eval model::  29%|██▉       | 147/500 [00:08<00:23, 14.99it/s]
eval model::  30%|██▉       | 149/500 [00:08<00:21, 15.96it/s]
eval model::  30%|███       | 151/500 [00:08<00:23, 14.89it/s]
eval model::  31%|███       | 154/500 [00:08<00:20, 17.24it/s]
eval model::  31%|███▏      | 157/500 [00:08<00:17, 19.15it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:17, 19.27it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:26, 12.81it/s]
eval model::  33%|███▎      | 163/500 [00:09<00:24, 13.78it/s]
eval model::  33%|███▎      | 165/500 [00:09<00:22, 15.00it/s]
eval model::  34%|███▎      | 168/500 [00:09<00:19, 17.20it/s]
eval model::  34%|███▍      | 171/500 [00:09<00:18, 17.45it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:19, 16.70it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:18, 17.13it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:17, 18.61it/s]
eval model::  36%|███▌      | 181/500 [00:10<00:21, 14.65it/s]
eval model::  37%|███▋      | 184/500 [00:10<00:17, 17.66it/s]
eval model::  37%|███▋      | 187/500 [00:10<00:16, 18.76it/s]
eval model::  38%|███▊      | 190/500 [00:10<00:16, 18.39it/s]
eval model::  39%|███▊      | 193/500 [00:10<00:15, 19.47it/s]
eval model::  39%|███▉      | 196/500 [00:10<00:16, 18.41it/s]
eval model::  40%|███▉      | 199/500 [00:11<00:15, 19.17it/s]
eval model::  40%|████      | 201/500 [00:11<00:16, 18.64it/s]
eval model::  41%|████      | 204/500 [00:11<00:13, 21.19it/s]
eval model::  41%|████▏     | 207/500 [00:11<00:24, 11.75it/s]
eval model::  42%|████▏     | 209/500 [00:11<00:22, 12.67it/s]
eval model::  42%|████▏     | 211/500 [00:12<00:22, 13.06it/s]
eval model::  43%|████▎     | 213/500 [00:12<00:20, 13.69it/s]
eval model::  43%|████▎     | 215/500 [00:12<00:23, 11.98it/s]
eval model::  43%|████▎     | 217/500 [00:12<00:28,  9.86it/s]
eval model::  44%|████▍     | 219/500 [00:12<00:25, 10.91it/s]
eval model::  44%|████▍     | 221/500 [00:12<00:25, 10.89it/s]
eval model::  45%|████▍     | 223/500 [00:13<00:22, 12.39it/s]
eval model::  45%|████▌     | 226/500 [00:13<00:18, 14.73it/s]
eval model::  46%|████▌     | 229/500 [00:13<00:15, 17.48it/s]
eval model::  46%|████▋     | 232/500 [00:13<00:13, 19.44it/s]
eval model::  47%|████▋     | 235/500 [00:13<00:13, 19.41it/s]
eval model::  48%|████▊     | 238/500 [00:13<00:12, 21.38it/s]
eval model::  48%|████▊     | 241/500 [00:13<00:12, 20.10it/s]
eval model::  49%|████▉     | 244/500 [00:14<00:14, 17.44it/s]
eval model::  49%|████▉     | 246/500 [00:14<00:14, 17.76it/s]
eval model::  50%|████▉     | 249/500 [00:14<00:14, 16.86it/s]
eval model::  50%|█████     | 252/500 [00:14<00:13, 18.38it/s]
eval model::  51%|█████     | 255/500 [00:14<00:13, 18.47it/s]
eval model::  52%|█████▏    | 258/500 [00:14<00:12, 20.05it/s]
eval model::  52%|█████▏    | 261/500 [00:14<00:11, 20.93it/s]
eval model::  53%|█████▎    | 264/500 [00:15<00:11, 21.02it/s]
eval model::  53%|█████▎    | 267/500 [00:15<00:10, 22.19it/s]
eval model::  54%|█████▍    | 270/500 [00:15<00:10, 22.23it/s]
eval model::  55%|█████▍    | 273/500 [00:15<00:09, 22.94it/s]
eval model::  55%|█████▌    | 276/500 [00:15<00:10, 21.76it/s]
eval model::  56%|█████▌    | 279/500 [00:15<00:10, 22.05it/s]
eval model::  56%|█████▋    | 282/500 [00:15<00:09, 23.67it/s]
eval model::  57%|█████▋    | 285/500 [00:16<00:16, 13.36it/s]
eval model::  58%|█████▊    | 288/500 [00:16<00:13, 15.25it/s]
eval model::  58%|█████▊    | 291/500 [00:16<00:11, 17.68it/s]
eval model::  59%|█████▉    | 294/500 [00:16<00:12, 17.15it/s]
eval model::  59%|█████▉    | 297/500 [00:17<00:13, 14.72it/s]
eval model::  60%|██████    | 300/500 [00:17<00:13, 14.55it/s]
eval model::  60%|██████    | 302/500 [00:17<00:12, 15.35it/s]
eval model::  61%|██████    | 304/500 [00:17<00:12, 16.12it/s]
eval model::  61%|██████▏   | 307/500 [00:17<00:10, 17.69it/s]
eval model::  62%|██████▏   | 309/500 [00:17<00:10, 18.11it/s]
eval model::  62%|██████▏   | 311/500 [00:17<00:10, 18.51it/s]
eval model::  63%|██████▎   | 313/500 [00:17<00:11, 16.99it/s]
eval model::  63%|██████▎   | 315/500 [00:18<00:11, 16.29it/s]
eval model::  64%|██████▎   | 318/500 [00:18<00:10, 17.47it/s]
eval model::  64%|██████▍   | 321/500 [00:18<00:09, 18.53it/s]
eval model::  65%|██████▍   | 323/500 [00:18<00:09, 18.24it/s]
eval model::  65%|██████▌   | 326/500 [00:18<00:08, 19.95it/s]
eval model::  66%|██████▌   | 329/500 [00:18<00:08, 20.30it/s]
eval model::  66%|██████▋   | 332/500 [00:18<00:08, 20.72it/s]
eval model::  67%|██████▋   | 335/500 [00:19<00:07, 21.56it/s]
eval model::  68%|██████▊   | 338/500 [00:19<00:08, 18.22it/s]
eval model::  68%|██████▊   | 340/500 [00:19<00:12, 12.58it/s]
eval model::  68%|██████▊   | 342/500 [00:19<00:11, 13.63it/s]
eval model::  69%|██████▉   | 345/500 [00:19<00:09, 16.61it/s]
eval model::  70%|██████▉   | 348/500 [00:19<00:08, 18.96it/s]
eval model::  70%|███████   | 352/500 [00:20<00:06, 22.33it/s]
eval model::  71%|███████   | 355/500 [00:20<00:06, 22.84it/s]
eval model::  72%|███████▏  | 358/500 [00:20<00:06, 22.38it/s]
eval model::  72%|███████▏  | 361/500 [00:20<00:07, 19.67it/s]
eval model::  73%|███████▎  | 364/500 [00:20<00:07, 18.97it/s]
eval model::  73%|███████▎  | 367/500 [00:20<00:08, 15.88it/s]
eval model::  74%|███████▍  | 370/500 [00:21<00:07, 17.54it/s]
eval model::  74%|███████▍  | 372/500 [00:21<00:07, 17.98it/s]
eval model::  75%|███████▌  | 375/500 [00:21<00:06, 19.25it/s]
eval model::  76%|███████▌  | 379/500 [00:21<00:05, 22.40it/s]
eval model::  76%|███████▋  | 382/500 [00:21<00:06, 19.13it/s]
eval model::  77%|███████▋  | 385/500 [00:21<00:05, 21.09it/s]
eval model::  78%|███████▊  | 388/500 [00:22<00:08, 13.23it/s]
eval model::  78%|███████▊  | 391/500 [00:22<00:07, 14.96it/s]
eval model::  79%|███████▉  | 394/500 [00:22<00:06, 15.37it/s]
eval model::  79%|███████▉  | 396/500 [00:22<00:06, 15.51it/s]
eval model::  80%|███████▉  | 399/500 [00:22<00:05, 17.52it/s]
eval model::  80%|████████  | 401/500 [00:22<00:06, 16.48it/s]
eval model::  81%|████████  | 404/500 [00:22<00:05, 19.19it/s]
eval model::  81%|████████▏ | 407/500 [00:23<00:04, 20.33it/s]
eval model::  82%|████████▏ | 410/500 [00:23<00:04, 21.56it/s]
eval model::  83%|████████▎ | 413/500 [00:23<00:04, 21.32it/s]
eval model::  83%|████████▎ | 416/500 [00:23<00:04, 20.25it/s]
eval model::  84%|████████▍ | 419/500 [00:23<00:04, 17.68it/s]
eval model::  84%|████████▍ | 421/500 [00:24<00:06, 11.95it/s]
eval model::  85%|████████▍ | 424/500 [00:24<00:06, 12.60it/s]
eval model::  85%|████████▌ | 426/500 [00:24<00:05, 13.19it/s]
eval model::  86%|████████▌ | 429/500 [00:24<00:04, 15.62it/s]
eval model::  86%|████████▌ | 431/500 [00:24<00:04, 14.47it/s]
eval model::  87%|████████▋ | 434/500 [00:24<00:03, 17.29it/s]
eval model::  87%|████████▋ | 437/500 [00:24<00:03, 18.96it/s]
eval model::  88%|████████▊ | 440/500 [00:25<00:03, 18.87it/s]
eval model::  89%|████████▉ | 444/500 [00:25<00:02, 21.77it/s]
eval model::  89%|████████▉ | 447/500 [00:25<00:02, 22.48it/s]
eval model::  90%|█████████ | 450/500 [00:25<00:02, 19.75it/s]
eval model::  91%|█████████ | 453/500 [00:25<00:02, 19.46it/s]
eval model::  91%|█████████ | 456/500 [00:25<00:02, 21.08it/s]
eval model::  92%|█████████▏| 459/500 [00:25<00:01, 22.68it/s]
eval model::  92%|█████████▏| 462/500 [00:26<00:01, 20.15it/s]
eval model::  93%|█████████▎| 465/500 [00:26<00:01, 19.31it/s]
eval model::  94%|█████████▎| 468/500 [00:26<00:01, 20.69it/s]
eval model::  94%|█████████▍| 471/500 [00:26<00:01, 22.51it/s]
eval model::  95%|█████████▍| 474/500 [00:26<00:01, 21.65it/s]
eval model::  95%|█████████▌| 477/500 [00:26<00:00, 23.42it/s]
eval model::  96%|█████████▌| 480/500 [00:26<00:00, 25.06it/s]
eval model::  97%|█████████▋| 483/500 [00:27<00:00, 26.18it/s]
eval model::  97%|█████████▋| 486/500 [00:27<00:00, 24.64it/s]
eval model::  98%|█████████▊| 489/500 [00:27<00:00, 24.81it/s]
eval model::  98%|█████████▊| 492/500 [00:27<00:00, 20.39it/s]
eval model::  99%|█████████▉| 495/500 [00:27<00:00, 21.21it/s]
eval model:: 100%|█████████▉| 498/500 [00:27<00:00, 22.91it/s]
eval model:: 100%|██████████| 500/500 [00:27<00:00, 18.00it/s]
[2024/07/28 02:37:22] ppocr INFO: cur metric, precision: 0.6938579654510557, recall: 0.6961964371689937, hmean: 0.6950252343186735, fps: 44.55747857199829
[2024/07/28 02:37:22] ppocr INFO: best metric, hmean: 0.7160430548436699, precision: 0.7654794520547945, recall: 0.672604718343765, fps: 44.8783209422934, best_epoch: 1080
[2024/07/28 02:37:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:37:30] ppocr INFO: epoch: [1181/1500], global_step: 3543, lr: 0.001000, loss: 1.229552, loss_shrink_maps: 0.622002, loss_threshold_maps: 0.477501, loss_binary_maps: 0.123629, avg_reader_cost: 1.48764 s, avg_batch_cost: 1.71589 s, avg_samples: 12.5, ips: 7.28485 samples/s, eta: 1:36:49
[2024/07/28 02:37:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:37:40] ppocr INFO: epoch: [1182/1500], global_step: 3546, lr: 0.001000, loss: 1.234081, loss_shrink_maps: 0.622940, loss_threshold_maps: 0.480145, loss_binary_maps: 0.124131, avg_reader_cost: 1.51184 s, avg_batch_cost: 1.75607 s, avg_samples: 12.5, ips: 7.11815 samples/s, eta: 1:36:31
[2024/07/28 02:37:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:37:49] ppocr INFO: epoch: [1183/1500], global_step: 3549, lr: 0.001000, loss: 1.241272, loss_shrink_maps: 0.633721, loss_threshold_maps: 0.484250, loss_binary_maps: 0.126355, avg_reader_cost: 1.48803 s, avg_batch_cost: 1.71964 s, avg_samples: 12.5, ips: 7.26897 samples/s, eta: 1:36:12
[2024/07/28 02:37:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:37:57] ppocr INFO: epoch: [1184/1500], global_step: 3550, lr: 0.001000, loss: 1.256880, loss_shrink_maps: 0.645685, loss_threshold_maps: 0.484250, loss_binary_maps: 0.128460, avg_reader_cost: 0.41587 s, avg_batch_cost: 0.52157 s, avg_samples: 4.8, ips: 9.20304 samples/s, eta: 1:36:06
[2024/07/28 02:37:59] ppocr INFO: epoch: [1184/1500], global_step: 3552, lr: 0.001000, loss: 1.251379, loss_shrink_maps: 0.633721, loss_threshold_maps: 0.484250, loss_binary_maps: 0.126355, avg_reader_cost: 1.13469 s, avg_batch_cost: 1.28046 s, avg_samples: 7.7, ips: 6.01346 samples/s, eta: 1:35:54
[2024/07/28 02:38:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:38:09] ppocr INFO: epoch: [1185/1500], global_step: 3555, lr: 0.001000, loss: 1.251379, loss_shrink_maps: 0.633107, loss_threshold_maps: 0.480145, loss_binary_maps: 0.126094, avg_reader_cost: 1.59856 s, avg_batch_cost: 1.82656 s, avg_samples: 12.5, ips: 6.84346 samples/s, eta: 1:35:36
[2024/07/28 02:38:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:38:18] ppocr INFO: epoch: [1186/1500], global_step: 3558, lr: 0.001000, loss: 1.238062, loss_shrink_maps: 0.627027, loss_threshold_maps: 0.480679, loss_binary_maps: 0.125112, avg_reader_cost: 1.56020 s, avg_batch_cost: 1.80792 s, avg_samples: 12.5, ips: 6.91403 samples/s, eta: 1:35:17
[2024/07/28 02:38:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:38:28] ppocr INFO: epoch: [1187/1500], global_step: 3560, lr: 0.001000, loss: 1.229714, loss_shrink_maps: 0.626089, loss_threshold_maps: 0.479639, loss_binary_maps: 0.124611, avg_reader_cost: 0.91890 s, avg_batch_cost: 1.11006 s, avg_samples: 9.6, ips: 8.64820 samples/s, eta: 1:35:05
[2024/07/28 02:38:28] ppocr INFO: epoch: [1187/1500], global_step: 3561, lr: 0.001000, loss: 1.185389, loss_shrink_maps: 0.592735, loss_threshold_maps: 0.479621, loss_binary_maps: 0.118444, avg_reader_cost: 0.60055 s, avg_batch_cost: 0.65535 s, avg_samples: 2.9, ips: 4.42514 samples/s, eta: 1:34:59
[2024/07/28 02:38:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:38:38] ppocr INFO: epoch: [1188/1500], global_step: 3564, lr: 0.001000, loss: 1.176317, loss_shrink_maps: 0.584001, loss_threshold_maps: 0.479621, loss_binary_maps: 0.116827, avg_reader_cost: 1.59825 s, avg_batch_cost: 1.83793 s, avg_samples: 12.5, ips: 6.80114 samples/s, eta: 1:34:41
[2024/07/28 02:38:41] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:38:48] ppocr INFO: epoch: [1189/1500], global_step: 3567, lr: 0.001000, loss: 1.140872, loss_shrink_maps: 0.565029, loss_threshold_maps: 0.474282, loss_binary_maps: 0.113059, avg_reader_cost: 1.57851 s, avg_batch_cost: 1.82508 s, avg_samples: 12.5, ips: 6.84902 samples/s, eta: 1:34:23
[2024/07/28 02:38:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:38:58] ppocr INFO: epoch: [1190/1500], global_step: 3570, lr: 0.001000, loss: 1.134489, loss_shrink_maps: 0.550443, loss_threshold_maps: 0.467340, loss_binary_maps: 0.110047, avg_reader_cost: 1.54942 s, avg_batch_cost: 1.77775 s, avg_samples: 12.5, ips: 7.03135 samples/s, eta: 1:34:04
[2024/07/28 02:39:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:39:07] ppocr INFO: epoch: [1191/1500], global_step: 3573, lr: 0.001000, loss: 1.124456, loss_shrink_maps: 0.554735, loss_threshold_maps: 0.464634, loss_binary_maps: 0.110897, avg_reader_cost: 1.50329 s, avg_batch_cost: 1.74403 s, avg_samples: 12.5, ips: 7.16730 samples/s, eta: 1:33:46
[2024/07/28 02:39:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:39:17] ppocr INFO: epoch: [1192/1500], global_step: 3576, lr: 0.001000, loss: 1.140872, loss_shrink_maps: 0.564384, loss_threshold_maps: 0.467340, loss_binary_maps: 0.112826, avg_reader_cost: 1.71460 s, avg_batch_cost: 1.97138 s, avg_samples: 12.5, ips: 6.34075 samples/s, eta: 1:33:28
[2024/07/28 02:39:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:39:27] ppocr INFO: epoch: [1193/1500], global_step: 3579, lr: 0.001000, loss: 1.174709, loss_shrink_maps: 0.574679, loss_threshold_maps: 0.469137, loss_binary_maps: 0.114878, avg_reader_cost: 1.51396 s, avg_batch_cost: 1.74708 s, avg_samples: 12.5, ips: 7.15478 samples/s, eta: 1:33:10
[2024/07/28 02:39:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:39:35] ppocr INFO: epoch: [1194/1500], global_step: 3580, lr: 0.001000, loss: 1.210154, loss_shrink_maps: 0.594527, loss_threshold_maps: 0.474167, loss_binary_maps: 0.118690, avg_reader_cost: 0.43446 s, avg_batch_cost: 0.51652 s, avg_samples: 4.8, ips: 9.29299 samples/s, eta: 1:33:03
[2024/07/28 02:39:37] ppocr INFO: epoch: [1194/1500], global_step: 3582, lr: 0.001000, loss: 1.174709, loss_shrink_maps: 0.574679, loss_threshold_maps: 0.466981, loss_binary_maps: 0.114878, avg_reader_cost: 1.12434 s, avg_batch_cost: 1.27011 s, avg_samples: 7.7, ips: 6.06248 samples/s, eta: 1:32:51
[2024/07/28 02:39:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:39:47] ppocr INFO: epoch: [1195/1500], global_step: 3585, lr: 0.001000, loss: 1.172350, loss_shrink_maps: 0.578060, loss_threshold_maps: 0.466981, loss_binary_maps: 0.115212, avg_reader_cost: 1.55694 s, avg_batch_cost: 1.80406 s, avg_samples: 12.5, ips: 6.92880 samples/s, eta: 1:32:33
[2024/07/28 02:39:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:39:56] ppocr INFO: epoch: [1196/1500], global_step: 3588, lr: 0.001000, loss: 1.185618, loss_shrink_maps: 0.592578, loss_threshold_maps: 0.478467, loss_binary_maps: 0.117816, avg_reader_cost: 1.52413 s, avg_batch_cost: 1.79038 s, avg_samples: 12.5, ips: 6.98175 samples/s, eta: 1:32:15
[2024/07/28 02:40:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:40:06] ppocr INFO: epoch: [1197/1500], global_step: 3590, lr: 0.001000, loss: 1.185618, loss_shrink_maps: 0.592578, loss_threshold_maps: 0.478467, loss_binary_maps: 0.117816, avg_reader_cost: 1.00926 s, avg_batch_cost: 1.18275 s, avg_samples: 9.6, ips: 8.11669 samples/s, eta: 1:32:03
[2024/07/28 02:40:06] ppocr INFO: epoch: [1197/1500], global_step: 3591, lr: 0.001000, loss: 1.172350, loss_shrink_maps: 0.578060, loss_threshold_maps: 0.473437, loss_binary_maps: 0.115212, avg_reader_cost: 0.63712 s, avg_batch_cost: 0.69181 s, avg_samples: 2.9, ips: 4.19187 samples/s, eta: 1:31:57
[2024/07/28 02:40:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:40:16] ppocr INFO: epoch: [1198/1500], global_step: 3594, lr: 0.001000, loss: 1.183416, loss_shrink_maps: 0.595897, loss_threshold_maps: 0.473854, loss_binary_maps: 0.118401, avg_reader_cost: 1.55103 s, avg_batch_cost: 1.79462 s, avg_samples: 12.5, ips: 6.96528 samples/s, eta: 1:31:39
[2024/07/28 02:40:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:40:26] ppocr INFO: epoch: [1199/1500], global_step: 3597, lr: 0.001000, loss: 1.175231, loss_shrink_maps: 0.587675, loss_threshold_maps: 0.469195, loss_binary_maps: 0.116616, avg_reader_cost: 1.55461 s, avg_batch_cost: 1.82156 s, avg_samples: 12.5, ips: 6.86226 samples/s, eta: 1:31:20
[2024/07/28 02:40:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:40:35] ppocr INFO: epoch: [1200/1500], global_step: 3600, lr: 0.001000, loss: 1.175231, loss_shrink_maps: 0.587675, loss_threshold_maps: 0.469123, loss_binary_maps: 0.116616, avg_reader_cost: 1.54066 s, avg_batch_cost: 1.78153 s, avg_samples: 12.5, ips: 7.01644 samples/s, eta: 1:31:02

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:52,  9.58it/s]
eval model::   1%|          | 4/500 [00:00<00:27, 18.27it/s]
eval model::   1%|          | 6/500 [00:00<00:28, 17.60it/s]
eval model::   2%|▏         | 8/500 [00:00<00:27, 17.98it/s]
eval model::   2%|▏         | 11/500 [00:00<00:24, 19.89it/s]
eval model::   3%|▎         | 14/500 [00:00<00:23, 20.32it/s]
eval model::   4%|▎         | 18/500 [00:00<00:20, 23.83it/s]
eval model::   4%|▍         | 21/500 [00:01<00:22, 21.64it/s]
eval model::   5%|▍         | 24/500 [00:01<00:21, 22.12it/s]
eval model::   5%|▌         | 27/500 [00:01<00:23, 19.88it/s]
eval model::   6%|▌         | 30/500 [00:01<00:21, 21.72it/s]
eval model::   7%|▋         | 33/500 [00:01<00:23, 19.53it/s]
eval model::   7%|▋         | 36/500 [00:01<00:24, 18.69it/s]
eval model::   8%|▊         | 38/500 [00:01<00:24, 18.64it/s]
eval model::   8%|▊         | 40/500 [00:02<00:28, 16.01it/s]
eval model::   8%|▊         | 42/500 [00:02<00:31, 14.53it/s]
eval model::   9%|▉         | 45/500 [00:02<00:27, 16.27it/s]
eval model::   9%|▉         | 47/500 [00:02<00:28, 15.84it/s]
eval model::  10%|█         | 50/500 [00:02<00:26, 16.90it/s]
eval model::  11%|█         | 53/500 [00:02<00:24, 18.17it/s]
eval model::  11%|█         | 56/500 [00:02<00:22, 19.36it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:24, 17.79it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:29, 14.70it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:31, 13.83it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:27, 15.58it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:25, 17.21it/s]
eval model::  14%|█▍        | 72/500 [00:04<00:23, 17.95it/s]
eval model::  15%|█▍        | 74/500 [00:04<00:24, 17.62it/s]
eval model::  15%|█▌        | 77/500 [00:04<00:22, 18.41it/s]
eval model::  16%|█▌        | 80/500 [00:04<00:20, 20.90it/s]
eval model::  17%|█▋        | 83/500 [00:04<00:18, 21.96it/s]
eval model::  17%|█▋        | 86/500 [00:04<00:20, 20.15it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:22, 18.61it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:21, 18.87it/s]
eval model::  19%|█▊        | 93/500 [00:05<00:22, 18.25it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:20, 19.95it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:19, 20.30it/s]
eval model::  20%|██        | 102/500 [00:05<00:20, 19.02it/s]
eval model::  21%|██        | 105/500 [00:05<00:18, 20.86it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:20, 19.37it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:20, 18.89it/s]
eval model::  23%|██▎       | 114/500 [00:06<00:19, 20.24it/s]
eval model::  23%|██▎       | 117/500 [00:06<00:19, 19.67it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:18, 20.43it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:17, 21.97it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:21, 17.72it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:19, 18.78it/s]
eval model::  26%|██▋       | 132/500 [00:07<00:21, 16.85it/s]
eval model::  27%|██▋       | 135/500 [00:07<00:20, 17.97it/s]
eval model::  27%|██▋       | 137/500 [00:07<00:20, 17.47it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:21, 17.05it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:18, 18.86it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:18, 18.96it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:19, 18.34it/s]
eval model::  30%|███       | 150/500 [00:08<00:17, 20.15it/s]
eval model::  31%|███       | 153/500 [00:08<00:18, 19.10it/s]
eval model::  31%|███       | 156/500 [00:08<00:16, 21.39it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:16, 21.00it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:21, 15.38it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:21, 15.40it/s]
eval model::  33%|███▎      | 167/500 [00:09<00:20, 16.42it/s]
eval model::  34%|███▍      | 170/500 [00:09<00:18, 18.11it/s]
eval model::  34%|███▍      | 172/500 [00:09<00:18, 17.62it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:18, 17.56it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:19, 16.89it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:16, 19.98it/s]
eval model::  36%|███▋      | 182/500 [00:09<00:18, 16.77it/s]
eval model::  37%|███▋      | 185/500 [00:10<00:16, 19.27it/s]
eval model::  38%|███▊      | 188/500 [00:10<00:16, 19.46it/s]
eval model::  38%|███▊      | 191/500 [00:10<00:15, 20.13it/s]
eval model::  39%|███▉      | 194/500 [00:10<00:13, 22.10it/s]
eval model::  39%|███▉      | 197/500 [00:10<00:15, 18.95it/s]
eval model::  40%|████      | 201/500 [00:10<00:13, 21.43it/s]
eval model::  41%|████      | 205/500 [00:11<00:18, 16.32it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:17, 16.53it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:18, 16.06it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:17, 16.47it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:19, 14.62it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:21, 13.20it/s]
eval model::  44%|████▍     | 219/500 [00:12<00:19, 14.43it/s]
eval model::  44%|████▍     | 221/500 [00:12<00:20, 13.39it/s]
eval model::  45%|████▍     | 224/500 [00:12<00:17, 16.07it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:16, 16.63it/s]
eval model::  46%|████▌     | 228/500 [00:12<00:15, 17.22it/s]
eval model::  46%|████▌     | 231/500 [00:12<00:13, 19.74it/s]
eval model::  47%|████▋     | 234/500 [00:12<00:14, 18.26it/s]
eval model::  47%|████▋     | 236/500 [00:13<00:14, 18.58it/s]
eval model::  48%|████▊     | 239/500 [00:13<00:12, 21.19it/s]
eval model::  48%|████▊     | 242/500 [00:13<00:13, 19.38it/s]
eval model::  49%|████▉     | 245/500 [00:13<00:12, 20.92it/s]
eval model::  50%|████▉     | 248/500 [00:13<00:11, 21.74it/s]
eval model::  50%|█████     | 251/500 [00:13<00:11, 21.00it/s]
eval model::  51%|█████     | 254/500 [00:13<00:11, 21.69it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:11, 20.58it/s]
eval model::  52%|█████▏    | 260/500 [00:14<00:11, 21.56it/s]
eval model::  53%|█████▎    | 263/500 [00:14<00:10, 21.59it/s]
eval model::  53%|█████▎    | 266/500 [00:14<00:10, 22.42it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:12, 18.88it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:11, 19.47it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:13, 17.23it/s]
eval model::  56%|█████▌    | 278/500 [00:15<00:11, 19.27it/s]
eval model::  56%|█████▌    | 281/500 [00:15<00:10, 21.10it/s]
eval model::  57%|█████▋    | 284/500 [00:15<00:09, 22.67it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:16, 12.77it/s]
eval model::  58%|█████▊    | 290/500 [00:15<00:13, 15.25it/s]
eval model::  59%|█████▊    | 293/500 [00:16<00:12, 16.90it/s]
eval model::  59%|█████▉    | 296/500 [00:16<00:14, 14.11it/s]
eval model::  60%|█████▉    | 299/500 [00:16<00:12, 16.73it/s]
eval model::  60%|██████    | 302/500 [00:16<00:12, 16.13it/s]
eval model::  61%|██████    | 304/500 [00:16<00:12, 16.20it/s]
eval model::  61%|██████▏   | 307/500 [00:16<00:11, 17.22it/s]
eval model::  62%|██████▏   | 310/500 [00:17<00:10, 18.58it/s]
eval model::  63%|██████▎   | 313/500 [00:17<00:09, 18.90it/s]
eval model::  63%|██████▎   | 315/500 [00:17<00:10, 17.94it/s]
eval model::  64%|██████▎   | 318/500 [00:17<00:09, 20.01it/s]
eval model::  64%|██████▍   | 321/500 [00:17<00:08, 20.57it/s]
eval model::  65%|██████▍   | 324/500 [00:17<00:08, 19.65it/s]
eval model::  65%|██████▌   | 327/500 [00:17<00:08, 21.01it/s]
eval model::  66%|██████▌   | 330/500 [00:18<00:08, 19.78it/s]
eval model::  67%|██████▋   | 333/500 [00:18<00:07, 21.42it/s]
eval model::  67%|██████▋   | 336/500 [00:18<00:07, 22.44it/s]
eval model::  68%|██████▊   | 339/500 [00:18<00:06, 23.14it/s]
eval model::  68%|██████▊   | 342/500 [00:18<00:10, 15.57it/s]
eval model::  69%|██████▉   | 345/500 [00:18<00:09, 17.13it/s]
eval model::  70%|██████▉   | 348/500 [00:18<00:08, 17.58it/s]
eval model::  70%|███████   | 351/500 [00:19<00:07, 19.31it/s]
eval model::  71%|███████   | 354/500 [00:19<00:06, 20.98it/s]
eval model::  71%|███████▏  | 357/500 [00:19<00:07, 19.76it/s]
eval model::  72%|███████▏  | 360/500 [00:19<00:06, 21.41it/s]
eval model::  73%|███████▎  | 363/500 [00:19<00:07, 18.27it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:08, 16.02it/s]
eval model::  74%|███████▍  | 369/500 [00:20<00:07, 17.80it/s]
eval model::  74%|███████▍  | 371/500 [00:20<00:07, 17.88it/s]
eval model::  75%|███████▍  | 374/500 [00:20<00:06, 20.36it/s]
eval model::  75%|███████▌  | 377/500 [00:20<00:05, 22.06it/s]
eval model::  76%|███████▌  | 380/500 [00:20<00:05, 21.17it/s]
eval model::  77%|███████▋  | 383/500 [00:20<00:05, 23.09it/s]
eval model::  77%|███████▋  | 386/500 [00:21<00:07, 15.59it/s]
eval model::  78%|███████▊  | 389/500 [00:21<00:06, 17.69it/s]
eval model::  78%|███████▊  | 392/500 [00:21<00:05, 18.22it/s]
eval model::  79%|███████▉  | 395/500 [00:21<00:05, 19.92it/s]
eval model::  80%|███████▉  | 398/500 [00:21<00:04, 20.48it/s]
eval model::  80%|████████  | 401/500 [00:21<00:05, 17.16it/s]
eval model::  81%|████████  | 404/500 [00:21<00:05, 18.37it/s]
eval model::  81%|████████▏ | 407/500 [00:22<00:04, 18.80it/s]
eval model::  82%|████████▏ | 411/500 [00:22<00:04, 21.86it/s]
eval model::  83%|████████▎ | 414/500 [00:22<00:04, 21.36it/s]
eval model::  83%|████████▎ | 417/500 [00:22<00:04, 19.58it/s]
eval model::  84%|████████▍ | 420/500 [00:22<00:05, 14.29it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:05, 14.97it/s]
eval model::  85%|████████▍ | 424/500 [00:23<00:05, 14.90it/s]
eval model::  85%|████████▌ | 427/500 [00:23<00:04, 16.85it/s]
eval model::  86%|████████▌ | 430/500 [00:23<00:03, 18.53it/s]
eval model::  86%|████████▋ | 432/500 [00:23<00:03, 18.67it/s]
eval model::  87%|████████▋ | 435/500 [00:23<00:03, 20.63it/s]
eval model::  88%|████████▊ | 438/500 [00:23<00:02, 22.19it/s]
eval model::  88%|████████▊ | 441/500 [00:23<00:02, 22.17it/s]
eval model::  89%|████████▉ | 445/500 [00:23<00:02, 25.47it/s]
eval model::  90%|████████▉ | 448/500 [00:24<00:02, 23.83it/s]
eval model::  90%|█████████ | 451/500 [00:24<00:02, 23.90it/s]
eval model::  91%|█████████ | 454/500 [00:24<00:01, 23.94it/s]
eval model::  91%|█████████▏| 457/500 [00:24<00:01, 22.48it/s]
eval model::  92%|█████████▏| 460/500 [00:24<00:01, 20.53it/s]
eval model::  93%|█████████▎| 463/500 [00:24<00:02, 16.87it/s]
eval model::  93%|█████████▎| 465/500 [00:25<00:02, 15.36it/s]
eval model::  93%|█████████▎| 467/500 [00:25<00:02, 15.89it/s]
eval model::  94%|█████████▍| 470/500 [00:25<00:01, 18.55it/s]
eval model::  95%|█████████▍| 473/500 [00:25<00:01, 19.74it/s]
eval model::  95%|█████████▌| 476/500 [00:25<00:01, 20.53it/s]
eval model::  96%|█████████▌| 479/500 [00:25<00:00, 21.62it/s]
eval model::  96%|█████████▋| 482/500 [00:25<00:00, 21.72it/s]
eval model::  97%|█████████▋| 485/500 [00:25<00:00, 23.48it/s]
eval model::  98%|█████████▊| 488/500 [00:26<00:00, 21.36it/s]
eval model::  98%|█████████▊| 491/500 [00:26<00:00, 19.08it/s]
eval model::  99%|█████████▉| 494/500 [00:26<00:00, 18.10it/s]
eval model:: 100%|█████████▉| 498/500 [00:26<00:00, 21.66it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.71it/s]
[2024/07/28 02:41:02] ppocr INFO: cur metric, precision: 0.7568, recall: 0.6831969186326432, hmean: 0.7181174089068827, fps: 44.212831257019886
[2024/07/28 02:41:02] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/28 02:41:02] ppocr INFO: best metric, hmean: 0.7181174089068827, precision: 0.7568, recall: 0.6831969186326432, fps: 44.212831257019886, best_epoch: 1200
[2024/07/28 02:41:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:41:04] ppocr INFO: save model in ./output/db_mv3/iter_epoch_1200
[2024/07/28 02:41:11] ppocr INFO: epoch: [1201/1500], global_step: 3603, lr: 0.001000, loss: 1.183416, loss_shrink_maps: 0.595897, loss_threshold_maps: 0.478770, loss_binary_maps: 0.118401, avg_reader_cost: 1.52589 s, avg_batch_cost: 1.75647 s, avg_samples: 12.5, ips: 7.11653 samples/s, eta: 1:30:44
[2024/07/28 02:41:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:41:20] ppocr INFO: epoch: [1202/1500], global_step: 3606, lr: 0.001000, loss: 1.179496, loss_shrink_maps: 0.588644, loss_threshold_maps: 0.478770, loss_binary_maps: 0.117351, avg_reader_cost: 1.51928 s, avg_batch_cost: 1.76192 s, avg_samples: 12.5, ips: 7.09454 samples/s, eta: 1:30:25
[2024/07/28 02:41:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:41:30] ppocr INFO: epoch: [1203/1500], global_step: 3609, lr: 0.001000, loss: 1.167532, loss_shrink_maps: 0.585427, loss_threshold_maps: 0.470245, loss_binary_maps: 0.116089, avg_reader_cost: 1.53040 s, avg_batch_cost: 1.76750 s, avg_samples: 12.5, ips: 7.07214 samples/s, eta: 1:30:07
[2024/07/28 02:41:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:41:38] ppocr INFO: epoch: [1204/1500], global_step: 3610, lr: 0.001000, loss: 1.147610, loss_shrink_maps: 0.568694, loss_threshold_maps: 0.469123, loss_binary_maps: 0.113237, avg_reader_cost: 0.41360 s, avg_batch_cost: 0.50908 s, avg_samples: 4.8, ips: 9.42879 samples/s, eta: 1:30:01
[2024/07/28 02:41:40] ppocr INFO: epoch: [1204/1500], global_step: 3612, lr: 0.001000, loss: 1.167532, loss_shrink_maps: 0.585558, loss_threshold_maps: 0.470245, loss_binary_maps: 0.116616, avg_reader_cost: 1.10945 s, avg_batch_cost: 1.25483 s, avg_samples: 7.7, ips: 6.13631 samples/s, eta: 1:29:49
[2024/07/28 02:41:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:41:50] ppocr INFO: epoch: [1205/1500], global_step: 3615, lr: 0.001000, loss: 1.154326, loss_shrink_maps: 0.584591, loss_threshold_maps: 0.476550, loss_binary_maps: 0.116494, avg_reader_cost: 1.62609 s, avg_batch_cost: 1.89471 s, avg_samples: 12.5, ips: 6.59733 samples/s, eta: 1:29:31
[2024/07/28 02:41:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:41:59] ppocr INFO: epoch: [1206/1500], global_step: 3618, lr: 0.001000, loss: 1.167532, loss_shrink_maps: 0.586527, loss_threshold_maps: 0.472320, loss_binary_maps: 0.117422, avg_reader_cost: 1.49525 s, avg_batch_cost: 1.72399 s, avg_samples: 12.5, ips: 7.25064 samples/s, eta: 1:29:12
[2024/07/28 02:42:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:42:09] ppocr INFO: epoch: [1207/1500], global_step: 3620, lr: 0.001000, loss: 1.173139, loss_shrink_maps: 0.591293, loss_threshold_maps: 0.472320, loss_binary_maps: 0.117904, avg_reader_cost: 1.04063 s, avg_batch_cost: 1.21370 s, avg_samples: 9.6, ips: 7.90969 samples/s, eta: 1:29:00
[2024/07/28 02:42:10] ppocr INFO: epoch: [1207/1500], global_step: 3621, lr: 0.001000, loss: 1.173139, loss_shrink_maps: 0.591293, loss_threshold_maps: 0.472320, loss_binary_maps: 0.117904, avg_reader_cost: 0.65221 s, avg_batch_cost: 0.70710 s, avg_samples: 2.9, ips: 4.10128 samples/s, eta: 1:28:54
[2024/07/28 02:42:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:42:19] ppocr INFO: epoch: [1208/1500], global_step: 3624, lr: 0.001000, loss: 1.178063, loss_shrink_maps: 0.596152, loss_threshold_maps: 0.470912, loss_binary_maps: 0.118592, avg_reader_cost: 1.52097 s, avg_batch_cost: 1.78758 s, avg_samples: 12.5, ips: 6.99269 samples/s, eta: 1:28:36
[2024/07/28 02:42:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:42:29] ppocr INFO: epoch: [1209/1500], global_step: 3627, lr: 0.001000, loss: 1.190440, loss_shrink_maps: 0.599666, loss_threshold_maps: 0.472354, loss_binary_maps: 0.119382, avg_reader_cost: 1.57439 s, avg_batch_cost: 1.80329 s, avg_samples: 12.5, ips: 6.93178 samples/s, eta: 1:28:18
[2024/07/28 02:42:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:42:39] ppocr INFO: epoch: [1210/1500], global_step: 3630, lr: 0.001000, loss: 1.198100, loss_shrink_maps: 0.601822, loss_threshold_maps: 0.474582, loss_binary_maps: 0.119802, avg_reader_cost: 1.54756 s, avg_batch_cost: 1.80034 s, avg_samples: 12.5, ips: 6.94312 samples/s, eta: 1:27:59
[2024/07/28 02:42:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:42:49] ppocr INFO: epoch: [1211/1500], global_step: 3633, lr: 0.001000, loss: 1.198100, loss_shrink_maps: 0.601822, loss_threshold_maps: 0.472354, loss_binary_maps: 0.119802, avg_reader_cost: 1.57134 s, avg_batch_cost: 1.84327 s, avg_samples: 12.5, ips: 6.78143 samples/s, eta: 1:27:41
[2024/07/28 02:42:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:42:59] ppocr INFO: epoch: [1212/1500], global_step: 3636, lr: 0.001000, loss: 1.190440, loss_shrink_maps: 0.599666, loss_threshold_maps: 0.469649, loss_binary_maps: 0.119382, avg_reader_cost: 1.53533 s, avg_batch_cost: 1.78648 s, avg_samples: 12.5, ips: 6.99701 samples/s, eta: 1:27:23
[2024/07/28 02:43:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:43:08] ppocr INFO: epoch: [1213/1500], global_step: 3639, lr: 0.001000, loss: 1.190440, loss_shrink_maps: 0.601629, loss_threshold_maps: 0.470683, loss_binary_maps: 0.119802, avg_reader_cost: 1.51015 s, avg_batch_cost: 1.74992 s, avg_samples: 12.5, ips: 7.14317 samples/s, eta: 1:27:05
[2024/07/28 02:43:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:43:16] ppocr INFO: epoch: [1214/1500], global_step: 3640, lr: 0.001000, loss: 1.186577, loss_shrink_maps: 0.601629, loss_threshold_maps: 0.469649, loss_binary_maps: 0.119802, avg_reader_cost: 0.42520 s, avg_batch_cost: 0.50800 s, avg_samples: 4.8, ips: 9.44887 samples/s, eta: 1:26:58
[2024/07/28 02:43:18] ppocr INFO: epoch: [1214/1500], global_step: 3642, lr: 0.001000, loss: 1.179634, loss_shrink_maps: 0.600227, loss_threshold_maps: 0.460505, loss_binary_maps: 0.119802, avg_reader_cost: 1.10744 s, avg_batch_cost: 1.25331 s, avg_samples: 7.7, ips: 6.14372 samples/s, eta: 1:26:46
[2024/07/28 02:43:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:43:28] ppocr INFO: epoch: [1215/1500], global_step: 3645, lr: 0.001000, loss: 1.179634, loss_shrink_maps: 0.600572, loss_threshold_maps: 0.460505, loss_binary_maps: 0.119805, avg_reader_cost: 1.53894 s, avg_batch_cost: 1.80235 s, avg_samples: 12.5, ips: 6.93538 samples/s, eta: 1:26:28
[2024/07/28 02:43:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:43:37] ppocr INFO: epoch: [1216/1500], global_step: 3648, lr: 0.001000, loss: 1.179634, loss_shrink_maps: 0.596190, loss_threshold_maps: 0.460505, loss_binary_maps: 0.119192, avg_reader_cost: 1.50645 s, avg_batch_cost: 1.76100 s, avg_samples: 12.5, ips: 7.09826 samples/s, eta: 1:26:10
[2024/07/28 02:43:41] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:43:47] ppocr INFO: epoch: [1217/1500], global_step: 3650, lr: 0.001000, loss: 1.179634, loss_shrink_maps: 0.596190, loss_threshold_maps: 0.457398, loss_binary_maps: 0.119192, avg_reader_cost: 0.94536 s, avg_batch_cost: 1.19838 s, avg_samples: 9.6, ips: 8.01080 samples/s, eta: 1:25:58
[2024/07/28 02:43:48] ppocr INFO: epoch: [1217/1500], global_step: 3651, lr: 0.001000, loss: 1.179634, loss_shrink_maps: 0.596190, loss_threshold_maps: 0.460083, loss_binary_maps: 0.119192, avg_reader_cost: 0.64469 s, avg_batch_cost: 0.69971 s, avg_samples: 2.9, ips: 4.14456 samples/s, eta: 1:25:52
[2024/07/28 02:43:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:43:57] ppocr INFO: epoch: [1218/1500], global_step: 3654, lr: 0.001000, loss: 1.179634, loss_shrink_maps: 0.600572, loss_threshold_maps: 0.460083, loss_binary_maps: 0.120008, avg_reader_cost: 1.53037 s, avg_batch_cost: 1.76773 s, avg_samples: 12.5, ips: 7.07121 samples/s, eta: 1:25:33
[2024/07/28 02:44:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:44:07] ppocr INFO: epoch: [1219/1500], global_step: 3657, lr: 0.001000, loss: 1.173199, loss_shrink_maps: 0.596190, loss_threshold_maps: 0.455669, loss_binary_maps: 0.119192, avg_reader_cost: 1.52517 s, avg_batch_cost: 1.75518 s, avg_samples: 12.5, ips: 7.12178 samples/s, eta: 1:25:15
[2024/07/28 02:44:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:44:17] ppocr INFO: epoch: [1220/1500], global_step: 3660, lr: 0.001000, loss: 1.189290, loss_shrink_maps: 0.596262, loss_threshold_maps: 0.480281, loss_binary_maps: 0.119299, avg_reader_cost: 1.51265 s, avg_batch_cost: 1.74168 s, avg_samples: 12.5, ips: 7.17699 samples/s, eta: 1:24:57

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:52,  9.57it/s]
eval model::   1%|          | 4/500 [00:00<00:28, 17.49it/s]
eval model::   1%|▏         | 7/500 [00:00<00:24, 20.39it/s]
eval model::   2%|▏         | 9/500 [00:00<00:27, 18.07it/s]
eval model::   2%|▏         | 11/500 [00:00<00:27, 17.97it/s]
eval model::   3%|▎         | 14/500 [00:00<00:26, 18.15it/s]
eval model::   3%|▎         | 17/500 [00:00<00:23, 20.76it/s]
eval model::   4%|▍         | 20/500 [00:01<00:23, 20.59it/s]
eval model::   5%|▍         | 23/500 [00:01<00:21, 21.95it/s]
eval model::   5%|▌         | 26/500 [00:01<00:23, 19.91it/s]
eval model::   6%|▌         | 29/500 [00:01<00:22, 20.50it/s]
eval model::   6%|▋         | 32/500 [00:01<00:24, 18.72it/s]
eval model::   7%|▋         | 34/500 [00:01<00:26, 17.86it/s]
eval model::   7%|▋         | 37/500 [00:01<00:23, 20.07it/s]
eval model::   8%|▊         | 40/500 [00:02<00:24, 18.49it/s]
eval model::   8%|▊         | 42/500 [00:02<00:26, 17.61it/s]
eval model::   9%|▉         | 45/500 [00:02<00:23, 19.41it/s]
eval model::   9%|▉         | 47/500 [00:02<00:24, 18.49it/s]
eval model::  10%|█         | 50/500 [00:02<00:23, 19.02it/s]
eval model::  10%|█         | 52/500 [00:02<00:23, 18.86it/s]
eval model::  11%|█         | 55/500 [00:02<00:22, 19.66it/s]
eval model::  11%|█▏        | 57/500 [00:02<00:22, 19.69it/s]
eval model::  12%|█▏        | 59/500 [00:03<00:25, 17.00it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:32, 13.45it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:30, 14.28it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:25, 17.29it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:21, 20.24it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:19, 21.78it/s]
eval model::  15%|█▌        | 75/500 [00:03<00:19, 22.02it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:18, 22.58it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:17, 23.69it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:19, 21.63it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:19, 20.77it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:21, 19.07it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:20, 19.46it/s]
eval model::  19%|█▉        | 96/500 [00:04<00:19, 20.61it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:19, 20.69it/s]
eval model::  20%|██        | 102/500 [00:05<00:20, 19.90it/s]
eval model::  21%|██        | 105/500 [00:05<00:19, 20.34it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:19, 19.71it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:20, 19.12it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:19, 19.85it/s]
eval model::  23%|██▎       | 117/500 [00:06<00:19, 19.30it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:19, 19.92it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:17, 21.74it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:20, 18.04it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:18, 20.35it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:20, 18.26it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:18, 20.21it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:16, 21.63it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:16, 22.13it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:16, 21.55it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:18, 19.13it/s]
eval model::  30%|███       | 150/500 [00:07<00:16, 20.65it/s]
eval model::  31%|███       | 153/500 [00:07<00:17, 19.52it/s]
eval model::  31%|███       | 156/500 [00:07<00:16, 20.83it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:17, 19.89it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:24, 14.07it/s]
eval model::  33%|███▎      | 165/500 [00:08<00:21, 15.81it/s]
eval model::  34%|███▎      | 168/500 [00:08<00:18, 18.11it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:18, 17.91it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:18, 17.79it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:19, 17.02it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:16, 19.24it/s]
eval model::  36%|███▋      | 182/500 [00:09<00:18, 16.98it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:16, 19.07it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:15, 20.30it/s]
eval model::  38%|███▊      | 192/500 [00:09<00:14, 20.94it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:15, 20.20it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:14, 20.97it/s]
eval model::  40%|████      | 201/500 [00:10<00:14, 20.93it/s]
eval model::  41%|████      | 205/500 [00:10<00:21, 13.62it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:20, 14.51it/s]
eval model::  42%|████▏     | 209/500 [00:11<00:19, 15.03it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:18, 15.23it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.34it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:21, 13.34it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:23, 12.19it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:19, 14.71it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:20, 13.67it/s]
eval model::  45%|████▌     | 225/500 [00:12<00:16, 17.00it/s]
eval model::  46%|████▌     | 228/500 [00:12<00:13, 19.74it/s]
eval model::  46%|████▋     | 232/500 [00:12<00:11, 24.22it/s]
eval model::  47%|████▋     | 235/500 [00:12<00:11, 23.61it/s]
eval model::  48%|████▊     | 238/500 [00:12<00:10, 25.12it/s]
eval model::  48%|████▊     | 241/500 [00:12<00:11, 22.54it/s]
eval model::  49%|████▉     | 244/500 [00:12<00:13, 18.65it/s]
eval model::  49%|████▉     | 247/500 [00:13<00:12, 20.05it/s]
eval model::  50%|█████     | 250/500 [00:13<00:12, 20.05it/s]
eval model::  51%|█████     | 253/500 [00:13<00:11, 21.99it/s]
eval model::  51%|█████     | 256/500 [00:13<00:10, 23.06it/s]
eval model::  52%|█████▏    | 259/500 [00:13<00:10, 24.10it/s]
eval model::  52%|█████▏    | 262/500 [00:13<00:09, 25.21it/s]
eval model::  53%|█████▎    | 265/500 [00:13<00:10, 21.76it/s]
eval model::  54%|█████▎    | 268/500 [00:14<00:10, 22.57it/s]
eval model::  54%|█████▍    | 271/500 [00:14<00:11, 20.10it/s]
eval model::  55%|█████▍    | 274/500 [00:14<00:11, 19.73it/s]
eval model::  55%|█████▌    | 277/500 [00:14<00:12, 17.65it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:12, 17.45it/s]
eval model::  56%|█████▋    | 282/500 [00:14<00:11, 18.96it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:19, 11.30it/s]
eval model::  58%|█████▊    | 288/500 [00:15<00:15, 13.35it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:13, 15.78it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:13, 15.74it/s]
eval model::  59%|█████▉    | 296/500 [00:15<00:14, 14.27it/s]
eval model::  60%|██████    | 300/500 [00:16<00:11, 16.81it/s]
eval model::  61%|██████    | 303/500 [00:16<00:10, 19.12it/s]
eval model::  61%|██████    | 306/500 [00:16<00:09, 19.65it/s]
eval model::  62%|██████▏   | 309/500 [00:16<00:09, 20.90it/s]
eval model::  62%|██████▏   | 312/500 [00:16<00:08, 22.35it/s]
eval model::  63%|██████▎   | 315/500 [00:16<00:07, 23.22it/s]
eval model::  64%|██████▎   | 318/500 [00:16<00:07, 24.41it/s]
eval model::  64%|██████▍   | 321/500 [00:16<00:07, 23.91it/s]
eval model::  65%|██████▍   | 324/500 [00:17<00:07, 24.37it/s]
eval model::  65%|██████▌   | 327/500 [00:17<00:06, 24.80it/s]
eval model::  66%|██████▌   | 330/500 [00:17<00:07, 21.94it/s]
eval model::  67%|██████▋   | 333/500 [00:17<00:07, 22.75it/s]
eval model::  67%|██████▋   | 336/500 [00:17<00:07, 22.05it/s]
eval model::  68%|██████▊   | 339/500 [00:17<00:07, 20.60it/s]
eval model::  68%|██████▊   | 342/500 [00:18<00:10, 15.57it/s]
eval model::  69%|██████▉   | 345/500 [00:18<00:08, 17.79it/s]
eval model::  70%|██████▉   | 348/500 [00:18<00:08, 18.65it/s]
eval model::  70%|███████   | 351/500 [00:18<00:07, 20.49it/s]
eval model::  71%|███████   | 355/500 [00:18<00:06, 21.31it/s]
eval model::  72%|███████▏  | 358/500 [00:18<00:06, 20.83it/s]
eval model::  72%|███████▏  | 361/500 [00:18<00:07, 18.98it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:07, 19.38it/s]
eval model::  73%|███████▎  | 367/500 [00:19<00:06, 19.36it/s]
eval model::  74%|███████▍  | 370/500 [00:19<00:06, 20.85it/s]
eval model::  75%|███████▍  | 373/500 [00:19<00:06, 21.02it/s]
eval model::  75%|███████▌  | 377/500 [00:19<00:05, 23.86it/s]
eval model::  76%|███████▌  | 380/500 [00:19<00:05, 22.41it/s]
eval model::  77%|███████▋  | 383/500 [00:19<00:05, 23.19it/s]
eval model::  77%|███████▋  | 386/500 [00:20<00:07, 14.70it/s]
eval model::  78%|███████▊  | 390/500 [00:20<00:06, 17.88it/s]
eval model::  79%|███████▊  | 393/500 [00:20<00:05, 18.34it/s]
eval model::  79%|███████▉  | 396/500 [00:20<00:05, 19.70it/s]
eval model::  80%|███████▉  | 399/500 [00:20<00:04, 21.12it/s]
eval model::  80%|████████  | 402/500 [00:21<00:04, 20.03it/s]
eval model::  81%|████████  | 405/500 [00:21<00:04, 20.74it/s]
eval model::  82%|████████▏ | 408/500 [00:21<00:04, 21.62it/s]
eval model::  82%|████████▏ | 411/500 [00:21<00:03, 22.68it/s]
eval model::  83%|████████▎ | 414/500 [00:21<00:03, 22.61it/s]
eval model::  83%|████████▎ | 417/500 [00:21<00:03, 21.25it/s]
eval model::  84%|████████▍ | 420/500 [00:22<00:05, 14.25it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:05, 14.64it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:05, 13.81it/s]
eval model::  85%|████████▌ | 426/500 [00:22<00:05, 14.14it/s]
eval model::  86%|████████▌ | 429/500 [00:22<00:04, 16.73it/s]
eval model::  86%|████████▌ | 431/500 [00:22<00:04, 15.93it/s]
eval model::  87%|████████▋ | 435/500 [00:22<00:03, 19.95it/s]
eval model::  88%|████████▊ | 438/500 [00:22<00:02, 22.17it/s]
eval model::  88%|████████▊ | 441/500 [00:23<00:02, 20.46it/s]
eval model::  89%|████████▉ | 444/500 [00:23<00:02, 22.65it/s]
eval model::  89%|████████▉ | 447/500 [00:23<00:02, 23.38it/s]
eval model::  90%|█████████ | 450/500 [00:23<00:02, 21.29it/s]
eval model::  91%|█████████ | 454/500 [00:23<00:01, 23.94it/s]
eval model::  92%|█████████▏| 458/500 [00:23<00:01, 26.46it/s]
eval model::  92%|█████████▏| 461/500 [00:23<00:01, 25.00it/s]
eval model::  93%|█████████▎| 464/500 [00:24<00:01, 20.76it/s]
eval model::  93%|█████████▎| 467/500 [00:24<00:01, 18.65it/s]
eval model::  94%|█████████▍| 470/500 [00:24<00:01, 20.77it/s]
eval model::  95%|█████████▍| 473/500 [00:24<00:01, 20.62it/s]
eval model::  95%|█████████▌| 476/500 [00:24<00:01, 20.23it/s]
eval model::  96%|█████████▌| 479/500 [00:24<00:00, 21.40it/s]
eval model::  96%|█████████▋| 482/500 [00:25<00:00, 20.93it/s]
eval model::  97%|█████████▋| 485/500 [00:25<00:00, 22.56it/s]
eval model::  98%|█████████▊| 488/500 [00:25<00:00, 21.56it/s]
eval model::  98%|█████████▊| 491/500 [00:25<00:00, 18.78it/s]
eval model::  99%|█████████▊| 493/500 [00:25<00:00, 15.76it/s]
eval model::  99%|█████████▉| 496/500 [00:25<00:00, 17.23it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 20.65it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.25it/s]
[2024/07/28 02:44:43] ppocr INFO: cur metric, precision: 0.7535847052575677, recall: 0.6831969186326432, hmean: 0.7166666666666667, fps: 46.7602991068739
[2024/07/28 02:44:43] ppocr INFO: best metric, hmean: 0.7181174089068827, precision: 0.7568, recall: 0.6831969186326432, fps: 44.212831257019886, best_epoch: 1200
[2024/07/28 02:44:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:44:52] ppocr INFO: epoch: [1221/1500], global_step: 3663, lr: 0.001000, loss: 1.186368, loss_shrink_maps: 0.593281, loss_threshold_maps: 0.480281, loss_binary_maps: 0.118517, avg_reader_cost: 2.07115 s, avg_batch_cost: 2.51063 s, avg_samples: 12.5, ips: 4.97883 samples/s, eta: 1:24:40
[2024/07/28 02:44:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:45:02] ppocr INFO: epoch: [1222/1500], global_step: 3666, lr: 0.001000, loss: 1.186368, loss_shrink_maps: 0.593281, loss_threshold_maps: 0.480716, loss_binary_maps: 0.118517, avg_reader_cost: 1.49712 s, avg_batch_cost: 1.73648 s, avg_samples: 12.5, ips: 7.19846 samples/s, eta: 1:24:22
[2024/07/28 02:45:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:45:12] ppocr INFO: epoch: [1223/1500], global_step: 3669, lr: 0.001000, loss: 1.154122, loss_shrink_maps: 0.577147, loss_threshold_maps: 0.458977, loss_binary_maps: 0.115162, avg_reader_cost: 1.60048 s, avg_batch_cost: 1.87689 s, avg_samples: 12.5, ips: 6.65997 samples/s, eta: 1:24:03
[2024/07/28 02:45:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:45:20] ppocr INFO: epoch: [1224/1500], global_step: 3670, lr: 0.001000, loss: 1.154122, loss_shrink_maps: 0.577147, loss_threshold_maps: 0.458977, loss_binary_maps: 0.115162, avg_reader_cost: 0.43771 s, avg_batch_cost: 0.54115 s, avg_samples: 4.8, ips: 8.86998 samples/s, eta: 1:23:57
[2024/07/28 02:45:22] ppocr INFO: epoch: [1224/1500], global_step: 3672, lr: 0.001000, loss: 1.173608, loss_shrink_maps: 0.577147, loss_threshold_maps: 0.463250, loss_binary_maps: 0.115162, avg_reader_cost: 1.17393 s, avg_batch_cost: 1.31999 s, avg_samples: 7.7, ips: 5.83338 samples/s, eta: 1:23:45
[2024/07/28 02:45:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:45:32] ppocr INFO: epoch: [1225/1500], global_step: 3675, lr: 0.001000, loss: 1.185725, loss_shrink_maps: 0.585352, loss_threshold_maps: 0.467476, loss_binary_maps: 0.116923, avg_reader_cost: 1.62121 s, avg_batch_cost: 1.91121 s, avg_samples: 12.5, ips: 6.54037 samples/s, eta: 1:23:27
[2024/07/28 02:45:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:45:42] ppocr INFO: epoch: [1226/1500], global_step: 3678, lr: 0.001000, loss: 1.150084, loss_shrink_maps: 0.569146, loss_threshold_maps: 0.463250, loss_binary_maps: 0.113462, avg_reader_cost: 1.51618 s, avg_batch_cost: 1.78172 s, avg_samples: 12.5, ips: 7.01568 samples/s, eta: 1:23:09
[2024/07/28 02:45:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:45:51] ppocr INFO: epoch: [1227/1500], global_step: 3680, lr: 0.001000, loss: 1.150084, loss_shrink_maps: 0.569146, loss_threshold_maps: 0.463250, loss_binary_maps: 0.113462, avg_reader_cost: 1.00039 s, avg_batch_cost: 1.20193 s, avg_samples: 9.6, ips: 7.98716 samples/s, eta: 1:22:57
[2024/07/28 02:45:52] ppocr INFO: epoch: [1227/1500], global_step: 3681, lr: 0.001000, loss: 1.142412, loss_shrink_maps: 0.567146, loss_threshold_maps: 0.458977, loss_binary_maps: 0.113053, avg_reader_cost: 0.64707 s, avg_batch_cost: 0.70193 s, avg_samples: 2.9, ips: 4.13149 samples/s, eta: 1:22:51
[2024/07/28 02:45:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:46:01] ppocr INFO: epoch: [1228/1500], global_step: 3684, lr: 0.001000, loss: 1.187504, loss_shrink_maps: 0.587643, loss_threshold_maps: 0.455073, loss_binary_maps: 0.117149, avg_reader_cost: 1.48608 s, avg_batch_cost: 1.73206 s, avg_samples: 12.5, ips: 7.21683 samples/s, eta: 1:22:33
[2024/07/28 02:46:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:46:11] ppocr INFO: epoch: [1229/1500], global_step: 3687, lr: 0.001000, loss: 1.200845, loss_shrink_maps: 0.591423, loss_threshold_maps: 0.465196, loss_binary_maps: 0.117954, avg_reader_cost: 1.64238 s, avg_batch_cost: 1.90490 s, avg_samples: 12.5, ips: 6.56202 samples/s, eta: 1:22:15
[2024/07/28 02:46:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:46:21] ppocr INFO: epoch: [1230/1500], global_step: 3690, lr: 0.001000, loss: 1.247528, loss_shrink_maps: 0.630971, loss_threshold_maps: 0.477446, loss_binary_maps: 0.125742, avg_reader_cost: 1.52163 s, avg_batch_cost: 1.75064 s, avg_samples: 12.5, ips: 7.14023 samples/s, eta: 1:21:56
[2024/07/28 02:46:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:46:31] ppocr INFO: epoch: [1231/1500], global_step: 3693, lr: 0.001000, loss: 1.224068, loss_shrink_maps: 0.608679, loss_threshold_maps: 0.475236, loss_binary_maps: 0.121346, avg_reader_cost: 1.50076 s, avg_batch_cost: 1.76571 s, avg_samples: 12.5, ips: 7.07931 samples/s, eta: 1:21:38
[2024/07/28 02:46:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:46:41] ppocr INFO: epoch: [1232/1500], global_step: 3696, lr: 0.001000, loss: 1.183654, loss_shrink_maps: 0.593773, loss_threshold_maps: 0.460011, loss_binary_maps: 0.118625, avg_reader_cost: 1.54258 s, avg_batch_cost: 1.78433 s, avg_samples: 12.5, ips: 7.00544 samples/s, eta: 1:21:20
[2024/07/28 02:46:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:46:50] ppocr INFO: epoch: [1233/1500], global_step: 3699, lr: 0.001000, loss: 1.208223, loss_shrink_maps: 0.608679, loss_threshold_maps: 0.467981, loss_binary_maps: 0.121346, avg_reader_cost: 1.50154 s, avg_batch_cost: 1.74423 s, avg_samples: 12.5, ips: 7.16650 samples/s, eta: 1:21:01
[2024/07/28 02:46:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:46:59] ppocr INFO: epoch: [1234/1500], global_step: 3700, lr: 0.001000, loss: 1.211208, loss_shrink_maps: 0.621437, loss_threshold_maps: 0.465190, loss_binary_maps: 0.123990, avg_reader_cost: 0.45592 s, avg_batch_cost: 0.53809 s, avg_samples: 4.8, ips: 8.92042 samples/s, eta: 1:20:55
[2024/07/28 02:47:00] ppocr INFO: epoch: [1234/1500], global_step: 3702, lr: 0.001000, loss: 1.211208, loss_shrink_maps: 0.621437, loss_threshold_maps: 0.465190, loss_binary_maps: 0.123990, avg_reader_cost: 1.16730 s, avg_batch_cost: 1.31275 s, avg_samples: 7.7, ips: 5.86554 samples/s, eta: 1:20:43
[2024/07/28 02:47:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:47:10] ppocr INFO: epoch: [1235/1500], global_step: 3705, lr: 0.001000, loss: 1.210101, loss_shrink_maps: 0.614480, loss_threshold_maps: 0.472446, loss_binary_maps: 0.122566, avg_reader_cost: 1.54185 s, avg_batch_cost: 1.77131 s, avg_samples: 12.5, ips: 7.05692 samples/s, eta: 1:20:25
[2024/07/28 02:47:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:47:20] ppocr INFO: epoch: [1236/1500], global_step: 3708, lr: 0.001000, loss: 1.162485, loss_shrink_maps: 0.600728, loss_threshold_maps: 0.449993, loss_binary_maps: 0.119656, avg_reader_cost: 1.67524 s, avg_batch_cost: 1.90368 s, avg_samples: 12.5, ips: 6.56622 samples/s, eta: 1:20:07
[2024/07/28 02:47:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:47:30] ppocr INFO: epoch: [1237/1500], global_step: 3710, lr: 0.001000, loss: 1.133588, loss_shrink_maps: 0.591336, loss_threshold_maps: 0.449993, loss_binary_maps: 0.117852, avg_reader_cost: 0.99591 s, avg_batch_cost: 1.16907 s, avg_samples: 9.6, ips: 8.21168 samples/s, eta: 1:19:55
[2024/07/28 02:47:30] ppocr INFO: epoch: [1237/1500], global_step: 3711, lr: 0.001000, loss: 1.113742, loss_shrink_maps: 0.574802, loss_threshold_maps: 0.437069, loss_binary_maps: 0.115162, avg_reader_cost: 0.63014 s, avg_batch_cost: 0.68487 s, avg_samples: 2.9, ips: 4.23436 samples/s, eta: 1:19:49
[2024/07/28 02:47:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:47:40] ppocr INFO: epoch: [1238/1500], global_step: 3714, lr: 0.001000, loss: 1.118811, loss_shrink_maps: 0.560516, loss_threshold_maps: 0.454974, loss_binary_maps: 0.111836, avg_reader_cost: 1.65992 s, avg_batch_cost: 1.88848 s, avg_samples: 12.5, ips: 6.61907 samples/s, eta: 1:19:31
[2024/07/28 02:47:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:47:50] ppocr INFO: epoch: [1239/1500], global_step: 3717, lr: 0.001000, loss: 1.138657, loss_shrink_maps: 0.582288, loss_threshold_maps: 0.469416, loss_binary_maps: 0.116203, avg_reader_cost: 1.50268 s, avg_batch_cost: 1.74073 s, avg_samples: 12.5, ips: 7.18088 samples/s, eta: 1:19:12
[2024/07/28 02:47:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:48:00] ppocr INFO: epoch: [1240/1500], global_step: 3720, lr: 0.001000, loss: 1.109664, loss_shrink_maps: 0.555905, loss_threshold_maps: 0.451900, loss_binary_maps: 0.110745, avg_reader_cost: 1.51479 s, avg_batch_cost: 1.77789 s, avg_samples: 12.5, ips: 7.03082 samples/s, eta: 1:18:54

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:54,  9.12it/s]
eval model::   1%|          | 4/500 [00:00<00:26, 18.49it/s]
eval model::   1%|          | 6/500 [00:00<00:27, 18.14it/s]
eval model::   2%|▏         | 8/500 [00:00<00:26, 18.43it/s]
eval model::   2%|▏         | 10/500 [00:00<00:27, 17.78it/s]
eval model::   2%|▏         | 12/500 [00:00<00:30, 16.21it/s]
eval model::   3%|▎         | 14/500 [00:00<00:30, 15.90it/s]
eval model::   3%|▎         | 16/500 [00:00<00:29, 16.52it/s]
eval model::   4%|▍         | 19/500 [00:01<00:26, 18.01it/s]
eval model::   4%|▍         | 22/500 [00:01<00:24, 19.52it/s]
eval model::   5%|▌         | 25/500 [00:01<00:23, 19.82it/s]
eval model::   6%|▌         | 28/500 [00:01<00:22, 21.20it/s]
eval model::   6%|▌         | 31/500 [00:01<00:22, 21.18it/s]
eval model::   7%|▋         | 34/500 [00:01<00:22, 20.54it/s]
eval model::   7%|▋         | 37/500 [00:01<00:20, 22.47it/s]
eval model::   8%|▊         | 40/500 [00:02<00:23, 19.79it/s]
eval model::   9%|▊         | 43/500 [00:02<00:26, 17.20it/s]
eval model::   9%|▉         | 46/500 [00:02<00:25, 17.67it/s]
eval model::  10%|▉         | 49/500 [00:02<00:22, 19.71it/s]
eval model::  10%|█         | 52/500 [00:02<00:22, 19.77it/s]
eval model::  11%|█         | 55/500 [00:02<00:21, 20.61it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:23, 18.52it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:26, 16.34it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:26, 16.20it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:21, 20.17it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:20, 21.34it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:19, 21.80it/s]
eval model::  15%|█▌        | 76/500 [00:03<00:18, 22.36it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:20, 20.62it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:20, 20.18it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:20, 19.86it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:22, 18.60it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:24, 16.47it/s]
eval model::  18%|█▊        | 92/500 [00:04<00:24, 16.98it/s]
eval model::  19%|█▉        | 94/500 [00:05<00:24, 16.76it/s]
eval model::  19%|█▉        | 97/500 [00:05<00:22, 17.97it/s]
eval model::  20%|██        | 100/500 [00:05<00:22, 17.85it/s]
eval model::  21%|██        | 104/500 [00:05<00:18, 21.24it/s]
eval model::  21%|██▏       | 107/500 [00:05<00:17, 22.43it/s]
eval model::  22%|██▏       | 110/500 [00:05<00:18, 21.25it/s]
eval model::  23%|██▎       | 113/500 [00:05<00:18, 21.36it/s]
eval model::  23%|██▎       | 116/500 [00:06<00:19, 19.87it/s]
eval model::  24%|██▍       | 119/500 [00:06<00:17, 21.17it/s]
eval model::  24%|██▍       | 122/500 [00:06<00:18, 20.29it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:20, 18.08it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:18, 19.77it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:19, 18.84it/s]
eval model::  27%|██▋       | 133/500 [00:06<00:20, 18.35it/s]
eval model::  27%|██▋       | 136/500 [00:07<00:19, 18.92it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:19, 19.04it/s]
eval model::  28%|██▊       | 140/500 [00:07<00:19, 18.80it/s]
eval model::  29%|██▊       | 143/500 [00:07<00:17, 20.55it/s]
eval model::  29%|██▉       | 146/500 [00:07<00:19, 18.63it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:21, 16.25it/s]
eval model::  30%|███       | 151/500 [00:07<00:20, 17.14it/s]
eval model::  31%|███       | 154/500 [00:08<00:18, 19.01it/s]
eval model::  31%|███▏      | 157/500 [00:08<00:16, 20.22it/s]
eval model::  32%|███▏      | 160/500 [00:08<00:28, 12.00it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:24, 13.71it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:20, 16.40it/s]
eval model::  34%|███▍      | 169/500 [00:09<00:18, 17.64it/s]
eval model::  34%|███▍      | 172/500 [00:09<00:17, 18.23it/s]
eval model::  35%|███▌      | 175/500 [00:09<00:19, 16.73it/s]
eval model::  36%|███▌      | 178/500 [00:09<00:17, 18.21it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:18, 16.91it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:16, 19.24it/s]
eval model::  37%|███▋      | 187/500 [00:10<00:15, 20.44it/s]
eval model::  38%|███▊      | 190/500 [00:10<00:14, 21.09it/s]
eval model::  39%|███▊      | 193/500 [00:10<00:13, 22.46it/s]
eval model::  39%|███▉      | 196/500 [00:10<00:14, 20.52it/s]
eval model::  40%|███▉      | 199/500 [00:10<00:15, 18.90it/s]
eval model::  40%|████      | 202/500 [00:10<00:14, 20.74it/s]
eval model::  41%|████      | 205/500 [00:11<00:21, 13.63it/s]
eval model::  41%|████▏     | 207/500 [00:11<00:20, 14.53it/s]
eval model::  42%|████▏     | 209/500 [00:11<00:19, 15.16it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:20, 14.38it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:19, 14.75it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:22, 12.94it/s]
eval model::  43%|████▎     | 217/500 [00:12<00:24, 11.78it/s]
eval model::  44%|████▍     | 220/500 [00:12<00:19, 14.26it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:21, 12.69it/s]
eval model::  45%|████▌     | 225/500 [00:12<00:17, 15.65it/s]
eval model::  46%|████▌     | 228/500 [00:12<00:15, 17.14it/s]
eval model::  46%|████▌     | 231/500 [00:12<00:13, 19.83it/s]
eval model::  47%|████▋     | 234/500 [00:12<00:12, 21.01it/s]
eval model::  47%|████▋     | 237/500 [00:12<00:12, 21.76it/s]
eval model::  48%|████▊     | 240/500 [00:13<00:11, 21.70it/s]
eval model::  49%|████▊     | 243/500 [00:13<00:13, 19.15it/s]
eval model::  49%|████▉     | 246/500 [00:13<00:12, 20.05it/s]
eval model::  50%|████▉     | 249/500 [00:13<00:13, 19.22it/s]
eval model::  50%|█████     | 252/500 [00:13<00:12, 19.99it/s]
eval model::  51%|█████     | 255/500 [00:13<00:11, 21.14it/s]
eval model::  52%|█████▏    | 258/500 [00:14<00:11, 21.33it/s]
eval model::  52%|█████▏    | 261/500 [00:14<00:11, 19.96it/s]
eval model::  53%|█████▎    | 264/500 [00:14<00:11, 20.58it/s]
eval model::  53%|█████▎    | 267/500 [00:14<00:10, 21.92it/s]
eval model::  54%|█████▍    | 270/500 [00:14<00:11, 20.77it/s]
eval model::  55%|█████▍    | 273/500 [00:14<00:10, 20.70it/s]
eval model::  55%|█████▌    | 276/500 [00:14<00:12, 18.54it/s]
eval model::  56%|█████▌    | 279/500 [00:15<00:11, 19.16it/s]
eval model::  56%|█████▋    | 282/500 [00:15<00:11, 19.76it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:17, 12.08it/s]
eval model::  58%|█████▊    | 288/500 [00:15<00:14, 14.45it/s]
eval model::  58%|█████▊    | 292/500 [00:15<00:12, 17.05it/s]
eval model::  59%|█████▉    | 295/500 [00:16<00:14, 14.38it/s]
eval model::  60%|█████▉    | 299/500 [00:16<00:11, 17.68it/s]
eval model::  60%|██████    | 302/500 [00:16<00:11, 17.20it/s]
eval model::  61%|██████    | 304/500 [00:16<00:11, 17.48it/s]
eval model::  61%|██████▏   | 307/500 [00:16<00:10, 18.73it/s]
eval model::  62%|██████▏   | 310/500 [00:16<00:09, 20.16it/s]
eval model::  63%|██████▎   | 313/500 [00:17<00:08, 21.24it/s]
eval model::  63%|██████▎   | 316/500 [00:17<00:09, 19.55it/s]
eval model::  64%|██████▍   | 319/500 [00:17<00:08, 20.32it/s]
eval model::  64%|██████▍   | 322/500 [00:17<00:08, 20.00it/s]
eval model::  65%|██████▌   | 325/500 [00:17<00:08, 19.66it/s]
eval model::  66%|██████▌   | 328/500 [00:17<00:09, 18.31it/s]
eval model::  66%|██████▌   | 331/500 [00:18<00:09, 18.75it/s]
eval model::  67%|██████▋   | 334/500 [00:18<00:08, 20.50it/s]
eval model::  67%|██████▋   | 337/500 [00:18<00:08, 18.63it/s]
eval model::  68%|██████▊   | 339/500 [00:18<00:08, 18.08it/s]
eval model::  68%|██████▊   | 341/500 [00:18<00:11, 13.84it/s]
eval model::  69%|██████▉   | 344/500 [00:18<00:09, 16.64it/s]
eval model::  69%|██████▉   | 347/500 [00:18<00:08, 19.02it/s]
eval model::  70%|███████   | 351/500 [00:19<00:06, 22.35it/s]
eval model::  71%|███████   | 354/500 [00:19<00:06, 24.00it/s]
eval model::  71%|███████▏  | 357/500 [00:19<00:07, 19.75it/s]
eval model::  72%|███████▏  | 360/500 [00:19<00:07, 19.75it/s]
eval model::  73%|███████▎  | 363/500 [00:19<00:07, 19.33it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:08, 16.09it/s]
eval model::  74%|███████▍  | 369/500 [00:20<00:07, 18.02it/s]
eval model::  74%|███████▍  | 372/500 [00:20<00:07, 17.95it/s]
eval model::  75%|███████▌  | 375/500 [00:20<00:06, 20.06it/s]
eval model::  76%|███████▌  | 379/500 [00:20<00:05, 23.19it/s]
eval model::  76%|███████▋  | 382/500 [00:20<00:05, 22.63it/s]
eval model::  77%|███████▋  | 386/500 [00:21<00:07, 14.55it/s]
eval model::  78%|███████▊  | 388/500 [00:21<00:07, 15.35it/s]
eval model::  78%|███████▊  | 391/500 [00:21<00:06, 16.24it/s]
eval model::  79%|███████▊  | 393/500 [00:21<00:06, 16.86it/s]
eval model::  79%|███████▉  | 395/500 [00:21<00:06, 17.13it/s]
eval model::  80%|███████▉  | 398/500 [00:21<00:05, 19.36it/s]
eval model::  80%|████████  | 401/500 [00:21<00:05, 18.66it/s]
eval model::  81%|████████  | 404/500 [00:21<00:04, 20.23it/s]
eval model::  81%|████████▏ | 407/500 [00:22<00:04, 18.80it/s]
eval model::  82%|████████▏ | 410/500 [00:22<00:04, 20.11it/s]
eval model::  83%|████████▎ | 413/500 [00:22<00:04, 20.14it/s]
eval model::  83%|████████▎ | 416/500 [00:22<00:04, 19.18it/s]
eval model::  84%|████████▎ | 418/500 [00:22<00:04, 18.73it/s]
eval model::  84%|████████▍ | 420/500 [00:23<00:06, 11.44it/s]
eval model::  85%|████████▍ | 423/500 [00:23<00:05, 13.99it/s]
eval model::  85%|████████▌ | 425/500 [00:23<00:05, 13.52it/s]
eval model::  86%|████████▌ | 428/500 [00:23<00:04, 16.45it/s]
eval model::  86%|████████▌ | 430/500 [00:23<00:04, 16.96it/s]
eval model::  86%|████████▋ | 432/500 [00:23<00:03, 17.21it/s]
eval model::  87%|████████▋ | 435/500 [00:23<00:03, 18.96it/s]
eval model::  88%|████████▊ | 438/500 [00:23<00:02, 20.73it/s]
eval model::  88%|████████▊ | 441/500 [00:24<00:02, 20.86it/s]
eval model::  89%|████████▉ | 445/500 [00:24<00:02, 23.86it/s]
eval model::  90%|████████▉ | 448/500 [00:24<00:02, 23.26it/s]
eval model::  90%|█████████ | 451/500 [00:24<00:02, 22.51it/s]
eval model::  91%|█████████ | 454/500 [00:24<00:02, 21.73it/s]
eval model::  91%|█████████▏| 457/500 [00:24<00:01, 22.73it/s]
eval model::  92%|█████████▏| 460/500 [00:24<00:01, 20.43it/s]
eval model::  93%|█████████▎| 463/500 [00:25<00:02, 18.15it/s]
eval model::  93%|█████████▎| 465/500 [00:25<00:02, 16.68it/s]
eval model::  93%|█████████▎| 467/500 [00:25<00:02, 16.49it/s]
eval model::  94%|█████████▍| 471/500 [00:25<00:01, 20.02it/s]
eval model::  95%|█████████▍| 474/500 [00:25<00:01, 19.55it/s]
eval model::  95%|█████████▌| 477/500 [00:25<00:01, 21.70it/s]
eval model::  96%|█████████▌| 480/500 [00:26<00:00, 22.43it/s]
eval model::  97%|█████████▋| 483/500 [00:26<00:00, 19.87it/s]
eval model::  97%|█████████▋| 486/500 [00:26<00:00, 19.03it/s]
eval model::  98%|█████████▊| 489/500 [00:26<00:00, 19.43it/s]
eval model::  98%|█████████▊| 492/500 [00:26<00:00, 16.82it/s]
eval model::  99%|█████████▉| 495/500 [00:26<00:00, 18.45it/s]
eval model:: 100%|█████████▉| 499/500 [00:26<00:00, 22.06it/s]
eval model:: 100%|██████████| 500/500 [00:27<00:00, 18.50it/s]
[2024/07/28 02:48:27] ppocr INFO: cur metric, precision: 0.7239263803680982, recall: 0.6817525276841598, hmean: 0.7022067939499133, fps: 44.857389614489485
[2024/07/28 02:48:27] ppocr INFO: best metric, hmean: 0.7181174089068827, precision: 0.7568, recall: 0.6831969186326432, fps: 44.212831257019886, best_epoch: 1200
[2024/07/28 02:48:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:48:35] ppocr INFO: epoch: [1241/1500], global_step: 3723, lr: 0.001000, loss: 1.125507, loss_shrink_maps: 0.555905, loss_threshold_maps: 0.451900, loss_binary_maps: 0.110876, avg_reader_cost: 1.48284 s, avg_batch_cost: 1.71447 s, avg_samples: 12.5, ips: 7.29087 samples/s, eta: 1:18:35
[2024/07/28 02:48:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:48:45] ppocr INFO: epoch: [1242/1500], global_step: 3726, lr: 0.001000, loss: 1.125036, loss_shrink_maps: 0.555905, loss_threshold_maps: 0.450514, loss_binary_maps: 0.110876, avg_reader_cost: 1.55015 s, avg_batch_cost: 1.80060 s, avg_samples: 12.5, ips: 6.94212 samples/s, eta: 1:18:17
[2024/07/28 02:48:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:48:55] ppocr INFO: epoch: [1243/1500], global_step: 3729, lr: 0.001000, loss: 1.123495, loss_shrink_maps: 0.554600, loss_threshold_maps: 0.452860, loss_binary_maps: 0.110749, avg_reader_cost: 1.50930 s, avg_batch_cost: 1.74260 s, avg_samples: 12.5, ips: 7.17320 samples/s, eta: 1:17:59
[2024/07/28 02:48:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:49:03] ppocr INFO: epoch: [1244/1500], global_step: 3730, lr: 0.001000, loss: 1.132171, loss_shrink_maps: 0.555905, loss_threshold_maps: 0.452860, loss_binary_maps: 0.111205, avg_reader_cost: 0.41535 s, avg_batch_cost: 0.51196 s, avg_samples: 4.8, ips: 9.37573 samples/s, eta: 1:17:53
[2024/07/28 02:49:05] ppocr INFO: epoch: [1244/1500], global_step: 3732, lr: 0.001000, loss: 1.134183, loss_shrink_maps: 0.555905, loss_threshold_maps: 0.458378, loss_binary_maps: 0.111205, avg_reader_cost: 1.11521 s, avg_batch_cost: 1.26125 s, avg_samples: 7.7, ips: 6.10506 samples/s, eta: 1:17:41
[2024/07/28 02:49:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:49:15] ppocr INFO: epoch: [1245/1500], global_step: 3735, lr: 0.001000, loss: 1.140276, loss_shrink_maps: 0.562438, loss_threshold_maps: 0.458378, loss_binary_maps: 0.112016, avg_reader_cost: 1.54701 s, avg_batch_cost: 1.77664 s, avg_samples: 12.5, ips: 7.03576 samples/s, eta: 1:17:22
[2024/07/28 02:49:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:49:24] ppocr INFO: epoch: [1246/1500], global_step: 3738, lr: 0.001000, loss: 1.154876, loss_shrink_maps: 0.569342, loss_threshold_maps: 0.456967, loss_binary_maps: 0.113246, avg_reader_cost: 1.50297 s, avg_batch_cost: 1.73857 s, avg_samples: 12.5, ips: 7.18982 samples/s, eta: 1:17:04
[2024/07/28 02:49:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:49:33] ppocr INFO: epoch: [1247/1500], global_step: 3740, lr: 0.001000, loss: 1.154876, loss_shrink_maps: 0.569342, loss_threshold_maps: 0.464058, loss_binary_maps: 0.113246, avg_reader_cost: 0.91085 s, avg_batch_cost: 1.08656 s, avg_samples: 9.6, ips: 8.83519 samples/s, eta: 1:16:51
[2024/07/28 02:49:34] ppocr INFO: epoch: [1247/1500], global_step: 3741, lr: 0.001000, loss: 1.140276, loss_shrink_maps: 0.563971, loss_threshold_maps: 0.464058, loss_binary_maps: 0.112206, avg_reader_cost: 0.58889 s, avg_batch_cost: 0.64376 s, avg_samples: 2.9, ips: 4.50477 samples/s, eta: 1:16:45
[2024/07/28 02:49:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:49:44] ppocr INFO: epoch: [1248/1500], global_step: 3744, lr: 0.001000, loss: 1.154876, loss_shrink_maps: 0.577274, loss_threshold_maps: 0.464058, loss_binary_maps: 0.115006, avg_reader_cost: 1.56800 s, avg_batch_cost: 1.81415 s, avg_samples: 12.5, ips: 6.89026 samples/s, eta: 1:16:27
[2024/07/28 02:49:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:49:54] ppocr INFO: epoch: [1249/1500], global_step: 3747, lr: 0.001000, loss: 1.173792, loss_shrink_maps: 0.594269, loss_threshold_maps: 0.464646, loss_binary_maps: 0.118401, avg_reader_cost: 1.56177 s, avg_batch_cost: 1.81719 s, avg_samples: 12.5, ips: 6.87877 samples/s, eta: 1:16:09
[2024/07/28 02:49:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:50:04] ppocr INFO: epoch: [1250/1500], global_step: 3750, lr: 0.001000, loss: 1.158558, loss_shrink_maps: 0.583940, loss_threshold_maps: 0.461122, loss_binary_maps: 0.116316, avg_reader_cost: 1.60066 s, avg_batch_cost: 1.84994 s, avg_samples: 12.5, ips: 6.75698 samples/s, eta: 1:15:51
[2024/07/28 02:50:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:50:14] ppocr INFO: epoch: [1251/1500], global_step: 3753, lr: 0.001000, loss: 1.131322, loss_shrink_maps: 0.567462, loss_threshold_maps: 0.453710, loss_binary_maps: 0.113642, avg_reader_cost: 1.60529 s, avg_batch_cost: 1.83606 s, avg_samples: 12.5, ips: 6.80807 samples/s, eta: 1:15:33
[2024/07/28 02:50:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:50:24] ppocr INFO: epoch: [1252/1500], global_step: 3756, lr: 0.001000, loss: 1.155335, loss_shrink_maps: 0.583940, loss_threshold_maps: 0.461122, loss_binary_maps: 0.116316, avg_reader_cost: 1.48222 s, avg_batch_cost: 1.72111 s, avg_samples: 12.5, ips: 7.26276 samples/s, eta: 1:15:14
[2024/07/28 02:50:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:50:34] ppocr INFO: epoch: [1253/1500], global_step: 3759, lr: 0.001000, loss: 1.131322, loss_shrink_maps: 0.567462, loss_threshold_maps: 0.456854, loss_binary_maps: 0.113642, avg_reader_cost: 1.60332 s, avg_batch_cost: 1.83175 s, avg_samples: 12.5, ips: 6.82408 samples/s, eta: 1:14:56
[2024/07/28 02:50:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:50:42] ppocr INFO: epoch: [1254/1500], global_step: 3760, lr: 0.001000, loss: 1.118259, loss_shrink_maps: 0.560107, loss_threshold_maps: 0.451817, loss_binary_maps: 0.112161, avg_reader_cost: 0.41094 s, avg_batch_cost: 0.52238 s, avg_samples: 4.8, ips: 9.18865 samples/s, eta: 1:14:50
[2024/07/28 02:50:43] ppocr INFO: epoch: [1254/1500], global_step: 3762, lr: 0.001000, loss: 1.117432, loss_shrink_maps: 0.558179, loss_threshold_maps: 0.451817, loss_binary_maps: 0.111568, avg_reader_cost: 1.13577 s, avg_batch_cost: 1.28000 s, avg_samples: 7.7, ips: 6.01561 samples/s, eta: 1:14:38
[2024/07/28 02:50:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:50:53] ppocr INFO: epoch: [1255/1500], global_step: 3765, lr: 0.001000, loss: 1.103992, loss_shrink_maps: 0.554578, loss_threshold_maps: 0.443118, loss_binary_maps: 0.110428, avg_reader_cost: 1.50035 s, avg_batch_cost: 1.74059 s, avg_samples: 12.5, ips: 7.18149 samples/s, eta: 1:14:20
[2024/07/28 02:50:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:51:03] ppocr INFO: epoch: [1256/1500], global_step: 3768, lr: 0.001000, loss: 1.068816, loss_shrink_maps: 0.531647, loss_threshold_maps: 0.432119, loss_binary_maps: 0.105990, avg_reader_cost: 1.54295 s, avg_batch_cost: 1.78284 s, avg_samples: 12.5, ips: 7.01130 samples/s, eta: 1:14:01
[2024/07/28 02:51:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:51:12] ppocr INFO: epoch: [1257/1500], global_step: 3770, lr: 0.001000, loss: 1.068816, loss_shrink_maps: 0.534994, loss_threshold_maps: 0.432119, loss_binary_maps: 0.106251, avg_reader_cost: 0.90749 s, avg_batch_cost: 1.10230 s, avg_samples: 9.6, ips: 8.70908 samples/s, eta: 1:13:49
[2024/07/28 02:51:13] ppocr INFO: epoch: [1257/1500], global_step: 3771, lr: 0.001000, loss: 1.068816, loss_shrink_maps: 0.534994, loss_threshold_maps: 0.432119, loss_binary_maps: 0.106251, avg_reader_cost: 0.59694 s, avg_batch_cost: 0.65160 s, avg_samples: 2.9, ips: 4.45059 samples/s, eta: 1:13:43
[2024/07/28 02:51:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:51:22] ppocr INFO: epoch: [1258/1500], global_step: 3774, lr: 0.001000, loss: 1.066647, loss_shrink_maps: 0.531647, loss_threshold_maps: 0.432119, loss_binary_maps: 0.105990, avg_reader_cost: 1.47716 s, avg_batch_cost: 1.72007 s, avg_samples: 12.5, ips: 7.26713 samples/s, eta: 1:13:25
[2024/07/28 02:51:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:51:32] ppocr INFO: epoch: [1259/1500], global_step: 3777, lr: 0.001000, loss: 1.082660, loss_shrink_maps: 0.534994, loss_threshold_maps: 0.433552, loss_binary_maps: 0.106251, avg_reader_cost: 1.51723 s, avg_batch_cost: 1.74624 s, avg_samples: 12.5, ips: 7.15825 samples/s, eta: 1:13:06
[2024/07/28 02:51:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:51:42] ppocr INFO: epoch: [1260/1500], global_step: 3780, lr: 0.001000, loss: 1.155143, loss_shrink_maps: 0.573212, loss_threshold_maps: 0.445069, loss_binary_maps: 0.114955, avg_reader_cost: 1.53928 s, avg_batch_cost: 1.80584 s, avg_samples: 12.5, ips: 6.92199 samples/s, eta: 1:12:48

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:51,  9.64it/s]
eval model::   1%|          | 4/500 [00:00<00:29, 16.55it/s]
eval model::   1%|          | 6/500 [00:00<00:28, 17.34it/s]
eval model::   2%|▏         | 8/500 [00:00<00:28, 17.03it/s]
eval model::   2%|▏         | 11/500 [00:00<00:26, 18.26it/s]
eval model::   3%|▎         | 13/500 [00:00<00:26, 18.58it/s]
eval model::   3%|▎         | 15/500 [00:00<00:26, 18.16it/s]
eval model::   4%|▎         | 18/500 [00:01<00:26, 18.50it/s]
eval model::   4%|▍         | 20/500 [00:01<00:27, 17.57it/s]
eval model::   5%|▍         | 23/500 [00:01<00:23, 20.24it/s]
eval model::   5%|▌         | 26/500 [00:01<00:25, 18.87it/s]
eval model::   6%|▌         | 29/500 [00:01<00:23, 20.34it/s]
eval model::   6%|▋         | 32/500 [00:01<00:25, 18.32it/s]
eval model::   7%|▋         | 34/500 [00:01<00:25, 18.31it/s]
eval model::   7%|▋         | 37/500 [00:01<00:23, 19.65it/s]
eval model::   8%|▊         | 40/500 [00:02<00:25, 18.31it/s]
eval model::   8%|▊         | 42/500 [00:02<00:26, 17.16it/s]
eval model::   9%|▉         | 45/500 [00:02<00:23, 19.65it/s]
eval model::  10%|▉         | 48/500 [00:02<00:23, 19.00it/s]
eval model::  10%|█         | 50/500 [00:02<00:24, 18.72it/s]
eval model::  11%|█         | 53/500 [00:02<00:21, 20.51it/s]
eval model::  11%|█         | 56/500 [00:02<00:20, 21.27it/s]
eval model::  12%|█▏        | 59/500 [00:03<00:22, 19.84it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:27, 15.87it/s]
eval model::  13%|█▎        | 64/500 [00:03<00:26, 16.40it/s]
eval model::  14%|█▎        | 68/500 [00:03<00:21, 19.92it/s]
eval model::  14%|█▍        | 71/500 [00:03<00:20, 20.85it/s]
eval model::  15%|█▍        | 74/500 [00:03<00:20, 20.71it/s]
eval model::  15%|█▌        | 77/500 [00:04<00:20, 20.75it/s]
eval model::  16%|█▌        | 80/500 [00:04<00:20, 20.86it/s]
eval model::  17%|█▋        | 83/500 [00:04<00:20, 20.34it/s]
eval model::  17%|█▋        | 86/500 [00:04<00:21, 19.68it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:21, 18.82it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:24, 17.07it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:23, 17.27it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:21, 18.39it/s]
eval model::  20%|█▉        | 98/500 [00:05<00:21, 18.70it/s]
eval model::  20%|██        | 100/500 [00:05<00:22, 17.60it/s]
eval model::  21%|██        | 103/500 [00:05<00:19, 19.93it/s]
eval model::  21%|██        | 106/500 [00:05<00:17, 22.05it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:17, 22.81it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:16, 23.24it/s]
eval model::  23%|██▎       | 115/500 [00:05<00:16, 22.72it/s]
eval model::  24%|██▎       | 118/500 [00:06<00:15, 24.49it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:18, 20.43it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:18, 19.94it/s]
eval model::  25%|██▌       | 127/500 [00:06<00:17, 20.92it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:18, 20.51it/s]
eval model::  27%|██▋       | 133/500 [00:06<00:18, 20.37it/s]
eval model::  27%|██▋       | 136/500 [00:06<00:16, 21.43it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:17, 20.58it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:18, 19.32it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:18, 19.34it/s]
eval model::  29%|██▉       | 146/500 [00:07<00:18, 19.25it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:19, 17.70it/s]
eval model::  30%|███       | 151/500 [00:07<00:21, 16.38it/s]
eval model::  31%|███       | 154/500 [00:07<00:18, 18.45it/s]
eval model::  31%|███▏      | 157/500 [00:08<00:17, 19.44it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:19, 17.41it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:26, 12.87it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:22, 15.15it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:20, 16.13it/s]
eval model::  34%|███▍      | 170/500 [00:08<00:17, 18.39it/s]
eval model::  35%|███▍      | 173/500 [00:09<00:18, 17.55it/s]
eval model::  35%|███▌      | 175/500 [00:09<00:22, 14.15it/s]
eval model::  36%|███▌      | 178/500 [00:09<00:20, 15.93it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:22, 14.24it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:19, 16.64it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:16, 18.50it/s]
eval model::  38%|███▊      | 188/500 [00:10<00:17, 18.34it/s]
eval model::  38%|███▊      | 190/500 [00:10<00:16, 18.54it/s]
eval model::  38%|███▊      | 192/500 [00:10<00:16, 18.82it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:16, 18.94it/s]
eval model::  39%|███▉      | 197/500 [00:10<00:16, 18.12it/s]
eval model::  40%|████      | 200/500 [00:10<00:15, 19.35it/s]
eval model::  41%|████      | 203/500 [00:10<00:14, 20.35it/s]
eval model::  41%|████      | 206/500 [00:11<00:24, 11.76it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:24, 12.01it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:23, 12.38it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:20, 13.68it/s]
eval model::  43%|████▎     | 215/500 [00:12<00:23, 12.00it/s]
eval model::  43%|████▎     | 217/500 [00:12<00:24, 11.51it/s]
eval model::  44%|████▍     | 219/500 [00:12<00:22, 12.56it/s]
eval model::  44%|████▍     | 221/500 [00:12<00:22, 12.54it/s]
eval model::  45%|████▍     | 224/500 [00:12<00:17, 15.38it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:17, 16.07it/s]
eval model::  46%|████▌     | 229/500 [00:12<00:14, 19.05it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:12, 21.71it/s]
eval model::  47%|████▋     | 236/500 [00:13<00:11, 22.42it/s]
eval model::  48%|████▊     | 239/500 [00:13<00:10, 23.93it/s]
eval model::  48%|████▊     | 242/500 [00:13<00:13, 19.63it/s]
eval model::  49%|████▉     | 245/500 [00:13<00:13, 19.61it/s]
eval model::  50%|████▉     | 248/500 [00:13<00:12, 20.75it/s]
eval model::  50%|█████     | 251/500 [00:13<00:13, 18.97it/s]
eval model::  51%|█████     | 254/500 [00:13<00:12, 20.46it/s]
eval model::  51%|█████▏    | 257/500 [00:14<00:11, 21.27it/s]
eval model::  52%|█████▏    | 260/500 [00:14<00:11, 20.87it/s]
eval model::  53%|█████▎    | 263/500 [00:14<00:11, 20.75it/s]
eval model::  53%|█████▎    | 266/500 [00:14<00:11, 19.61it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:13, 17.58it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:12, 18.17it/s]
eval model::  55%|█████▌    | 275/500 [00:15<00:12, 18.53it/s]
eval model::  56%|█████▌    | 278/500 [00:15<00:10, 20.67it/s]
eval model::  56%|█████▌    | 281/500 [00:15<00:10, 21.37it/s]
eval model::  57%|█████▋    | 284/500 [00:15<00:09, 22.02it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:16, 12.56it/s]
eval model::  58%|█████▊    | 290/500 [00:16<00:14, 14.80it/s]
eval model::  59%|█████▊    | 293/500 [00:16<00:13, 15.52it/s]
eval model::  59%|█████▉    | 295/500 [00:16<00:16, 12.23it/s]
eval model::  60%|█████▉    | 298/500 [00:16<00:13, 14.83it/s]
eval model::  60%|██████    | 300/500 [00:16<00:14, 14.16it/s]
eval model::  60%|██████    | 302/500 [00:16<00:13, 14.61it/s]
eval model::  61%|██████    | 304/500 [00:17<00:12, 15.13it/s]
eval model::  61%|██████▏   | 307/500 [00:17<00:10, 17.57it/s]
eval model::  62%|██████▏   | 310/500 [00:17<00:09, 19.09it/s]
eval model::  63%|██████▎   | 313/500 [00:17<00:09, 19.81it/s]
eval model::  63%|██████▎   | 316/500 [00:17<00:09, 19.06it/s]
eval model::  64%|██████▍   | 319/500 [00:17<00:08, 21.12it/s]
eval model::  64%|██████▍   | 322/500 [00:17<00:08, 20.96it/s]
eval model::  65%|██████▌   | 325/500 [00:17<00:07, 22.23it/s]
eval model::  66%|██████▌   | 328/500 [00:18<00:08, 20.28it/s]
eval model::  66%|██████▌   | 331/500 [00:18<00:08, 19.71it/s]
eval model::  67%|██████▋   | 334/500 [00:18<00:08, 20.20it/s]
eval model::  67%|██████▋   | 337/500 [00:18<00:08, 19.85it/s]
eval model::  68%|██████▊   | 340/500 [00:18<00:10, 15.22it/s]
eval model::  69%|██████▊   | 343/500 [00:19<00:09, 16.63it/s]
eval model::  69%|██████▉   | 346/500 [00:19<00:08, 18.15it/s]
eval model::  70%|██████▉   | 348/500 [00:19<00:08, 17.73it/s]
eval model::  70%|███████   | 351/500 [00:19<00:07, 19.63it/s]
eval model::  71%|███████   | 355/500 [00:19<00:07, 19.79it/s]
eval model::  72%|███████▏  | 358/500 [00:19<00:07, 18.79it/s]
eval model::  72%|███████▏  | 360/500 [00:19<00:07, 18.25it/s]
eval model::  72%|███████▏  | 362/500 [00:20<00:08, 17.14it/s]
eval model::  73%|███████▎  | 364/500 [00:20<00:08, 16.50it/s]
eval model::  73%|███████▎  | 366/500 [00:20<00:08, 15.39it/s]
eval model::  74%|███████▍  | 369/500 [00:20<00:07, 17.19it/s]
eval model::  74%|███████▍  | 371/500 [00:20<00:07, 17.44it/s]
eval model::  75%|███████▍  | 373/500 [00:20<00:07, 18.02it/s]
eval model::  75%|███████▌  | 375/500 [00:20<00:06, 18.00it/s]
eval model::  76%|███████▌  | 378/500 [00:20<00:06, 19.43it/s]
eval model::  76%|███████▌  | 380/500 [00:21<00:06, 17.41it/s]
eval model::  77%|███████▋  | 383/500 [00:21<00:05, 19.91it/s]
eval model::  77%|███████▋  | 386/500 [00:21<00:08, 13.18it/s]
eval model::  78%|███████▊  | 388/500 [00:21<00:07, 14.21it/s]
eval model::  78%|███████▊  | 391/500 [00:21<00:07, 15.29it/s]
eval model::  79%|███████▊  | 393/500 [00:21<00:06, 16.16it/s]
eval model::  79%|███████▉  | 395/500 [00:22<00:06, 16.39it/s]
eval model::  80%|███████▉  | 398/500 [00:22<00:05, 19.57it/s]
eval model::  80%|████████  | 401/500 [00:22<00:06, 15.66it/s]
eval model::  81%|████████  | 404/500 [00:22<00:05, 16.87it/s]
eval model::  81%|████████▏ | 407/500 [00:22<00:04, 19.21it/s]
eval model::  82%|████████▏ | 410/500 [00:22<00:04, 20.30it/s]
eval model::  83%|████████▎ | 413/500 [00:22<00:04, 20.45it/s]
eval model::  83%|████████▎ | 416/500 [00:23<00:04, 19.35it/s]
eval model::  84%|████████▍ | 419/500 [00:23<00:04, 17.94it/s]
eval model::  84%|████████▍ | 421/500 [00:23<00:06, 12.62it/s]
eval model::  85%|████████▍ | 424/500 [00:23<00:05, 12.79it/s]
eval model::  85%|████████▌ | 426/500 [00:24<00:05, 13.81it/s]
eval model::  86%|████████▌ | 429/500 [00:24<00:04, 16.28it/s]
eval model::  86%|████████▌ | 431/500 [00:24<00:04, 16.37it/s]
eval model::  87%|████████▋ | 434/500 [00:24<00:03, 19.22it/s]
eval model::  87%|████████▋ | 437/500 [00:24<00:03, 18.90it/s]
eval model::  88%|████████▊ | 440/500 [00:24<00:03, 17.82it/s]
eval model::  89%|████████▊ | 443/500 [00:24<00:02, 19.97it/s]
eval model::  89%|████████▉ | 446/500 [00:24<00:02, 19.82it/s]
eval model::  90%|████████▉ | 449/500 [00:25<00:02, 18.76it/s]
eval model::  90%|█████████ | 452/500 [00:25<00:02, 20.53it/s]
eval model::  91%|█████████ | 455/500 [00:25<00:02, 21.50it/s]
eval model::  92%|█████████▏| 458/500 [00:25<00:01, 21.35it/s]
eval model::  92%|█████████▏| 461/500 [00:25<00:01, 22.21it/s]
eval model::  93%|█████████▎| 464/500 [00:25<00:01, 18.30it/s]
eval model::  93%|█████████▎| 466/500 [00:26<00:01, 17.78it/s]
eval model::  94%|█████████▎| 468/500 [00:26<00:01, 17.63it/s]
eval model::  94%|█████████▍| 471/500 [00:26<00:01, 19.77it/s]
eval model::  95%|█████████▍| 474/500 [00:26<00:01, 20.41it/s]
eval model::  95%|█████████▌| 477/500 [00:26<00:01, 21.92it/s]
eval model::  96%|█████████▌| 480/500 [00:26<00:00, 22.35it/s]
eval model::  97%|█████████▋| 483/500 [00:26<00:00, 23.10it/s]
eval model::  97%|█████████▋| 486/500 [00:26<00:00, 21.30it/s]
eval model::  98%|█████████▊| 490/500 [00:27<00:00, 24.23it/s]
eval model::  99%|█████████▊| 493/500 [00:27<00:00, 22.44it/s]
eval model::  99%|█████████▉| 496/500 [00:27<00:00, 21.86it/s]
eval model:: 100%|██████████| 500/500 [00:27<00:00, 25.93it/s]
eval model:: 100%|██████████| 500/500 [00:27<00:00, 18.22it/s]
[2024/07/28 02:52:10] ppocr INFO: cur metric, precision: 0.7166998011928429, recall: 0.6942705825710159, hmean: 0.7053069210075814, fps: 45.13136029252815
[2024/07/28 02:52:10] ppocr INFO: best metric, hmean: 0.7181174089068827, precision: 0.7568, recall: 0.6831969186326432, fps: 44.212831257019886, best_epoch: 1200
[2024/07/28 02:52:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:52:17] ppocr INFO: epoch: [1261/1500], global_step: 3783, lr: 0.001000, loss: 1.166007, loss_shrink_maps: 0.581128, loss_threshold_maps: 0.454058, loss_binary_maps: 0.116129, avg_reader_cost: 1.48926 s, avg_batch_cost: 1.72185 s, avg_samples: 12.5, ips: 7.25965 samples/s, eta: 1:12:30
[2024/07/28 02:52:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:52:27] ppocr INFO: epoch: [1262/1500], global_step: 3786, lr: 0.001000, loss: 1.166007, loss_shrink_maps: 0.581128, loss_threshold_maps: 0.443280, loss_binary_maps: 0.116129, avg_reader_cost: 1.50410 s, avg_batch_cost: 1.75540 s, avg_samples: 12.5, ips: 7.12090 samples/s, eta: 1:12:11
[2024/07/28 02:52:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:52:37] ppocr INFO: epoch: [1263/1500], global_step: 3789, lr: 0.001000, loss: 1.155143, loss_shrink_maps: 0.573212, loss_threshold_maps: 0.443280, loss_binary_maps: 0.114955, avg_reader_cost: 1.51130 s, avg_batch_cost: 1.74279 s, avg_samples: 12.5, ips: 7.17242 samples/s, eta: 1:11:53
[2024/07/28 02:52:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:52:46] ppocr INFO: epoch: [1264/1500], global_step: 3790, lr: 0.001000, loss: 1.166007, loss_shrink_maps: 0.581128, loss_threshold_maps: 0.452256, loss_binary_maps: 0.116129, avg_reader_cost: 0.37905 s, avg_batch_cost: 0.55574 s, avg_samples: 4.8, ips: 8.63720 samples/s, eta: 1:11:47
[2024/07/28 02:52:47] ppocr INFO: epoch: [1264/1500], global_step: 3792, lr: 0.001000, loss: 1.181787, loss_shrink_maps: 0.582806, loss_threshold_maps: 0.454102, loss_binary_maps: 0.116129, avg_reader_cost: 1.20258 s, avg_batch_cost: 1.34833 s, avg_samples: 7.7, ips: 5.71076 samples/s, eta: 1:11:35
[2024/07/28 02:52:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:52:57] ppocr INFO: epoch: [1265/1500], global_step: 3795, lr: 0.001000, loss: 1.194647, loss_shrink_maps: 0.588489, loss_threshold_maps: 0.452256, loss_binary_maps: 0.117036, avg_reader_cost: 1.64749 s, avg_batch_cost: 1.95726 s, avg_samples: 12.5, ips: 6.38649 samples/s, eta: 1:11:17
[2024/07/28 02:53:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:53:08] ppocr INFO: epoch: [1266/1500], global_step: 3798, lr: 0.001000, loss: 1.194647, loss_shrink_maps: 0.583437, loss_threshold_maps: 0.452256, loss_binary_maps: 0.116648, avg_reader_cost: 1.56402 s, avg_batch_cost: 1.85070 s, avg_samples: 12.5, ips: 6.75421 samples/s, eta: 1:10:59
[2024/07/28 02:53:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:53:18] ppocr INFO: epoch: [1267/1500], global_step: 3800, lr: 0.001000, loss: 1.189633, loss_shrink_maps: 0.583437, loss_threshold_maps: 0.452256, loss_binary_maps: 0.116318, avg_reader_cost: 0.98375 s, avg_batch_cost: 1.27749 s, avg_samples: 9.6, ips: 7.51473 samples/s, eta: 1:10:47
[2024/07/28 02:53:18] ppocr INFO: epoch: [1267/1500], global_step: 3801, lr: 0.001000, loss: 1.156509, loss_shrink_maps: 0.570948, loss_threshold_maps: 0.451093, loss_binary_maps: 0.113764, avg_reader_cost: 0.68454 s, avg_batch_cost: 0.73909 s, avg_samples: 2.9, ips: 3.92373 samples/s, eta: 1:10:41
[2024/07/28 02:53:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:53:28] ppocr INFO: epoch: [1268/1500], global_step: 3804, lr: 0.001000, loss: 1.125972, loss_shrink_maps: 0.563598, loss_threshold_maps: 0.451093, loss_binary_maps: 0.112447, avg_reader_cost: 1.64076 s, avg_batch_cost: 1.88396 s, avg_samples: 12.5, ips: 6.63495 samples/s, eta: 1:10:23
[2024/07/28 02:53:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:53:38] ppocr INFO: epoch: [1269/1500], global_step: 3807, lr: 0.001000, loss: 1.153133, loss_shrink_maps: 0.570948, loss_threshold_maps: 0.464835, loss_binary_maps: 0.113764, avg_reader_cost: 1.51683 s, avg_batch_cost: 1.76147 s, avg_samples: 12.5, ips: 7.09633 samples/s, eta: 1:10:05
[2024/07/28 02:53:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:53:48] ppocr INFO: epoch: [1270/1500], global_step: 3810, lr: 0.001000, loss: 1.182816, loss_shrink_maps: 0.578144, loss_threshold_maps: 0.476379, loss_binary_maps: 0.115109, avg_reader_cost: 1.51508 s, avg_batch_cost: 1.77418 s, avg_samples: 12.5, ips: 7.04552 samples/s, eta: 1:09:46
[2024/07/28 02:53:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:53:58] ppocr INFO: epoch: [1271/1500], global_step: 3813, lr: 0.001000, loss: 1.182816, loss_shrink_maps: 0.584101, loss_threshold_maps: 0.476379, loss_binary_maps: 0.116182, avg_reader_cost: 1.51427 s, avg_batch_cost: 1.77051 s, avg_samples: 12.5, ips: 7.06010 samples/s, eta: 1:09:28
[2024/07/28 02:54:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:54:08] ppocr INFO: epoch: [1272/1500], global_step: 3816, lr: 0.001000, loss: 1.182816, loss_shrink_maps: 0.584101, loss_threshold_maps: 0.479460, loss_binary_maps: 0.116182, avg_reader_cost: 1.52483 s, avg_batch_cost: 1.75542 s, avg_samples: 12.5, ips: 7.12080 samples/s, eta: 1:09:10
[2024/07/28 02:54:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:54:18] ppocr INFO: epoch: [1273/1500], global_step: 3819, lr: 0.001000, loss: 1.190304, loss_shrink_maps: 0.584516, loss_threshold_maps: 0.484188, loss_binary_maps: 0.116182, avg_reader_cost: 1.48453 s, avg_batch_cost: 1.73470 s, avg_samples: 12.5, ips: 7.20584 samples/s, eta: 1:08:51
[2024/07/28 02:54:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:54:26] ppocr INFO: epoch: [1274/1500], global_step: 3820, lr: 0.001000, loss: 1.190304, loss_shrink_maps: 0.584516, loss_threshold_maps: 0.481358, loss_binary_maps: 0.116182, avg_reader_cost: 0.41854 s, avg_batch_cost: 0.50126 s, avg_samples: 4.8, ips: 9.57595 samples/s, eta: 1:08:45
[2024/07/28 02:54:27] ppocr INFO: epoch: [1274/1500], global_step: 3822, lr: 0.001000, loss: 1.190304, loss_shrink_maps: 0.584516, loss_threshold_maps: 0.481358, loss_binary_maps: 0.116182, avg_reader_cost: 1.09403 s, avg_batch_cost: 1.23917 s, avg_samples: 7.7, ips: 6.21386 samples/s, eta: 1:08:33
[2024/07/28 02:54:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:54:38] ppocr INFO: epoch: [1275/1500], global_step: 3825, lr: 0.001000, loss: 1.183196, loss_shrink_maps: 0.579634, loss_threshold_maps: 0.481358, loss_binary_maps: 0.115441, avg_reader_cost: 1.63779 s, avg_batch_cost: 1.92509 s, avg_samples: 12.5, ips: 6.49319 samples/s, eta: 1:08:15
[2024/07/28 02:54:41] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:54:47] ppocr INFO: epoch: [1276/1500], global_step: 3828, lr: 0.001000, loss: 1.158629, loss_shrink_maps: 0.571167, loss_threshold_maps: 0.466112, loss_binary_maps: 0.113539, avg_reader_cost: 1.50481 s, avg_batch_cost: 1.73621 s, avg_samples: 12.5, ips: 7.19961 samples/s, eta: 1:07:57
[2024/07/28 02:54:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:54:57] ppocr INFO: epoch: [1277/1500], global_step: 3830, lr: 0.001000, loss: 1.144670, loss_shrink_maps: 0.566206, loss_threshold_maps: 0.464134, loss_binary_maps: 0.112629, avg_reader_cost: 0.96571 s, avg_batch_cost: 1.13875 s, avg_samples: 9.6, ips: 8.43027 samples/s, eta: 1:07:44
[2024/07/28 02:54:57] ppocr INFO: epoch: [1277/1500], global_step: 3831, lr: 0.001000, loss: 1.158629, loss_shrink_maps: 0.575499, loss_threshold_maps: 0.455291, loss_binary_maps: 0.114759, avg_reader_cost: 0.61490 s, avg_batch_cost: 0.66984 s, avg_samples: 2.9, ips: 4.32940 samples/s, eta: 1:07:38
[2024/07/28 02:55:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:55:07] ppocr INFO: epoch: [1278/1500], global_step: 3834, lr: 0.001000, loss: 1.121657, loss_shrink_maps: 0.542303, loss_threshold_maps: 0.452395, loss_binary_maps: 0.108174, avg_reader_cost: 1.50400 s, avg_batch_cost: 1.73952 s, avg_samples: 12.5, ips: 7.18591 samples/s, eta: 1:07:20
[2024/07/28 02:55:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:55:17] ppocr INFO: epoch: [1279/1500], global_step: 3837, lr: 0.001000, loss: 1.121657, loss_shrink_maps: 0.542303, loss_threshold_maps: 0.453483, loss_binary_maps: 0.108174, avg_reader_cost: 1.60192 s, avg_batch_cost: 1.82980 s, avg_samples: 12.5, ips: 6.83133 samples/s, eta: 1:07:02
[2024/07/28 02:55:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:55:27] ppocr INFO: epoch: [1280/1500], global_step: 3840, lr: 0.001000, loss: 1.090117, loss_shrink_maps: 0.536015, loss_threshold_maps: 0.446961, loss_binary_maps: 0.107022, avg_reader_cost: 1.51356 s, avg_batch_cost: 1.76069 s, avg_samples: 12.5, ips: 7.09947 samples/s, eta: 1:06:44

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:58,  8.59it/s]
eval model::   1%|          | 4/500 [00:00<00:30, 16.52it/s]
eval model::   1%|          | 6/500 [00:00<00:31, 15.76it/s]
eval model::   2%|▏         | 8/500 [00:00<00:29, 16.43it/s]
eval model::   2%|▏         | 11/500 [00:00<00:28, 17.05it/s]
eval model::   3%|▎         | 14/500 [00:00<00:27, 17.48it/s]
eval model::   3%|▎         | 17/500 [00:00<00:23, 20.37it/s]
eval model::   4%|▍         | 20/500 [00:01<00:26, 18.10it/s]
eval model::   5%|▍         | 23/500 [00:01<00:23, 20.32it/s]
eval model::   5%|▌         | 26/500 [00:01<00:24, 19.46it/s]
eval model::   6%|▌         | 29/500 [00:01<00:23, 19.96it/s]
eval model::   6%|▋         | 32/500 [00:01<00:26, 17.74it/s]
eval model::   7%|▋         | 34/500 [00:01<00:26, 17.56it/s]
eval model::   7%|▋         | 37/500 [00:01<00:22, 20.14it/s]
eval model::   8%|▊         | 40/500 [00:02<00:23, 19.17it/s]
eval model::   9%|▊         | 43/500 [00:02<00:26, 17.56it/s]
eval model::   9%|▉         | 46/500 [00:02<00:24, 18.48it/s]
eval model::  10%|▉         | 49/500 [00:02<00:23, 19.54it/s]
eval model::  10%|█         | 52/500 [00:02<00:22, 20.23it/s]
eval model::  11%|█         | 55/500 [00:02<00:20, 21.53it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:23, 19.18it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:27, 15.77it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:27, 16.15it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:23, 18.81it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:20, 20.70it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:19, 22.08it/s]
eval model::  15%|█▌        | 75/500 [00:03<00:19, 22.26it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:17, 23.91it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:18, 22.99it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:20, 20.71it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:21, 19.17it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:23, 17.82it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:21, 18.66it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:19, 20.68it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:18, 21.88it/s]
eval model::  20%|██        | 102/500 [00:05<00:20, 19.13it/s]
eval model::  21%|██        | 106/500 [00:05<00:17, 22.00it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:18, 21.45it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:18, 20.59it/s]
eval model::  23%|██▎       | 115/500 [00:05<00:19, 19.72it/s]
eval model::  24%|██▎       | 118/500 [00:06<00:17, 21.24it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:17, 21.50it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:21, 17.77it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:20, 17.91it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:18, 19.58it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:21, 16.84it/s]
eval model::  27%|██▋       | 135/500 [00:07<00:19, 18.70it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:18, 19.53it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:18, 19.64it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:18, 18.94it/s]
eval model::  29%|██▉       | 146/500 [00:07<00:18, 19.04it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:19, 17.69it/s]
eval model::  30%|███       | 151/500 [00:07<00:20, 16.85it/s]
eval model::  31%|███       | 154/500 [00:08<00:17, 19.29it/s]
eval model::  31%|███▏      | 157/500 [00:08<00:15, 21.65it/s]
eval model::  32%|███▏      | 160/500 [00:08<00:21, 15.48it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:19, 17.37it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:17, 19.18it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:17, 19.24it/s]
eval model::  34%|███▍      | 172/500 [00:08<00:17, 19.11it/s]
eval model::  35%|███▌      | 175/500 [00:09<00:18, 17.77it/s]
eval model::  35%|███▌      | 177/500 [00:09<00:17, 17.95it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:17, 18.29it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:21, 14.54it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:18, 17.49it/s]
eval model::  37%|███▋      | 187/500 [00:09<00:16, 19.16it/s]
eval model::  38%|███▊      | 190/500 [00:10<00:16, 18.64it/s]
eval model::  39%|███▊      | 193/500 [00:10<00:15, 19.84it/s]
eval model::  39%|███▉      | 196/500 [00:10<00:16, 18.35it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:16, 18.58it/s]
eval model::  40%|████      | 201/500 [00:10<00:15, 19.32it/s]
eval model::  41%|████      | 204/500 [00:10<00:14, 20.87it/s]
eval model::  41%|████▏     | 207/500 [00:11<00:26, 11.01it/s]
eval model::  42%|████▏     | 209/500 [00:11<00:23, 12.28it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:23, 12.45it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:20, 13.68it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:22, 12.46it/s]
eval model::  43%|████▎     | 217/500 [00:12<00:24, 11.66it/s]
eval model::  44%|████▍     | 220/500 [00:12<00:19, 14.09it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:21, 13.08it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:16, 17.04it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:13, 20.66it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:12, 21.91it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:12, 21.88it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:11, 22.77it/s]
eval model::  48%|████▊     | 242/500 [00:13<00:13, 19.55it/s]
eval model::  49%|████▉     | 245/500 [00:13<00:12, 20.86it/s]
eval model::  50%|████▉     | 248/500 [00:13<00:11, 22.79it/s]
eval model::  50%|█████     | 251/500 [00:13<00:11, 22.04it/s]
eval model::  51%|█████     | 254/500 [00:13<00:10, 23.25it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:09, 24.48it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:09, 25.74it/s]
eval model::  53%|█████▎    | 263/500 [00:14<00:09, 24.28it/s]
eval model::  53%|█████▎    | 266/500 [00:14<00:10, 21.28it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:11, 19.50it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:11, 19.56it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:12, 17.77it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:11, 19.17it/s]
eval model::  56%|█████▌    | 281/500 [00:15<00:11, 19.26it/s]
eval model::  57%|█████▋    | 283/500 [00:15<00:11, 18.18it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:24,  8.84it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:20, 10.25it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:14, 14.24it/s]
eval model::  59%|█████▊    | 293/500 [00:16<00:13, 15.03it/s]
eval model::  59%|█████▉    | 295/500 [00:16<00:16, 12.39it/s]
eval model::  60%|█████▉    | 299/500 [00:16<00:12, 16.71it/s]
eval model::  60%|██████    | 302/500 [00:16<00:11, 16.53it/s]
eval model::  61%|██████    | 304/500 [00:16<00:11, 16.84it/s]
eval model::  61%|██████▏   | 307/500 [00:16<00:10, 18.37it/s]
eval model::  62%|██████▏   | 311/500 [00:17<00:09, 20.73it/s]
eval model::  63%|██████▎   | 314/500 [00:17<00:09, 19.83it/s]
eval model::  63%|██████▎   | 317/500 [00:17<00:08, 21.38it/s]
eval model::  64%|██████▍   | 320/500 [00:17<00:08, 21.82it/s]
eval model::  65%|██████▍   | 323/500 [00:17<00:08, 19.82it/s]
eval model::  65%|██████▌   | 326/500 [00:17<00:08, 19.94it/s]
eval model::  66%|██████▌   | 329/500 [00:17<00:08, 20.37it/s]
eval model::  66%|██████▋   | 332/500 [00:18<00:07, 21.77it/s]
eval model::  67%|██████▋   | 335/500 [00:18<00:07, 21.62it/s]
eval model::  68%|██████▊   | 338/500 [00:18<00:08, 19.88it/s]
eval model::  68%|██████▊   | 341/500 [00:18<00:09, 16.05it/s]
eval model::  69%|██████▉   | 344/500 [00:18<00:08, 17.79it/s]
eval model::  69%|██████▉   | 347/500 [00:18<00:08, 18.67it/s]
eval model::  70%|███████   | 350/500 [00:19<00:07, 20.97it/s]
eval model::  71%|███████   | 354/500 [00:19<00:06, 23.69it/s]
eval model::  71%|███████▏  | 357/500 [00:19<00:06, 21.89it/s]
eval model::  72%|███████▏  | 360/500 [00:19<00:06, 21.99it/s]
eval model::  73%|███████▎  | 363/500 [00:19<00:06, 19.81it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:08, 16.29it/s]
eval model::  74%|███████▍  | 369/500 [00:20<00:07, 18.25it/s]
eval model::  74%|███████▍  | 372/500 [00:20<00:06, 18.46it/s]
eval model::  75%|███████▌  | 376/500 [00:20<00:05, 21.55it/s]
eval model::  76%|███████▌  | 380/500 [00:20<00:05, 21.66it/s]
eval model::  77%|███████▋  | 383/500 [00:20<00:05, 22.43it/s]
eval model::  77%|███████▋  | 386/500 [00:20<00:07, 15.63it/s]
eval model::  78%|███████▊  | 389/500 [00:21<00:06, 17.35it/s]
eval model::  78%|███████▊  | 392/500 [00:21<00:05, 18.21it/s]
eval model::  79%|███████▉  | 395/500 [00:21<00:05, 19.51it/s]
eval model::  80%|███████▉  | 399/500 [00:21<00:04, 21.56it/s]
eval model::  80%|████████  | 402/500 [00:21<00:04, 20.87it/s]
eval model::  81%|████████  | 405/500 [00:21<00:04, 21.46it/s]
eval model::  82%|████████▏ | 408/500 [00:21<00:04, 22.62it/s]
eval model::  82%|████████▏ | 411/500 [00:22<00:03, 22.37it/s]
eval model::  83%|████████▎ | 414/500 [00:22<00:03, 22.13it/s]
eval model::  83%|████████▎ | 417/500 [00:22<00:03, 20.88it/s]
eval model::  84%|████████▍ | 420/500 [00:22<00:05, 13.52it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:05, 14.50it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:05, 14.52it/s]
eval model::  85%|████████▌ | 427/500 [00:23<00:04, 17.04it/s]
eval model::  86%|████████▌ | 430/500 [00:23<00:03, 19.67it/s]
eval model::  87%|████████▋ | 433/500 [00:23<00:03, 21.21it/s]
eval model::  87%|████████▋ | 437/500 [00:23<00:02, 24.27it/s]
eval model::  88%|████████▊ | 440/500 [00:23<00:02, 22.70it/s]
eval model::  89%|████████▊ | 443/500 [00:23<00:02, 24.13it/s]
eval model::  89%|████████▉ | 446/500 [00:23<00:02, 23.52it/s]
eval model::  90%|████████▉ | 449/500 [00:24<00:02, 21.23it/s]
eval model::  91%|█████████ | 453/500 [00:24<00:02, 23.26it/s]
eval model::  91%|█████████ | 456/500 [00:24<00:01, 22.94it/s]
eval model::  92%|█████████▏| 459/500 [00:24<00:01, 22.77it/s]
eval model::  92%|█████████▏| 462/500 [00:24<00:01, 20.02it/s]
eval model::  93%|█████████▎| 465/500 [00:24<00:01, 18.48it/s]
eval model::  93%|█████████▎| 467/500 [00:24<00:01, 18.35it/s]
eval model::  94%|█████████▍| 470/500 [00:25<00:01, 20.60it/s]
eval model::  95%|█████████▍| 473/500 [00:25<00:01, 20.83it/s]
eval model::  95%|█████████▌| 476/500 [00:25<00:01, 20.60it/s]
eval model::  96%|█████████▌| 479/500 [00:25<00:00, 22.41it/s]
eval model::  96%|█████████▋| 482/500 [00:25<00:00, 20.88it/s]
eval model::  97%|█████████▋| 486/500 [00:25<00:00, 22.02it/s]
eval model::  98%|█████████▊| 489/500 [00:25<00:00, 22.86it/s]
eval model::  98%|█████████▊| 492/500 [00:26<00:00, 20.46it/s]
eval model::  99%|█████████▉| 495/500 [00:26<00:00, 21.26it/s]
eval model:: 100%|█████████▉| 498/500 [00:26<00:00, 22.62it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.93it/s]
[2024/07/28 02:55:53] ppocr INFO: cur metric, precision: 0.7455403987408185, recall: 0.6841598459316321, hmean: 0.7135325131810192, fps: 46.58489082265975
[2024/07/28 02:55:53] ppocr INFO: best metric, hmean: 0.7181174089068827, precision: 0.7568, recall: 0.6831969186326432, fps: 44.212831257019886, best_epoch: 1200
[2024/07/28 02:55:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:56:03] ppocr INFO: epoch: [1281/1500], global_step: 3843, lr: 0.001000, loss: 1.110625, loss_shrink_maps: 0.536015, loss_threshold_maps: 0.453483, loss_binary_maps: 0.107022, avg_reader_cost: 2.00434 s, avg_batch_cost: 2.46054 s, avg_samples: 12.5, ips: 5.08018 samples/s, eta: 1:06:26
[2024/07/28 02:56:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:56:13] ppocr INFO: epoch: [1282/1500], global_step: 3846, lr: 0.001000, loss: 1.126236, loss_shrink_maps: 0.563353, loss_threshold_maps: 0.458169, loss_binary_maps: 0.112237, avg_reader_cost: 1.56292 s, avg_batch_cost: 1.79769 s, avg_samples: 12.5, ips: 6.95336 samples/s, eta: 1:06:08
[2024/07/28 02:56:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:56:23] ppocr INFO: epoch: [1283/1500], global_step: 3849, lr: 0.001000, loss: 1.129808, loss_shrink_maps: 0.568304, loss_threshold_maps: 0.463010, loss_binary_maps: 0.113262, avg_reader_cost: 1.50216 s, avg_batch_cost: 1.77046 s, avg_samples: 12.5, ips: 7.06032 samples/s, eta: 1:05:50
[2024/07/28 02:56:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:56:31] ppocr INFO: epoch: [1284/1500], global_step: 3850, lr: 0.001000, loss: 1.154719, loss_shrink_maps: 0.578567, loss_threshold_maps: 0.468887, loss_binary_maps: 0.115342, avg_reader_cost: 0.39611 s, avg_batch_cost: 0.51151 s, avg_samples: 4.8, ips: 9.38391 samples/s, eta: 1:05:44
[2024/07/28 02:56:33] ppocr INFO: epoch: [1284/1500], global_step: 3852, lr: 0.001000, loss: 1.147824, loss_shrink_maps: 0.566396, loss_threshold_maps: 0.472969, loss_binary_maps: 0.112929, avg_reader_cost: 1.11470 s, avg_batch_cost: 1.26076 s, avg_samples: 7.7, ips: 6.10744 samples/s, eta: 1:05:32
[2024/07/28 02:56:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:56:43] ppocr INFO: epoch: [1285/1500], global_step: 3855, lr: 0.001000, loss: 1.163709, loss_shrink_maps: 0.578816, loss_threshold_maps: 0.468887, loss_binary_maps: 0.115520, avg_reader_cost: 1.51117 s, avg_batch_cost: 1.75793 s, avg_samples: 12.5, ips: 7.11062 samples/s, eta: 1:05:13
[2024/07/28 02:56:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:56:53] ppocr INFO: epoch: [1286/1500], global_step: 3858, lr: 0.001000, loss: 1.164586, loss_shrink_maps: 0.584852, loss_threshold_maps: 0.470535, loss_binary_maps: 0.116623, avg_reader_cost: 1.59239 s, avg_batch_cost: 1.82592 s, avg_samples: 12.5, ips: 6.84586 samples/s, eta: 1:04:55
[2024/07/28 02:56:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:57:02] ppocr INFO: epoch: [1287/1500], global_step: 3860, lr: 0.001000, loss: 1.164586, loss_shrink_maps: 0.584852, loss_threshold_maps: 0.468648, loss_binary_maps: 0.116623, avg_reader_cost: 0.93549 s, avg_batch_cost: 1.12551 s, avg_samples: 9.6, ips: 8.52948 samples/s, eta: 1:04:43
[2024/07/28 02:57:03] ppocr INFO: epoch: [1287/1500], global_step: 3861, lr: 0.001000, loss: 1.164586, loss_shrink_maps: 0.584852, loss_threshold_maps: 0.468648, loss_binary_maps: 0.116623, avg_reader_cost: 0.60857 s, avg_batch_cost: 0.66322 s, avg_samples: 2.9, ips: 4.37260 samples/s, eta: 1:04:37
[2024/07/28 02:57:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:57:13] ppocr INFO: epoch: [1288/1500], global_step: 3864, lr: 0.001000, loss: 1.171589, loss_shrink_maps: 0.592192, loss_threshold_maps: 0.470900, loss_binary_maps: 0.117933, avg_reader_cost: 1.57304 s, avg_batch_cost: 1.80598 s, avg_samples: 12.5, ips: 6.92146 samples/s, eta: 1:04:19
[2024/07/28 02:57:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:57:22] ppocr INFO: epoch: [1289/1500], global_step: 3867, lr: 0.001000, loss: 1.164586, loss_shrink_maps: 0.584852, loss_threshold_maps: 0.468648, loss_binary_maps: 0.116623, avg_reader_cost: 1.52024 s, avg_batch_cost: 1.74932 s, avg_samples: 12.5, ips: 7.14564 samples/s, eta: 1:04:00
[2024/07/28 02:57:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:57:32] ppocr INFO: epoch: [1290/1500], global_step: 3870, lr: 0.001000, loss: 1.164586, loss_shrink_maps: 0.584852, loss_threshold_maps: 0.468151, loss_binary_maps: 0.116623, avg_reader_cost: 1.52872 s, avg_batch_cost: 1.78916 s, avg_samples: 12.5, ips: 6.98652 samples/s, eta: 1:03:42
[2024/07/28 02:57:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:57:42] ppocr INFO: epoch: [1291/1500], global_step: 3873, lr: 0.001000, loss: 1.169711, loss_shrink_maps: 0.584864, loss_threshold_maps: 0.468151, loss_binary_maps: 0.116695, avg_reader_cost: 1.50926 s, avg_batch_cost: 1.74959 s, avg_samples: 12.5, ips: 7.14454 samples/s, eta: 1:03:24
[2024/07/28 02:57:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:57:52] ppocr INFO: epoch: [1292/1500], global_step: 3876, lr: 0.001000, loss: 1.193831, loss_shrink_maps: 0.593483, loss_threshold_maps: 0.468151, loss_binary_maps: 0.118118, avg_reader_cost: 1.52279 s, avg_batch_cost: 1.75134 s, avg_samples: 12.5, ips: 7.13740 samples/s, eta: 1:03:05
[2024/07/28 02:57:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:58:02] ppocr INFO: epoch: [1293/1500], global_step: 3879, lr: 0.001000, loss: 1.163741, loss_shrink_maps: 0.586890, loss_threshold_maps: 0.459935, loss_binary_maps: 0.117024, avg_reader_cost: 1.56258 s, avg_batch_cost: 1.79632 s, avg_samples: 12.5, ips: 6.95869 samples/s, eta: 1:02:47
[2024/07/28 02:58:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:58:10] ppocr INFO: epoch: [1294/1500], global_step: 3880, lr: 0.001000, loss: 1.187052, loss_shrink_maps: 0.593483, loss_threshold_maps: 0.464770, loss_binary_maps: 0.118118, avg_reader_cost: 0.40297 s, avg_batch_cost: 0.51332 s, avg_samples: 4.8, ips: 9.35086 samples/s, eta: 1:02:41
[2024/07/28 02:58:12] ppocr INFO: epoch: [1294/1500], global_step: 3882, lr: 0.001000, loss: 1.163741, loss_shrink_maps: 0.586890, loss_threshold_maps: 0.459935, loss_binary_maps: 0.117024, avg_reader_cost: 1.11841 s, avg_batch_cost: 1.26464 s, avg_samples: 7.7, ips: 6.08870 samples/s, eta: 1:02:29
[2024/07/28 02:58:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:58:22] ppocr INFO: epoch: [1295/1500], global_step: 3885, lr: 0.001000, loss: 1.163741, loss_shrink_maps: 0.586890, loss_threshold_maps: 0.459935, loss_binary_maps: 0.117024, avg_reader_cost: 1.58574 s, avg_batch_cost: 1.81520 s, avg_samples: 12.5, ips: 6.88630 samples/s, eta: 1:02:11
[2024/07/28 02:58:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:58:32] ppocr INFO: epoch: [1296/1500], global_step: 3888, lr: 0.001000, loss: 1.164759, loss_shrink_maps: 0.586890, loss_threshold_maps: 0.467539, loss_binary_maps: 0.117024, avg_reader_cost: 1.58132 s, avg_batch_cost: 1.83762 s, avg_samples: 12.5, ips: 6.80227 samples/s, eta: 1:01:53
[2024/07/28 02:58:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:58:41] ppocr INFO: epoch: [1297/1500], global_step: 3890, lr: 0.001000, loss: 1.153558, loss_shrink_maps: 0.577076, loss_threshold_maps: 0.466303, loss_binary_maps: 0.115121, avg_reader_cost: 0.95482 s, avg_batch_cost: 1.14825 s, avg_samples: 9.6, ips: 8.36053 samples/s, eta: 1:01:40
[2024/07/28 02:58:42] ppocr INFO: epoch: [1297/1500], global_step: 3891, lr: 0.001000, loss: 1.151426, loss_shrink_maps: 0.569423, loss_threshold_maps: 0.459906, loss_binary_maps: 0.113547, avg_reader_cost: 0.61973 s, avg_batch_cost: 0.67525 s, avg_samples: 2.9, ips: 4.29473 samples/s, eta: 1:01:34
[2024/07/28 02:58:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:58:52] ppocr INFO: epoch: [1298/1500], global_step: 3894, lr: 0.001000, loss: 1.151426, loss_shrink_maps: 0.568616, loss_threshold_maps: 0.462674, loss_binary_maps: 0.113547, avg_reader_cost: 1.55722 s, avg_batch_cost: 1.84220 s, avg_samples: 12.5, ips: 6.78537 samples/s, eta: 1:01:16
[2024/07/28 02:58:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:59:02] ppocr INFO: epoch: [1299/1500], global_step: 3897, lr: 0.001000, loss: 1.151426, loss_shrink_maps: 0.575347, loss_threshold_maps: 0.462674, loss_binary_maps: 0.114841, avg_reader_cost: 1.58733 s, avg_batch_cost: 1.83391 s, avg_samples: 12.5, ips: 6.81602 samples/s, eta: 1:00:58
[2024/07/28 02:59:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:59:11] ppocr INFO: epoch: [1300/1500], global_step: 3900, lr: 0.001000, loss: 1.167178, loss_shrink_maps: 0.584547, loss_threshold_maps: 0.471258, loss_binary_maps: 0.116446, avg_reader_cost: 1.48497 s, avg_batch_cost: 1.71466 s, avg_samples: 12.5, ips: 7.29007 samples/s, eta: 1:00:40

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:52,  9.44it/s]
eval model::   1%|          | 4/500 [00:00<00:30, 16.32it/s]
eval model::   1%|▏         | 7/500 [00:00<00:27, 18.00it/s]
eval model::   2%|▏         | 9/500 [00:00<00:27, 18.12it/s]
eval model::   2%|▏         | 11/500 [00:00<00:27, 17.55it/s]
eval model::   3%|▎         | 13/500 [00:00<00:28, 17.05it/s]
eval model::   3%|▎         | 15/500 [00:00<00:27, 17.85it/s]
eval model::   3%|▎         | 17/500 [00:00<00:26, 18.24it/s]
eval model::   4%|▍         | 20/500 [00:01<00:25, 18.75it/s]
eval model::   5%|▍         | 23/500 [00:01<00:24, 19.60it/s]
eval model::   5%|▌         | 26/500 [00:01<00:23, 20.44it/s]
eval model::   6%|▌         | 29/500 [00:01<00:22, 20.63it/s]
eval model::   6%|▋         | 32/500 [00:01<00:24, 19.40it/s]
eval model::   7%|▋         | 34/500 [00:01<00:23, 19.42it/s]
eval model::   7%|▋         | 37/500 [00:01<00:21, 21.87it/s]
eval model::   8%|▊         | 40/500 [00:02<00:26, 17.22it/s]
eval model::   8%|▊         | 42/500 [00:02<00:29, 15.79it/s]
eval model::   9%|▉         | 44/500 [00:02<00:27, 16.43it/s]
eval model::   9%|▉         | 46/500 [00:02<00:27, 16.35it/s]
eval model::  10%|▉         | 49/500 [00:02<00:23, 19.13it/s]
eval model::  10%|█         | 52/500 [00:02<00:21, 20.81it/s]
eval model::  11%|█         | 55/500 [00:02<00:19, 22.62it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:21, 21.04it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:27, 16.21it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:27, 16.15it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:23, 18.72it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:21, 19.94it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:20, 20.93it/s]
eval model::  15%|█▌        | 75/500 [00:03<00:20, 21.19it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:18, 23.01it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:17, 24.22it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:18, 22.91it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:20, 20.37it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:23, 17.80it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:21, 18.90it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:20, 19.86it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:19, 20.79it/s]
eval model::  20%|██        | 102/500 [00:05<00:19, 20.33it/s]
eval model::  21%|██        | 105/500 [00:05<00:17, 21.95it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:17, 22.01it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:17, 22.07it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:16, 23.08it/s]
eval model::  23%|██▎       | 117/500 [00:05<00:16, 22.53it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:17, 21.86it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:16, 23.02it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:19, 18.94it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:18, 20.15it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:22, 16.44it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:20, 17.99it/s]
eval model::  27%|██▋       | 137/500 [00:07<00:19, 18.37it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:19, 18.31it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:18, 19.82it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:17, 20.30it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:17, 19.59it/s]
eval model::  30%|███       | 151/500 [00:07<00:20, 17.29it/s]
eval model::  31%|███       | 154/500 [00:07<00:17, 19.88it/s]
eval model::  31%|███▏      | 157/500 [00:08<00:16, 21.32it/s]
eval model::  32%|███▏      | 160/500 [00:08<00:23, 14.60it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:20, 16.56it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:17, 18.86it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:16, 19.66it/s]
eval model::  34%|███▍      | 172/500 [00:08<00:17, 18.84it/s]
eval model::  35%|███▌      | 175/500 [00:09<00:19, 16.33it/s]
eval model::  36%|███▌      | 178/500 [00:09<00:18, 17.87it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:20, 15.86it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:17, 18.08it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:15, 19.71it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:14, 21.32it/s]
eval model::  38%|███▊      | 192/500 [00:09<00:13, 22.53it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:14, 20.75it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:13, 21.70it/s]
eval model::  40%|████      | 201/500 [00:10<00:14, 20.61it/s]
eval model::  41%|████      | 204/500 [00:10<00:13, 22.49it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:21, 13.69it/s]
eval model::  42%|████▏     | 209/500 [00:11<00:20, 14.53it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:19, 14.97it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.52it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:20, 14.06it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:22, 12.34it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:18, 15.28it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:20, 13.89it/s]
eval model::  45%|████▌     | 225/500 [00:12<00:16, 17.16it/s]
eval model::  46%|████▌     | 228/500 [00:12<00:14, 19.23it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:11, 24.21it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:10, 24.62it/s]
eval model::  48%|████▊     | 240/500 [00:12<00:10, 25.89it/s]
eval model::  49%|████▊     | 243/500 [00:12<00:12, 20.99it/s]
eval model::  49%|████▉     | 247/500 [00:12<00:10, 23.31it/s]
eval model::  50%|█████     | 250/500 [00:13<00:10, 22.76it/s]
eval model::  51%|█████     | 253/500 [00:13<00:11, 21.84it/s]
eval model::  51%|█████     | 256/500 [00:13<00:10, 22.28it/s]
eval model::  52%|█████▏    | 259/500 [00:13<00:10, 21.91it/s]
eval model::  52%|█████▏    | 262/500 [00:13<00:11, 20.66it/s]
eval model::  53%|█████▎    | 265/500 [00:13<00:11, 20.96it/s]
eval model::  54%|█████▎    | 268/500 [00:13<00:11, 20.74it/s]
eval model::  54%|█████▍    | 271/500 [00:14<00:11, 20.30it/s]
eval model::  55%|█████▍    | 274/500 [00:14<00:11, 20.49it/s]
eval model::  55%|█████▌    | 277/500 [00:14<00:12, 17.86it/s]
eval model::  56%|█████▌    | 280/500 [00:14<00:11, 19.18it/s]
eval model::  57%|█████▋    | 283/500 [00:14<00:11, 19.63it/s]
eval model::  57%|█████▋    | 286/500 [00:15<00:20, 10.57it/s]
eval model::  58%|█████▊    | 289/500 [00:15<00:16, 12.92it/s]
eval model::  58%|█████▊    | 292/500 [00:15<00:13, 15.41it/s]
eval model::  59%|█████▉    | 295/500 [00:15<00:14, 13.80it/s]
eval model::  60%|█████▉    | 299/500 [00:15<00:11, 17.59it/s]
eval model::  60%|██████    | 302/500 [00:16<00:11, 17.22it/s]
eval model::  61%|██████    | 305/500 [00:16<00:10, 18.75it/s]
eval model::  62%|██████▏   | 309/500 [00:16<00:08, 21.95it/s]
eval model::  62%|██████▏   | 312/500 [00:16<00:07, 23.69it/s]
eval model::  63%|██████▎   | 315/500 [00:16<00:08, 23.03it/s]
eval model::  64%|██████▍   | 319/500 [00:16<00:07, 25.27it/s]
eval model::  64%|██████▍   | 322/500 [00:16<00:07, 22.28it/s]
eval model::  65%|██████▌   | 325/500 [00:17<00:07, 23.49it/s]
eval model::  66%|██████▌   | 328/500 [00:17<00:08, 20.93it/s]
eval model::  66%|██████▌   | 331/500 [00:17<00:08, 19.89it/s]
eval model::  67%|██████▋   | 334/500 [00:17<00:07, 21.87it/s]
eval model::  67%|██████▋   | 337/500 [00:17<00:07, 21.31it/s]
eval model::  68%|██████▊   | 340/500 [00:17<00:10, 14.73it/s]
eval model::  68%|██████▊   | 342/500 [00:18<00:10, 15.54it/s]
eval model::  69%|██████▉   | 345/500 [00:18<00:08, 17.83it/s]
eval model::  70%|██████▉   | 348/500 [00:18<00:08, 18.39it/s]
eval model::  70%|███████   | 351/500 [00:18<00:07, 20.17it/s]
eval model::  71%|███████   | 354/500 [00:18<00:06, 22.28it/s]
eval model::  71%|███████▏  | 357/500 [00:18<00:07, 19.90it/s]
eval model::  72%|███████▏  | 360/500 [00:18<00:06, 20.96it/s]
eval model::  73%|███████▎  | 363/500 [00:19<00:07, 18.22it/s]
eval model::  73%|███████▎  | 365/500 [00:19<00:07, 17.26it/s]
eval model::  73%|███████▎  | 367/500 [00:19<00:08, 15.14it/s]
eval model::  74%|███████▍  | 370/500 [00:19<00:07, 17.10it/s]
eval model::  74%|███████▍  | 372/500 [00:19<00:07, 17.36it/s]
eval model::  75%|███████▌  | 375/500 [00:19<00:06, 20.07it/s]
eval model::  76%|███████▌  | 379/500 [00:19<00:05, 23.63it/s]
eval model::  76%|███████▋  | 382/500 [00:20<00:05, 20.84it/s]
eval model::  77%|███████▋  | 386/500 [00:20<00:08, 13.95it/s]
eval model::  78%|███████▊  | 389/500 [00:20<00:06, 16.32it/s]
eval model::  78%|███████▊  | 392/500 [00:20<00:06, 17.42it/s]
eval model::  79%|███████▉  | 395/500 [00:20<00:05, 19.37it/s]
eval model::  80%|███████▉  | 398/500 [00:20<00:04, 21.10it/s]
eval model::  80%|████████  | 401/500 [00:21<00:05, 19.39it/s]
eval model::  81%|████████  | 404/500 [00:21<00:04, 20.77it/s]
eval model::  81%|████████▏ | 407/500 [00:21<00:04, 22.04it/s]
eval model::  82%|████████▏ | 411/500 [00:21<00:03, 24.47it/s]
eval model::  83%|████████▎ | 414/500 [00:21<00:03, 24.49it/s]
eval model::  83%|████████▎ | 417/500 [00:21<00:03, 20.86it/s]
eval model::  84%|████████▍ | 420/500 [00:22<00:06, 13.03it/s]
eval model::  85%|████████▍ | 423/500 [00:22<00:05, 14.97it/s]
eval model::  85%|████████▌ | 425/500 [00:22<00:05, 13.95it/s]
eval model::  86%|████████▌ | 428/500 [00:22<00:04, 16.64it/s]
eval model::  86%|████████▌ | 431/500 [00:22<00:03, 17.94it/s]
eval model::  87%|████████▋ | 435/500 [00:22<00:02, 21.94it/s]
eval model::  88%|████████▊ | 439/500 [00:23<00:02, 24.23it/s]
eval model::  88%|████████▊ | 442/500 [00:23<00:02, 25.23it/s]
eval model::  89%|████████▉ | 445/500 [00:23<00:02, 26.19it/s]
eval model::  90%|████████▉ | 448/500 [00:23<00:02, 23.13it/s]
eval model::  90%|█████████ | 451/500 [00:23<00:02, 22.72it/s]
eval model::  91%|█████████ | 454/500 [00:23<00:01, 24.18it/s]
eval model::  91%|█████████▏| 457/500 [00:23<00:01, 22.82it/s]
eval model::  92%|█████████▏| 460/500 [00:23<00:01, 22.66it/s]
eval model::  93%|█████████▎| 463/500 [00:24<00:01, 18.62it/s]
eval model::  93%|█████████▎| 466/500 [00:24<00:01, 17.58it/s]
eval model::  94%|█████████▎| 468/500 [00:24<00:01, 17.34it/s]
eval model::  94%|█████████▍| 471/500 [00:24<00:01, 18.07it/s]
eval model::  95%|█████████▍| 473/500 [00:24<00:01, 18.29it/s]
eval model::  95%|█████████▌| 475/500 [00:24<00:01, 18.20it/s]
eval model::  96%|█████████▌| 478/500 [00:25<00:01, 19.72it/s]
eval model::  96%|█████████▌| 481/500 [00:25<00:00, 21.15it/s]
eval model::  97%|█████████▋| 484/500 [00:25<00:00, 21.15it/s]
eval model::  97%|█████████▋| 487/500 [00:25<00:00, 21.47it/s]
eval model::  98%|█████████▊| 490/500 [00:25<00:00, 20.19it/s]
eval model::  99%|█████████▊| 493/500 [00:25<00:00, 17.76it/s]
eval model::  99%|█████████▉| 495/500 [00:25<00:00, 17.76it/s]
eval model:: 100%|█████████▉| 498/500 [00:26<00:00, 19.42it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 19.15it/s]
[2024/07/28 02:59:37] ppocr INFO: cur metric, precision: 0.7566844919786097, recall: 0.6812710640346654, hmean: 0.71700025335698, fps: 46.498502987539545
[2024/07/28 02:59:37] ppocr INFO: best metric, hmean: 0.7181174089068827, precision: 0.7568, recall: 0.6831969186326432, fps: 44.212831257019886, best_epoch: 1200
[2024/07/28 02:59:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:59:47] ppocr INFO: epoch: [1301/1500], global_step: 3903, lr: 0.001000, loss: 1.173487, loss_shrink_maps: 0.590119, loss_threshold_maps: 0.469313, loss_binary_maps: 0.117489, avg_reader_cost: 2.04666 s, avg_batch_cost: 2.44982 s, avg_samples: 12.5, ips: 5.10242 samples/s, eta: 1:00:22
[2024/07/28 02:59:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 02:59:57] ppocr INFO: epoch: [1302/1500], global_step: 3906, lr: 0.001000, loss: 1.174978, loss_shrink_maps: 0.590119, loss_threshold_maps: 0.467900, loss_binary_maps: 0.117489, avg_reader_cost: 1.51035 s, avg_batch_cost: 1.73861 s, avg_samples: 12.5, ips: 7.18964 samples/s, eta: 1:00:04
[2024/07/28 03:00:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:00:06] ppocr INFO: epoch: [1303/1500], global_step: 3909, lr: 0.001000, loss: 1.167784, loss_shrink_maps: 0.588224, loss_threshold_maps: 0.459181, loss_binary_maps: 0.117223, avg_reader_cost: 1.50717 s, avg_batch_cost: 1.73540 s, avg_samples: 12.5, ips: 7.20295 samples/s, eta: 0:59:46
[2024/07/28 03:00:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:00:15] ppocr INFO: epoch: [1304/1500], global_step: 3910, lr: 0.001000, loss: 1.167784, loss_shrink_maps: 0.588224, loss_threshold_maps: 0.459181, loss_binary_maps: 0.117223, avg_reader_cost: 0.42576 s, avg_batch_cost: 0.51582 s, avg_samples: 4.8, ips: 9.30556 samples/s, eta: 0:59:39
[2024/07/28 03:00:16] ppocr INFO: epoch: [1304/1500], global_step: 3912, lr: 0.001000, loss: 1.174978, loss_shrink_maps: 0.588224, loss_threshold_maps: 0.465798, loss_binary_maps: 0.117223, avg_reader_cost: 1.12262 s, avg_batch_cost: 1.26801 s, avg_samples: 7.7, ips: 6.07249 samples/s, eta: 0:59:27
[2024/07/28 03:00:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:00:26] ppocr INFO: epoch: [1305/1500], global_step: 3915, lr: 0.001000, loss: 1.174978, loss_shrink_maps: 0.588634, loss_threshold_maps: 0.465798, loss_binary_maps: 0.117307, avg_reader_cost: 1.54233 s, avg_batch_cost: 1.77935 s, avg_samples: 12.5, ips: 7.02503 samples/s, eta: 0:59:09
[2024/07/28 03:00:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:00:37] ppocr INFO: epoch: [1306/1500], global_step: 3918, lr: 0.001000, loss: 1.167784, loss_shrink_maps: 0.575032, loss_threshold_maps: 0.459181, loss_binary_maps: 0.114499, avg_reader_cost: 1.64444 s, avg_batch_cost: 1.87337 s, avg_samples: 12.5, ips: 6.67247 samples/s, eta: 0:58:51
[2024/07/28 03:00:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:00:46] ppocr INFO: epoch: [1307/1500], global_step: 3920, lr: 0.001000, loss: 1.162787, loss_shrink_maps: 0.571258, loss_threshold_maps: 0.453544, loss_binary_maps: 0.113729, avg_reader_cost: 0.93968 s, avg_batch_cost: 1.11555 s, avg_samples: 9.6, ips: 8.60562 samples/s, eta: 0:58:39
[2024/07/28 03:00:47] ppocr INFO: epoch: [1307/1500], global_step: 3921, lr: 0.001000, loss: 1.167784, loss_shrink_maps: 0.575032, loss_threshold_maps: 0.459181, loss_binary_maps: 0.114499, avg_reader_cost: 0.60385 s, avg_batch_cost: 0.65848 s, avg_samples: 2.9, ips: 4.40406 samples/s, eta: 0:58:33
[2024/07/28 03:00:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:00:57] ppocr INFO: epoch: [1308/1500], global_step: 3924, lr: 0.001000, loss: 1.142469, loss_shrink_maps: 0.566852, loss_threshold_maps: 0.453544, loss_binary_maps: 0.113103, avg_reader_cost: 1.60226 s, avg_batch_cost: 1.83093 s, avg_samples: 12.5, ips: 6.82711 samples/s, eta: 0:58:15
[2024/07/28 03:01:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:01:07] ppocr INFO: epoch: [1309/1500], global_step: 3927, lr: 0.001000, loss: 1.159176, loss_shrink_maps: 0.566852, loss_threshold_maps: 0.452999, loss_binary_maps: 0.113103, avg_reader_cost: 1.56764 s, avg_batch_cost: 1.79663 s, avg_samples: 12.5, ips: 6.95747 samples/s, eta: 0:57:56
[2024/07/28 03:01:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:01:17] ppocr INFO: epoch: [1310/1500], global_step: 3930, lr: 0.001000, loss: 1.171455, loss_shrink_maps: 0.566852, loss_threshold_maps: 0.462039, loss_binary_maps: 0.113103, avg_reader_cost: 1.62499 s, avg_batch_cost: 1.85289 s, avg_samples: 12.5, ips: 6.74624 samples/s, eta: 0:57:38
[2024/07/28 03:01:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:01:27] ppocr INFO: epoch: [1311/1500], global_step: 3933, lr: 0.001000, loss: 1.146470, loss_shrink_maps: 0.564700, loss_threshold_maps: 0.462039, loss_binary_maps: 0.112767, avg_reader_cost: 1.55692 s, avg_batch_cost: 1.79450 s, avg_samples: 12.5, ips: 6.96572 samples/s, eta: 0:57:20
[2024/07/28 03:01:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:01:36] ppocr INFO: epoch: [1312/1500], global_step: 3936, lr: 0.001000, loss: 1.134190, loss_shrink_maps: 0.562287, loss_threshold_maps: 0.457701, loss_binary_maps: 0.112259, avg_reader_cost: 1.48430 s, avg_batch_cost: 1.71361 s, avg_samples: 12.5, ips: 7.29455 samples/s, eta: 0:57:02
[2024/07/28 03:01:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:01:46] ppocr INFO: epoch: [1313/1500], global_step: 3939, lr: 0.001000, loss: 1.165397, loss_shrink_maps: 0.579208, loss_threshold_maps: 0.466417, loss_binary_maps: 0.115513, avg_reader_cost: 1.50564 s, avg_batch_cost: 1.74783 s, avg_samples: 12.5, ips: 7.15173 samples/s, eta: 0:56:43
[2024/07/28 03:01:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:01:55] ppocr INFO: epoch: [1314/1500], global_step: 3940, lr: 0.001000, loss: 1.146470, loss_shrink_maps: 0.564700, loss_threshold_maps: 0.466417, loss_binary_maps: 0.112767, avg_reader_cost: 0.41957 s, avg_batch_cost: 0.50222 s, avg_samples: 4.8, ips: 9.55750 samples/s, eta: 0:56:37
[2024/07/28 03:01:56] ppocr INFO: epoch: [1314/1500], global_step: 3942, lr: 0.001000, loss: 1.139584, loss_shrink_maps: 0.564700, loss_threshold_maps: 0.461854, loss_binary_maps: 0.112767, avg_reader_cost: 1.09554 s, avg_batch_cost: 1.24097 s, avg_samples: 7.7, ips: 6.20481 samples/s, eta: 0:56:25
[2024/07/28 03:02:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:02:06] ppocr INFO: epoch: [1315/1500], global_step: 3945, lr: 0.001000, loss: 1.139584, loss_shrink_maps: 0.562287, loss_threshold_maps: 0.466231, loss_binary_maps: 0.112259, avg_reader_cost: 1.63163 s, avg_batch_cost: 1.85956 s, avg_samples: 12.5, ips: 6.72200 samples/s, eta: 0:56:07
[2024/07/28 03:02:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:02:16] ppocr INFO: epoch: [1316/1500], global_step: 3948, lr: 0.001000, loss: 1.139584, loss_shrink_maps: 0.562287, loss_threshold_maps: 0.468952, loss_binary_maps: 0.112259, avg_reader_cost: 1.51307 s, avg_batch_cost: 1.74762 s, avg_samples: 12.5, ips: 7.15257 samples/s, eta: 0:55:49
[2024/07/28 03:02:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:02:26] ppocr INFO: epoch: [1317/1500], global_step: 3950, lr: 0.001000, loss: 1.121745, loss_shrink_maps: 0.546954, loss_threshold_maps: 0.466231, loss_binary_maps: 0.109021, avg_reader_cost: 0.93467 s, avg_batch_cost: 1.10750 s, avg_samples: 9.6, ips: 8.66818 samples/s, eta: 0:55:36
[2024/07/28 03:02:26] ppocr INFO: epoch: [1317/1500], global_step: 3951, lr: 0.001000, loss: 1.120380, loss_shrink_maps: 0.538627, loss_threshold_maps: 0.459820, loss_binary_maps: 0.107265, avg_reader_cost: 0.59925 s, avg_batch_cost: 0.65394 s, avg_samples: 2.9, ips: 4.43463 samples/s, eta: 0:55:30
[2024/07/28 03:02:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:02:36] ppocr INFO: epoch: [1318/1500], global_step: 3954, lr: 0.001000, loss: 1.087575, loss_shrink_maps: 0.533913, loss_threshold_maps: 0.439046, loss_binary_maps: 0.106075, avg_reader_cost: 1.54121 s, avg_batch_cost: 1.81773 s, avg_samples: 12.5, ips: 6.87669 samples/s, eta: 0:55:12
[2024/07/28 03:02:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:02:46] ppocr INFO: epoch: [1319/1500], global_step: 3957, lr: 0.001000, loss: 1.092174, loss_shrink_maps: 0.535893, loss_threshold_maps: 0.446718, loss_binary_maps: 0.106783, avg_reader_cost: 1.52388 s, avg_batch_cost: 1.75237 s, avg_samples: 12.5, ips: 7.13320 samples/s, eta: 0:54:54
[2024/07/28 03:02:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:02:56] ppocr INFO: epoch: [1320/1500], global_step: 3960, lr: 0.001000, loss: 1.092174, loss_shrink_maps: 0.537913, loss_threshold_maps: 0.446718, loss_binary_maps: 0.107265, avg_reader_cost: 1.52054 s, avg_batch_cost: 1.76079 s, avg_samples: 12.5, ips: 7.09907 samples/s, eta: 0:54:35

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:53,  9.27it/s]
eval model::   1%|          | 3/500 [00:00<00:35, 14.12it/s]
eval model::   1%|          | 6/500 [00:00<00:29, 16.96it/s]
eval model::   2%|▏         | 8/500 [00:00<00:27, 17.80it/s]
eval model::   2%|▏         | 11/500 [00:00<00:29, 16.85it/s]
eval model::   3%|▎         | 14/500 [00:00<00:28, 17.04it/s]
eval model::   3%|▎         | 17/500 [00:00<00:25, 18.77it/s]
eval model::   4%|▍         | 20/500 [00:01<00:25, 18.59it/s]
eval model::   5%|▍         | 23/500 [00:01<00:23, 20.44it/s]
eval model::   5%|▌         | 26/500 [00:01<00:22, 21.05it/s]
eval model::   6%|▌         | 29/500 [00:01<00:24, 19.55it/s]
eval model::   6%|▋         | 32/500 [00:01<00:23, 19.67it/s]
eval model::   7%|▋         | 35/500 [00:01<00:24, 19.03it/s]
eval model::   8%|▊         | 38/500 [00:02<00:23, 19.88it/s]
eval model::   8%|▊         | 41/500 [00:02<00:23, 19.51it/s]
eval model::   9%|▊         | 43/500 [00:02<00:26, 17.05it/s]
eval model::   9%|▉         | 46/500 [00:02<00:25, 17.70it/s]
eval model::  10%|▉         | 49/500 [00:02<00:22, 19.87it/s]
eval model::  10%|█         | 52/500 [00:02<00:22, 20.26it/s]
eval model::  11%|█         | 55/500 [00:02<00:20, 21.68it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:23, 19.06it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:28, 15.45it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:28, 15.32it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:23, 18.13it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:20, 21.35it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:21, 20.14it/s]
eval model::  15%|█▌        | 76/500 [00:04<00:19, 21.38it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:19, 21.24it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:22, 18.78it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:21, 19.22it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:22, 18.22it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:25, 16.17it/s]
eval model::  18%|█▊        | 92/500 [00:04<00:24, 16.95it/s]
eval model::  19%|█▉        | 95/500 [00:05<00:22, 18.18it/s]
eval model::  20%|█▉        | 98/500 [00:05<00:20, 19.66it/s]
eval model::  20%|██        | 101/500 [00:05<00:21, 18.52it/s]
eval model::  21%|██        | 104/500 [00:05<00:19, 20.28it/s]
eval model::  21%|██▏       | 107/500 [00:05<00:17, 22.19it/s]
eval model::  22%|██▏       | 110/500 [00:05<00:17, 21.71it/s]
eval model::  23%|██▎       | 113/500 [00:05<00:17, 22.00it/s]
eval model::  23%|██▎       | 116/500 [00:06<00:17, 21.64it/s]
eval model::  24%|██▍       | 119/500 [00:06<00:16, 23.52it/s]
eval model::  24%|██▍       | 122/500 [00:06<00:17, 21.53it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:20, 18.57it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:18, 20.48it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:18, 20.05it/s]
eval model::  27%|██▋       | 134/500 [00:06<00:17, 20.55it/s]
eval model::  27%|██▋       | 137/500 [00:07<00:18, 19.34it/s]
eval model::  28%|██▊       | 140/500 [00:07<00:19, 18.46it/s]
eval model::  29%|██▊       | 143/500 [00:07<00:18, 19.39it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:19, 18.56it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:19, 18.29it/s]
eval model::  30%|███       | 150/500 [00:07<00:17, 20.50it/s]
eval model::  31%|███       | 153/500 [00:07<00:17, 20.18it/s]
eval model::  31%|███       | 156/500 [00:08<00:16, 21.32it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:16, 20.89it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:22, 14.75it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:22, 15.21it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:19, 16.93it/s]
eval model::  34%|███▍      | 170/500 [00:08<00:17, 18.90it/s]
eval model::  35%|███▍      | 173/500 [00:09<00:17, 18.22it/s]
eval model::  35%|███▌      | 175/500 [00:09<00:19, 16.34it/s]
eval model::  36%|███▌      | 178/500 [00:09<00:17, 18.29it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:19, 16.41it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:16, 19.20it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:14, 21.72it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:14, 22.15it/s]
eval model::  38%|███▊      | 192/500 [00:10<00:14, 21.93it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:14, 21.06it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:14, 21.01it/s]
eval model::  40%|████      | 201/500 [00:10<00:15, 19.66it/s]
eval model::  41%|████      | 204/500 [00:10<00:13, 21.61it/s]
eval model::  41%|████▏     | 207/500 [00:11<00:23, 12.23it/s]
eval model::  42%|████▏     | 209/500 [00:11<00:22, 13.08it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:21, 13.26it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:20, 14.17it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:23, 12.27it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:24, 11.44it/s]
eval model::  44%|████▍     | 220/500 [00:12<00:19, 14.21it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:20, 13.83it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:15, 17.69it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:12, 21.40it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:11, 22.54it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:11, 22.28it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:11, 22.99it/s]
eval model::  48%|████▊     | 242/500 [00:13<00:13, 19.19it/s]
eval model::  49%|████▉     | 245/500 [00:13<00:12, 21.11it/s]
eval model::  50%|████▉     | 248/500 [00:13<00:11, 22.68it/s]
eval model::  50%|█████     | 251/500 [00:13<00:11, 22.12it/s]
eval model::  51%|█████     | 254/500 [00:13<00:11, 20.80it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:11, 20.68it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:10, 22.21it/s]
eval model::  53%|█████▎    | 263/500 [00:14<00:11, 20.00it/s]
eval model::  53%|█████▎    | 266/500 [00:14<00:12, 19.36it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:12, 18.57it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:11, 19.15it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:12, 17.53it/s]
eval model::  55%|█████▌    | 277/500 [00:14<00:12, 17.19it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:14, 15.74it/s]
eval model::  56%|█████▋    | 282/500 [00:15<00:12, 17.80it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:19, 11.27it/s]
eval model::  58%|█████▊    | 288/500 [00:15<00:15, 13.65it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:12, 16.18it/s]
eval model::  59%|█████▉    | 294/500 [00:16<00:13, 15.69it/s]
eval model::  59%|█████▉    | 296/500 [00:16<00:14, 13.79it/s]
eval model::  60%|█████▉    | 299/500 [00:16<00:12, 16.44it/s]
eval model::  60%|██████    | 301/500 [00:16<00:13, 15.20it/s]
eval model::  61%|██████    | 304/500 [00:16<00:11, 17.54it/s]
eval model::  61%|██████▏   | 307/500 [00:16<00:09, 19.41it/s]
eval model::  62%|██████▏   | 310/500 [00:16<00:08, 21.47it/s]
eval model::  63%|██████▎   | 313/500 [00:16<00:08, 22.88it/s]
eval model::  63%|██████▎   | 316/500 [00:17<00:08, 21.13it/s]
eval model::  64%|██████▍   | 319/500 [00:17<00:07, 22.77it/s]
eval model::  64%|██████▍   | 322/500 [00:17<00:08, 20.99it/s]
eval model::  65%|██████▌   | 325/500 [00:17<00:07, 22.06it/s]
eval model::  66%|██████▌   | 328/500 [00:17<00:08, 20.82it/s]
eval model::  66%|██████▌   | 331/500 [00:17<00:08, 19.56it/s]
eval model::  67%|██████▋   | 334/500 [00:17<00:07, 21.53it/s]
eval model::  67%|██████▋   | 337/500 [00:18<00:08, 19.51it/s]
eval model::  68%|██████▊   | 340/500 [00:18<00:10, 14.69it/s]
eval model::  69%|██████▊   | 343/500 [00:18<00:09, 16.32it/s]
eval model::  69%|██████▉   | 347/500 [00:18<00:07, 19.26it/s]
eval model::  70%|███████   | 351/500 [00:18<00:06, 22.01it/s]
eval model::  71%|███████   | 355/500 [00:19<00:06, 21.95it/s]
eval model::  72%|███████▏  | 358/500 [00:19<00:06, 21.20it/s]
eval model::  72%|███████▏  | 361/500 [00:19<00:08, 17.37it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:08, 17.00it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:08, 16.36it/s]
eval model::  74%|███████▍  | 369/500 [00:19<00:07, 17.22it/s]
eval model::  74%|███████▍  | 372/500 [00:20<00:07, 17.12it/s]
eval model::  75%|███████▌  | 375/500 [00:20<00:06, 18.27it/s]
eval model::  76%|███████▌  | 378/500 [00:20<00:06, 20.20it/s]
eval model::  76%|███████▌  | 381/500 [00:20<00:06, 19.20it/s]
eval model::  77%|███████▋  | 384/500 [00:20<00:05, 20.61it/s]
eval model::  77%|███████▋  | 387/500 [00:21<00:08, 12.71it/s]
eval model::  78%|███████▊  | 390/500 [00:21<00:07, 15.13it/s]
eval model::  79%|███████▊  | 393/500 [00:21<00:06, 16.86it/s]
eval model::  79%|███████▉  | 396/500 [00:21<00:05, 17.34it/s]
eval model::  80%|███████▉  | 399/500 [00:21<00:05, 18.97it/s]
eval model::  80%|████████  | 402/500 [00:21<00:05, 17.62it/s]
eval model::  81%|████████  | 405/500 [00:21<00:04, 19.55it/s]
eval model::  82%|████████▏ | 408/500 [00:22<00:04, 21.60it/s]
eval model::  82%|████████▏ | 411/500 [00:22<00:03, 23.38it/s]
eval model::  83%|████████▎ | 414/500 [00:22<00:03, 24.48it/s]
eval model::  83%|████████▎ | 417/500 [00:22<00:03, 22.09it/s]
eval model::  84%|████████▍ | 420/500 [00:22<00:05, 15.36it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:04, 15.96it/s]
eval model::  85%|████████▍ | 424/500 [00:23<00:04, 15.32it/s]
eval model::  85%|████████▌ | 426/500 [00:23<00:04, 16.21it/s]
eval model::  86%|████████▌ | 430/500 [00:23<00:03, 19.23it/s]
eval model::  87%|████████▋ | 433/500 [00:23<00:03, 19.89it/s]
eval model::  87%|████████▋ | 436/500 [00:23<00:03, 20.81it/s]
eval model::  88%|████████▊ | 439/500 [00:23<00:02, 22.43it/s]
eval model::  88%|████████▊ | 442/500 [00:23<00:02, 23.07it/s]
eval model::  89%|████████▉ | 445/500 [00:23<00:02, 22.84it/s]
eval model::  90%|████████▉ | 448/500 [00:24<00:02, 21.76it/s]
eval model::  90%|█████████ | 451/500 [00:24<00:02, 22.43it/s]
eval model::  91%|█████████ | 454/500 [00:24<00:01, 23.65it/s]
eval model::  91%|█████████▏| 457/500 [00:24<00:01, 24.21it/s]
eval model::  92%|█████████▏| 460/500 [00:24<00:01, 23.07it/s]
eval model::  93%|█████████▎| 463/500 [00:24<00:01, 19.84it/s]
eval model::  93%|█████████▎| 466/500 [00:25<00:01, 17.47it/s]
eval model::  94%|█████████▎| 468/500 [00:25<00:01, 17.83it/s]
eval model::  94%|█████████▍| 471/500 [00:25<00:01, 18.74it/s]
eval model::  95%|█████████▍| 473/500 [00:25<00:01, 18.92it/s]
eval model::  95%|█████████▌| 476/500 [00:25<00:01, 20.42it/s]
eval model::  96%|█████████▌| 479/500 [00:25<00:01, 18.68it/s]
eval model::  96%|█████████▌| 481/500 [00:25<00:01, 18.79it/s]
eval model::  97%|█████████▋| 484/500 [00:25<00:00, 20.01it/s]
eval model::  97%|█████████▋| 487/500 [00:26<00:00, 19.30it/s]
eval model::  98%|█████████▊| 490/500 [00:26<00:00, 20.47it/s]
eval model::  99%|█████████▊| 493/500 [00:26<00:00, 18.19it/s]
eval model::  99%|█████████▉| 495/500 [00:26<00:00, 17.44it/s]
eval model:: 100%|█████████▉| 498/500 [00:26<00:00, 18.76it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.69it/s]
[2024/07/28 03:03:23] ppocr INFO: cur metric, precision: 0.7213114754098361, recall: 0.6990852190659606, hmean: 0.7100244498777506, fps: 46.0676883652964
[2024/07/28 03:03:23] ppocr INFO: best metric, hmean: 0.7181174089068827, precision: 0.7568, recall: 0.6831969186326432, fps: 44.212831257019886, best_epoch: 1200
[2024/07/28 03:03:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:03:32] ppocr INFO: epoch: [1321/1500], global_step: 3963, lr: 0.001000, loss: 1.079990, loss_shrink_maps: 0.533913, loss_threshold_maps: 0.439046, loss_binary_maps: 0.106075, avg_reader_cost: 1.68552 s, avg_batch_cost: 1.98424 s, avg_samples: 12.5, ips: 6.29964 samples/s, eta: 0:54:17
[2024/07/28 03:03:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:03:42] ppocr INFO: epoch: [1322/1500], global_step: 3966, lr: 0.001000, loss: 1.079990, loss_shrink_maps: 0.534539, loss_threshold_maps: 0.435928, loss_binary_maps: 0.106427, avg_reader_cost: 1.53735 s, avg_batch_cost: 1.77432 s, avg_samples: 12.5, ips: 7.04496 samples/s, eta: 0:53:59
[2024/07/28 03:03:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:03:51] ppocr INFO: epoch: [1323/1500], global_step: 3969, lr: 0.001000, loss: 1.076328, loss_shrink_maps: 0.533907, loss_threshold_maps: 0.436312, loss_binary_maps: 0.106109, avg_reader_cost: 1.48449 s, avg_batch_cost: 1.72167 s, avg_samples: 12.5, ips: 7.26037 samples/s, eta: 0:53:41
[2024/07/28 03:03:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:04:00] ppocr INFO: epoch: [1324/1500], global_step: 3970, lr: 0.001000, loss: 1.074758, loss_shrink_maps: 0.532370, loss_threshold_maps: 0.431175, loss_binary_maps: 0.106109, avg_reader_cost: 0.40460 s, avg_batch_cost: 0.50132 s, avg_samples: 4.8, ips: 9.57471 samples/s, eta: 0:53:35
[2024/07/28 03:04:01] ppocr INFO: epoch: [1324/1500], global_step: 3972, lr: 0.001000, loss: 1.074758, loss_shrink_maps: 0.532370, loss_threshold_maps: 0.431175, loss_binary_maps: 0.106109, avg_reader_cost: 1.09401 s, avg_batch_cost: 1.23976 s, avg_samples: 7.7, ips: 6.21086 samples/s, eta: 0:53:23
[2024/07/28 03:04:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:04:11] ppocr INFO: epoch: [1325/1500], global_step: 3975, lr: 0.001000, loss: 1.065720, loss_shrink_maps: 0.528917, loss_threshold_maps: 0.426586, loss_binary_maps: 0.105463, avg_reader_cost: 1.49502 s, avg_batch_cost: 1.73258 s, avg_samples: 12.5, ips: 7.21465 samples/s, eta: 0:53:04
[2024/07/28 03:04:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:04:21] ppocr INFO: epoch: [1326/1500], global_step: 3978, lr: 0.001000, loss: 1.074758, loss_shrink_maps: 0.532370, loss_threshold_maps: 0.432092, loss_binary_maps: 0.106109, avg_reader_cost: 1.54018 s, avg_batch_cost: 1.77827 s, avg_samples: 12.5, ips: 7.02930 samples/s, eta: 0:52:46
[2024/07/28 03:04:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:04:30] ppocr INFO: epoch: [1327/1500], global_step: 3980, lr: 0.001000, loss: 1.074758, loss_shrink_maps: 0.538586, loss_threshold_maps: 0.432092, loss_binary_maps: 0.107121, avg_reader_cost: 0.96591 s, avg_batch_cost: 1.14863 s, avg_samples: 9.6, ips: 8.35780 samples/s, eta: 0:52:34
[2024/07/28 03:04:31] ppocr INFO: epoch: [1327/1500], global_step: 3981, lr: 0.001000, loss: 1.065720, loss_shrink_maps: 0.538586, loss_threshold_maps: 0.432092, loss_binary_maps: 0.107121, avg_reader_cost: 0.62039 s, avg_batch_cost: 0.67482 s, avg_samples: 2.9, ips: 4.29747 samples/s, eta: 0:52:28
[2024/07/28 03:04:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:04:41] ppocr INFO: epoch: [1328/1500], global_step: 3984, lr: 0.001000, loss: 1.104219, loss_shrink_maps: 0.544628, loss_threshold_maps: 0.451946, loss_binary_maps: 0.108180, avg_reader_cost: 1.59998 s, avg_batch_cost: 1.83832 s, avg_samples: 12.5, ips: 6.79969 samples/s, eta: 0:52:10
[2024/07/28 03:04:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:04:51] ppocr INFO: epoch: [1329/1500], global_step: 3987, lr: 0.001000, loss: 1.104219, loss_shrink_maps: 0.544628, loss_threshold_maps: 0.448631, loss_binary_maps: 0.108180, avg_reader_cost: 1.55494 s, avg_batch_cost: 1.82900 s, avg_samples: 12.5, ips: 6.83435 samples/s, eta: 0:51:51
[2024/07/28 03:04:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:05:01] ppocr INFO: epoch: [1330/1500], global_step: 3990, lr: 0.001000, loss: 1.136938, loss_shrink_maps: 0.565117, loss_threshold_maps: 0.451946, loss_binary_maps: 0.111984, avg_reader_cost: 1.57801 s, avg_batch_cost: 1.80692 s, avg_samples: 12.5, ips: 6.91784 samples/s, eta: 0:51:33
[2024/07/28 03:05:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:05:11] ppocr INFO: epoch: [1331/1500], global_step: 3993, lr: 0.001000, loss: 1.181784, loss_shrink_maps: 0.586892, loss_threshold_maps: 0.456266, loss_binary_maps: 0.116566, avg_reader_cost: 1.52114 s, avg_batch_cost: 1.75328 s, avg_samples: 12.5, ips: 7.12949 samples/s, eta: 0:51:15
[2024/07/28 03:05:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:05:21] ppocr INFO: epoch: [1332/1500], global_step: 3996, lr: 0.001000, loss: 1.181784, loss_shrink_maps: 0.591420, loss_threshold_maps: 0.456266, loss_binary_maps: 0.117849, avg_reader_cost: 1.62819 s, avg_batch_cost: 1.87426 s, avg_samples: 12.5, ips: 6.66930 samples/s, eta: 0:50:57
[2024/07/28 03:05:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:05:31] ppocr INFO: epoch: [1333/1500], global_step: 3999, lr: 0.001000, loss: 1.128039, loss_shrink_maps: 0.564150, loss_threshold_maps: 0.441866, loss_binary_maps: 0.112173, avg_reader_cost: 1.53478 s, avg_batch_cost: 1.76308 s, avg_samples: 12.5, ips: 7.08986 samples/s, eta: 0:50:39
[2024/07/28 03:05:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:05:40] ppocr INFO: epoch: [1334/1500], global_step: 4000, lr: 0.001000, loss: 1.128039, loss_shrink_maps: 0.562911, loss_threshold_maps: 0.441866, loss_binary_maps: 0.112130, avg_reader_cost: 0.45668 s, avg_batch_cost: 0.57157 s, avg_samples: 4.8, ips: 8.39785 samples/s, eta: 0:50:32
[2024/07/28 03:05:42] ppocr INFO: epoch: [1334/1500], global_step: 4002, lr: 0.001000, loss: 1.166424, loss_shrink_maps: 0.587928, loss_threshold_maps: 0.446409, loss_binary_maps: 0.117217, avg_reader_cost: 1.23540 s, avg_batch_cost: 1.38111 s, avg_samples: 7.7, ips: 5.57524 samples/s, eta: 0:50:21
[2024/07/28 03:05:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:05:52] ppocr INFO: epoch: [1335/1500], global_step: 4005, lr: 0.001000, loss: 1.184529, loss_shrink_maps: 0.595332, loss_threshold_maps: 0.447163, loss_binary_maps: 0.118668, avg_reader_cost: 1.50504 s, avg_batch_cost: 1.73410 s, avg_samples: 12.5, ips: 7.20835 samples/s, eta: 0:50:02
[2024/07/28 03:05:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:06:01] ppocr INFO: epoch: [1336/1500], global_step: 4008, lr: 0.001000, loss: 1.184529, loss_shrink_maps: 0.595745, loss_threshold_maps: 0.462280, loss_binary_maps: 0.118818, avg_reader_cost: 1.48171 s, avg_batch_cost: 1.72635 s, avg_samples: 12.5, ips: 7.24070 samples/s, eta: 0:49:44
[2024/07/28 03:06:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:06:11] ppocr INFO: epoch: [1337/1500], global_step: 4010, lr: 0.001000, loss: 1.180238, loss_shrink_maps: 0.593836, loss_threshold_maps: 0.462280, loss_binary_maps: 0.118461, avg_reader_cost: 0.92009 s, avg_batch_cost: 1.11678 s, avg_samples: 9.6, ips: 8.59616 samples/s, eta: 0:49:32
[2024/07/28 03:06:11] ppocr INFO: epoch: [1337/1500], global_step: 4011, lr: 0.001000, loss: 1.162854, loss_shrink_maps: 0.587928, loss_threshold_maps: 0.454995, loss_binary_maps: 0.117217, avg_reader_cost: 0.60413 s, avg_batch_cost: 0.65894 s, avg_samples: 2.9, ips: 4.40098 samples/s, eta: 0:49:26
[2024/07/28 03:06:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:06:22] ppocr INFO: epoch: [1338/1500], global_step: 4014, lr: 0.001000, loss: 1.144837, loss_shrink_maps: 0.570042, loss_threshold_maps: 0.445139, loss_binary_maps: 0.113647, avg_reader_cost: 1.66573 s, avg_batch_cost: 1.95318 s, avg_samples: 12.5, ips: 6.39981 samples/s, eta: 0:49:08
[2024/07/28 03:06:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:06:32] ppocr INFO: epoch: [1339/1500], global_step: 4017, lr: 0.001000, loss: 1.180621, loss_shrink_maps: 0.584108, loss_threshold_maps: 0.463280, loss_binary_maps: 0.116554, avg_reader_cost: 1.55828 s, avg_batch_cost: 1.81970 s, avg_samples: 12.5, ips: 6.86927 samples/s, eta: 0:48:49
[2024/07/28 03:06:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:06:42] ppocr INFO: epoch: [1340/1500], global_step: 4020, lr: 0.001000, loss: 1.190375, loss_shrink_maps: 0.598607, loss_threshold_maps: 0.476808, loss_binary_maps: 0.119673, avg_reader_cost: 1.51742 s, avg_batch_cost: 1.74587 s, avg_samples: 12.5, ips: 7.15977 samples/s, eta: 0:48:31

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:53,  9.38it/s]
eval model::   1%|          | 4/500 [00:00<00:27, 18.20it/s]
eval model::   1%|▏         | 7/500 [00:00<00:23, 21.26it/s]
eval model::   2%|▏         | 10/500 [00:00<00:25, 19.14it/s]
eval model::   2%|▏         | 12/500 [00:00<00:25, 18.90it/s]
eval model::   3%|▎         | 14/500 [00:00<00:26, 18.42it/s]
eval model::   4%|▎         | 18/500 [00:00<00:21, 21.96it/s]
eval model::   4%|▍         | 21/500 [00:01<00:24, 19.37it/s]
eval model::   5%|▍         | 24/500 [00:01<00:22, 21.03it/s]
eval model::   5%|▌         | 27/500 [00:01<00:22, 21.49it/s]
eval model::   6%|▌         | 30/500 [00:01<00:21, 21.70it/s]
eval model::   7%|▋         | 33/500 [00:01<00:21, 21.26it/s]
eval model::   7%|▋         | 36/500 [00:01<00:23, 19.50it/s]
eval model::   8%|▊         | 39/500 [00:01<00:24, 18.92it/s]
eval model::   8%|▊         | 42/500 [00:02<00:24, 18.36it/s]
eval model::   9%|▉         | 45/500 [00:02<00:22, 20.34it/s]
eval model::  10%|▉         | 48/500 [00:02<00:21, 20.75it/s]
eval model::  10%|█         | 51/500 [00:02<00:21, 21.12it/s]
eval model::  11%|█         | 54/500 [00:02<00:20, 22.18it/s]
eval model::  11%|█▏        | 57/500 [00:02<00:21, 20.89it/s]
eval model::  12%|█▏        | 60/500 [00:03<00:23, 18.54it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:31, 13.94it/s]
eval model::  13%|█▎        | 64/500 [00:03<00:29, 14.54it/s]
eval model::  14%|█▎        | 68/500 [00:03<00:23, 18.38it/s]
eval model::  14%|█▍        | 71/500 [00:03<00:20, 20.47it/s]
eval model::  15%|█▍        | 74/500 [00:03<00:22, 19.14it/s]
eval model::  15%|█▌        | 77/500 [00:03<00:20, 20.63it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:18, 23.16it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:17, 24.14it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:19, 20.89it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:22, 18.20it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:21, 18.69it/s]
eval model::  19%|█▉        | 96/500 [00:04<00:20, 20.16it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:19, 20.87it/s]
eval model::  20%|██        | 102/500 [00:05<00:20, 19.28it/s]
eval model::  21%|██        | 106/500 [00:05<00:17, 22.45it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:17, 22.64it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:18, 21.19it/s]
eval model::  23%|██▎       | 115/500 [00:05<00:20, 19.21it/s]
eval model::  24%|██▎       | 118/500 [00:05<00:18, 20.11it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:20, 18.30it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:20, 18.34it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:23, 15.96it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:20, 17.80it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:21, 17.20it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:22, 16.61it/s]
eval model::  27%|██▋       | 136/500 [00:06<00:18, 19.89it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:18, 19.84it/s]
eval model::  28%|██▊       | 140/500 [00:07<00:18, 19.08it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:19, 18.62it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:18, 19.60it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:18, 18.63it/s]
eval model::  30%|███       | 150/500 [00:07<00:17, 19.44it/s]
eval model::  30%|███       | 152/500 [00:07<00:19, 17.75it/s]
eval model::  31%|███       | 154/500 [00:07<00:19, 18.00it/s]
eval model::  31%|███       | 156/500 [00:08<00:18, 18.17it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:18, 18.72it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:27, 12.55it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:22, 15.26it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:19, 16.94it/s]
eval model::  34%|███▍      | 170/500 [00:08<00:17, 19.00it/s]
eval model::  35%|███▍      | 173/500 [00:09<00:17, 18.32it/s]
eval model::  35%|███▌      | 175/500 [00:09<00:20, 15.78it/s]
eval model::  36%|███▌      | 178/500 [00:09<00:17, 18.08it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:20, 15.86it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:18, 16.76it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:16, 18.66it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:15, 20.24it/s]
eval model::  38%|███▊      | 192/500 [00:10<00:14, 21.39it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:14, 21.15it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:13, 21.74it/s]
eval model::  40%|████      | 201/500 [00:10<00:13, 21.89it/s]
eval model::  41%|████      | 204/500 [00:10<00:13, 22.50it/s]
eval model::  41%|████▏     | 207/500 [00:11<00:23, 12.44it/s]
eval model::  42%|████▏     | 209/500 [00:11<00:21, 13.28it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:20, 14.19it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.24it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:22, 12.65it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:24, 11.59it/s]
eval model::  44%|████▍     | 219/500 [00:11<00:21, 13.12it/s]
eval model::  44%|████▍     | 221/500 [00:12<00:21, 12.77it/s]
eval model::  45%|████▍     | 224/500 [00:12<00:17, 15.84it/s]
eval model::  45%|████▌     | 227/500 [00:12<00:14, 18.45it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:13, 20.64it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:12, 20.66it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:12, 20.69it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:11, 22.20it/s]
eval model::  48%|████▊     | 242/500 [00:13<00:13, 19.46it/s]
eval model::  49%|████▉     | 245/500 [00:13<00:12, 19.86it/s]
eval model::  50%|████▉     | 249/500 [00:13<00:11, 21.15it/s]
eval model::  50%|█████     | 252/500 [00:13<00:11, 21.95it/s]
eval model::  51%|█████     | 255/500 [00:13<00:11, 21.41it/s]
eval model::  52%|█████▏    | 258/500 [00:13<00:11, 21.25it/s]
eval model::  52%|█████▏    | 261/500 [00:13<00:10, 21.88it/s]
eval model::  53%|█████▎    | 264/500 [00:14<00:12, 18.49it/s]
eval model::  53%|█████▎    | 267/500 [00:14<00:11, 19.96it/s]
eval model::  54%|█████▍    | 270/500 [00:14<00:12, 19.11it/s]
eval model::  55%|█████▍    | 273/500 [00:14<00:11, 18.99it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:13, 16.09it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:12, 17.89it/s]
eval model::  56%|█████▌    | 280/500 [00:15<00:12, 18.17it/s]
eval model::  57%|█████▋    | 283/500 [00:15<00:11, 19.59it/s]
eval model::  57%|█████▋    | 286/500 [00:15<00:19, 11.04it/s]
eval model::  58%|█████▊    | 289/500 [00:15<00:15, 13.58it/s]
eval model::  58%|█████▊    | 292/500 [00:15<00:14, 14.15it/s]
eval model::  59%|█████▉    | 294/500 [00:16<00:13, 15.04it/s]
eval model::  59%|█████▉    | 296/500 [00:16<00:15, 12.98it/s]
eval model::  60%|█████▉    | 299/500 [00:16<00:12, 15.90it/s]
eval model::  60%|██████    | 301/500 [00:16<00:13, 15.00it/s]
eval model::  61%|██████    | 304/500 [00:16<00:11, 16.65it/s]
eval model::  61%|██████▏   | 307/500 [00:16<00:10, 18.89it/s]
eval model::  62%|██████▏   | 310/500 [00:16<00:09, 20.82it/s]
eval model::  63%|██████▎   | 313/500 [00:17<00:08, 21.58it/s]
eval model::  63%|██████▎   | 316/500 [00:17<00:08, 21.19it/s]
eval model::  64%|██████▍   | 319/500 [00:17<00:07, 22.95it/s]
eval model::  64%|██████▍   | 322/500 [00:17<00:08, 20.99it/s]
eval model::  65%|██████▌   | 325/500 [00:17<00:07, 21.93it/s]
eval model::  66%|██████▌   | 328/500 [00:17<00:08, 21.09it/s]
eval model::  66%|██████▌   | 331/500 [00:17<00:07, 21.55it/s]
eval model::  67%|██████▋   | 334/500 [00:18<00:07, 21.52it/s]
eval model::  67%|██████▋   | 337/500 [00:18<00:07, 20.53it/s]
eval model::  68%|██████▊   | 340/500 [00:18<00:11, 14.49it/s]
eval model::  69%|██████▊   | 343/500 [00:18<00:09, 16.19it/s]
eval model::  69%|██████▉   | 346/500 [00:18<00:08, 17.77it/s]
eval model::  70%|██████▉   | 348/500 [00:18<00:08, 17.95it/s]
eval model::  70%|███████   | 351/500 [00:19<00:07, 20.11it/s]
eval model::  71%|███████   | 355/500 [00:19<00:06, 20.80it/s]
eval model::  72%|███████▏  | 358/500 [00:19<00:06, 20.73it/s]
eval model::  72%|███████▏  | 361/500 [00:19<00:07, 18.76it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:07, 18.70it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:07, 17.64it/s]
eval model::  74%|███████▎  | 368/500 [00:19<00:07, 18.06it/s]
eval model::  74%|███████▍  | 371/500 [00:20<00:06, 19.38it/s]
eval model::  75%|███████▍  | 373/500 [00:20<00:06, 19.34it/s]
eval model::  75%|███████▌  | 376/500 [00:20<00:05, 21.25it/s]
eval model::  76%|███████▌  | 380/500 [00:20<00:05, 21.63it/s]
eval model::  77%|███████▋  | 383/500 [00:20<00:05, 23.36it/s]
eval model::  77%|███████▋  | 386/500 [00:21<00:08, 13.77it/s]
eval model::  78%|███████▊  | 389/500 [00:21<00:06, 16.23it/s]
eval model::  78%|███████▊  | 392/500 [00:21<00:06, 16.47it/s]
eval model::  79%|███████▉  | 395/500 [00:21<00:06, 16.89it/s]
eval model::  80%|███████▉  | 398/500 [00:21<00:05, 19.28it/s]
eval model::  80%|████████  | 401/500 [00:21<00:05, 18.75it/s]
eval model::  81%|████████  | 404/500 [00:21<00:04, 20.11it/s]
eval model::  81%|████████▏ | 407/500 [00:22<00:04, 20.75it/s]
eval model::  82%|████████▏ | 410/500 [00:22<00:03, 22.57it/s]
eval model::  83%|████████▎ | 413/500 [00:22<00:03, 21.96it/s]
eval model::  83%|████████▎ | 416/500 [00:22<00:04, 20.00it/s]
eval model::  84%|████████▍ | 419/500 [00:22<00:04, 19.46it/s]
eval model::  84%|████████▍ | 422/500 [00:23<00:05, 13.01it/s]
eval model::  85%|████████▍ | 424/500 [00:23<00:05, 13.06it/s]
eval model::  85%|████████▌ | 426/500 [00:23<00:05, 14.06it/s]
eval model::  86%|████████▌ | 429/500 [00:23<00:04, 17.11it/s]
eval model::  86%|████████▋ | 432/500 [00:23<00:04, 16.68it/s]
eval model::  87%|████████▋ | 435/500 [00:23<00:03, 17.86it/s]
eval model::  88%|████████▊ | 438/500 [00:23<00:03, 19.29it/s]
eval model::  88%|████████▊ | 441/500 [00:23<00:03, 18.95it/s]
eval model::  89%|████████▉ | 444/500 [00:24<00:02, 20.23it/s]
eval model::  89%|████████▉ | 447/500 [00:24<00:02, 20.95it/s]
eval model::  90%|█████████ | 450/500 [00:24<00:02, 19.84it/s]
eval model::  91%|█████████ | 453/500 [00:24<00:02, 21.68it/s]
eval model::  91%|█████████ | 456/500 [00:24<00:01, 22.76it/s]
eval model::  92%|█████████▏| 459/500 [00:24<00:01, 21.90it/s]
eval model::  92%|█████████▏| 462/500 [00:25<00:02, 18.17it/s]
eval model::  93%|█████████▎| 464/500 [00:25<00:01, 18.24it/s]
eval model::  93%|█████████▎| 466/500 [00:25<00:02, 16.97it/s]
eval model::  94%|█████████▎| 468/500 [00:25<00:01, 16.78it/s]
eval model::  94%|█████████▍| 471/500 [00:25<00:01, 17.30it/s]
eval model::  95%|█████████▍| 473/500 [00:25<00:01, 17.81it/s]
eval model::  95%|█████████▌| 476/500 [00:25<00:01, 20.20it/s]
eval model::  96%|█████████▌| 479/500 [00:25<00:01, 20.03it/s]
eval model::  96%|█████████▋| 482/500 [00:26<00:00, 19.68it/s]
eval model::  97%|█████████▋| 485/500 [00:26<00:00, 19.74it/s]
eval model::  97%|█████████▋| 487/500 [00:26<00:00, 17.32it/s]
eval model::  98%|█████████▊| 490/500 [00:26<00:00, 18.89it/s]
eval model::  98%|█████████▊| 492/500 [00:26<00:00, 16.09it/s]
eval model::  99%|█████████▉| 495/500 [00:26<00:00, 17.85it/s]
eval model:: 100%|█████████▉| 498/500 [00:26<00:00, 20.28it/s]
eval model:: 100%|██████████| 500/500 [00:27<00:00, 18.51it/s]
[2024/07/28 03:07:09] ppocr INFO: cur metric, precision: 0.736788096459723, recall: 0.6913818006740491, hmean: 0.7133631395926479, fps: 45.903713378463245
[2024/07/28 03:07:09] ppocr INFO: best metric, hmean: 0.7181174089068827, precision: 0.7568, recall: 0.6831969186326432, fps: 44.212831257019886, best_epoch: 1200
[2024/07/28 03:07:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:07:17] ppocr INFO: epoch: [1341/1500], global_step: 4023, lr: 0.001000, loss: 1.158652, loss_shrink_maps: 0.571718, loss_threshold_maps: 0.462206, loss_binary_maps: 0.114078, avg_reader_cost: 1.54468 s, avg_batch_cost: 1.79843 s, avg_samples: 12.5, ips: 6.95049 samples/s, eta: 0:48:13
[2024/07/28 03:07:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:07:28] ppocr INFO: epoch: [1342/1500], global_step: 4026, lr: 0.001000, loss: 1.148320, loss_shrink_maps: 0.571718, loss_threshold_maps: 0.457041, loss_binary_maps: 0.114078, avg_reader_cost: 1.54604 s, avg_batch_cost: 1.78860 s, avg_samples: 12.5, ips: 6.98870 samples/s, eta: 0:47:55
[2024/07/28 03:07:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:07:37] ppocr INFO: epoch: [1343/1500], global_step: 4029, lr: 0.001000, loss: 1.130039, loss_shrink_maps: 0.569371, loss_threshold_maps: 0.457041, loss_binary_maps: 0.113448, avg_reader_cost: 1.52725 s, avg_batch_cost: 1.75572 s, avg_samples: 12.5, ips: 7.11960 samples/s, eta: 0:47:36
[2024/07/28 03:07:41] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:07:46] ppocr INFO: epoch: [1344/1500], global_step: 4030, lr: 0.001000, loss: 1.137724, loss_shrink_maps: 0.583437, loss_threshold_maps: 0.457041, loss_binary_maps: 0.116355, avg_reader_cost: 0.41555 s, avg_batch_cost: 0.50584 s, avg_samples: 4.8, ips: 9.48913 samples/s, eta: 0:47:30
[2024/07/28 03:07:47] ppocr INFO: epoch: [1344/1500], global_step: 4032, lr: 0.001000, loss: 1.170289, loss_shrink_maps: 0.587679, loss_threshold_maps: 0.462206, loss_binary_maps: 0.117139, avg_reader_cost: 1.10273 s, avg_batch_cost: 1.24824 s, avg_samples: 7.7, ips: 6.16871 samples/s, eta: 0:47:18
[2024/07/28 03:07:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:07:57] ppocr INFO: epoch: [1345/1500], global_step: 4035, lr: 0.001000, loss: 1.136928, loss_shrink_maps: 0.572338, loss_threshold_maps: 0.471808, loss_binary_maps: 0.114008, avg_reader_cost: 1.49225 s, avg_batch_cost: 1.74020 s, avg_samples: 12.5, ips: 7.18308 samples/s, eta: 0:47:00
[2024/07/28 03:08:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:08:07] ppocr INFO: epoch: [1346/1500], global_step: 4038, lr: 0.001000, loss: 1.155209, loss_shrink_maps: 0.585332, loss_threshold_maps: 0.469481, loss_binary_maps: 0.116510, avg_reader_cost: 1.54622 s, avg_batch_cost: 1.80981 s, avg_samples: 12.5, ips: 6.90682 samples/s, eta: 0:46:42
[2024/07/28 03:08:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:08:17] ppocr INFO: epoch: [1347/1500], global_step: 4040, lr: 0.001000, loss: 1.155209, loss_shrink_maps: 0.585332, loss_threshold_maps: 0.469481, loss_binary_maps: 0.116510, avg_reader_cost: 0.92158 s, avg_batch_cost: 1.09861 s, avg_samples: 9.6, ips: 8.73829 samples/s, eta: 0:46:29
[2024/07/28 03:08:17] ppocr INFO: epoch: [1347/1500], global_step: 4041, lr: 0.001000, loss: 1.155209, loss_shrink_maps: 0.585332, loss_threshold_maps: 0.466001, loss_binary_maps: 0.116510, avg_reader_cost: 0.59489 s, avg_batch_cost: 0.65000 s, avg_samples: 2.9, ips: 4.46151 samples/s, eta: 0:46:23
[2024/07/28 03:08:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:08:27] ppocr INFO: epoch: [1348/1500], global_step: 4044, lr: 0.001000, loss: 1.112575, loss_shrink_maps: 0.555501, loss_threshold_maps: 0.458554, loss_binary_maps: 0.110672, avg_reader_cost: 1.48243 s, avg_batch_cost: 1.73132 s, avg_samples: 12.5, ips: 7.21993 samples/s, eta: 0:46:05
[2024/07/28 03:08:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:08:37] ppocr INFO: epoch: [1349/1500], global_step: 4047, lr: 0.001000, loss: 1.095497, loss_shrink_maps: 0.538242, loss_threshold_maps: 0.455529, loss_binary_maps: 0.107205, avg_reader_cost: 1.55551 s, avg_batch_cost: 1.83583 s, avg_samples: 12.5, ips: 6.80889 samples/s, eta: 0:45:47
[2024/07/28 03:08:41] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:08:48] ppocr INFO: epoch: [1350/1500], global_step: 4050, lr: 0.001000, loss: 1.095497, loss_shrink_maps: 0.544506, loss_threshold_maps: 0.442302, loss_binary_maps: 0.108648, avg_reader_cost: 1.73966 s, avg_batch_cost: 1.99180 s, avg_samples: 12.5, ips: 6.27572 samples/s, eta: 0:45:29
[2024/07/28 03:08:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:08:59] ppocr INFO: epoch: [1351/1500], global_step: 4053, lr: 0.001000, loss: 1.095497, loss_shrink_maps: 0.549357, loss_threshold_maps: 0.442302, loss_binary_maps: 0.109349, avg_reader_cost: 1.66366 s, avg_batch_cost: 1.89199 s, avg_samples: 12.5, ips: 6.60679 samples/s, eta: 0:45:11
[2024/07/28 03:09:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:09:09] ppocr INFO: epoch: [1352/1500], global_step: 4056, lr: 0.001000, loss: 1.072155, loss_shrink_maps: 0.541095, loss_threshold_maps: 0.436296, loss_binary_maps: 0.107886, avg_reader_cost: 1.63584 s, avg_batch_cost: 1.87137 s, avg_samples: 12.5, ips: 6.67961 samples/s, eta: 0:44:53
[2024/07/28 03:09:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:09:19] ppocr INFO: epoch: [1353/1500], global_step: 4059, lr: 0.001000, loss: 1.052342, loss_shrink_maps: 0.519756, loss_threshold_maps: 0.432994, loss_binary_maps: 0.103697, avg_reader_cost: 1.52799 s, avg_batch_cost: 1.76768 s, avg_samples: 12.5, ips: 7.07140 samples/s, eta: 0:44:34
[2024/07/28 03:09:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:09:27] ppocr INFO: epoch: [1354/1500], global_step: 4060, lr: 0.001000, loss: 1.042979, loss_shrink_maps: 0.518038, loss_threshold_maps: 0.431650, loss_binary_maps: 0.103231, avg_reader_cost: 0.41024 s, avg_batch_cost: 0.49846 s, avg_samples: 4.8, ips: 9.62956 samples/s, eta: 0:44:28
[2024/07/28 03:09:29] ppocr INFO: epoch: [1354/1500], global_step: 4062, lr: 0.001000, loss: 1.057370, loss_shrink_maps: 0.520926, loss_threshold_maps: 0.432994, loss_binary_maps: 0.103785, avg_reader_cost: 1.08839 s, avg_batch_cost: 1.23430 s, avg_samples: 7.7, ips: 6.23834 samples/s, eta: 0:44:16
[2024/07/28 03:09:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:09:39] ppocr INFO: epoch: [1355/1500], global_step: 4065, lr: 0.001000, loss: 1.071343, loss_shrink_maps: 0.541095, loss_threshold_maps: 0.435090, loss_binary_maps: 0.107886, avg_reader_cost: 1.55127 s, avg_batch_cost: 1.78051 s, avg_samples: 12.5, ips: 7.02046 samples/s, eta: 0:43:58
[2024/07/28 03:09:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:09:49] ppocr INFO: epoch: [1356/1500], global_step: 4068, lr: 0.001000, loss: 1.066472, loss_shrink_maps: 0.532041, loss_threshold_maps: 0.447399, loss_binary_maps: 0.105889, avg_reader_cost: 1.51007 s, avg_batch_cost: 1.73957 s, avg_samples: 12.5, ips: 7.18567 samples/s, eta: 0:43:40
[2024/07/28 03:09:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:09:59] ppocr INFO: epoch: [1357/1500], global_step: 4070, lr: 0.001000, loss: 1.066472, loss_shrink_maps: 0.532041, loss_threshold_maps: 0.448775, loss_binary_maps: 0.105889, avg_reader_cost: 0.93063 s, avg_batch_cost: 1.12380 s, avg_samples: 9.6, ips: 8.54246 samples/s, eta: 0:43:27
[2024/07/28 03:09:59] ppocr INFO: epoch: [1357/1500], global_step: 4071, lr: 0.001000, loss: 1.066472, loss_shrink_maps: 0.532041, loss_threshold_maps: 0.448775, loss_binary_maps: 0.105889, avg_reader_cost: 0.60754 s, avg_batch_cost: 0.66281 s, avg_samples: 2.9, ips: 4.37533 samples/s, eta: 0:43:21
[2024/07/28 03:10:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:10:09] ppocr INFO: epoch: [1358/1500], global_step: 4074, lr: 0.001000, loss: 1.103176, loss_shrink_maps: 0.548392, loss_threshold_maps: 0.451808, loss_binary_maps: 0.109265, avg_reader_cost: 1.63301 s, avg_batch_cost: 1.87558 s, avg_samples: 12.5, ips: 6.66462 samples/s, eta: 0:43:03
[2024/07/28 03:10:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:10:19] ppocr INFO: epoch: [1359/1500], global_step: 4077, lr: 0.001000, loss: 1.144864, loss_shrink_maps: 0.576725, loss_threshold_maps: 0.451808, loss_binary_maps: 0.115031, avg_reader_cost: 1.53279 s, avg_batch_cost: 1.76056 s, avg_samples: 12.5, ips: 7.10001 samples/s, eta: 0:42:45
[2024/07/28 03:10:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:10:29] ppocr INFO: epoch: [1360/1500], global_step: 4080, lr: 0.001000, loss: 1.160761, loss_shrink_maps: 0.584651, loss_threshold_maps: 0.456354, loss_binary_maps: 0.116062, avg_reader_cost: 1.49442 s, avg_batch_cost: 1.72970 s, avg_samples: 12.5, ips: 7.22670 samples/s, eta: 0:42:27

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:54,  9.11it/s]
eval model::   1%|          | 4/500 [00:00<00:27, 17.72it/s]
eval model::   1%|          | 6/500 [00:00<00:27, 18.03it/s]
eval model::   2%|▏         | 8/500 [00:00<00:27, 17.86it/s]
eval model::   2%|▏         | 10/500 [00:00<00:26, 18.15it/s]
eval model::   2%|▏         | 12/500 [00:00<00:26, 18.11it/s]
eval model::   3%|▎         | 14/500 [00:00<00:27, 17.65it/s]
eval model::   3%|▎         | 17/500 [00:00<00:23, 20.90it/s]
eval model::   4%|▍         | 20/500 [00:01<00:24, 19.69it/s]
eval model::   5%|▍         | 23/500 [00:01<00:21, 22.19it/s]
eval model::   5%|▌         | 26/500 [00:01<00:22, 20.85it/s]
eval model::   6%|▌         | 29/500 [00:01<00:21, 21.63it/s]
eval model::   6%|▋         | 32/500 [00:01<00:23, 19.58it/s]
eval model::   7%|▋         | 35/500 [00:01<00:23, 19.55it/s]
eval model::   8%|▊         | 38/500 [00:01<00:22, 20.54it/s]
eval model::   8%|▊         | 41/500 [00:02<00:24, 19.05it/s]
eval model::   9%|▊         | 43/500 [00:02<00:27, 16.85it/s]
eval model::   9%|▉         | 46/500 [00:02<00:25, 17.82it/s]
eval model::  10%|▉         | 49/500 [00:02<00:22, 20.26it/s]
eval model::  10%|█         | 52/500 [00:02<00:22, 20.09it/s]
eval model::  11%|█         | 55/500 [00:02<00:22, 19.49it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:23, 18.46it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:26, 16.29it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:26, 16.66it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:20, 20.80it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:19, 22.12it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:18, 23.27it/s]
eval model::  15%|█▌        | 76/500 [00:03<00:17, 23.76it/s]
eval model::  16%|█▌        | 79/500 [00:03<00:17, 24.75it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:17, 24.28it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:18, 22.87it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:19, 21.17it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:19, 20.51it/s]
eval model::  19%|█▉        | 94/500 [00:04<00:19, 21.10it/s]
eval model::  19%|█▉        | 97/500 [00:04<00:18, 21.34it/s]
eval model::  20%|██        | 100/500 [00:05<00:21, 19.00it/s]
eval model::  20%|██        | 102/500 [00:05<00:21, 18.85it/s]
eval model::  21%|██        | 106/500 [00:05<00:18, 21.80it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:16, 23.00it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:17, 22.64it/s]
eval model::  23%|██▎       | 115/500 [00:05<00:20, 18.59it/s]
eval model::  24%|██▎       | 118/500 [00:05<00:19, 19.78it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:20, 18.15it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:20, 18.35it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:25, 14.51it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:23, 15.68it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:26, 13.73it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:26, 14.13it/s]
eval model::  27%|██▋       | 135/500 [00:07<00:21, 17.13it/s]
eval model::  27%|██▋       | 137/500 [00:07<00:20, 17.45it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:20, 17.65it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:18, 19.04it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:19, 18.02it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:21, 16.48it/s]
eval model::  30%|███       | 150/500 [00:07<00:18, 18.62it/s]
eval model::  30%|███       | 152/500 [00:07<00:20, 16.60it/s]
eval model::  31%|███       | 155/500 [00:08<00:17, 19.47it/s]
eval model::  32%|███▏      | 158/500 [00:08<00:16, 21.03it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:22, 14.79it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:22, 15.18it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:19, 17.50it/s]
eval model::  34%|███▎      | 168/500 [00:08<00:18, 17.82it/s]
eval model::  34%|███▍      | 171/500 [00:09<00:17, 18.55it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:20, 15.67it/s]
eval model::  35%|███▌      | 177/500 [00:09<00:18, 17.26it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:17, 17.98it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:15, 20.31it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:14, 22.15it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:13, 22.84it/s]
eval model::  38%|███▊      | 192/500 [00:10<00:13, 22.12it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:14, 20.48it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:14, 20.91it/s]
eval model::  40%|████      | 201/500 [00:10<00:14, 20.61it/s]
eval model::  41%|████      | 204/500 [00:10<00:13, 22.23it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:19, 14.72it/s]
eval model::  42%|████▏     | 209/500 [00:11<00:19, 15.01it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:19, 14.96it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.37it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:20, 14.12it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:21, 13.46it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:16, 16.48it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:18, 14.67it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:14, 18.68it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:11, 23.01it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:11, 24.01it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:11, 23.36it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:10, 23.97it/s]
eval model::  48%|████▊     | 242/500 [00:12<00:13, 18.48it/s]
eval model::  49%|████▉     | 245/500 [00:12<00:13, 19.31it/s]
eval model::  50%|████▉     | 248/500 [00:13<00:13, 19.37it/s]
eval model::  50%|█████     | 251/500 [00:13<00:13, 18.54it/s]
eval model::  51%|█████     | 253/500 [00:13<00:13, 18.77it/s]
eval model::  51%|█████     | 255/500 [00:13<00:13, 18.19it/s]
eval model::  52%|█████▏    | 258/500 [00:13<00:12, 19.68it/s]
eval model::  52%|█████▏    | 261/500 [00:13<00:12, 18.99it/s]
eval model::  53%|█████▎    | 263/500 [00:13<00:13, 18.03it/s]
eval model::  53%|█████▎    | 265/500 [00:14<00:13, 16.86it/s]
eval model::  53%|█████▎    | 267/500 [00:14<00:14, 16.62it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:15, 15.05it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:14, 16.06it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:14, 15.93it/s]
eval model::  55%|█████▌    | 277/500 [00:14<00:13, 16.76it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:13, 16.40it/s]
eval model::  56%|█████▋    | 282/500 [00:15<00:11, 18.86it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:15, 13.97it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:14, 14.92it/s]
eval model::  58%|█████▊    | 290/500 [00:15<00:11, 17.88it/s]
eval model::  59%|█████▊    | 293/500 [00:15<00:10, 19.39it/s]
eval model::  59%|█████▉    | 296/500 [00:16<00:13, 14.84it/s]
eval model::  60%|██████    | 300/500 [00:16<00:11, 17.02it/s]
eval model::  61%|██████    | 303/500 [00:16<00:10, 18.45it/s]
eval model::  61%|██████    | 306/500 [00:16<00:10, 19.08it/s]
eval model::  62%|██████▏   | 309/500 [00:16<00:08, 21.33it/s]
eval model::  62%|██████▏   | 312/500 [00:16<00:08, 22.48it/s]
eval model::  63%|██████▎   | 315/500 [00:16<00:08, 21.86it/s]
eval model::  64%|██████▎   | 318/500 [00:16<00:07, 23.42it/s]
eval model::  64%|██████▍   | 321/500 [00:17<00:08, 22.18it/s]
eval model::  65%|██████▍   | 324/500 [00:17<00:08, 21.82it/s]
eval model::  65%|██████▌   | 327/500 [00:17<00:07, 23.66it/s]
eval model::  66%|██████▌   | 330/500 [00:17<00:07, 22.93it/s]
eval model::  67%|██████▋   | 333/500 [00:17<00:08, 20.61it/s]
eval model::  67%|██████▋   | 336/500 [00:17<00:07, 20.59it/s]
eval model::  68%|██████▊   | 339/500 [00:18<00:07, 20.43it/s]
eval model::  68%|██████▊   | 342/500 [00:18<00:09, 16.66it/s]
eval model::  69%|██████▉   | 345/500 [00:18<00:08, 18.89it/s]
eval model::  70%|██████▉   | 348/500 [00:18<00:07, 19.97it/s]
eval model::  70%|███████   | 352/500 [00:18<00:06, 22.84it/s]
eval model::  71%|███████   | 355/500 [00:18<00:06, 22.58it/s]
eval model::  72%|███████▏  | 358/500 [00:18<00:06, 21.95it/s]
eval model::  72%|███████▏  | 361/500 [00:19<00:06, 19.94it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:07, 19.10it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:07, 18.97it/s]
eval model::  74%|███████▎  | 368/500 [00:19<00:06, 19.00it/s]
eval model::  74%|███████▍  | 371/500 [00:19<00:06, 19.58it/s]
eval model::  75%|███████▍  | 374/500 [00:19<00:05, 21.29it/s]
eval model::  75%|███████▌  | 377/500 [00:19<00:05, 22.98it/s]
eval model::  76%|███████▌  | 380/500 [00:20<00:05, 20.85it/s]
eval model::  77%|███████▋  | 383/500 [00:20<00:05, 22.69it/s]
eval model::  77%|███████▋  | 386/500 [00:20<00:07, 15.35it/s]
eval model::  78%|███████▊  | 389/500 [00:20<00:06, 17.61it/s]
eval model::  78%|███████▊  | 392/500 [00:20<00:05, 18.37it/s]
eval model::  79%|███████▉  | 395/500 [00:20<00:05, 20.06it/s]
eval model::  80%|███████▉  | 398/500 [00:20<00:04, 21.70it/s]
eval model::  80%|████████  | 401/500 [00:21<00:04, 20.21it/s]
eval model::  81%|████████  | 404/500 [00:21<00:04, 21.44it/s]
eval model::  81%|████████▏ | 407/500 [00:21<00:04, 23.23it/s]
eval model::  82%|████████▏ | 411/500 [00:21<00:03, 25.48it/s]
eval model::  83%|████████▎ | 414/500 [00:21<00:03, 24.63it/s]
eval model::  83%|████████▎ | 417/500 [00:21<00:03, 22.61it/s]
eval model::  84%|████████▍ | 420/500 [00:21<00:04, 19.90it/s]
eval model::  85%|████████▍ | 423/500 [00:22<00:03, 20.49it/s]
eval model::  85%|████████▌ | 426/500 [00:22<00:03, 20.52it/s]
eval model::  86%|████████▌ | 430/500 [00:22<00:03, 22.33it/s]
eval model::  87%|████████▋ | 433/500 [00:22<00:03, 21.78it/s]
eval model::  87%|████████▋ | 436/500 [00:22<00:02, 22.64it/s]
eval model::  88%|████████▊ | 439/500 [00:22<00:02, 23.85it/s]
eval model::  88%|████████▊ | 442/500 [00:22<00:02, 24.51it/s]
eval model::  89%|████████▉ | 446/500 [00:23<00:02, 26.64it/s]
eval model::  90%|████████▉ | 449/500 [00:23<00:02, 22.26it/s]
eval model::  90%|█████████ | 452/500 [00:23<00:02, 21.60it/s]
eval model::  91%|█████████ | 455/500 [00:23<00:02, 21.85it/s]
eval model::  92%|█████████▏| 458/500 [00:23<00:01, 22.16it/s]
eval model::  92%|█████████▏| 461/500 [00:23<00:01, 20.80it/s]
eval model::  93%|█████████▎| 464/500 [00:23<00:01, 20.93it/s]
eval model::  93%|█████████▎| 467/500 [00:24<00:01, 17.69it/s]
eval model::  94%|█████████▍| 470/500 [00:24<00:01, 19.65it/s]
eval model::  95%|█████████▍| 473/500 [00:24<00:01, 20.50it/s]
eval model::  95%|█████████▌| 476/500 [00:24<00:01, 20.96it/s]
eval model::  96%|█████████▌| 479/500 [00:24<00:00, 22.46it/s]
eval model::  96%|█████████▋| 482/500 [00:24<00:00, 21.26it/s]
eval model::  97%|█████████▋| 485/500 [00:24<00:00, 22.91it/s]
eval model::  98%|█████████▊| 488/500 [00:25<00:00, 21.61it/s]
eval model::  98%|█████████▊| 491/500 [00:25<00:00, 19.34it/s]
eval model::  99%|█████████▉| 494/500 [00:25<00:00, 18.22it/s]
eval model::  99%|█████████▉| 496/500 [00:25<00:00, 17.51it/s]
eval model:: 100%|█████████▉| 499/500 [00:25<00:00, 19.29it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.41it/s]
[2024/07/28 03:10:55] ppocr INFO: cur metric, precision: 0.7631284916201118, recall: 0.6576793452094367, hmean: 0.7064908197569175, fps: 45.4435385022865
[2024/07/28 03:10:55] ppocr INFO: best metric, hmean: 0.7181174089068827, precision: 0.7568, recall: 0.6831969186326432, fps: 44.212831257019886, best_epoch: 1200
[2024/07/28 03:10:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:11:05] ppocr INFO: epoch: [1361/1500], global_step: 4083, lr: 0.001000, loss: 1.156480, loss_shrink_maps: 0.581505, loss_threshold_maps: 0.451808, loss_binary_maps: 0.115925, avg_reader_cost: 2.04849 s, avg_batch_cost: 2.45170 s, avg_samples: 12.5, ips: 5.09850 samples/s, eta: 0:42:09
[2024/07/28 03:11:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:11:15] ppocr INFO: epoch: [1362/1500], global_step: 4086, lr: 0.001000, loss: 1.144864, loss_shrink_maps: 0.576725, loss_threshold_maps: 0.451574, loss_binary_maps: 0.115031, avg_reader_cost: 1.50973 s, avg_batch_cost: 1.76451 s, avg_samples: 12.5, ips: 7.08411 samples/s, eta: 0:41:51
[2024/07/28 03:11:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:11:25] ppocr INFO: epoch: [1363/1500], global_step: 4089, lr: 0.001000, loss: 1.143264, loss_shrink_maps: 0.563657, loss_threshold_maps: 0.451574, loss_binary_maps: 0.112023, avg_reader_cost: 1.55387 s, avg_batch_cost: 1.78131 s, avg_samples: 12.5, ips: 7.01730 samples/s, eta: 0:41:33
[2024/07/28 03:11:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:11:33] ppocr INFO: epoch: [1364/1500], global_step: 4090, lr: 0.001000, loss: 1.135365, loss_shrink_maps: 0.563657, loss_threshold_maps: 0.449152, loss_binary_maps: 0.112023, avg_reader_cost: 0.43578 s, avg_batch_cost: 0.51894 s, avg_samples: 4.8, ips: 9.24964 samples/s, eta: 0:41:26
[2024/07/28 03:11:35] ppocr INFO: epoch: [1364/1500], global_step: 4092, lr: 0.001000, loss: 1.135365, loss_shrink_maps: 0.563657, loss_threshold_maps: 0.449152, loss_binary_maps: 0.112023, avg_reader_cost: 1.12895 s, avg_batch_cost: 1.27453 s, avg_samples: 7.7, ips: 6.04145 samples/s, eta: 0:41:14
[2024/07/28 03:11:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:11:45] ppocr INFO: epoch: [1365/1500], global_step: 4095, lr: 0.001000, loss: 1.095557, loss_shrink_maps: 0.549355, loss_threshold_maps: 0.443444, loss_binary_maps: 0.110003, avg_reader_cost: 1.58695 s, avg_batch_cost: 1.86546 s, avg_samples: 12.5, ips: 6.70076 samples/s, eta: 0:40:56
[2024/07/28 03:11:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:11:55] ppocr INFO: epoch: [1366/1500], global_step: 4098, lr: 0.001000, loss: 1.105958, loss_shrink_maps: 0.549355, loss_threshold_maps: 0.445563, loss_binary_maps: 0.110003, avg_reader_cost: 1.53131 s, avg_batch_cost: 1.81417 s, avg_samples: 12.5, ips: 6.89019 samples/s, eta: 0:40:38
[2024/07/28 03:11:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:12:04] ppocr INFO: epoch: [1367/1500], global_step: 4100, lr: 0.001000, loss: 1.105958, loss_shrink_maps: 0.549355, loss_threshold_maps: 0.445563, loss_binary_maps: 0.110003, avg_reader_cost: 0.90286 s, avg_batch_cost: 1.09203 s, avg_samples: 9.6, ips: 8.79094 samples/s, eta: 0:40:26
[2024/07/28 03:12:05] ppocr INFO: epoch: [1367/1500], global_step: 4101, lr: 0.001000, loss: 1.123259, loss_shrink_maps: 0.556701, loss_threshold_maps: 0.449007, loss_binary_maps: 0.110979, avg_reader_cost: 0.59186 s, avg_batch_cost: 0.64658 s, avg_samples: 2.9, ips: 4.48514 samples/s, eta: 0:40:20
[2024/07/28 03:12:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:12:16] ppocr INFO: epoch: [1368/1500], global_step: 4104, lr: 0.001000, loss: 1.138888, loss_shrink_maps: 0.563657, loss_threshold_maps: 0.455750, loss_binary_maps: 0.112023, avg_reader_cost: 1.67481 s, avg_batch_cost: 1.90359 s, avg_samples: 12.5, ips: 6.56655 samples/s, eta: 0:40:02
[2024/07/28 03:12:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:12:26] ppocr INFO: epoch: [1369/1500], global_step: 4107, lr: 0.001000, loss: 1.116747, loss_shrink_maps: 0.556312, loss_threshold_maps: 0.449847, loss_binary_maps: 0.111047, avg_reader_cost: 1.53020 s, avg_batch_cost: 1.76719 s, avg_samples: 12.5, ips: 7.07337 samples/s, eta: 0:39:43
[2024/07/28 03:12:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:12:36] ppocr INFO: epoch: [1370/1500], global_step: 4110, lr: 0.001000, loss: 1.146309, loss_shrink_maps: 0.573060, loss_threshold_maps: 0.458642, loss_binary_maps: 0.114210, avg_reader_cost: 1.56904 s, avg_batch_cost: 1.79788 s, avg_samples: 12.5, ips: 6.95265 samples/s, eta: 0:39:25
[2024/07/28 03:12:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:12:46] ppocr INFO: epoch: [1371/1500], global_step: 4113, lr: 0.001000, loss: 1.116506, loss_shrink_maps: 0.550533, loss_threshold_maps: 0.455721, loss_binary_maps: 0.109656, avg_reader_cost: 1.54048 s, avg_batch_cost: 1.77057 s, avg_samples: 12.5, ips: 7.05987 samples/s, eta: 0:39:07
[2024/07/28 03:12:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:12:56] ppocr INFO: epoch: [1372/1500], global_step: 4116, lr: 0.001000, loss: 1.138646, loss_shrink_maps: 0.561645, loss_threshold_maps: 0.458642, loss_binary_maps: 0.111552, avg_reader_cost: 1.52171 s, avg_batch_cost: 1.77559 s, avg_samples: 12.5, ips: 7.03989 samples/s, eta: 0:38:49
[2024/07/28 03:12:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:13:06] ppocr INFO: epoch: [1373/1500], global_step: 4119, lr: 0.001000, loss: 1.146309, loss_shrink_maps: 0.573060, loss_threshold_maps: 0.458975, loss_binary_maps: 0.114210, avg_reader_cost: 1.64794 s, avg_batch_cost: 1.87699 s, avg_samples: 12.5, ips: 6.65961 samples/s, eta: 0:38:31
[2024/07/28 03:13:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:13:15] ppocr INFO: epoch: [1374/1500], global_step: 4120, lr: 0.001000, loss: 1.141229, loss_shrink_maps: 0.574021, loss_threshold_maps: 0.458642, loss_binary_maps: 0.114186, avg_reader_cost: 0.40715 s, avg_batch_cost: 0.49852 s, avg_samples: 4.8, ips: 9.62844 samples/s, eta: 0:38:24
[2024/07/28 03:13:16] ppocr INFO: epoch: [1374/1500], global_step: 4122, lr: 0.001000, loss: 1.129481, loss_shrink_maps: 0.570480, loss_threshold_maps: 0.458642, loss_binary_maps: 0.113364, avg_reader_cost: 1.08798 s, avg_batch_cost: 1.23367 s, avg_samples: 7.7, ips: 6.24151 samples/s, eta: 0:38:12
[2024/07/28 03:13:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:13:26] ppocr INFO: epoch: [1375/1500], global_step: 4125, lr: 0.001000, loss: 1.141229, loss_shrink_maps: 0.574021, loss_threshold_maps: 0.461130, loss_binary_maps: 0.114186, avg_reader_cost: 1.55850 s, avg_batch_cost: 1.84091 s, avg_samples: 12.5, ips: 6.79012 samples/s, eta: 0:37:54
[2024/07/28 03:13:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:13:36] ppocr INFO: epoch: [1376/1500], global_step: 4128, lr: 0.001000, loss: 1.141229, loss_shrink_maps: 0.574021, loss_threshold_maps: 0.458947, loss_binary_maps: 0.114186, avg_reader_cost: 1.57860 s, avg_batch_cost: 1.81255 s, avg_samples: 12.5, ips: 6.89637 samples/s, eta: 0:37:36
[2024/07/28 03:13:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:13:46] ppocr INFO: epoch: [1377/1500], global_step: 4130, lr: 0.001000, loss: 1.127395, loss_shrink_maps: 0.562322, loss_threshold_maps: 0.458503, loss_binary_maps: 0.111711, avg_reader_cost: 0.92785 s, avg_batch_cost: 1.10126 s, avg_samples: 9.6, ips: 8.71727 samples/s, eta: 0:37:24
[2024/07/28 03:13:47] ppocr INFO: epoch: [1377/1500], global_step: 4131, lr: 0.001000, loss: 1.131480, loss_shrink_maps: 0.570480, loss_threshold_maps: 0.464949, loss_binary_maps: 0.113364, avg_reader_cost: 0.59640 s, avg_batch_cost: 0.65078 s, avg_samples: 2.9, ips: 4.45622 samples/s, eta: 0:37:18
[2024/07/28 03:13:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:13:57] ppocr INFO: epoch: [1378/1500], global_step: 4134, lr: 0.001000, loss: 1.140083, loss_shrink_maps: 0.570480, loss_threshold_maps: 0.471837, loss_binary_maps: 0.113364, avg_reader_cost: 1.53223 s, avg_batch_cost: 1.76433 s, avg_samples: 12.5, ips: 7.08483 samples/s, eta: 0:36:59
[2024/07/28 03:14:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:14:07] ppocr INFO: epoch: [1379/1500], global_step: 4137, lr: 0.001000, loss: 1.135221, loss_shrink_maps: 0.570480, loss_threshold_maps: 0.471837, loss_binary_maps: 0.113364, avg_reader_cost: 1.53827 s, avg_batch_cost: 1.78999 s, avg_samples: 12.5, ips: 6.98329 samples/s, eta: 0:36:41
[2024/07/28 03:14:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:14:17] ppocr INFO: epoch: [1380/1500], global_step: 4140, lr: 0.001000, loss: 1.124541, loss_shrink_maps: 0.552971, loss_threshold_maps: 0.462354, loss_binary_maps: 0.109808, avg_reader_cost: 1.53198 s, avg_batch_cost: 1.79308 s, avg_samples: 12.5, ips: 6.97125 samples/s, eta: 0:36:23

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:55,  8.94it/s]
eval model::   1%|          | 3/500 [00:00<00:37, 13.28it/s]
eval model::   1%|          | 5/500 [00:00<00:34, 14.19it/s]
eval model::   1%|▏         | 7/500 [00:00<00:30, 15.93it/s]
eval model::   2%|▏         | 9/500 [00:00<00:28, 17.20it/s]
eval model::   2%|▏         | 11/500 [00:00<00:27, 17.57it/s]
eval model::   3%|▎         | 14/500 [00:00<00:26, 18.44it/s]
eval model::   3%|▎         | 17/500 [00:00<00:22, 21.15it/s]
eval model::   4%|▍         | 20/500 [00:01<00:25, 19.00it/s]
eval model::   5%|▍         | 23/500 [00:01<00:23, 20.64it/s]
eval model::   5%|▌         | 26/500 [00:01<00:23, 20.10it/s]
eval model::   6%|▌         | 29/500 [00:01<00:23, 20.39it/s]
eval model::   6%|▋         | 32/500 [00:01<00:24, 18.95it/s]
eval model::   7%|▋         | 34/500 [00:01<00:25, 18.18it/s]
eval model::   7%|▋         | 37/500 [00:01<00:23, 20.08it/s]
eval model::   8%|▊         | 40/500 [00:02<00:23, 19.46it/s]
eval model::   8%|▊         | 42/500 [00:02<00:25, 18.01it/s]
eval model::   9%|▉         | 45/500 [00:02<00:23, 18.97it/s]
eval model::   9%|▉         | 47/500 [00:02<00:25, 17.61it/s]
eval model::  10%|█         | 50/500 [00:02<00:24, 18.28it/s]
eval model::  10%|█         | 52/500 [00:02<00:25, 17.27it/s]
eval model::  11%|█         | 54/500 [00:02<00:25, 17.56it/s]
eval model::  11%|█▏        | 57/500 [00:03<00:22, 19.42it/s]
eval model::  12%|█▏        | 59/500 [00:03<00:24, 17.94it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:30, 14.45it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:30, 14.42it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:25, 17.06it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:22, 19.36it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:21, 20.13it/s]
eval model::  15%|█▌        | 75/500 [00:04<00:21, 19.83it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:20, 20.67it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:19, 21.34it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:20, 20.61it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:22, 18.53it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:25, 16.03it/s]
eval model::  18%|█▊        | 91/500 [00:05<00:26, 15.44it/s]
eval model::  19%|█▊        | 93/500 [00:05<00:27, 15.07it/s]
eval model::  19%|█▉        | 95/500 [00:05<00:25, 15.96it/s]
eval model::  20%|█▉        | 98/500 [00:05<00:22, 18.02it/s]
eval model::  20%|██        | 100/500 [00:05<00:23, 16.68it/s]
eval model::  21%|██        | 103/500 [00:05<00:20, 19.02it/s]
eval model::  21%|██        | 106/500 [00:05<00:19, 19.74it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:19, 19.86it/s]
eval model::  22%|██▏       | 112/500 [00:06<00:19, 19.88it/s]
eval model::  23%|██▎       | 115/500 [00:06<00:18, 21.07it/s]
eval model::  24%|██▎       | 118/500 [00:06<00:16, 22.95it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:16, 22.49it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:17, 21.53it/s]
eval model::  25%|██▌       | 127/500 [00:06<00:19, 19.45it/s]
eval model::  26%|██▌       | 130/500 [00:07<00:20, 17.81it/s]
eval model::  26%|██▋       | 132/500 [00:07<00:22, 16.23it/s]
eval model::  27%|██▋       | 135/500 [00:07<00:19, 18.27it/s]
eval model::  27%|██▋       | 137/500 [00:07<00:19, 18.53it/s]
eval model::  28%|██▊       | 140/500 [00:07<00:18, 19.51it/s]
eval model::  29%|██▊       | 143/500 [00:07<00:17, 20.55it/s]
eval model::  29%|██▉       | 146/500 [00:07<00:17, 19.68it/s]
eval model::  30%|██▉       | 149/500 [00:08<00:18, 18.57it/s]
eval model::  30%|███       | 151/500 [00:08<00:22, 15.48it/s]
eval model::  31%|███       | 155/500 [00:08<00:18, 18.64it/s]
eval model::  32%|███▏      | 158/500 [00:08<00:17, 19.50it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:22, 14.78it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:22, 14.66it/s]
eval model::  33%|███▎      | 165/500 [00:09<00:21, 15.51it/s]
eval model::  34%|███▎      | 168/500 [00:09<00:18, 17.57it/s]
eval model::  34%|███▍      | 171/500 [00:09<00:17, 18.65it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:20, 15.88it/s]
eval model::  35%|███▌      | 177/500 [00:09<00:18, 17.87it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:20, 15.36it/s]
eval model::  36%|███▋      | 182/500 [00:10<00:20, 15.80it/s]
eval model::  37%|███▋      | 185/500 [00:10<00:17, 18.47it/s]
eval model::  38%|███▊      | 188/500 [00:10<00:17, 18.33it/s]
eval model::  38%|███▊      | 191/500 [00:10<00:15, 19.87it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:14, 20.54it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:14, 20.35it/s]
eval model::  40%|████      | 201/500 [00:10<00:14, 21.21it/s]
eval model::  41%|████      | 205/500 [00:11<00:19, 15.16it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:18, 16.16it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:18, 16.07it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:16, 17.14it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:18, 15.00it/s]
eval model::  43%|████▎     | 217/500 [00:12<00:21, 13.15it/s]
eval model::  44%|████▍     | 220/500 [00:12<00:17, 15.59it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:19, 14.00it/s]
eval model::  45%|████▌     | 225/500 [00:12<00:16, 16.61it/s]
eval model::  46%|████▌     | 228/500 [00:12<00:15, 18.11it/s]
eval model::  46%|████▌     | 231/500 [00:12<00:13, 20.29it/s]
eval model::  47%|████▋     | 234/500 [00:13<00:14, 18.75it/s]
eval model::  47%|████▋     | 237/500 [00:13<00:13, 19.85it/s]
eval model::  48%|████▊     | 240/500 [00:13<00:13, 18.65it/s]
eval model::  48%|████▊     | 242/500 [00:13<00:16, 15.33it/s]
eval model::  49%|████▉     | 245/500 [00:13<00:15, 16.88it/s]
eval model::  50%|████▉     | 248/500 [00:13<00:13, 19.17it/s]
eval model::  50%|█████     | 251/500 [00:13<00:13, 18.73it/s]
eval model::  51%|█████     | 253/500 [00:14<00:13, 18.90it/s]
eval model::  51%|█████     | 256/500 [00:14<00:12, 18.95it/s]
eval model::  52%|█████▏    | 258/500 [00:14<00:12, 18.76it/s]
eval model::  52%|█████▏    | 261/500 [00:14<00:11, 20.09it/s]
eval model::  53%|█████▎    | 264/500 [00:14<00:12, 19.54it/s]
eval model::  53%|█████▎    | 267/500 [00:14<00:11, 20.48it/s]
eval model::  54%|█████▍    | 270/500 [00:14<00:11, 20.07it/s]
eval model::  55%|█████▍    | 273/500 [00:15<00:10, 21.03it/s]
eval model::  55%|█████▌    | 276/500 [00:15<00:12, 18.55it/s]
eval model::  56%|█████▌    | 278/500 [00:15<00:11, 18.63it/s]
eval model::  56%|█████▌    | 280/500 [00:15<00:11, 18.61it/s]
eval model::  56%|█████▋    | 282/500 [00:15<00:11, 18.70it/s]
eval model::  57%|█████▋    | 285/500 [00:16<00:20, 10.59it/s]
eval model::  58%|█████▊    | 288/500 [00:16<00:16, 13.15it/s]
eval model::  58%|█████▊    | 291/500 [00:16<00:13, 15.26it/s]
eval model::  59%|█████▊    | 293/500 [00:16<00:13, 15.13it/s]
eval model::  59%|█████▉    | 295/500 [00:16<00:16, 12.07it/s]
eval model::  60%|█████▉    | 298/500 [00:16<00:13, 14.90it/s]
eval model::  60%|██████    | 300/500 [00:17<00:13, 14.33it/s]
eval model::  60%|██████    | 302/500 [00:17<00:13, 14.18it/s]
eval model::  61%|██████    | 304/500 [00:17<00:13, 14.34it/s]
eval model::  61%|██████▏   | 307/500 [00:17<00:11, 16.77it/s]
eval model::  62%|██████▏   | 310/500 [00:17<00:10, 18.36it/s]
eval model::  63%|██████▎   | 313/500 [00:17<00:09, 20.14it/s]
eval model::  63%|██████▎   | 316/500 [00:17<00:09, 18.45it/s]
eval model::  64%|██████▍   | 319/500 [00:17<00:09, 20.11it/s]
eval model::  64%|██████▍   | 322/500 [00:18<00:09, 18.16it/s]
eval model::  65%|██████▍   | 324/500 [00:18<00:09, 18.26it/s]
eval model::  65%|██████▌   | 327/500 [00:18<00:08, 19.30it/s]
eval model::  66%|██████▌   | 329/500 [00:18<00:09, 18.37it/s]
eval model::  66%|██████▌   | 331/500 [00:18<00:09, 18.37it/s]
eval model::  67%|██████▋   | 334/500 [00:18<00:08, 20.21it/s]
eval model::  67%|██████▋   | 337/500 [00:18<00:07, 21.29it/s]
eval model::  68%|██████▊   | 340/500 [00:19<00:11, 13.94it/s]
eval model::  69%|██████▊   | 343/500 [00:19<00:10, 15.46it/s]
eval model::  69%|██████▉   | 346/500 [00:19<00:08, 17.75it/s]
eval model::  70%|██████▉   | 349/500 [00:19<00:08, 18.86it/s]
eval model::  70%|███████   | 352/500 [00:19<00:07, 19.96it/s]
eval model::  71%|███████   | 355/500 [00:19<00:07, 20.28it/s]
eval model::  72%|███████▏  | 358/500 [00:20<00:06, 20.89it/s]
eval model::  72%|███████▏  | 361/500 [00:20<00:08, 16.43it/s]
eval model::  73%|███████▎  | 364/500 [00:20<00:08, 16.77it/s]
eval model::  73%|███████▎  | 366/500 [00:20<00:08, 16.34it/s]
eval model::  74%|███████▍  | 369/500 [00:20<00:07, 17.82it/s]
eval model::  74%|███████▍  | 372/500 [00:20<00:06, 18.30it/s]
eval model::  75%|███████▌  | 375/500 [00:21<00:06, 20.45it/s]
eval model::  76%|███████▌  | 378/500 [00:21<00:05, 22.27it/s]
eval model::  76%|███████▌  | 381/500 [00:21<00:05, 22.87it/s]
eval model::  77%|███████▋  | 385/500 [00:21<00:04, 26.49it/s]
eval model::  78%|███████▊  | 388/500 [00:21<00:07, 14.86it/s]
eval model::  78%|███████▊  | 391/500 [00:21<00:06, 16.15it/s]
eval model::  79%|███████▉  | 394/500 [00:22<00:06, 17.35it/s]
eval model::  79%|███████▉  | 397/500 [00:22<00:05, 18.63it/s]
eval model::  80%|████████  | 400/500 [00:22<00:05, 19.25it/s]
eval model::  81%|████████  | 403/500 [00:22<00:04, 21.48it/s]
eval model::  81%|████████  | 406/500 [00:22<00:04, 22.29it/s]
eval model::  82%|████████▏ | 409/500 [00:22<00:03, 23.96it/s]
eval model::  82%|████████▏ | 412/500 [00:22<00:03, 25.35it/s]
eval model::  83%|████████▎ | 415/500 [00:22<00:03, 23.65it/s]
eval model::  84%|████████▎ | 418/500 [00:23<00:03, 20.57it/s]
eval model::  84%|████████▍ | 421/500 [00:23<00:05, 14.34it/s]
eval model::  85%|████████▍ | 424/500 [00:23<00:05, 14.25it/s]
eval model::  85%|████████▌ | 427/500 [00:23<00:04, 16.48it/s]
eval model::  86%|████████▌ | 430/500 [00:23<00:03, 17.89it/s]
eval model::  87%|████████▋ | 433/500 [00:24<00:03, 17.85it/s]
eval model::  87%|████████▋ | 436/500 [00:24<00:03, 19.09it/s]
eval model::  88%|████████▊ | 439/500 [00:24<00:02, 21.04it/s]
eval model::  88%|████████▊ | 442/500 [00:24<00:02, 21.95it/s]
eval model::  89%|████████▉ | 445/500 [00:24<00:02, 20.55it/s]
eval model::  90%|████████▉ | 448/500 [00:24<00:02, 19.02it/s]
eval model::  90%|█████████ | 450/500 [00:24<00:02, 18.87it/s]
eval model::  91%|█████████ | 453/500 [00:25<00:02, 19.73it/s]
eval model::  91%|█████████ | 456/500 [00:25<00:02, 21.15it/s]
eval model::  92%|█████████▏| 459/500 [00:25<00:01, 20.72it/s]
eval model::  92%|█████████▏| 462/500 [00:25<00:02, 18.04it/s]
eval model::  93%|█████████▎| 464/500 [00:25<00:01, 18.29it/s]
eval model::  93%|█████████▎| 466/500 [00:25<00:01, 17.47it/s]
eval model::  94%|█████████▎| 468/500 [00:25<00:01, 17.43it/s]
eval model::  94%|█████████▍| 471/500 [00:26<00:01, 19.50it/s]
eval model::  95%|█████████▍| 474/500 [00:26<00:01, 18.77it/s]
eval model::  95%|█████████▌| 477/500 [00:26<00:01, 20.33it/s]
eval model::  96%|█████████▌| 480/500 [00:26<00:01, 18.61it/s]
eval model::  96%|█████████▋| 482/500 [00:26<00:01, 17.83it/s]
eval model::  97%|█████████▋| 485/500 [00:26<00:00, 19.76it/s]
eval model::  98%|█████████▊| 488/500 [00:26<00:00, 20.21it/s]
eval model::  98%|█████████▊| 491/500 [00:27<00:00, 20.55it/s]
eval model::  99%|█████████▉| 494/500 [00:27<00:00, 18.40it/s]
eval model::  99%|█████████▉| 497/500 [00:27<00:00, 19.97it/s]
eval model:: 100%|██████████| 500/500 [00:27<00:00, 18.18it/s]
[2024/07/28 03:14:44] ppocr INFO: cur metric, precision: 0.729923273657289, recall: 0.687048627828599, hmean: 0.7078373015873016, fps: 44.40780930428425
[2024/07/28 03:14:44] ppocr INFO: best metric, hmean: 0.7181174089068827, precision: 0.7568, recall: 0.6831969186326432, fps: 44.212831257019886, best_epoch: 1200
[2024/07/28 03:14:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:14:52] ppocr INFO: epoch: [1381/1500], global_step: 4143, lr: 0.001000, loss: 1.114106, loss_shrink_maps: 0.543620, loss_threshold_maps: 0.458130, loss_binary_maps: 0.108230, avg_reader_cost: 1.44749 s, avg_batch_cost: 1.68886 s, avg_samples: 12.5, ips: 7.40146 samples/s, eta: 0:36:05
[2024/07/28 03:14:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:15:02] ppocr INFO: epoch: [1382/1500], global_step: 4146, lr: 0.001000, loss: 1.107902, loss_shrink_maps: 0.541932, loss_threshold_maps: 0.453225, loss_binary_maps: 0.108230, avg_reader_cost: 1.53555 s, avg_batch_cost: 1.76991 s, avg_samples: 12.5, ips: 7.06251 samples/s, eta: 0:35:46
[2024/07/28 03:15:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:15:13] ppocr INFO: epoch: [1383/1500], global_step: 4149, lr: 0.001000, loss: 1.094973, loss_shrink_maps: 0.538183, loss_threshold_maps: 0.447018, loss_binary_maps: 0.107545, avg_reader_cost: 1.56556 s, avg_batch_cost: 1.79550 s, avg_samples: 12.5, ips: 6.96186 samples/s, eta: 0:35:28
[2024/07/28 03:15:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:15:21] ppocr INFO: epoch: [1384/1500], global_step: 4150, lr: 0.001000, loss: 1.094973, loss_shrink_maps: 0.538183, loss_threshold_maps: 0.451255, loss_binary_maps: 0.107545, avg_reader_cost: 0.40413 s, avg_batch_cost: 0.51683 s, avg_samples: 4.8, ips: 9.28747 samples/s, eta: 0:35:22
[2024/07/28 03:15:23] ppocr INFO: epoch: [1384/1500], global_step: 4152, lr: 0.001000, loss: 1.094973, loss_shrink_maps: 0.538183, loss_threshold_maps: 0.443252, loss_binary_maps: 0.107545, avg_reader_cost: 1.12516 s, avg_batch_cost: 1.27104 s, avg_samples: 7.7, ips: 6.05802 samples/s, eta: 0:35:10
[2024/07/28 03:15:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:15:33] ppocr INFO: epoch: [1385/1500], global_step: 4155, lr: 0.001000, loss: 1.094973, loss_shrink_maps: 0.541932, loss_threshold_maps: 0.449061, loss_binary_maps: 0.108174, avg_reader_cost: 1.56851 s, avg_batch_cost: 1.81314 s, avg_samples: 12.5, ips: 6.89412 samples/s, eta: 0:34:52
[2024/07/28 03:15:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:15:43] ppocr INFO: epoch: [1386/1500], global_step: 4158, lr: 0.001000, loss: 1.084375, loss_shrink_maps: 0.536438, loss_threshold_maps: 0.435422, loss_binary_maps: 0.106782, avg_reader_cost: 1.51788 s, avg_batch_cost: 1.76092 s, avg_samples: 12.5, ips: 7.09857 samples/s, eta: 0:34:34
[2024/07/28 03:15:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:15:53] ppocr INFO: epoch: [1387/1500], global_step: 4160, lr: 0.001000, loss: 1.078357, loss_shrink_maps: 0.531984, loss_threshold_maps: 0.433620, loss_binary_maps: 0.105827, avg_reader_cost: 1.03798 s, avg_batch_cost: 1.21164 s, avg_samples: 9.6, ips: 7.92315 samples/s, eta: 0:34:21
[2024/07/28 03:15:54] ppocr INFO: epoch: [1387/1500], global_step: 4161, lr: 0.001000, loss: 1.078317, loss_shrink_maps: 0.528149, loss_threshold_maps: 0.432693, loss_binary_maps: 0.105462, avg_reader_cost: 0.65214 s, avg_batch_cost: 0.70636 s, avg_samples: 2.9, ips: 4.10556 samples/s, eta: 0:34:15
[2024/07/28 03:15:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:16:04] ppocr INFO: epoch: [1388/1500], global_step: 4164, lr: 0.001000, loss: 1.085684, loss_shrink_maps: 0.540264, loss_threshold_maps: 0.446018, loss_binary_maps: 0.107765, avg_reader_cost: 1.51118 s, avg_batch_cost: 1.77155 s, avg_samples: 12.5, ips: 7.05596 samples/s, eta: 0:33:57
[2024/07/28 03:16:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:16:14] ppocr INFO: epoch: [1389/1500], global_step: 4167, lr: 0.001000, loss: 1.085684, loss_shrink_maps: 0.544030, loss_threshold_maps: 0.443285, loss_binary_maps: 0.107964, avg_reader_cost: 1.51760 s, avg_batch_cost: 1.77088 s, avg_samples: 12.5, ips: 7.05864 samples/s, eta: 0:33:39
[2024/07/28 03:16:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:16:24] ppocr INFO: epoch: [1390/1500], global_step: 4170, lr: 0.001000, loss: 1.093004, loss_shrink_maps: 0.547378, loss_threshold_maps: 0.443285, loss_binary_maps: 0.109024, avg_reader_cost: 1.51224 s, avg_batch_cost: 1.75001 s, avg_samples: 12.5, ips: 7.14281 samples/s, eta: 0:33:21
[2024/07/28 03:16:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:16:34] ppocr INFO: epoch: [1391/1500], global_step: 4173, lr: 0.001000, loss: 1.085684, loss_shrink_maps: 0.544030, loss_threshold_maps: 0.442633, loss_binary_maps: 0.107964, avg_reader_cost: 1.53051 s, avg_batch_cost: 1.80635 s, avg_samples: 12.5, ips: 6.92002 samples/s, eta: 0:33:03
[2024/07/28 03:16:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:16:44] ppocr INFO: epoch: [1392/1500], global_step: 4176, lr: 0.001000, loss: 1.093004, loss_shrink_maps: 0.547378, loss_threshold_maps: 0.442633, loss_binary_maps: 0.109024, avg_reader_cost: 1.53014 s, avg_batch_cost: 1.76244 s, avg_samples: 12.5, ips: 7.09244 samples/s, eta: 0:32:44
[2024/07/28 03:16:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:16:54] ppocr INFO: epoch: [1393/1500], global_step: 4179, lr: 0.001000, loss: 1.123434, loss_shrink_maps: 0.563784, loss_threshold_maps: 0.447783, loss_binary_maps: 0.112088, avg_reader_cost: 1.53327 s, avg_batch_cost: 1.77127 s, avg_samples: 12.5, ips: 7.05708 samples/s, eta: 0:32:26
[2024/07/28 03:16:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:17:03] ppocr INFO: epoch: [1394/1500], global_step: 4180, lr: 0.001000, loss: 1.123434, loss_shrink_maps: 0.563784, loss_threshold_maps: 0.447783, loss_binary_maps: 0.112088, avg_reader_cost: 0.42640 s, avg_batch_cost: 0.50940 s, avg_samples: 4.8, ips: 9.42288 samples/s, eta: 0:32:20
[2024/07/28 03:17:04] ppocr INFO: epoch: [1394/1500], global_step: 4182, lr: 0.001000, loss: 1.150048, loss_shrink_maps: 0.572709, loss_threshold_maps: 0.449460, loss_binary_maps: 0.114430, avg_reader_cost: 1.10994 s, avg_batch_cost: 1.25583 s, avg_samples: 7.7, ips: 6.13143 samples/s, eta: 0:32:08
[2024/07/28 03:17:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:17:14] ppocr INFO: epoch: [1395/1500], global_step: 4185, lr: 0.001000, loss: 1.143702, loss_shrink_maps: 0.567919, loss_threshold_maps: 0.444857, loss_binary_maps: 0.113236, avg_reader_cost: 1.54769 s, avg_batch_cost: 1.78742 s, avg_samples: 12.5, ips: 6.99333 samples/s, eta: 0:31:50
[2024/07/28 03:17:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:17:25] ppocr INFO: epoch: [1396/1500], global_step: 4188, lr: 0.001000, loss: 1.140866, loss_shrink_maps: 0.569770, loss_threshold_maps: 0.452637, loss_binary_maps: 0.113687, avg_reader_cost: 1.69637 s, avg_batch_cost: 1.96813 s, avg_samples: 12.5, ips: 6.35121 samples/s, eta: 0:31:32
[2024/07/28 03:17:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:17:35] ppocr INFO: epoch: [1397/1500], global_step: 4190, lr: 0.001000, loss: 1.137570, loss_shrink_maps: 0.567173, loss_threshold_maps: 0.451257, loss_binary_maps: 0.112848, avg_reader_cost: 0.93020 s, avg_batch_cost: 1.10443 s, avg_samples: 9.6, ips: 8.69223 samples/s, eta: 0:31:19
[2024/07/28 03:17:36] ppocr INFO: epoch: [1397/1500], global_step: 4191, lr: 0.001000, loss: 1.137570, loss_shrink_maps: 0.567173, loss_threshold_maps: 0.451257, loss_binary_maps: 0.112848, avg_reader_cost: 0.59802 s, avg_batch_cost: 0.65317 s, avg_samples: 2.9, ips: 4.43991 samples/s, eta: 0:31:13
[2024/07/28 03:17:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:17:45] ppocr INFO: epoch: [1398/1500], global_step: 4194, lr: 0.001000, loss: 1.137570, loss_shrink_maps: 0.567173, loss_threshold_maps: 0.451257, loss_binary_maps: 0.112848, avg_reader_cost: 1.50680 s, avg_batch_cost: 1.73869 s, avg_samples: 12.5, ips: 7.18932 samples/s, eta: 0:30:55
[2024/07/28 03:17:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:17:56] ppocr INFO: epoch: [1399/1500], global_step: 4197, lr: 0.001000, loss: 1.137570, loss_shrink_maps: 0.569154, loss_threshold_maps: 0.450770, loss_binary_maps: 0.113309, avg_reader_cost: 1.57493 s, avg_batch_cost: 1.82573 s, avg_samples: 12.5, ips: 6.84659 samples/s, eta: 0:30:37
[2024/07/28 03:17:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:18:06] ppocr INFO: epoch: [1400/1500], global_step: 4200, lr: 0.001000, loss: 1.116874, loss_shrink_maps: 0.566868, loss_threshold_maps: 0.445181, loss_binary_maps: 0.112817, avg_reader_cost: 1.59476 s, avg_batch_cost: 1.82373 s, avg_samples: 12.5, ips: 6.85408 samples/s, eta: 0:30:19

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<01:13,  6.74it/s]
eval model::   1%|          | 4/500 [00:00<00:29, 16.84it/s]
eval model::   1%|          | 6/500 [00:00<00:28, 17.45it/s]
eval model::   2%|▏         | 8/500 [00:00<00:28, 17.18it/s]
eval model::   2%|▏         | 11/500 [00:00<00:27, 17.73it/s]
eval model::   3%|▎         | 14/500 [00:00<00:27, 17.70it/s]
eval model::   3%|▎         | 16/500 [00:00<00:26, 18.01it/s]
eval model::   4%|▍         | 19/500 [00:01<00:24, 19.86it/s]
eval model::   4%|▍         | 22/500 [00:01<00:24, 19.62it/s]
eval model::   5%|▌         | 25/500 [00:01<00:25, 18.86it/s]
eval model::   6%|▌         | 28/500 [00:01<00:24, 19.28it/s]
eval model::   6%|▌         | 31/500 [00:01<00:25, 18.18it/s]
eval model::   7%|▋         | 34/500 [00:01<00:26, 17.74it/s]
eval model::   7%|▋         | 37/500 [00:02<00:23, 19.62it/s]
eval model::   8%|▊         | 40/500 [00:02<00:25, 18.25it/s]
eval model::   8%|▊         | 42/500 [00:02<00:25, 17.80it/s]
eval model::   9%|▉         | 44/500 [00:02<00:24, 18.28it/s]
eval model::   9%|▉         | 46/500 [00:02<00:27, 16.78it/s]
eval model::  10%|▉         | 49/500 [00:02<00:24, 18.39it/s]
eval model::  10%|█         | 52/500 [00:02<00:22, 19.65it/s]
eval model::  11%|█         | 55/500 [00:02<00:21, 20.26it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:23, 18.63it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:26, 16.49it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:26, 16.55it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:23, 18.60it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:20, 20.75it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:20, 20.95it/s]
eval model::  15%|█▌        | 75/500 [00:04<00:20, 20.62it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:19, 21.97it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:18, 23.12it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:17, 24.05it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:19, 21.65it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:19, 21.48it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:18, 21.80it/s]
eval model::  19%|█▉        | 96/500 [00:04<00:18, 22.44it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:17, 22.48it/s]
eval model::  20%|██        | 102/500 [00:05<00:19, 20.71it/s]
eval model::  21%|██        | 105/500 [00:05<00:17, 22.61it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:18, 21.00it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:18, 20.73it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:18, 20.66it/s]
eval model::  23%|██▎       | 117/500 [00:05<00:19, 19.29it/s]
eval model::  24%|██▍       | 119/500 [00:06<00:20, 18.63it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:20, 18.05it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:20, 18.06it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:21, 17.45it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:19, 19.31it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:20, 18.19it/s]
eval model::  27%|██▋       | 133/500 [00:06<00:21, 17.31it/s]
eval model::  27%|██▋       | 136/500 [00:07<00:19, 18.47it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:19, 18.13it/s]
eval model::  28%|██▊       | 140/500 [00:07<00:20, 17.47it/s]
eval model::  29%|██▊       | 143/500 [00:07<00:18, 19.15it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:18, 19.09it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:19, 18.27it/s]
eval model::  30%|███       | 150/500 [00:07<00:17, 20.41it/s]
eval model::  31%|███       | 153/500 [00:08<00:20, 17.19it/s]
eval model::  31%|███       | 155/500 [00:08<00:19, 17.45it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:17, 19.99it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:19, 17.00it/s]
eval model::  33%|███▎      | 165/500 [00:08<00:18, 18.44it/s]
eval model::  34%|███▎      | 168/500 [00:08<00:16, 19.94it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:17, 19.18it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:18, 17.60it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:18, 17.49it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:16, 19.64it/s]
eval model::  36%|███▋      | 182/500 [00:09<00:18, 17.10it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:15, 20.83it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:14, 21.25it/s]
eval model::  38%|███▊      | 192/500 [00:09<00:14, 21.71it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:15, 19.74it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:14, 20.40it/s]
eval model::  40%|████      | 201/500 [00:10<00:14, 20.53it/s]
eval model::  41%|████      | 204/500 [00:10<00:13, 22.44it/s]
eval model::  41%|████▏     | 207/500 [00:11<00:24, 12.14it/s]
eval model::  42%|████▏     | 209/500 [00:11<00:22, 12.93it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:21, 13.32it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:20, 13.94it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:21, 13.56it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:23, 12.11it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:18, 14.88it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:20, 13.71it/s]
eval model::  45%|████▌     | 225/500 [00:12<00:16, 17.00it/s]
eval model::  46%|████▌     | 228/500 [00:12<00:14, 18.84it/s]
eval model::  46%|████▋     | 232/500 [00:12<00:11, 23.36it/s]
eval model::  47%|████▋     | 235/500 [00:12<00:11, 23.68it/s]
eval model::  48%|████▊     | 238/500 [00:12<00:10, 25.18it/s]
eval model::  48%|████▊     | 241/500 [00:12<00:10, 24.43it/s]
eval model::  49%|████▉     | 244/500 [00:12<00:11, 22.06it/s]
eval model::  49%|████▉     | 247/500 [00:13<00:10, 23.46it/s]
eval model::  50%|█████     | 250/500 [00:13<00:11, 21.00it/s]
eval model::  51%|█████     | 253/500 [00:13<00:11, 22.12it/s]
eval model::  51%|█████     | 256/500 [00:13<00:11, 21.15it/s]
eval model::  52%|█████▏    | 259/500 [00:13<00:10, 22.50it/s]
eval model::  52%|█████▏    | 262/500 [00:13<00:10, 21.99it/s]
eval model::  53%|█████▎    | 265/500 [00:13<00:10, 21.87it/s]
eval model::  54%|█████▎    | 268/500 [00:14<00:11, 20.53it/s]
eval model::  54%|█████▍    | 271/500 [00:14<00:11, 19.38it/s]
eval model::  55%|█████▍    | 273/500 [00:14<00:11, 19.22it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:13, 17.20it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:11, 18.64it/s]
eval model::  56%|█████▌    | 280/500 [00:14<00:11, 18.93it/s]
eval model::  57%|█████▋    | 283/500 [00:14<00:10, 20.27it/s]
eval model::  57%|█████▋    | 286/500 [00:15<00:18, 11.63it/s]
eval model::  58%|█████▊    | 289/500 [00:15<00:15, 13.86it/s]
eval model::  58%|█████▊    | 292/500 [00:15<00:13, 15.88it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:12, 16.24it/s]
eval model::  59%|█████▉    | 296/500 [00:15<00:14, 14.43it/s]
eval model::  60%|██████    | 300/500 [00:16<00:11, 16.97it/s]
eval model::  61%|██████    | 303/500 [00:16<00:10, 18.20it/s]
eval model::  61%|██████    | 305/500 [00:16<00:10, 18.03it/s]
eval model::  62%|██████▏   | 308/500 [00:16<00:09, 20.07it/s]
eval model::  62%|██████▏   | 312/500 [00:16<00:08, 22.15it/s]
eval model::  63%|██████▎   | 315/500 [00:16<00:08, 21.27it/s]
eval model::  64%|██████▎   | 318/500 [00:16<00:08, 22.35it/s]
eval model::  64%|██████▍   | 321/500 [00:17<00:08, 21.85it/s]
eval model::  65%|██████▍   | 324/500 [00:17<00:07, 22.91it/s]
eval model::  66%|██████▌   | 328/500 [00:17<00:07, 23.97it/s]
eval model::  66%|██████▌   | 331/500 [00:17<00:06, 24.30it/s]
eval model::  67%|██████▋   | 334/500 [00:17<00:06, 24.90it/s]
eval model::  67%|██████▋   | 337/500 [00:17<00:06, 24.55it/s]
eval model::  68%|██████▊   | 340/500 [00:17<00:09, 17.42it/s]
eval model::  69%|██████▊   | 343/500 [00:18<00:07, 19.75it/s]
eval model::  69%|██████▉   | 346/500 [00:18<00:07, 21.33it/s]
eval model::  70%|██████▉   | 349/500 [00:18<00:07, 20.74it/s]
eval model::  70%|███████   | 352/500 [00:18<00:06, 21.81it/s]
eval model::  71%|███████   | 355/500 [00:18<00:07, 20.71it/s]
eval model::  72%|███████▏  | 358/500 [00:18<00:07, 20.13it/s]
eval model::  72%|███████▏  | 361/500 [00:18<00:07, 17.92it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:07, 17.84it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:08, 16.32it/s]
eval model::  74%|███████▍  | 369/500 [00:19<00:07, 18.51it/s]
eval model::  74%|███████▍  | 372/500 [00:19<00:06, 19.30it/s]
eval model::  75%|███████▌  | 375/500 [00:19<00:05, 20.94it/s]
eval model::  76%|███████▌  | 378/500 [00:19<00:05, 21.87it/s]
eval model::  76%|███████▌  | 381/500 [00:20<00:06, 19.14it/s]
eval model::  77%|███████▋  | 384/500 [00:20<00:05, 21.10it/s]
eval model::  77%|███████▋  | 387/500 [00:20<00:07, 14.39it/s]
eval model::  78%|███████▊  | 390/500 [00:20<00:06, 16.53it/s]
eval model::  79%|███████▊  | 393/500 [00:20<00:06, 17.13it/s]
eval model::  79%|███████▉  | 396/500 [00:20<00:05, 18.59it/s]
eval model::  80%|███████▉  | 399/500 [00:21<00:05, 19.49it/s]
eval model::  80%|████████  | 402/500 [00:21<00:05, 19.37it/s]
eval model::  81%|████████  | 405/500 [00:21<00:04, 20.28it/s]
eval model::  82%|████████▏ | 408/500 [00:21<00:04, 22.18it/s]
eval model::  82%|████████▏ | 412/500 [00:21<00:03, 24.73it/s]
eval model::  83%|████████▎ | 415/500 [00:21<00:03, 22.99it/s]
eval model::  84%|████████▎ | 418/500 [00:21<00:04, 19.78it/s]
eval model::  84%|████████▍ | 421/500 [00:22<00:05, 13.69it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:05, 14.46it/s]
eval model::  85%|████████▌ | 427/500 [00:22<00:04, 15.59it/s]
eval model::  86%|████████▌ | 429/500 [00:22<00:04, 16.18it/s]
eval model::  86%|████████▌ | 431/500 [00:22<00:04, 16.17it/s]
eval model::  87%|████████▋ | 435/500 [00:23<00:03, 19.50it/s]
eval model::  88%|████████▊ | 438/500 [00:23<00:02, 21.22it/s]
eval model::  88%|████████▊ | 441/500 [00:23<00:02, 22.02it/s]
eval model::  89%|████████▉ | 445/500 [00:23<00:02, 26.07it/s]
eval model::  90%|████████▉ | 448/500 [00:23<00:02, 25.66it/s]
eval model::  90%|█████████ | 451/500 [00:23<00:02, 23.33it/s]
eval model::  91%|█████████ | 454/500 [00:23<00:01, 24.26it/s]
eval model::  91%|█████████▏| 457/500 [00:23<00:01, 25.28it/s]
eval model::  92%|█████████▏| 460/500 [00:23<00:01, 24.32it/s]
eval model::  93%|█████████▎| 463/500 [00:24<00:01, 20.97it/s]
eval model::  93%|█████████▎| 466/500 [00:24<00:01, 19.20it/s]
eval model::  94%|█████████▍| 469/500 [00:24<00:01, 18.40it/s]
eval model::  94%|█████████▍| 472/500 [00:24<00:01, 19.96it/s]
eval model::  95%|█████████▌| 475/500 [00:24<00:01, 21.23it/s]
eval model::  96%|█████████▌| 478/500 [00:24<00:00, 22.60it/s]
eval model::  96%|█████████▌| 481/500 [00:25<00:00, 21.25it/s]
eval model::  97%|█████████▋| 484/500 [00:25<00:00, 21.18it/s]
eval model::  97%|█████████▋| 487/500 [00:25<00:00, 20.95it/s]
eval model::  98%|█████████▊| 490/500 [00:25<00:00, 21.30it/s]
eval model::  99%|█████████▊| 493/500 [00:25<00:00, 18.03it/s]
eval model::  99%|█████████▉| 496/500 [00:25<00:00, 19.55it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 21.89it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.25it/s]
[2024/07/28 03:18:32] ppocr INFO: cur metric, precision: 0.7494714587737844, recall: 0.6827154549831488, hmean: 0.7145376669186193, fps: 46.83552900558406
[2024/07/28 03:18:32] ppocr INFO: best metric, hmean: 0.7181174089068827, precision: 0.7568, recall: 0.6831969186326432, fps: 44.212831257019886, best_epoch: 1200
[2024/07/28 03:18:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:18:42] ppocr INFO: epoch: [1401/1500], global_step: 4203, lr: 0.001000, loss: 1.080242, loss_shrink_maps: 0.530277, loss_threshold_maps: 0.445181, loss_binary_maps: 0.105367, avg_reader_cost: 2.07401 s, avg_batch_cost: 2.57394 s, avg_samples: 12.5, ips: 4.85637 samples/s, eta: 0:30:01
[2024/07/28 03:18:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:18:52] ppocr INFO: epoch: [1402/1500], global_step: 4206, lr: 0.001000, loss: 1.072896, loss_shrink_maps: 0.534038, loss_threshold_maps: 0.445181, loss_binary_maps: 0.106192, avg_reader_cost: 1.51030 s, avg_batch_cost: 1.73918 s, avg_samples: 12.5, ips: 7.18730 samples/s, eta: 0:29:43
[2024/07/28 03:18:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:19:02] ppocr INFO: epoch: [1403/1500], global_step: 4209, lr: 0.001000, loss: 1.072896, loss_shrink_maps: 0.541745, loss_threshold_maps: 0.446812, loss_binary_maps: 0.107420, avg_reader_cost: 1.49947 s, avg_batch_cost: 1.73759 s, avg_samples: 12.5, ips: 7.19386 samples/s, eta: 0:29:24
[2024/07/28 03:19:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:19:11] ppocr INFO: epoch: [1404/1500], global_step: 4210, lr: 0.001000, loss: 1.072896, loss_shrink_maps: 0.541745, loss_threshold_maps: 0.442531, loss_binary_maps: 0.107420, avg_reader_cost: 0.45243 s, avg_batch_cost: 0.54550 s, avg_samples: 4.8, ips: 8.79929 samples/s, eta: 0:29:18
[2024/07/28 03:19:12] ppocr INFO: epoch: [1404/1500], global_step: 4212, lr: 0.001000, loss: 1.072896, loss_shrink_maps: 0.541745, loss_threshold_maps: 0.442531, loss_binary_maps: 0.107420, avg_reader_cost: 1.18309 s, avg_batch_cost: 1.32894 s, avg_samples: 7.7, ips: 5.79409 samples/s, eta: 0:29:06
[2024/07/28 03:19:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:19:23] ppocr INFO: epoch: [1405/1500], global_step: 4215, lr: 0.001000, loss: 1.067701, loss_shrink_maps: 0.534038, loss_threshold_maps: 0.440162, loss_binary_maps: 0.106192, avg_reader_cost: 1.56734 s, avg_batch_cost: 1.79603 s, avg_samples: 12.5, ips: 6.95980 samples/s, eta: 0:28:48
[2024/07/28 03:19:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:19:33] ppocr INFO: epoch: [1406/1500], global_step: 4218, lr: 0.001000, loss: 1.055275, loss_shrink_maps: 0.516775, loss_threshold_maps: 0.435059, loss_binary_maps: 0.102739, avg_reader_cost: 1.51780 s, avg_batch_cost: 1.74584 s, avg_samples: 12.5, ips: 7.15987 samples/s, eta: 0:28:30
[2024/07/28 03:19:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:19:42] ppocr INFO: epoch: [1407/1500], global_step: 4220, lr: 0.001000, loss: 1.041950, loss_shrink_maps: 0.498566, loss_threshold_maps: 0.433407, loss_binary_maps: 0.099403, avg_reader_cost: 0.94586 s, avg_batch_cost: 1.11924 s, avg_samples: 9.6, ips: 8.57722 samples/s, eta: 0:28:18
[2024/07/28 03:19:43] ppocr INFO: epoch: [1407/1500], global_step: 4221, lr: 0.001000, loss: 1.041950, loss_shrink_maps: 0.498566, loss_threshold_maps: 0.433407, loss_binary_maps: 0.099403, avg_reader_cost: 0.60528 s, avg_batch_cost: 0.66019 s, avg_samples: 2.9, ips: 4.39266 samples/s, eta: 0:28:12
[2024/07/28 03:19:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:19:53] ppocr INFO: epoch: [1408/1500], global_step: 4224, lr: 0.001000, loss: 1.028550, loss_shrink_maps: 0.496081, loss_threshold_maps: 0.429788, loss_binary_maps: 0.098678, avg_reader_cost: 1.53752 s, avg_batch_cost: 1.76929 s, avg_samples: 12.5, ips: 7.06496 samples/s, eta: 0:27:53
[2024/07/28 03:19:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:20:03] ppocr INFO: epoch: [1409/1500], global_step: 4227, lr: 0.001000, loss: 1.020208, loss_shrink_maps: 0.496081, loss_threshold_maps: 0.429501, loss_binary_maps: 0.098678, avg_reader_cost: 1.50392 s, avg_batch_cost: 1.75468 s, avg_samples: 12.5, ips: 7.12380 samples/s, eta: 0:27:35
[2024/07/28 03:20:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:20:14] ppocr INFO: epoch: [1410/1500], global_step: 4230, lr: 0.001000, loss: 1.009662, loss_shrink_maps: 0.492918, loss_threshold_maps: 0.418651, loss_binary_maps: 0.098378, avg_reader_cost: 1.64215 s, avg_batch_cost: 1.87121 s, avg_samples: 12.5, ips: 6.68015 samples/s, eta: 0:27:17
[2024/07/28 03:20:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:20:24] ppocr INFO: epoch: [1411/1500], global_step: 4233, lr: 0.001000, loss: 1.011580, loss_shrink_maps: 0.496081, loss_threshold_maps: 0.418651, loss_binary_maps: 0.098678, avg_reader_cost: 1.59448 s, avg_batch_cost: 1.91446 s, avg_samples: 12.5, ips: 6.52925 samples/s, eta: 0:26:59
[2024/07/28 03:20:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:20:34] ppocr INFO: epoch: [1412/1500], global_step: 4236, lr: 0.001000, loss: 1.006550, loss_shrink_maps: 0.491303, loss_threshold_maps: 0.411772, loss_binary_maps: 0.097876, avg_reader_cost: 1.55862 s, avg_batch_cost: 1.78654 s, avg_samples: 12.5, ips: 6.99677 samples/s, eta: 0:26:41
[2024/07/28 03:20:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:20:45] ppocr INFO: epoch: [1413/1500], global_step: 4239, lr: 0.001000, loss: 1.009662, loss_shrink_maps: 0.494466, loss_threshold_maps: 0.414957, loss_binary_maps: 0.098175, avg_reader_cost: 1.51641 s, avg_batch_cost: 1.75654 s, avg_samples: 12.5, ips: 7.11625 samples/s, eta: 0:26:22
[2024/07/28 03:20:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:20:54] ppocr INFO: epoch: [1414/1500], global_step: 4240, lr: 0.001000, loss: 1.011292, loss_shrink_maps: 0.501640, loss_threshold_maps: 0.414957, loss_binary_maps: 0.099798, avg_reader_cost: 0.45006 s, avg_batch_cost: 0.53604 s, avg_samples: 4.8, ips: 8.95459 samples/s, eta: 0:26:16
[2024/07/28 03:20:55] ppocr INFO: epoch: [1414/1500], global_step: 4242, lr: 0.001000, loss: 1.033622, loss_shrink_maps: 0.516605, loss_threshold_maps: 0.418651, loss_binary_maps: 0.103115, avg_reader_cost: 1.16345 s, avg_batch_cost: 1.30927 s, avg_samples: 7.7, ips: 5.88113 samples/s, eta: 0:26:04
[2024/07/28 03:20:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:21:05] ppocr INFO: epoch: [1415/1500], global_step: 4245, lr: 0.001000, loss: 1.099002, loss_shrink_maps: 0.544404, loss_threshold_maps: 0.440621, loss_binary_maps: 0.108781, avg_reader_cost: 1.53983 s, avg_batch_cost: 1.77176 s, avg_samples: 12.5, ips: 7.05514 samples/s, eta: 0:25:46
[2024/07/28 03:21:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:21:15] ppocr INFO: epoch: [1416/1500], global_step: 4248, lr: 0.001000, loss: 1.089830, loss_shrink_maps: 0.543166, loss_threshold_maps: 0.440621, loss_binary_maps: 0.108249, avg_reader_cost: 1.57760 s, avg_batch_cost: 1.80598 s, avg_samples: 12.5, ips: 6.92145 samples/s, eta: 0:25:28
[2024/07/28 03:21:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:21:25] ppocr INFO: epoch: [1417/1500], global_step: 4250, lr: 0.001000, loss: 1.089830, loss_shrink_maps: 0.543581, loss_threshold_maps: 0.436063, loss_binary_maps: 0.108781, avg_reader_cost: 0.91923 s, avg_batch_cost: 1.09999 s, avg_samples: 9.6, ips: 8.72735 samples/s, eta: 0:25:16
[2024/07/28 03:21:25] ppocr INFO: epoch: [1417/1500], global_step: 4251, lr: 0.001000, loss: 1.089830, loss_shrink_maps: 0.543581, loss_threshold_maps: 0.440621, loss_binary_maps: 0.108781, avg_reader_cost: 0.59570 s, avg_batch_cost: 0.65050 s, avg_samples: 2.9, ips: 4.45812 samples/s, eta: 0:25:10
[2024/07/28 03:21:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:21:36] ppocr INFO: epoch: [1418/1500], global_step: 4254, lr: 0.001000, loss: 1.099002, loss_shrink_maps: 0.547330, loss_threshold_maps: 0.445739, loss_binary_maps: 0.109021, avg_reader_cost: 1.52506 s, avg_batch_cost: 1.78786 s, avg_samples: 12.5, ips: 6.99158 samples/s, eta: 0:24:51
[2024/07/28 03:21:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:21:46] ppocr INFO: epoch: [1419/1500], global_step: 4257, lr: 0.001000, loss: 1.132897, loss_shrink_maps: 0.554879, loss_threshold_maps: 0.465415, loss_binary_maps: 0.110572, avg_reader_cost: 1.58999 s, avg_batch_cost: 1.86196 s, avg_samples: 12.5, ips: 6.71337 samples/s, eta: 0:24:33
[2024/07/28 03:21:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:21:56] ppocr INFO: epoch: [1420/1500], global_step: 4260, lr: 0.001000, loss: 1.119348, loss_shrink_maps: 0.552025, loss_threshold_maps: 0.459799, loss_binary_maps: 0.109995, avg_reader_cost: 1.51481 s, avg_batch_cost: 1.75643 s, avg_samples: 12.5, ips: 7.11673 samples/s, eta: 0:24:15

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:57,  8.63it/s]
eval model::   1%|          | 4/500 [00:00<00:27, 18.00it/s]
eval model::   1%|          | 6/500 [00:00<00:26, 18.81it/s]
eval model::   2%|▏         | 8/500 [00:00<00:28, 17.38it/s]
eval model::   2%|▏         | 10/500 [00:00<00:27, 17.68it/s]
eval model::   3%|▎         | 13/500 [00:00<00:25, 19.14it/s]
eval model::   3%|▎         | 16/500 [00:00<00:22, 21.28it/s]
eval model::   4%|▍         | 19/500 [00:00<00:21, 22.30it/s]
eval model::   4%|▍         | 22/500 [00:01<00:22, 21.16it/s]
eval model::   5%|▌         | 25/500 [00:01<00:24, 19.63it/s]
eval model::   6%|▌         | 28/500 [00:01<00:23, 19.84it/s]
eval model::   6%|▌         | 31/500 [00:01<00:23, 19.54it/s]
eval model::   7%|▋         | 34/500 [00:01<00:22, 20.44it/s]
eval model::   7%|▋         | 37/500 [00:01<00:21, 21.70it/s]
eval model::   8%|▊         | 40/500 [00:02<00:24, 18.97it/s]
eval model::   8%|▊         | 42/500 [00:02<00:26, 17.23it/s]
eval model::   9%|▉         | 45/500 [00:02<00:23, 19.54it/s]
eval model::  10%|▉         | 48/500 [00:02<00:23, 18.92it/s]
eval model::  10%|█         | 51/500 [00:02<00:22, 20.11it/s]
eval model::  11%|█         | 55/500 [00:02<00:19, 22.99it/s]
eval model::  12%|█▏        | 58/500 [00:02<00:21, 20.85it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:26, 16.49it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:26, 16.47it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:23, 18.15it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:21, 20.16it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:20, 20.69it/s]
eval model::  15%|█▌        | 75/500 [00:03<00:20, 20.55it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:21, 20.02it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:19, 21.19it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:20, 19.87it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:21, 19.58it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:22, 18.58it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:21, 18.78it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:21, 18.93it/s]
eval model::  19%|█▉        | 96/500 [00:04<00:20, 19.70it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:19, 20.25it/s]
eval model::  20%|██        | 102/500 [00:05<00:21, 18.37it/s]
eval model::  21%|██        | 105/500 [00:05<00:19, 20.63it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:18, 21.44it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:18, 21.47it/s]
eval model::  23%|██▎       | 115/500 [00:05<00:17, 22.08it/s]
eval model::  24%|██▎       | 118/500 [00:05<00:16, 23.19it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:17, 22.05it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:18, 20.58it/s]
eval model::  25%|██▌       | 127/500 [00:06<00:18, 20.38it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:19, 18.92it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:20, 17.78it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:19, 19.14it/s]
eval model::  28%|██▊       | 138/500 [00:06<00:18, 19.78it/s]
eval model::  28%|██▊       | 140/500 [00:07<00:18, 19.78it/s]
eval model::  29%|██▊       | 143/500 [00:07<00:16, 21.21it/s]
eval model::  29%|██▉       | 146/500 [00:07<00:16, 21.05it/s]
eval model::  30%|██▉       | 149/500 [00:07<00:17, 19.50it/s]
eval model::  30%|███       | 151/500 [00:07<00:19, 17.54it/s]
eval model::  31%|███       | 155/500 [00:07<00:16, 20.47it/s]
eval model::  32%|███▏      | 158/500 [00:07<00:16, 20.42it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:24, 13.58it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:23, 14.45it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:20, 16.53it/s]
eval model::  34%|███▎      | 168/500 [00:08<00:19, 16.88it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:18, 17.41it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:21, 15.32it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:21, 14.98it/s]
eval model::  36%|███▌      | 178/500 [00:09<00:20, 15.72it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:23, 13.79it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:19, 16.55it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:17, 18.35it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:15, 19.67it/s]
eval model::  38%|███▊      | 192/500 [00:10<00:14, 21.79it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:14, 21.20it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:14, 20.64it/s]
eval model::  40%|████      | 201/500 [00:10<00:14, 20.55it/s]
eval model::  41%|████      | 204/500 [00:10<00:14, 20.87it/s]
eval model::  41%|████▏     | 207/500 [00:11<00:21, 13.43it/s]
eval model::  42%|████▏     | 209/500 [00:11<00:21, 13.62it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:20, 13.96it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:20, 14.23it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:23, 12.13it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:26, 10.64it/s]
eval model::  44%|████▍     | 219/500 [00:12<00:23, 12.20it/s]
eval model::  44%|████▍     | 221/500 [00:12<00:24, 11.24it/s]
eval model::  45%|████▍     | 223/500 [00:12<00:21, 12.85it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:17, 15.26it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:13, 19.46it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:12, 20.74it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:12, 21.88it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:10, 23.79it/s]
eval model::  48%|████▊     | 242/500 [00:13<00:13, 18.66it/s]
eval model::  49%|████▉     | 245/500 [00:13<00:12, 20.14it/s]
eval model::  50%|████▉     | 248/500 [00:13<00:11, 21.13it/s]
eval model::  50%|█████     | 251/500 [00:13<00:12, 19.77it/s]
eval model::  51%|█████     | 254/500 [00:13<00:11, 21.31it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:11, 21.78it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:10, 22.90it/s]
eval model::  53%|█████▎    | 263/500 [00:14<00:10, 23.32it/s]
eval model::  53%|█████▎    | 266/500 [00:14<00:11, 19.91it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:12, 18.65it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:11, 19.84it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:12, 18.05it/s]
eval model::  55%|█████▌    | 277/500 [00:14<00:12, 18.04it/s]
eval model::  56%|█████▌    | 279/500 [00:15<00:12, 18.34it/s]
eval model::  56%|█████▋    | 282/500 [00:15<00:11, 19.57it/s]
eval model::  57%|█████▋    | 284/500 [00:15<00:11, 18.91it/s]
eval model::  57%|█████▋    | 286/500 [00:15<00:23,  9.09it/s]
eval model::  58%|█████▊    | 289/500 [00:15<00:18, 11.65it/s]
eval model::  58%|█████▊    | 292/500 [00:16<00:15, 13.29it/s]
eval model::  59%|█████▉    | 294/500 [00:16<00:14, 13.76it/s]
eval model::  59%|█████▉    | 296/500 [00:16<00:16, 12.40it/s]
eval model::  60%|█████▉    | 299/500 [00:16<00:12, 15.59it/s]
eval model::  60%|██████    | 301/500 [00:16<00:14, 14.04it/s]
eval model::  61%|██████    | 304/500 [00:16<00:12, 15.93it/s]
eval model::  61%|██████▏   | 307/500 [00:17<00:10, 18.10it/s]
eval model::  62%|██████▏   | 310/500 [00:17<00:09, 20.03it/s]
eval model::  63%|██████▎   | 313/500 [00:17<00:08, 20.99it/s]
eval model::  63%|██████▎   | 316/500 [00:17<00:09, 19.84it/s]
eval model::  64%|██████▍   | 319/500 [00:17<00:08, 21.55it/s]
eval model::  64%|██████▍   | 322/500 [00:17<00:08, 20.40it/s]
eval model::  65%|██████▌   | 326/500 [00:17<00:07, 23.22it/s]
eval model::  66%|██████▌   | 329/500 [00:18<00:07, 21.59it/s]
eval model::  66%|██████▋   | 332/500 [00:18<00:07, 22.36it/s]
eval model::  67%|██████▋   | 335/500 [00:18<00:07, 21.36it/s]
eval model::  68%|██████▊   | 338/500 [00:18<00:08, 19.87it/s]
eval model::  68%|██████▊   | 341/500 [00:18<00:09, 15.99it/s]
eval model::  69%|██████▉   | 344/500 [00:18<00:08, 17.55it/s]
eval model::  69%|██████▉   | 347/500 [00:18<00:08, 18.82it/s]
eval model::  70%|███████   | 350/500 [00:19<00:07, 20.84it/s]
eval model::  71%|███████   | 353/500 [00:19<00:06, 22.38it/s]
eval model::  71%|███████   | 356/500 [00:19<00:07, 20.05it/s]
eval model::  72%|███████▏  | 359/500 [00:19<00:06, 20.87it/s]
eval model::  72%|███████▏  | 362/500 [00:19<00:07, 17.35it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:08, 15.36it/s]
eval model::  73%|███████▎  | 366/500 [00:20<00:09, 14.59it/s]
eval model::  74%|███████▎  | 368/500 [00:20<00:08, 15.58it/s]
eval model::  74%|███████▍  | 370/500 [00:20<00:07, 16.26it/s]
eval model::  74%|███████▍  | 372/500 [00:20<00:08, 15.86it/s]
eval model::  75%|███████▌  | 375/500 [00:20<00:06, 18.06it/s]
eval model::  76%|███████▌  | 378/500 [00:20<00:06, 19.78it/s]
eval model::  76%|███████▌  | 381/500 [00:20<00:06, 19.09it/s]
eval model::  77%|███████▋  | 384/500 [00:20<00:05, 21.29it/s]
eval model::  77%|███████▋  | 387/500 [00:21<00:08, 13.95it/s]
eval model::  78%|███████▊  | 390/500 [00:21<00:06, 16.43it/s]
eval model::  79%|███████▊  | 393/500 [00:21<00:06, 16.75it/s]
eval model::  79%|███████▉  | 396/500 [00:21<00:05, 18.65it/s]
eval model::  80%|███████▉  | 399/500 [00:21<00:05, 20.15it/s]
eval model::  80%|████████  | 402/500 [00:22<00:04, 19.86it/s]
eval model::  81%|████████  | 405/500 [00:22<00:04, 20.28it/s]
eval model::  82%|████████▏ | 408/500 [00:22<00:04, 19.79it/s]
eval model::  82%|████████▏ | 411/500 [00:22<00:04, 20.30it/s]
eval model::  83%|████████▎ | 414/500 [00:22<00:04, 20.51it/s]
eval model::  83%|████████▎ | 417/500 [00:22<00:04, 19.20it/s]
eval model::  84%|████████▍ | 419/500 [00:22<00:04, 19.16it/s]
eval model::  84%|████████▍ | 421/500 [00:23<00:06, 12.67it/s]
eval model::  85%|████████▍ | 424/500 [00:23<00:05, 14.27it/s]
eval model::  85%|████████▌ | 427/500 [00:23<00:04, 16.41it/s]
eval model::  86%|████████▌ | 430/500 [00:23<00:03, 18.47it/s]
eval model::  87%|████████▋ | 433/500 [00:23<00:03, 19.07it/s]
eval model::  87%|████████▋ | 436/500 [00:23<00:03, 21.24it/s]
eval model::  88%|████████▊ | 439/500 [00:24<00:02, 21.71it/s]
eval model::  88%|████████▊ | 442/500 [00:24<00:02, 20.96it/s]
eval model::  89%|████████▉ | 445/500 [00:24<00:02, 21.76it/s]
eval model::  90%|████████▉ | 448/500 [00:24<00:02, 20.46it/s]
eval model::  90%|█████████ | 451/500 [00:24<00:02, 19.05it/s]
eval model::  91%|█████████ | 454/500 [00:24<00:02, 20.21it/s]
eval model::  91%|█████████▏| 457/500 [00:24<00:02, 21.40it/s]
eval model::  92%|█████████▏| 460/500 [00:25<00:01, 21.38it/s]
eval model::  93%|█████████▎| 463/500 [00:25<00:02, 17.84it/s]
eval model::  93%|█████████▎| 465/500 [00:25<00:02, 17.19it/s]
eval model::  94%|█████████▎| 468/500 [00:25<00:01, 18.67it/s]
eval model::  94%|█████████▍| 471/500 [00:25<00:01, 21.14it/s]
eval model::  95%|█████████▍| 474/500 [00:25<00:01, 19.86it/s]
eval model::  96%|█████████▌| 478/500 [00:25<00:00, 22.58it/s]
eval model::  96%|█████████▌| 481/500 [00:26<00:00, 22.72it/s]
eval model::  97%|█████████▋| 484/500 [00:26<00:00, 21.85it/s]
eval model::  97%|█████████▋| 487/500 [00:26<00:00, 20.95it/s]
eval model::  98%|█████████▊| 490/500 [00:26<00:00, 20.92it/s]
eval model::  99%|█████████▊| 493/500 [00:26<00:00, 18.89it/s]
eval model::  99%|█████████▉| 495/500 [00:26<00:00, 18.17it/s]
eval model:: 100%|█████████▉| 498/500 [00:26<00:00, 20.29it/s]
eval model:: 100%|██████████| 500/500 [00:27<00:00, 18.51it/s]
[2024/07/28 03:22:23] ppocr INFO: cur metric, precision: 0.7272727272727273, recall: 0.7010110736639383, hmean: 0.7139004658004413, fps: 44.43815155604262
[2024/07/28 03:22:23] ppocr INFO: best metric, hmean: 0.7181174089068827, precision: 0.7568, recall: 0.6831969186326432, fps: 44.212831257019886, best_epoch: 1200
[2024/07/28 03:22:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:22:32] ppocr INFO: epoch: [1421/1500], global_step: 4263, lr: 0.001000, loss: 1.093628, loss_shrink_maps: 0.548856, loss_threshold_maps: 0.443709, loss_binary_maps: 0.109302, avg_reader_cost: 1.54088 s, avg_batch_cost: 1.81137 s, avg_samples: 12.5, ips: 6.90084 samples/s, eta: 0:23:57
[2024/07/28 03:22:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:22:42] ppocr INFO: epoch: [1422/1500], global_step: 4266, lr: 0.001000, loss: 1.093628, loss_shrink_maps: 0.548856, loss_threshold_maps: 0.452768, loss_binary_maps: 0.109302, avg_reader_cost: 1.54755 s, avg_batch_cost: 1.79707 s, avg_samples: 12.5, ips: 6.95577 samples/s, eta: 0:23:39
[2024/07/28 03:22:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:22:52] ppocr INFO: epoch: [1423/1500], global_step: 4269, lr: 0.001000, loss: 1.124857, loss_shrink_maps: 0.556106, loss_threshold_maps: 0.455582, loss_binary_maps: 0.110772, avg_reader_cost: 1.56801 s, avg_batch_cost: 1.80541 s, avg_samples: 12.5, ips: 6.92364 samples/s, eta: 0:23:20
[2024/07/28 03:22:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:23:01] ppocr INFO: epoch: [1424/1500], global_step: 4270, lr: 0.001000, loss: 1.144602, loss_shrink_maps: 0.558868, loss_threshold_maps: 0.459777, loss_binary_maps: 0.111498, avg_reader_cost: 0.41056 s, avg_batch_cost: 0.50886 s, avg_samples: 4.8, ips: 9.43285 samples/s, eta: 0:23:14
[2024/07/28 03:23:03] ppocr INFO: epoch: [1424/1500], global_step: 4272, lr: 0.001000, loss: 1.124857, loss_shrink_maps: 0.556106, loss_threshold_maps: 0.455582, loss_binary_maps: 0.110772, avg_reader_cost: 1.10933 s, avg_batch_cost: 1.25540 s, avg_samples: 7.7, ips: 6.13351 samples/s, eta: 0:23:02
[2024/07/28 03:23:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:23:13] ppocr INFO: epoch: [1425/1500], global_step: 4275, lr: 0.001000, loss: 1.099527, loss_shrink_maps: 0.550644, loss_threshold_maps: 0.452768, loss_binary_maps: 0.109542, avg_reader_cost: 1.61493 s, avg_batch_cost: 1.88239 s, avg_samples: 12.5, ips: 6.64048 samples/s, eta: 0:22:44
[2024/07/28 03:23:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:23:24] ppocr INFO: epoch: [1426/1500], global_step: 4278, lr: 0.001000, loss: 1.087080, loss_shrink_maps: 0.544543, loss_threshold_maps: 0.444192, loss_binary_maps: 0.108270, avg_reader_cost: 1.65275 s, avg_batch_cost: 1.91657 s, avg_samples: 12.5, ips: 6.52208 samples/s, eta: 0:22:26
[2024/07/28 03:23:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:23:33] ppocr INFO: epoch: [1427/1500], global_step: 4280, lr: 0.001000, loss: 1.076008, loss_shrink_maps: 0.537333, loss_threshold_maps: 0.437670, loss_binary_maps: 0.107037, avg_reader_cost: 0.89738 s, avg_batch_cost: 1.07186 s, avg_samples: 9.6, ips: 8.95643 samples/s, eta: 0:22:14
[2024/07/28 03:23:34] ppocr INFO: epoch: [1427/1500], global_step: 4281, lr: 0.001000, loss: 1.076008, loss_shrink_maps: 0.537333, loss_threshold_maps: 0.437670, loss_binary_maps: 0.107037, avg_reader_cost: 0.58167 s, avg_batch_cost: 0.63658 s, avg_samples: 2.9, ips: 4.55561 samples/s, eta: 0:22:08
[2024/07/28 03:23:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:23:44] ppocr INFO: epoch: [1428/1500], global_step: 4284, lr: 0.001000, loss: 1.068051, loss_shrink_maps: 0.531784, loss_threshold_maps: 0.434879, loss_binary_maps: 0.106066, avg_reader_cost: 1.50252 s, avg_batch_cost: 1.76223 s, avg_samples: 12.5, ips: 7.09329 samples/s, eta: 0:21:49
[2024/07/28 03:23:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:23:54] ppocr INFO: epoch: [1429/1500], global_step: 4287, lr: 0.001000, loss: 1.079124, loss_shrink_maps: 0.538850, loss_threshold_maps: 0.436418, loss_binary_maps: 0.107540, avg_reader_cost: 1.56015 s, avg_batch_cost: 1.79020 s, avg_samples: 12.5, ips: 6.98246 samples/s, eta: 0:21:31
[2024/07/28 03:23:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:24:04] ppocr INFO: epoch: [1430/1500], global_step: 4290, lr: 0.001000, loss: 1.064565, loss_shrink_maps: 0.531784, loss_threshold_maps: 0.434280, loss_binary_maps: 0.106066, avg_reader_cost: 1.56860 s, avg_batch_cost: 1.79949 s, avg_samples: 12.5, ips: 6.94641 samples/s, eta: 0:21:13
[2024/07/28 03:24:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:24:15] ppocr INFO: epoch: [1431/1500], global_step: 4293, lr: 0.001000, loss: 1.100999, loss_shrink_maps: 0.544399, loss_threshold_maps: 0.440286, loss_binary_maps: 0.108607, avg_reader_cost: 1.69496 s, avg_batch_cost: 1.96884 s, avg_samples: 12.5, ips: 6.34891 samples/s, eta: 0:20:55
[2024/07/28 03:24:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:24:25] ppocr INFO: epoch: [1432/1500], global_step: 4296, lr: 0.001000, loss: 1.111784, loss_shrink_maps: 0.544297, loss_threshold_maps: 0.442953, loss_binary_maps: 0.108969, avg_reader_cost: 1.49335 s, avg_batch_cost: 1.72176 s, avg_samples: 12.5, ips: 7.26002 samples/s, eta: 0:20:37
[2024/07/28 03:24:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:24:35] ppocr INFO: epoch: [1433/1500], global_step: 4299, lr: 0.001000, loss: 1.118312, loss_shrink_maps: 0.556659, loss_threshold_maps: 0.448754, loss_binary_maps: 0.111367, avg_reader_cost: 1.53725 s, avg_batch_cost: 1.76719 s, avg_samples: 12.5, ips: 7.07339 samples/s, eta: 0:20:18
[2024/07/28 03:24:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:24:44] ppocr INFO: epoch: [1434/1500], global_step: 4300, lr: 0.001000, loss: 1.118312, loss_shrink_maps: 0.556659, loss_threshold_maps: 0.454890, loss_binary_maps: 0.111367, avg_reader_cost: 0.40866 s, avg_batch_cost: 0.51101 s, avg_samples: 4.8, ips: 9.39320 samples/s, eta: 0:20:12
[2024/07/28 03:24:46] ppocr INFO: epoch: [1434/1500], global_step: 4302, lr: 0.001000, loss: 1.112828, loss_shrink_maps: 0.544297, loss_threshold_maps: 0.448754, loss_binary_maps: 0.108969, avg_reader_cost: 1.11450 s, avg_batch_cost: 1.26128 s, avg_samples: 7.7, ips: 6.10490 samples/s, eta: 0:20:00
[2024/07/28 03:24:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:24:56] ppocr INFO: epoch: [1435/1500], global_step: 4305, lr: 0.001000, loss: 1.126877, loss_shrink_maps: 0.568455, loss_threshold_maps: 0.455942, loss_binary_maps: 0.113747, avg_reader_cost: 1.56291 s, avg_batch_cost: 1.81611 s, avg_samples: 12.5, ips: 6.88285 samples/s, eta: 0:19:42
[2024/07/28 03:25:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:25:06] ppocr INFO: epoch: [1436/1500], global_step: 4308, lr: 0.001000, loss: 1.150082, loss_shrink_maps: 0.574811, loss_threshold_maps: 0.460397, loss_binary_maps: 0.114844, avg_reader_cost: 1.51314 s, avg_batch_cost: 1.74353 s, avg_samples: 12.5, ips: 7.16938 samples/s, eta: 0:19:24
[2024/07/28 03:25:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:25:16] ppocr INFO: epoch: [1437/1500], global_step: 4310, lr: 0.001000, loss: 1.143436, loss_shrink_maps: 0.567648, loss_threshold_maps: 0.456813, loss_binary_maps: 0.113169, avg_reader_cost: 0.91955 s, avg_batch_cost: 1.11174 s, avg_samples: 9.6, ips: 8.63515 samples/s, eta: 0:19:12
[2024/07/28 03:25:16] ppocr INFO: epoch: [1437/1500], global_step: 4311, lr: 0.001000, loss: 1.122589, loss_shrink_maps: 0.554863, loss_threshold_maps: 0.453497, loss_binary_maps: 0.110675, avg_reader_cost: 0.60172 s, avg_batch_cost: 0.65755 s, avg_samples: 2.9, ips: 4.41030 samples/s, eta: 0:19:06
[2024/07/28 03:25:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:25:26] ppocr INFO: epoch: [1438/1500], global_step: 4314, lr: 0.001000, loss: 1.112302, loss_shrink_maps: 0.554863, loss_threshold_maps: 0.460736, loss_binary_maps: 0.110675, avg_reader_cost: 1.49917 s, avg_batch_cost: 1.75465 s, avg_samples: 12.5, ips: 7.12391 samples/s, eta: 0:18:47
[2024/07/28 03:25:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:25:36] ppocr INFO: epoch: [1439/1500], global_step: 4317, lr: 0.001000, loss: 1.112302, loss_shrink_maps: 0.554863, loss_threshold_maps: 0.460736, loss_binary_maps: 0.110675, avg_reader_cost: 1.50933 s, avg_batch_cost: 1.73830 s, avg_samples: 12.5, ips: 7.19092 samples/s, eta: 0:18:29
[2024/07/28 03:25:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:25:47] ppocr INFO: epoch: [1440/1500], global_step: 4320, lr: 0.001000, loss: 1.113401, loss_shrink_maps: 0.549993, loss_threshold_maps: 0.460212, loss_binary_maps: 0.109880, avg_reader_cost: 1.56452 s, avg_batch_cost: 1.79723 s, avg_samples: 12.5, ips: 6.95516 samples/s, eta: 0:18:11

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:57,  8.67it/s]
eval model::   1%|          | 4/500 [00:00<00:27, 18.30it/s]
eval model::   1%|          | 6/500 [00:00<00:32, 15.40it/s]
eval model::   2%|▏         | 8/500 [00:00<00:31, 15.61it/s]
eval model::   2%|▏         | 11/500 [00:00<00:27, 17.48it/s]
eval model::   3%|▎         | 13/500 [00:00<00:27, 17.59it/s]
eval model::   3%|▎         | 15/500 [00:00<00:28, 16.85it/s]
eval model::   4%|▎         | 18/500 [00:01<00:24, 19.51it/s]
eval model::   4%|▍         | 20/500 [00:01<00:24, 19.47it/s]
eval model::   5%|▍         | 23/500 [00:01<00:22, 21.66it/s]
eval model::   5%|▌         | 26/500 [00:01<00:24, 19.72it/s]
eval model::   6%|▌         | 29/500 [00:01<00:22, 20.65it/s]
eval model::   6%|▋         | 32/500 [00:01<00:23, 20.24it/s]
eval model::   7%|▋         | 35/500 [00:01<00:24, 18.82it/s]
eval model::   8%|▊         | 38/500 [00:02<00:22, 20.34it/s]
eval model::   8%|▊         | 41/500 [00:02<00:24, 18.70it/s]
eval model::   9%|▊         | 43/500 [00:02<00:26, 17.26it/s]
eval model::   9%|▉         | 46/500 [00:02<00:25, 17.72it/s]
eval model::  10%|▉         | 49/500 [00:02<00:23, 19.41it/s]
eval model::  10%|█         | 51/500 [00:02<00:23, 18.78it/s]
eval model::  11%|█         | 54/500 [00:02<00:22, 19.45it/s]
eval model::  11%|█▏        | 57/500 [00:03<00:22, 20.08it/s]
eval model::  12%|█▏        | 60/500 [00:03<00:22, 19.18it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:28, 15.51it/s]
eval model::  13%|█▎        | 64/500 [00:03<00:27, 16.13it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:22, 19.06it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:20, 20.59it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:20, 21.12it/s]
eval model::  15%|█▌        | 76/500 [00:03<00:19, 22.17it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:18, 22.22it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:18, 22.98it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:17, 23.13it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:18, 21.76it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:20, 19.55it/s]
eval model::  19%|█▉        | 94/500 [00:04<00:19, 20.47it/s]
eval model::  19%|█▉        | 97/500 [00:04<00:18, 21.64it/s]
eval model::  20%|██        | 100/500 [00:05<00:19, 20.12it/s]
eval model::  21%|██        | 103/500 [00:05<00:18, 21.33it/s]
eval model::  21%|██        | 106/500 [00:05<00:17, 22.10it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:17, 22.35it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:17, 21.80it/s]
eval model::  23%|██▎       | 115/500 [00:05<00:17, 21.85it/s]
eval model::  24%|██▎       | 118/500 [00:05<00:16, 23.78it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:19, 19.86it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:19, 19.58it/s]
eval model::  25%|██▌       | 127/500 [00:06<00:18, 20.51it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:19, 19.07it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:21, 17.31it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:19, 18.54it/s]
eval model::  27%|██▋       | 137/500 [00:06<00:19, 18.35it/s]
eval model::  28%|██▊       | 140/500 [00:07<00:18, 19.62it/s]
eval model::  29%|██▊       | 143/500 [00:07<00:16, 21.53it/s]
eval model::  29%|██▉       | 146/500 [00:07<00:17, 20.25it/s]
eval model::  30%|██▉       | 149/500 [00:07<00:18, 19.39it/s]
eval model::  30%|███       | 151/500 [00:07<00:19, 17.71it/s]
eval model::  31%|███       | 155/500 [00:07<00:16, 20.93it/s]
eval model::  32%|███▏      | 158/500 [00:07<00:15, 22.47it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:24, 14.03it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:22, 14.71it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:20, 16.43it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:17, 18.86it/s]
eval model::  34%|███▍      | 172/500 [00:08<00:17, 18.81it/s]
eval model::  35%|███▌      | 175/500 [00:09<00:20, 15.99it/s]
eval model::  35%|███▌      | 177/500 [00:09<00:19, 16.60it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:22, 14.23it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:19, 16.38it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:17, 18.00it/s]
eval model::  38%|███▊      | 188/500 [00:09<00:17, 18.29it/s]
eval model::  38%|███▊      | 191/500 [00:09<00:15, 20.07it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:14, 21.65it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:13, 22.06it/s]
eval model::  40%|████      | 201/500 [00:10<00:14, 20.38it/s]
eval model::  41%|████      | 204/500 [00:10<00:13, 22.25it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:21, 13.48it/s]
eval model::  42%|████▏     | 209/500 [00:11<00:21, 13.79it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:20, 14.33it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:19, 14.70it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:21, 13.44it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:22, 12.38it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:18, 14.93it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:20, 13.87it/s]
eval model::  45%|████▌     | 225/500 [00:12<00:16, 17.15it/s]
eval model::  46%|████▌     | 228/500 [00:12<00:14, 19.27it/s]
eval model::  46%|████▋     | 232/500 [00:12<00:12, 22.05it/s]
eval model::  47%|████▋     | 235/500 [00:12<00:12, 21.08it/s]
eval model::  48%|████▊     | 238/500 [00:12<00:11, 22.52it/s]
eval model::  48%|████▊     | 241/500 [00:12<00:11, 21.65it/s]
eval model::  49%|████▉     | 244/500 [00:13<00:13, 18.33it/s]
eval model::  49%|████▉     | 247/500 [00:13<00:12, 19.97it/s]
eval model::  50%|█████     | 250/500 [00:13<00:12, 19.62it/s]
eval model::  51%|█████     | 253/500 [00:13<00:11, 21.33it/s]
eval model::  51%|█████     | 256/500 [00:13<00:10, 22.31it/s]
eval model::  52%|█████▏    | 259/500 [00:13<00:10, 23.74it/s]
eval model::  52%|█████▏    | 262/500 [00:13<00:09, 24.98it/s]
eval model::  53%|█████▎    | 265/500 [00:13<00:09, 23.95it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:10, 23.08it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:10, 22.28it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:11, 20.24it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:10, 20.27it/s]
eval model::  56%|█████▌    | 281/500 [00:14<00:10, 20.63it/s]
eval model::  57%|█████▋    | 284/500 [00:14<00:10, 20.74it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:19, 11.05it/s]
eval model::  58%|█████▊    | 290/500 [00:15<00:15, 13.59it/s]
eval model::  59%|█████▊    | 293/500 [00:15<00:13, 15.05it/s]
eval model::  59%|█████▉    | 296/500 [00:15<00:15, 12.95it/s]
eval model::  60%|█████▉    | 299/500 [00:16<00:13, 15.32it/s]
eval model::  60%|██████    | 302/500 [00:16<00:13, 14.87it/s]
eval model::  61%|██████    | 305/500 [00:16<00:11, 16.90it/s]
eval model::  62%|██████▏   | 308/500 [00:16<00:10, 19.04it/s]
eval model::  62%|██████▏   | 311/500 [00:16<00:09, 20.05it/s]
eval model::  63%|██████▎   | 314/500 [00:16<00:08, 21.05it/s]
eval model::  63%|██████▎   | 317/500 [00:16<00:08, 21.42it/s]
eval model::  64%|██████▍   | 320/500 [00:17<00:07, 22.84it/s]
eval model::  65%|██████▍   | 323/500 [00:17<00:08, 20.86it/s]
eval model::  65%|██████▌   | 326/500 [00:17<00:09, 19.24it/s]
eval model::  66%|██████▌   | 329/500 [00:17<00:09, 18.72it/s]
eval model::  66%|██████▋   | 332/500 [00:17<00:08, 19.91it/s]
eval model::  67%|██████▋   | 335/500 [00:17<00:07, 21.07it/s]
eval model::  68%|██████▊   | 338/500 [00:18<00:08, 18.88it/s]
eval model::  68%|██████▊   | 340/500 [00:18<00:11, 14.28it/s]
eval model::  69%|██████▊   | 343/500 [00:18<00:09, 17.18it/s]
eval model::  69%|██████▉   | 346/500 [00:18<00:07, 19.30it/s]
eval model::  70%|██████▉   | 349/500 [00:18<00:07, 21.10it/s]
eval model::  70%|███████   | 352/500 [00:18<00:06, 21.95it/s]
eval model::  71%|███████   | 355/500 [00:18<00:06, 21.55it/s]
eval model::  72%|███████▏  | 358/500 [00:19<00:06, 21.33it/s]
eval model::  72%|███████▏  | 361/500 [00:19<00:07, 18.10it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:07, 18.45it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:08, 15.98it/s]
eval model::  74%|███████▍  | 369/500 [00:19<00:07, 17.24it/s]
eval model::  74%|███████▍  | 371/500 [00:19<00:07, 17.66it/s]
eval model::  75%|███████▍  | 374/500 [00:19<00:06, 20.05it/s]
eval model::  75%|███████▌  | 377/500 [00:20<00:05, 22.11it/s]
eval model::  76%|███████▌  | 380/500 [00:20<00:05, 21.05it/s]
eval model::  77%|███████▋  | 383/500 [00:20<00:05, 22.19it/s]
eval model::  77%|███████▋  | 386/500 [00:20<00:08, 13.66it/s]
eval model::  78%|███████▊  | 389/500 [00:20<00:06, 16.13it/s]
eval model::  78%|███████▊  | 392/500 [00:21<00:06, 17.02it/s]
eval model::  79%|███████▉  | 395/500 [00:21<00:05, 18.23it/s]
eval model::  80%|███████▉  | 398/500 [00:21<00:05, 20.33it/s]
eval model::  80%|████████  | 401/500 [00:21<00:05, 18.03it/s]
eval model::  81%|████████  | 404/500 [00:21<00:05, 19.15it/s]
eval model::  81%|████████▏ | 407/500 [00:21<00:04, 20.85it/s]
eval model::  82%|████████▏ | 410/500 [00:21<00:04, 22.42it/s]
eval model::  83%|████████▎ | 413/500 [00:21<00:03, 22.16it/s]
eval model::  83%|████████▎ | 416/500 [00:22<00:04, 20.44it/s]
eval model::  84%|████████▍ | 419/500 [00:22<00:04, 19.21it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:05, 13.76it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:05, 13.80it/s]
eval model::  85%|████████▌ | 427/500 [00:22<00:04, 15.98it/s]
eval model::  86%|████████▌ | 430/500 [00:23<00:03, 17.93it/s]
eval model::  87%|████████▋ | 433/500 [00:23<00:03, 18.23it/s]
eval model::  87%|████████▋ | 436/500 [00:23<00:03, 19.95it/s]
eval model::  88%|████████▊ | 439/500 [00:23<00:02, 20.76it/s]
eval model::  88%|████████▊ | 442/500 [00:23<00:02, 21.79it/s]
eval model::  89%|████████▉ | 445/500 [00:23<00:02, 23.36it/s]
eval model::  90%|████████▉ | 448/500 [00:23<00:02, 22.62it/s]
eval model::  90%|█████████ | 451/500 [00:23<00:02, 21.79it/s]
eval model::  91%|█████████ | 454/500 [00:24<00:02, 21.73it/s]
eval model::  91%|█████████▏| 457/500 [00:24<00:01, 23.06it/s]
eval model::  92%|█████████▏| 460/500 [00:24<00:01, 21.68it/s]
eval model::  93%|█████████▎| 463/500 [00:24<00:02, 17.57it/s]
eval model::  93%|█████████▎| 465/500 [00:24<00:02, 16.76it/s]
eval model::  93%|█████████▎| 467/500 [00:24<00:01, 16.64it/s]
eval model::  94%|█████████▍| 470/500 [00:25<00:01, 18.37it/s]
eval model::  95%|█████████▍| 473/500 [00:25<00:01, 19.86it/s]
eval model::  95%|█████████▌| 476/500 [00:25<00:01, 21.16it/s]
eval model::  96%|█████████▌| 479/500 [00:25<00:00, 21.61it/s]
eval model::  96%|█████████▋| 482/500 [00:25<00:00, 21.32it/s]
eval model::  97%|█████████▋| 486/500 [00:25<00:00, 21.09it/s]
eval model::  98%|█████████▊| 489/500 [00:25<00:00, 21.04it/s]
eval model::  98%|█████████▊| 492/500 [00:26<00:00, 18.29it/s]
eval model::  99%|█████████▉| 495/500 [00:26<00:00, 19.58it/s]
eval model:: 100%|█████████▉| 498/500 [00:26<00:00, 21.29it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.92it/s]
[2024/07/28 03:26:13] ppocr INFO: cur metric, precision: 0.715211970074813, recall: 0.6904188733750601, hmean: 0.7025967662910338, fps: 45.8403418580426
[2024/07/28 03:26:13] ppocr INFO: best metric, hmean: 0.7181174089068827, precision: 0.7568, recall: 0.6831969186326432, fps: 44.212831257019886, best_epoch: 1200
[2024/07/28 03:26:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:26:22] ppocr INFO: epoch: [1441/1500], global_step: 4323, lr: 0.001000, loss: 1.113401, loss_shrink_maps: 0.549993, loss_threshold_maps: 0.467062, loss_binary_maps: 0.109880, avg_reader_cost: 1.79406 s, avg_batch_cost: 2.16562 s, avg_samples: 12.5, ips: 5.77202 samples/s, eta: 0:17:53
[2024/07/28 03:26:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:26:32] ppocr INFO: epoch: [1442/1500], global_step: 4326, lr: 0.001000, loss: 1.108189, loss_shrink_maps: 0.546475, loss_threshold_maps: 0.456431, loss_binary_maps: 0.109380, avg_reader_cost: 1.48053 s, avg_batch_cost: 1.71049 s, avg_samples: 12.5, ips: 7.30787 samples/s, eta: 0:17:35
[2024/07/28 03:26:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:26:42] ppocr INFO: epoch: [1443/1500], global_step: 4329, lr: 0.001000, loss: 1.122690, loss_shrink_maps: 0.550816, loss_threshold_maps: 0.456431, loss_binary_maps: 0.110149, avg_reader_cost: 1.58099 s, avg_batch_cost: 1.80949 s, avg_samples: 12.5, ips: 6.90803 samples/s, eta: 0:17:16
[2024/07/28 03:26:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:26:51] ppocr INFO: epoch: [1444/1500], global_step: 4330, lr: 0.001000, loss: 1.132120, loss_shrink_maps: 0.561823, loss_threshold_maps: 0.458499, loss_binary_maps: 0.112075, avg_reader_cost: 0.40192 s, avg_batch_cost: 0.49474 s, avg_samples: 4.8, ips: 9.70208 samples/s, eta: 0:17:10
[2024/07/28 03:26:53] ppocr INFO: epoch: [1444/1500], global_step: 4332, lr: 0.001000, loss: 1.122690, loss_shrink_maps: 0.546475, loss_threshold_maps: 0.456431, loss_binary_maps: 0.109380, avg_reader_cost: 1.08082 s, avg_batch_cost: 1.22654 s, avg_samples: 7.7, ips: 6.27781 samples/s, eta: 0:16:58
[2024/07/28 03:26:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:27:03] ppocr INFO: epoch: [1445/1500], global_step: 4335, lr: 0.001000, loss: 1.132120, loss_shrink_maps: 0.558306, loss_threshold_maps: 0.456431, loss_binary_maps: 0.111574, avg_reader_cost: 1.52023 s, avg_batch_cost: 1.75624 s, avg_samples: 12.5, ips: 7.11749 samples/s, eta: 0:16:40
[2024/07/28 03:27:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:27:13] ppocr INFO: epoch: [1446/1500], global_step: 4338, lr: 0.001000, loss: 1.130199, loss_shrink_maps: 0.571898, loss_threshold_maps: 0.446185, loss_binary_maps: 0.114267, avg_reader_cost: 1.56963 s, avg_batch_cost: 1.79850 s, avg_samples: 12.5, ips: 6.95025 samples/s, eta: 0:16:22
[2024/07/28 03:27:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:27:23] ppocr INFO: epoch: [1447/1500], global_step: 4340, lr: 0.001000, loss: 1.138150, loss_shrink_maps: 0.582051, loss_threshold_maps: 0.446185, loss_binary_maps: 0.116510, avg_reader_cost: 0.96392 s, avg_batch_cost: 1.13706 s, avg_samples: 9.6, ips: 8.44286 samples/s, eta: 0:16:10
[2024/07/28 03:27:23] ppocr INFO: epoch: [1447/1500], global_step: 4341, lr: 0.001000, loss: 1.138150, loss_shrink_maps: 0.588310, loss_threshold_maps: 0.446185, loss_binary_maps: 0.117677, avg_reader_cost: 0.61421 s, avg_batch_cost: 0.66902 s, avg_samples: 2.9, ips: 4.33468 samples/s, eta: 0:16:04
[2024/07/28 03:27:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:27:34] ppocr INFO: epoch: [1448/1500], global_step: 4344, lr: 0.001000, loss: 1.138150, loss_shrink_maps: 0.588310, loss_threshold_maps: 0.460107, loss_binary_maps: 0.117677, avg_reader_cost: 1.50815 s, avg_batch_cost: 1.74404 s, avg_samples: 12.5, ips: 7.16726 samples/s, eta: 0:15:45
[2024/07/28 03:27:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:27:44] ppocr INFO: epoch: [1449/1500], global_step: 4347, lr: 0.001000, loss: 1.145799, loss_shrink_maps: 0.577506, loss_threshold_maps: 0.462098, loss_binary_maps: 0.115522, avg_reader_cost: 1.49958 s, avg_batch_cost: 1.75029 s, avg_samples: 12.5, ips: 7.14167 samples/s, eta: 0:15:27
[2024/07/28 03:27:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:27:55] ppocr INFO: epoch: [1450/1500], global_step: 4350, lr: 0.001000, loss: 1.124428, loss_shrink_maps: 0.546424, loss_threshold_maps: 0.446513, loss_binary_maps: 0.109119, avg_reader_cost: 1.71421 s, avg_batch_cost: 1.95551 s, avg_samples: 12.5, ips: 6.39218 samples/s, eta: 0:15:09
[2024/07/28 03:27:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:28:06] ppocr INFO: epoch: [1451/1500], global_step: 4353, lr: 0.001000, loss: 1.129691, loss_shrink_maps: 0.564365, loss_threshold_maps: 0.445516, loss_binary_maps: 0.112699, avg_reader_cost: 1.62012 s, avg_batch_cost: 1.86560 s, avg_samples: 12.5, ips: 6.70024 samples/s, eta: 0:14:51
[2024/07/28 03:28:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:28:16] ppocr INFO: epoch: [1452/1500], global_step: 4356, lr: 0.001000, loss: 1.143428, loss_shrink_maps: 0.580283, loss_threshold_maps: 0.463172, loss_binary_maps: 0.115957, avg_reader_cost: 1.51147 s, avg_batch_cost: 1.76957 s, avg_samples: 12.5, ips: 7.06387 samples/s, eta: 0:14:33
[2024/07/28 03:28:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:28:26] ppocr INFO: epoch: [1453/1500], global_step: 4359, lr: 0.001000, loss: 1.143428, loss_shrink_maps: 0.563245, loss_threshold_maps: 0.466131, loss_binary_maps: 0.112572, avg_reader_cost: 1.55302 s, avg_batch_cost: 1.78283 s, avg_samples: 12.5, ips: 7.01133 samples/s, eta: 0:14:14
[2024/07/28 03:28:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:28:35] ppocr INFO: epoch: [1454/1500], global_step: 4360, lr: 0.001000, loss: 1.143428, loss_shrink_maps: 0.563245, loss_threshold_maps: 0.466131, loss_binary_maps: 0.112572, avg_reader_cost: 0.41056 s, avg_batch_cost: 0.51732 s, avg_samples: 4.8, ips: 9.27856 samples/s, eta: 0:14:08
[2024/07/28 03:28:36] ppocr INFO: epoch: [1454/1500], global_step: 4362, lr: 0.001000, loss: 1.158076, loss_shrink_maps: 0.578298, loss_threshold_maps: 0.466131, loss_binary_maps: 0.115766, avg_reader_cost: 1.12596 s, avg_batch_cost: 1.27159 s, avg_samples: 7.7, ips: 6.05541 samples/s, eta: 0:13:56
[2024/07/28 03:28:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:28:47] ppocr INFO: epoch: [1455/1500], global_step: 4365, lr: 0.001000, loss: 1.196660, loss_shrink_maps: 0.588257, loss_threshold_maps: 0.479375, loss_binary_maps: 0.117589, avg_reader_cost: 1.80100 s, avg_batch_cost: 2.02942 s, avg_samples: 12.5, ips: 6.15941 samples/s, eta: 0:13:38
[2024/07/28 03:28:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:28:58] ppocr INFO: epoch: [1456/1500], global_step: 4368, lr: 0.001000, loss: 1.241111, loss_shrink_maps: 0.630735, loss_threshold_maps: 0.498004, loss_binary_maps: 0.125429, avg_reader_cost: 1.50039 s, avg_batch_cost: 1.75307 s, avg_samples: 12.5, ips: 7.13036 samples/s, eta: 0:13:20
[2024/07/28 03:29:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:29:08] ppocr INFO: epoch: [1457/1500], global_step: 4370, lr: 0.001000, loss: 1.261841, loss_shrink_maps: 0.636298, loss_threshold_maps: 0.499428, loss_binary_maps: 0.126722, avg_reader_cost: 0.93560 s, avg_batch_cost: 1.10905 s, avg_samples: 9.6, ips: 8.65607 samples/s, eta: 0:13:08
[2024/07/28 03:29:08] ppocr INFO: epoch: [1457/1500], global_step: 4371, lr: 0.001000, loss: 1.261841, loss_shrink_maps: 0.637236, loss_threshold_maps: 0.499428, loss_binary_maps: 0.127395, avg_reader_cost: 0.60024 s, avg_batch_cost: 0.65523 s, avg_samples: 2.9, ips: 4.42594 samples/s, eta: 0:13:02
[2024/07/28 03:29:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:29:19] ppocr INFO: epoch: [1458/1500], global_step: 4374, lr: 0.001000, loss: 1.241111, loss_shrink_maps: 0.633258, loss_threshold_maps: 0.499428, loss_binary_maps: 0.126463, avg_reader_cost: 1.63261 s, avg_batch_cost: 1.97716 s, avg_samples: 12.5, ips: 6.32219 samples/s, eta: 0:12:44
[2024/07/28 03:29:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:29:30] ppocr INFO: epoch: [1459/1500], global_step: 4377, lr: 0.001000, loss: 1.258954, loss_shrink_maps: 0.637236, loss_threshold_maps: 0.499428, loss_binary_maps: 0.127395, avg_reader_cost: 1.59017 s, avg_batch_cost: 1.85152 s, avg_samples: 12.5, ips: 6.75122 samples/s, eta: 0:12:25
[2024/07/28 03:29:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:29:40] ppocr INFO: epoch: [1460/1500], global_step: 4380, lr: 0.001000, loss: 1.242568, loss_shrink_maps: 0.633471, loss_threshold_maps: 0.498004, loss_binary_maps: 0.126730, avg_reader_cost: 1.52614 s, avg_batch_cost: 1.75448 s, avg_samples: 12.5, ips: 7.12460 samples/s, eta: 0:12:07

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:58,  8.54it/s]
eval model::   1%|          | 4/500 [00:00<00:26, 19.04it/s]
eval model::   1%|          | 6/500 [00:00<00:27, 18.16it/s]
eval model::   2%|▏         | 8/500 [00:00<00:27, 18.02it/s]
eval model::   2%|▏         | 11/500 [00:00<00:24, 19.73it/s]
eval model::   3%|▎         | 13/500 [00:00<00:25, 19.12it/s]
eval model::   3%|▎         | 16/500 [00:00<00:24, 19.95it/s]
eval model::   4%|▍         | 19/500 [00:01<00:25, 18.92it/s]
eval model::   4%|▍         | 21/500 [00:01<00:25, 18.69it/s]
eval model::   5%|▍         | 23/500 [00:01<00:25, 18.82it/s]
eval model::   5%|▌         | 25/500 [00:01<00:25, 18.93it/s]
eval model::   6%|▌         | 28/500 [00:01<00:24, 19.39it/s]
eval model::   6%|▌         | 31/500 [00:01<00:25, 18.31it/s]
eval model::   7%|▋         | 34/500 [00:01<00:25, 18.17it/s]
eval model::   7%|▋         | 37/500 [00:01<00:23, 19.84it/s]
eval model::   8%|▊         | 40/500 [00:02<00:24, 18.95it/s]
eval model::   8%|▊         | 42/500 [00:02<00:25, 17.81it/s]
eval model::   9%|▉         | 45/500 [00:02<00:24, 18.51it/s]
eval model::   9%|▉         | 47/500 [00:02<00:26, 17.19it/s]
eval model::  10%|█         | 50/500 [00:02<00:25, 17.84it/s]
eval model::  11%|█         | 53/500 [00:02<00:22, 19.49it/s]
eval model::  11%|█         | 56/500 [00:02<00:22, 19.90it/s]
eval model::  12%|█▏        | 59/500 [00:03<00:24, 17.88it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:29, 15.11it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:28, 15.41it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:21, 19.81it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:21, 20.10it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:20, 20.63it/s]
eval model::  15%|█▌        | 76/500 [00:04<00:19, 22.07it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:17, 23.42it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:17, 24.30it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:19, 21.41it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:21, 19.05it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:22, 17.81it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:23, 16.99it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:22, 17.77it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:21, 18.97it/s]
eval model::  20%|██        | 101/500 [00:05<00:23, 16.80it/s]
eval model::  21%|██        | 104/500 [00:05<00:21, 18.34it/s]
eval model::  21%|██▏       | 107/500 [00:05<00:19, 19.88it/s]
eval model::  22%|██▏       | 110/500 [00:05<00:19, 20.38it/s]
eval model::  23%|██▎       | 113/500 [00:05<00:18, 21.10it/s]
eval model::  23%|██▎       | 116/500 [00:06<00:19, 19.78it/s]
eval model::  24%|██▍       | 119/500 [00:06<00:18, 20.58it/s]
eval model::  24%|██▍       | 122/500 [00:06<00:17, 21.65it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:19, 19.29it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:18, 20.21it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:19, 18.96it/s]
eval model::  27%|██▋       | 133/500 [00:07<00:20, 17.48it/s]
eval model::  27%|██▋       | 136/500 [00:07<00:19, 18.63it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:19, 18.94it/s]
eval model::  28%|██▊       | 140/500 [00:07<00:18, 18.97it/s]
eval model::  29%|██▊       | 143/500 [00:07<00:16, 21.01it/s]
eval model::  29%|██▉       | 146/500 [00:07<00:18, 19.66it/s]
eval model::  30%|██▉       | 149/500 [00:07<00:17, 20.20it/s]
eval model::  30%|███       | 152/500 [00:07<00:17, 19.40it/s]
eval model::  31%|███       | 155/500 [00:08<00:15, 21.70it/s]
eval model::  32%|███▏      | 158/500 [00:08<00:14, 23.14it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:21, 15.85it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:19, 17.61it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:17, 18.97it/s]
eval model::  34%|███▍      | 170/500 [00:08<00:15, 21.03it/s]
eval model::  35%|███▍      | 173/500 [00:09<00:16, 19.40it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:19, 16.98it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:17, 18.74it/s]
eval model::  36%|███▋      | 182/500 [00:09<00:19, 16.55it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:16, 19.42it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:15, 20.06it/s]
eval model::  38%|███▊      | 192/500 [00:10<00:14, 20.72it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:15, 19.59it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:15, 19.96it/s]
eval model::  40%|████      | 201/500 [00:10<00:14, 20.14it/s]
eval model::  41%|████      | 205/500 [00:10<00:19, 15.43it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:17, 16.49it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:17, 16.25it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:16, 17.27it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:18, 15.23it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:21, 12.99it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:18, 15.44it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:19, 14.47it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:15, 17.35it/s]
eval model::  46%|████▌     | 229/500 [00:12<00:13, 19.43it/s]
eval model::  46%|████▋     | 232/500 [00:12<00:12, 20.89it/s]
eval model::  47%|████▋     | 235/500 [00:12<00:13, 20.12it/s]
eval model::  48%|████▊     | 238/500 [00:12<00:13, 19.84it/s]
eval model::  48%|████▊     | 241/500 [00:12<00:13, 19.64it/s]
eval model::  49%|████▉     | 244/500 [00:13<00:14, 17.93it/s]
eval model::  49%|████▉     | 246/500 [00:13<00:13, 18.34it/s]
eval model::  50%|████▉     | 249/500 [00:13<00:13, 18.28it/s]
eval model::  50%|█████     | 252/500 [00:13<00:12, 19.77it/s]
eval model::  51%|█████     | 255/500 [00:13<00:11, 21.33it/s]
eval model::  52%|█████▏    | 258/500 [00:13<00:11, 20.84it/s]
eval model::  52%|█████▏    | 261/500 [00:13<00:10, 22.88it/s]
eval model::  53%|█████▎    | 264/500 [00:13<00:09, 23.64it/s]
eval model::  53%|█████▎    | 267/500 [00:14<00:10, 23.26it/s]
eval model::  54%|█████▍    | 270/500 [00:14<00:10, 21.06it/s]
eval model::  55%|█████▍    | 273/500 [00:14<00:11, 20.61it/s]
eval model::  55%|█████▌    | 276/500 [00:14<00:12, 18.19it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:12, 18.27it/s]
eval model::  56%|█████▋    | 282/500 [00:14<00:11, 19.55it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:19, 11.17it/s]
eval model::  58%|█████▊    | 288/500 [00:15<00:15, 13.35it/s]
eval model::  58%|█████▊    | 292/500 [00:15<00:12, 16.10it/s]
eval model::  59%|█████▉    | 295/500 [00:16<00:15, 13.25it/s]
eval model::  60%|█████▉    | 299/500 [00:16<00:12, 16.57it/s]
eval model::  60%|██████    | 302/500 [00:16<00:12, 15.81it/s]
eval model::  61%|██████    | 304/500 [00:16<00:12, 15.89it/s]
eval model::  61%|██████▏   | 307/500 [00:16<00:10, 17.75it/s]
eval model::  62%|██████▏   | 310/500 [00:16<00:10, 18.52it/s]
eval model::  63%|██████▎   | 313/500 [00:16<00:09, 19.47it/s]
eval model::  63%|██████▎   | 316/500 [00:17<00:09, 18.68it/s]
eval model::  64%|██████▍   | 319/500 [00:17<00:09, 19.00it/s]
eval model::  64%|██████▍   | 322/500 [00:17<00:09, 19.18it/s]
eval model::  65%|██████▌   | 325/500 [00:17<00:08, 21.21it/s]
eval model::  66%|██████▌   | 328/500 [00:17<00:08, 20.81it/s]
eval model::  66%|██████▌   | 331/500 [00:17<00:08, 20.40it/s]
eval model::  67%|██████▋   | 334/500 [00:17<00:07, 20.96it/s]
eval model::  67%|██████▋   | 337/500 [00:18<00:08, 19.18it/s]
eval model::  68%|██████▊   | 339/500 [00:18<00:08, 19.06it/s]
eval model::  68%|██████▊   | 341/500 [00:18<00:11, 14.04it/s]
eval model::  69%|██████▉   | 344/500 [00:18<00:09, 16.81it/s]
eval model::  69%|██████▉   | 347/500 [00:18<00:08, 18.91it/s]
eval model::  70%|███████   | 351/500 [00:18<00:07, 20.82it/s]
eval model::  71%|███████   | 354/500 [00:18<00:06, 22.76it/s]
eval model::  71%|███████▏  | 357/500 [00:19<00:06, 20.54it/s]
eval model::  72%|███████▏  | 360/500 [00:19<00:06, 20.86it/s]
eval model::  73%|███████▎  | 363/500 [00:19<00:07, 18.59it/s]
eval model::  73%|███████▎  | 365/500 [00:19<00:07, 18.14it/s]
eval model::  73%|███████▎  | 367/500 [00:19<00:08, 15.52it/s]
eval model::  74%|███████▍  | 370/500 [00:19<00:07, 17.47it/s]
eval model::  75%|███████▍  | 373/500 [00:20<00:06, 19.37it/s]
eval model::  75%|███████▌  | 376/500 [00:20<00:05, 21.77it/s]
eval model::  76%|███████▌  | 379/500 [00:20<00:05, 22.84it/s]
eval model::  76%|███████▋  | 382/500 [00:20<00:05, 21.05it/s]
eval model::  77%|███████▋  | 385/500 [00:20<00:05, 21.04it/s]
eval model::  78%|███████▊  | 388/500 [00:21<00:09, 12.30it/s]
eval model::  78%|███████▊  | 391/500 [00:21<00:07, 14.72it/s]
eval model::  79%|███████▉  | 394/500 [00:21<00:06, 16.04it/s]
eval model::  79%|███████▉  | 397/500 [00:21<00:05, 18.64it/s]
eval model::  80%|████████  | 400/500 [00:21<00:05, 17.81it/s]
eval model::  81%|████████  | 403/500 [00:21<00:05, 18.91it/s]
eval model::  81%|████████  | 406/500 [00:21<00:04, 19.02it/s]
eval model::  82%|████████▏ | 409/500 [00:22<00:04, 20.14it/s]
eval model::  82%|████████▏ | 412/500 [00:22<00:04, 21.41it/s]
eval model::  83%|████████▎ | 415/500 [00:22<00:04, 19.75it/s]
eval model::  84%|████████▎ | 418/500 [00:22<00:04, 18.08it/s]
eval model::  84%|████████▍ | 420/500 [00:22<00:05, 13.61it/s]
eval model::  85%|████████▍ | 423/500 [00:22<00:04, 15.69it/s]
eval model::  85%|████████▌ | 425/500 [00:23<00:04, 15.36it/s]
eval model::  86%|████████▌ | 429/500 [00:23<00:03, 19.42it/s]
eval model::  86%|████████▋ | 432/500 [00:23<00:03, 19.29it/s]
eval model::  87%|████████▋ | 435/500 [00:23<00:03, 20.71it/s]
eval model::  88%|████████▊ | 438/500 [00:23<00:02, 22.09it/s]
eval model::  88%|████████▊ | 441/500 [00:23<00:02, 20.52it/s]
eval model::  89%|████████▉ | 444/500 [00:23<00:02, 21.12it/s]
eval model::  89%|████████▉ | 447/500 [00:24<00:02, 20.95it/s]
eval model::  90%|█████████ | 450/500 [00:24<00:02, 19.70it/s]
eval model::  91%|█████████ | 453/500 [00:24<00:02, 20.69it/s]
eval model::  91%|█████████ | 456/500 [00:24<00:02, 21.45it/s]
eval model::  92%|█████████▏| 459/500 [00:24<00:01, 20.60it/s]
eval model::  92%|█████████▏| 462/500 [00:24<00:02, 16.46it/s]
eval model::  93%|█████████▎| 464/500 [00:24<00:02, 17.13it/s]
eval model::  93%|█████████▎| 466/500 [00:25<00:02, 16.99it/s]
eval model::  94%|█████████▎| 468/500 [00:25<00:01, 17.63it/s]
eval model::  94%|█████████▍| 471/500 [00:25<00:01, 20.05it/s]
eval model::  95%|█████████▍| 474/500 [00:25<00:01, 18.82it/s]
eval model::  95%|█████████▌| 477/500 [00:25<00:01, 21.21it/s]
eval model::  96%|█████████▌| 480/500 [00:25<00:00, 20.70it/s]
eval model::  97%|█████████▋| 483/500 [00:25<00:00, 20.42it/s]
eval model::  97%|█████████▋| 486/500 [00:26<00:00, 18.34it/s]
eval model::  98%|█████████▊| 489/500 [00:26<00:00, 20.53it/s]
eval model::  98%|█████████▊| 492/500 [00:26<00:00, 18.44it/s]
eval model::  99%|█████████▉| 494/500 [00:26<00:00, 18.71it/s]
eval model::  99%|█████████▉| 496/500 [00:26<00:00, 18.55it/s]
eval model:: 100%|█████████▉| 499/500 [00:26<00:00, 20.72it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.66it/s]
[2024/07/28 03:30:07] ppocr INFO: cur metric, precision: 0.7625, recall: 0.6754935002407318, hmean: 0.7163645647178964, fps: 44.16669251820965
[2024/07/28 03:30:07] ppocr INFO: best metric, hmean: 0.7181174089068827, precision: 0.7568, recall: 0.6831969186326432, fps: 44.212831257019886, best_epoch: 1200
[2024/07/28 03:30:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:30:15] ppocr INFO: epoch: [1461/1500], global_step: 4383, lr: 0.001000, loss: 1.242568, loss_shrink_maps: 0.633471, loss_threshold_maps: 0.492656, loss_binary_maps: 0.126730, avg_reader_cost: 1.48365 s, avg_batch_cost: 1.71178 s, avg_samples: 12.5, ips: 7.30233 samples/s, eta: 0:11:49
[2024/07/28 03:30:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:30:25] ppocr INFO: epoch: [1462/1500], global_step: 4386, lr: 0.001000, loss: 1.242568, loss_shrink_maps: 0.633471, loss_threshold_maps: 0.473829, loss_binary_maps: 0.126730, avg_reader_cost: 1.49012 s, avg_batch_cost: 1.72150 s, avg_samples: 12.5, ips: 7.26110 samples/s, eta: 0:11:31
[2024/07/28 03:30:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:30:36] ppocr INFO: epoch: [1463/1500], global_step: 4389, lr: 0.001000, loss: 1.232884, loss_shrink_maps: 0.633471, loss_threshold_maps: 0.473829, loss_binary_maps: 0.126730, avg_reader_cost: 1.52381 s, avg_batch_cost: 1.75287 s, avg_samples: 12.5, ips: 7.13114 samples/s, eta: 0:11:13
[2024/07/28 03:30:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:30:45] ppocr INFO: epoch: [1464/1500], global_step: 4390, lr: 0.001000, loss: 1.229148, loss_shrink_maps: 0.622908, loss_threshold_maps: 0.472047, loss_binary_maps: 0.124154, avg_reader_cost: 0.41674 s, avg_batch_cost: 0.53560 s, avg_samples: 4.8, ips: 8.96189 samples/s, eta: 0:11:06
[2024/07/28 03:30:46] ppocr INFO: epoch: [1464/1500], global_step: 4392, lr: 0.001000, loss: 1.176825, loss_shrink_maps: 0.593189, loss_threshold_maps: 0.472047, loss_binary_maps: 0.118302, avg_reader_cost: 1.16239 s, avg_batch_cost: 1.30815 s, avg_samples: 7.7, ips: 5.88615 samples/s, eta: 0:10:54
[2024/07/28 03:30:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:30:57] ppocr INFO: epoch: [1465/1500], global_step: 4395, lr: 0.001000, loss: 1.177238, loss_shrink_maps: 0.591567, loss_threshold_maps: 0.465929, loss_binary_maps: 0.117989, avg_reader_cost: 1.63880 s, avg_batch_cost: 1.92613 s, avg_samples: 12.5, ips: 6.48971 samples/s, eta: 0:10:36
[2024/07/28 03:31:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:31:07] ppocr INFO: epoch: [1466/1500], global_step: 4398, lr: 0.001000, loss: 1.144596, loss_shrink_maps: 0.565285, loss_threshold_maps: 0.459984, loss_binary_maps: 0.112442, avg_reader_cost: 1.53463 s, avg_batch_cost: 1.79264 s, avg_samples: 12.5, ips: 6.97294 samples/s, eta: 0:10:18
[2024/07/28 03:31:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:31:17] ppocr INFO: epoch: [1467/1500], global_step: 4400, lr: 0.001000, loss: 1.152918, loss_shrink_maps: 0.572960, loss_threshold_maps: 0.459984, loss_binary_maps: 0.114163, avg_reader_cost: 0.94366 s, avg_batch_cost: 1.11690 s, avg_samples: 9.6, ips: 8.59518 samples/s, eta: 0:10:06
[2024/07/28 03:31:17] ppocr INFO: epoch: [1467/1500], global_step: 4401, lr: 0.001000, loss: 1.144596, loss_shrink_maps: 0.565285, loss_threshold_maps: 0.456384, loss_binary_maps: 0.112442, avg_reader_cost: 0.60399 s, avg_batch_cost: 0.65893 s, avg_samples: 2.9, ips: 4.40108 samples/s, eta: 0:10:00
[2024/07/28 03:31:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:31:28] ppocr INFO: epoch: [1468/1500], global_step: 4404, lr: 0.001000, loss: 1.125519, loss_shrink_maps: 0.556395, loss_threshold_maps: 0.450791, loss_binary_maps: 0.110774, avg_reader_cost: 1.53859 s, avg_batch_cost: 1.79001 s, avg_samples: 12.5, ips: 6.98320 samples/s, eta: 0:09:42
[2024/07/28 03:31:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:31:38] ppocr INFO: epoch: [1469/1500], global_step: 4407, lr: 0.001000, loss: 1.152918, loss_shrink_maps: 0.569088, loss_threshold_maps: 0.459984, loss_binary_maps: 0.113237, avg_reader_cost: 1.53341 s, avg_batch_cost: 1.76146 s, avg_samples: 12.5, ips: 7.09639 samples/s, eta: 0:09:23
[2024/07/28 03:31:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:31:48] ppocr INFO: epoch: [1470/1500], global_step: 4410, lr: 0.001000, loss: 1.125519, loss_shrink_maps: 0.556143, loss_threshold_maps: 0.456384, loss_binary_maps: 0.110661, avg_reader_cost: 1.53820 s, avg_batch_cost: 1.76629 s, avg_samples: 12.5, ips: 7.07698 samples/s, eta: 0:09:05
[2024/07/28 03:31:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:31:58] ppocr INFO: epoch: [1471/1500], global_step: 4413, lr: 0.001000, loss: 1.153108, loss_shrink_maps: 0.569088, loss_threshold_maps: 0.457068, loss_binary_maps: 0.113237, avg_reader_cost: 1.53037 s, avg_batch_cost: 1.76794 s, avg_samples: 12.5, ips: 7.07038 samples/s, eta: 0:08:47
[2024/07/28 03:32:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:32:09] ppocr INFO: epoch: [1472/1500], global_step: 4416, lr: 0.001000, loss: 1.144787, loss_shrink_maps: 0.564537, loss_threshold_maps: 0.461637, loss_binary_maps: 0.112328, avg_reader_cost: 1.51662 s, avg_batch_cost: 1.76876 s, avg_samples: 12.5, ips: 7.06708 samples/s, eta: 0:08:29
[2024/07/28 03:32:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:32:19] ppocr INFO: epoch: [1473/1500], global_step: 4419, lr: 0.001000, loss: 1.091354, loss_shrink_maps: 0.551595, loss_threshold_maps: 0.461348, loss_binary_maps: 0.109905, avg_reader_cost: 1.55576 s, avg_batch_cost: 1.78417 s, avg_samples: 12.5, ips: 7.00605 samples/s, eta: 0:08:11
[2024/07/28 03:32:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:32:28] ppocr INFO: epoch: [1474/1500], global_step: 4420, lr: 0.001000, loss: 1.091354, loss_shrink_maps: 0.551595, loss_threshold_maps: 0.461348, loss_binary_maps: 0.109905, avg_reader_cost: 0.41313 s, avg_batch_cost: 0.50949 s, avg_samples: 4.8, ips: 9.42121 samples/s, eta: 0:08:04
[2024/07/28 03:32:29] ppocr INFO: epoch: [1474/1500], global_step: 4422, lr: 0.001000, loss: 1.104328, loss_shrink_maps: 0.551595, loss_threshold_maps: 0.462582, loss_binary_maps: 0.109905, avg_reader_cost: 1.10999 s, avg_batch_cost: 1.25567 s, avg_samples: 7.7, ips: 6.13216 samples/s, eta: 0:07:52
[2024/07/28 03:32:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:32:39] ppocr INFO: epoch: [1475/1500], global_step: 4425, lr: 0.001000, loss: 1.124940, loss_shrink_maps: 0.554006, loss_threshold_maps: 0.462582, loss_binary_maps: 0.110239, avg_reader_cost: 1.49121 s, avg_batch_cost: 1.72066 s, avg_samples: 12.5, ips: 7.26465 samples/s, eta: 0:07:34
[2024/07/28 03:32:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:32:50] ppocr INFO: epoch: [1476/1500], global_step: 4428, lr: 0.001000, loss: 1.124940, loss_shrink_maps: 0.554006, loss_threshold_maps: 0.459540, loss_binary_maps: 0.110239, avg_reader_cost: 1.57003 s, avg_batch_cost: 1.79836 s, avg_samples: 12.5, ips: 6.95076 samples/s, eta: 0:07:16
[2024/07/28 03:32:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:32:59] ppocr INFO: epoch: [1477/1500], global_step: 4430, lr: 0.001000, loss: 1.124940, loss_shrink_maps: 0.554006, loss_threshold_maps: 0.456150, loss_binary_maps: 0.110239, avg_reader_cost: 0.90173 s, avg_batch_cost: 1.09591 s, avg_samples: 9.6, ips: 8.75988 samples/s, eta: 0:07:04
[2024/07/28 03:33:00] ppocr INFO: epoch: [1477/1500], global_step: 4431, lr: 0.001000, loss: 1.104328, loss_shrink_maps: 0.547926, loss_threshold_maps: 0.455167, loss_binary_maps: 0.109154, avg_reader_cost: 0.59392 s, avg_batch_cost: 0.64845 s, avg_samples: 2.9, ips: 4.47218 samples/s, eta: 0:06:58
[2024/07/28 03:33:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:33:10] ppocr INFO: epoch: [1478/1500], global_step: 4434, lr: 0.001000, loss: 1.104328, loss_shrink_maps: 0.542905, loss_threshold_maps: 0.450170, loss_binary_maps: 0.107750, avg_reader_cost: 1.56997 s, avg_batch_cost: 1.80049 s, avg_samples: 12.5, ips: 6.94257 samples/s, eta: 0:06:40
[2024/07/28 03:33:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:33:21] ppocr INFO: epoch: [1479/1500], global_step: 4437, lr: 0.001000, loss: 1.081116, loss_shrink_maps: 0.539966, loss_threshold_maps: 0.442473, loss_binary_maps: 0.107193, avg_reader_cost: 1.51736 s, avg_batch_cost: 1.76424 s, avg_samples: 12.5, ips: 7.08522 samples/s, eta: 0:06:21
[2024/07/28 03:33:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:33:31] ppocr INFO: epoch: [1480/1500], global_step: 4440, lr: 0.001000, loss: 1.102623, loss_shrink_maps: 0.544017, loss_threshold_maps: 0.444807, loss_binary_maps: 0.108182, avg_reader_cost: 1.64355 s, avg_batch_cost: 1.87428 s, avg_samples: 12.5, ips: 6.66922 samples/s, eta: 0:06:03

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:59,  8.34it/s]
eval model::   1%|          | 4/500 [00:00<00:28, 17.48it/s]
eval model::   1%|          | 6/500 [00:00<00:30, 16.11it/s]
eval model::   2%|▏         | 9/500 [00:00<00:26, 18.75it/s]
eval model::   2%|▏         | 11/500 [00:00<00:27, 18.04it/s]
eval model::   3%|▎         | 14/500 [00:00<00:26, 18.60it/s]
eval model::   3%|▎         | 17/500 [00:00<00:22, 21.37it/s]
eval model::   4%|▍         | 20/500 [00:01<00:24, 19.43it/s]
eval model::   5%|▍         | 24/500 [00:01<00:20, 23.02it/s]
eval model::   5%|▌         | 27/500 [00:01<00:21, 21.71it/s]
eval model::   6%|▌         | 30/500 [00:01<00:21, 21.84it/s]
eval model::   7%|▋         | 33/500 [00:01<00:23, 20.23it/s]
eval model::   7%|▋         | 36/500 [00:01<00:24, 18.76it/s]
eval model::   8%|▊         | 39/500 [00:02<00:26, 17.48it/s]
eval model::   8%|▊         | 42/500 [00:02<00:27, 16.61it/s]
eval model::   9%|▉         | 44/500 [00:02<00:26, 17.25it/s]
eval model::   9%|▉         | 46/500 [00:02<00:28, 15.81it/s]
eval model::  10%|▉         | 49/500 [00:02<00:24, 18.08it/s]
eval model::  10%|█         | 52/500 [00:02<00:22, 19.64it/s]
eval model::  11%|█         | 55/500 [00:02<00:20, 21.91it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:22, 19.80it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:27, 16.25it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:27, 15.94it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:23, 18.71it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:19, 22.23it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:21, 20.33it/s]
eval model::  15%|█▌        | 76/500 [00:03<00:20, 20.67it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:20, 20.69it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:21, 19.67it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:21, 19.55it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:22, 18.52it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:24, 16.55it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:24, 16.87it/s]
eval model::  19%|█▉        | 95/500 [00:05<00:23, 16.91it/s]
eval model::  20%|█▉        | 98/500 [00:05<00:21, 19.03it/s]
eval model::  20%|██        | 100/500 [00:05<00:24, 16.37it/s]
eval model::  21%|██        | 103/500 [00:05<00:21, 18.80it/s]
eval model::  21%|██        | 106/500 [00:05<00:19, 19.86it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:18, 21.39it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:19, 20.20it/s]
eval model::  23%|██▎       | 115/500 [00:06<00:18, 20.72it/s]
eval model::  24%|██▎       | 118/500 [00:06<00:16, 22.58it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:19, 19.47it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:19, 19.11it/s]
eval model::  25%|██▌       | 127/500 [00:06<00:18, 20.13it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:19, 18.80it/s]
eval model::  26%|██▋       | 132/500 [00:07<00:22, 16.67it/s]
eval model::  27%|██▋       | 135/500 [00:07<00:19, 18.65it/s]
eval model::  27%|██▋       | 137/500 [00:07<00:20, 17.57it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:20, 17.79it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:18, 18.99it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:18, 19.21it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:19, 18.38it/s]
eval model::  30%|███       | 150/500 [00:07<00:17, 20.25it/s]
eval model::  31%|███       | 153/500 [00:08<00:16, 20.62it/s]
eval model::  31%|███       | 156/500 [00:08<00:15, 21.98it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:18, 18.71it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:24, 13.99it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:20, 16.37it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:18, 18.12it/s]
eval model::  34%|███▍      | 170/500 [00:09<00:16, 19.45it/s]
eval model::  35%|███▍      | 173/500 [00:09<00:17, 18.53it/s]
eval model::  35%|███▌      | 175/500 [00:09<00:20, 15.93it/s]
eval model::  35%|███▌      | 177/500 [00:09<00:19, 16.23it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:21, 15.04it/s]
eval model::  36%|███▋      | 182/500 [00:09<00:20, 15.76it/s]
eval model::  37%|███▋      | 185/500 [00:09<00:16, 18.68it/s]
eval model::  38%|███▊      | 188/500 [00:10<00:16, 19.37it/s]
eval model::  38%|███▊      | 191/500 [00:10<00:15, 20.30it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:14, 20.50it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:15, 20.01it/s]
eval model::  40%|████      | 201/500 [00:10<00:14, 20.31it/s]
eval model::  41%|████      | 204/500 [00:10<00:13, 22.10it/s]
eval model::  41%|████▏     | 207/500 [00:11<00:20, 14.03it/s]
eval model::  42%|████▏     | 209/500 [00:11<00:19, 14.79it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:19, 14.99it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.18it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:20, 13.96it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:21, 12.94it/s]
eval model::  44%|████▍     | 220/500 [00:12<00:18, 15.34it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:19, 14.14it/s]
eval model::  45%|████▌     | 226/500 [00:12<00:15, 17.61it/s]
eval model::  46%|████▌     | 229/500 [00:12<00:13, 19.69it/s]
eval model::  46%|████▋     | 232/500 [00:12<00:12, 21.89it/s]
eval model::  47%|████▋     | 235/500 [00:12<00:13, 20.17it/s]
eval model::  48%|████▊     | 238/500 [00:12<00:12, 21.04it/s]
eval model::  48%|████▊     | 241/500 [00:13<00:12, 20.66it/s]
eval model::  49%|████▉     | 244/500 [00:13<00:13, 19.04it/s]
eval model::  49%|████▉     | 247/500 [00:13<00:12, 20.32it/s]
eval model::  50%|█████     | 250/500 [00:13<00:12, 20.58it/s]
eval model::  51%|█████     | 253/500 [00:13<00:11, 22.27it/s]
eval model::  51%|█████     | 256/500 [00:13<00:11, 21.28it/s]
eval model::  52%|█████▏    | 259/500 [00:13<00:10, 22.71it/s]
eval model::  52%|█████▏    | 262/500 [00:14<00:10, 23.71it/s]
eval model::  53%|█████▎    | 265/500 [00:14<00:10, 21.48it/s]
eval model::  54%|█████▎    | 268/500 [00:14<00:10, 21.44it/s]
eval model::  54%|█████▍    | 271/500 [00:14<00:12, 19.03it/s]
eval model::  55%|█████▍    | 274/500 [00:14<00:11, 19.95it/s]
eval model::  55%|█████▌    | 277/500 [00:14<00:12, 18.35it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:12, 18.18it/s]
eval model::  56%|█████▋    | 282/500 [00:15<00:11, 19.61it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:18, 11.82it/s]
eval model::  58%|█████▊    | 288/500 [00:15<00:14, 14.46it/s]
eval model::  58%|█████▊    | 292/500 [00:15<00:12, 16.71it/s]
eval model::  59%|█████▉    | 295/500 [00:16<00:14, 13.90it/s]
eval model::  60%|█████▉    | 299/500 [00:16<00:11, 17.39it/s]
eval model::  60%|██████    | 302/500 [00:16<00:12, 16.23it/s]
eval model::  61%|██████    | 304/500 [00:16<00:11, 16.47it/s]
eval model::  61%|██████▏   | 307/500 [00:16<00:10, 19.08it/s]
eval model::  62%|██████▏   | 310/500 [00:16<00:09, 20.11it/s]
eval model::  63%|██████▎   | 313/500 [00:16<00:09, 20.42it/s]
eval model::  63%|██████▎   | 316/500 [00:17<00:08, 20.98it/s]
eval model::  64%|██████▍   | 319/500 [00:17<00:08, 21.13it/s]
eval model::  64%|██████▍   | 322/500 [00:17<00:09, 18.70it/s]
eval model::  65%|██████▌   | 325/500 [00:17<00:08, 20.55it/s]
eval model::  66%|██████▌   | 328/500 [00:17<00:08, 19.71it/s]
eval model::  66%|██████▌   | 331/500 [00:17<00:08, 20.40it/s]
eval model::  67%|██████▋   | 334/500 [00:17<00:07, 21.65it/s]
eval model::  67%|██████▋   | 337/500 [00:18<00:07, 20.46it/s]
eval model::  68%|██████▊   | 340/500 [00:18<00:10, 15.52it/s]
eval model::  69%|██████▊   | 343/500 [00:18<00:09, 16.78it/s]
eval model::  69%|██████▉   | 346/500 [00:18<00:08, 18.76it/s]
eval model::  70%|██████▉   | 349/500 [00:18<00:07, 20.35it/s]
eval model::  70%|███████   | 352/500 [00:18<00:06, 21.45it/s]
eval model::  71%|███████   | 355/500 [00:19<00:06, 21.92it/s]
eval model::  72%|███████▏  | 358/500 [00:19<00:07, 20.19it/s]
eval model::  72%|███████▏  | 361/500 [00:19<00:07, 18.37it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:07, 18.17it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:07, 18.41it/s]
eval model::  74%|███████▎  | 368/500 [00:19<00:07, 18.70it/s]
eval model::  74%|███████▍  | 370/500 [00:19<00:06, 18.84it/s]
eval model::  74%|███████▍  | 372/500 [00:20<00:06, 18.71it/s]
eval model::  75%|███████▌  | 375/500 [00:20<00:06, 20.79it/s]
eval model::  76%|███████▌  | 378/500 [00:20<00:05, 22.70it/s]
eval model::  76%|███████▌  | 381/500 [00:20<00:05, 21.03it/s]
eval model::  77%|███████▋  | 384/500 [00:20<00:05, 22.67it/s]
eval model::  77%|███████▋  | 387/500 [00:20<00:07, 15.00it/s]
eval model::  78%|███████▊  | 390/500 [00:21<00:06, 17.31it/s]
eval model::  79%|███████▊  | 393/500 [00:21<00:05, 18.31it/s]
eval model::  79%|███████▉  | 396/500 [00:21<00:05, 18.78it/s]
eval model::  80%|███████▉  | 399/500 [00:21<00:05, 18.62it/s]
eval model::  80%|████████  | 402/500 [00:21<00:05, 17.76it/s]
eval model::  81%|████████  | 405/500 [00:21<00:04, 19.79it/s]
eval model::  82%|████████▏ | 408/500 [00:21<00:04, 19.03it/s]
eval model::  82%|████████▏ | 411/500 [00:22<00:04, 20.04it/s]
eval model::  83%|████████▎ | 414/500 [00:22<00:04, 21.23it/s]
eval model::  83%|████████▎ | 417/500 [00:22<00:04, 18.07it/s]
eval model::  84%|████████▍ | 419/500 [00:22<00:04, 18.35it/s]
eval model::  84%|████████▍ | 421/500 [00:22<00:06, 12.14it/s]
eval model::  85%|████████▍ | 424/500 [00:23<00:05, 13.53it/s]
eval model::  85%|████████▌ | 426/500 [00:23<00:05, 14.64it/s]
eval model::  86%|████████▌ | 429/500 [00:23<00:04, 17.70it/s]
eval model::  86%|████████▋ | 432/500 [00:23<00:03, 18.10it/s]
eval model::  87%|████████▋ | 436/500 [00:23<00:02, 21.62it/s]
eval model::  88%|████████▊ | 439/500 [00:23<00:02, 23.43it/s]
eval model::  88%|████████▊ | 442/500 [00:23<00:02, 23.08it/s]
eval model::  89%|████████▉ | 445/500 [00:23<00:02, 23.17it/s]
eval model::  90%|████████▉ | 448/500 [00:24<00:02, 22.30it/s]
eval model::  90%|█████████ | 451/500 [00:24<00:02, 22.32it/s]
eval model::  91%|█████████ | 454/500 [00:24<00:02, 22.53it/s]
eval model::  91%|█████████▏| 457/500 [00:24<00:01, 23.18it/s]
eval model::  92%|█████████▏| 460/500 [00:24<00:01, 21.64it/s]
eval model::  93%|█████████▎| 463/500 [00:24<00:01, 18.57it/s]
eval model::  93%|█████████▎| 465/500 [00:24<00:02, 16.47it/s]
eval model::  93%|█████████▎| 467/500 [00:25<00:01, 17.05it/s]
eval model::  94%|█████████▍| 470/500 [00:25<00:01, 19.81it/s]
eval model::  95%|█████████▍| 473/500 [00:25<00:01, 19.56it/s]
eval model::  95%|█████████▌| 476/500 [00:25<00:01, 18.57it/s]
eval model::  96%|█████████▌| 479/500 [00:25<00:01, 18.96it/s]
eval model::  96%|█████████▌| 481/500 [00:25<00:00, 19.10it/s]
eval model::  97%|█████████▋| 484/500 [00:25<00:00, 19.84it/s]
eval model::  97%|█████████▋| 487/500 [00:26<00:00, 18.02it/s]
eval model::  98%|█████████▊| 489/500 [00:26<00:00, 17.72it/s]
eval model::  98%|█████████▊| 491/500 [00:26<00:00, 16.59it/s]
eval model::  99%|█████████▊| 493/500 [00:26<00:00, 15.85it/s]
eval model::  99%|█████████▉| 495/500 [00:26<00:00, 16.35it/s]
eval model:: 100%|█████████▉| 499/500 [00:26<00:00, 20.86it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.68it/s]
[2024/07/28 03:33:58] ppocr INFO: cur metric, precision: 0.722502522704339, recall: 0.6894559460760713, hmean: 0.7055925104705593, fps: 45.28838523062977
[2024/07/28 03:33:58] ppocr INFO: best metric, hmean: 0.7181174089068827, precision: 0.7568, recall: 0.6831969186326432, fps: 44.212831257019886, best_epoch: 1200
[2024/07/28 03:34:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:34:08] ppocr INFO: epoch: [1481/1500], global_step: 4443, lr: 0.001000, loss: 1.106564, loss_shrink_maps: 0.553358, loss_threshold_maps: 0.444807, loss_binary_maps: 0.110041, avg_reader_cost: 1.59738 s, avg_batch_cost: 1.85663 s, avg_samples: 12.5, ips: 6.73263 samples/s, eta: 0:05:45
[2024/07/28 03:34:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:34:18] ppocr INFO: epoch: [1482/1500], global_step: 4446, lr: 0.001000, loss: 1.106564, loss_shrink_maps: 0.553358, loss_threshold_maps: 0.445001, loss_binary_maps: 0.110041, avg_reader_cost: 1.55862 s, avg_batch_cost: 1.78705 s, avg_samples: 12.5, ips: 6.99477 samples/s, eta: 0:05:27
[2024/07/28 03:34:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:34:28] ppocr INFO: epoch: [1483/1500], global_step: 4449, lr: 0.001000, loss: 1.120575, loss_shrink_maps: 0.553774, loss_threshold_maps: 0.446891, loss_binary_maps: 0.110492, avg_reader_cost: 1.49871 s, avg_batch_cost: 1.72717 s, avg_samples: 12.5, ips: 7.23729 samples/s, eta: 0:05:09
[2024/07/28 03:34:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:34:37] ppocr INFO: epoch: [1484/1500], global_step: 4450, lr: 0.001000, loss: 1.106564, loss_shrink_maps: 0.543984, loss_threshold_maps: 0.445001, loss_binary_maps: 0.108427, avg_reader_cost: 0.42773 s, avg_batch_cost: 0.53312 s, avg_samples: 4.8, ips: 9.00353 samples/s, eta: 0:05:03
[2024/07/28 03:34:39] ppocr INFO: epoch: [1484/1500], global_step: 4452, lr: 0.001000, loss: 1.122203, loss_shrink_maps: 0.560951, loss_threshold_maps: 0.449230, loss_binary_maps: 0.111555, avg_reader_cost: 1.15744 s, avg_batch_cost: 1.30313 s, avg_samples: 7.7, ips: 5.90884 samples/s, eta: 0:04:50
[2024/07/28 03:34:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:34:49] ppocr INFO: epoch: [1485/1500], global_step: 4455, lr: 0.001000, loss: 1.166969, loss_shrink_maps: 0.574775, loss_threshold_maps: 0.468083, loss_binary_maps: 0.114940, avg_reader_cost: 1.56082 s, avg_batch_cost: 1.80439 s, avg_samples: 12.5, ips: 6.92754 samples/s, eta: 0:04:32
[2024/07/28 03:34:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:34:59] ppocr INFO: epoch: [1486/1500], global_step: 4458, lr: 0.001000, loss: 1.176056, loss_shrink_maps: 0.586437, loss_threshold_maps: 0.470364, loss_binary_maps: 0.117093, avg_reader_cost: 1.49175 s, avg_batch_cost: 1.74390 s, avg_samples: 12.5, ips: 7.16785 samples/s, eta: 0:04:14
[2024/07/28 03:35:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:35:09] ppocr INFO: epoch: [1487/1500], global_step: 4460, lr: 0.001000, loss: 1.176056, loss_shrink_maps: 0.586437, loss_threshold_maps: 0.470364, loss_binary_maps: 0.117093, avg_reader_cost: 0.92021 s, avg_batch_cost: 1.09492 s, avg_samples: 9.6, ips: 8.76774 samples/s, eta: 0:04:02
[2024/07/28 03:35:10] ppocr INFO: epoch: [1487/1500], global_step: 4461, lr: 0.001000, loss: 1.180835, loss_shrink_maps: 0.588204, loss_threshold_maps: 0.472082, loss_binary_maps: 0.117320, avg_reader_cost: 0.59316 s, avg_batch_cost: 0.64809 s, avg_samples: 2.9, ips: 4.47468 samples/s, eta: 0:03:56
[2024/07/28 03:35:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:35:20] ppocr INFO: epoch: [1488/1500], global_step: 4464, lr: 0.001000, loss: 1.188157, loss_shrink_maps: 0.600408, loss_threshold_maps: 0.470364, loss_binary_maps: 0.119888, avg_reader_cost: 1.55948 s, avg_batch_cost: 1.79459 s, avg_samples: 12.5, ips: 6.96537 samples/s, eta: 0:03:38
[2024/07/28 03:35:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:35:31] ppocr INFO: epoch: [1489/1500], global_step: 4467, lr: 0.001000, loss: 1.188157, loss_shrink_maps: 0.589292, loss_threshold_maps: 0.466952, loss_binary_maps: 0.117643, avg_reader_cost: 1.60776 s, avg_batch_cost: 1.83597 s, avg_samples: 12.5, ips: 6.80837 samples/s, eta: 0:03:20
[2024/07/28 03:35:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:35:41] ppocr INFO: epoch: [1490/1500], global_step: 4470, lr: 0.001000, loss: 1.195446, loss_shrink_maps: 0.601372, loss_threshold_maps: 0.467356, loss_binary_maps: 0.120095, avg_reader_cost: 1.59788 s, avg_batch_cost: 1.85539 s, avg_samples: 12.5, ips: 6.73712 samples/s, eta: 0:03:01
[2024/07/28 03:35:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:35:51] ppocr INFO: epoch: [1491/1500], global_step: 4473, lr: 0.001000, loss: 1.180864, loss_shrink_maps: 0.602379, loss_threshold_maps: 0.455262, loss_binary_maps: 0.120486, avg_reader_cost: 1.53077 s, avg_batch_cost: 1.77481 s, avg_samples: 12.5, ips: 7.04299 samples/s, eta: 0:02:43
[2024/07/28 03:35:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:36:02] ppocr INFO: epoch: [1492/1500], global_step: 4476, lr: 0.001000, loss: 1.201694, loss_shrink_maps: 0.617280, loss_threshold_maps: 0.461206, loss_binary_maps: 0.122841, avg_reader_cost: 1.57202 s, avg_batch_cost: 1.83390 s, avg_samples: 12.5, ips: 6.81609 samples/s, eta: 0:02:25
[2024/07/28 03:36:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:36:12] ppocr INFO: epoch: [1493/1500], global_step: 4479, lr: 0.001000, loss: 1.194618, loss_shrink_maps: 0.602379, loss_threshold_maps: 0.461206, loss_binary_maps: 0.120486, avg_reader_cost: 1.49030 s, avg_batch_cost: 1.74762 s, avg_samples: 12.5, ips: 7.15257 samples/s, eta: 0:02:07
[2024/07/28 03:36:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:36:21] ppocr INFO: epoch: [1494/1500], global_step: 4480, lr: 0.001000, loss: 1.194618, loss_shrink_maps: 0.602379, loss_threshold_maps: 0.460883, loss_binary_maps: 0.120486, avg_reader_cost: 0.42422 s, avg_batch_cost: 0.51991 s, avg_samples: 4.8, ips: 9.23237 samples/s, eta: 0:02:01
[2024/07/28 03:36:23] ppocr INFO: epoch: [1494/1500], global_step: 4482, lr: 0.001000, loss: 1.194618, loss_shrink_maps: 0.602256, loss_threshold_maps: 0.451724, loss_binary_maps: 0.120370, avg_reader_cost: 1.13117 s, avg_batch_cost: 1.27710 s, avg_samples: 7.7, ips: 6.02926 samples/s, eta: 0:01:49
[2024/07/28 03:36:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:36:33] ppocr INFO: epoch: [1495/1500], global_step: 4485, lr: 0.001000, loss: 1.194618, loss_shrink_maps: 0.602256, loss_threshold_maps: 0.460883, loss_binary_maps: 0.120370, avg_reader_cost: 1.54389 s, avg_batch_cost: 1.80591 s, avg_samples: 12.5, ips: 6.92172 samples/s, eta: 0:01:30
[2024/07/28 03:36:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:36:44] ppocr INFO: epoch: [1496/1500], global_step: 4488, lr: 0.001000, loss: 1.183950, loss_shrink_maps: 0.594420, loss_threshold_maps: 0.457676, loss_binary_maps: 0.118264, avg_reader_cost: 1.49595 s, avg_batch_cost: 1.74696 s, avg_samples: 12.5, ips: 7.15528 samples/s, eta: 0:01:12
[2024/07/28 03:36:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:36:53] ppocr INFO: epoch: [1497/1500], global_step: 4490, lr: 0.001000, loss: 1.183950, loss_shrink_maps: 0.594420, loss_threshold_maps: 0.465592, loss_binary_maps: 0.118264, avg_reader_cost: 0.91684 s, avg_batch_cost: 1.08943 s, avg_samples: 9.6, ips: 8.81195 samples/s, eta: 0:01:00
[2024/07/28 03:36:54] ppocr INFO: epoch: [1497/1500], global_step: 4491, lr: 0.001000, loss: 1.183950, loss_shrink_maps: 0.590347, loss_threshold_maps: 0.465592, loss_binary_maps: 0.117533, avg_reader_cost: 0.59017 s, avg_batch_cost: 0.64501 s, avg_samples: 2.9, ips: 4.49609 samples/s, eta: 0:00:54
[2024/07/28 03:36:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:37:04] ppocr INFO: epoch: [1498/1500], global_step: 4494, lr: 0.001000, loss: 1.133682, loss_shrink_maps: 0.562351, loss_threshold_maps: 0.449332, loss_binary_maps: 0.112008, avg_reader_cost: 1.53221 s, avg_batch_cost: 1.76541 s, avg_samples: 12.5, ips: 7.08051 samples/s, eta: 0:00:36
[2024/07/28 03:37:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:37:15] ppocr INFO: epoch: [1499/1500], global_step: 4497, lr: 0.001000, loss: 1.090888, loss_shrink_maps: 0.541108, loss_threshold_maps: 0.445383, loss_binary_maps: 0.107828, avg_reader_cost: 1.51009 s, avg_batch_cost: 1.74685 s, avg_samples: 12.5, ips: 7.15573 samples/s, eta: 0:00:18
[2024/07/28 03:37:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:37:25] ppocr INFO: epoch: [1500/1500], global_step: 4500, lr: 0.001000, loss: 1.090888, loss_shrink_maps: 0.541108, loss_threshold_maps: 0.445225, loss_binary_maps: 0.107828, avg_reader_cost: 1.51975 s, avg_batch_cost: 1.76996 s, avg_samples: 12.5, ips: 7.06229 samples/s, eta: 0:00:00

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<01:00,  8.25it/s]
eval model::   1%|          | 3/500 [00:00<00:35, 13.90it/s]
eval model::   1%|          | 6/500 [00:00<00:30, 16.26it/s]
eval model::   2%|▏         | 8/500 [00:00<00:30, 16.27it/s]
eval model::   2%|▏         | 11/500 [00:00<00:28, 17.32it/s]
eval model::   3%|▎         | 14/500 [00:00<00:25, 18.69it/s]
eval model::   4%|▎         | 18/500 [00:00<00:21, 21.95it/s]
eval model::   4%|▍         | 21/500 [00:01<00:23, 20.27it/s]
eval model::   5%|▍         | 24/500 [00:01<00:23, 20.28it/s]
eval model::   5%|▌         | 27/500 [00:01<00:24, 19.67it/s]
eval model::   6%|▌         | 30/500 [00:01<00:22, 21.31it/s]
eval model::   7%|▋         | 33/500 [00:01<00:23, 19.87it/s]
eval model::   7%|▋         | 36/500 [00:01<00:24, 19.06it/s]
eval model::   8%|▊         | 38/500 [00:02<00:24, 18.86it/s]
eval model::   8%|▊         | 40/500 [00:02<00:26, 17.51it/s]
eval model::   8%|▊         | 42/500 [00:02<00:29, 15.71it/s]
eval model::   9%|▉         | 45/500 [00:02<00:25, 17.79it/s]
eval model::   9%|▉         | 47/500 [00:02<00:26, 17.26it/s]
eval model::  10%|█         | 50/500 [00:02<00:23, 19.12it/s]
eval model::  11%|█         | 53/500 [00:02<00:21, 20.42it/s]
eval model::  11%|█         | 56/500 [00:02<00:21, 20.92it/s]
eval model::  12%|█▏        | 59/500 [00:03<00:24, 18.23it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:29, 14.88it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:29, 14.65it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:22, 18.93it/s]
eval model::  14%|█▍        | 71/500 [00:03<00:19, 22.35it/s]
eval model::  15%|█▍        | 74/500 [00:03<00:19, 21.98it/s]
eval model::  15%|█▌        | 77/500 [00:04<00:18, 23.01it/s]
eval model::  16%|█▌        | 80/500 [00:04<00:18, 22.51it/s]
eval model::  17%|█▋        | 83/500 [00:04<00:19, 21.23it/s]
eval model::  17%|█▋        | 86/500 [00:04<00:20, 20.15it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:23, 17.58it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:24, 16.68it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:24, 16.45it/s]
eval model::  19%|█▉        | 96/500 [00:05<00:22, 17.89it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:20, 19.80it/s]
eval model::  20%|██        | 102/500 [00:05<00:21, 18.47it/s]
eval model::  21%|██        | 105/500 [00:05<00:19, 20.05it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:21, 18.66it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:21, 18.39it/s]
eval model::  23%|██▎       | 115/500 [00:06<00:20, 18.80it/s]
eval model::  24%|██▎       | 118/500 [00:06<00:18, 20.86it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:18, 20.01it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:18, 19.90it/s]
eval model::  25%|██▌       | 127/500 [00:06<00:18, 20.43it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:20, 18.49it/s]
eval model::  26%|██▋       | 132/500 [00:07<00:21, 17.42it/s]
eval model::  27%|██▋       | 135/500 [00:07<00:18, 19.43it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:18, 19.38it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:17, 20.70it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:16, 21.41it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:18, 18.85it/s]
eval model::  30%|███       | 150/500 [00:07<00:17, 19.72it/s]
eval model::  31%|███       | 153/500 [00:08<00:18, 18.51it/s]
eval model::  31%|███▏      | 157/500 [00:08<00:16, 21.19it/s]
eval model::  32%|███▏      | 160/500 [00:08<00:23, 14.62it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:20, 16.27it/s]
eval model::  33%|███▎      | 165/500 [00:08<00:19, 16.89it/s]
eval model::  34%|███▎      | 168/500 [00:08<00:17, 18.69it/s]
eval model::  34%|███▍      | 171/500 [00:09<00:18, 18.09it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:20, 16.25it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:20, 16.11it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:17, 18.83it/s]
eval model::  36%|███▋      | 182/500 [00:09<00:18, 17.44it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:16, 19.09it/s]
eval model::  38%|███▊      | 189/500 [00:10<00:16, 19.39it/s]
eval model::  38%|███▊      | 192/500 [00:10<00:15, 20.25it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:15, 19.65it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:14, 20.88it/s]
eval model::  40%|████      | 201/500 [00:10<00:14, 21.35it/s]
eval model::  41%|████      | 204/500 [00:10<00:12, 22.78it/s]
eval model::  41%|████▏     | 207/500 [00:11<00:21, 13.72it/s]
eval model::  42%|████▏     | 209/500 [00:11<00:20, 14.36it/s]
eval model::  42%|████▏     | 211/500 [00:11<00:20, 14.23it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:18, 15.18it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:23, 12.29it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:24, 11.56it/s]
eval model::  44%|████▍     | 220/500 [00:12<00:19, 14.08it/s]
eval model::  44%|████▍     | 222/500 [00:12<00:21, 12.91it/s]
eval model::  45%|████▌     | 225/500 [00:12<00:17, 16.00it/s]
eval model::  46%|████▌     | 228/500 [00:12<00:14, 18.34it/s]
eval model::  46%|████▌     | 231/500 [00:12<00:12, 20.75it/s]
eval model::  47%|████▋     | 234/500 [00:12<00:13, 19.44it/s]
eval model::  47%|████▋     | 237/500 [00:12<00:12, 21.67it/s]
eval model::  48%|████▊     | 240/500 [00:13<00:11, 22.33it/s]
eval model::  49%|████▊     | 243/500 [00:13<00:13, 18.36it/s]
eval model::  49%|████▉     | 246/500 [00:13<00:12, 20.00it/s]
eval model::  50%|████▉     | 249/500 [00:13<00:12, 20.24it/s]
eval model::  50%|█████     | 252/500 [00:13<00:11, 21.07it/s]
eval model::  51%|█████     | 255/500 [00:13<00:10, 22.47it/s]
eval model::  52%|█████▏    | 258/500 [00:13<00:10, 22.10it/s]
eval model::  52%|█████▏    | 261/500 [00:14<00:11, 21.27it/s]
eval model::  53%|█████▎    | 264/500 [00:14<00:11, 20.96it/s]
eval model::  53%|█████▎    | 267/500 [00:14<00:11, 21.04it/s]
eval model::  54%|█████▍    | 270/500 [00:14<00:12, 18.53it/s]
eval model::  55%|█████▍    | 273/500 [00:14<00:11, 19.98it/s]
eval model::  55%|█████▌    | 276/500 [00:14<00:12, 18.03it/s]
eval model::  56%|█████▌    | 279/500 [00:15<00:11, 18.87it/s]
eval model::  56%|█████▋    | 282/500 [00:15<00:10, 20.25it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:20, 10.46it/s]
eval model::  58%|█████▊    | 288/500 [00:15<00:16, 12.90it/s]
eval model::  58%|█████▊    | 292/500 [00:16<00:13, 15.93it/s]
eval model::  59%|█████▉    | 295/500 [00:16<00:14, 14.26it/s]
eval model::  60%|█████▉    | 298/500 [00:16<00:12, 16.28it/s]
eval model::  60%|██████    | 301/500 [00:16<00:12, 15.39it/s]
eval model::  61%|██████    | 304/500 [00:16<00:11, 16.88it/s]
eval model::  61%|██████▏   | 307/500 [00:16<00:10, 18.93it/s]
eval model::  62%|██████▏   | 310/500 [00:16<00:09, 20.85it/s]
eval model::  63%|██████▎   | 313/500 [00:17<00:08, 21.79it/s]
eval model::  63%|██████▎   | 316/500 [00:17<00:09, 19.65it/s]
eval model::  64%|██████▍   | 319/500 [00:17<00:08, 20.78it/s]
eval model::  64%|██████▍   | 322/500 [00:17<00:08, 19.93it/s]
eval model::  65%|██████▌   | 325/500 [00:17<00:08, 20.98it/s]
eval model::  66%|██████▌   | 328/500 [00:17<00:08, 19.92it/s]
eval model::  66%|██████▌   | 331/500 [00:18<00:08, 19.88it/s]
eval model::  67%|██████▋   | 334/500 [00:18<00:07, 21.18it/s]
eval model::  67%|██████▋   | 337/500 [00:18<00:07, 20.91it/s]
eval model::  68%|██████▊   | 340/500 [00:18<00:11, 14.14it/s]
eval model::  69%|██████▊   | 343/500 [00:18<00:09, 15.71it/s]
eval model::  69%|██████▉   | 346/500 [00:18<00:08, 18.15it/s]
eval model::  70%|██████▉   | 349/500 [00:19<00:07, 20.07it/s]
eval model::  70%|███████   | 352/500 [00:19<00:06, 21.89it/s]
eval model::  71%|███████   | 355/500 [00:19<00:06, 21.64it/s]
eval model::  72%|███████▏  | 358/500 [00:19<00:07, 20.17it/s]
eval model::  72%|███████▏  | 361/500 [00:19<00:08, 16.99it/s]
eval model::  73%|███████▎  | 364/500 [00:19<00:07, 17.29it/s]
eval model::  73%|███████▎  | 366/500 [00:20<00:08, 16.47it/s]
eval model::  74%|███████▍  | 369/500 [00:20<00:07, 18.18it/s]
eval model::  74%|███████▍  | 371/500 [00:20<00:07, 17.84it/s]
eval model::  75%|███████▍  | 374/500 [00:20<00:06, 19.48it/s]
eval model::  75%|███████▌  | 377/500 [00:20<00:05, 21.79it/s]
eval model::  76%|███████▌  | 380/500 [00:20<00:05, 21.17it/s]
eval model::  77%|███████▋  | 383/500 [00:20<00:05, 22.86it/s]
eval model::  77%|███████▋  | 386/500 [00:21<00:07, 15.36it/s]
eval model::  78%|███████▊  | 389/500 [00:21<00:06, 17.91it/s]
eval model::  78%|███████▊  | 392/500 [00:21<00:05, 18.39it/s]
eval model::  79%|███████▉  | 395/500 [00:21<00:05, 19.84it/s]
eval model::  80%|███████▉  | 399/500 [00:21<00:04, 22.60it/s]
eval model::  80%|████████  | 402/500 [00:21<00:04, 20.68it/s]
eval model::  81%|████████  | 405/500 [00:21<00:04, 21.64it/s]
eval model::  82%|████████▏ | 408/500 [00:22<00:04, 21.57it/s]
eval model::  82%|████████▏ | 411/500 [00:22<00:04, 21.38it/s]
eval model::  83%|████████▎ | 414/500 [00:22<00:03, 22.22it/s]
eval model::  83%|████████▎ | 417/500 [00:22<00:04, 20.28it/s]
eval model::  84%|████████▍ | 420/500 [00:22<00:05, 13.67it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:05, 14.34it/s]
eval model::  85%|████████▍ | 424/500 [00:23<00:05, 14.56it/s]
eval model::  85%|████████▌ | 427/500 [00:23<00:04, 16.84it/s]
eval model::  86%|████████▌ | 430/500 [00:23<00:03, 18.92it/s]
eval model::  87%|████████▋ | 433/500 [00:23<00:03, 19.58it/s]
eval model::  87%|████████▋ | 436/500 [00:23<00:02, 21.75it/s]
eval model::  88%|████████▊ | 439/500 [00:23<00:02, 22.98it/s]
eval model::  88%|████████▊ | 442/500 [00:23<00:02, 23.14it/s]
eval model::  89%|████████▉ | 445/500 [00:23<00:02, 23.98it/s]
eval model::  90%|████████▉ | 448/500 [00:24<00:02, 22.36it/s]
eval model::  90%|█████████ | 451/500 [00:24<00:02, 22.31it/s]
eval model::  91%|█████████ | 454/500 [00:24<00:02, 21.52it/s]
eval model::  91%|█████████▏| 457/500 [00:24<00:01, 22.95it/s]
eval model::  92%|█████████▏| 460/500 [00:24<00:01, 23.79it/s]
eval model::  93%|█████████▎| 463/500 [00:24<00:01, 19.21it/s]
eval model::  93%|█████████▎| 466/500 [00:25<00:01, 18.06it/s]
eval model::  94%|█████████▎| 468/500 [00:25<00:01, 17.71it/s]
eval model::  94%|█████████▍| 471/500 [00:25<00:01, 19.21it/s]
eval model::  95%|█████████▍| 474/500 [00:25<00:01, 18.58it/s]
eval model::  96%|█████████▌| 478/500 [00:25<00:01, 21.25it/s]
eval model::  96%|█████████▌| 481/500 [00:25<00:00, 19.41it/s]
eval model::  97%|█████████▋| 484/500 [00:25<00:00, 19.85it/s]
eval model::  97%|█████████▋| 487/500 [00:26<00:00, 18.17it/s]
eval model::  98%|█████████▊| 490/500 [00:26<00:00, 20.15it/s]
eval model::  99%|█████████▊| 493/500 [00:26<00:00, 17.80it/s]
eval model::  99%|█████████▉| 495/500 [00:26<00:00, 17.11it/s]
eval model:: 100%|█████████▉| 498/500 [00:26<00:00, 18.83it/s]
eval model:: 100%|██████████| 500/500 [00:26<00:00, 18.66it/s]
[2024/07/28 03:37:52] ppocr INFO: cur metric, precision: 0.7367367367367368, recall: 0.7087144920558498, hmean: 0.7224539877300615, fps: 45.878396147141586
[2024/07/28 03:37:52] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/07/28 03:37:52] ppocr INFO: best metric, hmean: 0.7224539877300615, precision: 0.7367367367367368, recall: 0.7087144920558498, fps: 45.878396147141586, best_epoch: 1500
[2024/07/28 03:37:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/07/28 03:37:54] ppocr INFO: best metric, hmean: 0.7224539877300615, precision: 0.7367367367367368, recall: 0.7087144920558498, fps: 45.878396147141586, best_epoch: 1500
I0728 03:37:56.256302 192577 tcp_store.cc:289] receive shutdown event and so quit from MasterDaemon run loop
[2024/08/01 17:43:09] ppocr INFO: Architecture : 
[2024/08/01 17:43:09] ppocr INFO:     Backbone : 
[2024/08/01 17:43:09] ppocr INFO:         model_name : large
[2024/08/01 17:43:09] ppocr INFO:         name : MobileNetV3
[2024/08/01 17:43:09] ppocr INFO:         scale : 0.5
[2024/08/01 17:43:09] ppocr INFO:     Head : 
[2024/08/01 17:43:09] ppocr INFO:         k : 50
[2024/08/01 17:43:09] ppocr INFO:         name : DBHead
[2024/08/01 17:43:09] ppocr INFO:     Neck : 
[2024/08/01 17:43:09] ppocr INFO:         name : DBFPN
[2024/08/01 17:43:09] ppocr INFO:         out_channels : 256
[2024/08/01 17:43:09] ppocr INFO:     Transform : None
[2024/08/01 17:43:09] ppocr INFO:     algorithm : DB
[2024/08/01 17:43:09] ppocr INFO:     model_type : det
[2024/08/01 17:43:09] ppocr INFO: Eval : 
[2024/08/01 17:43:09] ppocr INFO:     dataset : 
[2024/08/01 17:43:09] ppocr INFO:         data_dir : /datasets/icdar2015/text_localization/
[2024/08/01 17:43:09] ppocr INFO:         label_file_list : ['/datasets/icdar2015/text_localization/test_icdar2015_label.txt']
[2024/08/01 17:43:09] ppocr INFO:         name : SimpleDataSet
[2024/08/01 17:43:09] ppocr INFO:         transforms : 
[2024/08/01 17:43:09] ppocr INFO:             DecodeImage : 
[2024/08/01 17:43:09] ppocr INFO:                 channel_first : False
[2024/08/01 17:43:09] ppocr INFO:                 img_mode : BGR
[2024/08/01 17:43:09] ppocr INFO:             DetLabelEncode : None
[2024/08/01 17:43:09] ppocr INFO:             DetResizeForTest : 
[2024/08/01 17:43:09] ppocr INFO:                 image_shape : [736, 1280]
[2024/08/01 17:43:09] ppocr INFO:             NormalizeImage : 
[2024/08/01 17:43:09] ppocr INFO:                 mean : [0.485, 0.456, 0.406]
[2024/08/01 17:43:09] ppocr INFO:                 order : hwc
[2024/08/01 17:43:09] ppocr INFO:                 scale : 1./255.
[2024/08/01 17:43:09] ppocr INFO:                 std : [0.229, 0.224, 0.225]
[2024/08/01 17:43:09] ppocr INFO:             ToCHWImage : None
[2024/08/01 17:43:09] ppocr INFO:             KeepKeys : 
[2024/08/01 17:43:09] ppocr INFO:                 keep_keys : ['image', 'shape', 'polys', 'ignore_tags']
[2024/08/01 17:43:09] ppocr INFO:     loader : 
[2024/08/01 17:43:09] ppocr INFO:         batch_size_per_card : 1
[2024/08/01 17:43:09] ppocr INFO:         drop_last : False
[2024/08/01 17:43:09] ppocr INFO:         num_workers : 0
[2024/08/01 17:43:09] ppocr INFO:         shuffle : False
[2024/08/01 17:43:09] ppocr INFO:         use_shared_memory : True
[2024/08/01 17:43:09] ppocr INFO: Global : 
[2024/08/01 17:43:09] ppocr INFO:     cal_metric_during_train : False
[2024/08/01 17:43:09] ppocr INFO:     checkpoints : None
[2024/08/01 17:43:09] ppocr INFO:     distributed : True
[2024/08/01 17:43:09] ppocr INFO:     epoch_num : 100
[2024/08/01 17:43:09] ppocr INFO:     eval_batch_step : [0, 60]
[2024/08/01 17:43:09] ppocr INFO:     infer_img : doc/imgs_en/img_10.jpg
[2024/08/01 17:43:09] ppocr INFO:     log_smooth_window : 20
[2024/08/01 17:43:09] ppocr INFO:     pretrained_model : ./pretrain_models/MobileNetV3_large_x0_5_pretrained
[2024/08/01 17:43:09] ppocr INFO:     print_batch_step : 10
[2024/08/01 17:43:09] ppocr INFO:     save_epoch_step : 1200
[2024/08/01 17:43:09] ppocr INFO:     save_inference_dir : None
[2024/08/01 17:43:09] ppocr INFO:     save_model_dir : ./output/db_mv3/
[2024/08/01 17:43:09] ppocr INFO:     save_res_path : ./output/det_db/predicts_db.txt
[2024/08/01 17:43:09] ppocr INFO:     use_gpu : True
[2024/08/01 17:43:09] ppocr INFO:     use_visualdl : False
[2024/08/01 17:43:09] ppocr INFO:     use_xpu : False
[2024/08/01 17:43:09] ppocr INFO: Loss : 
[2024/08/01 17:43:09] ppocr INFO:     alpha : 5
[2024/08/01 17:43:09] ppocr INFO:     balance_loss : True
[2024/08/01 17:43:09] ppocr INFO:     beta : 10
[2024/08/01 17:43:09] ppocr INFO:     main_loss_type : DiceLoss
[2024/08/01 17:43:09] ppocr INFO:     name : DBLoss
[2024/08/01 17:43:09] ppocr INFO:     ohem_ratio : 3
[2024/08/01 17:43:09] ppocr INFO: Metric : 
[2024/08/01 17:43:09] ppocr INFO:     main_indicator : hmean
[2024/08/01 17:43:09] ppocr INFO:     name : DetMetric
[2024/08/01 17:43:09] ppocr INFO: Optimizer : 
[2024/08/01 17:43:09] ppocr INFO:     beta1 : 0.9
[2024/08/01 17:43:09] ppocr INFO:     beta2 : 0.999
[2024/08/01 17:43:09] ppocr INFO:     lr : 
[2024/08/01 17:43:09] ppocr INFO:         learning_rate : 0.001
[2024/08/01 17:43:09] ppocr INFO:     name : Adam
[2024/08/01 17:43:09] ppocr INFO:     regularizer : 
[2024/08/01 17:43:09] ppocr INFO:         factor : 0
[2024/08/01 17:43:09] ppocr INFO:         name : L2
[2024/08/01 17:43:09] ppocr INFO: PostProcess : 
[2024/08/01 17:43:09] ppocr INFO:     box_thresh : 0.6
[2024/08/01 17:43:09] ppocr INFO:     max_candidates : 1000
[2024/08/01 17:43:09] ppocr INFO:     name : DBPostProcess
[2024/08/01 17:43:09] ppocr INFO:     thresh : 0.3
[2024/08/01 17:43:09] ppocr INFO:     unclip_ratio : 1.5
[2024/08/01 17:43:09] ppocr INFO: Train : 
[2024/08/01 17:43:09] ppocr INFO:     dataset : 
[2024/08/01 17:43:09] ppocr INFO:         data_dir : /datasets/icdar2015/text_localization/
[2024/08/01 17:43:09] ppocr INFO:         label_file_list : ['/datasets/icdar2015/text_localization/train_icdar2015_label.txt']
[2024/08/01 17:43:09] ppocr INFO:         name : SimpleDataSet
[2024/08/01 17:43:09] ppocr INFO:         ratio_list : [1.0]
[2024/08/01 17:43:09] ppocr INFO:         transforms : 
[2024/08/01 17:43:09] ppocr INFO:             DecodeImage : 
[2024/08/01 17:43:09] ppocr INFO:                 channel_first : False
[2024/08/01 17:43:09] ppocr INFO:                 img_mode : BGR
[2024/08/01 17:43:09] ppocr INFO:             DetLabelEncode : None
[2024/08/01 17:43:09] ppocr INFO:             IaaAugment : 
[2024/08/01 17:43:09] ppocr INFO:                 augmenter_args : 
[2024/08/01 17:43:09] ppocr INFO:                     args : 
[2024/08/01 17:43:09] ppocr INFO:                         p : 0.5
[2024/08/01 17:43:09] ppocr INFO:                     type : Fliplr
[2024/08/01 17:43:09] ppocr INFO:                     args : 
[2024/08/01 17:43:09] ppocr INFO:                         rotate : [-10, 10]
[2024/08/01 17:43:09] ppocr INFO:                     type : Affine
[2024/08/01 17:43:09] ppocr INFO:                     args : 
[2024/08/01 17:43:09] ppocr INFO:                         size : [0.5, 3]
[2024/08/01 17:43:09] ppocr INFO:                     type : Resize
[2024/08/01 17:43:09] ppocr INFO:             EastRandomCropData : 
[2024/08/01 17:43:09] ppocr INFO:                 keep_ratio : True
[2024/08/01 17:43:09] ppocr INFO:                 max_tries : 50
[2024/08/01 17:43:09] ppocr INFO:                 size : [640, 640]
[2024/08/01 17:43:09] ppocr INFO:             MakeBorderMap : 
[2024/08/01 17:43:09] ppocr INFO:                 shrink_ratio : 0.4
[2024/08/01 17:43:09] ppocr INFO:                 thresh_max : 0.7
[2024/08/01 17:43:09] ppocr INFO:                 thresh_min : 0.3
[2024/08/01 17:43:09] ppocr INFO:             MakeShrinkMap : 
[2024/08/01 17:43:09] ppocr INFO:                 min_text_size : 8
[2024/08/01 17:43:09] ppocr INFO:                 shrink_ratio : 0.4
[2024/08/01 17:43:09] ppocr INFO:             NormalizeImage : 
[2024/08/01 17:43:09] ppocr INFO:                 mean : [0.485, 0.456, 0.406]
[2024/08/01 17:43:09] ppocr INFO:                 order : hwc
[2024/08/01 17:43:09] ppocr INFO:                 scale : 1./255.
[2024/08/01 17:43:09] ppocr INFO:                 std : [0.229, 0.224, 0.225]
[2024/08/01 17:43:09] ppocr INFO:             ToCHWImage : None
[2024/08/01 17:43:09] ppocr INFO:             KeepKeys : 
[2024/08/01 17:43:09] ppocr INFO:                 keep_keys : ['image', 'threshold_map', 'threshold_mask', 'shrink_map', 'shrink_mask']
[2024/08/01 17:43:09] ppocr INFO:     loader : 
[2024/08/01 17:43:09] ppocr INFO:         batch_size_per_card : 48
[2024/08/01 17:43:09] ppocr INFO:         drop_last : False
[2024/08/01 17:43:09] ppocr INFO:         num_workers : 8
[2024/08/01 17:43:09] ppocr INFO:         shuffle : True
[2024/08/01 17:43:09] ppocr INFO:         use_shared_memory : True
[2024/08/01 17:43:09] ppocr INFO: profiler_options : None
[2024/08/01 17:43:09] ppocr INFO: train with paddle 2.5.2 and device Place(gpu:0)
======================= Modified FLAGS detected =======================
FLAGS(name='FLAGS_selected_gpus', current_value='0', default_value='')
FLAGS(name='FLAGS_cudnn_batchnorm_spatial_persistent', current_value=True, default_value=False)
=======================================================================
I0801 17:43:09.953569   736 tcp_utils.cc:181] The server starts to listen on IP_ANY:62911
I0801 17:43:09.953749   736 tcp_utils.cc:130] Successfully connected to 10.8.145.246:62911


--------------------------------------
C++ Traceback (most recent call last):
--------------------------------------
0   phi::distributed::CreateOrGetGlobalTCPStore()
1   phi::distributed::TCPStore::TCPStore(std::string, unsigned short, bool, unsigned long, int)
2   phi::distributed::TCPStore::waitWorkers()
3   phi::distributed::TCPStore::get(std::string const&)
4   void phi::distributed::tcputils::receive_bytes<unsigned long>(int, unsigned long*, unsigned long)

----------------------
Error Message Summary:
----------------------
FatalError: `Termination signal` is detected by the operating system.
  [TimeInfo: *** Aborted at 1722505391 (unix time) try "date -d @1722505391" if you are using GNU date ***]
  [SignalInfo: *** SIGTERM (@0x28f) received by PID 736 (TID 0x7fbca936b740) from PID 655 ***]

[2024/08/01 17:45:05] ppocr INFO: Architecture : 
[2024/08/01 17:45:05] ppocr INFO:     Backbone : 
[2024/08/01 17:45:05] ppocr INFO:         model_name : large
[2024/08/01 17:45:05] ppocr INFO:         name : MobileNetV3
[2024/08/01 17:45:05] ppocr INFO:         scale : 0.5
[2024/08/01 17:45:05] ppocr INFO:     Head : 
[2024/08/01 17:45:05] ppocr INFO:         k : 50
[2024/08/01 17:45:05] ppocr INFO:         name : DBHead
[2024/08/01 17:45:05] ppocr INFO:     Neck : 
[2024/08/01 17:45:05] ppocr INFO:         name : DBFPN
[2024/08/01 17:45:05] ppocr INFO:         out_channels : 256
[2024/08/01 17:45:05] ppocr INFO:     Transform : None
[2024/08/01 17:45:05] ppocr INFO:     algorithm : DB
[2024/08/01 17:45:05] ppocr INFO:     model_type : det
[2024/08/01 17:45:05] ppocr INFO: Eval : 
[2024/08/01 17:45:05] ppocr INFO:     dataset : 
[2024/08/01 17:45:05] ppocr INFO:         data_dir : /datasets/icdar2015/text_localization/
[2024/08/01 17:45:05] ppocr INFO:         label_file_list : ['/datasets/icdar2015/text_localization/test_icdar2015_label.txt']
[2024/08/01 17:45:05] ppocr INFO:         name : SimpleDataSet
[2024/08/01 17:45:05] ppocr INFO:         transforms : 
[2024/08/01 17:45:05] ppocr INFO:             DecodeImage : 
[2024/08/01 17:45:05] ppocr INFO:                 channel_first : False
[2024/08/01 17:45:05] ppocr INFO:                 img_mode : BGR
[2024/08/01 17:45:05] ppocr INFO:             DetLabelEncode : None
[2024/08/01 17:45:05] ppocr INFO:             DetResizeForTest : 
[2024/08/01 17:45:05] ppocr INFO:                 image_shape : [736, 1280]
[2024/08/01 17:45:05] ppocr INFO:             NormalizeImage : 
[2024/08/01 17:45:05] ppocr INFO:                 mean : [0.485, 0.456, 0.406]
[2024/08/01 17:45:05] ppocr INFO:                 order : hwc
[2024/08/01 17:45:05] ppocr INFO:                 scale : 1./255.
[2024/08/01 17:45:05] ppocr INFO:                 std : [0.229, 0.224, 0.225]
[2024/08/01 17:45:05] ppocr INFO:             ToCHWImage : None
[2024/08/01 17:45:05] ppocr INFO:             KeepKeys : 
[2024/08/01 17:45:05] ppocr INFO:                 keep_keys : ['image', 'shape', 'polys', 'ignore_tags']
[2024/08/01 17:45:05] ppocr INFO:     loader : 
[2024/08/01 17:45:05] ppocr INFO:         batch_size_per_card : 1
[2024/08/01 17:45:05] ppocr INFO:         drop_last : False
[2024/08/01 17:45:05] ppocr INFO:         num_workers : 0
[2024/08/01 17:45:05] ppocr INFO:         shuffle : False
[2024/08/01 17:45:05] ppocr INFO:         use_shared_memory : True
[2024/08/01 17:45:05] ppocr INFO: Global : 
[2024/08/01 17:45:05] ppocr INFO:     cal_metric_during_train : False
[2024/08/01 17:45:05] ppocr INFO:     checkpoints : None
[2024/08/01 17:45:05] ppocr INFO:     distributed : True
[2024/08/01 17:45:05] ppocr INFO:     epoch_num : 100
[2024/08/01 17:45:05] ppocr INFO:     eval_batch_step : [0, 60]
[2024/08/01 17:45:05] ppocr INFO:     infer_img : doc/imgs_en/img_10.jpg
[2024/08/01 17:45:05] ppocr INFO:     log_smooth_window : 20
[2024/08/01 17:45:05] ppocr INFO:     pretrained_model : ./pretrain_models/MobileNetV3_large_x0_5_pretrained
[2024/08/01 17:45:05] ppocr INFO:     print_batch_step : 10
[2024/08/01 17:45:05] ppocr INFO:     save_epoch_step : 1200
[2024/08/01 17:45:05] ppocr INFO:     save_inference_dir : None
[2024/08/01 17:45:05] ppocr INFO:     save_model_dir : ./output/db_mv3/
[2024/08/01 17:45:05] ppocr INFO:     save_res_path : ./output/det_db/predicts_db.txt
[2024/08/01 17:45:05] ppocr INFO:     use_gpu : True
[2024/08/01 17:45:05] ppocr INFO:     use_visualdl : False
[2024/08/01 17:45:05] ppocr INFO:     use_xpu : False
[2024/08/01 17:45:05] ppocr INFO: Loss : 
[2024/08/01 17:45:05] ppocr INFO:     alpha : 5
[2024/08/01 17:45:05] ppocr INFO:     balance_loss : True
[2024/08/01 17:45:05] ppocr INFO:     beta : 10
[2024/08/01 17:45:05] ppocr INFO:     main_loss_type : DiceLoss
[2024/08/01 17:45:05] ppocr INFO:     name : DBLoss
[2024/08/01 17:45:05] ppocr INFO:     ohem_ratio : 3
[2024/08/01 17:45:05] ppocr INFO: Metric : 
[2024/08/01 17:45:05] ppocr INFO:     main_indicator : hmean
[2024/08/01 17:45:05] ppocr INFO:     name : DetMetric
[2024/08/01 17:45:05] ppocr INFO: Optimizer : 
[2024/08/01 17:45:05] ppocr INFO:     beta1 : 0.9
[2024/08/01 17:45:05] ppocr INFO:     beta2 : 0.999
[2024/08/01 17:45:05] ppocr INFO:     lr : 
[2024/08/01 17:45:05] ppocr INFO:         learning_rate : 0.001
[2024/08/01 17:45:05] ppocr INFO:     name : Adam
[2024/08/01 17:45:05] ppocr INFO:     regularizer : 
[2024/08/01 17:45:05] ppocr INFO:         factor : 0
[2024/08/01 17:45:05] ppocr INFO:         name : L2
[2024/08/01 17:45:05] ppocr INFO: PostProcess : 
[2024/08/01 17:45:05] ppocr INFO:     box_thresh : 0.6
[2024/08/01 17:45:05] ppocr INFO:     max_candidates : 1000
[2024/08/01 17:45:05] ppocr INFO:     name : DBPostProcess
[2024/08/01 17:45:05] ppocr INFO:     thresh : 0.3
[2024/08/01 17:45:05] ppocr INFO:     unclip_ratio : 1.5
[2024/08/01 17:45:05] ppocr INFO: Train : 
[2024/08/01 17:45:05] ppocr INFO:     dataset : 
[2024/08/01 17:45:05] ppocr INFO:         data_dir : /datasets/icdar2015/text_localization/
[2024/08/01 17:45:05] ppocr INFO:         label_file_list : ['/datasets/icdar2015/text_localization/train_icdar2015_label.txt']
[2024/08/01 17:45:05] ppocr INFO:         name : SimpleDataSet
[2024/08/01 17:45:05] ppocr INFO:         ratio_list : [1.0]
[2024/08/01 17:45:05] ppocr INFO:         transforms : 
[2024/08/01 17:45:05] ppocr INFO:             DecodeImage : 
[2024/08/01 17:45:05] ppocr INFO:                 channel_first : False
[2024/08/01 17:45:05] ppocr INFO:                 img_mode : BGR
[2024/08/01 17:45:05] ppocr INFO:             DetLabelEncode : None
[2024/08/01 17:45:05] ppocr INFO:             IaaAugment : 
[2024/08/01 17:45:05] ppocr INFO:                 augmenter_args : 
[2024/08/01 17:45:05] ppocr INFO:                     args : 
[2024/08/01 17:45:05] ppocr INFO:                         p : 0.5
[2024/08/01 17:45:05] ppocr INFO:                     type : Fliplr
[2024/08/01 17:45:05] ppocr INFO:                     args : 
[2024/08/01 17:45:05] ppocr INFO:                         rotate : [-10, 10]
[2024/08/01 17:45:05] ppocr INFO:                     type : Affine
[2024/08/01 17:45:05] ppocr INFO:                     args : 
[2024/08/01 17:45:05] ppocr INFO:                         size : [0.5, 3]
[2024/08/01 17:45:05] ppocr INFO:                     type : Resize
[2024/08/01 17:45:05] ppocr INFO:             EastRandomCropData : 
[2024/08/01 17:45:05] ppocr INFO:                 keep_ratio : True
[2024/08/01 17:45:05] ppocr INFO:                 max_tries : 50
[2024/08/01 17:45:05] ppocr INFO:                 size : [640, 640]
[2024/08/01 17:45:05] ppocr INFO:             MakeBorderMap : 
[2024/08/01 17:45:05] ppocr INFO:                 shrink_ratio : 0.4
[2024/08/01 17:45:05] ppocr INFO:                 thresh_max : 0.7
[2024/08/01 17:45:05] ppocr INFO:                 thresh_min : 0.3
[2024/08/01 17:45:05] ppocr INFO:             MakeShrinkMap : 
[2024/08/01 17:45:05] ppocr INFO:                 min_text_size : 8
[2024/08/01 17:45:05] ppocr INFO:                 shrink_ratio : 0.4
[2024/08/01 17:45:05] ppocr INFO:             NormalizeImage : 
[2024/08/01 17:45:05] ppocr INFO:                 mean : [0.485, 0.456, 0.406]
[2024/08/01 17:45:05] ppocr INFO:                 order : hwc
[2024/08/01 17:45:05] ppocr INFO:                 scale : 1./255.
[2024/08/01 17:45:05] ppocr INFO:                 std : [0.229, 0.224, 0.225]
[2024/08/01 17:45:05] ppocr INFO:             ToCHWImage : None
[2024/08/01 17:45:05] ppocr INFO:             KeepKeys : 
[2024/08/01 17:45:05] ppocr INFO:                 keep_keys : ['image', 'threshold_map', 'threshold_mask', 'shrink_map', 'shrink_mask']
[2024/08/01 17:45:05] ppocr INFO:     loader : 
[2024/08/01 17:45:05] ppocr INFO:         batch_size_per_card : 48
[2024/08/01 17:45:05] ppocr INFO:         drop_last : False
[2024/08/01 17:45:05] ppocr INFO:         num_workers : 8
[2024/08/01 17:45:05] ppocr INFO:         shuffle : True
[2024/08/01 17:45:05] ppocr INFO:         use_shared_memory : True
[2024/08/01 17:45:05] ppocr INFO: profiler_options : None
[2024/08/01 17:45:05] ppocr INFO: train with paddle 2.5.2 and device Place(gpu:0)
======================= Modified FLAGS detected =======================
FLAGS(name='FLAGS_selected_gpus', current_value='0', default_value='')
FLAGS(name='FLAGS_cudnn_batchnorm_spatial_persistent', current_value=True, default_value=False)
=======================================================================
I0801 17:45:05.476492  1057 tcp_utils.cc:181] The server starts to listen on IP_ANY:49295
I0801 17:45:05.476715  1057 tcp_utils.cc:130] Successfully connected to 10.8.145.246:49295
I0801 17:45:08.597571  1057 process_group_nccl.cc:120] ProcessGroupNCCL pg_timeout_ 1800000
[2024/08/01 17:45:08] ppocr INFO: Initialize indexs of datasets:['/datasets/icdar2015/text_localization/train_icdar2015_label.txt']
[2024/08/01 17:45:08] ppocr INFO: Initialize indexs of datasets:['/datasets/icdar2015/text_localization/test_icdar2015_label.txt']
W0801 17:45:08.610193  1057 gpu_resources.cc:119] Please NOTE: device: 0, GPU Compute Capability: 90.2, Driver API Version: 50724.2, Runtime API Version: 50724.2
[2024/08/01 17:45:10] ppocr INFO: load pretrain successful from ./pretrain_models/MobileNetV3_large_x0_5_pretrained
[2024/08/01 17:45:10] ppocr INFO: train dataloader has 3 iters
[2024/08/01 17:45:10] ppocr INFO: valid dataloader has 500 iters
[2024/08/01 17:45:10] ppocr INFO: During the training process, after the 0th iteration, an evaluation is run every 60 iterations
[2024/08/01 17:46:27] ppocr INFO: epoch: [1/100], global_step: 3, lr: 0.001000, loss: 9.286121, loss_shrink_maps: 4.932228, loss_threshold_maps: 3.392218, loss_binary_maps: 0.985882, avg_reader_cost: 12.85591 s, avg_batch_cost: 18.91408 s, avg_samples: 12.5, ips: 0.66088 samples/s, eta: 5:12:04
[2024/08/01 17:46:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:46:36] ppocr INFO: epoch: [2/100], global_step: 6, lr: 0.001000, loss: 8.548527, loss_shrink_maps: 4.929990, loss_threshold_maps: 2.632422, loss_binary_maps: 0.986115, avg_reader_cost: 2.20346 s, avg_batch_cost: 2.42593 s, avg_samples: 12.5, ips: 5.15267 samples/s, eta: 2:54:16
[2024/08/01 17:46:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:46:46] ppocr INFO: epoch: [3/100], global_step: 9, lr: 0.001000, loss: 7.804622, loss_shrink_maps: 4.927752, loss_threshold_maps: 1.853062, loss_binary_maps: 0.985882, avg_reader_cost: 2.19835 s, avg_batch_cost: 2.41719 s, avg_samples: 12.5, ips: 5.17130 samples/s, eta: 2:08:01
[2024/08/01 17:46:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:46:54] ppocr INFO: epoch: [4/100], global_step: 10, lr: 0.001000, loss: 7.545996, loss_shrink_maps: 4.928834, loss_threshold_maps: 1.624225, loss_binary_maps: 0.986062, avg_reader_cost: 0.68740 s, avg_batch_cost: 0.77541 s, avg_samples: 4.8, ips: 6.19027 samples/s, eta: 1:58:34
[2024/08/01 17:46:55] ppocr INFO: epoch: [4/100], global_step: 12, lr: 0.001000, loss: 7.237197, loss_shrink_maps: 4.927601, loss_threshold_maps: 1.334146, loss_binary_maps: 0.985817, avg_reader_cost: 1.63828 s, avg_batch_cost: 1.77769 s, avg_samples: 7.7, ips: 4.33147 samples/s, eta: 1:45:14
[2024/08/01 17:46:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:47:05] ppocr INFO: epoch: [5/100], global_step: 15, lr: 0.001000, loss: 7.130876, loss_shrink_maps: 4.927450, loss_threshold_maps: 1.216004, loss_binary_maps: 0.985418, avg_reader_cost: 2.27306 s, avg_batch_cost: 2.55231 s, avg_samples: 12.5, ips: 4.89753 samples/s, eta: 1:31:23
[2024/08/01 17:47:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:47:14] ppocr INFO: epoch: [6/100], global_step: 18, lr: 0.001000, loss: 7.104102, loss_shrink_maps: 4.924126, loss_threshold_maps: 1.187511, loss_binary_maps: 0.984908, avg_reader_cost: 2.21714 s, avg_batch_cost: 2.43917 s, avg_samples: 12.5, ips: 5.12469 samples/s, eta: 1:21:43
[2024/08/01 17:47:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:47:23] ppocr INFO: epoch: [7/100], global_step: 20, lr: 0.001000, loss: 7.077874, loss_shrink_maps: 4.920578, loss_threshold_maps: 1.158228, loss_binary_maps: 0.984056, avg_reader_cost: 1.42181 s, avg_batch_cost: 1.58732 s, avg_samples: 9.6, ips: 6.04795 samples/s, eta: 1:16:44
[2024/08/01 17:47:24] ppocr INFO: epoch: [7/100], global_step: 21, lr: 0.001000, loss: 7.067647, loss_shrink_maps: 4.916796, loss_threshold_maps: 1.156397, loss_binary_maps: 0.982678, avg_reader_cost: 0.83747 s, avg_batch_cost: 0.88965 s, avg_samples: 2.9, ips: 3.25971 samples/s, eta: 1:14:47
[2024/08/01 17:47:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:47:33] ppocr INFO: epoch: [8/100], global_step: 24, lr: 0.001000, loss: 7.047196, loss_shrink_maps: 4.914110, loss_threshold_maps: 1.148854, loss_binary_maps: 0.979226, avg_reader_cost: 2.22181 s, avg_batch_cost: 2.44873 s, avg_samples: 12.5, ips: 5.10469 samples/s, eta: 1:09:26
[2024/08/01 17:47:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:47:43] ppocr INFO: epoch: [9/100], global_step: 27, lr: 0.001000, loss: 7.011276, loss_shrink_maps: 4.911048, loss_threshold_maps: 1.123974, loss_binary_maps: 0.974819, avg_reader_cost: 2.26004 s, avg_batch_cost: 2.51024 s, avg_samples: 12.5, ips: 4.97961 samples/s, eta: 1:05:16
[2024/08/01 17:47:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:47:52] ppocr INFO: epoch: [10/100], global_step: 30, lr: 0.001000, loss: 6.940498, loss_shrink_maps: 4.902378, loss_threshold_maps: 1.077619, loss_binary_maps: 0.970784, avg_reader_cost: 2.21147 s, avg_batch_cost: 2.44738 s, avg_samples: 12.5, ips: 5.10749 samples/s, eta: 1:01:46
[2024/08/01 17:47:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:48:02] ppocr INFO: epoch: [11/100], global_step: 33, lr: 0.001000, loss: 6.868617, loss_shrink_maps: 4.885881, loss_threshold_maps: 1.038050, loss_binary_maps: 0.960971, avg_reader_cost: 2.22404 s, avg_batch_cost: 2.44256 s, avg_samples: 12.5, ips: 5.11758 samples/s, eta: 0:58:49
[2024/08/01 17:48:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:48:12] ppocr INFO: epoch: [12/100], global_step: 36, lr: 0.001000, loss: 6.817448, loss_shrink_maps: 4.864040, loss_threshold_maps: 1.009396, loss_binary_maps: 0.956228, avg_reader_cost: 2.26320 s, avg_batch_cost: 2.48832 s, avg_samples: 12.5, ips: 5.02348 samples/s, eta: 0:56:21
[2024/08/01 17:48:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:48:21] ppocr INFO: epoch: [13/100], global_step: 39, lr: 0.001000, loss: 6.791888, loss_shrink_maps: 4.857442, loss_threshold_maps: 0.978082, loss_binary_maps: 0.947377, avg_reader_cost: 2.31176 s, avg_batch_cost: 2.53060 s, avg_samples: 12.5, ips: 4.93953 samples/s, eta: 0:54:15
[2024/08/01 17:48:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:48:29] ppocr INFO: epoch: [14/100], global_step: 40, lr: 0.001000, loss: 6.778063, loss_shrink_maps: 4.856284, loss_threshold_maps: 0.968342, loss_binary_maps: 0.946886, avg_reader_cost: 0.65116 s, avg_batch_cost: 0.74874 s, avg_samples: 4.8, ips: 6.41073 samples/s, eta: 0:53:30
[2024/08/01 17:48:31] ppocr INFO: epoch: [14/100], global_step: 42, lr: 0.001000, loss: 6.729544, loss_shrink_maps: 4.851938, loss_threshold_maps: 0.954702, loss_binary_maps: 0.946146, avg_reader_cost: 1.58592 s, avg_batch_cost: 1.72608 s, avg_samples: 7.7, ips: 4.46097 samples/s, eta: 0:52:20
[2024/08/01 17:48:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:48:40] ppocr INFO: epoch: [15/100], global_step: 45, lr: 0.001000, loss: 6.668135, loss_shrink_maps: 4.836268, loss_threshold_maps: 0.933070, loss_binary_maps: 0.927373, avg_reader_cost: 2.23363 s, avg_batch_cost: 2.45210 s, avg_samples: 12.5, ips: 5.09768 samples/s, eta: 0:50:35
[2024/08/01 17:48:41] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:48:50] ppocr INFO: epoch: [16/100], global_step: 48, lr: 0.001000, loss: 6.658508, loss_shrink_maps: 4.823704, loss_threshold_maps: 0.926389, loss_binary_maps: 0.910777, avg_reader_cost: 2.16004 s, avg_batch_cost: 2.40701 s, avg_samples: 12.5, ips: 5.19315 samples/s, eta: 0:48:58
[2024/08/01 17:48:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:48:58] ppocr INFO: epoch: [17/100], global_step: 50, lr: 0.001000, loss: 6.639746, loss_shrink_maps: 4.820710, loss_threshold_maps: 0.918938, loss_binary_maps: 0.902400, avg_reader_cost: 1.34973 s, avg_batch_cost: 1.52841 s, avg_samples: 9.6, ips: 6.28102 samples/s, eta: 0:47:55
[2024/08/01 17:48:59] ppocr INFO: epoch: [17/100], global_step: 51, lr: 0.001000, loss: 6.622952, loss_shrink_maps: 4.820710, loss_threshold_maps: 0.912991, loss_binary_maps: 0.890444, avg_reader_cost: 0.80877 s, avg_batch_cost: 0.86062 s, avg_samples: 2.9, ips: 3.36965 samples/s, eta: 0:47:29
[2024/08/01 17:49:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:49:08] ppocr INFO: epoch: [18/100], global_step: 54, lr: 0.001000, loss: 6.563270, loss_shrink_maps: 4.818290, loss_threshold_maps: 0.883130, loss_binary_maps: 0.867894, avg_reader_cost: 2.23478 s, avg_batch_cost: 2.49605 s, avg_samples: 12.5, ips: 5.00791 samples/s, eta: 0:46:12
[2024/08/01 17:49:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:49:18] ppocr INFO: epoch: [19/100], global_step: 57, lr: 0.001000, loss: 6.473013, loss_shrink_maps: 4.817668, loss_threshold_maps: 0.883047, loss_binary_maps: 0.807621, avg_reader_cost: 2.22523 s, avg_batch_cost: 2.44413 s, avg_samples: 12.5, ips: 5.11430 samples/s, eta: 0:44:58
[2024/08/01 17:49:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:49:27] ppocr INFO: epoch: [20/100], global_step: 60, lr: 0.001000, loss: 6.351774, loss_shrink_maps: 4.817668, loss_threshold_maps: 0.874931, loss_binary_maps: 0.712683, avg_reader_cost: 2.18743 s, avg_batch_cost: 2.42843 s, avg_samples: 12.5, ips: 5.14736 samples/s, eta: 0:43:49

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<02:00,  4.15it/s]
eval model::   0%|          | 2/500 [00:00<01:25,  5.84it/s]
eval model::   1%|          | 3/500 [00:00<01:13,  6.74it/s]
eval model::   1%|          | 4/500 [00:00<01:04,  7.69it/s]
eval model::   1%|          | 6/500 [00:00<00:55,  8.90it/s]
eval model::   2%|▏         | 8/500 [00:00<00:52,  9.41it/s]
eval model::   2%|▏         | 9/500 [00:01<00:53,  9.15it/s]
eval model::   2%|▏         | 10/500 [00:01<00:55,  8.85it/s]
eval model::   2%|▏         | 11/500 [00:01<00:54,  8.94it/s]
eval model::   2%|▏         | 12/500 [00:01<00:53,  9.15it/s]
eval model::   3%|▎         | 13/500 [00:01<00:53,  9.10it/s]
eval model::   3%|▎         | 14/500 [00:01<00:54,  8.89it/s]
eval model::   3%|▎         | 15/500 [00:01<00:55,  8.79it/s]
eval model::   3%|▎         | 16/500 [00:01<00:55,  8.78it/s]
eval model::   3%|▎         | 17/500 [00:01<00:54,  8.94it/s]
eval model::   4%|▎         | 18/500 [00:02<00:53,  9.06it/s]
eval model::   4%|▍         | 19/500 [00:02<00:53,  9.03it/s]
eval model::   4%|▍         | 20/500 [00:02<00:51,  9.24it/s]
eval model::   4%|▍         | 21/500 [00:02<00:53,  9.03it/s]
eval model::   4%|▍         | 22/500 [00:02<00:52,  9.12it/s]
eval model::   5%|▍         | 24/500 [00:02<00:47, 10.07it/s]
eval model::   5%|▌         | 25/500 [00:02<00:48,  9.87it/s]
eval model::   5%|▌         | 26/500 [00:02<00:48,  9.76it/s]
eval model::   6%|▌         | 28/500 [00:03<00:48,  9.79it/s]
eval model::   6%|▌         | 30/500 [00:03<00:46, 10.19it/s]
eval model::   6%|▋         | 32/500 [00:03<00:46, 10.12it/s]
eval model::   7%|▋         | 34/500 [00:03<00:46, 10.04it/s]
eval model::   7%|▋         | 36/500 [00:03<00:46,  9.99it/s]
eval model::   8%|▊         | 38/500 [00:04<00:46, 10.03it/s]
eval model::   8%|▊         | 40/500 [00:04<00:46, 10.00it/s]
eval model::   8%|▊         | 42/500 [00:04<00:44, 10.18it/s]
eval model::   9%|▉         | 44/500 [00:04<00:45, 10.06it/s]
eval model::   9%|▉         | 46/500 [00:04<00:45, 10.00it/s]
eval model::  10%|▉         | 48/500 [00:05<00:47,  9.61it/s]
eval model::  10%|▉         | 49/500 [00:05<00:47,  9.47it/s]
eval model::  10%|█         | 50/500 [00:05<00:48,  9.31it/s]
eval model::  10%|█         | 51/500 [00:05<00:49,  9.12it/s]
eval model::  10%|█         | 52/500 [00:05<00:48,  9.26it/s]
eval model::  11%|█         | 53/500 [00:05<00:49,  8.97it/s]
eval model::  11%|█         | 54/500 [00:05<00:49,  9.01it/s]
eval model::  11%|█         | 55/500 [00:05<00:49,  8.96it/s]
eval model::  11%|█         | 56/500 [00:06<00:48,  9.09it/s]
eval model::  11%|█▏        | 57/500 [00:06<00:47,  9.33it/s]
eval model::  12%|█▏        | 58/500 [00:06<00:48,  9.21it/s]
eval model::  12%|█▏        | 59/500 [00:06<00:47,  9.30it/s]
eval model::  12%|█▏        | 61/500 [00:06<00:46,  9.51it/s]
eval model::  12%|█▏        | 62/500 [00:06<00:45,  9.56it/s]
eval model::  13%|█▎        | 63/500 [00:06<00:47,  9.28it/s]
eval model::  13%|█▎        | 64/500 [00:06<00:47,  9.24it/s]
eval model::  13%|█▎        | 65/500 [00:06<00:46,  9.39it/s]
eval model::  13%|█▎        | 67/500 [00:07<00:45,  9.56it/s]
eval model::  14%|█▍        | 69/500 [00:07<00:44,  9.78it/s]
eval model::  14%|█▍        | 70/500 [00:07<00:44,  9.66it/s]
eval model::  14%|█▍        | 71/500 [00:07<00:44,  9.74it/s]
eval model::  14%|█▍        | 72/500 [00:07<00:44,  9.66it/s]
eval model::  15%|█▍        | 74/500 [00:07<00:43,  9.85it/s]
eval model::  15%|█▌        | 76/500 [00:08<00:42, 10.09it/s]
eval model::  16%|█▌        | 78/500 [00:08<00:42,  9.93it/s]
eval model::  16%|█▌        | 80/500 [00:08<00:42,  9.80it/s]
eval model::  16%|█▋        | 82/500 [00:08<00:42,  9.93it/s]
eval model::  17%|█▋        | 83/500 [00:08<00:42,  9.91it/s]
eval model::  17%|█▋        | 84/500 [00:08<00:42,  9.68it/s]
eval model::  17%|█▋        | 85/500 [00:09<00:43,  9.58it/s]
eval model::  17%|█▋        | 87/500 [00:09<00:42,  9.70it/s]
eval model::  18%|█▊        | 88/500 [00:09<00:42,  9.74it/s]
eval model::  18%|█▊        | 90/500 [00:09<00:41,  9.79it/s]
eval model::  18%|█▊        | 91/500 [00:09<00:42,  9.73it/s]
eval model::  18%|█▊        | 92/500 [00:09<00:42,  9.53it/s]
eval model::  19%|█▊        | 93/500 [00:09<00:43,  9.46it/s]
eval model::  19%|█▉        | 94/500 [00:09<00:43,  9.41it/s]
eval model::  19%|█▉        | 96/500 [00:10<00:41,  9.67it/s]
eval model::  20%|█▉        | 98/500 [00:10<00:39, 10.12it/s]
eval model::  20%|██        | 100/500 [00:10<00:38, 10.30it/s]
eval model::  20%|██        | 102/500 [00:10<00:39, 10.11it/s]
eval model::  21%|██        | 104/500 [00:10<00:37, 10.44it/s]
eval model::  21%|██        | 106/500 [00:11<00:38, 10.33it/s]
eval model::  22%|██▏       | 108/500 [00:11<00:37, 10.45it/s]
eval model::  22%|██▏       | 110/500 [00:11<00:39,  9.89it/s]
eval model::  22%|██▏       | 111/500 [00:11<00:40,  9.70it/s]
eval model::  23%|██▎       | 113/500 [00:11<00:38, 10.13it/s]
eval model::  23%|██▎       | 115/500 [00:12<00:38,  9.91it/s]
eval model::  23%|██▎       | 116/500 [00:12<00:39,  9.81it/s]
eval model::  24%|██▎       | 118/500 [00:12<00:38,  9.98it/s]
eval model::  24%|██▍       | 119/500 [00:12<00:38,  9.97it/s]
eval model::  24%|██▍       | 121/500 [00:12<00:37, 10.17it/s]
eval model::  25%|██▍       | 123/500 [00:12<00:37, 10.06it/s]
eval model::  25%|██▌       | 125/500 [00:13<00:37, 10.06it/s]
eval model::  25%|██▌       | 127/500 [00:13<00:37,  9.92it/s]
eval model::  26%|██▌       | 128/500 [00:13<00:37,  9.89it/s]
eval model::  26%|██▌       | 129/500 [00:13<00:37,  9.88it/s]
eval model::  26%|██▌       | 130/500 [00:13<00:38,  9.69it/s]
eval model::  26%|██▋       | 132/500 [00:13<00:37,  9.69it/s]
eval model::  27%|██▋       | 133/500 [00:13<00:37,  9.73it/s]
eval model::  27%|██▋       | 134/500 [00:13<00:37,  9.78it/s]
eval model::  27%|██▋       | 135/500 [00:14<00:38,  9.51it/s]
eval model::  27%|██▋       | 137/500 [00:14<00:37,  9.57it/s]
eval model::  28%|██▊       | 138/500 [00:14<00:37,  9.61it/s]
eval model::  28%|██▊       | 140/500 [00:14<00:37,  9.70it/s]
eval model::  28%|██▊       | 141/500 [00:14<00:37,  9.65it/s]
eval model::  28%|██▊       | 142/500 [00:14<00:37,  9.63it/s]
eval model::  29%|██▉       | 144/500 [00:15<00:36,  9.68it/s]
eval model::  29%|██▉       | 146/500 [00:15<00:36,  9.75it/s]
eval model::  30%|██▉       | 148/500 [00:15<00:36,  9.75it/s]
eval model::  30%|██▉       | 149/500 [00:15<00:36,  9.62it/s]
eval model::  30%|███       | 151/500 [00:15<00:35,  9.75it/s]
eval model::  30%|███       | 152/500 [00:15<00:36,  9.57it/s]
eval model::  31%|███       | 153/500 [00:15<00:37,  9.26it/s]
eval model::  31%|███       | 154/500 [00:16<00:37,  9.26it/s]
eval model::  31%|███       | 155/500 [00:16<00:38,  9.06it/s]
eval model::  31%|███       | 156/500 [00:16<00:37,  9.10it/s]
eval model::  32%|███▏      | 158/500 [00:16<00:36,  9.29it/s]
eval model::  32%|███▏      | 159/500 [00:16<00:37,  9.09it/s]
eval model::  32%|███▏      | 160/500 [00:16<00:37,  9.04it/s]
eval model::  32%|███▏      | 161/500 [00:16<00:37,  9.10it/s]
eval model::  32%|███▏      | 162/500 [00:16<00:38,  8.73it/s]
eval model::  33%|███▎      | 163/500 [00:17<00:37,  8.90it/s]
eval model::  33%|███▎      | 165/500 [00:17<00:37,  9.03it/s]
eval model::  33%|███▎      | 166/500 [00:17<00:37,  8.97it/s]
eval model::  33%|███▎      | 167/500 [00:17<00:36,  9.12it/s]
eval model::  34%|███▍      | 169/500 [00:17<00:35,  9.20it/s]
eval model::  34%|███▍      | 170/500 [00:17<00:35,  9.17it/s]
eval model::  34%|███▍      | 171/500 [00:17<00:36,  8.98it/s]
eval model::  34%|███▍      | 172/500 [00:18<00:36,  8.93it/s]
eval model::  35%|███▍      | 174/500 [00:18<00:34,  9.47it/s]
eval model::  35%|███▌      | 175/500 [00:18<00:35,  9.18it/s]
eval model::  35%|███▌      | 177/500 [00:18<00:34,  9.27it/s]
eval model::  36%|███▌      | 178/500 [00:18<00:34,  9.34it/s]
eval model::  36%|███▌      | 180/500 [00:18<00:33,  9.69it/s]
eval model::  36%|███▌      | 181/500 [00:18<00:32,  9.69it/s]
eval model::  36%|███▋      | 182/500 [00:19<00:34,  9.20it/s]
eval model::  37%|███▋      | 183/500 [00:19<00:34,  9.08it/s]
eval model::  37%|███▋      | 184/500 [00:19<00:34,  9.26it/s]
eval model::  37%|███▋      | 186/500 [00:19<00:32,  9.61it/s]
eval model::  38%|███▊      | 188/500 [00:19<00:31,  9.93it/s]
eval model::  38%|███▊      | 189/500 [00:19<00:31,  9.93it/s]
eval model::  38%|███▊      | 190/500 [00:19<00:32,  9.59it/s]
eval model::  38%|███▊      | 192/500 [00:20<00:36,  8.46it/s]
eval model::  39%|███▊      | 193/500 [00:20<00:35,  8.71it/s]
eval model::  39%|███▉      | 195/500 [00:20<00:33,  9.23it/s]
eval model::  39%|███▉      | 196/500 [00:20<00:33,  9.17it/s]
eval model::  39%|███▉      | 197/500 [00:20<00:33,  9.18it/s]
eval model::  40%|███▉      | 198/500 [00:20<00:32,  9.35it/s]
eval model::  40%|████      | 200/500 [00:21<00:31,  9.56it/s]
eval model::  40%|████      | 201/500 [00:21<00:31,  9.39it/s]
eval model::  41%|████      | 203/500 [00:21<00:31,  9.57it/s]
eval model::  41%|████      | 205/500 [00:21<00:30,  9.69it/s]
eval model::  41%|████▏     | 207/500 [00:21<00:30,  9.57it/s]
eval model::  42%|████▏     | 208/500 [00:21<00:30,  9.57it/s]
eval model::  42%|████▏     | 209/500 [00:21<00:30,  9.52it/s]
eval model::  42%|████▏     | 210/500 [00:22<00:30,  9.37it/s]
eval model::  42%|████▏     | 211/500 [00:22<00:30,  9.38it/s]
eval model::  43%|████▎     | 213/500 [00:22<00:29,  9.78it/s]
eval model::  43%|████▎     | 214/500 [00:22<00:29,  9.74it/s]
eval model::  43%|████▎     | 215/500 [00:22<00:29,  9.76it/s]
eval model::  43%|████▎     | 216/500 [00:22<00:29,  9.74it/s]
eval model::  43%|████▎     | 217/500 [00:22<00:29,  9.49it/s]
eval model::  44%|████▍     | 219/500 [00:22<00:27, 10.12it/s]
eval model::  44%|████▍     | 221/500 [00:23<00:27, 10.02it/s]
eval model::  45%|████▍     | 223/500 [00:23<00:27, 10.15it/s]
eval model::  45%|████▌     | 225/500 [00:23<00:28,  9.80it/s]
eval model::  45%|████▌     | 226/500 [00:23<00:28,  9.70it/s]
eval model::  46%|████▌     | 228/500 [00:23<00:28,  9.69it/s]
eval model::  46%|████▌     | 229/500 [00:24<00:27,  9.73it/s]
eval model::  46%|████▌     | 231/500 [00:24<00:26, 10.03it/s]
eval model::  47%|████▋     | 233/500 [00:24<00:26, 10.21it/s]
eval model::  47%|████▋     | 235/500 [00:24<00:25, 10.44it/s]
eval model::  47%|████▋     | 237/500 [00:24<00:25, 10.38it/s]
eval model::  48%|████▊     | 239/500 [00:24<00:24, 10.65it/s]
eval model::  48%|████▊     | 241/500 [00:25<00:24, 10.65it/s]
eval model::  49%|████▊     | 243/500 [00:25<00:24, 10.42it/s]
eval model::  49%|████▉     | 245/500 [00:25<00:25,  9.89it/s]
eval model::  49%|████▉     | 246/500 [00:25<00:25,  9.82it/s]
eval model::  49%|████▉     | 247/500 [00:25<00:26,  9.58it/s]
eval model::  50%|████▉     | 248/500 [00:25<00:26,  9.47it/s]
eval model::  50%|████▉     | 249/500 [00:26<00:26,  9.54it/s]
eval model::  50%|█████     | 250/500 [00:26<00:25,  9.64it/s]
eval model::  50%|█████     | 252/500 [00:26<00:24,  9.97it/s]
eval model::  51%|█████     | 253/500 [00:26<00:24,  9.90it/s]
eval model::  51%|█████     | 255/500 [00:26<00:23, 10.23it/s]
eval model::  51%|█████▏    | 257/500 [00:26<00:23, 10.40it/s]
eval model::  52%|█████▏    | 259/500 [00:26<00:24,  9.99it/s]
eval model::  52%|█████▏    | 260/500 [00:27<00:24,  9.79it/s]
eval model::  52%|█████▏    | 261/500 [00:27<00:24,  9.75it/s]
eval model::  52%|█████▏    | 262/500 [00:27<00:24,  9.65it/s]
eval model::  53%|█████▎    | 263/500 [00:27<00:25,  9.41it/s]
eval model::  53%|█████▎    | 264/500 [00:27<00:25,  9.38it/s]
eval model::  53%|█████▎    | 265/500 [00:27<00:25,  9.29it/s]
eval model::  53%|█████▎    | 266/500 [00:27<00:24,  9.44it/s]
eval model::  53%|█████▎    | 267/500 [00:27<00:24,  9.48it/s]
eval model::  54%|█████▎    | 268/500 [00:27<00:24,  9.59it/s]
eval model::  54%|█████▍    | 269/500 [00:28<00:23,  9.69it/s]
eval model::  54%|█████▍    | 271/500 [00:28<00:24,  9.44it/s]
eval model::  54%|█████▍    | 272/500 [00:28<00:24,  9.29it/s]
eval model::  55%|█████▍    | 273/500 [00:28<00:25,  8.82it/s]
eval model::  55%|█████▍    | 274/500 [00:28<00:26,  8.57it/s]
eval model::  55%|█████▌    | 275/500 [00:28<00:26,  8.37it/s]
eval model::  55%|█████▌    | 276/500 [00:28<00:27,  8.27it/s]
eval model::  55%|█████▌    | 277/500 [00:29<00:27,  8.05it/s]
eval model::  56%|█████▌    | 278/500 [00:29<00:28,  7.85it/s]
eval model::  56%|█████▌    | 279/500 [00:29<00:27,  7.98it/s]
eval model::  56%|█████▌    | 280/500 [00:29<00:28,  7.79it/s]
eval model::  56%|█████▌    | 281/500 [00:29<00:28,  7.70it/s]
eval model::  56%|█████▋    | 282/500 [00:29<00:27,  7.94it/s]
eval model::  57%|█████▋    | 283/500 [00:29<00:26,  8.20it/s]
eval model::  57%|█████▋    | 284/500 [00:29<00:26,  8.11it/s]
eval model::  57%|█████▋    | 285/500 [00:30<00:27,  7.87it/s]
eval model::  57%|█████▋    | 286/500 [00:30<00:27,  7.71it/s]
eval model::  57%|█████▋    | 287/500 [00:30<00:27,  7.85it/s]
eval model::  58%|█████▊    | 288/500 [00:30<00:27,  7.69it/s]
eval model::  58%|█████▊    | 289/500 [00:30<00:26,  7.94it/s]
eval model::  58%|█████▊    | 290/500 [00:30<00:26,  8.02it/s]
eval model::  58%|█████▊    | 291/500 [00:30<00:25,  8.13it/s]
eval model::  58%|█████▊    | 292/500 [00:30<00:25,  8.17it/s]
eval model::  59%|█████▊    | 293/500 [00:31<00:24,  8.39it/s]
eval model::  59%|█████▉    | 294/500 [00:31<00:24,  8.32it/s]
eval model::  59%|█████▉    | 295/500 [00:31<00:24,  8.27it/s]
eval model::  59%|█████▉    | 296/500 [00:31<00:25,  8.07it/s]
eval model::  59%|█████▉    | 297/500 [00:31<00:24,  8.12it/s]
eval model::  60%|█████▉    | 298/500 [00:31<00:23,  8.45it/s]
eval model::  60%|█████▉    | 299/500 [00:31<00:23,  8.63it/s]
eval model::  60%|██████    | 300/500 [00:31<00:23,  8.38it/s]
eval model::  60%|██████    | 301/500 [00:31<00:24,  8.05it/s]
eval model::  60%|██████    | 302/500 [00:32<00:23,  8.29it/s]
eval model::  61%|██████    | 303/500 [00:32<00:23,  8.36it/s]
eval model::  61%|██████    | 304/500 [00:32<00:24,  7.94it/s]
eval model::  61%|██████    | 305/500 [00:32<00:24,  8.08it/s]
eval model::  61%|██████    | 306/500 [00:32<00:23,  8.11it/s]
eval model::  61%|██████▏   | 307/500 [00:32<00:22,  8.44it/s]
eval model::  62%|██████▏   | 308/500 [00:32<00:22,  8.53it/s]
eval model::  62%|██████▏   | 309/500 [00:32<00:22,  8.44it/s]
eval model::  62%|██████▏   | 310/500 [00:33<00:22,  8.50it/s]
eval model::  62%|██████▏   | 311/500 [00:33<00:21,  8.62it/s]
eval model::  62%|██████▏   | 312/500 [00:33<00:21,  8.57it/s]
eval model::  63%|██████▎   | 313/500 [00:33<00:21,  8.71it/s]
eval model::  63%|██████▎   | 314/500 [00:33<00:20,  8.99it/s]
eval model::  63%|██████▎   | 315/500 [00:33<00:21,  8.71it/s]
eval model::  63%|██████▎   | 316/500 [00:33<00:20,  8.78it/s]
eval model::  63%|██████▎   | 317/500 [00:33<00:20,  8.75it/s]
eval model::  64%|██████▎   | 318/500 [00:33<00:20,  8.73it/s]
eval model::  64%|██████▍   | 319/500 [00:34<00:21,  8.37it/s]
eval model::  64%|██████▍   | 320/500 [00:34<00:22,  8.11it/s]
eval model::  64%|██████▍   | 321/500 [00:34<00:22,  7.81it/s]
eval model::  64%|██████▍   | 322/500 [00:34<00:22,  7.96it/s]
eval model::  65%|██████▍   | 323/500 [00:34<00:21,  8.42it/s]
eval model::  65%|██████▍   | 324/500 [00:34<00:21,  8.36it/s]
eval model::  65%|██████▌   | 325/500 [00:34<00:20,  8.62it/s]
eval model::  65%|██████▌   | 326/500 [00:34<00:20,  8.49it/s]
eval model::  65%|██████▌   | 327/500 [00:35<00:19,  8.85it/s]
eval model::  66%|██████▌   | 328/500 [00:35<00:19,  8.71it/s]
eval model::  66%|██████▌   | 329/500 [00:35<00:19,  8.70it/s]
eval model::  66%|██████▌   | 330/500 [00:35<00:19,  8.93it/s]
eval model::  66%|██████▌   | 331/500 [00:35<00:19,  8.75it/s]
eval model::  66%|██████▋   | 332/500 [00:35<00:19,  8.80it/s]
eval model::  67%|██████▋   | 333/500 [00:35<00:19,  8.77it/s]
eval model::  67%|██████▋   | 334/500 [00:35<00:19,  8.60it/s]
eval model::  67%|██████▋   | 335/500 [00:35<00:19,  8.36it/s]
eval model::  67%|██████▋   | 336/500 [00:36<00:19,  8.29it/s]
eval model::  67%|██████▋   | 337/500 [00:36<00:19,  8.25it/s]
eval model::  68%|██████▊   | 338/500 [00:36<00:19,  8.38it/s]
eval model::  68%|██████▊   | 339/500 [00:36<00:19,  8.20it/s]
eval model::  68%|██████▊   | 340/500 [00:36<00:18,  8.50it/s]
eval model::  68%|██████▊   | 341/500 [00:36<00:18,  8.62it/s]
eval model::  68%|██████▊   | 342/500 [00:36<00:17,  8.85it/s]
eval model::  69%|██████▊   | 343/500 [00:36<00:18,  8.68it/s]
eval model::  69%|██████▉   | 344/500 [00:37<00:17,  8.85it/s]
eval model::  69%|██████▉   | 345/500 [00:37<00:16,  9.16it/s]
eval model::  69%|██████▉   | 346/500 [00:37<00:17,  8.99it/s]
eval model::  69%|██████▉   | 347/500 [00:37<00:17,  8.52it/s]
eval model::  70%|██████▉   | 348/500 [00:37<00:17,  8.61it/s]
eval model::  70%|██████▉   | 349/500 [00:37<00:18,  8.30it/s]
eval model::  70%|███████   | 350/500 [00:37<00:18,  7.90it/s]
eval model::  70%|███████   | 351/500 [00:37<00:19,  7.79it/s]
eval model::  70%|███████   | 352/500 [00:38<00:19,  7.74it/s]
eval model::  71%|███████   | 353/500 [00:38<00:17,  8.20it/s]
eval model::  71%|███████   | 354/500 [00:38<00:18,  7.94it/s]
eval model::  71%|███████   | 355/500 [00:38<00:17,  8.06it/s]
eval model::  71%|███████▏  | 357/500 [00:38<00:15,  9.12it/s]
eval model::  72%|███████▏  | 358/500 [00:38<00:15,  8.97it/s]
eval model::  72%|███████▏  | 360/500 [00:38<00:15,  9.03it/s]
eval model::  72%|███████▏  | 362/500 [00:39<00:15,  9.08it/s]
eval model::  73%|███████▎  | 364/500 [00:39<00:14,  9.64it/s]
eval model::  73%|███████▎  | 366/500 [00:39<00:13,  9.58it/s]
eval model::  73%|███████▎  | 367/500 [00:39<00:13,  9.58it/s]
eval model::  74%|███████▎  | 368/500 [00:39<00:13,  9.43it/s]
eval model::  74%|███████▍  | 369/500 [00:39<00:14,  9.31it/s]
eval model::  74%|███████▍  | 370/500 [00:39<00:13,  9.39it/s]
eval model::  74%|███████▍  | 371/500 [00:40<00:14,  9.20it/s]
eval model::  74%|███████▍  | 372/500 [00:40<00:13,  9.27it/s]
eval model::  75%|███████▍  | 374/500 [00:40<00:13,  9.38it/s]
eval model::  75%|███████▌  | 375/500 [00:40<00:13,  9.13it/s]
eval model::  75%|███████▌  | 376/500 [00:40<00:13,  9.10it/s]
eval model::  75%|███████▌  | 377/500 [00:40<00:13,  9.15it/s]
eval model::  76%|███████▌  | 378/500 [00:40<00:13,  9.22it/s]
eval model::  76%|███████▌  | 379/500 [00:40<00:12,  9.37it/s]
eval model::  76%|███████▌  | 380/500 [00:41<00:13,  9.18it/s]
eval model::  76%|███████▌  | 381/500 [00:41<00:13,  8.86it/s]
eval model::  76%|███████▋  | 382/500 [00:41<00:13,  9.06it/s]
eval model::  77%|███████▋  | 383/500 [00:41<00:13,  8.87it/s]
eval model::  77%|███████▋  | 384/500 [00:41<00:13,  8.71it/s]
eval model::  77%|███████▋  | 385/500 [00:41<00:13,  8.59it/s]
eval model::  77%|███████▋  | 386/500 [00:41<00:13,  8.54it/s]
eval model::  77%|███████▋  | 387/500 [00:41<00:13,  8.53it/s]
eval model::  78%|███████▊  | 388/500 [00:41<00:13,  8.59it/s]
eval model::  78%|███████▊  | 389/500 [00:42<00:13,  8.43it/s]
eval model::  78%|███████▊  | 390/500 [00:42<00:13,  8.25it/s]
eval model::  78%|███████▊  | 391/500 [00:42<00:13,  8.28it/s]
eval model::  78%|███████▊  | 392/500 [00:42<00:12,  8.44it/s]
eval model::  79%|███████▊  | 393/500 [00:42<00:12,  8.54it/s]
eval model::  79%|███████▉  | 394/500 [00:42<00:11,  8.93it/s]
eval model::  79%|███████▉  | 395/500 [00:42<00:12,  8.62it/s]
eval model::  79%|███████▉  | 397/500 [00:42<00:11,  9.27it/s]
eval model::  80%|███████▉  | 398/500 [00:43<00:11,  9.15it/s]
eval model::  80%|███████▉  | 399/500 [00:43<00:11,  9.10it/s]
eval model::  80%|████████  | 400/500 [00:43<00:11,  9.00it/s]
eval model::  80%|████████  | 401/500 [00:43<00:11,  8.87it/s]
eval model::  80%|████████  | 402/500 [00:43<00:10,  9.16it/s]
eval model::  81%|████████  | 403/500 [00:43<00:10,  9.04it/s]
eval model::  81%|████████  | 404/500 [00:43<00:10,  9.13it/s]
eval model::  81%|████████  | 405/500 [00:43<00:10,  9.20it/s]
eval model::  81%|████████  | 406/500 [00:44<00:10,  9.03it/s]
eval model::  81%|████████▏ | 407/500 [00:44<00:10,  8.81it/s]
eval model::  82%|████████▏ | 408/500 [00:44<00:10,  8.86it/s]
eval model::  82%|████████▏ | 409/500 [00:44<00:09,  9.15it/s]
eval model::  82%|████████▏ | 410/500 [00:44<00:10,  8.46it/s]
eval model::  82%|████████▏ | 411/500 [00:44<00:10,  8.67it/s]
eval model::  82%|████████▏ | 412/500 [00:44<00:10,  8.28it/s]
eval model::  83%|████████▎ | 413/500 [00:44<00:10,  8.21it/s]
eval model::  83%|████████▎ | 415/500 [00:45<00:09,  8.64it/s]
eval model::  83%|████████▎ | 416/500 [00:45<00:10,  8.39it/s]
eval model::  83%|████████▎ | 417/500 [00:45<00:09,  8.70it/s]
eval model::  84%|████████▎ | 418/500 [00:45<00:09,  8.81it/s]
eval model::  84%|████████▍ | 419/500 [00:45<00:08,  9.00it/s]
eval model::  84%|████████▍ | 420/500 [00:45<00:09,  8.58it/s]
eval model::  84%|████████▍ | 421/500 [00:45<00:09,  8.37it/s]
eval model::  84%|████████▍ | 422/500 [00:45<00:09,  8.28it/s]
eval model::  85%|████████▍ | 423/500 [00:45<00:08,  8.58it/s]
eval model::  85%|████████▍ | 424/500 [00:46<00:08,  8.48it/s]
eval model::  85%|████████▌ | 425/500 [00:46<00:08,  8.57it/s]
eval model::  85%|████████▌ | 426/500 [00:46<00:08,  8.70it/s]
eval model::  85%|████████▌ | 427/500 [00:46<00:08,  8.54it/s]
eval model::  86%|████████▌ | 428/500 [00:46<00:08,  8.15it/s]
eval model::  86%|████████▌ | 429/500 [00:46<00:08,  8.38it/s]
eval model::  86%|████████▌ | 431/500 [00:46<00:07,  9.04it/s]
eval model::  87%|████████▋ | 433/500 [00:47<00:07,  9.56it/s]
eval model::  87%|████████▋ | 435/500 [00:47<00:06,  9.92it/s]
eval model::  87%|████████▋ | 436/500 [00:47<00:06,  9.88it/s]
eval model::  87%|████████▋ | 437/500 [00:47<00:06,  9.52it/s]
eval model::  88%|████████▊ | 438/500 [00:47<00:06,  9.48it/s]
eval model::  88%|████████▊ | 440/500 [00:47<00:05, 10.08it/s]
eval model::  88%|████████▊ | 441/500 [00:47<00:05,  9.98it/s]
eval model::  89%|████████▊ | 443/500 [00:48<00:05, 10.39it/s]
eval model::  89%|████████▉ | 445/500 [00:48<00:05,  9.82it/s]
eval model::  89%|████████▉ | 446/500 [00:48<00:05,  9.65it/s]
eval model::  89%|████████▉ | 447/500 [00:48<00:05,  9.49it/s]
eval model::  90%|████████▉ | 449/500 [00:48<00:04, 10.25it/s]
eval model::  90%|█████████ | 451/500 [00:48<00:04, 10.28it/s]
eval model::  91%|█████████ | 453/500 [00:49<00:04, 10.44it/s]
eval model::  91%|█████████ | 455/500 [00:49<00:04, 10.56it/s]
eval model::  91%|█████████▏| 457/500 [00:49<00:04,  9.86it/s]
eval model::  92%|█████████▏| 458/500 [00:49<00:04,  9.78it/s]
eval model::  92%|█████████▏| 459/500 [00:49<00:04,  9.37it/s]
eval model::  92%|█████████▏| 461/500 [00:49<00:03,  9.85it/s]
eval model::  92%|█████████▏| 462/500 [00:50<00:04,  9.38it/s]
eval model::  93%|█████████▎| 464/500 [00:50<00:03,  9.64it/s]
eval model::  93%|█████████▎| 465/500 [00:50<00:03,  9.70it/s]
eval model::  93%|█████████▎| 467/500 [00:50<00:03, 10.26it/s]
eval model::  94%|█████████▍| 469/500 [00:50<00:02, 10.62it/s]
eval model::  94%|█████████▍| 471/500 [00:50<00:02, 10.19it/s]
eval model::  95%|█████████▍| 473/500 [00:51<00:02, 10.21it/s]
eval model::  95%|█████████▌| 475/500 [00:51<00:02, 10.36it/s]
eval model::  95%|█████████▌| 477/500 [00:51<00:02, 10.25it/s]
eval model::  96%|█████████▌| 479/500 [00:51<00:02, 10.43it/s]
eval model::  96%|█████████▌| 481/500 [00:51<00:01, 10.20it/s]
eval model::  97%|█████████▋| 483/500 [00:52<00:01, 10.03it/s]
eval model::  97%|█████████▋| 485/500 [00:52<00:01,  9.85it/s]
eval model::  97%|█████████▋| 486/500 [00:52<00:01,  9.75it/s]
eval model::  98%|█████████▊| 488/500 [00:52<00:01,  9.81it/s]
eval model::  98%|█████████▊| 489/500 [00:52<00:01,  9.82it/s]
eval model::  98%|█████████▊| 491/500 [00:52<00:00,  9.73it/s]
eval model::  99%|█████████▊| 493/500 [00:53<00:00,  9.85it/s]
eval model::  99%|█████████▉| 494/500 [00:53<00:00,  9.68it/s]
eval model::  99%|█████████▉| 495/500 [00:53<00:00,  9.50it/s]
eval model::  99%|█████████▉| 497/500 [00:53<00:00,  9.98it/s]
eval model:: 100%|█████████▉| 499/500 [00:53<00:00, 10.47it/s]
eval model:: 100%|██████████| 500/500 [00:53<00:00,  9.30it/s]
[2024/08/01 17:50:21] ppocr INFO: cur metric, precision: 0, recall: 0.0, hmean: 0, fps: 56.70311941619866
[2024/08/01 17:50:21] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/08/01 17:50:21] ppocr INFO: best metric, hmean: 0, precision: 0, recall: 0.0, fps: 56.70311941619866, best_epoch: 20
[2024/08/01 17:50:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:50:36] ppocr INFO: epoch: [21/100], global_step: 63, lr: 0.001000, loss: 6.246375, loss_shrink_maps: 4.821410, loss_threshold_maps: 0.868740, loss_binary_maps: 0.510149, avg_reader_cost: 3.24343 s, avg_batch_cost: 4.29778 s, avg_samples: 12.5, ips: 2.90848 samples/s, eta: 0:43:54
[2024/08/01 17:50:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:50:44] ppocr INFO: epoch: [22/100], global_step: 66, lr: 0.001000, loss: 6.210634, loss_shrink_maps: 4.817578, loss_threshold_maps: 0.868740, loss_binary_maps: 0.480297, avg_reader_cost: 1.55981 s, avg_batch_cost: 1.78959 s, avg_samples: 12.5, ips: 6.98483 samples/s, eta: 0:42:26
[2024/08/01 17:50:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:50:51] ppocr INFO: epoch: [23/100], global_step: 69, lr: 0.001000, loss: 6.186344, loss_shrink_maps: 4.825064, loss_threshold_maps: 0.873637, loss_binary_maps: 0.462218, avg_reader_cost: 1.60264 s, avg_batch_cost: 1.91454 s, avg_samples: 12.5, ips: 6.52900 samples/s, eta: 0:41:08
[2024/08/01 17:50:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:50:57] ppocr INFO: epoch: [24/100], global_step: 70, lr: 0.001000, loss: 6.186344, loss_shrink_maps: 4.829183, loss_threshold_maps: 0.877313, loss_binary_maps: 0.462218, avg_reader_cost: 0.42745 s, avg_batch_cost: 0.51434 s, avg_samples: 4.8, ips: 9.33242 samples/s, eta: 0:40:39
[2024/08/01 17:50:58] ppocr INFO: epoch: [24/100], global_step: 72, lr: 0.001000, loss: 6.184086, loss_shrink_maps: 4.829183, loss_threshold_maps: 0.879005, loss_binary_maps: 0.454171, avg_reader_cost: 1.11738 s, avg_batch_cost: 1.25714 s, avg_samples: 7.7, ips: 6.12499 samples/s, eta: 0:39:51
[2024/08/01 17:50:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:51:05] ppocr INFO: epoch: [25/100], global_step: 75, lr: 0.001000, loss: 6.153066, loss_shrink_maps: 4.817578, loss_threshold_maps: 0.879005, loss_binary_maps: 0.403712, avg_reader_cost: 1.53132 s, avg_batch_cost: 1.76569 s, avg_samples: 12.5, ips: 7.07939 samples/s, eta: 0:38:38
[2024/08/01 17:51:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:51:13] ppocr INFO: epoch: [26/100], global_step: 78, lr: 0.001000, loss: 6.095283, loss_shrink_maps: 4.815012, loss_threshold_maps: 0.877313, loss_binary_maps: 0.394333, avg_reader_cost: 1.55916 s, avg_batch_cost: 1.77713 s, avg_samples: 12.5, ips: 7.03381 samples/s, eta: 0:37:30
[2024/08/01 17:51:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:51:20] ppocr INFO: epoch: [27/100], global_step: 80, lr: 0.001000, loss: 6.040155, loss_shrink_maps: 4.807832, loss_threshold_maps: 0.862050, loss_binary_maps: 0.385620, avg_reader_cost: 0.94487 s, avg_batch_cost: 1.16765 s, avg_samples: 9.6, ips: 8.22163 samples/s, eta: 0:36:46
[2024/08/01 17:51:20] ppocr INFO: epoch: [27/100], global_step: 81, lr: 0.001000, loss: 6.034917, loss_shrink_maps: 4.802644, loss_threshold_maps: 0.857663, loss_binary_maps: 0.387033, avg_reader_cost: 0.62777 s, avg_batch_cost: 0.68009 s, avg_samples: 2.9, ips: 4.26416 samples/s, eta: 0:36:27
[2024/08/01 17:51:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:51:27] ppocr INFO: epoch: [28/100], global_step: 84, lr: 0.001000, loss: 6.004999, loss_shrink_maps: 4.760480, loss_threshold_maps: 0.827622, loss_binary_maps: 0.382736, avg_reader_cost: 1.51718 s, avg_batch_cost: 1.74777 s, avg_samples: 12.5, ips: 7.15197 samples/s, eta: 0:35:25
[2024/08/01 17:51:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:51:35] ppocr INFO: epoch: [29/100], global_step: 87, lr: 0.001000, loss: 5.960230, loss_shrink_maps: 4.744919, loss_threshold_maps: 0.824065, loss_binary_maps: 0.374527, avg_reader_cost: 1.57940 s, avg_batch_cost: 1.83344 s, avg_samples: 12.5, ips: 6.81779 samples/s, eta: 0:34:28
[2024/08/01 17:51:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:51:42] ppocr INFO: epoch: [30/100], global_step: 90, lr: 0.001000, loss: 5.896573, loss_shrink_maps: 4.721136, loss_threshold_maps: 0.823350, loss_binary_maps: 0.365361, avg_reader_cost: 1.54142 s, avg_batch_cost: 1.77970 s, avg_samples: 12.5, ips: 7.02367 samples/s, eta: 0:33:32
[2024/08/01 17:51:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:51:49] ppocr INFO: epoch: [31/100], global_step: 93, lr: 0.001000, loss: 5.877733, loss_shrink_maps: 4.681227, loss_threshold_maps: 0.822547, loss_binary_maps: 0.365361, avg_reader_cost: 1.52164 s, avg_batch_cost: 1.74048 s, avg_samples: 12.5, ips: 7.18194 samples/s, eta: 0:32:38
[2024/08/01 17:51:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:51:56] ppocr INFO: epoch: [32/100], global_step: 96, lr: 0.001000, loss: 5.854583, loss_shrink_maps: 4.637784, loss_threshold_maps: 0.823350, loss_binary_maps: 0.378998, avg_reader_cost: 1.50499 s, avg_batch_cost: 1.74903 s, avg_samples: 12.5, ips: 7.14683 samples/s, eta: 0:31:47
[2024/08/01 17:51:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:52:03] ppocr INFO: epoch: [33/100], global_step: 99, lr: 0.001000, loss: 5.775094, loss_shrink_maps: 4.570210, loss_threshold_maps: 0.816176, loss_binary_maps: 0.379037, avg_reader_cost: 1.54504 s, avg_batch_cost: 1.76606 s, avg_samples: 12.5, ips: 7.07788 samples/s, eta: 0:30:58
[2024/08/01 17:52:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:52:09] ppocr INFO: epoch: [34/100], global_step: 100, lr: 0.001000, loss: 5.763016, loss_shrink_maps: 4.561550, loss_threshold_maps: 0.823468, loss_binary_maps: 0.379037, avg_reader_cost: 0.44845 s, avg_batch_cost: 0.52719 s, avg_samples: 4.8, ips: 9.10490 samples/s, eta: 0:30:40
[2024/08/01 17:52:11] ppocr INFO: epoch: [34/100], global_step: 102, lr: 0.001000, loss: 5.742966, loss_shrink_maps: 4.524618, loss_threshold_maps: 0.823468, loss_binary_maps: 0.364334, avg_reader_cost: 1.14198 s, avg_batch_cost: 1.28130 s, avg_samples: 7.7, ips: 6.00952 samples/s, eta: 0:30:11
[2024/08/01 17:52:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:52:18] ppocr INFO: epoch: [35/100], global_step: 105, lr: 0.001000, loss: 5.669571, loss_shrink_maps: 4.507236, loss_threshold_maps: 0.824728, loss_binary_maps: 0.370966, avg_reader_cost: 1.58504 s, avg_batch_cost: 1.86516 s, avg_samples: 12.5, ips: 6.70185 samples/s, eta: 0:29:27
[2024/08/01 17:52:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:52:26] ppocr INFO: epoch: [36/100], global_step: 108, lr: 0.001000, loss: 5.504646, loss_shrink_maps: 4.384252, loss_threshold_maps: 0.795745, loss_binary_maps: 0.367287, avg_reader_cost: 1.60318 s, avg_batch_cost: 1.86544 s, avg_samples: 12.5, ips: 6.70084 samples/s, eta: 0:28:45
[2024/08/01 17:52:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:52:32] ppocr INFO: epoch: [37/100], global_step: 110, lr: 0.001000, loss: 5.487755, loss_shrink_maps: 4.276102, loss_threshold_maps: 0.795865, loss_binary_maps: 0.367287, avg_reader_cost: 0.94205 s, avg_batch_cost: 1.12038 s, avg_samples: 9.6, ips: 8.56850 samples/s, eta: 0:28:15
[2024/08/01 17:52:33] ppocr INFO: epoch: [37/100], global_step: 111, lr: 0.001000, loss: 5.467844, loss_shrink_maps: 4.272153, loss_threshold_maps: 0.795595, loss_binary_maps: 0.367287, avg_reader_cost: 0.60411 s, avg_batch_cost: 0.65705 s, avg_samples: 2.9, ips: 4.41367 samples/s, eta: 0:28:02
[2024/08/01 17:52:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:52:41] ppocr INFO: epoch: [38/100], global_step: 114, lr: 0.001000, loss: 5.356896, loss_shrink_maps: 4.210736, loss_threshold_maps: 0.795072, loss_binary_maps: 0.350336, avg_reader_cost: 1.63229 s, avg_batch_cost: 1.97290 s, avg_samples: 12.5, ips: 6.33585 samples/s, eta: 0:27:24
[2024/08/01 17:52:41] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:52:48] ppocr INFO: epoch: [39/100], global_step: 117, lr: 0.001000, loss: 5.262022, loss_shrink_maps: 4.137803, loss_threshold_maps: 0.783977, loss_binary_maps: 0.347792, avg_reader_cost: 1.58468 s, avg_batch_cost: 1.81424 s, avg_samples: 12.5, ips: 6.88994 samples/s, eta: 0:26:45
[2024/08/01 17:52:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:52:56] ppocr INFO: epoch: [40/100], global_step: 120, lr: 0.001000, loss: 5.102067, loss_shrink_maps: 3.975166, loss_threshold_maps: 0.783977, loss_binary_maps: 0.347554, avg_reader_cost: 1.60789 s, avg_batch_cost: 1.88224 s, avg_samples: 12.5, ips: 6.64101 samples/s, eta: 0:26:07

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<01:01,  8.12it/s]
eval model::   1%|          | 4/500 [00:00<00:28, 17.33it/s]
eval model::   1%|          | 6/500 [00:00<00:29, 16.77it/s]
eval model::   2%|▏         | 8/500 [00:00<00:28, 17.12it/s]
eval model::   2%|▏         | 11/500 [00:00<00:25, 18.83it/s]
eval model::   3%|▎         | 13/500 [00:00<00:27, 17.44it/s]
eval model::   3%|▎         | 16/500 [00:00<00:26, 18.53it/s]
eval model::   4%|▍         | 19/500 [00:01<00:25, 19.05it/s]
eval model::   4%|▍         | 21/500 [00:01<00:27, 17.47it/s]
eval model::   5%|▍         | 24/500 [00:01<00:24, 19.30it/s]
eval model::   5%|▌         | 27/500 [00:01<00:23, 19.93it/s]
eval model::   6%|▌         | 29/500 [00:01<00:24, 19.55it/s]
eval model::   6%|▌         | 31/500 [00:01<00:25, 18.32it/s]
eval model::   7%|▋         | 34/500 [00:01<00:25, 18.34it/s]
eval model::   7%|▋         | 37/500 [00:02<00:24, 18.92it/s]
eval model::   8%|▊         | 39/500 [00:02<00:26, 17.47it/s]
eval model::   8%|▊         | 41/500 [00:02<00:25, 17.74it/s]
eval model::   9%|▊         | 43/500 [00:02<00:27, 16.53it/s]
eval model::   9%|▉         | 46/500 [00:02<00:25, 17.67it/s]
eval model::  10%|▉         | 49/500 [00:02<00:22, 20.18it/s]
eval model::  10%|█         | 52/500 [00:02<00:22, 20.06it/s]
eval model::  11%|█         | 55/500 [00:02<00:22, 20.14it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:21, 20.50it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:23, 18.66it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:23, 18.41it/s]
eval model::  13%|█▎        | 65/500 [00:03<00:23, 18.77it/s]
eval model::  14%|█▎        | 68/500 [00:03<00:22, 19.22it/s]
eval model::  14%|█▍        | 71/500 [00:03<00:21, 20.16it/s]
eval model::  15%|█▍        | 74/500 [00:03<00:20, 20.50it/s]
eval model::  15%|█▌        | 77/500 [00:04<00:21, 19.40it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:21, 19.37it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:20, 20.45it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:20, 20.22it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:21, 19.00it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:22, 18.52it/s]
eval model::  18%|█▊        | 92/500 [00:04<00:21, 18.63it/s]
eval model::  19%|█▉        | 94/500 [00:04<00:21, 18.89it/s]
eval model::  19%|█▉        | 97/500 [00:05<00:20, 19.68it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:22, 17.96it/s]
eval model::  20%|██        | 101/500 [00:05<00:22, 17.72it/s]
eval model::  21%|██        | 104/500 [00:05<00:19, 20.49it/s]
eval model::  21%|██▏       | 107/500 [00:05<00:18, 21.12it/s]
eval model::  22%|██▏       | 110/500 [00:05<00:18, 21.11it/s]
eval model::  23%|██▎       | 113/500 [00:05<00:18, 20.55it/s]
eval model::  23%|██▎       | 116/500 [00:06<00:19, 19.74it/s]
eval model::  24%|██▍       | 119/500 [00:06<00:18, 20.07it/s]
eval model::  24%|██▍       | 122/500 [00:06<00:18, 19.91it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:18, 20.18it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:18, 20.51it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:18, 20.25it/s]
eval model::  27%|██▋       | 134/500 [00:06<00:17, 20.61it/s]
eval model::  27%|██▋       | 137/500 [00:07<00:18, 19.76it/s]
eval model::  28%|██▊       | 140/500 [00:07<00:18, 19.51it/s]
eval model::  29%|██▊       | 143/500 [00:07<00:17, 20.84it/s]
eval model::  29%|██▉       | 146/500 [00:07<00:17, 20.71it/s]
eval model::  30%|██▉       | 149/500 [00:07<00:17, 19.91it/s]
eval model::  30%|███       | 152/500 [00:07<00:19, 18.18it/s]
eval model::  31%|███       | 155/500 [00:08<00:17, 19.63it/s]
eval model::  32%|███▏      | 158/500 [00:08<00:16, 20.29it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:18, 18.71it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:18, 18.70it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:16, 20.19it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:17, 18.57it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:19, 17.22it/s]
eval model::  35%|███▍      | 173/500 [00:09<00:18, 17.44it/s]
eval model::  35%|███▌      | 175/500 [00:09<00:20, 16.01it/s]
eval model::  36%|███▌      | 178/500 [00:09<00:18, 17.86it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:19, 16.82it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:16, 18.74it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:14, 21.11it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:13, 23.05it/s]
eval model::  38%|███▊      | 192/500 [00:09<00:13, 23.19it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:13, 22.83it/s]
eval model::  40%|███▉      | 198/500 [00:10<00:14, 21.56it/s]
eval model::  40%|████      | 201/500 [00:10<00:13, 22.10it/s]
eval model::  41%|████      | 205/500 [00:10<00:17, 16.99it/s]
eval model::  42%|████▏     | 208/500 [00:10<00:16, 17.80it/s]
eval model::  42%|████▏     | 210/500 [00:10<00:15, 18.13it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:14, 19.88it/s]
eval model::  43%|████▎     | 216/500 [00:11<00:17, 16.67it/s]
eval model::  44%|████▎     | 218/500 [00:11<00:17, 16.49it/s]
eval model::  44%|████▍     | 221/500 [00:11<00:15, 17.54it/s]
eval model::  45%|████▍     | 223/500 [00:11<00:15, 17.76it/s]
eval model::  45%|████▌     | 226/500 [00:11<00:14, 19.30it/s]
eval model::  46%|████▌     | 230/500 [00:11<00:12, 22.49it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:11, 22.54it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:11, 22.79it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:11, 23.46it/s]
eval model::  48%|████▊     | 242/500 [00:12<00:13, 19.07it/s]
eval model::  49%|████▉     | 245/500 [00:12<00:12, 20.60it/s]
eval model::  50%|████▉     | 248/500 [00:12<00:11, 22.67it/s]
eval model::  50%|█████     | 251/500 [00:12<00:12, 20.37it/s]
eval model::  51%|█████     | 254/500 [00:13<00:11, 21.23it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:11, 21.22it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:11, 21.31it/s]
eval model::  53%|█████▎    | 263/500 [00:13<00:12, 19.36it/s]
eval model::  53%|█████▎    | 266/500 [00:13<00:12, 18.26it/s]
eval model::  54%|█████▎    | 268/500 [00:13<00:12, 18.49it/s]
eval model::  54%|█████▍    | 270/500 [00:13<00:12, 17.84it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:12, 17.79it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:11, 19.52it/s]
eval model::  55%|█████▌    | 277/500 [00:14<00:11, 19.30it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:11, 18.86it/s]
eval model::  56%|█████▋    | 282/500 [00:14<00:11, 19.82it/s]
eval model::  57%|█████▋    | 285/500 [00:14<00:12, 16.77it/s]
eval model::  58%|█████▊    | 288/500 [00:14<00:11, 18.59it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:10, 20.52it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:10, 19.79it/s]
eval model::  59%|█████▉    | 297/500 [00:15<00:09, 20.91it/s]
eval model::  60%|██████    | 300/500 [00:15<00:11, 17.33it/s]
eval model::  61%|██████    | 303/500 [00:15<00:10, 18.95it/s]
eval model::  61%|██████    | 306/500 [00:15<00:09, 20.39it/s]
eval model::  62%|██████▏   | 309/500 [00:15<00:08, 21.74it/s]
eval model::  62%|██████▏   | 312/500 [00:16<00:09, 20.48it/s]
eval model::  63%|██████▎   | 315/500 [00:16<00:08, 21.14it/s]
eval model::  64%|██████▎   | 318/500 [00:16<00:09, 19.89it/s]
eval model::  64%|██████▍   | 321/500 [00:16<00:08, 20.58it/s]
eval model::  65%|██████▍   | 324/500 [00:16<00:08, 19.66it/s]
eval model::  65%|██████▌   | 327/500 [00:16<00:08, 20.56it/s]
eval model::  66%|██████▌   | 330/500 [00:16<00:08, 20.30it/s]
eval model::  67%|██████▋   | 333/500 [00:17<00:08, 19.79it/s]
eval model::  67%|██████▋   | 336/500 [00:17<00:08, 19.45it/s]
eval model::  68%|██████▊   | 338/500 [00:17<00:08, 19.24it/s]
eval model::  68%|██████▊   | 340/500 [00:17<00:09, 17.25it/s]
eval model::  69%|██████▊   | 343/500 [00:17<00:08, 19.61it/s]
eval model::  69%|██████▉   | 346/500 [00:17<00:07, 20.20it/s]
eval model::  70%|██████▉   | 349/500 [00:17<00:07, 21.41it/s]
eval model::  70%|███████   | 352/500 [00:18<00:06, 22.16it/s]
eval model::  71%|███████   | 355/500 [00:18<00:07, 20.01it/s]
eval model::  72%|███████▏  | 358/500 [00:18<00:07, 20.07it/s]
eval model::  72%|███████▏  | 361/500 [00:18<00:07, 18.83it/s]
eval model::  73%|███████▎  | 364/500 [00:18<00:07, 17.44it/s]
eval model::  73%|███████▎  | 367/500 [00:18<00:07, 18.34it/s]
eval model::  74%|███████▍  | 370/500 [00:19<00:06, 20.72it/s]
eval model::  75%|███████▍  | 373/500 [00:19<00:06, 20.16it/s]
eval model::  75%|███████▌  | 377/500 [00:19<00:05, 22.25it/s]
eval model::  76%|███████▌  | 380/500 [00:19<00:05, 22.01it/s]
eval model::  77%|███████▋  | 383/500 [00:19<00:04, 23.51it/s]
eval model::  77%|███████▋  | 386/500 [00:19<00:06, 18.17it/s]
eval model::  78%|███████▊  | 389/500 [00:19<00:05, 19.21it/s]
eval model::  78%|███████▊  | 392/500 [00:20<00:05, 19.26it/s]
eval model::  79%|███████▉  | 395/500 [00:20<00:05, 20.60it/s]
eval model::  80%|███████▉  | 398/500 [00:20<00:04, 22.16it/s]
eval model::  80%|████████  | 401/500 [00:20<00:04, 20.65it/s]
eval model::  81%|████████  | 404/500 [00:20<00:04, 19.70it/s]
eval model::  81%|████████▏ | 407/500 [00:20<00:04, 19.67it/s]
eval model::  82%|████████▏ | 410/500 [00:20<00:04, 20.43it/s]
eval model::  83%|████████▎ | 413/500 [00:21<00:04, 19.06it/s]
eval model::  83%|████████▎ | 416/500 [00:21<00:04, 19.53it/s]
eval model::  84%|████████▎ | 418/500 [00:21<00:04, 18.39it/s]
eval model::  84%|████████▍ | 420/500 [00:21<00:04, 16.74it/s]
eval model::  84%|████████▍ | 422/500 [00:21<00:04, 17.45it/s]
eval model::  85%|████████▍ | 424/500 [00:21<00:04, 18.03it/s]
eval model::  85%|████████▌ | 427/500 [00:21<00:03, 20.45it/s]
eval model::  86%|████████▌ | 430/500 [00:22<00:03, 20.84it/s]
eval model::  87%|████████▋ | 433/500 [00:22<00:03, 20.08it/s]
eval model::  87%|████████▋ | 436/500 [00:22<00:03, 19.17it/s]
eval model::  88%|████████▊ | 438/500 [00:22<00:03, 18.81it/s]
eval model::  88%|████████▊ | 440/500 [00:22<00:03, 17.70it/s]
eval model::  89%|████████▊ | 443/500 [00:22<00:02, 19.70it/s]
eval model::  89%|████████▉ | 446/500 [00:22<00:02, 19.86it/s]
eval model::  90%|████████▉ | 449/500 [00:23<00:02, 18.60it/s]
eval model::  90%|█████████ | 452/500 [00:23<00:02, 19.98it/s]
eval model::  91%|█████████ | 455/500 [00:23<00:02, 19.58it/s]
eval model::  92%|█████████▏| 458/500 [00:23<00:01, 21.28it/s]
eval model::  92%|█████████▏| 461/500 [00:23<00:01, 21.47it/s]
eval model::  93%|█████████▎| 464/500 [00:23<00:01, 21.24it/s]
eval model::  93%|█████████▎| 467/500 [00:23<00:01, 19.89it/s]
eval model::  94%|█████████▍| 470/500 [00:24<00:01, 20.98it/s]
eval model::  95%|█████████▍| 473/500 [00:24<00:01, 21.31it/s]
eval model::  95%|█████████▌| 476/500 [00:24<00:01, 21.12it/s]
eval model::  96%|█████████▌| 479/500 [00:24<00:00, 22.09it/s]
eval model::  96%|█████████▋| 482/500 [00:24<00:00, 22.06it/s]
eval model::  97%|█████████▋| 485/500 [00:24<00:00, 21.92it/s]
eval model::  98%|█████████▊| 488/500 [00:24<00:00, 20.27it/s]
eval model::  98%|█████████▊| 491/500 [00:25<00:00, 18.80it/s]
eval model::  99%|█████████▉| 494/500 [00:25<00:00, 20.16it/s]
eval model::  99%|█████████▉| 497/500 [00:25<00:00, 21.45it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 20.39it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.61it/s]
[2024/08/01 17:53:21] ppocr INFO: cur metric, precision: 0.22295081967213115, recall: 0.130958112662494, hmean: 0.16499848346982104, fps: 44.93138701044406
[2024/08/01 17:53:21] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/08/01 17:53:21] ppocr INFO: best metric, hmean: 0.16499848346982104, precision: 0.22295081967213115, recall: 0.130958112662494, fps: 44.93138701044406, best_epoch: 40
[2024/08/01 17:53:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:53:28] ppocr INFO: epoch: [41/100], global_step: 123, lr: 0.001000, loss: 5.013711, loss_shrink_maps: 3.900425, loss_threshold_maps: 0.791662, loss_binary_maps: 0.345926, avg_reader_cost: 1.55501 s, avg_batch_cost: 1.77387 s, avg_samples: 12.5, ips: 7.04675 samples/s, eta: 0:25:29
[2024/08/01 17:53:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:53:35] ppocr INFO: epoch: [42/100], global_step: 126, lr: 0.001000, loss: 4.917653, loss_shrink_maps: 3.761256, loss_threshold_maps: 0.793332, loss_binary_maps: 0.344768, avg_reader_cost: 1.54325 s, avg_batch_cost: 1.76445 s, avg_samples: 12.5, ips: 7.08436 samples/s, eta: 0:24:52
[2024/08/01 17:53:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:53:43] ppocr INFO: epoch: [43/100], global_step: 129, lr: 0.001000, loss: 4.813151, loss_shrink_maps: 3.702121, loss_threshold_maps: 0.793332, loss_binary_maps: 0.343558, avg_reader_cost: 1.52052 s, avg_batch_cost: 1.75167 s, avg_samples: 12.5, ips: 7.13603 samples/s, eta: 0:24:15
[2024/08/01 17:53:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:53:48] ppocr INFO: epoch: [44/100], global_step: 130, lr: 0.001000, loss: 4.810200, loss_shrink_maps: 3.696463, loss_threshold_maps: 0.785647, loss_binary_maps: 0.343558, avg_reader_cost: 0.42727 s, avg_batch_cost: 0.51753 s, avg_samples: 4.8, ips: 9.27480 samples/s, eta: 0:24:02
[2024/08/01 17:53:50] ppocr INFO: epoch: [44/100], global_step: 132, lr: 0.001000, loss: 4.772030, loss_shrink_maps: 3.589952, loss_threshold_maps: 0.793332, loss_binary_maps: 0.344768, avg_reader_cost: 1.12297 s, avg_batch_cost: 1.26250 s, avg_samples: 7.7, ips: 6.09903 samples/s, eta: 0:23:40
[2024/08/01 17:53:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:53:57] ppocr INFO: epoch: [45/100], global_step: 135, lr: 0.001000, loss: 4.592910, loss_shrink_maps: 3.459525, loss_threshold_maps: 0.783712, loss_binary_maps: 0.343558, avg_reader_cost: 1.54752 s, avg_batch_cost: 1.78079 s, avg_samples: 12.5, ips: 7.01935 samples/s, eta: 0:23:05
[2024/08/01 17:53:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:54:04] ppocr INFO: epoch: [46/100], global_step: 138, lr: 0.001000, loss: 4.477604, loss_shrink_maps: 3.358388, loss_threshold_maps: 0.777170, loss_binary_maps: 0.336770, avg_reader_cost: 1.54333 s, avg_batch_cost: 1.76163 s, avg_samples: 12.5, ips: 7.09571 samples/s, eta: 0:22:31
[2024/08/01 17:54:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:54:11] ppocr INFO: epoch: [47/100], global_step: 140, lr: 0.001000, loss: 4.174245, loss_shrink_maps: 3.057818, loss_threshold_maps: 0.775730, loss_binary_maps: 0.329912, avg_reader_cost: 0.94198 s, avg_batch_cost: 1.10834 s, avg_samples: 9.6, ips: 8.66160 samples/s, eta: 0:22:08
[2024/08/01 17:54:11] ppocr INFO: epoch: [47/100], global_step: 141, lr: 0.001000, loss: 4.174245, loss_shrink_maps: 3.057599, loss_threshold_maps: 0.773347, loss_binary_maps: 0.329912, avg_reader_cost: 0.59814 s, avg_batch_cost: 0.65080 s, avg_samples: 2.9, ips: 4.45608 samples/s, eta: 0:21:57
[2024/08/01 17:54:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:54:19] ppocr INFO: epoch: [48/100], global_step: 144, lr: 0.001000, loss: 3.932898, loss_shrink_maps: 2.859950, loss_threshold_maps: 0.771016, loss_binary_maps: 0.318970, avg_reader_cost: 1.60583 s, avg_batch_cost: 1.82395 s, avg_samples: 12.5, ips: 6.85324 samples/s, eta: 0:21:25
[2024/08/01 17:54:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:54:26] ppocr INFO: epoch: [49/100], global_step: 147, lr: 0.001000, loss: 3.757834, loss_shrink_maps: 2.709851, loss_threshold_maps: 0.766270, loss_binary_maps: 0.311008, avg_reader_cost: 1.55615 s, avg_batch_cost: 1.77678 s, avg_samples: 12.5, ips: 7.03518 samples/s, eta: 0:20:53
[2024/08/01 17:54:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:54:33] ppocr INFO: epoch: [50/100], global_step: 150, lr: 0.001000, loss: 3.741022, loss_shrink_maps: 2.650275, loss_threshold_maps: 0.760824, loss_binary_maps: 0.316353, avg_reader_cost: 1.52191 s, avg_batch_cost: 1.76198 s, avg_samples: 12.5, ips: 7.09431 samples/s, eta: 0:20:22
[2024/08/01 17:54:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:54:41] ppocr INFO: epoch: [51/100], global_step: 153, lr: 0.001000, loss: 3.669412, loss_shrink_maps: 2.579703, loss_threshold_maps: 0.765692, loss_binary_maps: 0.314351, avg_reader_cost: 1.63428 s, avg_batch_cost: 1.85759 s, avg_samples: 12.5, ips: 6.72915 samples/s, eta: 0:19:52
[2024/08/01 17:54:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:54:48] ppocr INFO: epoch: [52/100], global_step: 156, lr: 0.001000, loss: 3.402554, loss_shrink_maps: 2.382327, loss_threshold_maps: 0.756391, loss_binary_maps: 0.314351, avg_reader_cost: 1.52596 s, avg_batch_cost: 1.74469 s, avg_samples: 12.5, ips: 7.16458 samples/s, eta: 0:19:21
[2024/08/01 17:54:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:54:55] ppocr INFO: epoch: [53/100], global_step: 159, lr: 0.001000, loss: 3.361134, loss_shrink_maps: 2.272924, loss_threshold_maps: 0.765692, loss_binary_maps: 0.314122, avg_reader_cost: 1.53452 s, avg_batch_cost: 1.78002 s, avg_samples: 12.5, ips: 7.02241 samples/s, eta: 0:18:51
[2024/08/01 17:54:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:55:01] ppocr INFO: epoch: [54/100], global_step: 160, lr: 0.001000, loss: 3.357454, loss_shrink_maps: 2.255252, loss_threshold_maps: 0.765692, loss_binary_maps: 0.314122, avg_reader_cost: 0.42923 s, avg_batch_cost: 0.50767 s, avg_samples: 4.8, ips: 9.45500 samples/s, eta: 0:18:41
[2024/08/01 17:55:03] ppocr INFO: epoch: [54/100], global_step: 162, lr: 0.001000, loss: 3.326994, loss_shrink_maps: 2.189058, loss_threshold_maps: 0.775286, loss_binary_maps: 0.310779, avg_reader_cost: 1.10308 s, avg_batch_cost: 1.24259 s, avg_samples: 7.7, ips: 6.19672 samples/s, eta: 0:18:22
[2024/08/01 17:55:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:55:10] ppocr INFO: epoch: [55/100], global_step: 165, lr: 0.001000, loss: 3.272557, loss_shrink_maps: 2.152653, loss_threshold_maps: 0.780274, loss_binary_maps: 0.306106, avg_reader_cost: 1.64286 s, avg_batch_cost: 1.91193 s, avg_samples: 12.5, ips: 6.53789 samples/s, eta: 0:17:54
[2024/08/01 17:55:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:55:17] ppocr INFO: epoch: [56/100], global_step: 168, lr: 0.001000, loss: 3.186116, loss_shrink_maps: 2.099789, loss_threshold_maps: 0.772851, loss_binary_maps: 0.304385, avg_reader_cost: 1.52204 s, avg_batch_cost: 1.74309 s, avg_samples: 12.5, ips: 7.17115 samples/s, eta: 0:17:25
[2024/08/01 17:55:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:55:24] ppocr INFO: epoch: [57/100], global_step: 170, lr: 0.001000, loss: 3.100752, loss_shrink_maps: 2.033987, loss_threshold_maps: 0.772097, loss_binary_maps: 0.293253, avg_reader_cost: 0.94066 s, avg_batch_cost: 1.13010 s, avg_samples: 9.6, ips: 8.49482 samples/s, eta: 0:17:05
[2024/08/01 17:55:25] ppocr INFO: epoch: [57/100], global_step: 171, lr: 0.001000, loss: 3.098502, loss_shrink_maps: 2.006058, loss_threshold_maps: 0.772097, loss_binary_maps: 0.294432, avg_reader_cost: 0.60932 s, avg_batch_cost: 0.66166 s, avg_samples: 2.9, ips: 4.38290 samples/s, eta: 0:16:57
[2024/08/01 17:55:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:55:32] ppocr INFO: epoch: [58/100], global_step: 174, lr: 0.001000, loss: 3.023936, loss_shrink_maps: 1.943461, loss_threshold_maps: 0.769614, loss_binary_maps: 0.293253, avg_reader_cost: 1.52857 s, avg_batch_cost: 1.76433 s, avg_samples: 12.5, ips: 7.08483 samples/s, eta: 0:16:29
[2024/08/01 17:55:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:55:39] ppocr INFO: epoch: [59/100], global_step: 177, lr: 0.001000, loss: 2.898122, loss_shrink_maps: 1.842262, loss_threshold_maps: 0.769614, loss_binary_maps: 0.290709, avg_reader_cost: 1.77343 s, avg_batch_cost: 1.99340 s, avg_samples: 12.5, ips: 6.27069 samples/s, eta: 0:16:02
[2024/08/01 17:55:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:55:47] ppocr INFO: epoch: [60/100], global_step: 180, lr: 0.001000, loss: 2.843680, loss_shrink_maps: 1.776176, loss_threshold_maps: 0.759556, loss_binary_maps: 0.282956, avg_reader_cost: 1.46923 s, avg_batch_cost: 1.69968 s, avg_samples: 12.5, ips: 7.35433 samples/s, eta: 0:15:35

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:52,  9.45it/s]
eval model::   1%|          | 4/500 [00:00<00:26, 19.01it/s]
eval model::   1%|          | 6/500 [00:00<00:28, 17.57it/s]
eval model::   2%|▏         | 8/500 [00:00<00:28, 17.19it/s]
eval model::   2%|▏         | 11/500 [00:00<00:25, 19.43it/s]
eval model::   3%|▎         | 14/500 [00:00<00:24, 19.84it/s]
eval model::   3%|▎         | 17/500 [00:00<00:22, 21.73it/s]
eval model::   4%|▍         | 20/500 [00:01<00:23, 20.30it/s]
eval model::   5%|▍         | 23/500 [00:01<00:22, 21.66it/s]
eval model::   5%|▌         | 26/500 [00:01<00:22, 21.38it/s]
eval model::   6%|▌         | 29/500 [00:01<00:21, 21.95it/s]
eval model::   6%|▋         | 32/500 [00:01<00:21, 21.32it/s]
eval model::   7%|▋         | 35/500 [00:01<00:23, 19.85it/s]
eval model::   8%|▊         | 38/500 [00:01<00:22, 20.92it/s]
eval model::   8%|▊         | 41/500 [00:02<00:25, 17.87it/s]
eval model::   9%|▊         | 43/500 [00:02<00:25, 18.07it/s]
eval model::   9%|▉         | 46/500 [00:02<00:24, 18.45it/s]
eval model::  10%|▉         | 49/500 [00:02<00:21, 20.90it/s]
eval model::  10%|█         | 52/500 [00:02<00:20, 21.39it/s]
eval model::  11%|█         | 56/500 [00:02<00:19, 22.42it/s]
eval model::  12%|█▏        | 59/500 [00:02<00:22, 19.80it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:22, 19.72it/s]
eval model::  13%|█▎        | 65/500 [00:03<00:20, 21.41it/s]
eval model::  14%|█▎        | 68/500 [00:03<00:19, 21.63it/s]
eval model::  14%|█▍        | 71/500 [00:03<00:20, 20.86it/s]
eval model::  15%|█▍        | 74/500 [00:03<00:24, 17.74it/s]
eval model::  15%|█▌        | 77/500 [00:03<00:23, 18.27it/s]
eval model::  16%|█▌        | 80/500 [00:04<00:21, 19.62it/s]
eval model::  17%|█▋        | 83/500 [00:04<00:20, 19.88it/s]
eval model::  17%|█▋        | 86/500 [00:04<00:21, 19.68it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:22, 17.99it/s]
eval model::  18%|█▊        | 92/500 [00:04<00:21, 18.55it/s]
eval model::  19%|█▉        | 94/500 [00:04<00:22, 18.15it/s]
eval model::  19%|█▉        | 97/500 [00:04<00:21, 18.61it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:22, 17.53it/s]
eval model::  20%|██        | 101/500 [00:05<00:24, 16.15it/s]
eval model::  21%|██        | 104/500 [00:05<00:21, 18.81it/s]
eval model::  21%|██▏       | 107/500 [00:05<00:19, 20.38it/s]
eval model::  22%|██▏       | 110/500 [00:05<00:19, 20.50it/s]
eval model::  23%|██▎       | 113/500 [00:05<00:18, 21.33it/s]
eval model::  23%|██▎       | 116/500 [00:05<00:18, 20.78it/s]
eval model::  24%|██▍       | 119/500 [00:06<00:17, 21.23it/s]
eval model::  24%|██▍       | 122/500 [00:06<00:19, 19.64it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:19, 19.19it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:18, 20.11it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:19, 19.15it/s]
eval model::  27%|██▋       | 134/500 [00:06<00:18, 20.21it/s]
eval model::  27%|██▋       | 137/500 [00:06<00:18, 19.38it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:20, 18.04it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:18, 19.38it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:17, 20.84it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:16, 21.30it/s]
eval model::  30%|███       | 151/500 [00:07<00:17, 20.26it/s]
eval model::  31%|███       | 154/500 [00:07<00:15, 21.88it/s]
eval model::  31%|███▏      | 157/500 [00:07<00:15, 21.49it/s]
eval model::  32%|███▏      | 160/500 [00:08<00:16, 20.04it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:17, 19.67it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:16, 20.54it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:16, 19.77it/s]
eval model::  34%|███▍      | 172/500 [00:08<00:17, 19.10it/s]
eval model::  35%|███▍      | 174/500 [00:08<00:18, 17.75it/s]
eval model::  35%|███▌      | 177/500 [00:08<00:16, 19.21it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:16, 19.82it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:14, 21.74it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:16, 19.50it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:16, 19.03it/s]
eval model::  38%|███▊      | 192/500 [00:09<00:15, 19.47it/s]
eval model::  39%|███▉      | 195/500 [00:09<00:15, 19.28it/s]
eval model::  39%|███▉      | 197/500 [00:09<00:15, 19.22it/s]
eval model::  40%|███▉      | 199/500 [00:10<00:15, 19.32it/s]
eval model::  40%|████      | 201/500 [00:10<00:16, 18.38it/s]
eval model::  41%|████      | 204/500 [00:10<00:14, 19.89it/s]
eval model::  41%|████      | 206/500 [00:10<00:21, 13.59it/s]
eval model::  42%|████▏     | 209/500 [00:10<00:18, 15.54it/s]
eval model::  42%|████▏     | 211/500 [00:10<00:17, 16.30it/s]
eval model::  43%|████▎     | 214/500 [00:11<00:15, 18.39it/s]
eval model::  43%|████▎     | 216/500 [00:11<00:17, 16.54it/s]
eval model::  44%|████▎     | 218/500 [00:11<00:18, 15.53it/s]
eval model::  44%|████▍     | 221/500 [00:11<00:16, 17.19it/s]
eval model::  45%|████▍     | 224/500 [00:11<00:15, 18.30it/s]
eval model::  45%|████▌     | 226/500 [00:11<00:16, 16.96it/s]
eval model::  46%|████▌     | 229/500 [00:11<00:13, 19.59it/s]
eval model::  46%|████▋     | 232/500 [00:11<00:12, 20.84it/s]
eval model::  47%|████▋     | 235/500 [00:12<00:13, 19.31it/s]
eval model::  48%|████▊     | 238/500 [00:12<00:13, 20.01it/s]
eval model::  48%|████▊     | 241/500 [00:12<00:11, 22.21it/s]
eval model::  49%|████▉     | 244/500 [00:12<00:12, 20.53it/s]
eval model::  49%|████▉     | 247/500 [00:12<00:11, 21.79it/s]
eval model::  50%|█████     | 250/500 [00:12<00:13, 19.21it/s]
eval model::  51%|█████     | 254/500 [00:13<00:10, 22.88it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:11, 21.94it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:11, 21.37it/s]
eval model::  53%|█████▎    | 263/500 [00:13<00:10, 21.60it/s]
eval model::  53%|█████▎    | 266/500 [00:13<00:11, 20.19it/s]
eval model::  54%|█████▍    | 269/500 [00:13<00:11, 20.48it/s]
eval model::  54%|█████▍    | 272/500 [00:13<00:11, 19.02it/s]
eval model::  55%|█████▍    | 274/500 [00:14<00:12, 18.60it/s]
eval model::  55%|█████▌    | 276/500 [00:14<00:12, 18.54it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:11, 19.23it/s]
eval model::  56%|█████▋    | 282/500 [00:14<00:10, 20.65it/s]
eval model::  57%|█████▋    | 285/500 [00:14<00:12, 16.97it/s]
eval model::  58%|█████▊    | 288/500 [00:14<00:11, 18.12it/s]
eval model::  58%|█████▊    | 291/500 [00:14<00:10, 19.59it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:10, 18.88it/s]
eval model::  59%|█████▉    | 296/500 [00:15<00:11, 18.23it/s]
eval model::  60%|█████▉    | 299/500 [00:15<00:09, 20.50it/s]
eval model::  60%|██████    | 302/500 [00:15<00:10, 19.39it/s]
eval model::  61%|██████    | 305/500 [00:15<00:10, 19.07it/s]
eval model::  62%|██████▏   | 308/500 [00:15<00:09, 20.80it/s]
eval model::  62%|██████▏   | 311/500 [00:15<00:09, 20.65it/s]
eval model::  63%|██████▎   | 314/500 [00:16<00:09, 19.78it/s]
eval model::  63%|██████▎   | 317/500 [00:16<00:09, 19.77it/s]
eval model::  64%|██████▍   | 320/500 [00:16<00:09, 18.69it/s]
eval model::  64%|██████▍   | 322/500 [00:16<00:09, 17.87it/s]
eval model::  65%|██████▌   | 325/500 [00:16<00:08, 20.28it/s]
eval model::  66%|██████▌   | 328/500 [00:16<00:08, 19.57it/s]
eval model::  66%|██████▌   | 331/500 [00:16<00:07, 21.49it/s]
eval model::  67%|██████▋   | 334/500 [00:17<00:07, 21.63it/s]
eval model::  67%|██████▋   | 337/500 [00:17<00:07, 20.90it/s]
eval model::  68%|██████▊   | 340/500 [00:17<00:09, 17.36it/s]
eval model::  69%|██████▊   | 343/500 [00:17<00:08, 19.22it/s]
eval model::  69%|██████▉   | 346/500 [00:17<00:07, 21.17it/s]
eval model::  70%|███████   | 350/500 [00:17<00:06, 23.20it/s]
eval model::  71%|███████   | 353/500 [00:18<00:06, 22.18it/s]
eval model::  71%|███████   | 356/500 [00:18<00:07, 19.06it/s]
eval model::  72%|███████▏  | 359/500 [00:18<00:07, 19.86it/s]
eval model::  72%|███████▏  | 362/500 [00:18<00:06, 20.00it/s]
eval model::  73%|███████▎  | 365/500 [00:18<00:07, 18.48it/s]
eval model::  73%|███████▎  | 367/500 [00:18<00:07, 18.40it/s]
eval model::  74%|███████▍  | 370/500 [00:18<00:06, 20.30it/s]
eval model::  75%|███████▍  | 373/500 [00:19<00:05, 22.15it/s]
eval model::  75%|███████▌  | 376/500 [00:19<00:05, 21.79it/s]
eval model::  76%|███████▌  | 379/500 [00:19<00:05, 22.23it/s]
eval model::  76%|███████▋  | 382/500 [00:19<00:05, 21.87it/s]
eval model::  77%|███████▋  | 385/500 [00:19<00:05, 21.31it/s]
eval model::  78%|███████▊  | 388/500 [00:19<00:07, 15.22it/s]
eval model::  78%|███████▊  | 391/500 [00:20<00:06, 16.79it/s]
eval model::  79%|███████▉  | 394/500 [00:20<00:05, 19.22it/s]
eval model::  80%|███████▉  | 398/500 [00:20<00:04, 22.46it/s]
eval model::  80%|████████  | 401/500 [00:20<00:04, 22.66it/s]
eval model::  81%|████████  | 404/500 [00:20<00:04, 23.50it/s]
eval model::  81%|████████▏ | 407/500 [00:20<00:04, 22.60it/s]
eval model::  82%|████████▏ | 410/500 [00:20<00:04, 21.65it/s]
eval model::  83%|████████▎ | 413/500 [00:20<00:04, 19.99it/s]
eval model::  83%|████████▎ | 416/500 [00:21<00:04, 18.55it/s]
eval model::  84%|████████▎ | 418/500 [00:21<00:04, 17.88it/s]
eval model::  84%|████████▍ | 420/500 [00:21<00:04, 16.50it/s]
eval model::  84%|████████▍ | 422/500 [00:21<00:04, 16.38it/s]
eval model::  85%|████████▌ | 425/500 [00:21<00:04, 17.73it/s]
eval model::  86%|████████▌ | 428/500 [00:21<00:03, 20.42it/s]
eval model::  86%|████████▌ | 431/500 [00:21<00:03, 22.50it/s]
eval model::  87%|████████▋ | 434/500 [00:22<00:02, 23.43it/s]
eval model::  87%|████████▋ | 437/500 [00:22<00:02, 22.08it/s]
eval model::  88%|████████▊ | 440/500 [00:22<00:03, 18.78it/s]
eval model::  89%|████████▊ | 443/500 [00:22<00:02, 21.01it/s]
eval model::  89%|████████▉ | 446/500 [00:22<00:02, 21.58it/s]
eval model::  90%|████████▉ | 449/500 [00:22<00:02, 21.16it/s]
eval model::  90%|█████████ | 452/500 [00:22<00:02, 21.67it/s]
eval model::  91%|█████████ | 455/500 [00:23<00:02, 21.79it/s]
eval model::  92%|█████████▏| 458/500 [00:23<00:01, 22.98it/s]
eval model::  92%|█████████▏| 461/500 [00:23<00:01, 21.39it/s]
eval model::  93%|█████████▎| 464/500 [00:23<00:01, 19.05it/s]
eval model::  93%|█████████▎| 466/500 [00:23<00:01, 18.23it/s]
eval model::  94%|█████████▍| 469/500 [00:23<00:01, 19.82it/s]
eval model::  94%|█████████▍| 472/500 [00:23<00:01, 20.55it/s]
eval model::  95%|█████████▌| 475/500 [00:24<00:01, 21.76it/s]
eval model::  96%|█████████▌| 478/500 [00:24<00:01, 20.43it/s]
eval model::  96%|█████████▌| 481/500 [00:24<00:01, 18.13it/s]
eval model::  97%|█████████▋| 484/500 [00:24<00:00, 18.73it/s]
eval model::  97%|█████████▋| 486/500 [00:24<00:00, 18.23it/s]
eval model::  98%|█████████▊| 489/500 [00:24<00:00, 20.79it/s]
eval model::  98%|█████████▊| 492/500 [00:24<00:00, 21.34it/s]
eval model::  99%|█████████▉| 495/500 [00:25<00:00, 22.47it/s]
eval model:: 100%|█████████▉| 498/500 [00:25<00:00, 21.47it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.77it/s]
[2024/08/01 17:56:12] ppocr INFO: cur metric, precision: 0.6271604938271605, recall: 0.36687530091478093, hmean: 0.4629404617253949, fps: 44.60411811862789
[2024/08/01 17:56:12] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/08/01 17:56:12] ppocr INFO: best metric, hmean: 0.4629404617253949, precision: 0.6271604938271605, recall: 0.36687530091478093, fps: 44.60411811862789, best_epoch: 60
[2024/08/01 17:56:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:56:19] ppocr INFO: epoch: [61/100], global_step: 183, lr: 0.001000, loss: 2.792534, loss_shrink_maps: 1.755670, loss_threshold_maps: 0.753185, loss_binary_maps: 0.283688, avg_reader_cost: 1.55247 s, avg_batch_cost: 1.77067 s, avg_samples: 12.5, ips: 7.05946 samples/s, eta: 0:15:08
[2024/08/01 17:56:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:56:27] ppocr INFO: epoch: [62/100], global_step: 186, lr: 0.001000, loss: 2.752594, loss_shrink_maps: 1.720897, loss_threshold_maps: 0.752956, loss_binary_maps: 0.279250, avg_reader_cost: 1.69251 s, avg_batch_cost: 1.91173 s, avg_samples: 12.5, ips: 6.53857 samples/s, eta: 0:14:42
[2024/08/01 17:56:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:56:34] ppocr INFO: epoch: [63/100], global_step: 189, lr: 0.001000, loss: 2.676908, loss_shrink_maps: 1.647927, loss_threshold_maps: 0.752956, loss_binary_maps: 0.273353, avg_reader_cost: 1.56534 s, avg_batch_cost: 1.79999 s, avg_samples: 12.5, ips: 6.94447 samples/s, eta: 0:14:16
[2024/08/01 17:56:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:56:40] ppocr INFO: epoch: [64/100], global_step: 190, lr: 0.001000, loss: 2.625532, loss_shrink_maps: 1.618552, loss_threshold_maps: 0.750702, loss_binary_maps: 0.269597, avg_reader_cost: 0.43119 s, avg_batch_cost: 0.50998 s, avg_samples: 4.8, ips: 9.41213 samples/s, eta: 0:14:06
[2024/08/01 17:56:41] ppocr INFO: epoch: [64/100], global_step: 192, lr: 0.001000, loss: 2.606832, loss_shrink_maps: 1.599669, loss_threshold_maps: 0.750702, loss_binary_maps: 0.269597, avg_reader_cost: 1.10812 s, avg_batch_cost: 1.24797 s, avg_samples: 7.7, ips: 6.17001 samples/s, eta: 0:13:49
[2024/08/01 17:56:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:56:49] ppocr INFO: epoch: [65/100], global_step: 195, lr: 0.001000, loss: 2.606832, loss_shrink_maps: 1.599669, loss_threshold_maps: 0.758246, loss_binary_maps: 0.269597, avg_reader_cost: 1.60982 s, avg_batch_cost: 1.82860 s, avg_samples: 12.5, ips: 6.83584 samples/s, eta: 0:13:24
[2024/08/01 17:56:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:56:56] ppocr INFO: epoch: [66/100], global_step: 198, lr: 0.001000, loss: 2.606832, loss_shrink_maps: 1.599669, loss_threshold_maps: 0.758246, loss_binary_maps: 0.269597, avg_reader_cost: 1.51711 s, avg_batch_cost: 1.76934 s, avg_samples: 12.5, ips: 7.06479 samples/s, eta: 0:12:58
[2024/08/01 17:56:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:57:03] ppocr INFO: epoch: [67/100], global_step: 200, lr: 0.001000, loss: 2.615722, loss_shrink_maps: 1.607543, loss_threshold_maps: 0.755183, loss_binary_maps: 0.276641, avg_reader_cost: 1.01705 s, avg_batch_cost: 1.20149 s, avg_samples: 9.6, ips: 7.99011 samples/s, eta: 0:12:41
[2024/08/01 17:57:04] ppocr INFO: epoch: [67/100], global_step: 201, lr: 0.001000, loss: 2.606832, loss_shrink_maps: 1.581619, loss_threshold_maps: 0.755183, loss_binary_maps: 0.276641, avg_reader_cost: 0.64468 s, avg_batch_cost: 0.69674 s, avg_samples: 2.9, ips: 4.16221 samples/s, eta: 0:12:33
[2024/08/01 17:57:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:57:11] ppocr INFO: epoch: [68/100], global_step: 204, lr: 0.001000, loss: 2.615722, loss_shrink_maps: 1.595874, loss_threshold_maps: 0.759664, loss_binary_maps: 0.285357, avg_reader_cost: 1.52103 s, avg_batch_cost: 1.74601 s, avg_samples: 12.5, ips: 7.15918 samples/s, eta: 0:12:08
[2024/08/01 17:57:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:57:19] ppocr INFO: epoch: [69/100], global_step: 207, lr: 0.001000, loss: 2.581047, loss_shrink_maps: 1.540290, loss_threshold_maps: 0.763395, loss_binary_maps: 0.276206, avg_reader_cost: 1.63766 s, avg_batch_cost: 1.89827 s, avg_samples: 12.5, ips: 6.58493 samples/s, eta: 0:11:43
[2024/08/01 17:57:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:57:26] ppocr INFO: epoch: [70/100], global_step: 210, lr: 0.001000, loss: 2.670115, loss_shrink_maps: 1.616660, loss_threshold_maps: 0.778639, loss_binary_maps: 0.286601, avg_reader_cost: 1.56350 s, avg_batch_cost: 1.78212 s, avg_samples: 12.5, ips: 7.01413 samples/s, eta: 0:11:19
[2024/08/01 17:57:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:57:33] ppocr INFO: epoch: [71/100], global_step: 213, lr: 0.001000, loss: 2.642823, loss_shrink_maps: 1.604991, loss_threshold_maps: 0.769228, loss_binary_maps: 0.283805, avg_reader_cost: 1.49166 s, avg_batch_cost: 1.73735 s, avg_samples: 12.5, ips: 7.19487 samples/s, eta: 0:10:54
[2024/08/01 17:57:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:57:40] ppocr INFO: epoch: [72/100], global_step: 216, lr: 0.001000, loss: 2.628230, loss_shrink_maps: 1.580254, loss_threshold_maps: 0.769228, loss_binary_maps: 0.283672, avg_reader_cost: 1.50262 s, avg_batch_cost: 1.74138 s, avg_samples: 12.5, ips: 7.17821 samples/s, eta: 0:10:29
[2024/08/01 17:57:41] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:57:48] ppocr INFO: epoch: [73/100], global_step: 219, lr: 0.001000, loss: 2.556266, loss_shrink_maps: 1.539362, loss_threshold_maps: 0.768479, loss_binary_maps: 0.277668, avg_reader_cost: 1.63636 s, avg_batch_cost: 1.85537 s, avg_samples: 12.5, ips: 6.73720 samples/s, eta: 0:10:05
[2024/08/01 17:57:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:57:54] ppocr INFO: epoch: [74/100], global_step: 220, lr: 0.001000, loss: 2.555165, loss_shrink_maps: 1.533696, loss_threshold_maps: 0.768479, loss_binary_maps: 0.277464, avg_reader_cost: 0.44255 s, avg_batch_cost: 0.52207 s, avg_samples: 4.8, ips: 9.19411 samples/s, eta: 0:09:57
[2024/08/01 17:57:56] ppocr INFO: epoch: [74/100], global_step: 222, lr: 0.001000, loss: 2.538739, loss_shrink_maps: 1.491951, loss_threshold_maps: 0.765522, loss_binary_maps: 0.268607, avg_reader_cost: 1.13246 s, avg_batch_cost: 1.27239 s, avg_samples: 7.7, ips: 6.05160 samples/s, eta: 0:09:41
[2024/08/01 17:57:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:58:03] ppocr INFO: epoch: [75/100], global_step: 225, lr: 0.001000, loss: 2.467374, loss_shrink_maps: 1.444626, loss_threshold_maps: 0.760291, loss_binary_maps: 0.264442, avg_reader_cost: 1.50995 s, avg_batch_cost: 1.74114 s, avg_samples: 12.5, ips: 7.17919 samples/s, eta: 0:09:17
[2024/08/01 17:58:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:58:10] ppocr INFO: epoch: [76/100], global_step: 228, lr: 0.001000, loss: 2.426688, loss_shrink_maps: 1.416160, loss_threshold_maps: 0.748964, loss_binary_maps: 0.260958, avg_reader_cost: 1.53072 s, avg_batch_cost: 1.75967 s, avg_samples: 12.5, ips: 7.10362 samples/s, eta: 0:08:53
[2024/08/01 17:58:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:58:17] ppocr INFO: epoch: [77/100], global_step: 230, lr: 0.001000, loss: 2.426688, loss_shrink_maps: 1.416160, loss_threshold_maps: 0.743827, loss_binary_maps: 0.260958, avg_reader_cost: 0.93616 s, avg_batch_cost: 1.12900 s, avg_samples: 9.6, ips: 8.50306 samples/s, eta: 0:08:37
[2024/08/01 17:58:17] ppocr INFO: epoch: [77/100], global_step: 231, lr: 0.001000, loss: 2.451796, loss_shrink_maps: 1.430924, loss_threshold_maps: 0.743827, loss_binary_maps: 0.263259, avg_reader_cost: 0.60888 s, avg_batch_cost: 0.66096 s, avg_samples: 2.9, ips: 4.38755 samples/s, eta: 0:08:30
[2024/08/01 17:58:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:58:25] ppocr INFO: epoch: [78/100], global_step: 234, lr: 0.001000, loss: 2.446901, loss_shrink_maps: 1.428773, loss_threshold_maps: 0.740955, loss_binary_maps: 0.254834, avg_reader_cost: 1.57521 s, avg_batch_cost: 1.86379 s, avg_samples: 12.5, ips: 6.70675 samples/s, eta: 0:08:07
[2024/08/01 17:58:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:58:32] ppocr INFO: epoch: [79/100], global_step: 237, lr: 0.001000, loss: 2.446901, loss_shrink_maps: 1.428773, loss_threshold_maps: 0.740913, loss_binary_maps: 0.254305, avg_reader_cost: 1.52857 s, avg_batch_cost: 1.74842 s, avg_samples: 12.5, ips: 7.14932 samples/s, eta: 0:07:43
[2024/08/01 17:58:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:58:40] ppocr INFO: epoch: [80/100], global_step: 240, lr: 0.001000, loss: 2.446901, loss_shrink_maps: 1.436827, loss_threshold_maps: 0.740913, loss_binary_maps: 0.254305, avg_reader_cost: 1.50979 s, avg_batch_cost: 1.72927 s, avg_samples: 12.5, ips: 7.22848 samples/s, eta: 0:07:20

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:57,  8.61it/s]
eval model::   1%|          | 4/500 [00:00<00:27, 18.00it/s]
eval model::   1%|          | 6/500 [00:00<00:30, 15.98it/s]
eval model::   2%|▏         | 8/500 [00:00<00:28, 17.18it/s]
eval model::   2%|▏         | 11/500 [00:00<00:25, 19.44it/s]
eval model::   3%|▎         | 13/500 [00:00<00:25, 19.39it/s]
eval model::   3%|▎         | 16/500 [00:00<00:23, 20.50it/s]
eval model::   4%|▍         | 19/500 [00:00<00:23, 20.78it/s]
eval model::   4%|▍         | 22/500 [00:01<00:21, 22.14it/s]
eval model::   5%|▌         | 25/500 [00:01<00:23, 20.62it/s]
eval model::   6%|▌         | 28/500 [00:01<00:22, 20.99it/s]
eval model::   6%|▌         | 31/500 [00:01<00:22, 20.60it/s]
eval model::   7%|▋         | 34/500 [00:01<00:22, 20.82it/s]
eval model::   7%|▋         | 37/500 [00:01<00:20, 22.22it/s]
eval model::   8%|▊         | 40/500 [00:01<00:22, 20.62it/s]
eval model::   9%|▊         | 43/500 [00:02<00:21, 21.31it/s]
eval model::   9%|▉         | 46/500 [00:02<00:22, 20.13it/s]
eval model::  10%|▉         | 49/500 [00:02<00:20, 22.04it/s]
eval model::  10%|█         | 52/500 [00:02<00:20, 21.80it/s]
eval model::  11%|█         | 55/500 [00:02<00:20, 21.90it/s]
eval model::  12%|█▏        | 58/500 [00:02<00:20, 21.65it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:23, 18.33it/s]
eval model::  13%|█▎        | 64/500 [00:03<00:21, 19.92it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:20, 21.21it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:19, 21.70it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:20, 21.15it/s]
eval model::  15%|█▌        | 76/500 [00:03<00:19, 21.61it/s]
eval model::  16%|█▌        | 79/500 [00:03<00:20, 20.95it/s]
eval model::  16%|█▋        | 82/500 [00:03<00:20, 20.42it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:19, 20.81it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:19, 20.74it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:20, 20.32it/s]
eval model::  19%|█▉        | 94/500 [00:04<00:20, 20.26it/s]
eval model::  19%|█▉        | 97/500 [00:04<00:20, 20.03it/s]
eval model::  20%|██        | 100/500 [00:04<00:20, 19.09it/s]
eval model::  21%|██        | 103/500 [00:05<00:18, 21.20it/s]
eval model::  21%|██        | 106/500 [00:05<00:20, 19.66it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:19, 19.99it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:19, 19.54it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:19, 19.57it/s]
eval model::  23%|██▎       | 116/500 [00:05<00:19, 19.37it/s]
eval model::  24%|██▍       | 119/500 [00:05<00:19, 19.98it/s]
eval model::  24%|██▍       | 122/500 [00:05<00:18, 20.68it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:19, 19.67it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:17, 20.89it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:19, 18.88it/s]
eval model::  27%|██▋       | 134/500 [00:06<00:17, 20.48it/s]
eval model::  27%|██▋       | 137/500 [00:06<00:17, 20.73it/s]
eval model::  28%|██▊       | 140/500 [00:06<00:17, 21.02it/s]
eval model::  29%|██▊       | 143/500 [00:07<00:16, 21.19it/s]
eval model::  29%|██▉       | 146/500 [00:07<00:17, 20.73it/s]
eval model::  30%|██▉       | 149/500 [00:07<00:17, 20.27it/s]
eval model::  30%|███       | 152/500 [00:07<00:16, 20.65it/s]
eval model::  31%|███       | 155/500 [00:07<00:16, 21.16it/s]
eval model::  32%|███▏      | 158/500 [00:07<00:15, 21.75it/s]
eval model::  32%|███▏      | 161/500 [00:07<00:16, 20.73it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:16, 20.79it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:16, 20.30it/s]
eval model::  34%|███▍      | 170/500 [00:08<00:15, 21.87it/s]
eval model::  35%|███▍      | 173/500 [00:08<00:15, 21.65it/s]
eval model::  35%|███▌      | 176/500 [00:08<00:15, 20.41it/s]
eval model::  36%|███▌      | 179/500 [00:08<00:15, 20.35it/s]
eval model::  36%|███▋      | 182/500 [00:08<00:16, 18.82it/s]
eval model::  37%|███▋      | 185/500 [00:09<00:14, 21.08it/s]
eval model::  38%|███▊      | 188/500 [00:09<00:14, 21.80it/s]
eval model::  38%|███▊      | 191/500 [00:09<00:14, 21.15it/s]
eval model::  39%|███▉      | 194/500 [00:09<00:13, 22.65it/s]
eval model::  39%|███▉      | 197/500 [00:09<00:14, 20.90it/s]
eval model::  40%|████      | 200/500 [00:09<00:14, 21.25it/s]
eval model::  41%|████      | 203/500 [00:09<00:14, 20.67it/s]
eval model::  41%|████      | 206/500 [00:10<00:20, 14.50it/s]
eval model::  42%|████▏     | 209/500 [00:10<00:18, 15.66it/s]
eval model::  42%|████▏     | 211/500 [00:10<00:18, 15.72it/s]
eval model::  43%|████▎     | 213/500 [00:10<00:17, 16.44it/s]
eval model::  43%|████▎     | 215/500 [00:10<00:18, 15.53it/s]
eval model::  43%|████▎     | 217/500 [00:10<00:18, 15.50it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:15, 17.72it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:15, 17.44it/s]
eval model::  45%|████▌     | 226/500 [00:11<00:13, 20.74it/s]
eval model::  46%|████▌     | 230/500 [00:11<00:11, 24.53it/s]
eval model::  47%|████▋     | 233/500 [00:11<00:10, 25.30it/s]
eval model::  47%|████▋     | 236/500 [00:11<00:10, 24.38it/s]
eval model::  48%|████▊     | 239/500 [00:11<00:11, 22.36it/s]
eval model::  48%|████▊     | 242/500 [00:11<00:11, 21.81it/s]
eval model::  49%|████▉     | 245/500 [00:12<00:11, 22.06it/s]
eval model::  50%|████▉     | 248/500 [00:12<00:12, 20.87it/s]
eval model::  50%|█████     | 251/500 [00:12<00:13, 19.12it/s]
eval model::  51%|█████     | 254/500 [00:12<00:12, 20.18it/s]
eval model::  51%|█████▏    | 257/500 [00:12<00:11, 21.50it/s]
eval model::  52%|█████▏    | 260/500 [00:12<00:11, 21.23it/s]
eval model::  53%|█████▎    | 263/500 [00:12<00:11, 20.53it/s]
eval model::  53%|█████▎    | 266/500 [00:13<00:12, 19.44it/s]
eval model::  54%|█████▎    | 268/500 [00:13<00:12, 19.25it/s]
eval model::  54%|█████▍    | 271/500 [00:13<00:11, 19.37it/s]
eval model::  55%|█████▍    | 273/500 [00:13<00:12, 18.70it/s]
eval model::  55%|█████▌    | 275/500 [00:13<00:12, 18.47it/s]
eval model::  56%|█████▌    | 278/500 [00:13<00:10, 20.73it/s]
eval model::  56%|█████▌    | 281/500 [00:13<00:10, 21.46it/s]
eval model::  57%|█████▋    | 284/500 [00:14<00:09, 21.98it/s]
eval model::  57%|█████▋    | 287/500 [00:14<00:12, 17.61it/s]
eval model::  58%|█████▊    | 291/500 [00:14<00:09, 21.30it/s]
eval model::  59%|█████▉    | 294/500 [00:14<00:10, 20.07it/s]
eval model::  59%|█████▉    | 297/500 [00:14<00:10, 19.51it/s]
eval model::  60%|██████    | 300/500 [00:14<00:09, 20.42it/s]
eval model::  61%|██████    | 303/500 [00:14<00:09, 21.39it/s]
eval model::  61%|██████    | 306/500 [00:15<00:09, 21.03it/s]
eval model::  62%|██████▏   | 309/500 [00:15<00:08, 22.32it/s]
eval model::  62%|██████▏   | 312/500 [00:15<00:08, 22.00it/s]
eval model::  63%|██████▎   | 315/500 [00:15<00:09, 20.49it/s]
eval model::  64%|██████▎   | 318/500 [00:15<00:08, 22.52it/s]
eval model::  64%|██████▍   | 321/500 [00:15<00:08, 20.73it/s]
eval model::  65%|██████▍   | 324/500 [00:16<00:09, 19.21it/s]
eval model::  65%|██████▌   | 327/500 [00:16<00:08, 20.48it/s]
eval model::  66%|██████▌   | 330/500 [00:16<00:08, 20.09it/s]
eval model::  67%|██████▋   | 333/500 [00:16<00:08, 20.40it/s]
eval model::  67%|██████▋   | 336/500 [00:16<00:08, 20.47it/s]
eval model::  68%|██████▊   | 339/500 [00:16<00:07, 20.57it/s]
eval model::  68%|██████▊   | 342/500 [00:16<00:09, 17.30it/s]
eval model::  69%|██████▉   | 345/500 [00:17<00:08, 19.07it/s]
eval model::  70%|██████▉   | 348/500 [00:17<00:07, 20.45it/s]
eval model::  70%|███████   | 351/500 [00:17<00:07, 20.77it/s]
eval model::  71%|███████   | 354/500 [00:17<00:06, 21.14it/s]
eval model::  71%|███████▏  | 357/500 [00:17<00:06, 20.86it/s]
eval model::  72%|███████▏  | 360/500 [00:17<00:06, 20.21it/s]
eval model::  73%|███████▎  | 363/500 [00:17<00:06, 20.60it/s]
eval model::  73%|███████▎  | 366/500 [00:18<00:06, 19.25it/s]
eval model::  74%|███████▍  | 369/500 [00:18<00:06, 20.68it/s]
eval model::  74%|███████▍  | 372/500 [00:18<00:06, 20.79it/s]
eval model::  75%|███████▌  | 375/500 [00:18<00:05, 20.94it/s]
eval model::  76%|███████▌  | 378/500 [00:18<00:05, 20.62it/s]
eval model::  76%|███████▌  | 381/500 [00:18<00:05, 20.17it/s]
eval model::  77%|███████▋  | 384/500 [00:18<00:05, 20.98it/s]
eval model::  77%|███████▋  | 387/500 [00:19<00:06, 17.22it/s]
eval model::  78%|███████▊  | 390/500 [00:19<00:05, 18.58it/s]
eval model::  79%|███████▊  | 393/500 [00:19<00:05, 19.96it/s]
eval model::  79%|███████▉  | 397/500 [00:19<00:04, 23.18it/s]
eval model::  80%|████████  | 400/500 [00:19<00:04, 21.36it/s]
eval model::  81%|████████  | 403/500 [00:19<00:04, 22.72it/s]
eval model::  81%|████████  | 406/500 [00:19<00:04, 21.91it/s]
eval model::  82%|████████▏ | 409/500 [00:20<00:04, 21.59it/s]
eval model::  82%|████████▏ | 412/500 [00:20<00:04, 21.01it/s]
eval model::  83%|████████▎ | 415/500 [00:20<00:04, 20.71it/s]
eval model::  84%|████████▎ | 418/500 [00:20<00:04, 19.63it/s]
eval model::  84%|████████▍ | 420/500 [00:20<00:04, 18.23it/s]
eval model::  85%|████████▍ | 423/500 [00:20<00:04, 19.14it/s]
eval model::  85%|████████▌ | 425/500 [00:21<00:03, 18.83it/s]
eval model::  86%|████████▌ | 429/500 [00:21<00:03, 22.48it/s]
eval model::  86%|████████▋ | 432/500 [00:21<00:03, 22.59it/s]
eval model::  87%|████████▋ | 435/500 [00:21<00:03, 21.31it/s]
eval model::  88%|████████▊ | 438/500 [00:21<00:02, 21.30it/s]
eval model::  88%|████████▊ | 441/500 [00:21<00:03, 19.42it/s]
eval model::  89%|████████▉ | 445/500 [00:21<00:02, 21.10it/s]
eval model::  90%|████████▉ | 448/500 [00:22<00:02, 21.77it/s]
eval model::  90%|█████████ | 451/500 [00:22<00:02, 21.14it/s]
eval model::  91%|█████████ | 454/500 [00:22<00:02, 20.43it/s]
eval model::  91%|█████████▏| 457/500 [00:22<00:02, 20.93it/s]
eval model::  92%|█████████▏| 460/500 [00:22<00:01, 20.30it/s]
eval model::  93%|█████████▎| 463/500 [00:22<00:01, 18.82it/s]
eval model::  93%|█████████▎| 465/500 [00:22<00:01, 17.76it/s]
eval model::  94%|█████████▎| 468/500 [00:23<00:01, 20.12it/s]
eval model::  94%|█████████▍| 471/500 [00:23<00:01, 19.64it/s]
eval model::  95%|█████████▍| 474/500 [00:23<00:01, 20.11it/s]
eval model::  95%|█████████▌| 477/500 [00:23<00:01, 20.81it/s]
eval model::  96%|█████████▌| 480/500 [00:23<00:00, 20.27it/s]
eval model::  97%|█████████▋| 483/500 [00:23<00:00, 21.84it/s]
eval model::  97%|█████████▋| 486/500 [00:23<00:00, 19.90it/s]
eval model::  98%|█████████▊| 489/500 [00:24<00:00, 21.01it/s]
eval model::  98%|█████████▊| 492/500 [00:24<00:00, 20.70it/s]
eval model::  99%|█████████▉| 495/500 [00:24<00:00, 21.62it/s]
eval model:: 100%|█████████▉| 498/500 [00:24<00:00, 22.63it/s]
eval model:: 100%|██████████| 500/500 [00:24<00:00, 20.34it/s]
[2024/08/01 17:59:04] ppocr INFO: cur metric, precision: 0.674928503336511, recall: 0.3408762638420799, hmean: 0.45297504798464483, fps: 45.82421840900974
[2024/08/01 17:59:04] ppocr INFO: best metric, hmean: 0.4629404617253949, precision: 0.6271604938271605, recall: 0.36687530091478093, fps: 44.60411811862789, best_epoch: 60
[2024/08/01 17:59:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:59:12] ppocr INFO: epoch: [81/100], global_step: 243, lr: 0.001000, loss: 2.483587, loss_shrink_maps: 1.478066, loss_threshold_maps: 0.747631, loss_binary_maps: 0.258378, avg_reader_cost: 1.66642 s, avg_batch_cost: 1.93322 s, avg_samples: 12.5, ips: 6.46590 samples/s, eta: 0:06:57
[2024/08/01 17:59:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:59:19] ppocr INFO: epoch: [82/100], global_step: 246, lr: 0.001000, loss: 2.456248, loss_shrink_maps: 1.465448, loss_threshold_maps: 0.738726, loss_binary_maps: 0.253970, avg_reader_cost: 1.50433 s, avg_batch_cost: 1.74321 s, avg_samples: 12.5, ips: 7.17068 samples/s, eta: 0:06:34
[2024/08/01 17:59:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:59:26] ppocr INFO: epoch: [83/100], global_step: 249, lr: 0.001000, loss: 2.456248, loss_shrink_maps: 1.465448, loss_threshold_maps: 0.735728, loss_binary_maps: 0.254207, avg_reader_cost: 1.59250 s, avg_batch_cost: 1.81266 s, avg_samples: 12.5, ips: 6.89596 samples/s, eta: 0:06:12
[2024/08/01 17:59:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:59:33] ppocr INFO: epoch: [84/100], global_step: 250, lr: 0.001000, loss: 2.456248, loss_shrink_maps: 1.463114, loss_threshold_maps: 0.740869, loss_binary_maps: 0.254207, avg_reader_cost: 0.45611 s, avg_batch_cost: 0.53550 s, avg_samples: 4.8, ips: 8.96357 samples/s, eta: 0:06:04
[2024/08/01 17:59:34] ppocr INFO: epoch: [84/100], global_step: 252, lr: 0.001000, loss: 2.427996, loss_shrink_maps: 1.437432, loss_threshold_maps: 0.740869, loss_binary_maps: 0.254207, avg_reader_cost: 1.15823 s, avg_batch_cost: 1.29735 s, avg_samples: 7.7, ips: 5.93518 samples/s, eta: 0:05:49
[2024/08/01 17:59:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:59:42] ppocr INFO: epoch: [85/100], global_step: 255, lr: 0.001000, loss: 2.395367, loss_shrink_maps: 1.404630, loss_threshold_maps: 0.746343, loss_binary_maps: 0.253366, avg_reader_cost: 1.59973 s, avg_batch_cost: 1.88607 s, avg_samples: 12.5, ips: 6.62753 samples/s, eta: 0:05:27
[2024/08/01 17:59:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:59:49] ppocr INFO: epoch: [86/100], global_step: 258, lr: 0.001000, loss: 2.379710, loss_shrink_maps: 1.403372, loss_threshold_maps: 0.740654, loss_binary_maps: 0.253366, avg_reader_cost: 1.57976 s, avg_batch_cost: 1.82883 s, avg_samples: 12.5, ips: 6.83498 samples/s, eta: 0:05:04
[2024/08/01 17:59:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 17:59:56] ppocr INFO: epoch: [87/100], global_step: 260, lr: 0.001000, loss: 2.361672, loss_shrink_maps: 1.394174, loss_threshold_maps: 0.733426, loss_binary_maps: 0.251277, avg_reader_cost: 0.95708 s, avg_batch_cost: 1.14947 s, avg_samples: 9.6, ips: 8.35166 samples/s, eta: 0:04:49
[2024/08/01 17:59:57] ppocr INFO: epoch: [87/100], global_step: 261, lr: 0.001000, loss: 2.379710, loss_shrink_maps: 1.403372, loss_threshold_maps: 0.740654, loss_binary_maps: 0.253366, avg_reader_cost: 0.61861 s, avg_batch_cost: 0.67061 s, avg_samples: 2.9, ips: 4.32439 samples/s, eta: 0:04:42
[2024/08/01 17:59:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:00:04] ppocr INFO: epoch: [88/100], global_step: 264, lr: 0.001000, loss: 2.389462, loss_shrink_maps: 1.403372, loss_threshold_maps: 0.745238, loss_binary_maps: 0.253366, avg_reader_cost: 1.54106 s, avg_batch_cost: 1.76317 s, avg_samples: 12.5, ips: 7.08952 samples/s, eta: 0:04:20
[2024/08/01 18:00:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:00:11] ppocr INFO: epoch: [89/100], global_step: 267, lr: 0.001000, loss: 2.396676, loss_shrink_maps: 1.403372, loss_threshold_maps: 0.745238, loss_binary_maps: 0.258030, avg_reader_cost: 1.53821 s, avg_batch_cost: 1.78828 s, avg_samples: 12.5, ips: 6.98997 samples/s, eta: 0:03:58
[2024/08/01 18:00:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:00:19] ppocr INFO: epoch: [90/100], global_step: 270, lr: 0.001000, loss: 2.361672, loss_shrink_maps: 1.361840, loss_threshold_maps: 0.745238, loss_binary_maps: 0.251005, avg_reader_cost: 1.55324 s, avg_batch_cost: 1.77347 s, avg_samples: 12.5, ips: 7.04833 samples/s, eta: 0:03:35
[2024/08/01 18:00:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:00:27] ppocr INFO: epoch: [91/100], global_step: 273, lr: 0.001000, loss: 2.337704, loss_shrink_maps: 1.345922, loss_threshold_maps: 0.741381, loss_binary_maps: 0.250517, avg_reader_cost: 1.65841 s, avg_batch_cost: 1.89050 s, avg_samples: 12.5, ips: 6.61201 samples/s, eta: 0:03:14
[2024/08/01 18:00:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:00:34] ppocr INFO: epoch: [92/100], global_step: 276, lr: 0.001000, loss: 2.272242, loss_shrink_maps: 1.312488, loss_threshold_maps: 0.715765, loss_binary_maps: 0.246946, avg_reader_cost: 1.54275 s, avg_batch_cost: 1.78528 s, avg_samples: 12.5, ips: 7.00171 samples/s, eta: 0:02:52
[2024/08/01 18:00:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:00:41] ppocr INFO: epoch: [93/100], global_step: 279, lr: 0.001000, loss: 2.280554, loss_shrink_maps: 1.312488, loss_threshold_maps: 0.730981, loss_binary_maps: 0.250180, avg_reader_cost: 1.58474 s, avg_batch_cost: 1.80534 s, avg_samples: 12.5, ips: 6.92392 samples/s, eta: 0:02:30
[2024/08/01 18:00:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:00:47] ppocr INFO: epoch: [94/100], global_step: 280, lr: 0.001000, loss: 2.280554, loss_shrink_maps: 1.312488, loss_threshold_maps: 0.730981, loss_binary_maps: 0.250180, avg_reader_cost: 0.44562 s, avg_batch_cost: 0.52424 s, avg_samples: 4.8, ips: 9.15604 samples/s, eta: 0:02:23
[2024/08/01 18:00:49] ppocr INFO: epoch: [94/100], global_step: 282, lr: 0.001000, loss: 2.257910, loss_shrink_maps: 1.311358, loss_threshold_maps: 0.721059, loss_binary_maps: 0.248900, avg_reader_cost: 1.13688 s, avg_batch_cost: 1.27704 s, avg_samples: 7.7, ips: 6.02959 samples/s, eta: 0:02:08
[2024/08/01 18:00:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:00:56] ppocr INFO: epoch: [95/100], global_step: 285, lr: 0.001000, loss: 2.251881, loss_shrink_maps: 1.305762, loss_threshold_maps: 0.710019, loss_binary_maps: 0.245806, avg_reader_cost: 1.53885 s, avg_batch_cost: 1.76425 s, avg_samples: 12.5, ips: 7.08514 samples/s, eta: 0:01:47
[2024/08/01 18:00:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:01:03] ppocr INFO: epoch: [96/100], global_step: 288, lr: 0.001000, loss: 2.250419, loss_shrink_maps: 1.305937, loss_threshold_maps: 0.701561, loss_binary_maps: 0.245806, avg_reader_cost: 1.54637 s, avg_batch_cost: 1.76706 s, avg_samples: 12.5, ips: 7.07388 samples/s, eta: 0:01:25
[2024/08/01 18:01:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:01:10] ppocr INFO: epoch: [97/100], global_step: 290, lr: 0.001000, loss: 2.239207, loss_shrink_maps: 1.288913, loss_threshold_maps: 0.701561, loss_binary_maps: 0.243384, avg_reader_cost: 0.94299 s, avg_batch_cost: 1.12499 s, avg_samples: 9.6, ips: 8.53340 samples/s, eta: 0:01:11
[2024/08/01 18:01:11] ppocr INFO: epoch: [97/100], global_step: 291, lr: 0.001000, loss: 2.250419, loss_shrink_maps: 1.305937, loss_threshold_maps: 0.710396, loss_binary_maps: 0.248279, avg_reader_cost: 0.60653 s, avg_batch_cost: 0.65912 s, avg_samples: 2.9, ips: 4.39980 samples/s, eta: 0:01:04
[2024/08/01 18:01:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:01:18] ppocr INFO: epoch: [98/100], global_step: 294, lr: 0.001000, loss: 2.239207, loss_shrink_maps: 1.288913, loss_threshold_maps: 0.716359, loss_binary_maps: 0.243384, avg_reader_cost: 1.50841 s, avg_batch_cost: 1.73455 s, avg_samples: 12.5, ips: 7.20649 samples/s, eta: 0:00:42
[2024/08/01 18:01:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:01:26] ppocr INFO: epoch: [99/100], global_step: 297, lr: 0.001000, loss: 2.254140, loss_shrink_maps: 1.308305, loss_threshold_maps: 0.719154, loss_binary_maps: 0.248279, avg_reader_cost: 1.55645 s, avg_batch_cost: 1.80226 s, avg_samples: 12.5, ips: 6.93573 samples/s, eta: 0:00:21
[2024/08/01 18:01:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:01:33] ppocr INFO: epoch: [100/100], global_step: 300, lr: 0.001000, loss: 2.203037, loss_shrink_maps: 1.251604, loss_threshold_maps: 0.707306, loss_binary_maps: 0.238437, avg_reader_cost: 1.52444 s, avg_batch_cost: 1.76492 s, avg_samples: 12.5, ips: 7.08246 samples/s, eta: 0:00:00

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:50,  9.92it/s]
eval model::   1%|          | 4/500 [00:00<00:26, 18.78it/s]
eval model::   1%|          | 6/500 [00:00<00:25, 19.02it/s]
eval model::   2%|▏         | 8/500 [00:00<00:28, 17.43it/s]
eval model::   2%|▏         | 11/500 [00:00<00:27, 17.75it/s]
eval model::   3%|▎         | 14/500 [00:00<00:25, 19.26it/s]
eval model::   3%|▎         | 17/500 [00:00<00:23, 20.19it/s]
eval model::   4%|▍         | 20/500 [00:01<00:25, 18.76it/s]
eval model::   5%|▍         | 23/500 [00:01<00:22, 20.98it/s]
eval model::   5%|▌         | 26/500 [00:01<00:23, 20.18it/s]
eval model::   6%|▌         | 29/500 [00:01<00:23, 20.38it/s]
eval model::   6%|▋         | 32/500 [00:01<00:23, 19.88it/s]
eval model::   7%|▋         | 35/500 [00:01<00:24, 19.05it/s]
eval model::   8%|▊         | 38/500 [00:01<00:23, 19.51it/s]
eval model::   8%|▊         | 40/500 [00:02<00:24, 18.43it/s]
eval model::   8%|▊         | 42/500 [00:02<00:24, 18.48it/s]
eval model::   9%|▉         | 45/500 [00:02<00:22, 20.53it/s]
eval model::  10%|▉         | 48/500 [00:02<00:22, 20.37it/s]
eval model::  10%|█         | 51/500 [00:02<00:20, 21.58it/s]
eval model::  11%|█         | 54/500 [00:02<00:22, 20.23it/s]
eval model::  11%|█▏        | 57/500 [00:02<00:20, 21.26it/s]
eval model::  12%|█▏        | 60/500 [00:03<00:21, 20.73it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:22, 19.29it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:21, 20.17it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:20, 20.82it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:21, 20.04it/s]
eval model::  15%|█▌        | 75/500 [00:03<00:21, 20.12it/s]
eval model::  16%|█▌        | 78/500 [00:03<00:20, 20.74it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:20, 20.18it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:21, 18.91it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:21, 19.33it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:21, 18.78it/s]
eval model::  18%|█▊        | 92/500 [00:04<00:21, 18.76it/s]
eval model::  19%|█▉        | 95/500 [00:04<00:21, 18.59it/s]
eval model::  20%|█▉        | 98/500 [00:04<00:20, 19.41it/s]
eval model::  20%|██        | 100/500 [00:05<00:20, 19.45it/s]
eval model::  21%|██        | 103/500 [00:05<00:18, 21.64it/s]
eval model::  21%|██        | 106/500 [00:05<00:18, 21.78it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:18, 21.07it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:19, 20.25it/s]
eval model::  23%|██▎       | 115/500 [00:05<00:18, 20.97it/s]
eval model::  24%|██▎       | 118/500 [00:05<00:17, 21.71it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:18, 20.46it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:18, 20.33it/s]
eval model::  25%|██▌       | 127/500 [00:06<00:17, 21.58it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:19, 19.39it/s]
eval model::  27%|██▋       | 133/500 [00:06<00:16, 21.65it/s]
eval model::  27%|██▋       | 136/500 [00:06<00:17, 20.72it/s]
eval model::  28%|██▊       | 139/500 [00:06<00:18, 19.88it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:17, 20.29it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:17, 20.72it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:18, 19.02it/s]
eval model::  30%|███       | 151/500 [00:07<00:19, 18.31it/s]
eval model::  31%|███       | 154/500 [00:07<00:16, 20.56it/s]
eval model::  31%|███▏      | 157/500 [00:07<00:15, 21.70it/s]
eval model::  32%|███▏      | 160/500 [00:08<00:17, 19.73it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:16, 20.12it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:15, 21.25it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:16, 20.66it/s]
eval model::  34%|███▍      | 172/500 [00:08<00:16, 20.33it/s]
eval model::  35%|███▌      | 175/500 [00:08<00:15, 20.64it/s]
eval model::  36%|███▌      | 178/500 [00:08<00:15, 21.45it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:17, 17.91it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:16, 19.60it/s]
eval model::  37%|███▋      | 187/500 [00:09<00:16, 19.03it/s]
eval model::  38%|███▊      | 190/500 [00:09<00:15, 19.38it/s]
eval model::  39%|███▊      | 193/500 [00:09<00:15, 19.88it/s]
eval model::  39%|███▉      | 196/500 [00:09<00:15, 19.26it/s]
eval model::  40%|███▉      | 199/500 [00:09<00:14, 21.01it/s]
eval model::  40%|████      | 202/500 [00:10<00:13, 22.79it/s]
eval model::  41%|████      | 205/500 [00:10<00:16, 17.84it/s]
eval model::  42%|████▏     | 208/500 [00:10<00:15, 18.54it/s]
eval model::  42%|████▏     | 211/500 [00:10<00:15, 18.76it/s]
eval model::  43%|████▎     | 213/500 [00:10<00:15, 18.40it/s]
eval model::  43%|████▎     | 215/500 [00:10<00:15, 18.12it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:17, 15.94it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:15, 18.03it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:16, 16.67it/s]
eval model::  45%|████▌     | 225/500 [00:11<00:13, 19.67it/s]
eval model::  46%|████▌     | 228/500 [00:11<00:13, 20.44it/s]
eval model::  46%|████▋     | 232/500 [00:11<00:11, 22.70it/s]
eval model::  47%|████▋     | 235/500 [00:11<00:13, 20.19it/s]
eval model::  48%|████▊     | 238/500 [00:11<00:11, 22.05it/s]
eval model::  48%|████▊     | 241/500 [00:12<00:11, 22.72it/s]
eval model::  49%|████▉     | 244/500 [00:12<00:11, 21.51it/s]
eval model::  49%|████▉     | 247/500 [00:12<00:12, 20.59it/s]
eval model::  50%|█████     | 250/500 [00:12<00:12, 19.55it/s]
eval model::  51%|█████     | 253/500 [00:12<00:11, 21.14it/s]
eval model::  51%|█████     | 256/500 [00:12<00:11, 21.36it/s]
eval model::  52%|█████▏    | 259/500 [00:12<00:11, 20.39it/s]
eval model::  52%|█████▏    | 262/500 [00:13<00:12, 19.74it/s]
eval model::  53%|█████▎    | 265/500 [00:13<00:12, 19.53it/s]
eval model::  53%|█████▎    | 267/500 [00:13<00:12, 19.30it/s]
eval model::  54%|█████▍    | 270/500 [00:13<00:10, 20.95it/s]
eval model::  55%|█████▍    | 273/500 [00:13<00:11, 20.16it/s]
eval model::  55%|█████▌    | 276/500 [00:13<00:11, 19.28it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:11, 19.45it/s]
eval model::  56%|█████▋    | 282/500 [00:14<00:10, 20.64it/s]
eval model::  57%|█████▋    | 285/500 [00:14<00:14, 14.44it/s]
eval model::  57%|█████▋    | 287/500 [00:14<00:13, 15.37it/s]
eval model::  58%|█████▊    | 291/500 [00:14<00:11, 18.79it/s]
eval model::  59%|█████▉    | 294/500 [00:14<00:10, 19.07it/s]
eval model::  59%|█████▉    | 297/500 [00:15<00:10, 19.19it/s]
eval model::  60%|██████    | 300/500 [00:15<00:10, 18.99it/s]
eval model::  61%|██████    | 303/500 [00:15<00:09, 20.51it/s]
eval model::  61%|██████    | 306/500 [00:15<00:09, 21.26it/s]
eval model::  62%|██████▏   | 309/500 [00:15<00:08, 22.22it/s]
eval model::  62%|██████▏   | 312/500 [00:15<00:08, 21.76it/s]
eval model::  63%|██████▎   | 315/500 [00:15<00:08, 21.13it/s]
eval model::  64%|██████▎   | 318/500 [00:15<00:08, 22.09it/s]
eval model::  64%|██████▍   | 321/500 [00:16<00:07, 23.14it/s]
eval model::  65%|██████▍   | 324/500 [00:16<00:08, 21.41it/s]
eval model::  65%|██████▌   | 327/500 [00:16<00:07, 22.20it/s]
eval model::  66%|██████▌   | 330/500 [00:16<00:08, 20.90it/s]
eval model::  67%|██████▋   | 333/500 [00:16<00:07, 21.07it/s]
eval model::  67%|██████▋   | 336/500 [00:16<00:08, 20.43it/s]
eval model::  68%|██████▊   | 339/500 [00:16<00:07, 21.87it/s]
eval model::  68%|██████▊   | 342/500 [00:17<00:08, 18.50it/s]
eval model::  69%|██████▉   | 345/500 [00:17<00:07, 20.55it/s]
eval model::  70%|██████▉   | 348/500 [00:17<00:07, 20.36it/s]
eval model::  70%|███████   | 351/500 [00:17<00:07, 20.12it/s]
eval model::  71%|███████   | 354/500 [00:17<00:06, 21.23it/s]
eval model::  71%|███████▏  | 357/500 [00:17<00:07, 20.10it/s]
eval model::  72%|███████▏  | 360/500 [00:18<00:07, 19.61it/s]
eval model::  73%|███████▎  | 363/500 [00:18<00:07, 19.40it/s]
eval model::  73%|███████▎  | 365/500 [00:18<00:07, 18.78it/s]
eval model::  73%|███████▎  | 367/500 [00:18<00:07, 17.52it/s]
eval model::  74%|███████▍  | 370/500 [00:18<00:06, 19.72it/s]
eval model::  75%|███████▍  | 373/500 [00:18<00:06, 20.12it/s]
eval model::  75%|███████▌  | 376/500 [00:18<00:05, 21.07it/s]
eval model::  76%|███████▌  | 379/500 [00:18<00:05, 21.68it/s]
eval model::  76%|███████▋  | 382/500 [00:19<00:05, 20.76it/s]
eval model::  77%|███████▋  | 385/500 [00:19<00:05, 19.40it/s]
eval model::  77%|███████▋  | 387/500 [00:19<00:06, 16.84it/s]
eval model::  78%|███████▊  | 390/500 [00:19<00:06, 17.89it/s]
eval model::  79%|███████▊  | 393/500 [00:19<00:05, 19.91it/s]
eval model::  79%|███████▉  | 396/500 [00:19<00:05, 20.49it/s]
eval model::  80%|███████▉  | 399/500 [00:20<00:04, 21.23it/s]
eval model::  80%|████████  | 402/500 [00:20<00:04, 20.96it/s]
eval model::  81%|████████  | 405/500 [00:20<00:04, 21.17it/s]
eval model::  82%|████████▏ | 408/500 [00:20<00:04, 20.09it/s]
eval model::  82%|████████▏ | 411/500 [00:20<00:04, 19.69it/s]
eval model::  83%|████████▎ | 413/500 [00:20<00:04, 19.17it/s]
eval model::  83%|████████▎ | 416/500 [00:20<00:04, 20.15it/s]
eval model::  84%|████████▍ | 419/500 [00:21<00:03, 20.88it/s]
eval model::  84%|████████▍ | 422/500 [00:21<00:04, 18.51it/s]
eval model::  85%|████████▌ | 425/500 [00:21<00:03, 19.21it/s]
eval model::  86%|████████▌ | 428/500 [00:21<00:03, 20.36it/s]
eval model::  86%|████████▌ | 431/500 [00:21<00:03, 20.30it/s]
eval model::  87%|████████▋ | 434/500 [00:21<00:02, 22.30it/s]
eval model::  88%|████████▊ | 438/500 [00:21<00:02, 24.14it/s]
eval model::  88%|████████▊ | 441/500 [00:22<00:02, 21.18it/s]
eval model::  89%|████████▉ | 444/500 [00:22<00:02, 23.12it/s]
eval model::  89%|████████▉ | 447/500 [00:22<00:02, 22.28it/s]
eval model::  90%|█████████ | 450/500 [00:22<00:02, 20.16it/s]
eval model::  91%|█████████ | 453/500 [00:22<00:02, 20.40it/s]
eval model::  91%|█████████ | 456/500 [00:22<00:02, 21.26it/s]
eval model::  92%|█████████▏| 459/500 [00:22<00:01, 21.24it/s]
eval model::  92%|█████████▏| 462/500 [00:23<00:02, 17.55it/s]
eval model::  93%|█████████▎| 465/500 [00:23<00:02, 17.16it/s]
eval model::  94%|█████████▎| 468/500 [00:23<00:01, 19.03it/s]
eval model::  94%|█████████▍| 471/500 [00:23<00:01, 21.26it/s]
eval model::  95%|█████████▍| 474/500 [00:23<00:01, 21.33it/s]
eval model::  95%|█████████▌| 477/500 [00:23<00:01, 21.40it/s]
eval model::  96%|█████████▌| 480/500 [00:23<00:00, 20.45it/s]
eval model::  97%|█████████▋| 483/500 [00:24<00:00, 21.03it/s]
eval model::  97%|█████████▋| 486/500 [00:24<00:00, 19.35it/s]
eval model::  98%|█████████▊| 489/500 [00:24<00:00, 20.55it/s]
eval model::  98%|█████████▊| 492/500 [00:24<00:00, 20.12it/s]
eval model::  99%|█████████▉| 495/500 [00:24<00:00, 20.33it/s]
eval model:: 100%|█████████▉| 498/500 [00:24<00:00, 21.35it/s]
eval model:: 100%|██████████| 500/500 [00:24<00:00, 20.02it/s]
[2024/08/01 18:01:58] ppocr INFO: cur metric, precision: 0.6960203217612193, recall: 0.39576311988444873, hmean: 0.5046040515653776, fps: 45.53875554706853
[2024/08/01 18:01:58] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/08/01 18:01:58] ppocr INFO: best metric, hmean: 0.5046040515653776, precision: 0.6960203217612193, recall: 0.39576311988444873, fps: 45.53875554706853, best_epoch: 100
[2024/08/01 18:01:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:01:59] ppocr INFO: best metric, hmean: 0.5046040515653776, precision: 0.6960203217612193, recall: 0.39576311988444873, fps: 45.53875554706853, best_epoch: 100
I0801 18:02:00.495970  1265 tcp_store.cc:289] receive shutdown event and so quit from MasterDaemon run loop
[2024/08/01 18:07:00] ppocr INFO: Architecture : 
[2024/08/01 18:07:00] ppocr INFO:     Backbone : 
[2024/08/01 18:07:00] ppocr INFO:         model_name : large
[2024/08/01 18:07:00] ppocr INFO:         name : MobileNetV3
[2024/08/01 18:07:00] ppocr INFO:         scale : 0.5
[2024/08/01 18:07:00] ppocr INFO:     Head : 
[2024/08/01 18:07:00] ppocr INFO:         k : 50
[2024/08/01 18:07:00] ppocr INFO:         name : DBHead
[2024/08/01 18:07:00] ppocr INFO:     Neck : 
[2024/08/01 18:07:00] ppocr INFO:         name : DBFPN
[2024/08/01 18:07:00] ppocr INFO:         out_channels : 256
[2024/08/01 18:07:00] ppocr INFO:     Transform : None
[2024/08/01 18:07:00] ppocr INFO:     algorithm : DB
[2024/08/01 18:07:00] ppocr INFO:     model_type : det
[2024/08/01 18:07:00] ppocr INFO: Eval : 
[2024/08/01 18:07:00] ppocr INFO:     dataset : 
[2024/08/01 18:07:00] ppocr INFO:         data_dir : /datasets/icdar2015/text_localization/
[2024/08/01 18:07:00] ppocr INFO:         label_file_list : ['/datasets/icdar2015/text_localization/test_icdar2015_label.txt']
[2024/08/01 18:07:00] ppocr INFO:         name : SimpleDataSet
[2024/08/01 18:07:00] ppocr INFO:         transforms : 
[2024/08/01 18:07:00] ppocr INFO:             DecodeImage : 
[2024/08/01 18:07:00] ppocr INFO:                 channel_first : False
[2024/08/01 18:07:00] ppocr INFO:                 img_mode : BGR
[2024/08/01 18:07:00] ppocr INFO:             DetLabelEncode : None
[2024/08/01 18:07:00] ppocr INFO:             DetResizeForTest : 
[2024/08/01 18:07:00] ppocr INFO:                 image_shape : [736, 1280]
[2024/08/01 18:07:00] ppocr INFO:             NormalizeImage : 
[2024/08/01 18:07:00] ppocr INFO:                 mean : [0.485, 0.456, 0.406]
[2024/08/01 18:07:00] ppocr INFO:                 order : hwc
[2024/08/01 18:07:00] ppocr INFO:                 scale : 1./255.
[2024/08/01 18:07:00] ppocr INFO:                 std : [0.229, 0.224, 0.225]
[2024/08/01 18:07:00] ppocr INFO:             ToCHWImage : None
[2024/08/01 18:07:00] ppocr INFO:             KeepKeys : 
[2024/08/01 18:07:00] ppocr INFO:                 keep_keys : ['image', 'shape', 'polys', 'ignore_tags']
[2024/08/01 18:07:00] ppocr INFO:     loader : 
[2024/08/01 18:07:00] ppocr INFO:         batch_size_per_card : 1
[2024/08/01 18:07:00] ppocr INFO:         drop_last : False
[2024/08/01 18:07:00] ppocr INFO:         num_workers : 0
[2024/08/01 18:07:00] ppocr INFO:         shuffle : False
[2024/08/01 18:07:00] ppocr INFO:         use_shared_memory : True
[2024/08/01 18:07:00] ppocr INFO: Global : 
[2024/08/01 18:07:00] ppocr INFO:     cal_metric_during_train : False
[2024/08/01 18:07:00] ppocr INFO:     checkpoints : None
[2024/08/01 18:07:00] ppocr INFO:     distributed : True
[2024/08/01 18:07:00] ppocr INFO:     epoch_num : 100
[2024/08/01 18:07:00] ppocr INFO:     eval_batch_step : [0, 60]
[2024/08/01 18:07:00] ppocr INFO:     infer_img : doc/imgs_en/img_10.jpg
[2024/08/01 18:07:00] ppocr INFO:     log_smooth_window : 20
[2024/08/01 18:07:00] ppocr INFO:     pretrained_model : ./pretrain_models/MobileNetV3_large_x0_5_pretrained
[2024/08/01 18:07:00] ppocr INFO:     print_batch_step : 10
[2024/08/01 18:07:00] ppocr INFO:     save_epoch_step : 1200
[2024/08/01 18:07:00] ppocr INFO:     save_inference_dir : None
[2024/08/01 18:07:00] ppocr INFO:     save_model_dir : ./output/db_mv3/
[2024/08/01 18:07:00] ppocr INFO:     save_res_path : ./output/det_db/predicts_db.txt
[2024/08/01 18:07:00] ppocr INFO:     use_gpu : True
[2024/08/01 18:07:00] ppocr INFO:     use_visualdl : False
[2024/08/01 18:07:00] ppocr INFO:     use_xpu : False
[2024/08/01 18:07:00] ppocr INFO: Loss : 
[2024/08/01 18:07:00] ppocr INFO:     alpha : 5
[2024/08/01 18:07:00] ppocr INFO:     balance_loss : True
[2024/08/01 18:07:00] ppocr INFO:     beta : 10
[2024/08/01 18:07:00] ppocr INFO:     main_loss_type : DiceLoss
[2024/08/01 18:07:00] ppocr INFO:     name : DBLoss
[2024/08/01 18:07:00] ppocr INFO:     ohem_ratio : 3
[2024/08/01 18:07:00] ppocr INFO: Metric : 
[2024/08/01 18:07:00] ppocr INFO:     main_indicator : hmean
[2024/08/01 18:07:00] ppocr INFO:     name : DetMetric
[2024/08/01 18:07:00] ppocr INFO: Optimizer : 
[2024/08/01 18:07:00] ppocr INFO:     beta1 : 0.9
[2024/08/01 18:07:00] ppocr INFO:     beta2 : 0.999
[2024/08/01 18:07:00] ppocr INFO:     lr : 
[2024/08/01 18:07:00] ppocr INFO:         learning_rate : 0.001
[2024/08/01 18:07:00] ppocr INFO:     name : Adam
[2024/08/01 18:07:00] ppocr INFO:     regularizer : 
[2024/08/01 18:07:00] ppocr INFO:         factor : 0
[2024/08/01 18:07:00] ppocr INFO:         name : L2
[2024/08/01 18:07:00] ppocr INFO: PostProcess : 
[2024/08/01 18:07:00] ppocr INFO:     box_thresh : 0.6
[2024/08/01 18:07:00] ppocr INFO:     max_candidates : 1000
[2024/08/01 18:07:00] ppocr INFO:     name : DBPostProcess
[2024/08/01 18:07:00] ppocr INFO:     thresh : 0.3
[2024/08/01 18:07:00] ppocr INFO:     unclip_ratio : 1.5
[2024/08/01 18:07:00] ppocr INFO: Train : 
[2024/08/01 18:07:00] ppocr INFO:     dataset : 
[2024/08/01 18:07:00] ppocr INFO:         data_dir : /datasets/icdar2015/text_localization/
[2024/08/01 18:07:00] ppocr INFO:         label_file_list : ['/datasets/icdar2015/text_localization/train_icdar2015_label.txt']
[2024/08/01 18:07:00] ppocr INFO:         name : SimpleDataSet
[2024/08/01 18:07:00] ppocr INFO:         ratio_list : [1.0]
[2024/08/01 18:07:00] ppocr INFO:         transforms : 
[2024/08/01 18:07:00] ppocr INFO:             DecodeImage : 
[2024/08/01 18:07:00] ppocr INFO:                 channel_first : False
[2024/08/01 18:07:00] ppocr INFO:                 img_mode : BGR
[2024/08/01 18:07:00] ppocr INFO:             DetLabelEncode : None
[2024/08/01 18:07:00] ppocr INFO:             IaaAugment : 
[2024/08/01 18:07:00] ppocr INFO:                 augmenter_args : 
[2024/08/01 18:07:00] ppocr INFO:                     args : 
[2024/08/01 18:07:00] ppocr INFO:                         p : 0.5
[2024/08/01 18:07:00] ppocr INFO:                     type : Fliplr
[2024/08/01 18:07:00] ppocr INFO:                     args : 
[2024/08/01 18:07:00] ppocr INFO:                         rotate : [-10, 10]
[2024/08/01 18:07:00] ppocr INFO:                     type : Affine
[2024/08/01 18:07:00] ppocr INFO:                     args : 
[2024/08/01 18:07:00] ppocr INFO:                         size : [0.5, 3]
[2024/08/01 18:07:00] ppocr INFO:                     type : Resize
[2024/08/01 18:07:00] ppocr INFO:             EastRandomCropData : 
[2024/08/01 18:07:00] ppocr INFO:                 keep_ratio : True
[2024/08/01 18:07:00] ppocr INFO:                 max_tries : 50
[2024/08/01 18:07:00] ppocr INFO:                 size : [640, 640]
[2024/08/01 18:07:00] ppocr INFO:             MakeBorderMap : 
[2024/08/01 18:07:00] ppocr INFO:                 shrink_ratio : 0.4
[2024/08/01 18:07:00] ppocr INFO:                 thresh_max : 0.7
[2024/08/01 18:07:00] ppocr INFO:                 thresh_min : 0.3
[2024/08/01 18:07:00] ppocr INFO:             MakeShrinkMap : 
[2024/08/01 18:07:00] ppocr INFO:                 min_text_size : 8
[2024/08/01 18:07:00] ppocr INFO:                 shrink_ratio : 0.4
[2024/08/01 18:07:00] ppocr INFO:             NormalizeImage : 
[2024/08/01 18:07:00] ppocr INFO:                 mean : [0.485, 0.456, 0.406]
[2024/08/01 18:07:00] ppocr INFO:                 order : hwc
[2024/08/01 18:07:00] ppocr INFO:                 scale : 1./255.
[2024/08/01 18:07:00] ppocr INFO:                 std : [0.229, 0.224, 0.225]
[2024/08/01 18:07:00] ppocr INFO:             ToCHWImage : None
[2024/08/01 18:07:00] ppocr INFO:             KeepKeys : 
[2024/08/01 18:07:00] ppocr INFO:                 keep_keys : ['image', 'threshold_map', 'threshold_mask', 'shrink_map', 'shrink_mask']
[2024/08/01 18:07:00] ppocr INFO:     loader : 
[2024/08/01 18:07:00] ppocr INFO:         batch_size_per_card : 48
[2024/08/01 18:07:00] ppocr INFO:         drop_last : False
[2024/08/01 18:07:00] ppocr INFO:         num_workers : 8
[2024/08/01 18:07:00] ppocr INFO:         shuffle : True
[2024/08/01 18:07:00] ppocr INFO:         use_shared_memory : True
[2024/08/01 18:07:00] ppocr INFO: profiler_options : None
[2024/08/01 18:07:00] ppocr INFO: train with paddle 2.5.2 and device Place(gpu:0)
======================= Modified FLAGS detected =======================
FLAGS(name='FLAGS_cudnn_batchnorm_spatial_persistent', current_value=True, default_value=False)
FLAGS(name='FLAGS_selected_gpus', current_value='0', default_value='')
=======================================================================
I0801 18:07:00.283231 56552 tcp_utils.cc:181] The server starts to listen on IP_ANY:52943
I0801 18:07:00.283504 56552 tcp_utils.cc:130] Successfully connected to 10.8.145.246:52943
I0801 18:07:00.458562 56552 process_group_nccl.cc:120] ProcessGroupNCCL pg_timeout_ 1800000
[2024/08/01 18:07:00] ppocr INFO: Initialize indexs of datasets:['/datasets/icdar2015/text_localization/train_icdar2015_label.txt']
[2024/08/01 18:07:00] ppocr INFO: Initialize indexs of datasets:['/datasets/icdar2015/text_localization/test_icdar2015_label.txt']
W0801 18:07:00.478045 56552 gpu_resources.cc:119] Please NOTE: device: 0, GPU Compute Capability: 90.2, Driver API Version: 50724.2, Runtime API Version: 50724.2
[2024/08/01 18:07:02] ppocr INFO: load pretrain successful from ./pretrain_models/MobileNetV3_large_x0_5_pretrained
[2024/08/01 18:07:02] ppocr INFO: train dataloader has 3 iters
[2024/08/01 18:07:02] ppocr INFO: valid dataloader has 500 iters
[2024/08/01 18:07:02] ppocr INFO: During the training process, after the 0th iteration, an evaluation is run every 60 iterations
[2024/08/01 18:07:25] ppocr INFO: epoch: [1/100], global_step: 3, lr: 0.001000, loss: 9.319155, loss_shrink_maps: 4.899740, loss_threshold_maps: 3.451636, loss_binary_maps: 0.981405, avg_reader_cost: 6.10113 s, avg_batch_cost: 6.68934 s, avg_samples: 12.5, ips: 1.86865 samples/s, eta: 1:50:22
[2024/08/01 18:07:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:07:34] ppocr INFO: epoch: [2/100], global_step: 6, lr: 0.001000, loss: 8.332724, loss_shrink_maps: 4.877676, loss_threshold_maps: 2.467809, loss_binary_maps: 0.979844, avg_reader_cost: 2.26724 s, avg_batch_cost: 2.52311 s, avg_samples: 12.5, ips: 4.95421 samples/s, eta: 1:15:14
[2024/08/01 18:07:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:07:44] ppocr INFO: epoch: [3/100], global_step: 9, lr: 0.001000, loss: 7.521289, loss_shrink_maps: 4.860794, loss_threshold_maps: 1.710161, loss_binary_maps: 0.975838, avg_reader_cost: 2.21482 s, avg_batch_cost: 2.46357 s, avg_samples: 12.5, ips: 5.07394 samples/s, eta: 1:02:55
[2024/08/01 18:07:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:07:52] ppocr INFO: epoch: [4/100], global_step: 10, lr: 0.001000, loss: 7.379552, loss_shrink_maps: 4.856158, loss_threshold_maps: 1.565985, loss_binary_maps: 0.974600, avg_reader_cost: 0.68268 s, avg_batch_cost: 0.76209 s, avg_samples: 4.8, ips: 6.29848 samples/s, eta: 1:00:07
[2024/08/01 18:07:53] ppocr INFO: epoch: [4/100], global_step: 12, lr: 0.001000, loss: 7.174122, loss_shrink_maps: 4.847276, loss_threshold_maps: 1.347803, loss_binary_maps: 0.973331, avg_reader_cost: 1.61186 s, avg_batch_cost: 1.75142 s, avg_samples: 7.7, ips: 4.39643 samples/s, eta: 0:56:45
[2024/08/01 18:07:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:08:02] ppocr INFO: epoch: [5/100], global_step: 15, lr: 0.001000, loss: 7.061536, loss_shrink_maps: 4.837828, loss_threshold_maps: 1.236652, loss_binary_maps: 0.972976, avg_reader_cost: 2.21306 s, avg_batch_cost: 2.44836 s, avg_samples: 12.5, ips: 5.10546 samples/s, eta: 0:52:41
[2024/08/01 18:08:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:08:12] ppocr INFO: epoch: [6/100], global_step: 18, lr: 0.001000, loss: 6.925946, loss_shrink_maps: 4.800682, loss_threshold_maps: 1.189876, loss_binary_maps: 0.959426, avg_reader_cost: 2.23025 s, avg_batch_cost: 2.45482 s, avg_samples: 12.5, ips: 5.09203 samples/s, eta: 0:49:51
[2024/08/01 18:08:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:08:21] ppocr INFO: epoch: [7/100], global_step: 20, lr: 0.001000, loss: 6.907336, loss_shrink_maps: 4.775160, loss_threshold_maps: 1.184062, loss_binary_maps: 0.955531, avg_reader_cost: 1.42889 s, avg_batch_cost: 1.60719 s, avg_samples: 9.6, ips: 5.97315 samples/s, eta: 0:48:17
[2024/08/01 18:08:21] ppocr INFO: epoch: [7/100], global_step: 21, lr: 0.001000, loss: 6.887038, loss_shrink_maps: 4.748492, loss_threshold_maps: 1.173221, loss_binary_maps: 0.950754, avg_reader_cost: 0.84759 s, avg_batch_cost: 0.90000 s, avg_samples: 2.9, ips: 3.22223 samples/s, eta: 0:47:49
[2024/08/01 18:08:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:08:31] ppocr INFO: epoch: [8/100], global_step: 24, lr: 0.001000, loss: 6.773968, loss_shrink_maps: 4.683812, loss_threshold_maps: 1.154004, loss_binary_maps: 0.936151, avg_reader_cost: 2.28120 s, avg_batch_cost: 2.49978 s, avg_samples: 12.5, ips: 5.00044 samples/s, eta: 0:46:11
[2024/08/01 18:08:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:08:40] ppocr INFO: epoch: [9/100], global_step: 27, lr: 0.001000, loss: 6.688998, loss_shrink_maps: 4.630290, loss_threshold_maps: 1.137088, loss_binary_maps: 0.914798, avg_reader_cost: 2.20073 s, avg_batch_cost: 2.44471 s, avg_samples: 12.5, ips: 5.11308 samples/s, eta: 0:44:43
[2024/08/01 18:08:41] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:08:50] ppocr INFO: epoch: [10/100], global_step: 30, lr: 0.001000, loss: 6.464184, loss_shrink_maps: 4.513919, loss_threshold_maps: 1.092908, loss_binary_maps: 0.861604, avg_reader_cost: 2.27593 s, avg_batch_cost: 2.49484 s, avg_samples: 12.5, ips: 5.01034 samples/s, eta: 0:43:33
[2024/08/01 18:08:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:08:59] ppocr INFO: epoch: [11/100], global_step: 33, lr: 0.001000, loss: 6.322528, loss_shrink_maps: 4.452516, loss_threshold_maps: 1.071697, loss_binary_maps: 0.812396, avg_reader_cost: 2.29441 s, avg_batch_cost: 2.51257 s, avg_samples: 12.5, ips: 4.97499 samples/s, eta: 0:42:32
[2024/08/01 18:09:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:09:09] ppocr INFO: epoch: [12/100], global_step: 36, lr: 0.001000, loss: 5.937388, loss_shrink_maps: 4.198843, loss_threshold_maps: 1.034713, loss_binary_maps: 0.712659, avg_reader_cost: 2.25990 s, avg_batch_cost: 2.47828 s, avg_samples: 12.5, ips: 5.04383 samples/s, eta: 0:41:35
[2024/08/01 18:09:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:09:19] ppocr INFO: epoch: [13/100], global_step: 39, lr: 0.001000, loss: 5.627670, loss_shrink_maps: 3.974698, loss_threshold_maps: 0.993390, loss_binary_maps: 0.661709, avg_reader_cost: 2.19511 s, avg_batch_cost: 2.44274 s, avg_samples: 12.5, ips: 5.11721 samples/s, eta: 0:40:40
[2024/08/01 18:09:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:09:27] ppocr INFO: epoch: [14/100], global_step: 40, lr: 0.001000, loss: 5.550260, loss_shrink_maps: 3.921918, loss_threshold_maps: 0.980019, loss_binary_maps: 0.659352, avg_reader_cost: 0.63319 s, avg_batch_cost: 0.75249 s, avg_samples: 4.8, ips: 6.37886 samples/s, eta: 0:40:19
[2024/08/01 18:09:28] ppocr INFO: epoch: [14/100], global_step: 42, lr: 0.001000, loss: 5.418478, loss_shrink_maps: 3.830371, loss_threshold_maps: 0.958994, loss_binary_maps: 0.638701, avg_reader_cost: 1.59311 s, avg_batch_cost: 1.73278 s, avg_samples: 7.7, ips: 4.44372 samples/s, eta: 0:39:53
[2024/08/01 18:09:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:09:38] ppocr INFO: epoch: [15/100], global_step: 45, lr: 0.001000, loss: 5.275356, loss_shrink_maps: 3.712080, loss_threshold_maps: 0.940202, loss_binary_maps: 0.614714, avg_reader_cost: 2.25940 s, avg_batch_cost: 2.49857 s, avg_samples: 12.5, ips: 5.00286 samples/s, eta: 0:39:09
[2024/08/01 18:09:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:09:47] ppocr INFO: epoch: [16/100], global_step: 48, lr: 0.001000, loss: 4.997416, loss_shrink_maps: 3.541642, loss_threshold_maps: 0.918881, loss_binary_maps: 0.565535, avg_reader_cost: 2.22774 s, avg_batch_cost: 2.44643 s, avg_samples: 12.5, ips: 5.10950 samples/s, eta: 0:38:24
[2024/08/01 18:09:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:09:56] ppocr INFO: epoch: [17/100], global_step: 50, lr: 0.001000, loss: 4.698238, loss_shrink_maps: 3.302198, loss_threshold_maps: 0.915165, loss_binary_maps: 0.504008, avg_reader_cost: 1.47197 s, avg_batch_cost: 1.64278 s, avg_samples: 9.6, ips: 5.84375 samples/s, eta: 0:37:57
[2024/08/01 18:09:57] ppocr INFO: epoch: [17/100], global_step: 51, lr: 0.001000, loss: 4.656272, loss_shrink_maps: 3.259141, loss_threshold_maps: 0.915165, loss_binary_maps: 0.490616, avg_reader_cost: 0.86545 s, avg_batch_cost: 0.91739 s, avg_samples: 2.9, ips: 3.16114 samples/s, eta: 0:37:48
[2024/08/01 18:09:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:10:07] ppocr INFO: epoch: [18/100], global_step: 54, lr: 0.001000, loss: 4.445184, loss_shrink_maps: 3.062072, loss_threshold_maps: 0.906554, loss_binary_maps: 0.465108, avg_reader_cost: 2.21975 s, avg_batch_cost: 2.50468 s, avg_samples: 12.5, ips: 4.99066 samples/s, eta: 0:37:10
[2024/08/01 18:10:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:10:16] ppocr INFO: epoch: [19/100], global_step: 57, lr: 0.001000, loss: 4.203848, loss_shrink_maps: 2.862726, loss_threshold_maps: 0.899126, loss_binary_maps: 0.433693, avg_reader_cost: 2.18575 s, avg_batch_cost: 2.40873 s, avg_samples: 12.5, ips: 5.18945 samples/s, eta: 0:36:30
[2024/08/01 18:10:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:10:25] ppocr INFO: epoch: [20/100], global_step: 60, lr: 0.001000, loss: 4.005039, loss_shrink_maps: 2.711213, loss_threshold_maps: 0.890855, loss_binary_maps: 0.404532, avg_reader_cost: 2.19109 s, avg_batch_cost: 2.41133 s, avg_samples: 12.5, ips: 5.18385 samples/s, eta: 0:35:51

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:51,  9.69it/s]
eval model::   1%|          | 4/500 [00:00<00:26, 18.71it/s]
eval model::   1%|▏         | 7/500 [00:00<00:23, 21.13it/s]
eval model::   2%|▏         | 10/500 [00:00<00:20, 23.45it/s]
eval model::   3%|▎         | 13/500 [00:00<00:21, 22.42it/s]
eval model::   3%|▎         | 16/500 [00:00<00:20, 23.98it/s]
eval model::   4%|▍         | 19/500 [00:00<00:22, 21.62it/s]
eval model::   4%|▍         | 22/500 [00:01<00:21, 22.25it/s]
eval model::   5%|▌         | 25/500 [00:01<00:22, 20.98it/s]
eval model::   6%|▌         | 28/500 [00:01<00:23, 20.14it/s]
eval model::   6%|▌         | 31/500 [00:01<00:29, 16.05it/s]
eval model::   7%|▋         | 34/500 [00:01<00:26, 17.83it/s]
eval model::   7%|▋         | 37/500 [00:01<00:23, 19.51it/s]
eval model::   8%|▊         | 40/500 [00:02<00:23, 19.20it/s]
eval model::   9%|▊         | 43/500 [00:02<00:24, 19.00it/s]
eval model::   9%|▉         | 46/500 [00:02<00:24, 18.74it/s]
eval model::  10%|▉         | 49/500 [00:02<00:22, 20.20it/s]
eval model::  10%|█         | 52/500 [00:02<00:21, 20.85it/s]
eval model::  11%|█         | 55/500 [00:02<00:21, 20.60it/s]
eval model::  12%|█▏        | 58/500 [00:02<00:21, 20.26it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:24, 17.78it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:24, 17.75it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:22, 19.06it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:21, 20.21it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:20, 21.16it/s]
eval model::  15%|█▌        | 75/500 [00:03<00:19, 21.49it/s]
eval model::  16%|█▌        | 78/500 [00:03<00:18, 22.49it/s]
eval model::  16%|█▌        | 81/500 [00:03<00:17, 23.63it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:18, 22.12it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:18, 22.35it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:18, 22.33it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:17, 22.69it/s]
eval model::  19%|█▉        | 96/500 [00:04<00:18, 21.54it/s]
eval model::  20%|█▉        | 99/500 [00:04<00:20, 20.04it/s]
eval model::  20%|██        | 102/500 [00:04<00:19, 20.61it/s]
eval model::  21%|██        | 105/500 [00:05<00:17, 22.09it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:19, 20.17it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:20, 18.99it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:18, 20.67it/s]
eval model::  23%|██▎       | 117/500 [00:05<00:18, 20.80it/s]
eval model::  24%|██▍       | 120/500 [00:05<00:19, 19.61it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:17, 21.25it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:18, 20.71it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:17, 21.15it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:17, 20.77it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:17, 20.86it/s]
eval model::  28%|██▊       | 138/500 [00:06<00:17, 21.16it/s]
eval model::  28%|██▊       | 141/500 [00:06<00:18, 19.92it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:17, 20.02it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:17, 20.32it/s]
eval model::  30%|███       | 150/500 [00:07<00:17, 19.88it/s]
eval model::  31%|███       | 153/500 [00:07<00:18, 19.07it/s]
eval model::  31%|███       | 156/500 [00:07<00:17, 19.93it/s]
eval model::  32%|███▏      | 159/500 [00:07<00:16, 20.53it/s]
eval model::  32%|███▏      | 162/500 [00:07<00:16, 20.05it/s]
eval model::  33%|███▎      | 165/500 [00:08<00:15, 21.65it/s]
eval model::  34%|███▎      | 168/500 [00:08<00:16, 19.61it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:17, 18.69it/s]
eval model::  35%|███▍      | 174/500 [00:08<00:17, 18.28it/s]
eval model::  35%|███▌      | 177/500 [00:08<00:16, 19.84it/s]
eval model::  36%|███▌      | 180/500 [00:08<00:16, 19.29it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:15, 21.00it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:14, 21.40it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:14, 21.05it/s]
eval model::  38%|███▊      | 192/500 [00:09<00:15, 20.49it/s]
eval model::  39%|███▉      | 195/500 [00:09<00:19, 15.70it/s]
eval model::  40%|███▉      | 198/500 [00:09<00:16, 18.00it/s]
eval model::  40%|████      | 201/500 [00:10<00:16, 18.18it/s]
eval model::  41%|████      | 204/500 [00:10<00:15, 19.22it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:19, 14.99it/s]
eval model::  42%|████▏     | 209/500 [00:10<00:19, 15.14it/s]
eval model::  42%|████▏     | 212/500 [00:10<00:17, 16.85it/s]
eval model::  43%|████▎     | 215/500 [00:10<00:17, 16.12it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:18, 15.55it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:15, 18.21it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:15, 17.97it/s]
eval model::  45%|████▌     | 225/500 [00:11<00:13, 20.22it/s]
eval model::  46%|████▌     | 228/500 [00:11<00:12, 21.84it/s]
eval model::  46%|████▋     | 232/500 [00:11<00:10, 24.88it/s]
eval model::  47%|████▋     | 235/500 [00:11<00:10, 24.28it/s]
eval model::  48%|████▊     | 238/500 [00:11<00:11, 23.59it/s]
eval model::  48%|████▊     | 241/500 [00:12<00:12, 21.23it/s]
eval model::  49%|████▉     | 244/500 [00:12<00:11, 21.66it/s]
eval model::  49%|████▉     | 247/500 [00:12<00:11, 22.49it/s]
eval model::  50%|█████     | 250/500 [00:12<00:11, 21.90it/s]
eval model::  51%|█████     | 253/500 [00:12<00:11, 21.77it/s]
eval model::  51%|█████     | 256/500 [00:12<00:12, 20.07it/s]
eval model::  52%|█████▏    | 259/500 [00:12<00:11, 21.11it/s]
eval model::  52%|█████▏    | 262/500 [00:13<00:11, 20.62it/s]
eval model::  53%|█████▎    | 265/500 [00:13<00:11, 20.96it/s]
eval model::  54%|█████▎    | 268/500 [00:13<00:10, 21.42it/s]
eval model::  54%|█████▍    | 271/500 [00:13<00:10, 21.29it/s]
eval model::  55%|█████▍    | 274/500 [00:13<00:10, 21.27it/s]
eval model::  55%|█████▌    | 277/500 [00:13<00:10, 20.29it/s]
eval model::  56%|█████▌    | 280/500 [00:13<00:10, 20.04it/s]
eval model::  57%|█████▋    | 283/500 [00:14<00:10, 20.25it/s]
eval model::  57%|█████▋    | 286/500 [00:14<00:12, 16.53it/s]
eval model::  58%|█████▊    | 290/500 [00:14<00:10, 19.80it/s]
eval model::  59%|█████▊    | 293/500 [00:14<00:09, 20.84it/s]
eval model::  59%|█████▉    | 296/500 [00:14<00:09, 21.12it/s]
eval model::  60%|█████▉    | 299/500 [00:14<00:08, 23.01it/s]
eval model::  60%|██████    | 302/500 [00:15<00:10, 19.54it/s]
eval model::  61%|██████    | 305/500 [00:15<00:09, 21.00it/s]
eval model::  62%|██████▏   | 308/500 [00:15<00:08, 21.49it/s]
eval model::  62%|██████▏   | 311/500 [00:15<00:08, 22.73it/s]
eval model::  63%|██████▎   | 314/500 [00:15<00:08, 21.21it/s]
eval model::  63%|██████▎   | 317/500 [00:15<00:08, 20.89it/s]
eval model::  64%|██████▍   | 320/500 [00:15<00:08, 20.32it/s]
eval model::  65%|██████▍   | 323/500 [00:16<00:08, 20.54it/s]
eval model::  65%|██████▌   | 326/500 [00:16<00:08, 20.18it/s]
eval model::  66%|██████▌   | 329/500 [00:16<00:08, 19.72it/s]
eval model::  66%|██████▋   | 332/500 [00:16<00:08, 19.91it/s]
eval model::  67%|██████▋   | 335/500 [00:16<00:07, 20.89it/s]
eval model::  68%|██████▊   | 338/500 [00:16<00:07, 20.81it/s]
eval model::  68%|██████▊   | 341/500 [00:16<00:08, 18.84it/s]
eval model::  69%|██████▉   | 344/500 [00:17<00:07, 20.86it/s]
eval model::  69%|██████▉   | 347/500 [00:17<00:07, 19.65it/s]
eval model::  70%|███████   | 350/500 [00:17<00:07, 19.91it/s]
eval model::  71%|███████   | 353/500 [00:17<00:06, 21.50it/s]
eval model::  71%|███████   | 356/500 [00:17<00:07, 20.30it/s]
eval model::  72%|███████▏  | 359/500 [00:17<00:06, 20.83it/s]
eval model::  72%|███████▏  | 362/500 [00:17<00:07, 19.01it/s]
eval model::  73%|███████▎  | 364/500 [00:18<00:07, 18.45it/s]
eval model::  73%|███████▎  | 366/500 [00:18<00:07, 18.54it/s]
eval model::  74%|███████▍  | 369/500 [00:18<00:06, 20.57it/s]
eval model::  74%|███████▍  | 372/500 [00:18<00:05, 21.60it/s]
eval model::  75%|███████▌  | 375/500 [00:18<00:05, 21.31it/s]
eval model::  76%|███████▌  | 378/500 [00:18<00:05, 22.04it/s]
eval model::  76%|███████▌  | 381/500 [00:18<00:05, 21.49it/s]
eval model::  77%|███████▋  | 384/500 [00:19<00:05, 21.74it/s]
eval model::  77%|███████▋  | 387/500 [00:19<00:06, 17.29it/s]
eval model::  78%|███████▊  | 390/500 [00:19<00:05, 18.45it/s]
eval model::  79%|███████▊  | 393/500 [00:19<00:05, 20.43it/s]
eval model::  79%|███████▉  | 396/500 [00:19<00:04, 21.71it/s]
eval model::  80%|███████▉  | 399/500 [00:19<00:04, 20.48it/s]
eval model::  80%|████████  | 402/500 [00:19<00:04, 21.77it/s]
eval model::  81%|████████  | 405/500 [00:20<00:04, 20.65it/s]
eval model::  82%|████████▏ | 408/500 [00:20<00:04, 20.58it/s]
eval model::  82%|████████▏ | 411/500 [00:20<00:04, 20.83it/s]
eval model::  83%|████████▎ | 414/500 [00:20<00:04, 21.18it/s]
eval model::  83%|████████▎ | 417/500 [00:20<00:03, 20.88it/s]
eval model::  84%|████████▍ | 420/500 [00:20<00:04, 18.53it/s]
eval model::  85%|████████▍ | 423/500 [00:20<00:03, 20.27it/s]
eval model::  85%|████████▌ | 426/500 [00:21<00:03, 20.56it/s]
eval model::  86%|████████▌ | 429/500 [00:21<00:03, 22.60it/s]
eval model::  86%|████████▋ | 432/500 [00:21<00:03, 21.77it/s]
eval model::  87%|████████▋ | 435/500 [00:21<00:03, 20.53it/s]
eval model::  88%|████████▊ | 438/500 [00:21<00:03, 19.68it/s]
eval model::  88%|████████▊ | 441/500 [00:21<00:03, 19.15it/s]
eval model::  89%|████████▉ | 444/500 [00:21<00:02, 20.36it/s]
eval model::  89%|████████▉ | 447/500 [00:22<00:02, 20.44it/s]
eval model::  90%|█████████ | 450/500 [00:22<00:02, 20.56it/s]
eval model::  91%|█████████ | 453/500 [00:22<00:02, 22.17it/s]
eval model::  91%|█████████ | 456/500 [00:22<00:02, 19.75it/s]
eval model::  92%|█████████▏| 459/500 [00:22<00:01, 21.39it/s]
eval model::  92%|█████████▏| 462/500 [00:22<00:01, 19.66it/s]
eval model::  93%|█████████▎| 465/500 [00:23<00:01, 18.70it/s]
eval model::  94%|█████████▎| 468/500 [00:23<00:01, 20.15it/s]
eval model::  94%|█████████▍| 471/500 [00:23<00:01, 19.90it/s]
eval model::  95%|█████████▍| 474/500 [00:23<00:01, 19.60it/s]
eval model::  95%|█████████▌| 477/500 [00:23<00:01, 21.07it/s]
eval model::  96%|█████████▌| 480/500 [00:23<00:00, 21.38it/s]
eval model::  97%|█████████▋| 483/500 [00:23<00:00, 22.26it/s]
eval model::  97%|█████████▋| 486/500 [00:24<00:00, 20.24it/s]
eval model::  98%|█████████▊| 489/500 [00:24<00:00, 20.68it/s]
eval model::  98%|█████████▊| 492/500 [00:24<00:00, 20.40it/s]
eval model::  99%|█████████▉| 495/500 [00:24<00:00, 22.03it/s]
eval model:: 100%|█████████▉| 498/500 [00:24<00:00, 23.27it/s]
eval model:: 100%|██████████| 500/500 [00:24<00:00, 20.29it/s]
[2024/08/01 18:10:50] ppocr INFO: cur metric, precision: 0.4179456906729634, recall: 0.17043813192103996, hmean: 0.2421340629274966, fps: 45.45248943360398
[2024/08/01 18:10:50] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/08/01 18:10:50] ppocr INFO: best metric, hmean: 0.2421340629274966, precision: 0.4179456906729634, recall: 0.17043813192103996, fps: 45.45248943360398, best_epoch: 20
[2024/08/01 18:10:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:10:57] ppocr INFO: epoch: [21/100], global_step: 63, lr: 0.001000, loss: 3.829799, loss_shrink_maps: 2.541937, loss_threshold_maps: 0.890855, loss_binary_maps: 0.388472, avg_reader_cost: 1.59575 s, avg_batch_cost: 1.83023 s, avg_samples: 12.5, ips: 6.82976 samples/s, eta: 0:34:52
[2024/08/01 18:10:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:11:05] ppocr INFO: epoch: [22/100], global_step: 66, lr: 0.001000, loss: 3.769218, loss_shrink_maps: 2.493932, loss_threshold_maps: 0.884827, loss_binary_maps: 0.375897, avg_reader_cost: 1.65156 s, avg_batch_cost: 1.87028 s, avg_samples: 12.5, ips: 6.68351 samples/s, eta: 0:33:58
[2024/08/01 18:11:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:11:12] ppocr INFO: epoch: [23/100], global_step: 69, lr: 0.001000, loss: 3.636390, loss_shrink_maps: 2.402104, loss_threshold_maps: 0.880204, loss_binary_maps: 0.364194, avg_reader_cost: 1.52578 s, avg_batch_cost: 1.74805 s, avg_samples: 12.5, ips: 7.15083 samples/s, eta: 0:33:03
[2024/08/01 18:11:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:11:18] ppocr INFO: epoch: [24/100], global_step: 70, lr: 0.001000, loss: 3.622468, loss_shrink_maps: 2.377219, loss_threshold_maps: 0.879671, loss_binary_maps: 0.364194, avg_reader_cost: 0.40074 s, avg_batch_cost: 0.53145 s, avg_samples: 4.8, ips: 9.03184 samples/s, eta: 0:32:43
[2024/08/01 18:11:19] ppocr INFO: epoch: [24/100], global_step: 72, lr: 0.001000, loss: 3.615411, loss_shrink_maps: 2.356580, loss_threshold_maps: 0.876690, loss_binary_maps: 0.359758, avg_reader_cost: 1.15124 s, avg_batch_cost: 1.29153 s, avg_samples: 7.7, ips: 5.96193 samples/s, eta: 0:32:13
[2024/08/01 18:11:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:11:26] ppocr INFO: epoch: [25/100], global_step: 75, lr: 0.001000, loss: 3.488573, loss_shrink_maps: 2.263069, loss_threshold_maps: 0.873825, loss_binary_maps: 0.353313, avg_reader_cost: 1.51339 s, avg_batch_cost: 1.74050 s, avg_samples: 12.5, ips: 7.18183 samples/s, eta: 0:31:24
[2024/08/01 18:11:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:11:33] ppocr INFO: epoch: [26/100], global_step: 78, lr: 0.001000, loss: 3.408530, loss_shrink_maps: 2.200586, loss_threshold_maps: 0.870379, loss_binary_maps: 0.353313, avg_reader_cost: 1.58956 s, avg_batch_cost: 1.85546 s, avg_samples: 12.5, ips: 6.73689 samples/s, eta: 0:30:40
[2024/08/01 18:11:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:11:40] ppocr INFO: epoch: [27/100], global_step: 80, lr: 0.001000, loss: 3.288457, loss_shrink_maps: 2.133621, loss_threshold_maps: 0.849082, loss_binary_maps: 0.346378, avg_reader_cost: 0.91685 s, avg_batch_cost: 1.10424 s, avg_samples: 9.6, ips: 8.69378 samples/s, eta: 0:30:08
[2024/08/01 18:11:40] ppocr INFO: epoch: [27/100], global_step: 81, lr: 0.001000, loss: 3.279466, loss_shrink_maps: 2.106056, loss_threshold_maps: 0.843153, loss_binary_maps: 0.344593, avg_reader_cost: 0.59589 s, avg_batch_cost: 0.64822 s, avg_samples: 2.9, ips: 4.47381 samples/s, eta: 0:29:55
[2024/08/01 18:11:41] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:11:48] ppocr INFO: epoch: [28/100], global_step: 84, lr: 0.001000, loss: 3.279466, loss_shrink_maps: 2.106056, loss_threshold_maps: 0.841953, loss_binary_maps: 0.346378, avg_reader_cost: 1.52591 s, avg_batch_cost: 1.74529 s, avg_samples: 12.5, ips: 7.16211 samples/s, eta: 0:29:12
[2024/08/01 18:11:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:11:55] ppocr INFO: epoch: [29/100], global_step: 87, lr: 0.001000, loss: 3.262260, loss_shrink_maps: 2.055298, loss_threshold_maps: 0.838604, loss_binary_maps: 0.347711, avg_reader_cost: 1.50188 s, avg_batch_cost: 1.74584 s, avg_samples: 12.5, ips: 7.15987 samples/s, eta: 0:28:31
[2024/08/01 18:11:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:12:02] ppocr INFO: epoch: [30/100], global_step: 90, lr: 0.001000, loss: 3.242962, loss_shrink_maps: 2.032418, loss_threshold_maps: 0.834203, loss_binary_maps: 0.344530, avg_reader_cost: 1.51809 s, avg_batch_cost: 1.73633 s, avg_samples: 12.5, ips: 7.19911 samples/s, eta: 0:27:51
[2024/08/01 18:12:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:12:09] ppocr INFO: epoch: [31/100], global_step: 93, lr: 0.001000, loss: 3.215829, loss_shrink_maps: 2.027420, loss_threshold_maps: 0.836226, loss_binary_maps: 0.344530, avg_reader_cost: 1.51349 s, avg_batch_cost: 1.74046 s, avg_samples: 12.5, ips: 7.18200 samples/s, eta: 0:27:13
[2024/08/01 18:12:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:12:16] ppocr INFO: epoch: [32/100], global_step: 96, lr: 0.001000, loss: 3.167145, loss_shrink_maps: 2.012302, loss_threshold_maps: 0.834203, loss_binary_maps: 0.337574, avg_reader_cost: 1.47428 s, avg_batch_cost: 1.71075 s, avg_samples: 12.5, ips: 7.30672 samples/s, eta: 0:26:35
[2024/08/01 18:12:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:12:23] ppocr INFO: epoch: [33/100], global_step: 99, lr: 0.001000, loss: 3.070911, loss_shrink_maps: 1.922182, loss_threshold_maps: 0.832685, loss_binary_maps: 0.330089, avg_reader_cost: 1.51068 s, avg_batch_cost: 1.75497 s, avg_samples: 12.5, ips: 7.12261 samples/s, eta: 0:26:00
[2024/08/01 18:12:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:12:28] ppocr INFO: epoch: [34/100], global_step: 100, lr: 0.001000, loss: 2.995045, loss_shrink_maps: 1.861519, loss_threshold_maps: 0.832685, loss_binary_maps: 0.324620, avg_reader_cost: 0.41610 s, avg_batch_cost: 0.49482 s, avg_samples: 4.8, ips: 9.70044 samples/s, eta: 0:25:46
[2024/08/01 18:12:30] ppocr INFO: epoch: [34/100], global_step: 102, lr: 0.001000, loss: 2.958931, loss_shrink_maps: 1.814372, loss_threshold_maps: 0.828377, loss_binary_maps: 0.315420, avg_reader_cost: 1.07755 s, avg_batch_cost: 1.21761 s, avg_samples: 7.7, ips: 6.32388 samples/s, eta: 0:25:24
[2024/08/01 18:12:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:12:37] ppocr INFO: epoch: [35/100], global_step: 105, lr: 0.001000, loss: 2.897898, loss_shrink_maps: 1.774559, loss_threshold_maps: 0.821562, loss_binary_maps: 0.310094, avg_reader_cost: 1.49770 s, avg_batch_cost: 1.71676 s, avg_samples: 12.5, ips: 7.28115 samples/s, eta: 0:24:50
[2024/08/01 18:12:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:12:44] ppocr INFO: epoch: [36/100], global_step: 108, lr: 0.001000, loss: 2.897898, loss_shrink_maps: 1.774559, loss_threshold_maps: 0.816544, loss_binary_maps: 0.310094, avg_reader_cost: 1.50742 s, avg_batch_cost: 1.75372 s, avg_samples: 12.5, ips: 7.12770 samples/s, eta: 0:24:18
[2024/08/01 18:12:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:12:51] ppocr INFO: epoch: [37/100], global_step: 110, lr: 0.001000, loss: 2.913584, loss_shrink_maps: 1.780070, loss_threshold_maps: 0.816544, loss_binary_maps: 0.313497, avg_reader_cost: 0.97004 s, avg_batch_cost: 1.16818 s, avg_samples: 9.6, ips: 8.21790 samples/s, eta: 0:23:56
[2024/08/01 18:12:51] ppocr INFO: epoch: [37/100], global_step: 111, lr: 0.001000, loss: 2.913584, loss_shrink_maps: 1.780070, loss_threshold_maps: 0.816544, loss_binary_maps: 0.313497, avg_reader_cost: 0.62913 s, avg_batch_cost: 0.68098 s, avg_samples: 2.9, ips: 4.25859 samples/s, eta: 0:23:48
[2024/08/01 18:12:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:12:58] ppocr INFO: epoch: [38/100], global_step: 114, lr: 0.001000, loss: 2.897898, loss_shrink_maps: 1.774559, loss_threshold_maps: 0.809191, loss_binary_maps: 0.313497, avg_reader_cost: 1.49643 s, avg_batch_cost: 1.71933 s, avg_samples: 12.5, ips: 7.27027 samples/s, eta: 0:23:16
[2024/08/01 18:12:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:13:06] ppocr INFO: epoch: [39/100], global_step: 117, lr: 0.001000, loss: 2.800212, loss_shrink_maps: 1.705390, loss_threshold_maps: 0.800356, loss_binary_maps: 0.302835, avg_reader_cost: 1.67465 s, avg_batch_cost: 1.89318 s, avg_samples: 12.5, ips: 6.60265 samples/s, eta: 0:22:48
[2024/08/01 18:13:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:13:13] ppocr INFO: epoch: [40/100], global_step: 120, lr: 0.001000, loss: 2.744326, loss_shrink_maps: 1.654782, loss_threshold_maps: 0.798770, loss_binary_maps: 0.296375, avg_reader_cost: 1.58496 s, avg_batch_cost: 1.87221 s, avg_samples: 12.5, ips: 6.67660 samples/s, eta: 0:22:20

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 2/500 [00:00<00:36, 13.69it/s]
eval model::   1%|          | 4/500 [00:00<00:30, 16.02it/s]
eval model::   1%|          | 6/500 [00:00<00:28, 17.18it/s]
eval model::   2%|▏         | 9/500 [00:00<00:24, 20.20it/s]
eval model::   2%|▏         | 12/500 [00:00<00:24, 20.21it/s]
eval model::   3%|▎         | 15/500 [00:00<00:25, 19.03it/s]
eval model::   4%|▎         | 18/500 [00:00<00:24, 19.57it/s]
eval model::   4%|▍         | 20/500 [00:01<00:26, 17.99it/s]
eval model::   5%|▍         | 24/500 [00:01<00:22, 21.33it/s]
eval model::   5%|▌         | 27/500 [00:01<00:22, 20.94it/s]
eval model::   6%|▌         | 30/500 [00:01<00:22, 20.52it/s]
eval model::   7%|▋         | 33/500 [00:01<00:23, 19.88it/s]
eval model::   7%|▋         | 35/500 [00:01<00:24, 18.87it/s]
eval model::   8%|▊         | 38/500 [00:01<00:23, 19.71it/s]
eval model::   8%|▊         | 40/500 [00:02<00:23, 19.56it/s]
eval model::   8%|▊         | 42/500 [00:02<00:23, 19.31it/s]
eval model::   9%|▉         | 45/500 [00:02<00:23, 19.54it/s]
eval model::   9%|▉         | 47/500 [00:02<00:23, 19.58it/s]
eval model::  10%|█         | 50/500 [00:02<00:23, 19.28it/s]
eval model::  10%|█         | 52/500 [00:02<00:23, 19.42it/s]
eval model::  11%|█         | 55/500 [00:02<00:20, 21.38it/s]
eval model::  12%|█▏        | 58/500 [00:02<00:21, 20.18it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:23, 18.97it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:24, 18.18it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:21, 20.55it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:20, 21.19it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:21, 19.98it/s]
eval model::  15%|█▌        | 75/500 [00:03<00:22, 18.81it/s]
eval model::  15%|█▌        | 77/500 [00:03<00:22, 18.94it/s]
eval model::  16%|█▌        | 80/500 [00:04<00:19, 21.03it/s]
eval model::  17%|█▋        | 83/500 [00:04<00:18, 21.98it/s]
eval model::  17%|█▋        | 86/500 [00:04<00:19, 20.85it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:19, 21.45it/s]
eval model::  18%|█▊        | 92/500 [00:04<00:20, 19.81it/s]
eval model::  19%|█▉        | 95/500 [00:04<00:22, 18.29it/s]
eval model::  19%|█▉        | 97/500 [00:04<00:21, 18.54it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:21, 18.55it/s]
eval model::  20%|██        | 101/500 [00:05<00:21, 18.18it/s]
eval model::  21%|██        | 104/500 [00:05<00:21, 18.76it/s]
eval model::  21%|██        | 106/500 [00:05<00:22, 17.69it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:21, 18.16it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:20, 18.74it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:18, 20.72it/s]
eval model::  23%|██▎       | 117/500 [00:05<00:18, 20.55it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:18, 20.32it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:17, 21.43it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:17, 20.92it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:17, 21.11it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:18, 19.52it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:17, 21.24it/s]
eval model::  28%|██▊       | 138/500 [00:06<00:16, 22.01it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:16, 21.97it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:15, 22.25it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:16, 21.28it/s]
eval model::  30%|███       | 150/500 [00:07<00:15, 22.13it/s]
eval model::  31%|███       | 153/500 [00:07<00:16, 20.93it/s]
eval model::  31%|███       | 156/500 [00:07<00:15, 21.94it/s]
eval model::  32%|███▏      | 159/500 [00:07<00:16, 20.06it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:18, 18.38it/s]
eval model::  33%|███▎      | 165/500 [00:08<00:17, 18.90it/s]
eval model::  34%|███▎      | 168/500 [00:08<00:16, 19.95it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:16, 19.95it/s]
eval model::  35%|███▍      | 174/500 [00:08<00:18, 17.64it/s]
eval model::  35%|███▌      | 177/500 [00:08<00:16, 19.48it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:17, 18.68it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:15, 20.04it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:14, 21.76it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:13, 22.57it/s]
eval model::  38%|███▊      | 192/500 [00:09<00:13, 22.62it/s]
eval model::  39%|███▉      | 195/500 [00:09<00:14, 21.07it/s]
eval model::  40%|███▉      | 198/500 [00:09<00:14, 21.11it/s]
eval model::  40%|████      | 201/500 [00:10<00:15, 19.39it/s]
eval model::  41%|████      | 204/500 [00:10<00:14, 20.41it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:19, 14.71it/s]
eval model::  42%|████▏     | 209/500 [00:10<00:19, 15.26it/s]
eval model::  42%|████▏     | 211/500 [00:10<00:17, 16.09it/s]
eval model::  43%|████▎     | 214/500 [00:10<00:15, 18.07it/s]
eval model::  43%|████▎     | 216/500 [00:11<00:16, 16.84it/s]
eval model::  44%|████▎     | 218/500 [00:11<00:17, 16.08it/s]
eval model::  44%|████▍     | 221/500 [00:11<00:15, 18.22it/s]
eval model::  45%|████▍     | 224/500 [00:11<00:14, 19.38it/s]
eval model::  45%|████▌     | 226/500 [00:11<00:14, 19.13it/s]
eval model::  46%|████▌     | 228/500 [00:11<00:14, 18.46it/s]
eval model::  46%|████▌     | 230/500 [00:11<00:15, 17.79it/s]
eval model::  47%|████▋     | 233/500 [00:11<00:13, 19.74it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:12, 21.00it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:11, 21.80it/s]
eval model::  48%|████▊     | 242/500 [00:12<00:12, 20.64it/s]
eval model::  49%|████▉     | 245/500 [00:12<00:12, 21.14it/s]
eval model::  50%|████▉     | 248/500 [00:12<00:11, 22.25it/s]
eval model::  50%|█████     | 251/500 [00:12<00:11, 22.20it/s]
eval model::  51%|█████     | 255/500 [00:12<00:10, 23.80it/s]
eval model::  52%|█████▏    | 258/500 [00:12<00:09, 24.79it/s]
eval model::  52%|█████▏    | 261/500 [00:13<00:10, 23.71it/s]
eval model::  53%|█████▎    | 264/500 [00:13<00:10, 22.02it/s]
eval model::  53%|█████▎    | 267/500 [00:13<00:10, 21.70it/s]
eval model::  54%|█████▍    | 270/500 [00:13<00:10, 22.47it/s]
eval model::  55%|█████▍    | 273/500 [00:13<00:10, 22.35it/s]
eval model::  55%|█████▌    | 276/500 [00:13<00:11, 20.11it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:11, 18.68it/s]
eval model::  56%|█████▋    | 282/500 [00:14<00:10, 19.89it/s]
eval model::  57%|█████▋    | 285/500 [00:14<00:14, 15.20it/s]
eval model::  58%|█████▊    | 288/500 [00:14<00:11, 17.76it/s]
eval model::  58%|█████▊    | 292/500 [00:14<00:10, 20.53it/s]
eval model::  59%|█████▉    | 295/500 [00:14<00:11, 18.45it/s]
eval model::  60%|█████▉    | 298/500 [00:15<00:09, 20.43it/s]
eval model::  60%|██████    | 301/500 [00:15<00:11, 17.31it/s]
eval model::  61%|██████    | 304/500 [00:15<00:10, 18.02it/s]
eval model::  61%|██████▏   | 307/500 [00:15<00:09, 20.23it/s]
eval model::  62%|██████▏   | 311/500 [00:15<00:08, 23.20it/s]
eval model::  63%|██████▎   | 314/500 [00:15<00:07, 24.61it/s]
eval model::  63%|██████▎   | 317/500 [00:15<00:07, 24.83it/s]
eval model::  64%|██████▍   | 320/500 [00:16<00:07, 24.01it/s]
eval model::  65%|██████▍   | 323/500 [00:16<00:08, 21.06it/s]
eval model::  65%|██████▌   | 326/500 [00:16<00:08, 21.04it/s]
eval model::  66%|██████▌   | 329/500 [00:16<00:08, 19.88it/s]
eval model::  66%|██████▋   | 332/500 [00:16<00:08, 19.37it/s]
eval model::  67%|██████▋   | 335/500 [00:16<00:08, 20.45it/s]
eval model::  68%|██████▊   | 338/500 [00:16<00:08, 19.50it/s]
eval model::  68%|██████▊   | 340/500 [00:17<00:09, 17.11it/s]
eval model::  69%|██████▊   | 343/500 [00:17<00:07, 19.76it/s]
eval model::  69%|██████▉   | 346/500 [00:17<00:07, 20.89it/s]
eval model::  70%|██████▉   | 349/500 [00:17<00:06, 23.04it/s]
eval model::  70%|███████   | 352/500 [00:17<00:06, 21.29it/s]
eval model::  71%|███████   | 355/500 [00:17<00:06, 21.04it/s]
eval model::  72%|███████▏  | 358/500 [00:17<00:07, 19.47it/s]
eval model::  72%|███████▏  | 361/500 [00:18<00:07, 19.24it/s]
eval model::  73%|███████▎  | 364/500 [00:18<00:07, 18.29it/s]
eval model::  73%|███████▎  | 367/500 [00:18<00:06, 20.03it/s]
eval model::  74%|███████▍  | 370/500 [00:18<00:06, 20.34it/s]
eval model::  75%|███████▍  | 373/500 [00:18<00:06, 19.76it/s]
eval model::  75%|███████▌  | 376/500 [00:18<00:06, 19.22it/s]
eval model::  76%|███████▌  | 379/500 [00:19<00:06, 20.06it/s]
eval model::  76%|███████▋  | 382/500 [00:19<00:06, 19.63it/s]
eval model::  77%|███████▋  | 384/500 [00:19<00:06, 19.29it/s]
eval model::  77%|███████▋  | 386/500 [00:19<00:08, 13.55it/s]
eval model::  78%|███████▊  | 389/500 [00:19<00:06, 16.26it/s]
eval model::  78%|███████▊  | 392/500 [00:19<00:06, 17.49it/s]
eval model::  79%|███████▉  | 394/500 [00:19<00:06, 17.11it/s]
eval model::  79%|███████▉  | 397/500 [00:20<00:05, 19.30it/s]
eval model::  80%|████████  | 400/500 [00:20<00:05, 19.02it/s]
eval model::  80%|████████  | 402/500 [00:20<00:05, 18.74it/s]
eval model::  81%|████████  | 404/500 [00:20<00:05, 18.88it/s]
eval model::  81%|████████▏ | 407/500 [00:20<00:04, 20.37it/s]
eval model::  82%|████████▏ | 410/500 [00:20<00:04, 21.12it/s]
eval model::  83%|████████▎ | 413/500 [00:20<00:04, 20.67it/s]
eval model::  83%|████████▎ | 416/500 [00:21<00:04, 20.24it/s]
eval model::  84%|████████▍ | 419/500 [00:21<00:04, 19.48it/s]
eval model::  84%|████████▍ | 421/500 [00:21<00:04, 17.67it/s]
eval model::  85%|████████▍ | 424/500 [00:21<00:03, 19.34it/s]
eval model::  85%|████████▌ | 427/500 [00:21<00:03, 21.28it/s]
eval model::  86%|████████▌ | 430/500 [00:21<00:03, 23.18it/s]
eval model::  87%|████████▋ | 433/500 [00:21<00:02, 23.90it/s]
eval model::  87%|████████▋ | 436/500 [00:21<00:03, 21.10it/s]
eval model::  88%|████████▊ | 439/500 [00:22<00:02, 21.92it/s]
eval model::  88%|████████▊ | 442/500 [00:22<00:02, 21.48it/s]
eval model::  89%|████████▉ | 445/500 [00:22<00:02, 22.12it/s]
eval model::  90%|████████▉ | 448/500 [00:22<00:02, 21.08it/s]
eval model::  90%|█████████ | 451/500 [00:22<00:02, 21.31it/s]
eval model::  91%|█████████ | 454/500 [00:22<00:02, 20.38it/s]
eval model::  91%|█████████▏| 457/500 [00:22<00:02, 20.45it/s]
eval model::  92%|█████████▏| 460/500 [00:23<00:01, 20.01it/s]
eval model::  93%|█████████▎| 463/500 [00:23<00:02, 18.03it/s]
eval model::  93%|█████████▎| 465/500 [00:23<00:02, 17.04it/s]
eval model::  94%|█████████▎| 468/500 [00:23<00:01, 19.00it/s]
eval model::  94%|█████████▍| 471/500 [00:23<00:01, 20.56it/s]
eval model::  95%|█████████▍| 474/500 [00:23<00:01, 18.43it/s]
eval model::  95%|█████████▌| 477/500 [00:24<00:01, 20.37it/s]
eval model::  96%|█████████▌| 480/500 [00:24<00:00, 20.05it/s]
eval model::  97%|█████████▋| 483/500 [00:24<00:00, 20.52it/s]
eval model::  97%|█████████▋| 486/500 [00:24<00:00, 18.59it/s]
eval model::  98%|█████████▊| 489/500 [00:24<00:00, 20.50it/s]
eval model::  98%|█████████▊| 492/500 [00:24<00:00, 19.02it/s]
eval model::  99%|█████████▉| 495/500 [00:24<00:00, 20.85it/s]
eval model:: 100%|█████████▉| 498/500 [00:25<00:00, 20.83it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.85it/s]
[2024/08/01 18:13:38] ppocr INFO: cur metric, precision: 0.4462989840348331, recall: 0.2961001444390948, hmean: 0.35600578871201155, fps: 44.43722218286895
[2024/08/01 18:13:38] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/08/01 18:13:38] ppocr INFO: best metric, hmean: 0.35600578871201155, precision: 0.4462989840348331, recall: 0.2961001444390948, fps: 44.43722218286895, best_epoch: 40
[2024/08/01 18:13:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:13:45] ppocr INFO: epoch: [41/100], global_step: 123, lr: 0.001000, loss: 2.859583, loss_shrink_maps: 1.746201, loss_threshold_maps: 0.800356, loss_binary_maps: 0.313899, avg_reader_cost: 1.55946 s, avg_batch_cost: 1.78318 s, avg_samples: 12.5, ips: 7.00995 samples/s, eta: 0:21:51
[2024/08/01 18:13:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:13:53] ppocr INFO: epoch: [42/100], global_step: 126, lr: 0.001000, loss: 2.800212, loss_shrink_maps: 1.705390, loss_threshold_maps: 0.798770, loss_binary_maps: 0.308249, avg_reader_cost: 1.60723 s, avg_batch_cost: 1.89054 s, avg_samples: 12.5, ips: 6.61188 samples/s, eta: 0:21:24
[2024/08/01 18:13:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:14:00] ppocr INFO: epoch: [43/100], global_step: 129, lr: 0.001000, loss: 2.724212, loss_shrink_maps: 1.602625, loss_threshold_maps: 0.795272, loss_binary_maps: 0.292876, avg_reader_cost: 1.54902 s, avg_batch_cost: 1.77008 s, avg_samples: 12.5, ips: 7.06181 samples/s, eta: 0:20:56
[2024/08/01 18:14:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:14:06] ppocr INFO: epoch: [44/100], global_step: 130, lr: 0.001000, loss: 2.689392, loss_shrink_maps: 1.593542, loss_threshold_maps: 0.795272, loss_binary_maps: 0.292876, avg_reader_cost: 0.40773 s, avg_batch_cost: 0.49694 s, avg_samples: 4.8, ips: 9.65906 samples/s, eta: 0:20:46
[2024/08/01 18:14:07] ppocr INFO: epoch: [44/100], global_step: 132, lr: 0.001000, loss: 2.724212, loss_shrink_maps: 1.593542, loss_threshold_maps: 0.797332, loss_binary_maps: 0.296605, avg_reader_cost: 1.08179 s, avg_batch_cost: 1.22136 s, avg_samples: 7.7, ips: 6.30447 samples/s, eta: 0:20:28
[2024/08/01 18:14:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:14:14] ppocr INFO: epoch: [45/100], global_step: 135, lr: 0.001000, loss: 2.684150, loss_shrink_maps: 1.588328, loss_threshold_maps: 0.797332, loss_binary_maps: 0.292876, avg_reader_cost: 1.56459 s, avg_batch_cost: 1.78945 s, avg_samples: 12.5, ips: 6.98537 samples/s, eta: 0:20:01
[2024/08/01 18:14:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:14:22] ppocr INFO: epoch: [46/100], global_step: 138, lr: 0.001000, loss: 2.684150, loss_shrink_maps: 1.588328, loss_threshold_maps: 0.795863, loss_binary_maps: 0.292964, avg_reader_cost: 1.60793 s, avg_batch_cost: 1.88644 s, avg_samples: 12.5, ips: 6.62624 samples/s, eta: 0:19:36
[2024/08/01 18:14:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:14:28] ppocr INFO: epoch: [47/100], global_step: 140, lr: 0.001000, loss: 2.684150, loss_shrink_maps: 1.590146, loss_threshold_maps: 0.792928, loss_binary_maps: 0.296605, avg_reader_cost: 0.92033 s, avg_batch_cost: 1.08662 s, avg_samples: 9.6, ips: 8.83477 samples/s, eta: 0:19:17
[2024/08/01 18:14:29] ppocr INFO: epoch: [47/100], global_step: 141, lr: 0.001000, loss: 2.684150, loss_shrink_maps: 1.590146, loss_threshold_maps: 0.791408, loss_binary_maps: 0.296605, avg_reader_cost: 0.58721 s, avg_batch_cost: 0.64004 s, avg_samples: 2.9, ips: 4.53098 samples/s, eta: 0:19:09
[2024/08/01 18:14:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:14:36] ppocr INFO: epoch: [48/100], global_step: 144, lr: 0.001000, loss: 2.640557, loss_shrink_maps: 1.559869, loss_threshold_maps: 0.786548, loss_binary_maps: 0.289890, avg_reader_cost: 1.51823 s, avg_batch_cost: 1.75166 s, avg_samples: 12.5, ips: 7.13609 samples/s, eta: 0:18:43
[2024/08/01 18:14:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:14:43] ppocr INFO: epoch: [49/100], global_step: 147, lr: 0.001000, loss: 2.662575, loss_shrink_maps: 1.576767, loss_threshold_maps: 0.786548, loss_binary_maps: 0.295986, avg_reader_cost: 1.58080 s, avg_batch_cost: 1.81121 s, avg_samples: 12.5, ips: 6.90148 samples/s, eta: 0:18:17
[2024/08/01 18:14:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:14:50] ppocr INFO: epoch: [50/100], global_step: 150, lr: 0.001000, loss: 2.688912, loss_shrink_maps: 1.601874, loss_threshold_maps: 0.790851, loss_binary_maps: 0.299737, avg_reader_cost: 1.54299 s, avg_batch_cost: 1.78666 s, avg_samples: 12.5, ips: 6.99628 samples/s, eta: 0:17:52
[2024/08/01 18:14:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:14:58] ppocr INFO: epoch: [51/100], global_step: 153, lr: 0.001000, loss: 2.643059, loss_shrink_maps: 1.530937, loss_threshold_maps: 0.780578, loss_binary_maps: 0.287771, avg_reader_cost: 1.54547 s, avg_batch_cost: 1.76373 s, avg_samples: 12.5, ips: 7.08723 samples/s, eta: 0:17:27
[2024/08/01 18:14:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:15:05] ppocr INFO: epoch: [52/100], global_step: 156, lr: 0.001000, loss: 2.609230, loss_shrink_maps: 1.512848, loss_threshold_maps: 0.781693, loss_binary_maps: 0.285174, avg_reader_cost: 1.49095 s, avg_batch_cost: 1.71422 s, avg_samples: 12.5, ips: 7.29194 samples/s, eta: 0:17:02
[2024/08/01 18:15:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:15:12] ppocr INFO: epoch: [53/100], global_step: 159, lr: 0.001000, loss: 2.583328, loss_shrink_maps: 1.511180, loss_threshold_maps: 0.781693, loss_binary_maps: 0.284269, avg_reader_cost: 1.51139 s, avg_batch_cost: 1.75209 s, avg_samples: 12.5, ips: 7.13432 samples/s, eta: 0:16:37
[2024/08/01 18:15:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:15:18] ppocr INFO: epoch: [54/100], global_step: 160, lr: 0.001000, loss: 2.574001, loss_shrink_maps: 1.503162, loss_threshold_maps: 0.780076, loss_binary_maps: 0.283494, avg_reader_cost: 0.41480 s, avg_batch_cost: 0.50557 s, avg_samples: 4.8, ips: 9.49427 samples/s, eta: 0:16:28
[2024/08/01 18:15:19] ppocr INFO: epoch: [54/100], global_step: 162, lr: 0.001000, loss: 2.541956, loss_shrink_maps: 1.474900, loss_threshold_maps: 0.776686, loss_binary_maps: 0.278400, avg_reader_cost: 1.09928 s, avg_batch_cost: 1.23912 s, avg_samples: 7.7, ips: 6.21408 samples/s, eta: 0:16:13
[2024/08/01 18:15:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:15:26] ppocr INFO: epoch: [55/100], global_step: 165, lr: 0.001000, loss: 2.505814, loss_shrink_maps: 1.462624, loss_threshold_maps: 0.767168, loss_binary_maps: 0.277114, avg_reader_cost: 1.49030 s, avg_batch_cost: 1.71333 s, avg_samples: 12.5, ips: 7.29572 samples/s, eta: 0:15:48
[2024/08/01 18:15:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:15:33] ppocr INFO: epoch: [56/100], global_step: 168, lr: 0.001000, loss: 2.505814, loss_shrink_maps: 1.462624, loss_threshold_maps: 0.766094, loss_binary_maps: 0.277114, avg_reader_cost: 1.54625 s, avg_batch_cost: 1.78429 s, avg_samples: 12.5, ips: 7.00558 samples/s, eta: 0:15:25
[2024/08/01 18:15:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:15:40] ppocr INFO: epoch: [57/100], global_step: 170, lr: 0.001000, loss: 2.529082, loss_shrink_maps: 1.479753, loss_threshold_maps: 0.771756, loss_binary_maps: 0.280314, avg_reader_cost: 0.95724 s, avg_batch_cost: 1.12373 s, avg_samples: 9.6, ips: 8.54297 samples/s, eta: 0:15:08
[2024/08/01 18:15:41] ppocr INFO: epoch: [57/100], global_step: 171, lr: 0.001000, loss: 2.529082, loss_shrink_maps: 1.479753, loss_threshold_maps: 0.771756, loss_binary_maps: 0.280314, avg_reader_cost: 0.60569 s, avg_batch_cost: 0.65794 s, avg_samples: 2.9, ips: 4.40773 samples/s, eta: 0:15:01
[2024/08/01 18:15:41] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:15:48] ppocr INFO: epoch: [58/100], global_step: 174, lr: 0.001000, loss: 2.580708, loss_shrink_maps: 1.493304, loss_threshold_maps: 0.789481, loss_binary_maps: 0.287265, avg_reader_cost: 1.53332 s, avg_batch_cost: 1.75250 s, avg_samples: 12.5, ips: 7.13267 samples/s, eta: 0:14:38
[2024/08/01 18:15:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:15:56] ppocr INFO: epoch: [59/100], global_step: 177, lr: 0.001000, loss: 2.694612, loss_shrink_maps: 1.605105, loss_threshold_maps: 0.792660, loss_binary_maps: 0.299596, avg_reader_cost: 1.59137 s, avg_batch_cost: 1.88508 s, avg_samples: 12.5, ips: 6.63103 samples/s, eta: 0:14:15
[2024/08/01 18:15:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:16:03] ppocr INFO: epoch: [60/100], global_step: 180, lr: 0.001000, loss: 2.669985, loss_shrink_maps: 1.599652, loss_threshold_maps: 0.792660, loss_binary_maps: 0.298280, avg_reader_cost: 1.57663 s, avg_batch_cost: 1.79969 s, avg_samples: 12.5, ips: 6.94565 samples/s, eta: 0:13:53

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 2/500 [00:00<00:35, 14.00it/s]
eval model::   1%|          | 5/500 [00:00<00:22, 21.77it/s]
eval model::   2%|▏         | 8/500 [00:00<00:24, 20.09it/s]
eval model::   2%|▏         | 11/500 [00:00<00:24, 20.18it/s]
eval model::   3%|▎         | 14/500 [00:00<00:24, 19.74it/s]
eval model::   3%|▎         | 17/500 [00:00<00:23, 20.85it/s]
eval model::   4%|▍         | 20/500 [00:01<00:25, 19.17it/s]
eval model::   5%|▍         | 23/500 [00:01<00:22, 20.97it/s]
eval model::   5%|▌         | 26/500 [00:01<00:23, 19.84it/s]
eval model::   6%|▌         | 29/500 [00:01<00:22, 21.20it/s]
eval model::   6%|▋         | 32/500 [00:01<00:23, 20.15it/s]
eval model::   7%|▋         | 35/500 [00:01<00:23, 19.48it/s]
eval model::   8%|▊         | 38/500 [00:01<00:21, 21.11it/s]
eval model::   8%|▊         | 41/500 [00:02<00:21, 21.20it/s]
eval model::   9%|▉         | 44/500 [00:02<00:21, 20.93it/s]
eval model::   9%|▉         | 47/500 [00:02<00:23, 19.44it/s]
eval model::  10%|█         | 50/500 [00:02<00:22, 19.80it/s]
eval model::  11%|█         | 53/500 [00:02<00:21, 20.54it/s]
eval model::  11%|█         | 56/500 [00:02<00:21, 20.56it/s]
eval model::  12%|█▏        | 59/500 [00:02<00:21, 20.88it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:23, 18.56it/s]
eval model::  13%|█▎        | 65/500 [00:03<00:22, 19.65it/s]
eval model::  14%|█▎        | 68/500 [00:03<00:19, 21.88it/s]
eval model::  14%|█▍        | 71/500 [00:03<00:19, 21.92it/s]
eval model::  15%|█▍        | 74/500 [00:03<00:21, 19.94it/s]
eval model::  15%|█▌        | 77/500 [00:03<00:21, 20.00it/s]
eval model::  16%|█▌        | 80/500 [00:03<00:19, 21.10it/s]
eval model::  17%|█▋        | 83/500 [00:04<00:19, 21.42it/s]
eval model::  17%|█▋        | 86/500 [00:04<00:20, 19.91it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:20, 19.62it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:22, 18.59it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:21, 18.55it/s]
eval model::  19%|█▉        | 95/500 [00:04<00:22, 17.83it/s]
eval model::  20%|█▉        | 98/500 [00:04<00:20, 19.87it/s]
eval model::  20%|██        | 101/500 [00:05<00:20, 19.60it/s]
eval model::  21%|██        | 103/500 [00:05<00:20, 19.31it/s]
eval model::  21%|██        | 106/500 [00:05<00:19, 19.84it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:20, 18.77it/s]
eval model::  22%|██▏       | 110/500 [00:05<00:21, 18.53it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:21, 18.07it/s]
eval model::  23%|██▎       | 115/500 [00:05<00:19, 19.96it/s]
eval model::  24%|██▎       | 118/500 [00:05<00:19, 19.78it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:19, 19.33it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:17, 21.72it/s]
eval model::  25%|██▌       | 127/500 [00:06<00:16, 22.87it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:17, 20.72it/s]
eval model::  27%|██▋       | 133/500 [00:06<00:16, 21.91it/s]
eval model::  27%|██▋       | 136/500 [00:06<00:16, 21.93it/s]
eval model::  28%|██▊       | 139/500 [00:06<00:18, 19.74it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:18, 19.14it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:17, 20.42it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:17, 19.69it/s]
eval model::  30%|███       | 151/500 [00:07<00:19, 18.08it/s]
eval model::  31%|███       | 154/500 [00:07<00:17, 20.30it/s]
eval model::  31%|███▏      | 157/500 [00:07<00:16, 21.03it/s]
eval model::  32%|███▏      | 160/500 [00:07<00:17, 19.52it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:16, 21.05it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:16, 20.52it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:17, 19.08it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:19, 17.11it/s]
eval model::  35%|███▍      | 174/500 [00:08<00:19, 16.93it/s]
eval model::  35%|███▌      | 177/500 [00:08<00:17, 18.50it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:16, 19.02it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:15, 21.05it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:15, 19.86it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:14, 20.98it/s]
eval model::  38%|███▊      | 192/500 [00:09<00:14, 21.96it/s]
eval model::  39%|███▉      | 195/500 [00:09<00:15, 19.29it/s]
eval model::  40%|███▉      | 198/500 [00:09<00:15, 19.83it/s]
eval model::  40%|████      | 201/500 [00:10<00:14, 20.40it/s]
eval model::  41%|████      | 204/500 [00:10<00:13, 22.52it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:18, 16.07it/s]
eval model::  42%|████▏     | 209/500 [00:10<00:17, 16.69it/s]
eval model::  42%|████▏     | 211/500 [00:10<00:16, 17.23it/s]
eval model::  43%|████▎     | 214/500 [00:10<00:14, 19.28it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:17, 16.15it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:15, 18.10it/s]
eval model::  45%|████▍     | 223/500 [00:11<00:14, 19.24it/s]
eval model::  45%|████▌     | 226/500 [00:11<00:12, 21.18it/s]
eval model::  46%|████▌     | 229/500 [00:11<00:11, 22.83it/s]
eval model::  47%|████▋     | 233/500 [00:11<00:10, 24.63it/s]
eval model::  47%|████▋     | 236/500 [00:11<00:11, 23.14it/s]
eval model::  48%|████▊     | 239/500 [00:11<00:10, 24.38it/s]
eval model::  48%|████▊     | 242/500 [00:12<00:11, 22.43it/s]
eval model::  49%|████▉     | 245/500 [00:12<00:10, 23.91it/s]
eval model::  50%|████▉     | 248/500 [00:12<00:11, 22.66it/s]
eval model::  50%|█████     | 251/500 [00:12<00:11, 22.10it/s]
eval model::  51%|█████     | 254/500 [00:12<00:11, 21.57it/s]
eval model::  51%|█████▏    | 257/500 [00:12<00:11, 21.49it/s]
eval model::  52%|█████▏    | 260/500 [00:12<00:11, 20.98it/s]
eval model::  53%|█████▎    | 263/500 [00:13<00:12, 19.75it/s]
eval model::  53%|█████▎    | 266/500 [00:13<00:12, 19.15it/s]
eval model::  54%|█████▍    | 269/500 [00:13<00:11, 19.42it/s]
eval model::  54%|█████▍    | 272/500 [00:13<00:11, 19.90it/s]
eval model::  55%|█████▌    | 275/500 [00:13<00:11, 20.11it/s]
eval model::  56%|█████▌    | 278/500 [00:13<00:10, 21.31it/s]
eval model::  56%|█████▌    | 281/500 [00:13<00:10, 20.44it/s]
eval model::  57%|█████▋    | 284/500 [00:14<00:10, 21.08it/s]
eval model::  57%|█████▋    | 287/500 [00:14<00:12, 17.11it/s]
eval model::  58%|█████▊    | 291/500 [00:14<00:10, 20.03it/s]
eval model::  59%|█████▉    | 294/500 [00:14<00:10, 20.00it/s]
eval model::  59%|█████▉    | 297/500 [00:14<00:10, 19.66it/s]
eval model::  60%|██████    | 300/500 [00:14<00:10, 19.27it/s]
eval model::  61%|██████    | 303/500 [00:15<00:09, 20.44it/s]
eval model::  61%|██████    | 306/500 [00:15<00:09, 21.42it/s]
eval model::  62%|██████▏   | 309/500 [00:15<00:08, 22.10it/s]
eval model::  62%|██████▏   | 312/500 [00:15<00:08, 21.72it/s]
eval model::  63%|██████▎   | 315/500 [00:15<00:09, 20.25it/s]
eval model::  64%|██████▎   | 318/500 [00:15<00:08, 21.04it/s]
eval model::  64%|██████▍   | 321/500 [00:15<00:08, 20.98it/s]
eval model::  65%|██████▍   | 324/500 [00:16<00:09, 19.47it/s]
eval model::  65%|██████▌   | 327/500 [00:16<00:08, 20.60it/s]
eval model::  66%|██████▌   | 330/500 [00:16<00:08, 19.57it/s]
eval model::  67%|██████▋   | 333/500 [00:16<00:08, 20.05it/s]
eval model::  67%|██████▋   | 336/500 [00:16<00:08, 20.46it/s]
eval model::  68%|██████▊   | 339/500 [00:16<00:08, 20.10it/s]
eval model::  68%|██████▊   | 342/500 [00:17<00:08, 18.46it/s]
eval model::  69%|██████▉   | 345/500 [00:17<00:07, 20.38it/s]
eval model::  70%|██████▉   | 348/500 [00:17<00:07, 20.29it/s]
eval model::  70%|███████   | 351/500 [00:17<00:08, 18.20it/s]
eval model::  71%|███████   | 354/500 [00:17<00:07, 20.56it/s]
eval model::  71%|███████▏  | 357/500 [00:17<00:07, 19.93it/s]
eval model::  72%|███████▏  | 360/500 [00:17<00:06, 21.07it/s]
eval model::  73%|███████▎  | 363/500 [00:18<00:06, 21.07it/s]
eval model::  73%|███████▎  | 366/500 [00:18<00:06, 19.71it/s]
eval model::  74%|███████▍  | 369/500 [00:18<00:06, 20.46it/s]
eval model::  74%|███████▍  | 372/500 [00:18<00:06, 19.45it/s]
eval model::  75%|███████▌  | 376/500 [00:18<00:05, 21.50it/s]
eval model::  76%|███████▌  | 379/500 [00:18<00:05, 21.86it/s]
eval model::  76%|███████▋  | 382/500 [00:18<00:05, 20.68it/s]
eval model::  77%|███████▋  | 385/500 [00:19<00:05, 21.54it/s]
eval model::  78%|███████▊  | 388/500 [00:19<00:06, 16.97it/s]
eval model::  78%|███████▊  | 391/500 [00:19<00:05, 18.60it/s]
eval model::  79%|███████▉  | 394/500 [00:19<00:05, 19.53it/s]
eval model::  79%|███████▉  | 397/500 [00:19<00:05, 20.44it/s]
eval model::  80%|████████  | 400/500 [00:19<00:04, 21.45it/s]
eval model::  81%|████████  | 403/500 [00:19<00:04, 23.41it/s]
eval model::  81%|████████  | 406/500 [00:20<00:04, 23.47it/s]
eval model::  82%|████████▏ | 409/500 [00:20<00:04, 21.38it/s]
eval model::  82%|████████▏ | 412/500 [00:20<00:04, 21.99it/s]
eval model::  83%|████████▎ | 415/500 [00:20<00:04, 20.43it/s]
eval model::  84%|████████▎ | 418/500 [00:20<00:04, 18.33it/s]
eval model::  84%|████████▍ | 420/500 [00:20<00:04, 18.00it/s]
eval model::  84%|████████▍ | 422/500 [00:21<00:04, 17.59it/s]
eval model::  85%|████████▌ | 425/500 [00:21<00:03, 18.92it/s]
eval model::  86%|████████▌ | 428/500 [00:21<00:03, 20.68it/s]
eval model::  86%|████████▌ | 431/500 [00:21<00:03, 20.55it/s]
eval model::  87%|████████▋ | 434/500 [00:21<00:03, 20.43it/s]
eval model::  87%|████████▋ | 437/500 [00:21<00:03, 20.27it/s]
eval model::  88%|████████▊ | 440/500 [00:21<00:03, 18.66it/s]
eval model::  89%|████████▊ | 443/500 [00:22<00:02, 20.75it/s]
eval model::  89%|████████▉ | 446/500 [00:22<00:02, 18.66it/s]
eval model::  90%|████████▉ | 449/500 [00:22<00:02, 18.07it/s]
eval model::  90%|█████████ | 452/500 [00:22<00:02, 20.30it/s]
eval model::  91%|█████████ | 455/500 [00:22<00:02, 20.61it/s]
eval model::  92%|█████████▏| 458/500 [00:22<00:02, 20.74it/s]
eval model::  92%|█████████▏| 461/500 [00:22<00:01, 21.40it/s]
eval model::  93%|█████████▎| 464/500 [00:23<00:01, 20.10it/s]
eval model::  93%|█████████▎| 467/500 [00:23<00:01, 18.17it/s]
eval model::  94%|█████████▍| 471/500 [00:23<00:01, 21.30it/s]
eval model::  95%|█████████▍| 474/500 [00:23<00:01, 20.91it/s]
eval model::  95%|█████████▌| 477/500 [00:23<00:01, 20.56it/s]
eval model::  96%|█████████▌| 480/500 [00:23<00:00, 20.12it/s]
eval model::  97%|█████████▋| 483/500 [00:24<00:00, 20.58it/s]
eval model::  97%|█████████▋| 486/500 [00:24<00:00, 19.35it/s]
eval model::  98%|█████████▊| 489/500 [00:24<00:00, 20.45it/s]
eval model::  98%|█████████▊| 492/500 [00:24<00:00, 19.39it/s]
eval model::  99%|█████████▉| 495/500 [00:24<00:00, 20.35it/s]
eval model:: 100%|█████████▉| 498/500 [00:24<00:00, 20.76it/s]
eval model:: 100%|██████████| 500/500 [00:24<00:00, 20.13it/s]
[2024/08/01 18:16:28] ppocr INFO: cur metric, precision: 0.44954128440366975, recall: 0.25950890707751567, hmean: 0.3290598290598291, fps: 46.10668784767683
[2024/08/01 18:16:28] ppocr INFO: best metric, hmean: 0.35600578871201155, precision: 0.4462989840348331, recall: 0.2961001444390948, fps: 44.43722218286895, best_epoch: 40
[2024/08/01 18:16:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:16:35] ppocr INFO: epoch: [61/100], global_step: 183, lr: 0.001000, loss: 2.741386, loss_shrink_maps: 1.642321, loss_threshold_maps: 0.795108, loss_binary_maps: 0.309163, avg_reader_cost: 1.56411 s, avg_batch_cost: 1.80658 s, avg_samples: 12.5, ips: 6.91914 samples/s, eta: 0:13:30
[2024/08/01 18:16:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:16:42] ppocr INFO: epoch: [62/100], global_step: 186, lr: 0.001000, loss: 2.733625, loss_shrink_maps: 1.646488, loss_threshold_maps: 0.804018, loss_binary_maps: 0.308921, avg_reader_cost: 1.54339 s, avg_batch_cost: 1.77778 s, avg_samples: 12.5, ips: 7.03122 samples/s, eta: 0:13:07
[2024/08/01 18:16:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:16:49] ppocr INFO: epoch: [63/100], global_step: 189, lr: 0.001000, loss: 2.770908, loss_shrink_maps: 1.653917, loss_threshold_maps: 0.808332, loss_binary_maps: 0.311870, avg_reader_cost: 1.48370 s, avg_batch_cost: 1.70926 s, avg_samples: 12.5, ips: 7.31309 samples/s, eta: 0:12:45
[2024/08/01 18:16:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:16:56] ppocr INFO: epoch: [64/100], global_step: 190, lr: 0.001000, loss: 2.733625, loss_shrink_maps: 1.640873, loss_threshold_maps: 0.801866, loss_binary_maps: 0.307920, avg_reader_cost: 0.48396 s, avg_batch_cost: 0.59521 s, avg_samples: 4.8, ips: 8.06442 samples/s, eta: 0:12:37
[2024/08/01 18:16:57] ppocr INFO: epoch: [64/100], global_step: 192, lr: 0.001000, loss: 2.770908, loss_shrink_maps: 1.653917, loss_threshold_maps: 0.808296, loss_binary_maps: 0.311870, avg_reader_cost: 1.27892 s, avg_batch_cost: 1.41926 s, avg_samples: 7.7, ips: 5.42536 samples/s, eta: 0:12:24
[2024/08/01 18:16:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:17:05] ppocr INFO: epoch: [65/100], global_step: 195, lr: 0.001000, loss: 2.719126, loss_shrink_maps: 1.599088, loss_threshold_maps: 0.810944, loss_binary_maps: 0.302728, avg_reader_cost: 1.51380 s, avg_batch_cost: 1.75413 s, avg_samples: 12.5, ips: 7.12603 samples/s, eta: 0:12:01
[2024/08/01 18:17:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:17:12] ppocr INFO: epoch: [66/100], global_step: 198, lr: 0.001000, loss: 2.641654, loss_shrink_maps: 1.545756, loss_threshold_maps: 0.808296, loss_binary_maps: 0.290077, avg_reader_cost: 1.60225 s, avg_batch_cost: 1.85410 s, avg_samples: 12.5, ips: 6.74181 samples/s, eta: 0:11:39
[2024/08/01 18:17:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:17:19] ppocr INFO: epoch: [67/100], global_step: 200, lr: 0.001000, loss: 2.674567, loss_shrink_maps: 1.563972, loss_threshold_maps: 0.810944, loss_binary_maps: 0.295797, avg_reader_cost: 0.91703 s, avg_batch_cost: 1.08924 s, avg_samples: 9.6, ips: 8.81349 samples/s, eta: 0:11:24
[2024/08/01 18:17:19] ppocr INFO: epoch: [67/100], global_step: 201, lr: 0.001000, loss: 2.674567, loss_shrink_maps: 1.563972, loss_threshold_maps: 0.811667, loss_binary_maps: 0.295797, avg_reader_cost: 0.58859 s, avg_batch_cost: 0.64083 s, avg_samples: 2.9, ips: 4.52539 samples/s, eta: 0:11:17
[2024/08/01 18:17:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:17:27] ppocr INFO: epoch: [68/100], global_step: 204, lr: 0.001000, loss: 2.611973, loss_shrink_maps: 1.524972, loss_threshold_maps: 0.810944, loss_binary_maps: 0.292279, avg_reader_cost: 1.55963 s, avg_batch_cost: 1.77864 s, avg_samples: 12.5, ips: 7.02786 samples/s, eta: 0:10:55
[2024/08/01 18:17:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:17:34] ppocr INFO: epoch: [69/100], global_step: 207, lr: 0.001000, loss: 2.586802, loss_shrink_maps: 1.519722, loss_threshold_maps: 0.785335, loss_binary_maps: 0.289134, avg_reader_cost: 1.60770 s, avg_batch_cost: 1.88668 s, avg_samples: 12.5, ips: 6.62539 samples/s, eta: 0:10:34
[2024/08/01 18:17:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:17:42] ppocr INFO: epoch: [70/100], global_step: 210, lr: 0.001000, loss: 2.604886, loss_shrink_maps: 1.522514, loss_threshold_maps: 0.794571, loss_binary_maps: 0.292279, avg_reader_cost: 1.62172 s, avg_batch_cost: 1.89543 s, avg_samples: 12.5, ips: 6.59482 samples/s, eta: 0:10:13
[2024/08/01 18:17:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:17:49] ppocr INFO: epoch: [71/100], global_step: 213, lr: 0.001000, loss: 2.552620, loss_shrink_maps: 1.477390, loss_threshold_maps: 0.785335, loss_binary_maps: 0.282744, avg_reader_cost: 1.47769 s, avg_batch_cost: 1.70345 s, avg_samples: 12.5, ips: 7.33807 samples/s, eta: 0:09:51
[2024/08/01 18:17:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:17:56] ppocr INFO: epoch: [72/100], global_step: 216, lr: 0.001000, loss: 2.514933, loss_shrink_maps: 1.451399, loss_threshold_maps: 0.785335, loss_binary_maps: 0.281126, avg_reader_cost: 1.48051 s, avg_batch_cost: 1.69955 s, avg_samples: 12.5, ips: 7.35489 samples/s, eta: 0:09:30
[2024/08/01 18:17:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:18:03] ppocr INFO: epoch: [73/100], global_step: 219, lr: 0.001000, loss: 2.594768, loss_shrink_maps: 1.537688, loss_threshold_maps: 0.790860, loss_binary_maps: 0.298404, avg_reader_cost: 1.50164 s, avg_batch_cost: 1.72667 s, avg_samples: 12.5, ips: 7.23936 samples/s, eta: 0:09:08
[2024/08/01 18:18:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:18:09] ppocr INFO: epoch: [74/100], global_step: 220, lr: 0.001000, loss: 2.564322, loss_shrink_maps: 1.500784, loss_threshold_maps: 0.788237, loss_binary_maps: 0.289217, avg_reader_cost: 0.40571 s, avg_batch_cost: 0.50885 s, avg_samples: 4.8, ips: 9.43302 samples/s, eta: 0:09:01
[2024/08/01 18:18:10] ppocr INFO: epoch: [74/100], global_step: 222, lr: 0.001000, loss: 2.579374, loss_shrink_maps: 1.510708, loss_threshold_maps: 0.790860, loss_binary_maps: 0.294171, avg_reader_cost: 1.10529 s, avg_batch_cost: 1.24488 s, avg_samples: 7.7, ips: 6.18534 samples/s, eta: 0:08:47
[2024/08/01 18:18:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:18:17] ppocr INFO: epoch: [75/100], global_step: 225, lr: 0.001000, loss: 2.576137, loss_shrink_maps: 1.495310, loss_threshold_maps: 0.788237, loss_binary_maps: 0.292460, avg_reader_cost: 1.51806 s, avg_batch_cost: 1.75170 s, avg_samples: 12.5, ips: 7.13594 samples/s, eta: 0:08:26
[2024/08/01 18:18:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:18:25] ppocr INFO: epoch: [76/100], global_step: 228, lr: 0.001000, loss: 2.576137, loss_shrink_maps: 1.493733, loss_threshold_maps: 0.790860, loss_binary_maps: 0.292460, avg_reader_cost: 1.53554 s, avg_batch_cost: 1.78624 s, avg_samples: 12.5, ips: 6.99794 samples/s, eta: 0:08:05
[2024/08/01 18:18:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:18:31] ppocr INFO: epoch: [77/100], global_step: 230, lr: 0.001000, loss: 2.540976, loss_shrink_maps: 1.470252, loss_threshold_maps: 0.776463, loss_binary_maps: 0.285446, avg_reader_cost: 0.93378 s, avg_batch_cost: 1.10736 s, avg_samples: 9.6, ips: 8.66926 samples/s, eta: 0:07:50
[2024/08/01 18:18:32] ppocr INFO: epoch: [77/100], global_step: 231, lr: 0.001000, loss: 2.497274, loss_shrink_maps: 1.439040, loss_threshold_maps: 0.776463, loss_binary_maps: 0.278949, avg_reader_cost: 0.59761 s, avg_batch_cost: 0.64982 s, avg_samples: 2.9, ips: 4.46279 samples/s, eta: 0:07:44
[2024/08/01 18:18:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:18:39] ppocr INFO: epoch: [78/100], global_step: 234, lr: 0.001000, loss: 2.540976, loss_shrink_maps: 1.470252, loss_threshold_maps: 0.776463, loss_binary_maps: 0.285446, avg_reader_cost: 1.53653 s, avg_batch_cost: 1.77065 s, avg_samples: 12.5, ips: 7.05955 samples/s, eta: 0:07:23
[2024/08/01 18:18:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:18:47] ppocr INFO: epoch: [79/100], global_step: 237, lr: 0.001000, loss: 2.527764, loss_shrink_maps: 1.470252, loss_threshold_maps: 0.762001, loss_binary_maps: 0.285446, avg_reader_cost: 1.55702 s, avg_batch_cost: 1.81551 s, avg_samples: 12.5, ips: 6.88513 samples/s, eta: 0:07:02
[2024/08/01 18:18:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:18:54] ppocr INFO: epoch: [80/100], global_step: 240, lr: 0.001000, loss: 2.455808, loss_shrink_maps: 1.415713, loss_threshold_maps: 0.760621, loss_binary_maps: 0.275684, avg_reader_cost: 1.49700 s, avg_batch_cost: 1.72136 s, avg_samples: 12.5, ips: 7.26171 samples/s, eta: 0:06:41

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 2/500 [00:00<00:39, 12.66it/s]
eval model::   1%|          | 5/500 [00:00<00:27, 18.13it/s]
eval model::   1%|▏         | 7/500 [00:00<00:26, 18.53it/s]
eval model::   2%|▏         | 9/500 [00:00<00:27, 18.09it/s]
eval model::   2%|▏         | 12/500 [00:00<00:24, 19.74it/s]
eval model::   3%|▎         | 14/500 [00:00<00:26, 18.29it/s]
eval model::   3%|▎         | 16/500 [00:00<00:26, 18.47it/s]
eval model::   4%|▍         | 19/500 [00:00<00:23, 20.75it/s]
eval model::   4%|▍         | 22/500 [00:01<00:22, 21.72it/s]
eval model::   5%|▌         | 25/500 [00:01<00:21, 22.44it/s]
eval model::   6%|▌         | 28/500 [00:01<00:20, 23.16it/s]
eval model::   6%|▌         | 31/500 [00:01<00:23, 20.10it/s]
eval model::   7%|▋         | 34/500 [00:01<00:24, 19.28it/s]
eval model::   7%|▋         | 37/500 [00:01<00:22, 20.79it/s]
eval model::   8%|▊         | 40/500 [00:02<00:23, 19.36it/s]
eval model::   9%|▊         | 43/500 [00:02<00:22, 19.88it/s]
eval model::   9%|▉         | 46/500 [00:02<00:21, 20.94it/s]
eval model::  10%|█         | 50/500 [00:02<00:19, 23.51it/s]
eval model::  11%|█         | 53/500 [00:02<00:19, 22.56it/s]
eval model::  11%|█         | 56/500 [00:02<00:20, 21.70it/s]
eval model::  12%|█▏        | 59/500 [00:02<00:20, 21.18it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:23, 18.86it/s]
eval model::  13%|█▎        | 65/500 [00:03<00:22, 19.31it/s]
eval model::  14%|█▎        | 68/500 [00:03<00:20, 21.03it/s]
eval model::  14%|█▍        | 71/500 [00:03<00:20, 20.92it/s]
eval model::  15%|█▍        | 74/500 [00:03<00:22, 19.07it/s]
eval model::  15%|█▌        | 77/500 [00:03<00:22, 19.13it/s]
eval model::  16%|█▌        | 81/500 [00:03<00:19, 21.90it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:18, 22.06it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:19, 21.56it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:18, 21.75it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:19, 21.06it/s]
eval model::  19%|█▉        | 96/500 [00:04<00:19, 20.94it/s]
eval model::  20%|█▉        | 99/500 [00:04<00:20, 19.99it/s]
eval model::  20%|██        | 102/500 [00:04<00:20, 19.80it/s]
eval model::  21%|██        | 105/500 [00:05<00:18, 21.68it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:18, 20.76it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:21, 18.08it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:19, 19.89it/s]
eval model::  23%|██▎       | 117/500 [00:05<00:18, 20.23it/s]
eval model::  24%|██▍       | 120/500 [00:05<00:20, 18.59it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:18, 20.45it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:19, 19.38it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:18, 19.61it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:19, 18.50it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:18, 19.44it/s]
eval model::  28%|██▊       | 138/500 [00:06<00:17, 20.29it/s]
eval model::  28%|██▊       | 141/500 [00:06<00:17, 20.32it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:16, 21.15it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:17, 20.65it/s]
eval model::  30%|███       | 150/500 [00:07<00:17, 19.77it/s]
eval model::  31%|███       | 153/500 [00:07<00:18, 18.71it/s]
eval model::  31%|███       | 156/500 [00:07<00:16, 20.85it/s]
eval model::  32%|███▏      | 159/500 [00:07<00:15, 21.67it/s]
eval model::  32%|███▏      | 162/500 [00:07<00:16, 20.30it/s]
eval model::  33%|███▎      | 165/500 [00:08<00:15, 21.09it/s]
eval model::  34%|███▎      | 168/500 [00:08<00:15, 21.50it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:15, 20.95it/s]
eval model::  35%|███▍      | 174/500 [00:08<00:17, 19.06it/s]
eval model::  35%|███▌      | 177/500 [00:08<00:16, 20.00it/s]
eval model::  36%|███▌      | 180/500 [00:08<00:16, 19.03it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:14, 21.32it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:14, 21.93it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:14, 22.19it/s]
eval model::  38%|███▊      | 192/500 [00:09<00:13, 22.13it/s]
eval model::  39%|███▉      | 195/500 [00:09<00:14, 20.78it/s]
eval model::  40%|███▉      | 198/500 [00:09<00:14, 21.51it/s]
eval model::  40%|████      | 201/500 [00:09<00:14, 20.93it/s]
eval model::  41%|████      | 204/500 [00:09<00:14, 20.76it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:17, 16.29it/s]
eval model::  42%|████▏     | 210/500 [00:10<00:17, 16.79it/s]
eval model::  43%|████▎     | 213/500 [00:10<00:15, 18.11it/s]
eval model::  43%|████▎     | 215/500 [00:10<00:17, 16.70it/s]
eval model::  43%|████▎     | 217/500 [00:10<00:17, 16.37it/s]
eval model::  44%|████▍     | 220/500 [00:10<00:15, 18.08it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:15, 18.23it/s]
eval model::  45%|████▌     | 226/500 [00:11<00:13, 21.02it/s]
eval model::  46%|████▌     | 230/500 [00:11<00:11, 23.69it/s]
eval model::  47%|████▋     | 233/500 [00:11<00:10, 24.95it/s]
eval model::  47%|████▋     | 236/500 [00:11<00:11, 23.94it/s]
eval model::  48%|████▊     | 239/500 [00:11<00:11, 23.71it/s]
eval model::  48%|████▊     | 242/500 [00:11<00:11, 22.06it/s]
eval model::  49%|████▉     | 245/500 [00:12<00:11, 23.14it/s]
eval model::  50%|████▉     | 248/500 [00:12<00:11, 21.85it/s]
eval model::  50%|█████     | 251/500 [00:12<00:11, 20.87it/s]
eval model::  51%|█████     | 254/500 [00:12<00:11, 20.59it/s]
eval model::  51%|█████▏    | 257/500 [00:12<00:11, 21.41it/s]
eval model::  52%|█████▏    | 260/500 [00:12<00:10, 21.88it/s]
eval model::  53%|█████▎    | 263/500 [00:12<00:11, 20.20it/s]
eval model::  53%|█████▎    | 266/500 [00:13<00:11, 19.95it/s]
eval model::  54%|█████▍    | 269/500 [00:13<00:12, 18.97it/s]
eval model::  54%|█████▍    | 272/500 [00:13<00:12, 18.81it/s]
eval model::  55%|█████▌    | 275/500 [00:13<00:12, 18.23it/s]
eval model::  55%|█████▌    | 277/500 [00:13<00:12, 18.19it/s]
eval model::  56%|█████▌    | 279/500 [00:13<00:12, 17.90it/s]
eval model::  56%|█████▋    | 282/500 [00:13<00:10, 20.11it/s]
eval model::  57%|█████▋    | 285/500 [00:14<00:14, 15.16it/s]
eval model::  58%|█████▊    | 288/500 [00:14<00:12, 17.50it/s]
eval model::  58%|█████▊    | 292/500 [00:14<00:09, 20.83it/s]
eval model::  59%|█████▉    | 295/500 [00:14<00:10, 19.03it/s]
eval model::  60%|█████▉    | 298/500 [00:14<00:09, 21.06it/s]
eval model::  60%|██████    | 301/500 [00:14<00:09, 20.02it/s]
eval model::  61%|██████    | 304/500 [00:15<00:09, 20.45it/s]
eval model::  61%|██████▏   | 307/500 [00:15<00:08, 21.76it/s]
eval model::  62%|██████▏   | 310/500 [00:15<00:08, 22.00it/s]
eval model::  63%|██████▎   | 313/500 [00:15<00:08, 22.00it/s]
eval model::  63%|██████▎   | 316/500 [00:15<00:08, 21.19it/s]
eval model::  64%|██████▍   | 319/500 [00:15<00:08, 22.51it/s]
eval model::  64%|██████▍   | 322/500 [00:15<00:08, 20.98it/s]
eval model::  65%|██████▌   | 325/500 [00:16<00:07, 22.01it/s]
eval model::  66%|██████▌   | 328/500 [00:16<00:08, 19.89it/s]
eval model::  66%|██████▌   | 331/500 [00:16<00:08, 19.76it/s]
eval model::  67%|██████▋   | 334/500 [00:16<00:07, 21.51it/s]
eval model::  67%|██████▋   | 337/500 [00:16<00:07, 21.10it/s]
eval model::  68%|██████▊   | 340/500 [00:16<00:08, 17.99it/s]
eval model::  69%|██████▊   | 343/500 [00:16<00:08, 19.28it/s]
eval model::  69%|██████▉   | 346/500 [00:17<00:07, 21.20it/s]
eval model::  70%|███████   | 350/500 [00:17<00:06, 23.79it/s]
eval model::  71%|███████   | 353/500 [00:17<00:06, 22.54it/s]
eval model::  71%|███████   | 356/500 [00:17<00:06, 20.65it/s]
eval model::  72%|███████▏  | 359/500 [00:17<00:06, 20.76it/s]
eval model::  72%|███████▏  | 362/500 [00:17<00:06, 20.77it/s]
eval model::  73%|███████▎  | 365/500 [00:17<00:06, 20.00it/s]
eval model::  74%|███████▎  | 368/500 [00:18<00:06, 21.56it/s]
eval model::  74%|███████▍  | 371/500 [00:18<00:05, 21.95it/s]
eval model::  75%|███████▌  | 375/500 [00:18<00:05, 24.73it/s]
eval model::  76%|███████▌  | 378/500 [00:18<00:04, 24.66it/s]
eval model::  76%|███████▌  | 381/500 [00:18<00:04, 23.89it/s]
eval model::  77%|███████▋  | 384/500 [00:18<00:05, 21.56it/s]
eval model::  77%|███████▋  | 387/500 [00:19<00:07, 15.12it/s]
eval model::  78%|███████▊  | 390/500 [00:19<00:06, 17.45it/s]
eval model::  79%|███████▊  | 393/500 [00:19<00:05, 19.73it/s]
eval model::  79%|███████▉  | 396/500 [00:19<00:04, 21.08it/s]
eval model::  80%|███████▉  | 399/500 [00:19<00:04, 22.22it/s]
eval model::  80%|████████  | 402/500 [00:19<00:04, 20.05it/s]
eval model::  81%|████████  | 405/500 [00:19<00:04, 20.76it/s]
eval model::  82%|████████▏ | 409/500 [00:20<00:03, 23.29it/s]
eval model::  82%|████████▏ | 412/500 [00:20<00:03, 22.91it/s]
eval model::  83%|████████▎ | 415/500 [00:20<00:03, 22.66it/s]
eval model::  84%|████████▎ | 418/500 [00:20<00:04, 19.52it/s]
eval model::  84%|████████▍ | 421/500 [00:20<00:04, 16.12it/s]
eval model::  85%|████████▍ | 424/500 [00:20<00:04, 17.86it/s]
eval model::  85%|████████▌ | 427/500 [00:21<00:03, 19.50it/s]
eval model::  86%|████████▌ | 430/500 [00:21<00:03, 20.98it/s]
eval model::  87%|████████▋ | 433/500 [00:21<00:03, 22.12it/s]
eval model::  87%|████████▋ | 436/500 [00:21<00:03, 20.88it/s]
eval model::  88%|████████▊ | 439/500 [00:21<00:03, 20.22it/s]
eval model::  88%|████████▊ | 442/500 [00:21<00:02, 19.42it/s]
eval model::  89%|████████▉ | 445/500 [00:21<00:02, 20.04it/s]
eval model::  90%|████████▉ | 448/500 [00:22<00:02, 20.75it/s]
eval model::  90%|█████████ | 451/500 [00:22<00:02, 20.78it/s]
eval model::  91%|█████████ | 454/500 [00:22<00:02, 21.13it/s]
eval model::  91%|█████████▏| 457/500 [00:22<00:01, 22.04it/s]
eval model::  92%|█████████▏| 460/500 [00:22<00:02, 19.36it/s]
eval model::  93%|█████████▎| 463/500 [00:22<00:02, 18.23it/s]
eval model::  93%|█████████▎| 465/500 [00:22<00:02, 17.17it/s]
eval model::  94%|█████████▎| 468/500 [00:23<00:01, 19.28it/s]
eval model::  94%|█████████▍| 471/500 [00:23<00:01, 19.55it/s]
eval model::  95%|█████████▍| 474/500 [00:23<00:01, 19.76it/s]
eval model::  95%|█████████▌| 477/500 [00:23<00:01, 21.03it/s]
eval model::  96%|█████████▌| 480/500 [00:23<00:00, 21.71it/s]
eval model::  97%|█████████▋| 483/500 [00:23<00:00, 22.72it/s]
eval model::  97%|█████████▋| 486/500 [00:23<00:00, 19.74it/s]
eval model::  98%|█████████▊| 489/500 [00:24<00:00, 20.62it/s]
eval model::  98%|█████████▊| 492/500 [00:24<00:00, 21.26it/s]
eval model::  99%|█████████▉| 495/500 [00:24<00:00, 21.52it/s]
eval model:: 100%|█████████▉| 498/500 [00:24<00:00, 21.84it/s]
eval model:: 100%|██████████| 500/500 [00:24<00:00, 20.36it/s]
[2024/08/01 18:19:19] ppocr INFO: cur metric, precision: 0.6117734724292101, recall: 0.39528165623495426, hmean: 0.48025738520035094, fps: 44.1252897392761
[2024/08/01 18:19:19] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/08/01 18:19:19] ppocr INFO: best metric, hmean: 0.48025738520035094, precision: 0.6117734724292101, recall: 0.39528165623495426, fps: 44.1252897392761, best_epoch: 80
[2024/08/01 18:19:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:19:26] ppocr INFO: epoch: [81/100], global_step: 243, lr: 0.001000, loss: 2.396393, loss_shrink_maps: 1.360264, loss_threshold_maps: 0.751727, loss_binary_maps: 0.264412, avg_reader_cost: 1.68287 s, avg_batch_cost: 1.96850 s, avg_samples: 12.5, ips: 6.35002 samples/s, eta: 0:06:21
[2024/08/01 18:19:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:19:33] ppocr INFO: epoch: [82/100], global_step: 246, lr: 0.001000, loss: 2.390742, loss_shrink_maps: 1.360264, loss_threshold_maps: 0.740024, loss_binary_maps: 0.264412, avg_reader_cost: 1.49697 s, avg_batch_cost: 1.71560 s, avg_samples: 12.5, ips: 7.28606 samples/s, eta: 0:06:00
[2024/08/01 18:19:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:19:41] ppocr INFO: epoch: [83/100], global_step: 249, lr: 0.001000, loss: 2.398024, loss_shrink_maps: 1.372147, loss_threshold_maps: 0.740024, loss_binary_maps: 0.268710, avg_reader_cost: 1.50348 s, avg_batch_cost: 1.72413 s, avg_samples: 12.5, ips: 7.25003 samples/s, eta: 0:05:40
[2024/08/01 18:19:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:19:46] ppocr INFO: epoch: [84/100], global_step: 250, lr: 0.001000, loss: 2.404293, loss_shrink_maps: 1.394358, loss_threshold_maps: 0.740024, loss_binary_maps: 0.273819, avg_reader_cost: 0.38260 s, avg_batch_cost: 0.50883 s, avg_samples: 4.8, ips: 9.43334 samples/s, eta: 0:05:33
[2024/08/01 18:19:48] ppocr INFO: epoch: [84/100], global_step: 252, lr: 0.001000, loss: 2.439608, loss_shrink_maps: 1.423297, loss_threshold_maps: 0.746299, loss_binary_maps: 0.278409, avg_reader_cost: 1.10528 s, avg_batch_cost: 1.24464 s, avg_samples: 7.7, ips: 6.18651 samples/s, eta: 0:05:19
[2024/08/01 18:19:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:19:55] ppocr INFO: epoch: [85/100], global_step: 255, lr: 0.001000, loss: 2.420098, loss_shrink_maps: 1.394358, loss_threshold_maps: 0.746299, loss_binary_maps: 0.273819, avg_reader_cost: 1.52414 s, avg_batch_cost: 1.75495 s, avg_samples: 12.5, ips: 7.12271 samples/s, eta: 0:04:59
[2024/08/01 18:19:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:20:03] ppocr INFO: epoch: [86/100], global_step: 258, lr: 0.001000, loss: 2.420098, loss_shrink_maps: 1.394358, loss_threshold_maps: 0.746299, loss_binary_maps: 0.273819, avg_reader_cost: 1.58948 s, avg_batch_cost: 1.80863 s, avg_samples: 12.5, ips: 6.91132 samples/s, eta: 0:04:38
[2024/08/01 18:20:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:20:09] ppocr INFO: epoch: [87/100], global_step: 260, lr: 0.001000, loss: 2.409462, loss_shrink_maps: 1.377930, loss_threshold_maps: 0.744447, loss_binary_maps: 0.270056, avg_reader_cost: 0.91790 s, avg_batch_cost: 1.08467 s, avg_samples: 9.6, ips: 8.85061 samples/s, eta: 0:04:25
[2024/08/01 18:20:10] ppocr INFO: epoch: [87/100], global_step: 261, lr: 0.001000, loss: 2.420098, loss_shrink_maps: 1.394358, loss_threshold_maps: 0.744447, loss_binary_maps: 0.273819, avg_reader_cost: 0.58620 s, avg_batch_cost: 0.63851 s, avg_samples: 2.9, ips: 4.54184 samples/s, eta: 0:04:18
[2024/08/01 18:20:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:20:17] ppocr INFO: epoch: [88/100], global_step: 264, lr: 0.001000, loss: 2.374943, loss_shrink_maps: 1.353950, loss_threshold_maps: 0.739561, loss_binary_maps: 0.264788, avg_reader_cost: 1.61884 s, avg_batch_cost: 1.83812 s, avg_samples: 12.5, ips: 6.80042 samples/s, eta: 0:03:58
[2024/08/01 18:20:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:20:24] ppocr INFO: epoch: [89/100], global_step: 267, lr: 0.001000, loss: 2.409462, loss_shrink_maps: 1.365098, loss_threshold_maps: 0.742023, loss_binary_maps: 0.266683, avg_reader_cost: 1.48039 s, avg_batch_cost: 1.72059 s, avg_samples: 12.5, ips: 7.26495 samples/s, eta: 0:03:38
[2024/08/01 18:20:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:20:32] ppocr INFO: epoch: [90/100], global_step: 270, lr: 0.001000, loss: 2.385764, loss_shrink_maps: 1.353950, loss_threshold_maps: 0.742023, loss_binary_maps: 0.264788, avg_reader_cost: 1.49291 s, avg_batch_cost: 1.71983 s, avg_samples: 12.5, ips: 7.26816 samples/s, eta: 0:03:18
[2024/08/01 18:20:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:20:39] ppocr INFO: epoch: [91/100], global_step: 273, lr: 0.001000, loss: 2.327370, loss_shrink_maps: 1.334060, loss_threshold_maps: 0.739345, loss_binary_maps: 0.261076, avg_reader_cost: 1.54143 s, avg_batch_cost: 1.80413 s, avg_samples: 12.5, ips: 6.92853 samples/s, eta: 0:02:58
[2024/08/01 18:20:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:20:47] ppocr INFO: epoch: [92/100], global_step: 276, lr: 0.001000, loss: 2.343691, loss_shrink_maps: 1.346872, loss_threshold_maps: 0.740283, loss_binary_maps: 0.264314, avg_reader_cost: 1.58525 s, avg_batch_cost: 1.84145 s, avg_samples: 12.5, ips: 6.78814 samples/s, eta: 0:02:38
[2024/08/01 18:20:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:20:54] ppocr INFO: epoch: [93/100], global_step: 279, lr: 0.001000, loss: 2.329264, loss_shrink_maps: 1.338529, loss_threshold_maps: 0.740488, loss_binary_maps: 0.262003, avg_reader_cost: 1.52547 s, avg_batch_cost: 1.74522 s, avg_samples: 12.5, ips: 7.16240 samples/s, eta: 0:02:18
[2024/08/01 18:20:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:21:00] ppocr INFO: epoch: [94/100], global_step: 280, lr: 0.001000, loss: 2.351420, loss_shrink_maps: 1.357253, loss_threshold_maps: 0.744144, loss_binary_maps: 0.264994, avg_reader_cost: 0.41975 s, avg_batch_cost: 0.49864 s, avg_samples: 4.8, ips: 9.62615 samples/s, eta: 0:02:11
[2024/08/01 18:21:01] ppocr INFO: epoch: [94/100], global_step: 282, lr: 0.001000, loss: 2.350816, loss_shrink_maps: 1.357253, loss_threshold_maps: 0.744144, loss_binary_maps: 0.264994, avg_reader_cost: 1.08484 s, avg_batch_cost: 1.22423 s, avg_samples: 7.7, ips: 6.28965 samples/s, eta: 0:01:58
[2024/08/01 18:21:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:21:08] ppocr INFO: epoch: [95/100], global_step: 285, lr: 0.001000, loss: 2.443182, loss_shrink_maps: 1.408644, loss_threshold_maps: 0.749047, loss_binary_maps: 0.277262, avg_reader_cost: 1.50536 s, avg_batch_cost: 1.72401 s, avg_samples: 12.5, ips: 7.25053 samples/s, eta: 0:01:38
[2024/08/01 18:21:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:21:16] ppocr INFO: epoch: [96/100], global_step: 288, lr: 0.001000, loss: 2.353238, loss_shrink_maps: 1.357253, loss_threshold_maps: 0.737373, loss_binary_maps: 0.264994, avg_reader_cost: 1.54814 s, avg_batch_cost: 1.79429 s, avg_samples: 12.5, ips: 6.96655 samples/s, eta: 0:01:18
[2024/08/01 18:21:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:21:23] ppocr INFO: epoch: [97/100], global_step: 290, lr: 0.001000, loss: 2.359910, loss_shrink_maps: 1.361429, loss_threshold_maps: 0.737373, loss_binary_maps: 0.266364, avg_reader_cost: 0.92075 s, avg_batch_cost: 1.09076 s, avg_samples: 9.6, ips: 8.80119 samples/s, eta: 0:01:05
[2024/08/01 18:21:23] ppocr INFO: epoch: [97/100], global_step: 291, lr: 0.001000, loss: 2.385701, loss_shrink_maps: 1.361429, loss_threshold_maps: 0.742244, loss_binary_maps: 0.266364, avg_reader_cost: 0.58916 s, avg_batch_cost: 0.64136 s, avg_samples: 2.9, ips: 4.52161 samples/s, eta: 0:00:58
[2024/08/01 18:21:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:21:30] ppocr INFO: epoch: [98/100], global_step: 294, lr: 0.001000, loss: 2.340175, loss_shrink_maps: 1.339800, loss_threshold_maps: 0.737293, loss_binary_maps: 0.261878, avg_reader_cost: 1.54080 s, avg_batch_cost: 1.77697 s, avg_samples: 12.5, ips: 7.03445 samples/s, eta: 0:00:39
[2024/08/01 18:21:32] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:21:38] ppocr INFO: epoch: [99/100], global_step: 297, lr: 0.001000, loss: 2.332692, loss_shrink_maps: 1.321191, loss_threshold_maps: 0.730704, loss_binary_maps: 0.259471, avg_reader_cost: 1.50092 s, avg_batch_cost: 1.72596 s, avg_samples: 12.5, ips: 7.24235 samples/s, eta: 0:00:19
[2024/08/01 18:21:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:21:45] ppocr INFO: epoch: [100/100], global_step: 300, lr: 0.001000, loss: 2.332692, loss_shrink_maps: 1.321191, loss_threshold_maps: 0.730704, loss_binary_maps: 0.259471, avg_reader_cost: 1.52976 s, avg_batch_cost: 1.76053 s, avg_samples: 12.5, ips: 7.10013 samples/s, eta: 0:00:00

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:55,  9.01it/s]
eval model::   1%|          | 4/500 [00:00<00:28, 17.33it/s]
eval model::   1%|▏         | 7/500 [00:00<00:24, 20.44it/s]
eval model::   2%|▏         | 10/500 [00:00<00:26, 18.76it/s]
eval model::   3%|▎         | 13/500 [00:00<00:24, 19.71it/s]
eval model::   3%|▎         | 16/500 [00:00<00:22, 21.16it/s]
eval model::   4%|▍         | 19/500 [00:00<00:22, 20.95it/s]
eval model::   4%|▍         | 22/500 [00:01<00:23, 20.59it/s]
eval model::   5%|▌         | 25/500 [00:01<00:23, 20.44it/s]
eval model::   6%|▌         | 28/500 [00:01<00:22, 21.22it/s]
eval model::   6%|▌         | 31/500 [00:01<00:23, 19.83it/s]
eval model::   7%|▋         | 34/500 [00:01<00:24, 18.95it/s]
eval model::   7%|▋         | 37/500 [00:01<00:22, 20.79it/s]
eval model::   8%|▊         | 40/500 [00:02<00:23, 19.84it/s]
eval model::   9%|▊         | 43/500 [00:02<00:23, 19.53it/s]
eval model::   9%|▉         | 45/500 [00:02<00:24, 18.89it/s]
eval model::   9%|▉         | 47/500 [00:02<00:23, 18.88it/s]
eval model::  10%|█         | 50/500 [00:02<00:23, 19.53it/s]
eval model::  10%|█         | 52/500 [00:02<00:24, 18.60it/s]
eval model::  11%|█         | 54/500 [00:02<00:23, 18.83it/s]
eval model::  11%|█▏        | 57/500 [00:02<00:22, 19.82it/s]
eval model::  12%|█▏        | 59/500 [00:03<00:23, 18.51it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:25, 17.20it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:27, 15.62it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:23, 18.11it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:20, 20.68it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:19, 21.42it/s]
eval model::  15%|█▌        | 75/500 [00:03<00:20, 21.10it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:23, 18.07it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:21, 19.63it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:22, 18.53it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:22, 18.58it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:21, 18.71it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:22, 18.49it/s]
eval model::  19%|█▉        | 96/500 [00:04<00:20, 19.43it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:20, 19.43it/s]
eval model::  20%|██        | 101/500 [00:05<00:21, 18.80it/s]
eval model::  21%|██        | 104/500 [00:05<00:20, 19.76it/s]
eval model::  21%|██▏       | 107/500 [00:05<00:18, 20.86it/s]
eval model::  22%|██▏       | 110/500 [00:05<00:19, 19.74it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:19, 19.69it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:20, 19.18it/s]
eval model::  23%|██▎       | 116/500 [00:06<00:20, 18.79it/s]
eval model::  24%|██▍       | 119/500 [00:06<00:18, 20.61it/s]
eval model::  24%|██▍       | 122/500 [00:06<00:19, 19.74it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:18, 20.31it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:18, 20.43it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:21, 17.47it/s]
eval model::  27%|██▋       | 133/500 [00:06<00:20, 17.93it/s]
eval model::  27%|██▋       | 135/500 [00:07<00:19, 18.38it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:18, 19.54it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:19, 18.36it/s]
eval model::  29%|██▊       | 143/500 [00:07<00:19, 18.61it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:18, 18.75it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:19, 18.34it/s]
eval model::  30%|███       | 150/500 [00:07<00:18, 19.38it/s]
eval model::  30%|███       | 152/500 [00:07<00:18, 19.20it/s]
eval model::  31%|███       | 154/500 [00:08<00:18, 18.87it/s]
eval model::  31%|███       | 156/500 [00:08<00:19, 17.43it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:19, 17.93it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:19, 17.40it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:18, 18.24it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:19, 17.23it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:19, 16.66it/s]
eval model::  34%|███▍      | 171/500 [00:09<00:19, 17.24it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:20, 16.18it/s]
eval model::  35%|███▌      | 177/500 [00:09<00:17, 18.11it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:19, 16.26it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:17, 18.25it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:16, 19.42it/s]
eval model::  38%|███▊      | 189/500 [00:09<00:15, 20.16it/s]
eval model::  38%|███▊      | 192/500 [00:10<00:14, 20.86it/s]
eval model::  39%|███▉      | 195/500 [00:10<00:15, 19.17it/s]
eval model::  39%|███▉      | 197/500 [00:10<00:16, 18.81it/s]
eval model::  40%|████      | 200/500 [00:10<00:14, 20.09it/s]
eval model::  41%|████      | 203/500 [00:10<00:13, 22.28it/s]
eval model::  41%|████      | 206/500 [00:10<00:18, 16.08it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:18, 15.70it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:18, 15.80it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:16, 17.56it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:17, 16.42it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:18, 15.61it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:16, 17.27it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:16, 16.39it/s]
eval model::  45%|████▌     | 225/500 [00:12<00:15, 18.02it/s]
eval model::  45%|████▌     | 227/500 [00:12<00:15, 17.98it/s]
eval model::  46%|████▌     | 230/500 [00:12<00:13, 20.44it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:12, 21.62it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:12, 20.46it/s]
eval model::  48%|████▊     | 240/500 [00:12<00:10, 23.73it/s]
eval model::  49%|████▊     | 243/500 [00:12<00:11, 22.43it/s]
eval model::  49%|████▉     | 246/500 [00:12<00:10, 24.03it/s]
eval model::  50%|████▉     | 249/500 [00:13<00:11, 22.07it/s]
eval model::  50%|█████     | 252/500 [00:13<00:11, 21.15it/s]
eval model::  51%|█████     | 255/500 [00:13<00:12, 20.25it/s]
eval model::  52%|█████▏    | 258/500 [00:13<00:11, 21.33it/s]
eval model::  52%|█████▏    | 261/500 [00:13<00:11, 20.00it/s]
eval model::  53%|█████▎    | 264/500 [00:13<00:13, 17.69it/s]
eval model::  53%|█████▎    | 267/500 [00:14<00:12, 18.51it/s]
eval model::  54%|█████▍    | 270/500 [00:14<00:11, 19.57it/s]
eval model::  55%|█████▍    | 273/500 [00:14<00:11, 20.44it/s]
eval model::  55%|█████▌    | 276/500 [00:14<00:10, 20.47it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:10, 21.98it/s]
eval model::  56%|█████▋    | 282/500 [00:14<00:10, 21.10it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:14, 14.90it/s]
eval model::  57%|█████▋    | 287/500 [00:15<00:13, 15.39it/s]
eval model::  58%|█████▊    | 290/500 [00:15<00:11, 17.99it/s]
eval model::  59%|█████▊    | 293/500 [00:15<00:10, 20.06it/s]
eval model::  59%|█████▉    | 296/500 [00:15<00:12, 16.29it/s]
eval model::  60%|█████▉    | 299/500 [00:15<00:10, 18.91it/s]
eval model::  60%|██████    | 302/500 [00:15<00:10, 18.43it/s]
eval model::  61%|██████    | 305/500 [00:16<00:09, 19.91it/s]
eval model::  62%|██████▏   | 308/500 [00:16<00:08, 21.47it/s]
eval model::  62%|██████▏   | 311/500 [00:16<00:08, 22.64it/s]
eval model::  63%|██████▎   | 314/500 [00:16<00:08, 21.38it/s]
eval model::  63%|██████▎   | 317/500 [00:16<00:08, 22.44it/s]
eval model::  64%|██████▍   | 320/500 [00:16<00:08, 21.47it/s]
eval model::  65%|██████▍   | 323/500 [00:16<00:08, 20.84it/s]
eval model::  65%|██████▌   | 326/500 [00:17<00:08, 21.49it/s]
eval model::  66%|██████▌   | 329/500 [00:17<00:08, 19.59it/s]
eval model::  66%|██████▋   | 332/500 [00:17<00:07, 21.26it/s]
eval model::  67%|██████▋   | 335/500 [00:17<00:07, 21.92it/s]
eval model::  68%|██████▊   | 338/500 [00:17<00:07, 20.27it/s]
eval model::  68%|██████▊   | 341/500 [00:17<00:08, 18.76it/s]
eval model::  69%|██████▉   | 344/500 [00:17<00:07, 20.53it/s]
eval model::  69%|██████▉   | 347/500 [00:18<00:06, 22.07it/s]
eval model::  70%|███████   | 350/500 [00:18<00:06, 21.95it/s]
eval model::  71%|███████   | 353/500 [00:18<00:06, 22.64it/s]
eval model::  71%|███████   | 356/500 [00:18<00:07, 18.87it/s]
eval model::  72%|███████▏  | 359/500 [00:18<00:07, 18.92it/s]
eval model::  72%|███████▏  | 361/500 [00:18<00:07, 18.69it/s]
eval model::  73%|███████▎  | 363/500 [00:18<00:07, 18.60it/s]
eval model::  73%|███████▎  | 365/500 [00:19<00:08, 16.59it/s]
eval model::  73%|███████▎  | 367/500 [00:19<00:07, 17.37it/s]
eval model::  74%|███████▍  | 370/500 [00:19<00:06, 18.98it/s]
eval model::  75%|███████▍  | 373/500 [00:19<00:06, 20.12it/s]
eval model::  75%|███████▌  | 376/500 [00:19<00:05, 21.51it/s]
eval model::  76%|███████▌  | 379/500 [00:19<00:05, 22.23it/s]
eval model::  76%|███████▋  | 382/500 [00:19<00:05, 21.35it/s]
eval model::  77%|███████▋  | 385/500 [00:19<00:05, 22.35it/s]
eval model::  78%|███████▊  | 388/500 [00:20<00:06, 16.16it/s]
eval model::  78%|███████▊  | 390/500 [00:20<00:06, 16.87it/s]
eval model::  79%|███████▊  | 393/500 [00:20<00:05, 18.28it/s]
eval model::  79%|███████▉  | 396/500 [00:20<00:05, 18.87it/s]
eval model::  80%|███████▉  | 399/500 [00:20<00:04, 20.49it/s]
eval model::  80%|████████  | 402/500 [00:20<00:04, 20.22it/s]
eval model::  81%|████████  | 405/500 [00:20<00:04, 21.64it/s]
eval model::  82%|████████▏ | 408/500 [00:21<00:04, 21.13it/s]
eval model::  82%|████████▏ | 411/500 [00:21<00:04, 20.21it/s]
eval model::  83%|████████▎ | 414/500 [00:21<00:04, 19.78it/s]
eval model::  83%|████████▎ | 417/500 [00:21<00:04, 19.41it/s]
eval model::  84%|████████▍ | 419/500 [00:21<00:04, 18.67it/s]
eval model::  84%|████████▍ | 421/500 [00:21<00:04, 16.64it/s]
eval model::  85%|████████▍ | 424/500 [00:22<00:04, 18.46it/s]
eval model::  85%|████████▌ | 426/500 [00:22<00:04, 18.34it/s]
eval model::  86%|████████▌ | 429/500 [00:22<00:03, 19.59it/s]
eval model::  86%|████████▌ | 431/500 [00:22<00:03, 19.53it/s]
eval model::  87%|████████▋ | 434/500 [00:22<00:03, 21.84it/s]
eval model::  87%|████████▋ | 437/500 [00:22<00:02, 21.91it/s]
eval model::  88%|████████▊ | 440/500 [00:22<00:03, 19.29it/s]
eval model::  89%|████████▊ | 443/500 [00:22<00:02, 21.50it/s]
eval model::  89%|████████▉ | 446/500 [00:23<00:02, 20.93it/s]
eval model::  90%|████████▉ | 449/500 [00:23<00:02, 18.98it/s]
eval model::  90%|█████████ | 452/500 [00:23<00:02, 21.05it/s]
eval model::  91%|█████████ | 455/500 [00:23<00:02, 19.74it/s]
eval model::  92%|█████████▏| 458/500 [00:23<00:02, 19.96it/s]
eval model::  92%|█████████▏| 461/500 [00:23<00:02, 19.46it/s]
eval model::  93%|█████████▎| 464/500 [00:24<00:02, 17.46it/s]
eval model::  93%|█████████▎| 466/500 [00:24<00:02, 15.98it/s]
eval model::  94%|█████████▍| 469/500 [00:24<00:01, 17.61it/s]
eval model::  94%|█████████▍| 472/500 [00:24<00:01, 18.72it/s]
eval model::  95%|█████████▍| 474/500 [00:24<00:01, 18.67it/s]
eval model::  95%|█████████▌| 477/500 [00:24<00:01, 20.27it/s]
eval model::  96%|█████████▌| 480/500 [00:24<00:00, 20.90it/s]
eval model::  97%|█████████▋| 483/500 [00:25<00:00, 20.47it/s]
eval model::  97%|█████████▋| 486/500 [00:25<00:00, 19.97it/s]
eval model::  98%|█████████▊| 489/500 [00:25<00:00, 21.73it/s]
eval model::  98%|█████████▊| 492/500 [00:25<00:00, 19.61it/s]
eval model::  99%|█████████▉| 495/500 [00:25<00:00, 20.58it/s]
eval model:: 100%|█████████▉| 498/500 [00:25<00:00, 21.96it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.38it/s]
[2024/08/01 18:22:11] ppocr INFO: cur metric, precision: 0.492258064516129, recall: 0.3673567645642754, hmean: 0.420733388475324, fps: 45.62088636893636
[2024/08/01 18:22:11] ppocr INFO: best metric, hmean: 0.48025738520035094, precision: 0.6117734724292101, recall: 0.39528165623495426, fps: 44.1252897392761, best_epoch: 80
[2024/08/01 18:22:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:22:11] ppocr INFO: best metric, hmean: 0.48025738520035094, precision: 0.6117734724292101, recall: 0.39528165623495426, fps: 44.1252897392761, best_epoch: 80
I0801 18:22:13.097801 56755 tcp_store.cc:289] receive shutdown event and so quit from MasterDaemon run loop
[2024/08/01 18:31:00] ppocr INFO: Architecture : 
[2024/08/01 18:31:00] ppocr INFO:     Backbone : 
[2024/08/01 18:31:00] ppocr INFO:         model_name : large
[2024/08/01 18:31:00] ppocr INFO:         name : MobileNetV3
[2024/08/01 18:31:00] ppocr INFO:         scale : 0.5
[2024/08/01 18:31:00] ppocr INFO:     Head : 
[2024/08/01 18:31:00] ppocr INFO:         k : 50
[2024/08/01 18:31:00] ppocr INFO:         name : DBHead
[2024/08/01 18:31:00] ppocr INFO:     Neck : 
[2024/08/01 18:31:00] ppocr INFO:         name : DBFPN
[2024/08/01 18:31:00] ppocr INFO:         out_channels : 256
[2024/08/01 18:31:00] ppocr INFO:     Transform : None
[2024/08/01 18:31:00] ppocr INFO:     algorithm : DB
[2024/08/01 18:31:00] ppocr INFO:     model_type : det
[2024/08/01 18:31:00] ppocr INFO: Eval : 
[2024/08/01 18:31:00] ppocr INFO:     dataset : 
[2024/08/01 18:31:00] ppocr INFO:         data_dir : /datasets/icdar2015/text_localization/
[2024/08/01 18:31:00] ppocr INFO:         label_file_list : ['/datasets/icdar2015/text_localization/test_icdar2015_label.txt']
[2024/08/01 18:31:00] ppocr INFO:         name : SimpleDataSet
[2024/08/01 18:31:00] ppocr INFO:         transforms : 
[2024/08/01 18:31:00] ppocr INFO:             DecodeImage : 
[2024/08/01 18:31:00] ppocr INFO:                 channel_first : False
[2024/08/01 18:31:00] ppocr INFO:                 img_mode : BGR
[2024/08/01 18:31:00] ppocr INFO:             DetLabelEncode : None
[2024/08/01 18:31:00] ppocr INFO:             DetResizeForTest : 
[2024/08/01 18:31:00] ppocr INFO:                 image_shape : [736, 1280]
[2024/08/01 18:31:00] ppocr INFO:             NormalizeImage : 
[2024/08/01 18:31:00] ppocr INFO:                 mean : [0.485, 0.456, 0.406]
[2024/08/01 18:31:00] ppocr INFO:                 order : hwc
[2024/08/01 18:31:00] ppocr INFO:                 scale : 1./255.
[2024/08/01 18:31:00] ppocr INFO:                 std : [0.229, 0.224, 0.225]
[2024/08/01 18:31:00] ppocr INFO:             ToCHWImage : None
[2024/08/01 18:31:00] ppocr INFO:             KeepKeys : 
[2024/08/01 18:31:00] ppocr INFO:                 keep_keys : ['image', 'shape', 'polys', 'ignore_tags']
[2024/08/01 18:31:00] ppocr INFO:     loader : 
[2024/08/01 18:31:00] ppocr INFO:         batch_size_per_card : 1
[2024/08/01 18:31:00] ppocr INFO:         drop_last : False
[2024/08/01 18:31:00] ppocr INFO:         num_workers : 0
[2024/08/01 18:31:00] ppocr INFO:         shuffle : False
[2024/08/01 18:31:00] ppocr INFO:         use_shared_memory : True
[2024/08/01 18:31:00] ppocr INFO: Global : 
[2024/08/01 18:31:00] ppocr INFO:     cal_metric_during_train : False
[2024/08/01 18:31:00] ppocr INFO:     checkpoints : None
[2024/08/01 18:31:00] ppocr INFO:     distributed : True
[2024/08/01 18:31:00] ppocr INFO:     epoch_num : 100
[2024/08/01 18:31:00] ppocr INFO:     eval_batch_step : [0, 60]
[2024/08/01 18:31:00] ppocr INFO:     infer_img : doc/imgs_en/img_10.jpg
[2024/08/01 18:31:00] ppocr INFO:     log_smooth_window : 20
[2024/08/01 18:31:00] ppocr INFO:     pretrained_model : ./pretrain_models/MobileNetV3_large_x0_5_pretrained
[2024/08/01 18:31:00] ppocr INFO:     print_batch_step : 10
[2024/08/01 18:31:00] ppocr INFO:     save_epoch_step : 1200
[2024/08/01 18:31:00] ppocr INFO:     save_inference_dir : None
[2024/08/01 18:31:00] ppocr INFO:     save_model_dir : ./output/db_mv3/
[2024/08/01 18:31:00] ppocr INFO:     save_res_path : ./output/det_db/predicts_db.txt
[2024/08/01 18:31:00] ppocr INFO:     use_gpu : True
[2024/08/01 18:31:00] ppocr INFO:     use_visualdl : False
[2024/08/01 18:31:00] ppocr INFO:     use_xpu : False
[2024/08/01 18:31:00] ppocr INFO: Loss : 
[2024/08/01 18:31:00] ppocr INFO:     alpha : 5
[2024/08/01 18:31:00] ppocr INFO:     balance_loss : True
[2024/08/01 18:31:00] ppocr INFO:     beta : 10
[2024/08/01 18:31:00] ppocr INFO:     main_loss_type : DiceLoss
[2024/08/01 18:31:00] ppocr INFO:     name : DBLoss
[2024/08/01 18:31:00] ppocr INFO:     ohem_ratio : 3
[2024/08/01 18:31:00] ppocr INFO: Metric : 
[2024/08/01 18:31:00] ppocr INFO:     main_indicator : hmean
[2024/08/01 18:31:00] ppocr INFO:     name : DetMetric
[2024/08/01 18:31:00] ppocr INFO: Optimizer : 
[2024/08/01 18:31:00] ppocr INFO:     beta1 : 0.9
[2024/08/01 18:31:00] ppocr INFO:     beta2 : 0.999
[2024/08/01 18:31:00] ppocr INFO:     lr : 
[2024/08/01 18:31:00] ppocr INFO:         learning_rate : 0.001
[2024/08/01 18:31:00] ppocr INFO:     name : Adam
[2024/08/01 18:31:00] ppocr INFO:     regularizer : 
[2024/08/01 18:31:00] ppocr INFO:         factor : 0
[2024/08/01 18:31:00] ppocr INFO:         name : L2
[2024/08/01 18:31:00] ppocr INFO: PostProcess : 
[2024/08/01 18:31:00] ppocr INFO:     box_thresh : 0.6
[2024/08/01 18:31:00] ppocr INFO:     max_candidates : 1000
[2024/08/01 18:31:00] ppocr INFO:     name : DBPostProcess
[2024/08/01 18:31:00] ppocr INFO:     thresh : 0.3
[2024/08/01 18:31:00] ppocr INFO:     unclip_ratio : 1.5
[2024/08/01 18:31:00] ppocr INFO: Train : 
[2024/08/01 18:31:00] ppocr INFO:     dataset : 
[2024/08/01 18:31:00] ppocr INFO:         data_dir : /datasets/icdar2015/text_localization/
[2024/08/01 18:31:00] ppocr INFO:         label_file_list : ['/datasets/icdar2015/text_localization/train_icdar2015_label.txt']
[2024/08/01 18:31:00] ppocr INFO:         name : SimpleDataSet
[2024/08/01 18:31:00] ppocr INFO:         ratio_list : [1.0]
[2024/08/01 18:31:00] ppocr INFO:         transforms : 
[2024/08/01 18:31:00] ppocr INFO:             DecodeImage : 
[2024/08/01 18:31:00] ppocr INFO:                 channel_first : False
[2024/08/01 18:31:00] ppocr INFO:                 img_mode : BGR
[2024/08/01 18:31:00] ppocr INFO:             DetLabelEncode : None
[2024/08/01 18:31:00] ppocr INFO:             IaaAugment : 
[2024/08/01 18:31:00] ppocr INFO:                 augmenter_args : 
[2024/08/01 18:31:00] ppocr INFO:                     args : 
[2024/08/01 18:31:00] ppocr INFO:                         p : 0.5
[2024/08/01 18:31:00] ppocr INFO:                     type : Fliplr
[2024/08/01 18:31:00] ppocr INFO:                     args : 
[2024/08/01 18:31:00] ppocr INFO:                         rotate : [-10, 10]
[2024/08/01 18:31:00] ppocr INFO:                     type : Affine
[2024/08/01 18:31:00] ppocr INFO:                     args : 
[2024/08/01 18:31:00] ppocr INFO:                         size : [0.5, 3]
[2024/08/01 18:31:00] ppocr INFO:                     type : Resize
[2024/08/01 18:31:00] ppocr INFO:             EastRandomCropData : 
[2024/08/01 18:31:00] ppocr INFO:                 keep_ratio : True
[2024/08/01 18:31:00] ppocr INFO:                 max_tries : 50
[2024/08/01 18:31:00] ppocr INFO:                 size : [640, 640]
[2024/08/01 18:31:00] ppocr INFO:             MakeBorderMap : 
[2024/08/01 18:31:00] ppocr INFO:                 shrink_ratio : 0.4
[2024/08/01 18:31:00] ppocr INFO:                 thresh_max : 0.7
[2024/08/01 18:31:00] ppocr INFO:                 thresh_min : 0.3
[2024/08/01 18:31:00] ppocr INFO:             MakeShrinkMap : 
[2024/08/01 18:31:00] ppocr INFO:                 min_text_size : 8
[2024/08/01 18:31:00] ppocr INFO:                 shrink_ratio : 0.4
[2024/08/01 18:31:00] ppocr INFO:             NormalizeImage : 
[2024/08/01 18:31:00] ppocr INFO:                 mean : [0.485, 0.456, 0.406]
[2024/08/01 18:31:00] ppocr INFO:                 order : hwc
[2024/08/01 18:31:00] ppocr INFO:                 scale : 1./255.
[2024/08/01 18:31:00] ppocr INFO:                 std : [0.229, 0.224, 0.225]
[2024/08/01 18:31:00] ppocr INFO:             ToCHWImage : None
[2024/08/01 18:31:00] ppocr INFO:             KeepKeys : 
[2024/08/01 18:31:00] ppocr INFO:                 keep_keys : ['image', 'threshold_map', 'threshold_mask', 'shrink_map', 'shrink_mask']
[2024/08/01 18:31:00] ppocr INFO:     loader : 
[2024/08/01 18:31:00] ppocr INFO:         batch_size_per_card : 48
[2024/08/01 18:31:00] ppocr INFO:         drop_last : False
[2024/08/01 18:31:00] ppocr INFO:         num_workers : 8
[2024/08/01 18:31:00] ppocr INFO:         shuffle : True
[2024/08/01 18:31:00] ppocr INFO:         use_shared_memory : True
[2024/08/01 18:31:00] ppocr INFO: profiler_options : None
[2024/08/01 18:31:00] ppocr INFO: train with paddle 2.5.2 and device Place(gpu:0)
======================= Modified FLAGS detected =======================
FLAGS(name='FLAGS_cudnn_batchnorm_spatial_persistent', current_value=True, default_value=False)
FLAGS(name='FLAGS_selected_gpus', current_value='0', default_value='')
=======================================================================
I0801 18:31:00.364156 110373 tcp_utils.cc:181] The server starts to listen on IP_ANY:63697
I0801 18:31:00.364395 110373 tcp_utils.cc:130] Successfully connected to 10.8.145.246:63697
I0801 18:31:03.395391 110373 process_group_nccl.cc:120] ProcessGroupNCCL pg_timeout_ 1800000
[2024/08/01 18:31:03] ppocr INFO: Initialize indexs of datasets:['/datasets/icdar2015/text_localization/train_icdar2015_label.txt']
[2024/08/01 18:31:03] ppocr INFO: Initialize indexs of datasets:['/datasets/icdar2015/text_localization/test_icdar2015_label.txt']
W0801 18:31:03.406730 110373 gpu_resources.cc:119] Please NOTE: device: 0, GPU Compute Capability: 90.2, Driver API Version: 50724.2, Runtime API Version: 50724.2
[2024/08/01 18:31:04] ppocr INFO: load pretrain successful from ./pretrain_models/MobileNetV3_large_x0_5_pretrained
[2024/08/01 18:31:04] ppocr INFO: train dataloader has 3 iters
[2024/08/01 18:31:04] ppocr INFO: valid dataloader has 500 iters
[2024/08/01 18:31:04] ppocr INFO: During the training process, after the 0th iteration, an evaluation is run every 60 iterations
[2024/08/01 18:31:27] ppocr INFO: epoch: [1/100], global_step: 3, lr: 0.001000, loss: 9.311636, loss_shrink_maps: 4.901662, loss_threshold_maps: 3.441306, loss_binary_maps: 0.983807, avg_reader_cost: 5.81977 s, avg_batch_cost: 6.51965 s, avg_samples: 12.5, ips: 1.91728 samples/s, eta: 1:47:34
[2024/08/01 18:31:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:31:37] ppocr INFO: epoch: [2/100], global_step: 6, lr: 0.001000, loss: 8.466688, loss_shrink_maps: 4.879443, loss_threshold_maps: 2.599884, loss_binary_maps: 0.979790, avg_reader_cost: 2.27395 s, avg_batch_cost: 2.53884 s, avg_samples: 12.5, ips: 4.92352 samples/s, eta: 1:13:58
[2024/08/01 18:31:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:31:46] ppocr INFO: epoch: [3/100], global_step: 9, lr: 0.001000, loss: 7.519474, loss_shrink_maps: 4.863124, loss_threshold_maps: 1.679606, loss_binary_maps: 0.976744, avg_reader_cost: 2.22354 s, avg_batch_cost: 2.51247 s, avg_samples: 12.5, ips: 4.97519 samples/s, eta: 1:02:21
[2024/08/01 18:31:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:31:54] ppocr INFO: epoch: [4/100], global_step: 10, lr: 0.001000, loss: 7.353305, loss_shrink_maps: 4.866306, loss_threshold_maps: 1.529627, loss_binary_maps: 0.977697, avg_reader_cost: 0.66084 s, avg_batch_cost: 0.76427 s, avg_samples: 4.8, ips: 6.28052 samples/s, eta: 0:59:37
[2024/08/01 18:31:56] ppocr INFO: epoch: [4/100], global_step: 12, lr: 0.001000, loss: 7.163844, loss_shrink_maps: 4.855438, loss_threshold_maps: 1.349466, loss_binary_maps: 0.975132, avg_reader_cost: 1.62532 s, avg_batch_cost: 1.78016 s, avg_samples: 7.7, ips: 4.32545 samples/s, eta: 0:56:27
[2024/08/01 18:31:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:32:06] ppocr INFO: epoch: [5/100], global_step: 15, lr: 0.001000, loss: 7.022414, loss_shrink_maps: 4.836698, loss_threshold_maps: 1.214718, loss_binary_maps: 0.970789, avg_reader_cost: 2.27640 s, avg_batch_cost: 2.57588 s, avg_samples: 12.5, ips: 4.85271 samples/s, eta: 0:52:51
[2024/08/01 18:32:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:32:16] ppocr INFO: epoch: [6/100], global_step: 18, lr: 0.001000, loss: 6.958278, loss_shrink_maps: 4.820476, loss_threshold_maps: 1.167517, loss_binary_maps: 0.965038, avg_reader_cost: 2.23115 s, avg_batch_cost: 2.50889 s, avg_samples: 12.5, ips: 4.98228 samples/s, eta: 0:50:08
[2024/08/01 18:32:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:32:25] ppocr INFO: epoch: [7/100], global_step: 20, lr: 0.001000, loss: 6.918981, loss_shrink_maps: 4.791574, loss_threshold_maps: 1.161318, loss_binary_maps: 0.961964, avg_reader_cost: 1.39530 s, avg_batch_cost: 1.60794 s, avg_samples: 9.6, ips: 5.97038 samples/s, eta: 0:48:33
[2024/08/01 18:32:25] ppocr INFO: epoch: [7/100], global_step: 21, lr: 0.001000, loss: 6.889464, loss_shrink_maps: 4.766752, loss_threshold_maps: 1.155881, loss_binary_maps: 0.957538, avg_reader_cost: 0.85247 s, avg_batch_cost: 0.91077 s, avg_samples: 2.9, ips: 3.18411 samples/s, eta: 0:48:05
[2024/08/01 18:32:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:32:35] ppocr INFO: epoch: [8/100], global_step: 24, lr: 0.001000, loss: 6.794288, loss_shrink_maps: 4.735679, loss_threshold_maps: 1.134295, loss_binary_maps: 0.942155, avg_reader_cost: 2.31063 s, avg_batch_cost: 2.55898 s, avg_samples: 12.5, ips: 4.88476 samples/s, eta: 0:46:31
[2024/08/01 18:32:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:32:45] ppocr INFO: epoch: [9/100], global_step: 27, lr: 0.001000, loss: 6.739758, loss_shrink_maps: 4.681714, loss_threshold_maps: 1.101860, loss_binary_maps: 0.930999, avg_reader_cost: 2.23727 s, avg_batch_cost: 2.53368 s, avg_samples: 12.5, ips: 4.93354 samples/s, eta: 0:45:10
[2024/08/01 18:32:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:32:55] ppocr INFO: epoch: [10/100], global_step: 30, lr: 0.001000, loss: 6.499613, loss_shrink_maps: 4.581536, loss_threshold_maps: 1.055003, loss_binary_maps: 0.888690, avg_reader_cost: 2.25060 s, avg_batch_cost: 2.51727 s, avg_samples: 12.5, ips: 4.96569 samples/s, eta: 0:43:59
[2024/08/01 18:32:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:33:04] ppocr INFO: epoch: [11/100], global_step: 33, lr: 0.001000, loss: 6.449403, loss_shrink_maps: 4.547603, loss_threshold_maps: 1.025710, loss_binary_maps: 0.866838, avg_reader_cost: 2.28798 s, avg_batch_cost: 2.53061 s, avg_samples: 12.5, ips: 4.93953 samples/s, eta: 0:42:57
[2024/08/01 18:33:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:33:14] ppocr INFO: epoch: [12/100], global_step: 36, lr: 0.001000, loss: 6.191002, loss_shrink_maps: 4.398135, loss_threshold_maps: 0.987950, loss_binary_maps: 0.790578, avg_reader_cost: 2.24546 s, avg_batch_cost: 2.50070 s, avg_samples: 12.5, ips: 4.99861 samples/s, eta: 0:41:59
[2024/08/01 18:33:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:33:24] ppocr INFO: epoch: [13/100], global_step: 39, lr: 0.001000, loss: 5.892470, loss_shrink_maps: 4.200360, loss_threshold_maps: 0.964301, loss_binary_maps: 0.722674, avg_reader_cost: 2.25928 s, avg_batch_cost: 2.50208 s, avg_samples: 12.5, ips: 4.99584 samples/s, eta: 0:41:06
[2024/08/01 18:33:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:33:32] ppocr INFO: epoch: [14/100], global_step: 40, lr: 0.001000, loss: 5.761197, loss_shrink_maps: 4.108572, loss_threshold_maps: 0.959077, loss_binary_maps: 0.711162, avg_reader_cost: 0.63213 s, avg_batch_cost: 0.74742 s, avg_samples: 4.8, ips: 6.42205 samples/s, eta: 0:40:44
[2024/08/01 18:33:33] ppocr INFO: epoch: [14/100], global_step: 42, lr: 0.001000, loss: 5.505810, loss_shrink_maps: 3.921797, loss_threshold_maps: 0.948719, loss_binary_maps: 0.652212, avg_reader_cost: 1.59237 s, avg_batch_cost: 1.74694 s, avg_samples: 7.7, ips: 4.40770 samples/s, eta: 0:40:17
[2024/08/01 18:33:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:33:43] ppocr INFO: epoch: [15/100], global_step: 45, lr: 0.001000, loss: 5.365054, loss_shrink_maps: 3.804703, loss_threshold_maps: 0.926088, loss_binary_maps: 0.637450, avg_reader_cost: 2.28863 s, avg_batch_cost: 2.56573 s, avg_samples: 12.5, ips: 4.87191 samples/s, eta: 0:39:35
[2024/08/01 18:33:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:33:53] ppocr INFO: epoch: [16/100], global_step: 48, lr: 0.001000, loss: 5.038902, loss_shrink_maps: 3.573594, loss_threshold_maps: 0.912642, loss_binary_maps: 0.558926, avg_reader_cost: 2.32875 s, avg_batch_cost: 2.57205 s, avg_samples: 12.5, ips: 4.85995 samples/s, eta: 0:38:55
[2024/08/01 18:33:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:34:02] ppocr INFO: epoch: [17/100], global_step: 50, lr: 0.001000, loss: 4.823745, loss_shrink_maps: 3.377399, loss_threshold_maps: 0.910908, loss_binary_maps: 0.521755, avg_reader_cost: 1.39635 s, avg_batch_cost: 1.60182 s, avg_samples: 9.6, ips: 5.99319 samples/s, eta: 0:38:24
[2024/08/01 18:34:03] ppocr INFO: epoch: [17/100], global_step: 51, lr: 0.001000, loss: 4.726063, loss_shrink_maps: 3.318785, loss_threshold_maps: 0.910908, loss_binary_maps: 0.519248, avg_reader_cost: 0.85002 s, avg_batch_cost: 0.90848 s, avg_samples: 2.9, ips: 3.19215 samples/s, eta: 0:38:14
[2024/08/01 18:34:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:34:12] ppocr INFO: epoch: [18/100], global_step: 54, lr: 0.001000, loss: 4.485591, loss_shrink_maps: 3.135734, loss_threshold_maps: 0.903998, loss_binary_maps: 0.469538, avg_reader_cost: 2.25079 s, avg_batch_cost: 2.50754 s, avg_samples: 12.5, ips: 4.98496 samples/s, eta: 0:37:35
[2024/08/01 18:34:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:34:22] ppocr INFO: epoch: [19/100], global_step: 57, lr: 0.001000, loss: 4.230521, loss_shrink_maps: 2.942256, loss_threshold_maps: 0.892551, loss_binary_maps: 0.434280, avg_reader_cost: 2.26028 s, avg_batch_cost: 2.50352 s, avg_samples: 12.5, ips: 4.99297 samples/s, eta: 0:36:57
[2024/08/01 18:34:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:34:32] ppocr INFO: epoch: [20/100], global_step: 60, lr: 0.001000, loss: 4.134025, loss_shrink_maps: 2.832201, loss_threshold_maps: 0.876882, loss_binary_maps: 0.421117, avg_reader_cost: 2.24977 s, avg_batch_cost: 2.49578 s, avg_samples: 12.5, ips: 5.00844 samples/s, eta: 0:36:20

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:54,  9.21it/s]
eval model::   1%|          | 4/500 [00:00<00:29, 16.95it/s]
eval model::   1%|          | 6/500 [00:00<00:27, 17.67it/s]
eval model::   2%|▏         | 9/500 [00:00<00:25, 19.56it/s]
eval model::   2%|▏         | 11/500 [00:00<00:25, 19.54it/s]
eval model::   3%|▎         | 13/500 [00:00<00:25, 19.45it/s]
eval model::   3%|▎         | 15/500 [00:00<00:24, 19.46it/s]
eval model::   4%|▎         | 18/500 [00:00<00:22, 21.80it/s]
eval model::   4%|▍         | 21/500 [00:01<00:22, 21.30it/s]
eval model::   5%|▍         | 24/500 [00:01<00:21, 22.65it/s]
eval model::   5%|▌         | 27/500 [00:01<00:20, 23.52it/s]
eval model::   6%|▌         | 30/500 [00:01<00:19, 24.48it/s]
eval model::   7%|▋         | 33/500 [00:01<00:21, 22.01it/s]
eval model::   7%|▋         | 36/500 [00:01<00:21, 21.86it/s]
eval model::   8%|▊         | 39/500 [00:01<00:21, 21.28it/s]
eval model::   8%|▊         | 42/500 [00:02<00:21, 21.07it/s]
eval model::   9%|▉         | 45/500 [00:02<00:22, 20.42it/s]
eval model::  10%|▉         | 48/500 [00:02<00:22, 20.23it/s]
eval model::  10%|█         | 51/500 [00:02<00:20, 21.38it/s]
eval model::  11%|█         | 54/500 [00:02<00:21, 21.16it/s]
eval model::  11%|█▏        | 57/500 [00:02<00:20, 22.01it/s]
eval model::  12%|█▏        | 60/500 [00:02<00:20, 21.30it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:24, 18.14it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:20, 21.02it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:20, 21.16it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:20, 21.33it/s]
eval model::  15%|█▌        | 76/500 [00:03<00:19, 21.25it/s]
eval model::  16%|█▌        | 79/500 [00:03<00:20, 20.89it/s]
eval model::  16%|█▋        | 82/500 [00:03<00:20, 20.48it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:22, 18.82it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:20, 19.68it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:22, 18.45it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:21, 18.54it/s]
eval model::  19%|█▉        | 95/500 [00:04<00:21, 18.58it/s]
eval model::  20%|█▉        | 98/500 [00:04<00:19, 20.70it/s]
eval model::  20%|██        | 101/500 [00:04<00:19, 20.72it/s]
eval model::  21%|██        | 104/500 [00:05<00:17, 22.54it/s]
eval model::  21%|██▏       | 107/500 [00:05<00:16, 23.52it/s]
eval model::  22%|██▏       | 110/500 [00:05<00:17, 22.64it/s]
eval model::  23%|██▎       | 113/500 [00:05<00:18, 21.20it/s]
eval model::  23%|██▎       | 116/500 [00:05<00:19, 19.87it/s]
eval model::  24%|██▍       | 119/500 [00:05<00:19, 20.01it/s]
eval model::  24%|██▍       | 122/500 [00:05<00:21, 17.54it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:21, 17.79it/s]
eval model::  25%|██▌       | 127/500 [00:06<00:18, 20.06it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:18, 20.09it/s]
eval model::  27%|██▋       | 133/500 [00:06<00:16, 21.90it/s]
eval model::  27%|██▋       | 136/500 [00:06<00:17, 20.45it/s]
eval model::  28%|██▊       | 139/500 [00:06<00:17, 20.46it/s]
eval model::  28%|██▊       | 142/500 [00:06<00:17, 20.49it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:17, 20.08it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:18, 19.34it/s]
eval model::  30%|███       | 150/500 [00:07<00:18, 18.79it/s]
eval model::  30%|███       | 152/500 [00:07<00:18, 18.66it/s]
eval model::  31%|███       | 155/500 [00:07<00:16, 21.35it/s]
eval model::  32%|███▏      | 158/500 [00:07<00:15, 22.26it/s]
eval model::  32%|███▏      | 161/500 [00:07<00:15, 21.99it/s]
eval model::  33%|███▎      | 164/500 [00:08<00:16, 20.48it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:17, 19.41it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:17, 18.43it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:18, 18.14it/s]
eval model::  35%|███▍      | 174/500 [00:08<00:21, 15.18it/s]
eval model::  35%|███▌      | 176/500 [00:08<00:21, 15.19it/s]
eval model::  36%|███▌      | 179/500 [00:08<00:18, 17.55it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:18, 17.65it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:16, 18.96it/s]
eval model::  37%|███▋      | 187/500 [00:09<00:15, 20.73it/s]
eval model::  38%|███▊      | 190/500 [00:09<00:14, 20.70it/s]
eval model::  39%|███▊      | 193/500 [00:09<00:14, 20.67it/s]
eval model::  39%|███▉      | 196/500 [00:09<00:18, 16.19it/s]
eval model::  40%|███▉      | 199/500 [00:09<00:16, 18.24it/s]
eval model::  40%|████      | 202/500 [00:10<00:14, 19.87it/s]
eval model::  41%|████      | 205/500 [00:10<00:21, 13.98it/s]
eval model::  42%|████▏     | 208/500 [00:10<00:19, 14.63it/s]
eval model::  42%|████▏     | 210/500 [00:10<00:19, 14.68it/s]
eval model::  43%|████▎     | 213/500 [00:10<00:16, 17.57it/s]
eval model::  43%|████▎     | 216/500 [00:11<00:17, 16.53it/s]
eval model::  44%|████▎     | 218/500 [00:11<00:18, 15.17it/s]
eval model::  44%|████▍     | 221/500 [00:11<00:16, 16.74it/s]
eval model::  45%|████▍     | 224/500 [00:11<00:15, 17.96it/s]
eval model::  45%|████▌     | 227/500 [00:11<00:14, 18.97it/s]
eval model::  46%|████▌     | 230/500 [00:11<00:12, 20.98it/s]
eval model::  47%|████▋     | 233/500 [00:11<00:12, 22.23it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:12, 21.40it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:11, 22.43it/s]
eval model::  48%|████▊     | 242/500 [00:12<00:11, 23.00it/s]
eval model::  49%|████▉     | 245/500 [00:12<00:11, 21.72it/s]
eval model::  50%|████▉     | 248/500 [00:12<00:11, 21.70it/s]
eval model::  50%|█████     | 251/500 [00:12<00:11, 21.04it/s]
eval model::  51%|█████     | 254/500 [00:12<00:11, 21.61it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:11, 21.61it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:11, 21.77it/s]
eval model::  53%|█████▎    | 263/500 [00:13<00:10, 21.60it/s]
eval model::  53%|█████▎    | 266/500 [00:13<00:11, 20.30it/s]
eval model::  54%|█████▍    | 269/500 [00:13<00:11, 20.09it/s]
eval model::  54%|█████▍    | 272/500 [00:13<00:11, 19.83it/s]
eval model::  55%|█████▌    | 275/500 [00:13<00:10, 20.60it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:10, 21.13it/s]
eval model::  56%|█████▌    | 281/500 [00:14<00:10, 20.63it/s]
eval model::  57%|█████▋    | 284/500 [00:14<00:10, 20.41it/s]
eval model::  57%|█████▋    | 287/500 [00:14<00:12, 17.04it/s]
eval model::  58%|█████▊    | 290/500 [00:14<00:11, 18.68it/s]
eval model::  59%|█████▊    | 293/500 [00:14<00:10, 20.05it/s]
eval model::  59%|█████▉    | 296/500 [00:14<00:10, 19.68it/s]
eval model::  60%|█████▉    | 299/500 [00:15<00:09, 21.09it/s]
eval model::  60%|██████    | 302/500 [00:15<00:10, 19.33it/s]
eval model::  61%|██████    | 305/500 [00:15<00:10, 19.05it/s]
eval model::  62%|██████▏   | 308/500 [00:15<00:09, 19.45it/s]
eval model::  62%|██████▏   | 310/500 [00:15<00:09, 19.52it/s]
eval model::  63%|██████▎   | 313/500 [00:15<00:08, 21.55it/s]
eval model::  63%|██████▎   | 316/500 [00:15<00:08, 20.72it/s]
eval model::  64%|██████▍   | 319/500 [00:16<00:07, 22.81it/s]
eval model::  64%|██████▍   | 322/500 [00:16<00:08, 21.58it/s]
eval model::  65%|██████▌   | 325/500 [00:16<00:08, 21.84it/s]
eval model::  66%|██████▌   | 328/500 [00:16<00:08, 20.65it/s]
eval model::  66%|██████▌   | 331/500 [00:16<00:08, 20.94it/s]
eval model::  67%|██████▋   | 334/500 [00:16<00:07, 20.93it/s]
eval model::  67%|██████▋   | 337/500 [00:16<00:07, 20.68it/s]
eval model::  68%|██████▊   | 340/500 [00:17<00:08, 18.82it/s]
eval model::  69%|██████▊   | 343/500 [00:17<00:07, 20.17it/s]
eval model::  69%|██████▉   | 346/500 [00:17<00:07, 21.43it/s]
eval model::  70%|██████▉   | 349/500 [00:17<00:07, 21.47it/s]
eval model::  70%|███████   | 352/500 [00:17<00:06, 21.20it/s]
eval model::  71%|███████   | 355/500 [00:17<00:07, 20.60it/s]
eval model::  72%|███████▏  | 358/500 [00:17<00:06, 20.75it/s]
eval model::  72%|███████▏  | 361/500 [00:18<00:07, 18.46it/s]
eval model::  73%|███████▎  | 364/500 [00:18<00:07, 17.92it/s]
eval model::  73%|███████▎  | 366/500 [00:18<00:07, 18.30it/s]
eval model::  74%|███████▍  | 369/500 [00:18<00:06, 19.75it/s]
eval model::  74%|███████▍  | 372/500 [00:18<00:06, 19.83it/s]
eval model::  75%|███████▌  | 375/500 [00:18<00:05, 20.86it/s]
eval model::  76%|███████▌  | 378/500 [00:18<00:05, 22.01it/s]
eval model::  76%|███████▌  | 381/500 [00:19<00:05, 20.41it/s]
eval model::  77%|███████▋  | 384/500 [00:19<00:05, 20.45it/s]
eval model::  77%|███████▋  | 387/500 [00:19<00:06, 18.19it/s]
eval model::  78%|███████▊  | 390/500 [00:19<00:05, 19.06it/s]
eval model::  79%|███████▊  | 393/500 [00:19<00:05, 20.05it/s]
eval model::  79%|███████▉  | 396/500 [00:19<00:04, 21.17it/s]
eval model::  80%|███████▉  | 399/500 [00:20<00:04, 22.13it/s]
eval model::  80%|████████  | 402/500 [00:20<00:04, 22.00it/s]
eval model::  81%|████████  | 405/500 [00:20<00:04, 22.03it/s]
eval model::  82%|████████▏ | 408/500 [00:20<00:04, 20.68it/s]
eval model::  82%|████████▏ | 411/500 [00:20<00:04, 20.31it/s]
eval model::  83%|████████▎ | 414/500 [00:20<00:04, 20.68it/s]
eval model::  83%|████████▎ | 417/500 [00:20<00:04, 17.32it/s]
eval model::  84%|████████▍ | 419/500 [00:21<00:04, 17.35it/s]
eval model::  84%|████████▍ | 421/500 [00:21<00:04, 15.84it/s]
eval model::  85%|████████▍ | 424/500 [00:21<00:04, 18.43it/s]
eval model::  85%|████████▌ | 427/500 [00:21<00:03, 20.49it/s]
eval model::  86%|████████▌ | 430/500 [00:21<00:03, 22.26it/s]
eval model::  87%|████████▋ | 433/500 [00:21<00:03, 22.13it/s]
eval model::  87%|████████▋ | 436/500 [00:21<00:02, 22.15it/s]
eval model::  88%|████████▊ | 439/500 [00:22<00:02, 21.69it/s]
eval model::  88%|████████▊ | 442/500 [00:22<00:02, 19.99it/s]
eval model::  89%|████████▉ | 445/500 [00:22<00:02, 20.16it/s]
eval model::  90%|████████▉ | 448/500 [00:22<00:02, 19.13it/s]
eval model::  90%|█████████ | 450/500 [00:22<00:02, 19.15it/s]
eval model::  91%|█████████ | 453/500 [00:22<00:02, 19.82it/s]
eval model::  91%|█████████ | 456/500 [00:22<00:02, 20.92it/s]
eval model::  92%|█████████▏| 459/500 [00:23<00:01, 20.97it/s]
eval model::  92%|█████████▏| 462/500 [00:23<00:01, 19.07it/s]
eval model::  93%|█████████▎| 464/500 [00:23<00:01, 19.15it/s]
eval model::  93%|█████████▎| 466/500 [00:23<00:01, 18.67it/s]
eval model::  94%|█████████▍| 469/500 [00:23<00:01, 19.91it/s]
eval model::  94%|█████████▍| 472/500 [00:23<00:01, 20.36it/s]
eval model::  95%|█████████▌| 475/500 [00:23<00:01, 19.64it/s]
eval model::  95%|█████████▌| 477/500 [00:23<00:01, 19.58it/s]
eval model::  96%|█████████▌| 479/500 [00:24<00:01, 19.66it/s]
eval model::  96%|█████████▌| 481/500 [00:24<00:00, 19.56it/s]
eval model::  97%|█████████▋| 484/500 [00:24<00:00, 19.75it/s]
eval model::  97%|█████████▋| 486/500 [00:24<00:00, 19.19it/s]
eval model::  98%|█████████▊| 489/500 [00:24<00:00, 20.22it/s]
eval model::  98%|█████████▊| 492/500 [00:24<00:00, 19.70it/s]
eval model::  99%|█████████▉| 495/500 [00:24<00:00, 20.83it/s]
eval model:: 100%|█████████▉| 498/500 [00:25<00:00, 21.25it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.94it/s]
[2024/08/01 18:34:57] ppocr INFO: cur metric, precision: 0.3586654309545876, recall: 0.18632643235435725, hmean: 0.24524714828897343, fps: 42.78213456158324
[2024/08/01 18:34:57] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/08/01 18:34:57] ppocr INFO: best metric, hmean: 0.24524714828897343, precision: 0.3586654309545876, recall: 0.18632643235435725, fps: 42.78213456158324, best_epoch: 20
[2024/08/01 18:34:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:35:04] ppocr INFO: epoch: [21/100], global_step: 63, lr: 0.001000, loss: 4.046984, loss_shrink_maps: 2.766544, loss_threshold_maps: 0.871167, loss_binary_maps: 0.405610, avg_reader_cost: 1.56544 s, avg_batch_cost: 1.82042 s, avg_samples: 12.5, ips: 6.86656 samples/s, eta: 0:35:19
[2024/08/01 18:35:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:35:12] ppocr INFO: epoch: [22/100], global_step: 66, lr: 0.001000, loss: 3.866041, loss_shrink_maps: 2.535505, loss_threshold_maps: 0.868775, loss_binary_maps: 0.393272, avg_reader_cost: 1.56411 s, avg_batch_cost: 1.85486 s, avg_samples: 12.5, ips: 6.73905 samples/s, eta: 0:34:22
[2024/08/01 18:35:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:35:19] ppocr INFO: epoch: [23/100], global_step: 69, lr: 0.001000, loss: 3.718459, loss_shrink_maps: 2.424870, loss_threshold_maps: 0.876882, loss_binary_maps: 0.385653, avg_reader_cost: 1.56334 s, avg_batch_cost: 1.80959 s, avg_samples: 12.5, ips: 6.90763 samples/s, eta: 0:33:28
[2024/08/01 18:35:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:35:25] ppocr INFO: epoch: [24/100], global_step: 70, lr: 0.001000, loss: 3.668140, loss_shrink_maps: 2.408142, loss_threshold_maps: 0.874916, loss_binary_maps: 0.382349, avg_reader_cost: 0.42012 s, avg_batch_cost: 0.52026 s, avg_samples: 4.8, ips: 9.22624 samples/s, eta: 0:33:08
[2024/08/01 18:35:26] ppocr INFO: epoch: [24/100], global_step: 72, lr: 0.001000, loss: 3.628015, loss_shrink_maps: 2.350583, loss_threshold_maps: 0.874916, loss_binary_maps: 0.376778, avg_reader_cost: 1.13688 s, avg_batch_cost: 1.28946 s, avg_samples: 7.7, ips: 5.97147 samples/s, eta: 0:32:37
[2024/08/01 18:35:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:35:34] ppocr INFO: epoch: [25/100], global_step: 75, lr: 0.001000, loss: 3.552265, loss_shrink_maps: 2.295442, loss_threshold_maps: 0.870727, loss_binary_maps: 0.366911, avg_reader_cost: 1.64137 s, avg_batch_cost: 1.88514 s, avg_samples: 12.5, ips: 6.63081 samples/s, eta: 0:31:50
[2024/08/01 18:35:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:35:41] ppocr INFO: epoch: [26/100], global_step: 78, lr: 0.001000, loss: 3.473954, loss_shrink_maps: 2.272506, loss_threshold_maps: 0.865035, loss_binary_maps: 0.354387, avg_reader_cost: 1.53055 s, avg_batch_cost: 1.80719 s, avg_samples: 12.5, ips: 6.91681 samples/s, eta: 0:31:04
[2024/08/01 18:35:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:35:48] ppocr INFO: epoch: [27/100], global_step: 80, lr: 0.001000, loss: 3.426581, loss_shrink_maps: 2.245654, loss_threshold_maps: 0.865035, loss_binary_maps: 0.348521, avg_reader_cost: 1.00917 s, avg_batch_cost: 1.21561 s, avg_samples: 9.6, ips: 7.89728 samples/s, eta: 0:30:34
[2024/08/01 18:35:49] ppocr INFO: epoch: [27/100], global_step: 81, lr: 0.001000, loss: 3.402209, loss_shrink_maps: 2.196910, loss_threshold_maps: 0.865035, loss_binary_maps: 0.354387, avg_reader_cost: 0.65679 s, avg_batch_cost: 0.71490 s, avg_samples: 2.9, ips: 4.05654 samples/s, eta: 0:30:23
[2024/08/01 18:35:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:35:56] ppocr INFO: epoch: [28/100], global_step: 84, lr: 0.001000, loss: 3.345102, loss_shrink_maps: 2.110563, loss_threshold_maps: 0.865035, loss_binary_maps: 0.347278, avg_reader_cost: 1.53867 s, avg_batch_cost: 1.78739 s, avg_samples: 12.5, ips: 6.99345 samples/s, eta: 0:29:39
[2024/08/01 18:35:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:36:04] ppocr INFO: epoch: [29/100], global_step: 87, lr: 0.001000, loss: 3.252011, loss_shrink_maps: 2.064755, loss_threshold_maps: 0.857746, loss_binary_maps: 0.335226, avg_reader_cost: 1.58494 s, avg_batch_cost: 1.85801 s, avg_samples: 12.5, ips: 6.72762 samples/s, eta: 0:29:00
[2024/08/01 18:36:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:36:11] ppocr INFO: epoch: [30/100], global_step: 90, lr: 0.001000, loss: 3.160108, loss_shrink_maps: 2.009127, loss_threshold_maps: 0.836825, loss_binary_maps: 0.324839, avg_reader_cost: 1.55914 s, avg_batch_cost: 1.80996 s, avg_samples: 12.5, ips: 6.90623 samples/s, eta: 0:28:20
[2024/08/01 18:36:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:36:18] ppocr INFO: epoch: [31/100], global_step: 93, lr: 0.001000, loss: 3.105739, loss_shrink_maps: 1.957451, loss_threshold_maps: 0.818913, loss_binary_maps: 0.325512, avg_reader_cost: 1.52931 s, avg_batch_cost: 1.77353 s, avg_samples: 12.5, ips: 7.04809 samples/s, eta: 0:27:41
[2024/08/01 18:36:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:36:26] ppocr INFO: epoch: [32/100], global_step: 96, lr: 0.001000, loss: 3.043463, loss_shrink_maps: 1.880493, loss_threshold_maps: 0.815315, loss_binary_maps: 0.331414, avg_reader_cost: 1.54644 s, avg_batch_cost: 1.79651 s, avg_samples: 12.5, ips: 6.95793 samples/s, eta: 0:27:04
[2024/08/01 18:36:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:36:33] ppocr INFO: epoch: [33/100], global_step: 99, lr: 0.001000, loss: 3.043463, loss_shrink_maps: 1.880493, loss_threshold_maps: 0.813084, loss_binary_maps: 0.330742, avg_reader_cost: 1.62521 s, avg_batch_cost: 1.93127 s, avg_samples: 12.5, ips: 6.47243 samples/s, eta: 0:26:31
[2024/08/01 18:36:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:36:39] ppocr INFO: epoch: [34/100], global_step: 100, lr: 0.001000, loss: 2.961534, loss_shrink_maps: 1.831224, loss_threshold_maps: 0.813084, loss_binary_maps: 0.324840, avg_reader_cost: 0.41554 s, avg_batch_cost: 0.50631 s, avg_samples: 4.8, ips: 9.48036 samples/s, eta: 0:26:17
[2024/08/01 18:36:41] ppocr INFO: epoch: [34/100], global_step: 102, lr: 0.001000, loss: 2.961534, loss_shrink_maps: 1.831224, loss_threshold_maps: 0.820771, loss_binary_maps: 0.324840, avg_reader_cost: 1.11017 s, avg_batch_cost: 1.26564 s, avg_samples: 7.7, ips: 6.08390 samples/s, eta: 0:25:55
[2024/08/01 18:36:41] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:36:48] ppocr INFO: epoch: [35/100], global_step: 105, lr: 0.001000, loss: 2.989750, loss_shrink_maps: 1.847316, loss_threshold_maps: 0.817728, loss_binary_maps: 0.330691, avg_reader_cost: 1.55334 s, avg_batch_cost: 1.81378 s, avg_samples: 12.5, ips: 6.89167 samples/s, eta: 0:25:22
[2024/08/01 18:36:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:36:56] ppocr INFO: epoch: [36/100], global_step: 108, lr: 0.001000, loss: 3.046692, loss_shrink_maps: 1.880493, loss_threshold_maps: 0.824594, loss_binary_maps: 0.334455, avg_reader_cost: 1.58759 s, avg_batch_cost: 1.84377 s, avg_samples: 12.5, ips: 6.77959 samples/s, eta: 0:24:50
[2024/08/01 18:36:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:37:02] ppocr INFO: epoch: [37/100], global_step: 110, lr: 0.001000, loss: 2.989750, loss_shrink_maps: 1.847316, loss_threshold_maps: 0.820771, loss_binary_maps: 0.330691, avg_reader_cost: 0.93994 s, avg_batch_cost: 1.12455 s, avg_samples: 9.6, ips: 8.53675 samples/s, eta: 0:24:27
[2024/08/01 18:37:03] ppocr INFO: epoch: [37/100], global_step: 111, lr: 0.001000, loss: 2.989750, loss_shrink_maps: 1.847316, loss_threshold_maps: 0.820771, loss_binary_maps: 0.330691, avg_reader_cost: 0.61081 s, avg_batch_cost: 0.66903 s, avg_samples: 2.9, ips: 4.33466 samples/s, eta: 0:24:17
[2024/08/01 18:37:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:37:10] ppocr INFO: epoch: [38/100], global_step: 114, lr: 0.001000, loss: 2.950620, loss_shrink_maps: 1.824088, loss_threshold_maps: 0.817728, loss_binary_maps: 0.327425, avg_reader_cost: 1.54370 s, avg_batch_cost: 1.81750 s, avg_samples: 12.5, ips: 6.87758 samples/s, eta: 0:23:46
[2024/08/01 18:37:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:37:17] ppocr INFO: epoch: [39/100], global_step: 117, lr: 0.001000, loss: 2.912114, loss_shrink_maps: 1.785774, loss_threshold_maps: 0.820771, loss_binary_maps: 0.326718, avg_reader_cost: 1.50053 s, avg_batch_cost: 1.74671 s, avg_samples: 12.5, ips: 7.15633 samples/s, eta: 0:23:14
[2024/08/01 18:37:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:37:25] ppocr INFO: epoch: [40/100], global_step: 120, lr: 0.001000, loss: 2.900538, loss_shrink_maps: 1.764170, loss_threshold_maps: 0.815180, loss_binary_maps: 0.324014, avg_reader_cost: 1.54577 s, avg_batch_cost: 1.81157 s, avg_samples: 12.5, ips: 6.90010 samples/s, eta: 0:22:44

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 2/500 [00:00<00:42, 11.74it/s]
eval model::   1%|          | 5/500 [00:00<00:28, 17.15it/s]
eval model::   1%|▏         | 7/500 [00:00<00:28, 17.35it/s]
eval model::   2%|▏         | 9/500 [00:00<00:27, 17.62it/s]
eval model::   2%|▏         | 11/500 [00:00<00:28, 17.19it/s]
eval model::   3%|▎         | 14/500 [00:00<00:25, 19.04it/s]
eval model::   3%|▎         | 17/500 [00:00<00:22, 21.19it/s]
eval model::   4%|▍         | 20/500 [00:01<00:27, 17.65it/s]
eval model::   5%|▍         | 23/500 [00:01<00:24, 19.45it/s]
eval model::   5%|▌         | 26/500 [00:01<00:24, 19.37it/s]
eval model::   6%|▌         | 29/500 [00:01<00:23, 19.69it/s]
eval model::   6%|▋         | 32/500 [00:01<00:24, 19.22it/s]
eval model::   7%|▋         | 34/500 [00:01<00:24, 18.86it/s]
eval model::   7%|▋         | 37/500 [00:01<00:23, 19.87it/s]
eval model::   8%|▊         | 40/500 [00:02<00:23, 19.46it/s]
eval model::   8%|▊         | 42/500 [00:02<00:24, 18.57it/s]
eval model::   9%|▉         | 45/500 [00:02<00:22, 20.05it/s]
eval model::  10%|▉         | 48/500 [00:02<00:24, 18.34it/s]
eval model::  10%|█         | 50/500 [00:02<00:24, 18.41it/s]
eval model::  10%|█         | 52/500 [00:02<00:24, 18.54it/s]
eval model::  11%|█         | 55/500 [00:02<00:22, 20.00it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:22, 19.48it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:23, 18.39it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:24, 18.20it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:21, 19.84it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:19, 21.58it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:20, 20.92it/s]
eval model::  15%|█▌        | 75/500 [00:03<00:20, 20.65it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:20, 20.18it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:20, 20.44it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:21, 19.35it/s]
eval model::  17%|█▋        | 86/500 [00:04<00:22, 18.48it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:22, 18.61it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:22, 17.88it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:19, 20.42it/s]
eval model::  19%|█▉        | 96/500 [00:04<00:19, 20.83it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:18, 21.61it/s]
eval model::  20%|██        | 102/500 [00:05<00:18, 21.24it/s]
eval model::  21%|██        | 105/500 [00:05<00:18, 21.74it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:20, 19.33it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:19, 19.46it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:18, 21.17it/s]
eval model::  23%|██▎       | 117/500 [00:05<00:17, 21.61it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:19, 19.50it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:17, 21.14it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:17, 20.88it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:17, 21.22it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:19, 18.67it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:18, 19.73it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:17, 21.04it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:17, 20.61it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:17, 20.44it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:17, 20.40it/s]
eval model::  30%|███       | 150/500 [00:07<00:17, 20.48it/s]
eval model::  31%|███       | 153/500 [00:07<00:17, 19.90it/s]
eval model::  31%|███       | 156/500 [00:07<00:16, 21.31it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:16, 21.27it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:17, 19.39it/s]
eval model::  33%|███▎      | 165/500 [00:08<00:16, 20.77it/s]
eval model::  34%|███▎      | 168/500 [00:08<00:16, 20.58it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:16, 19.71it/s]
eval model::  35%|███▍      | 174/500 [00:08<00:18, 17.65it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:19, 16.50it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:17, 18.25it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:18, 17.72it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:15, 20.31it/s]
eval model::  37%|███▋      | 187/500 [00:09<00:14, 22.03it/s]
eval model::  38%|███▊      | 190/500 [00:09<00:13, 22.58it/s]
eval model::  39%|███▊      | 193/500 [00:09<00:13, 23.37it/s]
eval model::  39%|███▉      | 196/500 [00:09<00:13, 21.85it/s]
eval model::  40%|███▉      | 199/500 [00:09<00:12, 23.41it/s]
eval model::  40%|████      | 202/500 [00:10<00:14, 21.06it/s]
eval model::  41%|████      | 205/500 [00:10<00:21, 14.03it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:19, 14.80it/s]
eval model::  42%|████▏     | 209/500 [00:10<00:18, 15.35it/s]
eval model::  42%|████▏     | 211/500 [00:10<00:18, 15.86it/s]
eval model::  43%|████▎     | 214/500 [00:11<00:15, 18.06it/s]
eval model::  43%|████▎     | 216/500 [00:11<00:17, 16.56it/s]
eval model::  44%|████▎     | 218/500 [00:11<00:17, 16.32it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:16, 16.70it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:18, 15.25it/s]
eval model::  45%|████▌     | 226/500 [00:11<00:15, 17.79it/s]
eval model::  46%|████▌     | 230/500 [00:11<00:12, 21.71it/s]
eval model::  47%|████▋     | 233/500 [00:12<00:12, 21.34it/s]
eval model::  47%|████▋     | 236/500 [00:12<00:13, 19.86it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:12, 21.18it/s]
eval model::  48%|████▊     | 242/500 [00:12<00:12, 20.83it/s]
eval model::  49%|████▉     | 245/500 [00:12<00:12, 20.88it/s]
eval model::  50%|████▉     | 248/500 [00:12<00:11, 21.35it/s]
eval model::  50%|█████     | 251/500 [00:12<00:12, 19.72it/s]
eval model::  51%|█████     | 254/500 [00:13<00:13, 18.44it/s]
eval model::  51%|█████     | 256/500 [00:13<00:14, 17.20it/s]
eval model::  52%|█████▏    | 259/500 [00:13<00:12, 19.08it/s]
eval model::  52%|█████▏    | 261/500 [00:13<00:12, 18.86it/s]
eval model::  53%|█████▎    | 264/500 [00:13<00:12, 18.73it/s]
eval model::  53%|█████▎    | 267/500 [00:13<00:11, 19.94it/s]
eval model::  54%|█████▍    | 270/500 [00:13<00:10, 20.94it/s]
eval model::  55%|█████▍    | 273/500 [00:14<00:10, 20.65it/s]
eval model::  55%|█████▌    | 276/500 [00:14<00:11, 18.99it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:11, 19.09it/s]
eval model::  56%|█████▌    | 280/500 [00:14<00:12, 17.61it/s]
eval model::  57%|█████▋    | 283/500 [00:14<00:11, 19.00it/s]
eval model::  57%|█████▋    | 285/500 [00:14<00:16, 13.19it/s]
eval model::  58%|█████▊    | 288/500 [00:15<00:13, 15.89it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:11, 18.27it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:11, 18.36it/s]
eval model::  59%|█████▉    | 297/500 [00:15<00:10, 18.75it/s]
eval model::  60%|██████    | 300/500 [00:15<00:10, 19.92it/s]
eval model::  61%|██████    | 303/500 [00:15<00:09, 19.93it/s]
eval model::  61%|██████    | 306/500 [00:15<00:09, 21.09it/s]
eval model::  62%|██████▏   | 309/500 [00:15<00:09, 20.72it/s]
eval model::  62%|██████▏   | 312/500 [00:16<00:08, 21.75it/s]
eval model::  63%|██████▎   | 315/500 [00:16<00:08, 21.44it/s]
eval model::  64%|██████▎   | 318/500 [00:16<00:08, 22.27it/s]
eval model::  64%|██████▍   | 321/500 [00:16<00:07, 23.56it/s]
eval model::  65%|██████▍   | 324/500 [00:16<00:08, 21.13it/s]
eval model::  65%|██████▌   | 327/500 [00:16<00:07, 22.72it/s]
eval model::  66%|██████▌   | 330/500 [00:16<00:07, 21.38it/s]
eval model::  67%|██████▋   | 333/500 [00:17<00:08, 19.70it/s]
eval model::  67%|██████▋   | 336/500 [00:17<00:08, 18.52it/s]
eval model::  68%|██████▊   | 338/500 [00:17<00:09, 17.95it/s]
eval model::  68%|██████▊   | 340/500 [00:17<00:09, 16.61it/s]
eval model::  69%|██████▊   | 343/500 [00:17<00:08, 18.33it/s]
eval model::  69%|██████▉   | 346/500 [00:17<00:07, 20.23it/s]
eval model::  70%|██████▉   | 349/500 [00:17<00:06, 21.68it/s]
eval model::  70%|███████   | 352/500 [00:18<00:06, 21.38it/s]
eval model::  71%|███████   | 355/500 [00:18<00:07, 19.24it/s]
eval model::  72%|███████▏  | 358/500 [00:18<00:07, 19.96it/s]
eval model::  72%|███████▏  | 361/500 [00:18<00:07, 19.77it/s]
eval model::  73%|███████▎  | 364/500 [00:18<00:07, 18.55it/s]
eval model::  73%|███████▎  | 367/500 [00:18<00:06, 19.22it/s]
eval model::  74%|███████▍  | 370/500 [00:19<00:06, 19.73it/s]
eval model::  75%|███████▍  | 373/500 [00:19<00:06, 19.77it/s]
eval model::  75%|███████▌  | 376/500 [00:19<00:05, 21.07it/s]
eval model::  76%|███████▌  | 379/500 [00:19<00:05, 20.79it/s]
eval model::  76%|███████▋  | 382/500 [00:19<00:05, 20.18it/s]
eval model::  77%|███████▋  | 385/500 [00:19<00:05, 21.37it/s]
eval model::  78%|███████▊  | 388/500 [00:20<00:07, 15.64it/s]
eval model::  78%|███████▊  | 390/500 [00:20<00:07, 15.31it/s]
eval model::  78%|███████▊  | 392/500 [00:20<00:07, 15.01it/s]
eval model::  79%|███████▉  | 395/500 [00:20<00:06, 16.90it/s]
eval model::  80%|███████▉  | 398/500 [00:20<00:05, 19.65it/s]
eval model::  80%|████████  | 401/500 [00:20<00:04, 20.45it/s]
eval model::  81%|████████  | 404/500 [00:20<00:04, 21.72it/s]
eval model::  81%|████████▏ | 407/500 [00:20<00:03, 23.70it/s]
eval model::  82%|████████▏ | 410/500 [00:21<00:03, 22.95it/s]
eval model::  83%|████████▎ | 413/500 [00:21<00:04, 19.63it/s]
eval model::  83%|████████▎ | 416/500 [00:21<00:04, 17.91it/s]
eval model::  84%|████████▎ | 418/500 [00:21<00:05, 16.36it/s]
eval model::  84%|████████▍ | 420/500 [00:21<00:04, 16.10it/s]
eval model::  85%|████████▍ | 423/500 [00:21<00:04, 17.67it/s]
eval model::  85%|████████▌ | 425/500 [00:22<00:04, 17.87it/s]
eval model::  86%|████████▌ | 428/500 [00:22<00:03, 20.46it/s]
eval model::  86%|████████▌ | 431/500 [00:22<00:03, 21.17it/s]
eval model::  87%|████████▋ | 435/500 [00:22<00:02, 22.25it/s]
eval model::  88%|████████▊ | 438/500 [00:22<00:02, 21.89it/s]
eval model::  88%|████████▊ | 441/500 [00:22<00:02, 20.84it/s]
eval model::  89%|████████▉ | 444/500 [00:22<00:02, 21.00it/s]
eval model::  89%|████████▉ | 447/500 [00:23<00:02, 20.63it/s]
eval model::  90%|█████████ | 450/500 [00:23<00:02, 20.00it/s]
eval model::  91%|█████████ | 453/500 [00:23<00:02, 21.04it/s]
eval model::  91%|█████████ | 456/500 [00:23<00:02, 19.90it/s]
eval model::  92%|█████████▏| 459/500 [00:23<00:02, 19.60it/s]
eval model::  92%|█████████▏| 461/500 [00:23<00:02, 19.47it/s]
eval model::  93%|█████████▎| 463/500 [00:23<00:02, 16.92it/s]
eval model::  93%|█████████▎| 465/500 [00:24<00:02, 15.76it/s]
eval model::  94%|█████████▎| 468/500 [00:24<00:01, 17.61it/s]
eval model::  94%|█████████▍| 471/500 [00:24<00:01, 19.99it/s]
eval model::  95%|█████████▍| 474/500 [00:24<00:01, 19.53it/s]
eval model::  95%|█████████▌| 477/500 [00:24<00:01, 19.71it/s]
eval model::  96%|█████████▌| 480/500 [00:24<00:00, 20.11it/s]
eval model::  97%|█████████▋| 483/500 [00:24<00:00, 22.26it/s]
eval model::  97%|█████████▋| 486/500 [00:25<00:00, 19.24it/s]
eval model::  98%|█████████▊| 489/500 [00:25<00:00, 21.04it/s]
eval model::  98%|█████████▊| 492/500 [00:25<00:00, 21.01it/s]
eval model::  99%|█████████▉| 495/500 [00:25<00:00, 20.17it/s]
eval model:: 100%|█████████▉| 498/500 [00:25<00:00, 21.87it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.49it/s]
[2024/08/01 18:37:50] ppocr INFO: cur metric, precision: 0.5191387559808612, recall: 0.31343283582089554, hmean: 0.39087361152806965, fps: 42.20009767497736
[2024/08/01 18:37:50] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/08/01 18:37:50] ppocr INFO: best metric, hmean: 0.39087361152806965, precision: 0.5191387559808612, recall: 0.31343283582089554, fps: 42.20009767497736, best_epoch: 40
[2024/08/01 18:37:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:37:57] ppocr INFO: epoch: [41/100], global_step: 123, lr: 0.001000, loss: 2.830152, loss_shrink_maps: 1.693587, loss_threshold_maps: 0.800355, loss_binary_maps: 0.307020, avg_reader_cost: 1.50989 s, avg_batch_cost: 1.77528 s, avg_samples: 12.5, ips: 7.04116 samples/s, eta: 0:22:14
[2024/08/01 18:37:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:38:05] ppocr INFO: epoch: [42/100], global_step: 126, lr: 0.001000, loss: 2.732768, loss_shrink_maps: 1.623774, loss_threshold_maps: 0.786313, loss_binary_maps: 0.294970, avg_reader_cost: 1.53356 s, avg_batch_cost: 1.80714 s, avg_samples: 12.5, ips: 6.91699 samples/s, eta: 0:21:45
[2024/08/01 18:38:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:38:12] ppocr INFO: epoch: [43/100], global_step: 129, lr: 0.001000, loss: 2.643923, loss_shrink_maps: 1.580450, loss_threshold_maps: 0.781988, loss_binary_maps: 0.290139, avg_reader_cost: 1.57599 s, avg_batch_cost: 1.84578 s, avg_samples: 12.5, ips: 6.77220 samples/s, eta: 0:21:18
[2024/08/01 18:38:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:38:18] ppocr INFO: epoch: [44/100], global_step: 130, lr: 0.001000, loss: 2.621701, loss_shrink_maps: 1.557325, loss_threshold_maps: 0.781988, loss_binary_maps: 0.284211, avg_reader_cost: 0.41544 s, avg_batch_cost: 0.52154 s, avg_samples: 4.8, ips: 9.20346 samples/s, eta: 0:21:07
[2024/08/01 18:38:20] ppocr INFO: epoch: [44/100], global_step: 132, lr: 0.001000, loss: 2.621701, loss_shrink_maps: 1.557325, loss_threshold_maps: 0.784402, loss_binary_maps: 0.284211, avg_reader_cost: 1.14102 s, avg_batch_cost: 1.29664 s, avg_samples: 7.7, ips: 5.93844 samples/s, eta: 0:20:50
[2024/08/01 18:38:21] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:38:27] ppocr INFO: epoch: [45/100], global_step: 135, lr: 0.001000, loss: 2.629364, loss_shrink_maps: 1.565714, loss_threshold_maps: 0.791462, loss_binary_maps: 0.291196, avg_reader_cost: 1.58317 s, avg_batch_cost: 1.82652 s, avg_samples: 12.5, ips: 6.84361 samples/s, eta: 0:20:22
[2024/08/01 18:38:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:38:35] ppocr INFO: epoch: [46/100], global_step: 138, lr: 0.001000, loss: 2.600479, loss_shrink_maps: 1.544780, loss_threshold_maps: 0.785313, loss_binary_maps: 0.283768, avg_reader_cost: 1.61699 s, avg_batch_cost: 1.86117 s, avg_samples: 12.5, ips: 6.71619 samples/s, eta: 0:19:56
[2024/08/01 18:38:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:38:42] ppocr INFO: epoch: [47/100], global_step: 140, lr: 0.001000, loss: 2.629364, loss_shrink_maps: 1.565714, loss_threshold_maps: 0.788173, loss_binary_maps: 0.291196, avg_reader_cost: 0.98192 s, avg_batch_cost: 1.16651 s, avg_samples: 9.6, ips: 8.22965 samples/s, eta: 0:19:38
[2024/08/01 18:38:42] ppocr INFO: epoch: [47/100], global_step: 141, lr: 0.001000, loss: 2.629364, loss_shrink_maps: 1.565714, loss_threshold_maps: 0.788173, loss_binary_maps: 0.291196, avg_reader_cost: 0.63162 s, avg_batch_cost: 0.68989 s, avg_samples: 2.9, ips: 4.20359 samples/s, eta: 0:19:30
[2024/08/01 18:38:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:38:50] ppocr INFO: epoch: [48/100], global_step: 144, lr: 0.001000, loss: 2.643791, loss_shrink_maps: 1.570376, loss_threshold_maps: 0.796349, loss_binary_maps: 0.291169, avg_reader_cost: 1.55264 s, avg_batch_cost: 1.79704 s, avg_samples: 12.5, ips: 6.95588 samples/s, eta: 0:19:03
[2024/08/01 18:38:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:38:57] ppocr INFO: epoch: [49/100], global_step: 147, lr: 0.001000, loss: 2.757683, loss_shrink_maps: 1.653154, loss_threshold_maps: 0.798629, loss_binary_maps: 0.306555, avg_reader_cost: 1.52072 s, avg_batch_cost: 1.78565 s, avg_samples: 12.5, ips: 7.00023 samples/s, eta: 0:18:37
[2024/08/01 18:38:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:39:05] ppocr INFO: epoch: [50/100], global_step: 150, lr: 0.001000, loss: 2.740613, loss_shrink_maps: 1.648338, loss_threshold_maps: 0.798629, loss_binary_maps: 0.306369, avg_reader_cost: 1.68366 s, avg_batch_cost: 1.92649 s, avg_samples: 12.5, ips: 6.48849 samples/s, eta: 0:18:12
[2024/08/01 18:39:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:39:12] ppocr INFO: epoch: [51/100], global_step: 153, lr: 0.001000, loss: 2.651121, loss_shrink_maps: 1.575630, loss_threshold_maps: 0.798629, loss_binary_maps: 0.292680, avg_reader_cost: 1.53109 s, avg_batch_cost: 1.77663 s, avg_samples: 12.5, ips: 7.03579 samples/s, eta: 0:17:47
[2024/08/01 18:39:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:39:20] ppocr INFO: epoch: [52/100], global_step: 156, lr: 0.001000, loss: 2.715518, loss_shrink_maps: 1.605505, loss_threshold_maps: 0.793918, loss_binary_maps: 0.302010, avg_reader_cost: 1.53479 s, avg_batch_cost: 1.77989 s, avg_samples: 12.5, ips: 7.02290 samples/s, eta: 0:17:21
[2024/08/01 18:39:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:39:27] ppocr INFO: epoch: [53/100], global_step: 159, lr: 0.001000, loss: 2.654592, loss_shrink_maps: 1.575630, loss_threshold_maps: 0.788781, loss_binary_maps: 0.294195, avg_reader_cost: 1.57658 s, avg_batch_cost: 1.82198 s, avg_samples: 12.5, ips: 6.86067 samples/s, eta: 0:16:56
[2024/08/01 18:39:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:39:33] ppocr INFO: epoch: [54/100], global_step: 160, lr: 0.001000, loss: 2.654592, loss_shrink_maps: 1.575630, loss_threshold_maps: 0.793918, loss_binary_maps: 0.294195, avg_reader_cost: 0.42734 s, avg_batch_cost: 0.51757 s, avg_samples: 4.8, ips: 9.27410 samples/s, eta: 0:16:47
[2024/08/01 18:39:34] ppocr INFO: epoch: [54/100], global_step: 162, lr: 0.001000, loss: 2.639658, loss_shrink_maps: 1.568874, loss_threshold_maps: 0.788781, loss_binary_maps: 0.294195, avg_reader_cost: 1.13125 s, avg_batch_cost: 1.28428 s, avg_samples: 7.7, ips: 5.99557 samples/s, eta: 0:16:32
[2024/08/01 18:39:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:39:42] ppocr INFO: epoch: [55/100], global_step: 165, lr: 0.001000, loss: 2.611558, loss_shrink_maps: 1.517447, loss_threshold_maps: 0.792250, loss_binary_maps: 0.287616, avg_reader_cost: 1.54994 s, avg_batch_cost: 1.84034 s, avg_samples: 12.5, ips: 6.79224 samples/s, eta: 0:16:07
[2024/08/01 18:39:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:39:49] ppocr INFO: epoch: [56/100], global_step: 168, lr: 0.001000, loss: 2.511963, loss_shrink_maps: 1.454415, loss_threshold_maps: 0.788781, loss_binary_maps: 0.274324, avg_reader_cost: 1.50478 s, avg_batch_cost: 1.75194 s, avg_samples: 12.5, ips: 7.13493 samples/s, eta: 0:15:43
[2024/08/01 18:39:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:39:57] ppocr INFO: epoch: [57/100], global_step: 170, lr: 0.001000, loss: 2.538707, loss_shrink_maps: 1.497145, loss_threshold_maps: 0.792250, loss_binary_maps: 0.282345, avg_reader_cost: 1.04085 s, avg_batch_cost: 1.22556 s, avg_samples: 9.6, ips: 7.83318 samples/s, eta: 0:15:27
[2024/08/01 18:39:57] ppocr INFO: epoch: [57/100], global_step: 171, lr: 0.001000, loss: 2.538707, loss_shrink_maps: 1.497145, loss_threshold_maps: 0.792250, loss_binary_maps: 0.282345, avg_reader_cost: 0.66169 s, avg_batch_cost: 0.71994 s, avg_samples: 2.9, ips: 4.02813 samples/s, eta: 0:15:20
[2024/08/01 18:39:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:40:05] ppocr INFO: epoch: [58/100], global_step: 174, lr: 0.001000, loss: 2.611558, loss_shrink_maps: 1.517447, loss_threshold_maps: 0.794488, loss_binary_maps: 0.287616, avg_reader_cost: 1.61544 s, avg_batch_cost: 1.91010 s, avg_samples: 12.5, ips: 6.54418 samples/s, eta: 0:14:57
[2024/08/01 18:40:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:40:12] ppocr INFO: epoch: [59/100], global_step: 177, lr: 0.001000, loss: 2.556543, loss_shrink_maps: 1.517447, loss_threshold_maps: 0.790738, loss_binary_maps: 0.286310, avg_reader_cost: 1.55679 s, avg_batch_cost: 1.80804 s, avg_samples: 12.5, ips: 6.91357 samples/s, eta: 0:14:33
[2024/08/01 18:40:13] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:40:20] ppocr INFO: epoch: [60/100], global_step: 180, lr: 0.001000, loss: 2.527481, loss_shrink_maps: 1.461832, loss_threshold_maps: 0.766207, loss_binary_maps: 0.276651, avg_reader_cost: 1.52688 s, avg_batch_cost: 1.80495 s, avg_samples: 12.5, ips: 6.92540 samples/s, eta: 0:14:10

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:52,  9.43it/s]
eval model::   1%|          | 4/500 [00:00<00:26, 18.51it/s]
eval model::   1%|          | 6/500 [00:00<00:26, 18.57it/s]
eval model::   2%|▏         | 9/500 [00:00<00:23, 20.56it/s]
eval model::   2%|▏         | 12/500 [00:00<00:25, 19.41it/s]
eval model::   3%|▎         | 14/500 [00:00<00:25, 19.01it/s]
eval model::   3%|▎         | 17/500 [00:00<00:23, 20.67it/s]
eval model::   4%|▍         | 20/500 [00:01<00:23, 20.79it/s]
eval model::   5%|▍         | 23/500 [00:01<00:20, 23.03it/s]
eval model::   5%|▌         | 26/500 [00:01<00:19, 23.83it/s]
eval model::   6%|▌         | 29/500 [00:01<00:21, 22.09it/s]
eval model::   6%|▋         | 32/500 [00:01<00:21, 21.43it/s]
eval model::   7%|▋         | 35/500 [00:01<00:24, 19.17it/s]
eval model::   8%|▊         | 38/500 [00:01<00:22, 20.40it/s]
eval model::   8%|▊         | 41/500 [00:02<00:23, 19.81it/s]
eval model::   9%|▉         | 44/500 [00:02<00:22, 20.05it/s]
eval model::   9%|▉         | 47/500 [00:02<00:23, 18.90it/s]
eval model::  10%|█         | 50/500 [00:02<00:22, 20.41it/s]
eval model::  11%|█         | 53/500 [00:02<00:20, 21.48it/s]
eval model::  11%|█         | 56/500 [00:02<00:21, 20.98it/s]
eval model::  12%|█▏        | 59/500 [00:02<00:20, 21.55it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:22, 19.42it/s]
eval model::  13%|█▎        | 65/500 [00:03<00:21, 19.89it/s]
eval model::  14%|█▎        | 68/500 [00:03<00:19, 21.82it/s]
eval model::  14%|█▍        | 71/500 [00:03<00:20, 21.08it/s]
eval model::  15%|█▍        | 74/500 [00:03<00:20, 20.54it/s]
eval model::  15%|█▌        | 77/500 [00:03<00:21, 19.64it/s]
eval model::  16%|█▌        | 80/500 [00:03<00:20, 20.63it/s]
eval model::  17%|█▋        | 83/500 [00:04<00:19, 21.42it/s]
eval model::  17%|█▋        | 86/500 [00:04<00:21, 19.17it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:21, 19.11it/s]
eval model::  18%|█▊        | 90/500 [00:04<00:24, 17.07it/s]
eval model::  18%|█▊        | 92/500 [00:04<00:23, 17.61it/s]
eval model::  19%|█▉        | 94/500 [00:04<00:23, 17.20it/s]
eval model::  19%|█▉        | 97/500 [00:04<00:21, 18.35it/s]
eval model::  20%|██        | 100/500 [00:05<00:22, 17.71it/s]
eval model::  20%|██        | 102/500 [00:05<00:22, 17.76it/s]
eval model::  21%|██        | 105/500 [00:05<00:19, 20.64it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:18, 21.46it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:17, 21.88it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:16, 22.77it/s]
eval model::  23%|██▎       | 117/500 [00:05<00:17, 21.36it/s]
eval model::  24%|██▍       | 120/500 [00:05<00:19, 19.48it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:19, 19.80it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:19, 19.24it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:18, 20.48it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:19, 19.04it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:19, 18.96it/s]
eval model::  27%|██▋       | 137/500 [00:06<00:20, 17.98it/s]
eval model::  28%|██▊       | 139/500 [00:06<00:19, 18.34it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:18, 19.08it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:18, 19.40it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:18, 18.77it/s]
eval model::  30%|███       | 150/500 [00:07<00:17, 19.95it/s]
eval model::  30%|███       | 152/500 [00:07<00:19, 18.05it/s]
eval model::  31%|███       | 155/500 [00:07<00:17, 20.24it/s]
eval model::  32%|███▏      | 158/500 [00:07<00:16, 20.16it/s]
eval model::  32%|███▏      | 161/500 [00:08<00:21, 15.42it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:21, 15.35it/s]
eval model::  33%|███▎      | 165/500 [00:08<00:21, 15.38it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:20, 16.34it/s]
eval model::  34%|███▍      | 170/500 [00:08<00:18, 17.90it/s]
eval model::  34%|███▍      | 172/500 [00:08<00:18, 17.27it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:22, 14.27it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:21, 15.16it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:18, 16.96it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:21, 15.07it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:17, 17.66it/s]
eval model::  37%|███▋      | 187/500 [00:09<00:16, 18.94it/s]
eval model::  38%|███▊      | 190/500 [00:09<00:15, 19.64it/s]
eval model::  39%|███▊      | 193/500 [00:10<00:14, 21.59it/s]
eval model::  39%|███▉      | 196/500 [00:10<00:15, 19.78it/s]
eval model::  40%|███▉      | 199/500 [00:10<00:14, 20.87it/s]
eval model::  40%|████      | 202/500 [00:10<00:13, 21.68it/s]
eval model::  41%|████      | 205/500 [00:10<00:21, 13.75it/s]
eval model::  42%|████▏     | 208/500 [00:11<00:19, 14.80it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:19, 14.84it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:17, 16.40it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:17, 16.00it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:18, 15.35it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:16, 17.03it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:17, 16.19it/s]
eval model::  45%|████▌     | 225/500 [00:11<00:15, 18.06it/s]
eval model::  46%|████▌     | 228/500 [00:12<00:13, 19.62it/s]
eval model::  46%|████▋     | 232/500 [00:12<00:11, 22.40it/s]
eval model::  47%|████▋     | 235/500 [00:12<00:12, 21.02it/s]
eval model::  48%|████▊     | 238/500 [00:12<00:11, 21.88it/s]
eval model::  48%|████▊     | 241/500 [00:12<00:11, 22.45it/s]
eval model::  49%|████▉     | 244/500 [00:12<00:13, 19.66it/s]
eval model::  49%|████▉     | 247/500 [00:13<00:12, 19.81it/s]
eval model::  50%|█████     | 250/500 [00:13<00:13, 18.81it/s]
eval model::  51%|█████     | 253/500 [00:13<00:12, 20.13it/s]
eval model::  51%|█████     | 256/500 [00:13<00:11, 20.60it/s]
eval model::  52%|█████▏    | 259/500 [00:13<00:11, 20.71it/s]
eval model::  52%|█████▏    | 262/500 [00:13<00:12, 18.32it/s]
eval model::  53%|█████▎    | 264/500 [00:13<00:13, 18.12it/s]
eval model::  53%|█████▎    | 267/500 [00:14<00:12, 19.03it/s]
eval model::  54%|█████▍    | 270/500 [00:14<00:11, 20.24it/s]
eval model::  55%|█████▍    | 273/500 [00:14<00:11, 20.32it/s]
eval model::  55%|█████▌    | 276/500 [00:14<00:12, 18.56it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:12, 18.10it/s]
eval model::  56%|█████▋    | 282/500 [00:14<00:11, 19.15it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:16, 13.11it/s]
eval model::  58%|█████▊    | 288/500 [00:15<00:14, 14.83it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:12, 17.06it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:12, 17.08it/s]
eval model::  59%|█████▉    | 296/500 [00:15<00:12, 16.08it/s]
eval model::  60%|██████    | 300/500 [00:15<00:10, 19.27it/s]
eval model::  61%|██████    | 303/500 [00:16<00:10, 18.13it/s]
eval model::  61%|██████    | 306/500 [00:16<00:10, 19.22it/s]
eval model::  62%|██████▏   | 309/500 [00:16<00:10, 18.85it/s]
eval model::  62%|██████▏   | 312/500 [00:16<00:09, 19.13it/s]
eval model::  63%|██████▎   | 315/500 [00:16<00:09, 19.46it/s]
eval model::  64%|██████▎   | 318/500 [00:16<00:08, 21.17it/s]
eval model::  64%|██████▍   | 321/500 [00:16<00:08, 21.90it/s]
eval model::  65%|██████▍   | 324/500 [00:17<00:08, 21.55it/s]
eval model::  65%|██████▌   | 327/500 [00:17<00:07, 22.44it/s]
eval model::  66%|██████▌   | 330/500 [00:17<00:08, 20.29it/s]
eval model::  67%|██████▋   | 333/500 [00:17<00:07, 21.43it/s]
eval model::  67%|██████▋   | 336/500 [00:17<00:07, 22.98it/s]
eval model::  68%|██████▊   | 339/500 [00:17<00:07, 21.36it/s]
eval model::  68%|██████▊   | 342/500 [00:17<00:08, 19.44it/s]
eval model::  69%|██████▉   | 346/500 [00:18<00:06, 22.09it/s]
eval model::  70%|███████   | 350/500 [00:18<00:06, 22.43it/s]
eval model::  71%|███████   | 354/500 [00:18<00:06, 23.57it/s]
eval model::  71%|███████▏  | 357/500 [00:18<00:06, 20.77it/s]
eval model::  72%|███████▏  | 360/500 [00:18<00:06, 20.90it/s]
eval model::  73%|███████▎  | 363/500 [00:18<00:06, 19.66it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:07, 18.25it/s]
eval model::  74%|███████▍  | 369/500 [00:19<00:06, 19.27it/s]
eval model::  74%|███████▍  | 372/500 [00:19<00:06, 20.28it/s]
eval model::  75%|███████▌  | 375/500 [00:19<00:06, 19.68it/s]
eval model::  76%|███████▌  | 378/500 [00:19<00:05, 21.52it/s]
eval model::  76%|███████▌  | 381/500 [00:19<00:05, 19.93it/s]
eval model::  77%|███████▋  | 384/500 [00:19<00:05, 21.31it/s]
eval model::  77%|███████▋  | 387/500 [00:20<00:07, 15.02it/s]
eval model::  78%|███████▊  | 390/500 [00:20<00:06, 16.84it/s]
eval model::  78%|███████▊  | 392/500 [00:20<00:06, 17.02it/s]
eval model::  79%|███████▉  | 395/500 [00:20<00:05, 18.29it/s]
eval model::  80%|███████▉  | 398/500 [00:20<00:04, 20.52it/s]
eval model::  80%|████████  | 401/500 [00:21<00:05, 17.32it/s]
eval model::  81%|████████  | 404/500 [00:21<00:05, 19.01it/s]
eval model::  81%|████████▏ | 407/500 [00:21<00:04, 20.89it/s]
eval model::  82%|████████▏ | 410/500 [00:21<00:04, 20.97it/s]
eval model::  83%|████████▎ | 413/500 [00:21<00:03, 21.77it/s]
eval model::  83%|████████▎ | 416/500 [00:21<00:03, 22.45it/s]
eval model::  84%|████████▍ | 419/500 [00:21<00:03, 21.28it/s]
eval model::  84%|████████▍ | 422/500 [00:22<00:03, 19.78it/s]
eval model::  85%|████████▌ | 425/500 [00:22<00:04, 17.43it/s]
eval model::  86%|████████▌ | 428/500 [00:22<00:03, 19.48it/s]
eval model::  86%|████████▌ | 431/500 [00:22<00:03, 19.42it/s]
eval model::  87%|████████▋ | 434/500 [00:22<00:03, 19.84it/s]
eval model::  87%|████████▋ | 437/500 [00:22<00:03, 20.79it/s]
eval model::  88%|████████▊ | 440/500 [00:22<00:03, 19.45it/s]
eval model::  89%|████████▊ | 443/500 [00:23<00:02, 20.57it/s]
eval model::  89%|████████▉ | 446/500 [00:23<00:02, 20.67it/s]
eval model::  90%|████████▉ | 449/500 [00:23<00:02, 18.06it/s]
eval model::  90%|█████████ | 452/500 [00:23<00:02, 19.51it/s]
eval model::  91%|█████████ | 455/500 [00:23<00:02, 19.15it/s]
eval model::  92%|█████████▏| 458/500 [00:23<00:01, 21.46it/s]
eval model::  92%|█████████▏| 461/500 [00:23<00:01, 20.92it/s]
eval model::  93%|█████████▎| 464/500 [00:24<00:01, 18.49it/s]
eval model::  93%|█████████▎| 466/500 [00:24<00:01, 17.89it/s]
eval model::  94%|█████████▍| 469/500 [00:24<00:01, 19.43it/s]
eval model::  94%|█████████▍| 472/500 [00:24<00:01, 20.13it/s]
eval model::  95%|█████████▌| 475/500 [00:24<00:01, 21.14it/s]
eval model::  96%|█████████▌| 478/500 [00:24<00:00, 22.15it/s]
eval model::  96%|█████████▌| 481/500 [00:24<00:00, 21.65it/s]
eval model::  97%|█████████▋| 484/500 [00:25<00:00, 20.50it/s]
eval model::  97%|█████████▋| 487/500 [00:25<00:00, 19.19it/s]
eval model::  98%|█████████▊| 490/500 [00:25<00:00, 19.98it/s]
eval model::  99%|█████████▊| 493/500 [00:25<00:00, 19.95it/s]
eval model::  99%|█████████▉| 496/500 [00:25<00:00, 20.99it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 23.40it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.34it/s]
[2024/08/01 18:40:46] ppocr INFO: cur metric, precision: 0.4854557207498384, recall: 0.36157920077034184, hmean: 0.4144591611479029, fps: 43.48454449021499
[2024/08/01 18:40:46] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/08/01 18:40:46] ppocr INFO: best metric, hmean: 0.4144591611479029, precision: 0.4854557207498384, recall: 0.36157920077034184, fps: 43.48454449021499, best_epoch: 60
[2024/08/01 18:40:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:40:53] ppocr INFO: epoch: [61/100], global_step: 183, lr: 0.001000, loss: 2.501282, loss_shrink_maps: 1.421478, loss_threshold_maps: 0.766207, loss_binary_maps: 0.270079, avg_reader_cost: 1.47426 s, avg_batch_cost: 1.73179 s, avg_samples: 12.5, ips: 7.21797 samples/s, eta: 0:13:46
[2024/08/01 18:40:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:41:00] ppocr INFO: epoch: [62/100], global_step: 186, lr: 0.001000, loss: 2.508012, loss_shrink_maps: 1.437702, loss_threshold_maps: 0.757074, loss_binary_maps: 0.274744, avg_reader_cost: 1.57364 s, avg_batch_cost: 1.82563 s, avg_samples: 12.5, ips: 6.84696 samples/s, eta: 0:13:23
[2024/08/01 18:41:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:41:08] ppocr INFO: epoch: [63/100], global_step: 189, lr: 0.001000, loss: 2.538753, loss_shrink_maps: 1.466582, loss_threshold_maps: 0.757074, loss_binary_maps: 0.283109, avg_reader_cost: 1.54917 s, avg_batch_cost: 1.79181 s, avg_samples: 12.5, ips: 6.97617 samples/s, eta: 0:13:00
[2024/08/01 18:41:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:41:13] ppocr INFO: epoch: [64/100], global_step: 190, lr: 0.001000, loss: 2.520784, loss_shrink_maps: 1.466582, loss_threshold_maps: 0.747143, loss_binary_maps: 0.283109, avg_reader_cost: 0.42552 s, avg_batch_cost: 0.51429 s, avg_samples: 4.8, ips: 9.33319 samples/s, eta: 0:12:52
[2024/08/01 18:41:15] ppocr INFO: epoch: [64/100], global_step: 192, lr: 0.001000, loss: 2.464877, loss_shrink_maps: 1.433404, loss_threshold_maps: 0.745705, loss_binary_maps: 0.274398, avg_reader_cost: 1.12588 s, avg_batch_cost: 1.28096 s, avg_samples: 7.7, ips: 6.01113 samples/s, eta: 0:12:37
[2024/08/01 18:41:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:41:22] ppocr INFO: epoch: [65/100], global_step: 195, lr: 0.001000, loss: 2.464877, loss_shrink_maps: 1.433404, loss_threshold_maps: 0.745705, loss_binary_maps: 0.274398, avg_reader_cost: 1.53076 s, avg_batch_cost: 1.77507 s, avg_samples: 12.5, ips: 7.04197 samples/s, eta: 0:12:14
[2024/08/01 18:41:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:41:30] ppocr INFO: epoch: [66/100], global_step: 198, lr: 0.001000, loss: 2.402393, loss_shrink_maps: 1.390111, loss_threshold_maps: 0.747143, loss_binary_maps: 0.266023, avg_reader_cost: 1.56225 s, avg_batch_cost: 1.83810 s, avg_samples: 12.5, ips: 6.80051 samples/s, eta: 0:11:52
[2024/08/01 18:41:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:41:37] ppocr INFO: epoch: [67/100], global_step: 200, lr: 0.001000, loss: 2.464877, loss_shrink_maps: 1.433186, loss_threshold_maps: 0.748735, loss_binary_maps: 0.274398, avg_reader_cost: 0.95020 s, avg_batch_cost: 1.13880 s, avg_samples: 9.6, ips: 8.42996 samples/s, eta: 0:11:37
[2024/08/01 18:41:37] ppocr INFO: epoch: [67/100], global_step: 201, lr: 0.001000, loss: 2.402393, loss_shrink_maps: 1.390111, loss_threshold_maps: 0.747143, loss_binary_maps: 0.266023, avg_reader_cost: 0.61790 s, avg_batch_cost: 0.67601 s, avg_samples: 2.9, ips: 4.28986 samples/s, eta: 0:11:30
[2024/08/01 18:41:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:41:45] ppocr INFO: epoch: [68/100], global_step: 204, lr: 0.001000, loss: 2.331588, loss_shrink_maps: 1.328770, loss_threshold_maps: 0.748180, loss_binary_maps: 0.258273, avg_reader_cost: 1.58117 s, avg_batch_cost: 1.87301 s, avg_samples: 12.5, ips: 6.67375 samples/s, eta: 0:11:08
[2024/08/01 18:41:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:41:53] ppocr INFO: epoch: [69/100], global_step: 207, lr: 0.001000, loss: 2.311538, loss_shrink_maps: 1.310550, loss_threshold_maps: 0.746167, loss_binary_maps: 0.253636, avg_reader_cost: 1.56948 s, avg_batch_cost: 1.82761 s, avg_samples: 12.5, ips: 6.83954 samples/s, eta: 0:10:46
[2024/08/01 18:41:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:42:00] ppocr INFO: epoch: [70/100], global_step: 210, lr: 0.001000, loss: 2.329156, loss_shrink_maps: 1.311264, loss_threshold_maps: 0.752281, loss_binary_maps: 0.254230, avg_reader_cost: 1.53642 s, avg_batch_cost: 1.78267 s, avg_samples: 12.5, ips: 7.01194 samples/s, eta: 0:10:23
[2024/08/01 18:42:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:42:08] ppocr INFO: epoch: [71/100], global_step: 213, lr: 0.001000, loss: 2.331588, loss_shrink_maps: 1.328770, loss_threshold_maps: 0.752281, loss_binary_maps: 0.259096, avg_reader_cost: 1.56777 s, avg_batch_cost: 1.81181 s, avg_samples: 12.5, ips: 6.89916 samples/s, eta: 0:10:02
[2024/08/01 18:42:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:42:15] ppocr INFO: epoch: [72/100], global_step: 216, lr: 0.001000, loss: 2.331522, loss_shrink_maps: 1.318475, loss_threshold_maps: 0.753316, loss_binary_maps: 0.255435, avg_reader_cost: 1.54777 s, avg_batch_cost: 1.79318 s, avg_samples: 12.5, ips: 6.97086 samples/s, eta: 0:09:40
[2024/08/01 18:42:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:42:23] ppocr INFO: epoch: [73/100], global_step: 219, lr: 0.001000, loss: 2.311472, loss_shrink_maps: 1.300255, loss_threshold_maps: 0.746838, loss_binary_maps: 0.251707, avg_reader_cost: 1.58705 s, avg_batch_cost: 1.83152 s, avg_samples: 12.5, ips: 6.82493 samples/s, eta: 0:09:18
[2024/08/01 18:42:23] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:42:28] ppocr INFO: epoch: [74/100], global_step: 220, lr: 0.001000, loss: 2.331522, loss_shrink_maps: 1.318475, loss_threshold_maps: 0.753316, loss_binary_maps: 0.256573, avg_reader_cost: 0.40152 s, avg_batch_cost: 0.52770 s, avg_samples: 4.8, ips: 9.09604 samples/s, eta: 0:09:11
[2024/08/01 18:42:30] ppocr INFO: epoch: [74/100], global_step: 222, lr: 0.001000, loss: 2.360302, loss_shrink_maps: 1.354862, loss_threshold_maps: 0.753316, loss_binary_maps: 0.263823, avg_reader_cost: 1.15285 s, avg_batch_cost: 1.30739 s, avg_samples: 7.7, ips: 5.88958 samples/s, eta: 0:08:57
[2024/08/01 18:42:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:42:38] ppocr INFO: epoch: [75/100], global_step: 225, lr: 0.001000, loss: 2.432237, loss_shrink_maps: 1.407012, loss_threshold_maps: 0.759269, loss_binary_maps: 0.274037, avg_reader_cost: 1.60260 s, avg_batch_cost: 1.89119 s, avg_samples: 12.5, ips: 6.60959 samples/s, eta: 0:08:35
[2024/08/01 18:42:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:42:46] ppocr INFO: epoch: [76/100], global_step: 228, lr: 0.001000, loss: 2.357870, loss_shrink_maps: 1.354862, loss_threshold_maps: 0.752106, loss_binary_maps: 0.263823, avg_reader_cost: 1.63509 s, avg_batch_cost: 1.94524 s, avg_samples: 12.5, ips: 6.42595 samples/s, eta: 0:08:14
[2024/08/01 18:42:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:42:53] ppocr INFO: epoch: [77/100], global_step: 230, lr: 0.001000, loss: 2.355170, loss_shrink_maps: 1.354862, loss_threshold_maps: 0.746838, loss_binary_maps: 0.263823, avg_reader_cost: 0.91529 s, avg_batch_cost: 1.10050 s, avg_samples: 9.6, ips: 8.72332 samples/s, eta: 0:08:00
[2024/08/01 18:42:53] ppocr INFO: epoch: [77/100], global_step: 231, lr: 0.001000, loss: 2.355170, loss_shrink_maps: 1.354862, loss_threshold_maps: 0.746838, loss_binary_maps: 0.263823, avg_reader_cost: 0.59891 s, avg_batch_cost: 0.65713 s, avg_samples: 2.9, ips: 4.41316 samples/s, eta: 0:07:53
[2024/08/01 18:42:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:43:01] ppocr INFO: epoch: [78/100], global_step: 234, lr: 0.001000, loss: 2.313231, loss_shrink_maps: 1.338428, loss_threshold_maps: 0.750355, loss_binary_maps: 0.261390, avg_reader_cost: 1.52929 s, avg_batch_cost: 1.79071 s, avg_samples: 12.5, ips: 6.98046 samples/s, eta: 0:07:31
[2024/08/01 18:43:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:43:08] ppocr INFO: epoch: [79/100], global_step: 237, lr: 0.001000, loss: 2.359019, loss_shrink_maps: 1.354862, loss_threshold_maps: 0.750296, loss_binary_maps: 0.263649, avg_reader_cost: 1.60182 s, avg_batch_cost: 1.86595 s, avg_samples: 12.5, ips: 6.69899 samples/s, eta: 0:07:10
[2024/08/01 18:43:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:43:16] ppocr INFO: epoch: [80/100], global_step: 240, lr: 0.001000, loss: 2.327538, loss_shrink_maps: 1.338428, loss_threshold_maps: 0.750296, loss_binary_maps: 0.261390, avg_reader_cost: 1.53683 s, avg_batch_cost: 1.79004 s, avg_samples: 12.5, ips: 6.98310 samples/s, eta: 0:06:49

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:59,  8.39it/s]
eval model::   1%|          | 4/500 [00:00<00:31, 15.79it/s]
eval model::   1%|▏         | 7/500 [00:00<00:26, 18.77it/s]
eval model::   2%|▏         | 9/500 [00:00<00:25, 19.02it/s]
eval model::   2%|▏         | 11/500 [00:00<00:25, 19.03it/s]
eval model::   3%|▎         | 13/500 [00:00<00:27, 17.72it/s]
eval model::   3%|▎         | 15/500 [00:00<00:27, 17.72it/s]
eval model::   4%|▎         | 18/500 [00:00<00:23, 20.64it/s]
eval model::   4%|▍         | 21/500 [00:01<00:23, 20.67it/s]
eval model::   5%|▍         | 24/500 [00:01<00:22, 20.93it/s]
eval model::   5%|▌         | 27/500 [00:01<00:23, 20.56it/s]
eval model::   6%|▌         | 30/500 [00:01<00:22, 20.79it/s]
eval model::   7%|▋         | 33/500 [00:01<00:23, 19.93it/s]
eval model::   7%|▋         | 36/500 [00:01<00:23, 19.65it/s]
eval model::   8%|▊         | 38/500 [00:01<00:25, 18.42it/s]
eval model::   8%|▊         | 40/500 [00:02<00:25, 18.21it/s]
eval model::   9%|▊         | 43/500 [00:02<00:23, 19.43it/s]
eval model::   9%|▉         | 46/500 [00:02<00:23, 19.52it/s]
eval model::  10%|▉         | 49/500 [00:02<00:21, 21.12it/s]
eval model::  10%|█         | 52/500 [00:02<00:22, 19.55it/s]
eval model::  11%|█         | 55/500 [00:02<00:22, 19.88it/s]
eval model::  12%|█▏        | 58/500 [00:03<00:23, 18.90it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:24, 17.88it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:25, 17.10it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:21, 19.81it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:19, 22.51it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:20, 20.53it/s]
eval model::  15%|█▌        | 76/500 [00:03<00:20, 20.80it/s]
eval model::  16%|█▌        | 79/500 [00:04<00:20, 20.85it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:20, 20.44it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:20, 19.83it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:20, 19.94it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:20, 19.51it/s]
eval model::  19%|█▉        | 94/500 [00:04<00:20, 20.25it/s]
eval model::  19%|█▉        | 97/500 [00:04<00:19, 21.15it/s]
eval model::  20%|██        | 100/500 [00:05<00:20, 19.86it/s]
eval model::  21%|██        | 103/500 [00:05<00:19, 20.65it/s]
eval model::  21%|██        | 106/500 [00:05<00:19, 20.22it/s]
eval model::  22%|██▏       | 109/500 [00:05<00:18, 20.69it/s]
eval model::  22%|██▏       | 112/500 [00:05<00:20, 19.04it/s]
eval model::  23%|██▎       | 115/500 [00:05<00:21, 18.32it/s]
eval model::  24%|██▎       | 118/500 [00:06<00:19, 19.64it/s]
eval model::  24%|██▍       | 121/500 [00:06<00:20, 18.48it/s]
eval model::  25%|██▍       | 124/500 [00:06<00:21, 17.50it/s]
eval model::  25%|██▌       | 127/500 [00:06<00:19, 19.57it/s]
eval model::  26%|██▌       | 130/500 [00:06<00:20, 17.93it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:20, 18.23it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:18, 19.59it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:17, 20.66it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:17, 20.51it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:17, 20.75it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:18, 19.60it/s]
eval model::  30%|███       | 150/500 [00:07<00:17, 19.99it/s]
eval model::  31%|███       | 153/500 [00:07<00:18, 18.60it/s]
eval model::  31%|███       | 156/500 [00:07<00:16, 20.93it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:16, 20.52it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:17, 19.26it/s]
eval model::  33%|███▎      | 165/500 [00:08<00:18, 18.17it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:19, 17.44it/s]
eval model::  34%|███▍      | 170/500 [00:08<00:17, 19.16it/s]
eval model::  34%|███▍      | 172/500 [00:08<00:17, 18.47it/s]
eval model::  35%|███▍      | 174/500 [00:09<00:20, 16.21it/s]
eval model::  35%|███▌      | 176/500 [00:09<00:19, 16.83it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:16, 18.97it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:17, 17.82it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:15, 19.86it/s]
eval model::  37%|███▋      | 187/500 [00:09<00:15, 20.33it/s]
eval model::  38%|███▊      | 190/500 [00:09<00:14, 20.98it/s]
eval model::  39%|███▊      | 193/500 [00:09<00:13, 22.91it/s]
eval model::  39%|███▉      | 196/500 [00:10<00:14, 21.60it/s]
eval model::  40%|███▉      | 199/500 [00:10<00:13, 21.78it/s]
eval model::  40%|████      | 202/500 [00:10<00:13, 22.38it/s]
eval model::  41%|████      | 205/500 [00:10<00:18, 16.13it/s]
eval model::  42%|████▏     | 208/500 [00:10<00:16, 17.49it/s]
eval model::  42%|████▏     | 210/500 [00:10<00:17, 16.93it/s]
eval model::  43%|████▎     | 213/500 [00:10<00:15, 18.56it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:17, 16.75it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:18, 15.67it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:15, 18.15it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:16, 17.00it/s]
eval model::  45%|████▌     | 225/500 [00:11<00:14, 19.59it/s]
eval model::  46%|████▌     | 228/500 [00:11<00:14, 18.63it/s]
eval model::  46%|████▌     | 231/500 [00:11<00:13, 20.33it/s]
eval model::  47%|████▋     | 234/500 [00:12<00:12, 21.15it/s]
eval model::  47%|████▋     | 237/500 [00:12<00:11, 22.62it/s]
eval model::  48%|████▊     | 240/500 [00:12<00:11, 23.28it/s]
eval model::  49%|████▊     | 243/500 [00:12<00:13, 19.63it/s]
eval model::  49%|████▉     | 246/500 [00:12<00:12, 20.07it/s]
eval model::  50%|████▉     | 249/500 [00:12<00:13, 18.57it/s]
eval model::  50%|█████     | 251/500 [00:12<00:13, 18.07it/s]
eval model::  51%|█████     | 254/500 [00:13<00:12, 20.11it/s]
eval model::  51%|█████▏    | 257/500 [00:13<00:11, 20.38it/s]
eval model::  52%|█████▏    | 260/500 [00:13<00:11, 21.15it/s]
eval model::  53%|█████▎    | 263/500 [00:13<00:11, 21.05it/s]
eval model::  53%|█████▎    | 266/500 [00:13<00:11, 20.18it/s]
eval model::  54%|█████▍    | 269/500 [00:13<00:10, 21.25it/s]
eval model::  54%|█████▍    | 272/500 [00:13<00:11, 19.19it/s]
eval model::  55%|█████▍    | 274/500 [00:14<00:11, 19.24it/s]
eval model::  55%|█████▌    | 276/500 [00:14<00:11, 18.99it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:11, 19.93it/s]
eval model::  56%|█████▋    | 282/500 [00:14<00:10, 21.21it/s]
eval model::  57%|█████▋    | 285/500 [00:14<00:14, 14.69it/s]
eval model::  57%|█████▋    | 287/500 [00:14<00:13, 15.39it/s]
eval model::  58%|█████▊    | 290/500 [00:15<00:11, 17.63it/s]
eval model::  59%|█████▊    | 293/500 [00:15<00:10, 19.69it/s]
eval model::  59%|█████▉    | 296/500 [00:15<00:11, 17.80it/s]
eval model::  60%|██████    | 300/500 [00:15<00:10, 19.55it/s]
eval model::  61%|██████    | 303/500 [00:15<00:09, 20.78it/s]
eval model::  61%|██████    | 306/500 [00:15<00:08, 21.63it/s]
eval model::  62%|██████▏   | 309/500 [00:15<00:09, 20.29it/s]
eval model::  62%|██████▏   | 312/500 [00:16<00:09, 19.95it/s]
eval model::  63%|██████▎   | 315/500 [00:16<00:08, 20.76it/s]
eval model::  64%|██████▎   | 318/500 [00:16<00:08, 21.19it/s]
eval model::  64%|██████▍   | 321/500 [00:16<00:08, 22.05it/s]
eval model::  65%|██████▍   | 324/500 [00:16<00:08, 21.09it/s]
eval model::  65%|██████▌   | 327/500 [00:16<00:07, 23.05it/s]
eval model::  66%|██████▌   | 330/500 [00:16<00:07, 21.95it/s]
eval model::  67%|██████▋   | 333/500 [00:17<00:07, 21.16it/s]
eval model::  67%|██████▋   | 336/500 [00:17<00:07, 21.98it/s]
eval model::  68%|██████▊   | 339/500 [00:17<00:07, 21.23it/s]
eval model::  68%|██████▊   | 342/500 [00:17<00:08, 18.79it/s]
eval model::  69%|██████▉   | 345/500 [00:17<00:07, 20.45it/s]
eval model::  70%|██████▉   | 348/500 [00:17<00:07, 20.22it/s]
eval model::  70%|███████   | 351/500 [00:17<00:07, 20.51it/s]
eval model::  71%|███████   | 354/500 [00:18<00:06, 21.18it/s]
eval model::  71%|███████▏  | 357/500 [00:18<00:07, 18.93it/s]
eval model::  72%|███████▏  | 360/500 [00:18<00:07, 19.79it/s]
eval model::  73%|███████▎  | 363/500 [00:18<00:07, 18.96it/s]
eval model::  73%|███████▎  | 365/500 [00:18<00:07, 17.86it/s]
eval model::  74%|███████▎  | 368/500 [00:18<00:06, 19.57it/s]
eval model::  74%|███████▍  | 371/500 [00:18<00:06, 20.19it/s]
eval model::  75%|███████▍  | 374/500 [00:19<00:06, 21.00it/s]
eval model::  75%|███████▌  | 377/500 [00:19<00:05, 21.07it/s]
eval model::  76%|███████▌  | 380/500 [00:19<00:06, 19.83it/s]
eval model::  77%|███████▋  | 383/500 [00:19<00:05, 21.35it/s]
eval model::  77%|███████▋  | 386/500 [00:19<00:07, 14.76it/s]
eval model::  78%|███████▊  | 389/500 [00:19<00:06, 16.98it/s]
eval model::  78%|███████▊  | 392/500 [00:20<00:06, 17.76it/s]
eval model::  79%|███████▉  | 395/500 [00:20<00:06, 17.46it/s]
eval model::  79%|███████▉  | 397/500 [00:20<00:05, 17.94it/s]
eval model::  80%|████████  | 400/500 [00:20<00:05, 18.69it/s]
eval model::  81%|████████  | 403/500 [00:20<00:04, 20.59it/s]
eval model::  81%|████████  | 406/500 [00:20<00:04, 21.04it/s]
eval model::  82%|████████▏ | 409/500 [00:20<00:04, 21.58it/s]
eval model::  82%|████████▏ | 412/500 [00:21<00:04, 21.98it/s]
eval model::  83%|████████▎ | 415/500 [00:21<00:03, 22.78it/s]
eval model::  84%|████████▎ | 418/500 [00:21<00:04, 19.62it/s]
eval model::  84%|████████▍ | 421/500 [00:21<00:04, 16.58it/s]
eval model::  85%|████████▍ | 424/500 [00:21<00:04, 17.75it/s]
eval model::  85%|████████▌ | 427/500 [00:21<00:03, 19.12it/s]
eval model::  86%|████████▌ | 430/500 [00:22<00:03, 21.12it/s]
eval model::  87%|████████▋ | 433/500 [00:22<00:02, 22.62it/s]
eval model::  87%|████████▋ | 436/500 [00:22<00:02, 23.60it/s]
eval model::  88%|████████▊ | 439/500 [00:22<00:02, 23.64it/s]
eval model::  88%|████████▊ | 442/500 [00:22<00:02, 23.41it/s]
eval model::  89%|████████▉ | 445/500 [00:22<00:02, 21.33it/s]
eval model::  90%|████████▉ | 448/500 [00:22<00:02, 20.77it/s]
eval model::  90%|█████████ | 451/500 [00:22<00:02, 20.58it/s]
eval model::  91%|█████████ | 454/500 [00:23<00:02, 21.90it/s]
eval model::  91%|█████████▏| 457/500 [00:23<00:01, 23.34it/s]
eval model::  92%|█████████▏| 460/500 [00:23<00:01, 22.27it/s]
eval model::  93%|█████████▎| 463/500 [00:23<00:01, 18.71it/s]
eval model::  93%|█████████▎| 466/500 [00:23<00:01, 17.91it/s]
eval model::  94%|█████████▍| 469/500 [00:23<00:01, 19.26it/s]
eval model::  94%|█████████▍| 472/500 [00:24<00:01, 20.02it/s]
eval model::  95%|█████████▌| 475/500 [00:24<00:01, 18.60it/s]
eval model::  96%|█████████▌| 478/500 [00:24<00:01, 20.10it/s]
eval model::  96%|█████████▌| 481/500 [00:24<00:00, 20.01it/s]
eval model::  97%|█████████▋| 484/500 [00:24<00:00, 19.00it/s]
eval model::  97%|█████████▋| 486/500 [00:24<00:00, 17.97it/s]
eval model::  98%|█████████▊| 489/500 [00:24<00:00, 18.82it/s]
eval model::  98%|█████████▊| 491/500 [00:25<00:00, 18.59it/s]
eval model::  99%|█████████▉| 494/500 [00:25<00:00, 19.79it/s]
eval model::  99%|█████████▉| 496/500 [00:25<00:00, 19.31it/s]
eval model:: 100%|█████████▉| 499/500 [00:25<00:00, 21.63it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.64it/s]
[2024/08/01 18:43:41] ppocr INFO: cur metric, precision: 0.5756958587915818, recall: 0.40828117477130477, hmean: 0.4777464788732394, fps: 43.55140108118018
[2024/08/01 18:43:41] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/08/01 18:43:41] ppocr INFO: best metric, hmean: 0.4777464788732394, precision: 0.5756958587915818, recall: 0.40828117477130477, fps: 43.55140108118018, best_epoch: 80
[2024/08/01 18:43:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:43:49] ppocr INFO: epoch: [81/100], global_step: 243, lr: 0.001000, loss: 2.318730, loss_shrink_maps: 1.329317, loss_threshold_maps: 0.749129, loss_binary_maps: 0.258787, avg_reader_cost: 1.60162 s, avg_batch_cost: 1.87977 s, avg_samples: 12.5, ips: 6.64976 samples/s, eta: 0:06:28
[2024/08/01 18:43:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:43:56] ppocr INFO: epoch: [82/100], global_step: 246, lr: 0.001000, loss: 2.318730, loss_shrink_maps: 1.305076, loss_threshold_maps: 0.744377, loss_binary_maps: 0.253913, avg_reader_cost: 1.58209 s, avg_batch_cost: 1.82539 s, avg_samples: 12.5, ips: 6.84786 samples/s, eta: 0:06:07
[2024/08/01 18:43:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:44:04] ppocr INFO: epoch: [83/100], global_step: 249, lr: 0.001000, loss: 2.381673, loss_shrink_maps: 1.341568, loss_threshold_maps: 0.744377, loss_binary_maps: 0.261046, avg_reader_cost: 1.60176 s, avg_batch_cost: 1.87271 s, avg_samples: 12.5, ips: 6.67482 samples/s, eta: 0:05:47
[2024/08/01 18:44:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:44:10] ppocr INFO: epoch: [84/100], global_step: 250, lr: 0.001000, loss: 2.381673, loss_shrink_maps: 1.341568, loss_threshold_maps: 0.744377, loss_binary_maps: 0.261046, avg_reader_cost: 0.41756 s, avg_batch_cost: 0.50759 s, avg_samples: 4.8, ips: 9.45640 samples/s, eta: 0:05:39
[2024/08/01 18:44:11] ppocr INFO: epoch: [84/100], global_step: 252, lr: 0.001000, loss: 2.353767, loss_shrink_maps: 1.320434, loss_threshold_maps: 0.742881, loss_binary_maps: 0.257748, avg_reader_cost: 1.11404 s, avg_batch_cost: 1.27046 s, avg_samples: 7.7, ips: 6.06078 samples/s, eta: 0:05:26
[2024/08/01 18:44:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:44:19] ppocr INFO: epoch: [85/100], global_step: 255, lr: 0.001000, loss: 2.301886, loss_shrink_maps: 1.294086, loss_threshold_maps: 0.731867, loss_binary_maps: 0.251734, avg_reader_cost: 1.54889 s, avg_batch_cost: 1.82807 s, avg_samples: 12.5, ips: 6.83781 samples/s, eta: 0:05:05
[2024/08/01 18:44:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:44:26] ppocr INFO: epoch: [86/100], global_step: 258, lr: 0.001000, loss: 2.285625, loss_shrink_maps: 1.286824, loss_threshold_maps: 0.726836, loss_binary_maps: 0.249740, avg_reader_cost: 1.52347 s, avg_batch_cost: 1.78180 s, avg_samples: 12.5, ips: 7.01537 samples/s, eta: 0:04:44
[2024/08/01 18:44:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:44:34] ppocr INFO: epoch: [87/100], global_step: 260, lr: 0.001000, loss: 2.174765, loss_shrink_maps: 1.236476, loss_threshold_maps: 0.720323, loss_binary_maps: 0.241831, avg_reader_cost: 0.97977 s, avg_batch_cost: 1.16542 s, avg_samples: 9.6, ips: 8.23736 samples/s, eta: 0:04:30
[2024/08/01 18:44:34] ppocr INFO: epoch: [87/100], global_step: 261, lr: 0.001000, loss: 2.174765, loss_shrink_maps: 1.236476, loss_threshold_maps: 0.720323, loss_binary_maps: 0.241831, avg_reader_cost: 0.63115 s, avg_batch_cost: 0.68910 s, avg_samples: 2.9, ips: 4.20838 samples/s, eta: 0:04:24
[2024/08/01 18:44:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:44:42] ppocr INFO: epoch: [88/100], global_step: 264, lr: 0.001000, loss: 2.174765, loss_shrink_maps: 1.236476, loss_threshold_maps: 0.718217, loss_binary_maps: 0.241831, avg_reader_cost: 1.51821 s, avg_batch_cost: 1.76146 s, avg_samples: 12.5, ips: 7.09637 samples/s, eta: 0:04:03
[2024/08/01 18:44:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:44:49] ppocr INFO: epoch: [89/100], global_step: 267, lr: 0.001000, loss: 2.207464, loss_shrink_maps: 1.248974, loss_threshold_maps: 0.720323, loss_binary_maps: 0.243890, avg_reader_cost: 1.52443 s, avg_batch_cost: 1.78275 s, avg_samples: 12.5, ips: 7.01164 samples/s, eta: 0:03:42
[2024/08/01 18:44:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:44:57] ppocr INFO: epoch: [90/100], global_step: 270, lr: 0.001000, loss: 2.240254, loss_shrink_maps: 1.255855, loss_threshold_maps: 0.729933, loss_binary_maps: 0.244755, avg_reader_cost: 1.63227 s, avg_batch_cost: 1.91951 s, avg_samples: 12.5, ips: 6.51209 samples/s, eta: 0:03:22
[2024/08/01 18:44:58] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:45:05] ppocr INFO: epoch: [91/100], global_step: 273, lr: 0.001000, loss: 2.240254, loss_shrink_maps: 1.255855, loss_threshold_maps: 0.733039, loss_binary_maps: 0.244755, avg_reader_cost: 1.72579 s, avg_batch_cost: 1.96742 s, avg_samples: 12.5, ips: 6.35351 samples/s, eta: 0:03:02
[2024/08/01 18:45:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:45:13] ppocr INFO: epoch: [92/100], global_step: 276, lr: 0.001000, loss: 2.240254, loss_shrink_maps: 1.255855, loss_threshold_maps: 0.733039, loss_binary_maps: 0.244755, avg_reader_cost: 1.56925 s, avg_batch_cost: 1.82412 s, avg_samples: 12.5, ips: 6.85263 samples/s, eta: 0:02:41
[2024/08/01 18:45:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:45:20] ppocr INFO: epoch: [93/100], global_step: 279, lr: 0.001000, loss: 2.240254, loss_shrink_maps: 1.265613, loss_threshold_maps: 0.733039, loss_binary_maps: 0.245559, avg_reader_cost: 1.59952 s, avg_batch_cost: 1.86449 s, avg_samples: 12.5, ips: 6.70423 samples/s, eta: 0:02:21
[2024/08/01 18:45:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:45:27] ppocr INFO: epoch: [94/100], global_step: 280, lr: 0.001000, loss: 2.240254, loss_shrink_maps: 1.265613, loss_threshold_maps: 0.733039, loss_binary_maps: 0.245559, avg_reader_cost: 0.42156 s, avg_batch_cost: 0.54059 s, avg_samples: 4.8, ips: 8.87923 samples/s, eta: 0:02:14
[2024/08/01 18:45:28] ppocr INFO: epoch: [94/100], global_step: 282, lr: 0.001000, loss: 2.235088, loss_shrink_maps: 1.265613, loss_threshold_maps: 0.728887, loss_binary_maps: 0.245525, avg_reader_cost: 1.17797 s, avg_batch_cost: 1.33335 s, avg_samples: 7.7, ips: 5.77492 samples/s, eta: 0:02:01
[2024/08/01 18:45:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:45:36] ppocr INFO: epoch: [95/100], global_step: 285, lr: 0.001000, loss: 2.248064, loss_shrink_maps: 1.271666, loss_threshold_maps: 0.733891, loss_binary_maps: 0.248786, avg_reader_cost: 1.54728 s, avg_batch_cost: 1.81453 s, avg_samples: 12.5, ips: 6.88885 samples/s, eta: 0:01:40
[2024/08/01 18:45:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:45:44] ppocr INFO: epoch: [96/100], global_step: 288, lr: 0.001000, loss: 2.235482, loss_shrink_maps: 1.267639, loss_threshold_maps: 0.730886, loss_binary_maps: 0.248786, avg_reader_cost: 1.56094 s, avg_batch_cost: 1.80573 s, avg_samples: 12.5, ips: 6.92240 samples/s, eta: 0:01:20
[2024/08/01 18:45:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:45:51] ppocr INFO: epoch: [97/100], global_step: 290, lr: 0.001000, loss: 2.201778, loss_shrink_maps: 1.252921, loss_threshold_maps: 0.717601, loss_binary_maps: 0.245554, avg_reader_cost: 0.96981 s, avg_batch_cost: 1.16923 s, avg_samples: 9.6, ips: 8.21056 samples/s, eta: 0:01:07
[2024/08/01 18:45:51] ppocr INFO: epoch: [97/100], global_step: 291, lr: 0.001000, loss: 2.235482, loss_shrink_maps: 1.267639, loss_threshold_maps: 0.725062, loss_binary_maps: 0.248786, avg_reader_cost: 0.63322 s, avg_batch_cost: 0.69125 s, avg_samples: 2.9, ips: 4.19528 samples/s, eta: 0:01:00
[2024/08/01 18:45:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:45:59] ppocr INFO: epoch: [98/100], global_step: 294, lr: 0.001000, loss: 2.235482, loss_shrink_maps: 1.267639, loss_threshold_maps: 0.717601, loss_binary_maps: 0.248786, avg_reader_cost: 1.52689 s, avg_batch_cost: 1.79152 s, avg_samples: 12.5, ips: 6.97733 samples/s, eta: 0:00:40
[2024/08/01 18:46:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:46:06] ppocr INFO: epoch: [99/100], global_step: 297, lr: 0.001000, loss: 2.250691, loss_shrink_maps: 1.276110, loss_threshold_maps: 0.720753, loss_binary_maps: 0.250824, avg_reader_cost: 1.52438 s, avg_batch_cost: 1.76807 s, avg_samples: 12.5, ips: 7.06985 samples/s, eta: 0:00:20
[2024/08/01 18:46:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:46:14] ppocr INFO: epoch: [100/100], global_step: 300, lr: 0.001000, loss: 2.255736, loss_shrink_maps: 1.276110, loss_threshold_maps: 0.736116, loss_binary_maps: 0.250824, avg_reader_cost: 1.54734 s, avg_batch_cost: 1.79055 s, avg_samples: 12.5, ips: 6.98110 samples/s, eta: 0:00:00

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:50,  9.86it/s]
eval model::   1%|          | 3/500 [00:00<00:31, 15.74it/s]
eval model::   1%|          | 6/500 [00:00<00:26, 18.92it/s]
eval model::   2%|▏         | 8/500 [00:00<00:28, 17.43it/s]
eval model::   2%|▏         | 11/500 [00:00<00:26, 18.74it/s]
eval model::   3%|▎         | 14/500 [00:00<00:24, 19.75it/s]
eval model::   3%|▎         | 17/500 [00:00<00:22, 21.53it/s]
eval model::   4%|▍         | 20/500 [00:01<00:24, 19.46it/s]
eval model::   5%|▍         | 23/500 [00:01<00:23, 20.04it/s]
eval model::   5%|▌         | 26/500 [00:01<00:22, 20.84it/s]
eval model::   6%|▌         | 29/500 [00:01<00:22, 20.79it/s]
eval model::   6%|▋         | 32/500 [00:01<00:23, 19.53it/s]
eval model::   7%|▋         | 34/500 [00:01<00:24, 18.86it/s]
eval model::   7%|▋         | 37/500 [00:01<00:22, 20.63it/s]
eval model::   8%|▊         | 40/500 [00:02<00:24, 18.46it/s]
eval model::   8%|▊         | 42/500 [00:02<00:25, 18.26it/s]
eval model::   9%|▉         | 45/500 [00:02<00:24, 18.53it/s]
eval model::  10%|▉         | 48/500 [00:02<00:23, 19.19it/s]
eval model::  10%|█         | 50/500 [00:02<00:23, 19.25it/s]
eval model::  11%|█         | 53/500 [00:02<00:22, 19.72it/s]
eval model::  11%|█         | 56/500 [00:02<00:23, 19.25it/s]
eval model::  12%|█▏        | 59/500 [00:03<00:22, 19.55it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:24, 17.88it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:24, 18.15it/s]
eval model::  13%|█▎        | 67/500 [00:03<00:20, 21.58it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:19, 22.59it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:18, 22.72it/s]
eval model::  15%|█▌        | 76/500 [00:03<00:18, 23.54it/s]
eval model::  16%|█▌        | 79/500 [00:03<00:19, 21.62it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:19, 21.67it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:20, 20.75it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:20, 20.18it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:21, 19.27it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:21, 18.91it/s]
eval model::  19%|█▉        | 95/500 [00:04<00:21, 19.12it/s]
eval model::  20%|█▉        | 98/500 [00:04<00:20, 19.97it/s]
eval model::  20%|██        | 101/500 [00:05<00:19, 20.46it/s]
eval model::  21%|██        | 104/500 [00:05<00:18, 21.15it/s]
eval model::  21%|██▏       | 107/500 [00:05<00:17, 22.83it/s]
eval model::  22%|██▏       | 110/500 [00:05<00:18, 21.14it/s]
eval model::  23%|██▎       | 113/500 [00:05<00:17, 21.91it/s]
eval model::  23%|██▎       | 116/500 [00:05<00:17, 22.37it/s]
eval model::  24%|██▍       | 119/500 [00:05<00:17, 21.55it/s]
eval model::  24%|██▍       | 122/500 [00:06<00:17, 21.62it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:18, 20.53it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:17, 21.28it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:19, 19.34it/s]
eval model::  27%|██▋       | 133/500 [00:06<00:19, 19.18it/s]
eval model::  27%|██▋       | 136/500 [00:06<00:17, 20.22it/s]
eval model::  28%|██▊       | 139/500 [00:06<00:17, 20.89it/s]
eval model::  28%|██▊       | 142/500 [00:07<00:16, 21.76it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:17, 20.72it/s]
eval model::  30%|██▉       | 148/500 [00:07<00:17, 19.96it/s]
eval model::  30%|███       | 151/500 [00:07<00:19, 17.97it/s]
eval model::  31%|███       | 154/500 [00:07<00:16, 20.35it/s]
eval model::  31%|███▏      | 157/500 [00:07<00:16, 20.77it/s]
eval model::  32%|███▏      | 160/500 [00:08<00:19, 17.19it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:19, 17.32it/s]
eval model::  33%|███▎      | 165/500 [00:08<00:18, 17.82it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:18, 18.08it/s]
eval model::  34%|███▍      | 170/500 [00:08<00:16, 19.50it/s]
eval model::  35%|███▍      | 173/500 [00:08<00:17, 18.86it/s]
eval model::  35%|███▌      | 175/500 [00:08<00:18, 17.92it/s]
eval model::  36%|███▌      | 178/500 [00:08<00:15, 20.24it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:15, 20.52it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:14, 22.52it/s]
eval model::  37%|███▋      | 187/500 [00:09<00:13, 23.29it/s]
eval model::  38%|███▊      | 190/500 [00:09<00:14, 21.90it/s]
eval model::  39%|███▊      | 193/500 [00:09<00:13, 23.07it/s]
eval model::  39%|███▉      | 196/500 [00:09<00:14, 20.62it/s]
eval model::  40%|███▉      | 199/500 [00:09<00:14, 20.34it/s]
eval model::  40%|████      | 202/500 [00:10<00:15, 19.06it/s]
eval model::  41%|████      | 204/500 [00:10<00:15, 19.18it/s]
eval model::  41%|████      | 206/500 [00:10<00:23, 12.50it/s]
eval model::  42%|████▏     | 208/500 [00:10<00:21, 13.53it/s]
eval model::  42%|████▏     | 210/500 [00:10<00:20, 14.35it/s]
eval model::  43%|████▎     | 213/500 [00:10<00:18, 15.70it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:18, 15.47it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:18, 15.50it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:15, 17.59it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:15, 17.49it/s]
eval model::  45%|████▌     | 225/500 [00:11<00:13, 20.25it/s]
eval model::  46%|████▌     | 228/500 [00:11<00:12, 21.63it/s]
eval model::  46%|████▋     | 232/500 [00:11<00:10, 25.04it/s]
eval model::  47%|████▋     | 235/500 [00:11<00:11, 23.54it/s]
eval model::  48%|████▊     | 238/500 [00:12<00:11, 23.71it/s]
eval model::  48%|████▊     | 241/500 [00:12<00:11, 22.70it/s]
eval model::  49%|████▉     | 244/500 [00:12<00:12, 20.01it/s]
eval model::  49%|████▉     | 247/500 [00:12<00:12, 20.48it/s]
eval model::  50%|█████     | 250/500 [00:12<00:13, 18.95it/s]
eval model::  51%|█████     | 253/500 [00:12<00:12, 19.99it/s]
eval model::  51%|█████     | 256/500 [00:12<00:11, 20.98it/s]
eval model::  52%|█████▏    | 259/500 [00:13<00:10, 22.12it/s]
eval model::  52%|█████▏    | 262/500 [00:13<00:11, 21.15it/s]
eval model::  53%|█████▎    | 265/500 [00:13<00:12, 18.25it/s]
eval model::  53%|█████▎    | 267/500 [00:13<00:12, 18.02it/s]
eval model::  54%|█████▍    | 270/500 [00:13<00:11, 19.97it/s]
eval model::  55%|█████▍    | 273/500 [00:13<00:11, 19.22it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:12, 17.61it/s]
eval model::  56%|█████▌    | 278/500 [00:14<00:11, 19.90it/s]
eval model::  56%|█████▌    | 281/500 [00:14<00:11, 19.30it/s]
eval model::  57%|█████▋    | 284/500 [00:14<00:10, 19.89it/s]
eval model::  57%|█████▋    | 287/500 [00:14<00:14, 14.49it/s]
eval model::  58%|█████▊    | 290/500 [00:14<00:12, 17.07it/s]
eval model::  59%|█████▊    | 293/500 [00:14<00:10, 19.08it/s]
eval model::  59%|█████▉    | 296/500 [00:15<00:11, 17.22it/s]
eval model::  60%|██████    | 300/500 [00:15<00:10, 19.75it/s]
eval model::  61%|██████    | 303/500 [00:15<00:09, 20.72it/s]
eval model::  61%|██████    | 306/500 [00:15<00:09, 21.09it/s]
eval model::  62%|██████▏   | 309/500 [00:15<00:08, 21.65it/s]
eval model::  62%|██████▏   | 312/500 [00:15<00:08, 21.25it/s]
eval model::  63%|██████▎   | 315/500 [00:16<00:08, 21.13it/s]
eval model::  64%|██████▎   | 318/500 [00:16<00:08, 20.87it/s]
eval model::  64%|██████▍   | 321/500 [00:16<00:08, 21.74it/s]
eval model::  65%|██████▍   | 324/500 [00:16<00:08, 19.84it/s]
eval model::  65%|██████▌   | 327/500 [00:16<00:08, 21.32it/s]
eval model::  66%|██████▌   | 330/500 [00:16<00:08, 20.02it/s]
eval model::  67%|██████▋   | 333/500 [00:16<00:07, 21.39it/s]
eval model::  67%|██████▋   | 336/500 [00:17<00:07, 22.11it/s]
eval model::  68%|██████▊   | 339/500 [00:17<00:07, 20.64it/s]
eval model::  68%|██████▊   | 342/500 [00:17<00:08, 18.23it/s]
eval model::  69%|██████▉   | 346/500 [00:17<00:07, 21.11it/s]
eval model::  70%|██████▉   | 349/500 [00:17<00:06, 22.73it/s]
eval model::  70%|███████   | 352/500 [00:17<00:06, 21.71it/s]
eval model::  71%|███████   | 355/500 [00:17<00:06, 20.99it/s]
eval model::  72%|███████▏  | 358/500 [00:18<00:06, 20.75it/s]
eval model::  72%|███████▏  | 361/500 [00:18<00:06, 19.89it/s]
eval model::  73%|███████▎  | 364/500 [00:18<00:07, 18.73it/s]
eval model::  73%|███████▎  | 366/500 [00:18<00:07, 18.69it/s]
eval model::  74%|███████▍  | 369/500 [00:18<00:06, 20.32it/s]
eval model::  74%|███████▍  | 372/500 [00:18<00:06, 20.36it/s]
eval model::  75%|███████▌  | 375/500 [00:18<00:05, 21.09it/s]
eval model::  76%|███████▌  | 379/500 [00:19<00:05, 22.54it/s]
eval model::  76%|███████▋  | 382/500 [00:19<00:05, 20.54it/s]
eval model::  77%|███████▋  | 385/500 [00:19<00:05, 21.43it/s]
eval model::  78%|███████▊  | 388/500 [00:19<00:07, 14.46it/s]
eval model::  78%|███████▊  | 391/500 [00:19<00:06, 16.69it/s]
eval model::  79%|███████▉  | 394/500 [00:20<00:06, 17.34it/s]
eval model::  79%|███████▉  | 397/500 [00:20<00:05, 19.31it/s]
eval model::  80%|████████  | 400/500 [00:20<00:05, 19.64it/s]
eval model::  81%|████████  | 403/500 [00:20<00:04, 19.49it/s]
eval model::  81%|████████  | 406/500 [00:20<00:04, 20.76it/s]
eval model::  82%|████████▏ | 409/500 [00:20<00:04, 22.70it/s]
eval model::  82%|████████▏ | 412/500 [00:20<00:04, 21.72it/s]
eval model::  83%|████████▎ | 415/500 [00:20<00:04, 21.17it/s]
eval model::  84%|████████▎ | 418/500 [00:21<00:04, 19.77it/s]
eval model::  84%|████████▍ | 421/500 [00:21<00:04, 16.74it/s]
eval model::  85%|████████▍ | 424/500 [00:21<00:04, 18.16it/s]
eval model::  85%|████████▌ | 427/500 [00:21<00:03, 19.28it/s]
eval model::  86%|████████▌ | 430/500 [00:21<00:03, 21.30it/s]
eval model::  87%|████████▋ | 433/500 [00:21<00:02, 22.78it/s]
eval model::  87%|████████▋ | 436/500 [00:22<00:02, 22.43it/s]
eval model::  88%|████████▊ | 439/500 [00:22<00:02, 21.89it/s]
eval model::  88%|████████▊ | 442/500 [00:22<00:02, 21.98it/s]
eval model::  89%|████████▉ | 445/500 [00:22<00:02, 21.21it/s]
eval model::  90%|████████▉ | 448/500 [00:22<00:02, 20.26it/s]
eval model::  90%|█████████ | 451/500 [00:22<00:02, 19.42it/s]
eval model::  91%|█████████ | 454/500 [00:22<00:02, 21.52it/s]
eval model::  92%|█████████▏| 458/500 [00:23<00:01, 24.21it/s]
eval model::  92%|█████████▏| 461/500 [00:23<00:01, 22.58it/s]
eval model::  93%|█████████▎| 464/500 [00:23<00:01, 19.58it/s]
eval model::  93%|█████████▎| 467/500 [00:23<00:01, 17.36it/s]
eval model::  94%|█████████▍| 471/500 [00:23<00:01, 19.92it/s]
eval model::  95%|█████████▍| 474/500 [00:23<00:01, 19.86it/s]
eval model::  96%|█████████▌| 478/500 [00:24<00:00, 22.57it/s]
eval model::  96%|█████████▌| 481/500 [00:24<00:00, 23.57it/s]
eval model::  97%|█████████▋| 484/500 [00:24<00:00, 23.57it/s]
eval model::  97%|█████████▋| 487/500 [00:24<00:00, 24.22it/s]
eval model::  98%|█████████▊| 490/500 [00:24<00:00, 23.66it/s]
eval model::  99%|█████████▊| 493/500 [00:24<00:00, 22.12it/s]
eval model::  99%|█████████▉| 496/500 [00:24<00:00, 21.85it/s]
eval model:: 100%|█████████▉| 499/500 [00:24<00:00, 22.12it/s]
eval model:: 100%|██████████| 500/500 [00:24<00:00, 20.01it/s]
[2024/08/01 18:46:39] ppocr INFO: cur metric, precision: 0.620617110799439, recall: 0.4260953298025999, hmean: 0.5052811875535255, fps: 43.63615601693568
[2024/08/01 18:46:39] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/08/01 18:46:39] ppocr INFO: best metric, hmean: 0.5052811875535255, precision: 0.620617110799439, recall: 0.4260953298025999, fps: 43.63615601693568, best_epoch: 100
[2024/08/01 18:46:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 18:46:40] ppocr INFO: best metric, hmean: 0.5052811875535255, precision: 0.620617110799439, recall: 0.4260953298025999, fps: 43.63615601693568, best_epoch: 100
I0801 18:46:41.780061 110577 tcp_store.cc:289] receive shutdown event and so quit from MasterDaemon run loop
[2024/08/01 20:34:41] ppocr INFO: Architecture : 
[2024/08/01 20:34:41] ppocr INFO:     Backbone : 
[2024/08/01 20:34:41] ppocr INFO:         model_name : large
[2024/08/01 20:34:41] ppocr INFO:         name : MobileNetV3
[2024/08/01 20:34:41] ppocr INFO:         scale : 0.5
[2024/08/01 20:34:41] ppocr INFO:     Head : 
[2024/08/01 20:34:41] ppocr INFO:         k : 50
[2024/08/01 20:34:41] ppocr INFO:         name : DBHead
[2024/08/01 20:34:41] ppocr INFO:     Neck : 
[2024/08/01 20:34:41] ppocr INFO:         name : DBFPN
[2024/08/01 20:34:41] ppocr INFO:         out_channels : 256
[2024/08/01 20:34:41] ppocr INFO:     Transform : None
[2024/08/01 20:34:41] ppocr INFO:     algorithm : DB
[2024/08/01 20:34:41] ppocr INFO:     model_type : det
[2024/08/01 20:34:41] ppocr INFO: Eval : 
[2024/08/01 20:34:41] ppocr INFO:     dataset : 
[2024/08/01 20:34:41] ppocr INFO:         data_dir : /datasets/icdar2015/text_localization/
[2024/08/01 20:34:41] ppocr INFO:         label_file_list : ['/datasets/icdar2015/text_localization/test_icdar2015_label.txt']
[2024/08/01 20:34:41] ppocr INFO:         name : SimpleDataSet
[2024/08/01 20:34:41] ppocr INFO:         transforms : 
[2024/08/01 20:34:41] ppocr INFO:             DecodeImage : 
[2024/08/01 20:34:41] ppocr INFO:                 channel_first : False
[2024/08/01 20:34:41] ppocr INFO:                 img_mode : BGR
[2024/08/01 20:34:41] ppocr INFO:             DetLabelEncode : None
[2024/08/01 20:34:41] ppocr INFO:             DetResizeForTest : 
[2024/08/01 20:34:41] ppocr INFO:                 image_shape : [736, 1280]
[2024/08/01 20:34:41] ppocr INFO:             NormalizeImage : 
[2024/08/01 20:34:41] ppocr INFO:                 mean : [0.485, 0.456, 0.406]
[2024/08/01 20:34:41] ppocr INFO:                 order : hwc
[2024/08/01 20:34:41] ppocr INFO:                 scale : 1./255.
[2024/08/01 20:34:41] ppocr INFO:                 std : [0.229, 0.224, 0.225]
[2024/08/01 20:34:41] ppocr INFO:             ToCHWImage : None
[2024/08/01 20:34:41] ppocr INFO:             KeepKeys : 
[2024/08/01 20:34:41] ppocr INFO:                 keep_keys : ['image', 'shape', 'polys', 'ignore_tags']
[2024/08/01 20:34:41] ppocr INFO:     loader : 
[2024/08/01 20:34:41] ppocr INFO:         batch_size_per_card : 1
[2024/08/01 20:34:41] ppocr INFO:         drop_last : False
[2024/08/01 20:34:41] ppocr INFO:         num_workers : 0
[2024/08/01 20:34:41] ppocr INFO:         shuffle : False
[2024/08/01 20:34:41] ppocr INFO:         use_shared_memory : True
[2024/08/01 20:34:41] ppocr INFO: Global : 
[2024/08/01 20:34:41] ppocr INFO:     cal_metric_during_train : False
[2024/08/01 20:34:41] ppocr INFO:     checkpoints : None
[2024/08/01 20:34:41] ppocr INFO:     distributed : True
[2024/08/01 20:34:41] ppocr INFO:     epoch_num : 100
[2024/08/01 20:34:41] ppocr INFO:     eval_batch_step : [0, 60]
[2024/08/01 20:34:41] ppocr INFO:     infer_img : doc/imgs_en/img_10.jpg
[2024/08/01 20:34:41] ppocr INFO:     log_smooth_window : 20
[2024/08/01 20:34:41] ppocr INFO:     pretrained_model : ./pretrain_models/MobileNetV3_large_x0_5_pretrained
[2024/08/01 20:34:41] ppocr INFO:     print_batch_step : 10
[2024/08/01 20:34:41] ppocr INFO:     save_epoch_step : 1200
[2024/08/01 20:34:41] ppocr INFO:     save_inference_dir : None
[2024/08/01 20:34:41] ppocr INFO:     save_model_dir : ./output/db_mv3/
[2024/08/01 20:34:41] ppocr INFO:     save_res_path : ./output/det_db/predicts_db.txt
[2024/08/01 20:34:41] ppocr INFO:     use_gpu : True
[2024/08/01 20:34:41] ppocr INFO:     use_visualdl : False
[2024/08/01 20:34:41] ppocr INFO:     use_xpu : False
[2024/08/01 20:34:41] ppocr INFO: Loss : 
[2024/08/01 20:34:41] ppocr INFO:     alpha : 5
[2024/08/01 20:34:41] ppocr INFO:     balance_loss : True
[2024/08/01 20:34:41] ppocr INFO:     beta : 10
[2024/08/01 20:34:41] ppocr INFO:     main_loss_type : DiceLoss
[2024/08/01 20:34:41] ppocr INFO:     name : DBLoss
[2024/08/01 20:34:41] ppocr INFO:     ohem_ratio : 3
[2024/08/01 20:34:41] ppocr INFO: Metric : 
[2024/08/01 20:34:41] ppocr INFO:     main_indicator : hmean
[2024/08/01 20:34:41] ppocr INFO:     name : DetMetric
[2024/08/01 20:34:41] ppocr INFO: Optimizer : 
[2024/08/01 20:34:41] ppocr INFO:     beta1 : 0.9
[2024/08/01 20:34:41] ppocr INFO:     beta2 : 0.999
[2024/08/01 20:34:41] ppocr INFO:     lr : 
[2024/08/01 20:34:41] ppocr INFO:         learning_rate : 0.001
[2024/08/01 20:34:41] ppocr INFO:     name : Adam
[2024/08/01 20:34:41] ppocr INFO:     regularizer : 
[2024/08/01 20:34:41] ppocr INFO:         factor : 0
[2024/08/01 20:34:41] ppocr INFO:         name : L2
[2024/08/01 20:34:41] ppocr INFO: PostProcess : 
[2024/08/01 20:34:41] ppocr INFO:     box_thresh : 0.6
[2024/08/01 20:34:41] ppocr INFO:     max_candidates : 1000
[2024/08/01 20:34:41] ppocr INFO:     name : DBPostProcess
[2024/08/01 20:34:41] ppocr INFO:     thresh : 0.3
[2024/08/01 20:34:41] ppocr INFO:     unclip_ratio : 1.5
[2024/08/01 20:34:41] ppocr INFO: Train : 
[2024/08/01 20:34:41] ppocr INFO:     dataset : 
[2024/08/01 20:34:41] ppocr INFO:         data_dir : /datasets/icdar2015/text_localization/
[2024/08/01 20:34:41] ppocr INFO:         label_file_list : ['/datasets/icdar2015/text_localization/train_icdar2015_label.txt']
[2024/08/01 20:34:41] ppocr INFO:         name : SimpleDataSet
[2024/08/01 20:34:41] ppocr INFO:         ratio_list : [1.0]
[2024/08/01 20:34:41] ppocr INFO:         transforms : 
[2024/08/01 20:34:41] ppocr INFO:             DecodeImage : 
[2024/08/01 20:34:41] ppocr INFO:                 channel_first : False
[2024/08/01 20:34:41] ppocr INFO:                 img_mode : BGR
[2024/08/01 20:34:41] ppocr INFO:             DetLabelEncode : None
[2024/08/01 20:34:41] ppocr INFO:             IaaAugment : 
[2024/08/01 20:34:41] ppocr INFO:                 augmenter_args : 
[2024/08/01 20:34:41] ppocr INFO:                     args : 
[2024/08/01 20:34:41] ppocr INFO:                         p : 0.5
[2024/08/01 20:34:41] ppocr INFO:                     type : Fliplr
[2024/08/01 20:34:41] ppocr INFO:                     args : 
[2024/08/01 20:34:41] ppocr INFO:                         rotate : [-10, 10]
[2024/08/01 20:34:41] ppocr INFO:                     type : Affine
[2024/08/01 20:34:41] ppocr INFO:                     args : 
[2024/08/01 20:34:41] ppocr INFO:                         size : [0.5, 3]
[2024/08/01 20:34:41] ppocr INFO:                     type : Resize
[2024/08/01 20:34:41] ppocr INFO:             EastRandomCropData : 
[2024/08/01 20:34:41] ppocr INFO:                 keep_ratio : True
[2024/08/01 20:34:41] ppocr INFO:                 max_tries : 50
[2024/08/01 20:34:41] ppocr INFO:                 size : [640, 640]
[2024/08/01 20:34:41] ppocr INFO:             MakeBorderMap : 
[2024/08/01 20:34:41] ppocr INFO:                 shrink_ratio : 0.4
[2024/08/01 20:34:41] ppocr INFO:                 thresh_max : 0.7
[2024/08/01 20:34:41] ppocr INFO:                 thresh_min : 0.3
[2024/08/01 20:34:41] ppocr INFO:             MakeShrinkMap : 
[2024/08/01 20:34:41] ppocr INFO:                 min_text_size : 8
[2024/08/01 20:34:41] ppocr INFO:                 shrink_ratio : 0.4
[2024/08/01 20:34:41] ppocr INFO:             NormalizeImage : 
[2024/08/01 20:34:41] ppocr INFO:                 mean : [0.485, 0.456, 0.406]
[2024/08/01 20:34:41] ppocr INFO:                 order : hwc
[2024/08/01 20:34:41] ppocr INFO:                 scale : 1./255.
[2024/08/01 20:34:41] ppocr INFO:                 std : [0.229, 0.224, 0.225]
[2024/08/01 20:34:41] ppocr INFO:             ToCHWImage : None
[2024/08/01 20:34:41] ppocr INFO:             KeepKeys : 
[2024/08/01 20:34:41] ppocr INFO:                 keep_keys : ['image', 'threshold_map', 'threshold_mask', 'shrink_map', 'shrink_mask']
[2024/08/01 20:34:41] ppocr INFO:     loader : 
[2024/08/01 20:34:41] ppocr INFO:         batch_size_per_card : 48
[2024/08/01 20:34:41] ppocr INFO:         drop_last : False
[2024/08/01 20:34:41] ppocr INFO:         num_workers : 8
[2024/08/01 20:34:41] ppocr INFO:         shuffle : True
[2024/08/01 20:34:41] ppocr INFO:         use_shared_memory : True
[2024/08/01 20:34:41] ppocr INFO: profiler_options : None
[2024/08/01 20:34:41] ppocr INFO: train with paddle 2.5.2 and device Place(gpu:0)
======================= Modified FLAGS detected =======================
FLAGS(name='FLAGS_selected_gpus', current_value='0', default_value='')
FLAGS(name='FLAGS_cudnn_batchnorm_spatial_persistent', current_value=True, default_value=False)
=======================================================================
I0801 20:34:41.828423 163924 tcp_utils.cc:181] The server starts to listen on IP_ANY:39872
I0801 20:34:41.828675 163924 tcp_utils.cc:130] Successfully connected to 10.8.145.246:39872
I0801 20:34:44.950347 163924 process_group_nccl.cc:120] ProcessGroupNCCL pg_timeout_ 1800000
[2024/08/01 20:34:44] ppocr INFO: Initialize indexs of datasets:['/datasets/icdar2015/text_localization/train_icdar2015_label.txt']
[2024/08/01 20:34:44] ppocr INFO: Initialize indexs of datasets:['/datasets/icdar2015/text_localization/test_icdar2015_label.txt']
W0801 20:34:44.961256 163924 gpu_resources.cc:119] Please NOTE: device: 0, GPU Compute Capability: 90.2, Driver API Version: 50724.2, Runtime API Version: 50724.2
[2024/08/01 20:34:46] ppocr INFO: load pretrain successful from ./pretrain_models/MobileNetV3_large_x0_5_pretrained
[2024/08/01 20:34:46] ppocr INFO: train dataloader has 3 iters
[2024/08/01 20:34:46] ppocr INFO: valid dataloader has 500 iters
[2024/08/01 20:34:46] ppocr INFO: During the training process, after the 0th iteration, an evaluation is run every 60 iterations
[2024/08/01 20:35:08] ppocr INFO: epoch: [1/100], global_step: 3, lr: 0.001000, loss: 9.315265, loss_shrink_maps: 4.931784, loss_threshold_maps: 3.395502, loss_binary_maps: 0.987979, avg_reader_cost: 5.77630 s, avg_batch_cost: 6.50762 s, avg_samples: 12.5, ips: 1.92082 samples/s, eta: 1:47:22
[2024/08/01 20:35:09] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:35:18] ppocr INFO: epoch: [2/100], global_step: 6, lr: 0.001000, loss: 8.221654, loss_shrink_maps: 4.850829, loss_threshold_maps: 2.414495, loss_binary_maps: 0.975307, avg_reader_cost: 2.33003 s, avg_batch_cost: 2.57452 s, avg_samples: 12.5, ips: 4.85527 samples/s, eta: 1:14:10
[2024/08/01 20:35:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:35:28] ppocr INFO: epoch: [3/100], global_step: 9, lr: 0.001000, loss: 7.469735, loss_shrink_maps: 4.846783, loss_threshold_maps: 1.648593, loss_binary_maps: 0.974359, avg_reader_cost: 2.29233 s, avg_batch_cost: 2.53705 s, avg_samples: 12.5, ips: 4.92698 samples/s, eta: 1:02:36
[2024/08/01 20:35:29] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:35:36] ppocr INFO: epoch: [4/100], global_step: 10, lr: 0.001000, loss: 7.334120, loss_shrink_maps: 4.844826, loss_threshold_maps: 1.517886, loss_binary_maps: 0.973212, avg_reader_cost: 0.66885 s, avg_batch_cost: 0.75877 s, avg_samples: 4.8, ips: 6.32605 samples/s, eta: 0:59:49
[2024/08/01 20:35:38] ppocr INFO: epoch: [4/100], global_step: 12, lr: 0.001000, loss: 7.189727, loss_shrink_maps: 4.841861, loss_threshold_maps: 1.345324, loss_binary_maps: 0.971896, avg_reader_cost: 1.61461 s, avg_batch_cost: 1.76845 s, avg_samples: 7.7, ips: 4.35410 samples/s, eta: 0:56:35
[2024/08/01 20:35:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:35:47] ppocr INFO: epoch: [5/100], global_step: 15, lr: 0.001000, loss: 7.022568, loss_shrink_maps: 4.839262, loss_threshold_maps: 1.233652, loss_binary_maps: 0.971338, avg_reader_cost: 2.22912 s, avg_batch_cost: 2.47214 s, avg_samples: 12.5, ips: 5.05635 samples/s, eta: 0:52:37
[2024/08/01 20:35:48] ppocr INFO: save model in ./output/db_mv3/latest
Exception in thread Thread-6 (_thread_loop):
Traceback (most recent call last):
  File "/root/anaconda3/envs/dbnet/lib/python3.10/site-packages/paddle/io/dataloader/dataloader_iter.py", line 692, in _get_data
    data = self._data_queue.get(timeout=self._timeout)
  File "/root/anaconda3/envs/dbnet/lib/python3.10/multiprocessing/queues.py", line 114, in get
main proc 163924 exit, kill process group 163924    
[2024/08/01 20:36:50] ppocr INFO: Architecture : 
[2024/08/01 20:36:50] ppocr INFO:     Backbone : 
[2024/08/01 20:36:50] ppocr INFO:         model_name : large
[2024/08/01 20:36:50] ppocr INFO:         name : MobileNetV3
[2024/08/01 20:36:50] ppocr INFO:         scale : 0.5
[2024/08/01 20:36:50] ppocr INFO:     Head : 
[2024/08/01 20:36:50] ppocr INFO:         k : 50
[2024/08/01 20:36:50] ppocr INFO:         name : DBHead
[2024/08/01 20:36:50] ppocr INFO:     Neck : 
[2024/08/01 20:36:50] ppocr INFO:         name : DBFPN
[2024/08/01 20:36:50] ppocr INFO:         out_channels : 256
[2024/08/01 20:36:50] ppocr INFO:     Transform : None
[2024/08/01 20:36:50] ppocr INFO:     algorithm : DB
[2024/08/01 20:36:50] ppocr INFO:     model_type : det
[2024/08/01 20:36:50] ppocr INFO: Eval : 
[2024/08/01 20:36:50] ppocr INFO:     dataset : 
[2024/08/01 20:36:50] ppocr INFO:         data_dir : /datasets/icdar2015/text_localization/
[2024/08/01 20:36:50] ppocr INFO:         label_file_list : ['/datasets/icdar2015/text_localization/test_icdar2015_label.txt']
[2024/08/01 20:36:50] ppocr INFO:         name : SimpleDataSet
[2024/08/01 20:36:50] ppocr INFO:         transforms : 
[2024/08/01 20:36:50] ppocr INFO:             DecodeImage : 
[2024/08/01 20:36:50] ppocr INFO:                 channel_first : False
[2024/08/01 20:36:50] ppocr INFO:                 img_mode : BGR
[2024/08/01 20:36:50] ppocr INFO:             DetLabelEncode : None
[2024/08/01 20:36:50] ppocr INFO:             DetResizeForTest : 
[2024/08/01 20:36:50] ppocr INFO:                 image_shape : [736, 1280]
[2024/08/01 20:36:50] ppocr INFO:             NormalizeImage : 
[2024/08/01 20:36:50] ppocr INFO:                 mean : [0.485, 0.456, 0.406]
[2024/08/01 20:36:50] ppocr INFO:                 order : hwc
[2024/08/01 20:36:50] ppocr INFO:                 scale : 1./255.
[2024/08/01 20:36:50] ppocr INFO:                 std : [0.229, 0.224, 0.225]
[2024/08/01 20:36:50] ppocr INFO:             ToCHWImage : None
[2024/08/01 20:36:50] ppocr INFO:             KeepKeys : 
[2024/08/01 20:36:50] ppocr INFO:                 keep_keys : ['image', 'shape', 'polys', 'ignore_tags']
[2024/08/01 20:36:50] ppocr INFO:     loader : 
[2024/08/01 20:36:50] ppocr INFO:         batch_size_per_card : 1
[2024/08/01 20:36:50] ppocr INFO:         drop_last : False
[2024/08/01 20:36:50] ppocr INFO:         num_workers : 0
[2024/08/01 20:36:50] ppocr INFO:         shuffle : False
[2024/08/01 20:36:50] ppocr INFO:         use_shared_memory : True
[2024/08/01 20:36:50] ppocr INFO: Global : 
[2024/08/01 20:36:50] ppocr INFO:     cal_metric_during_train : False
[2024/08/01 20:36:50] ppocr INFO:     checkpoints : None
[2024/08/01 20:36:50] ppocr INFO:     distributed : True
[2024/08/01 20:36:50] ppocr INFO:     epoch_num : 100
[2024/08/01 20:36:50] ppocr INFO:     eval_batch_step : [0, 60]
[2024/08/01 20:36:50] ppocr INFO:     infer_img : doc/imgs_en/img_10.jpg
[2024/08/01 20:36:50] ppocr INFO:     log_smooth_window : 20
[2024/08/01 20:36:50] ppocr INFO:     pretrained_model : ./pretrain_models/MobileNetV3_large_x0_5_pretrained
[2024/08/01 20:36:50] ppocr INFO:     print_batch_step : 10
[2024/08/01 20:36:50] ppocr INFO:     save_epoch_step : 1200
[2024/08/01 20:36:50] ppocr INFO:     save_inference_dir : None
[2024/08/01 20:36:50] ppocr INFO:     save_model_dir : ./output/db_mv3/
[2024/08/01 20:36:50] ppocr INFO:     save_res_path : ./output/det_db/predicts_db.txt
[2024/08/01 20:36:50] ppocr INFO:     use_gpu : True
[2024/08/01 20:36:50] ppocr INFO:     use_visualdl : False
[2024/08/01 20:36:50] ppocr INFO:     use_xpu : False
[2024/08/01 20:36:50] ppocr INFO: Loss : 
[2024/08/01 20:36:50] ppocr INFO:     alpha : 5
[2024/08/01 20:36:50] ppocr INFO:     balance_loss : True
[2024/08/01 20:36:50] ppocr INFO:     beta : 10
[2024/08/01 20:36:50] ppocr INFO:     main_loss_type : DiceLoss
[2024/08/01 20:36:50] ppocr INFO:     name : DBLoss
[2024/08/01 20:36:50] ppocr INFO:     ohem_ratio : 3
[2024/08/01 20:36:50] ppocr INFO: Metric : 
[2024/08/01 20:36:50] ppocr INFO:     main_indicator : hmean
[2024/08/01 20:36:50] ppocr INFO:     name : DetMetric
[2024/08/01 20:36:50] ppocr INFO: Optimizer : 
[2024/08/01 20:36:50] ppocr INFO:     beta1 : 0.9
[2024/08/01 20:36:50] ppocr INFO:     beta2 : 0.999
[2024/08/01 20:36:50] ppocr INFO:     lr : 
[2024/08/01 20:36:50] ppocr INFO:         learning_rate : 0.001
[2024/08/01 20:36:50] ppocr INFO:     name : Adam
[2024/08/01 20:36:50] ppocr INFO:     regularizer : 
[2024/08/01 20:36:50] ppocr INFO:         factor : 0
[2024/08/01 20:36:50] ppocr INFO:         name : L2
[2024/08/01 20:36:50] ppocr INFO: PostProcess : 
[2024/08/01 20:36:50] ppocr INFO:     box_thresh : 0.6
[2024/08/01 20:36:50] ppocr INFO:     max_candidates : 1000
[2024/08/01 20:36:50] ppocr INFO:     name : DBPostProcess
[2024/08/01 20:36:50] ppocr INFO:     thresh : 0.3
[2024/08/01 20:36:50] ppocr INFO:     unclip_ratio : 1.5
[2024/08/01 20:36:50] ppocr INFO: Train : 
[2024/08/01 20:36:50] ppocr INFO:     dataset : 
[2024/08/01 20:36:50] ppocr INFO:         data_dir : /datasets/icdar2015/text_localization/
[2024/08/01 20:36:50] ppocr INFO:         label_file_list : ['/datasets/icdar2015/text_localization/train_icdar2015_label.txt']
[2024/08/01 20:36:50] ppocr INFO:         name : SimpleDataSet
[2024/08/01 20:36:50] ppocr INFO:         ratio_list : [1.0]
[2024/08/01 20:36:50] ppocr INFO:         transforms : 
[2024/08/01 20:36:50] ppocr INFO:             DecodeImage : 
[2024/08/01 20:36:50] ppocr INFO:                 channel_first : False
[2024/08/01 20:36:50] ppocr INFO:                 img_mode : BGR
[2024/08/01 20:36:50] ppocr INFO:             DetLabelEncode : None
[2024/08/01 20:36:50] ppocr INFO:             IaaAugment : 
[2024/08/01 20:36:50] ppocr INFO:                 augmenter_args : 
[2024/08/01 20:36:50] ppocr INFO:                     args : 
[2024/08/01 20:36:50] ppocr INFO:                         p : 0.5
[2024/08/01 20:36:50] ppocr INFO:                     type : Fliplr
[2024/08/01 20:36:50] ppocr INFO:                     args : 
[2024/08/01 20:36:50] ppocr INFO:                         rotate : [-10, 10]
[2024/08/01 20:36:50] ppocr INFO:                     type : Affine
[2024/08/01 20:36:50] ppocr INFO:                     args : 
[2024/08/01 20:36:50] ppocr INFO:                         size : [0.5, 3]
[2024/08/01 20:36:50] ppocr INFO:                     type : Resize
[2024/08/01 20:36:50] ppocr INFO:             EastRandomCropData : 
[2024/08/01 20:36:50] ppocr INFO:                 keep_ratio : True
[2024/08/01 20:36:50] ppocr INFO:                 max_tries : 50
[2024/08/01 20:36:50] ppocr INFO:                 size : [640, 640]
[2024/08/01 20:36:50] ppocr INFO:             MakeBorderMap : 
[2024/08/01 20:36:50] ppocr INFO:                 shrink_ratio : 0.4
[2024/08/01 20:36:50] ppocr INFO:                 thresh_max : 0.7
[2024/08/01 20:36:50] ppocr INFO:                 thresh_min : 0.3
[2024/08/01 20:36:50] ppocr INFO:             MakeShrinkMap : 
[2024/08/01 20:36:50] ppocr INFO:                 min_text_size : 8
[2024/08/01 20:36:50] ppocr INFO:                 shrink_ratio : 0.4
[2024/08/01 20:36:50] ppocr INFO:             NormalizeImage : 
[2024/08/01 20:36:50] ppocr INFO:                 mean : [0.485, 0.456, 0.406]
[2024/08/01 20:36:50] ppocr INFO:                 order : hwc
[2024/08/01 20:36:50] ppocr INFO:                 scale : 1./255.
[2024/08/01 20:36:50] ppocr INFO:                 std : [0.229, 0.224, 0.225]
[2024/08/01 20:36:50] ppocr INFO:             ToCHWImage : None
[2024/08/01 20:36:50] ppocr INFO:             KeepKeys : 
[2024/08/01 20:36:50] ppocr INFO:                 keep_keys : ['image', 'threshold_map', 'threshold_mask', 'shrink_map', 'shrink_mask']
[2024/08/01 20:36:50] ppocr INFO:     loader : 
[2024/08/01 20:36:50] ppocr INFO:         batch_size_per_card : 48
[2024/08/01 20:36:50] ppocr INFO:         drop_last : False
[2024/08/01 20:36:50] ppocr INFO:         num_workers : 8
[2024/08/01 20:36:50] ppocr INFO:         shuffle : True
[2024/08/01 20:36:50] ppocr INFO:         use_shared_memory : True
[2024/08/01 20:36:50] ppocr INFO: profiler_options : None
[2024/08/01 20:36:50] ppocr INFO: train with paddle 2.5.2 and device Place(gpu:0)
======================= Modified FLAGS detected =======================
FLAGS(name='FLAGS_selected_gpus', current_value='0', default_value='')
FLAGS(name='FLAGS_cudnn_batchnorm_spatial_persistent', current_value=True, default_value=False)
=======================================================================
I0801 20:36:50.837141 173852 tcp_utils.cc:181] The server starts to listen on IP_ANY:61895
I0801 20:36:50.837360 173852 tcp_utils.cc:130] Successfully connected to 10.8.145.246:61895
I0801 20:36:53.955340 173852 process_group_nccl.cc:120] ProcessGroupNCCL pg_timeout_ 1800000
[2024/08/01 20:36:53] ppocr INFO: Initialize indexs of datasets:['/datasets/icdar2015/text_localization/train_icdar2015_label.txt']
[2024/08/01 20:36:53] ppocr INFO: Initialize indexs of datasets:['/datasets/icdar2015/text_localization/test_icdar2015_label.txt']
W0801 20:36:53.965442 173852 gpu_resources.cc:119] Please NOTE: device: 0, GPU Compute Capability: 90.2, Driver API Version: 50724.2, Runtime API Version: 50724.2
[2024/08/01 20:36:55] ppocr INFO: load pretrain successful from ./pretrain_models/MobileNetV3_large_x0_5_pretrained
[2024/08/01 20:36:55] ppocr INFO: train dataloader has 3 iters
[2024/08/01 20:36:55] ppocr INFO: valid dataloader has 500 iters
[2024/08/01 20:36:55] ppocr INFO: During the training process, after the 0th iteration, an evaluation is run every 60 iterations
[2024/08/01 20:37:18] ppocr INFO: epoch: [1/100], global_step: 3, lr: 0.001000, loss: 9.167787, loss_shrink_maps: 4.884733, loss_threshold_maps: 3.347504, loss_binary_maps: 0.981010, avg_reader_cost: 5.99907 s, avg_batch_cost: 6.56030 s, avg_samples: 12.5, ips: 1.90540 samples/s, eta: 1:48:14
[2024/08/01 20:37:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:37:27] ppocr INFO: epoch: [2/100], global_step: 6, lr: 0.001000, loss: 8.517704, loss_shrink_maps: 4.878246, loss_threshold_maps: 2.653457, loss_binary_maps: 0.979768, avg_reader_cost: 2.29476 s, avg_batch_cost: 2.54081 s, avg_samples: 12.5, ips: 4.91970 samples/s, eta: 1:14:19
[2024/08/01 20:37:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:37:37] ppocr INFO: epoch: [3/100], global_step: 9, lr: 0.001000, loss: 7.579160, loss_shrink_maps: 4.872590, loss_threshold_maps: 1.725883, loss_binary_maps: 0.977559, avg_reader_cost: 2.27011 s, avg_batch_cost: 2.51415 s, avg_samples: 12.5, ips: 4.97186 samples/s, eta: 1:02:35
[2024/08/01 20:37:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:37:45] ppocr INFO: epoch: [4/100], global_step: 10, lr: 0.001000, loss: 7.434976, loss_shrink_maps: 4.859844, loss_threshold_maps: 1.583262, loss_binary_maps: 0.975371, avg_reader_cost: 0.64691 s, avg_batch_cost: 0.74264 s, avg_samples: 4.8, ips: 6.46346 samples/s, eta: 0:59:43
[2024/08/01 20:37:47] ppocr INFO: epoch: [4/100], global_step: 12, lr: 0.001000, loss: 7.187126, loss_shrink_maps: 4.848718, loss_threshold_maps: 1.362642, loss_binary_maps: 0.971547, avg_reader_cost: 1.58232 s, avg_batch_cost: 1.73701 s, avg_samples: 7.7, ips: 4.43291 samples/s, eta: 0:56:22
[2024/08/01 20:37:47] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:37:56] ppocr INFO: epoch: [5/100], global_step: 15, lr: 0.001000, loss: 6.994406, loss_shrink_maps: 4.840827, loss_threshold_maps: 1.217628, loss_binary_maps: 0.969463, avg_reader_cost: 2.25643 s, avg_batch_cost: 2.50182 s, avg_samples: 12.5, ips: 4.99636 samples/s, eta: 0:52:33
[2024/08/01 20:37:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:38:06] ppocr INFO: epoch: [6/100], global_step: 18, lr: 0.001000, loss: 6.983128, loss_shrink_maps: 4.819912, loss_threshold_maps: 1.179187, loss_binary_maps: 0.967620, avg_reader_cost: 2.30910 s, avg_batch_cost: 2.57889 s, avg_samples: 12.5, ips: 4.84705 samples/s, eta: 0:50:04
[2024/08/01 20:38:07] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:38:15] ppocr INFO: epoch: [7/100], global_step: 20, lr: 0.001000, loss: 6.945792, loss_shrink_maps: 4.806562, loss_threshold_maps: 1.169578, loss_binary_maps: 0.963184, avg_reader_cost: 1.44255 s, avg_batch_cost: 1.63703 s, avg_samples: 9.6, ips: 5.86429 samples/s, eta: 0:48:33
[2024/08/01 20:38:16] ppocr INFO: epoch: [7/100], global_step: 21, lr: 0.001000, loss: 6.898098, loss_shrink_maps: 4.782396, loss_threshold_maps: 1.160690, loss_binary_maps: 0.955012, avg_reader_cost: 0.86733 s, avg_batch_cost: 0.92529 s, avg_samples: 2.9, ips: 3.13415 samples/s, eta: 0:48:08
[2024/08/01 20:38:17] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:38:26] ppocr INFO: epoch: [8/100], global_step: 24, lr: 0.001000, loss: 6.781187, loss_shrink_maps: 4.707208, loss_threshold_maps: 1.150966, loss_binary_maps: 0.932010, avg_reader_cost: 2.25489 s, avg_batch_cost: 2.50059 s, avg_samples: 12.5, ips: 4.99882 samples/s, eta: 0:46:27
[2024/08/01 20:38:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:38:35] ppocr INFO: epoch: [9/100], global_step: 27, lr: 0.001000, loss: 6.695997, loss_shrink_maps: 4.648070, loss_threshold_maps: 1.131002, loss_binary_maps: 0.914181, avg_reader_cost: 2.23444 s, avg_batch_cost: 2.47998 s, avg_samples: 12.5, ips: 5.04037 samples/s, eta: 0:45:01
[2024/08/01 20:38:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:38:45] ppocr INFO: epoch: [10/100], global_step: 30, lr: 0.001000, loss: 6.547852, loss_shrink_maps: 4.577702, loss_threshold_maps: 1.099947, loss_binary_maps: 0.887578, avg_reader_cost: 2.21700 s, avg_batch_cost: 2.52558 s, avg_samples: 12.5, ips: 4.94935 samples/s, eta: 0:43:51
[2024/08/01 20:38:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:38:55] ppocr INFO: epoch: [11/100], global_step: 33, lr: 0.001000, loss: 6.415780, loss_shrink_maps: 4.506867, loss_threshold_maps: 1.078970, loss_binary_maps: 0.860101, avg_reader_cost: 2.24669 s, avg_batch_cost: 2.51724 s, avg_samples: 12.5, ips: 4.96576 samples/s, eta: 0:42:49
[2024/08/01 20:38:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:39:04] ppocr INFO: epoch: [12/100], global_step: 36, lr: 0.001000, loss: 6.306919, loss_shrink_maps: 4.391849, loss_threshold_maps: 1.020907, loss_binary_maps: 0.829758, avg_reader_cost: 2.23096 s, avg_batch_cost: 2.51112 s, avg_samples: 12.5, ips: 4.97785 samples/s, eta: 0:41:53
[2024/08/01 20:39:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:39:14] ppocr INFO: epoch: [13/100], global_step: 39, lr: 0.001000, loss: 6.061879, loss_shrink_maps: 4.266415, loss_threshold_maps: 0.982377, loss_binary_maps: 0.818155, avg_reader_cost: 2.27600 s, avg_batch_cost: 2.55858 s, avg_samples: 12.5, ips: 4.88553 samples/s, eta: 0:41:04
[2024/08/01 20:39:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:39:23] ppocr INFO: epoch: [14/100], global_step: 40, lr: 0.001000, loss: 6.034086, loss_shrink_maps: 4.249962, loss_threshold_maps: 0.975071, loss_binary_maps: 0.814069, avg_reader_cost: 0.65931 s, avg_batch_cost: 0.74786 s, avg_samples: 4.8, ips: 6.41831 samples/s, eta: 0:40:42
[2024/08/01 20:39:24] ppocr INFO: epoch: [14/100], global_step: 42, lr: 0.001000, loss: 5.948371, loss_shrink_maps: 4.203692, loss_threshold_maps: 0.959928, loss_binary_maps: 0.803920, avg_reader_cost: 1.59297 s, avg_batch_cost: 1.74787 s, avg_samples: 7.7, ips: 4.40535 samples/s, eta: 0:40:15
[2024/08/01 20:39:25] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:39:34] ppocr INFO: epoch: [15/100], global_step: 45, lr: 0.001000, loss: 5.842136, loss_shrink_maps: 4.137426, loss_threshold_maps: 0.945386, loss_binary_maps: 0.786568, avg_reader_cost: 2.24691 s, avg_batch_cost: 2.59015 s, avg_samples: 12.5, ips: 4.82598 samples/s, eta: 0:39:35
[2024/08/01 20:39:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:39:44] ppocr INFO: epoch: [16/100], global_step: 48, lr: 0.001000, loss: 5.817528, loss_shrink_maps: 4.099481, loss_threshold_maps: 0.940276, loss_binary_maps: 0.778121, avg_reader_cost: 2.26891 s, avg_batch_cost: 2.51310 s, avg_samples: 12.5, ips: 4.97394 samples/s, eta: 0:38:52
[2024/08/01 20:39:44] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:39:53] ppocr INFO: epoch: [17/100], global_step: 50, lr: 0.001000, loss: 5.757682, loss_shrink_maps: 4.024876, loss_threshold_maps: 0.919434, loss_binary_maps: 0.774164, avg_reader_cost: 1.42779 s, avg_batch_cost: 1.65022 s, avg_samples: 9.6, ips: 5.81742 samples/s, eta: 0:38:24
[2024/08/01 20:39:54] ppocr INFO: epoch: [17/100], global_step: 51, lr: 0.001000, loss: 5.715228, loss_shrink_maps: 3.990124, loss_threshold_maps: 0.915702, loss_binary_maps: 0.766707, avg_reader_cost: 0.87391 s, avg_batch_cost: 0.93205 s, avg_samples: 2.9, ips: 3.11143 samples/s, eta: 0:38:15
[2024/08/01 20:39:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:40:04] ppocr INFO: epoch: [18/100], global_step: 54, lr: 0.001000, loss: 5.548355, loss_shrink_maps: 3.902008, loss_threshold_maps: 0.906152, loss_binary_maps: 0.745593, avg_reader_cost: 2.37035 s, avg_batch_cost: 2.61335 s, avg_samples: 12.5, ips: 4.78313 samples/s, eta: 0:37:40
[2024/08/01 20:40:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:40:13] ppocr INFO: epoch: [19/100], global_step: 57, lr: 0.001000, loss: 5.420370, loss_shrink_maps: 3.835642, loss_threshold_maps: 0.901369, loss_binary_maps: 0.729300, avg_reader_cost: 2.28187 s, avg_batch_cost: 2.53887 s, avg_samples: 12.5, ips: 4.92345 samples/s, eta: 0:37:03
[2024/08/01 20:40:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:40:23] ppocr INFO: epoch: [20/100], global_step: 60, lr: 0.001000, loss: 5.396798, loss_shrink_maps: 3.779905, loss_threshold_maps: 0.888486, loss_binary_maps: 0.723600, avg_reader_cost: 2.29904 s, avg_batch_cost: 2.56823 s, avg_samples: 12.5, ips: 4.86716 samples/s, eta: 0:36:29

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<01:05,  7.65it/s]
eval model::   1%|          | 4/500 [00:00<00:30, 16.19it/s]
eval model::   1%|▏         | 7/500 [00:00<00:24, 19.95it/s]
eval model::   2%|▏         | 10/500 [00:00<00:22, 21.91it/s]
eval model::   3%|▎         | 13/500 [00:00<00:23, 21.01it/s]
eval model::   3%|▎         | 16/500 [00:00<00:20, 23.23it/s]
eval model::   4%|▍         | 19/500 [00:00<00:22, 21.38it/s]
eval model::   4%|▍         | 22/500 [00:01<00:21, 22.13it/s]
eval model::   5%|▌         | 25/500 [00:01<00:21, 22.04it/s]
eval model::   6%|▌         | 28/500 [00:01<00:21, 22.41it/s]
eval model::   6%|▌         | 31/500 [00:01<00:23, 20.35it/s]
eval model::   7%|▋         | 34/500 [00:01<00:22, 20.34it/s]
eval model::   7%|▋         | 37/500 [00:01<00:21, 21.75it/s]
eval model::   8%|▊         | 40/500 [00:01<00:23, 19.93it/s]
eval model::   9%|▊         | 43/500 [00:02<00:23, 19.29it/s]
eval model::   9%|▉         | 45/500 [00:02<00:23, 19.32it/s]
eval model::   9%|▉         | 47/500 [00:02<00:23, 19.06it/s]
eval model::  10%|█         | 50/500 [00:02<00:21, 20.77it/s]
eval model::  11%|█         | 53/500 [00:02<00:21, 21.19it/s]
eval model::  11%|█         | 56/500 [00:02<00:21, 20.41it/s]
eval model::  12%|█▏        | 59/500 [00:02<00:23, 19.02it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:25, 17.37it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:24, 17.72it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:21, 20.25it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:19, 22.42it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:17, 23.83it/s]
eval model::  15%|█▌        | 75/500 [00:03<00:18, 23.51it/s]
eval model::  16%|█▌        | 78/500 [00:03<00:18, 23.30it/s]
eval model::  16%|█▌        | 81/500 [00:03<00:17, 23.76it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:17, 24.23it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:20, 20.35it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:20, 19.73it/s]
eval model::  19%|█▉        | 94/500 [00:04<00:20, 19.54it/s]
eval model::  19%|█▉        | 97/500 [00:04<00:20, 19.71it/s]
eval model::  20%|██        | 100/500 [00:04<00:20, 19.23it/s]
eval model::  20%|██        | 102/500 [00:04<00:20, 19.17it/s]
eval model::  21%|██        | 105/500 [00:05<00:19, 19.89it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:20, 18.97it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:21, 18.44it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:19, 19.42it/s]
eval model::  23%|██▎       | 116/500 [00:05<00:19, 19.29it/s]
eval model::  24%|██▍       | 119/500 [00:05<00:18, 20.69it/s]
eval model::  24%|██▍       | 122/500 [00:05<00:17, 21.01it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:16, 22.35it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:16, 22.58it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:17, 20.85it/s]
eval model::  27%|██▋       | 134/500 [00:06<00:17, 20.88it/s]
eval model::  27%|██▋       | 137/500 [00:06<00:17, 20.77it/s]
eval model::  28%|██▊       | 140/500 [00:06<00:17, 20.02it/s]
eval model::  29%|██▊       | 143/500 [00:06<00:18, 19.81it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:18, 19.65it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:18, 19.51it/s]
eval model::  30%|███       | 150/500 [00:07<00:17, 19.62it/s]
eval model::  30%|███       | 152/500 [00:07<00:18, 18.90it/s]
eval model::  31%|███       | 155/500 [00:07<00:16, 20.69it/s]
eval model::  32%|███▏      | 158/500 [00:07<00:18, 18.95it/s]
eval model::  32%|███▏      | 160/500 [00:07<00:19, 17.70it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:17, 18.80it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:16, 20.34it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:16, 19.95it/s]
eval model::  34%|███▍      | 172/500 [00:08<00:16, 20.02it/s]
eval model::  35%|███▌      | 175/500 [00:08<00:18, 17.27it/s]
eval model::  36%|███▌      | 178/500 [00:08<00:17, 18.90it/s]
eval model::  36%|███▌      | 180/500 [00:08<00:17, 18.32it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:16, 19.52it/s]
eval model::  37%|███▋      | 187/500 [00:09<00:14, 21.90it/s]
eval model::  38%|███▊      | 190/500 [00:09<00:14, 21.96it/s]
eval model::  39%|███▊      | 193/500 [00:09<00:14, 21.85it/s]
eval model::  39%|███▉      | 196/500 [00:09<00:17, 17.33it/s]
eval model::  40%|███▉      | 198/500 [00:09<00:17, 17.16it/s]
eval model::  40%|████      | 200/500 [00:09<00:16, 17.76it/s]
eval model::  40%|████      | 202/500 [00:10<00:16, 17.59it/s]
eval model::  41%|████      | 205/500 [00:10<00:21, 13.94it/s]
eval model::  42%|████▏     | 208/500 [00:10<00:18, 16.12it/s]
eval model::  42%|████▏     | 211/500 [00:10<00:16, 17.75it/s]
eval model::  43%|████▎     | 215/500 [00:10<00:14, 19.05it/s]
eval model::  44%|████▎     | 218/500 [00:11<00:16, 17.57it/s]
eval model::  44%|████▍     | 221/500 [00:11<00:14, 18.68it/s]
eval model::  45%|████▍     | 224/500 [00:11<00:13, 19.90it/s]
eval model::  45%|████▌     | 227/500 [00:11<00:13, 20.72it/s]
eval model::  46%|████▌     | 230/500 [00:11<00:12, 22.19it/s]
eval model::  47%|████▋     | 233/500 [00:11<00:11, 23.66it/s]
eval model::  47%|████▋     | 236/500 [00:11<00:12, 21.80it/s]
eval model::  48%|████▊     | 239/500 [00:11<00:11, 21.87it/s]
eval model::  48%|████▊     | 242/500 [00:12<00:12, 20.28it/s]
eval model::  49%|████▉     | 245/500 [00:12<00:11, 22.02it/s]
eval model::  50%|████▉     | 248/500 [00:12<00:11, 21.52it/s]
eval model::  50%|█████     | 251/500 [00:12<00:11, 20.84it/s]
eval model::  51%|█████     | 254/500 [00:12<00:11, 20.53it/s]
eval model::  51%|█████▏    | 257/500 [00:12<00:11, 21.81it/s]
eval model::  52%|█████▏    | 260/500 [00:12<00:10, 22.08it/s]
eval model::  53%|█████▎    | 263/500 [00:13<00:10, 21.68it/s]
eval model::  53%|█████▎    | 266/500 [00:13<00:11, 20.92it/s]
eval model::  54%|█████▍    | 269/500 [00:13<00:12, 18.54it/s]
eval model::  54%|█████▍    | 271/500 [00:13<00:12, 17.99it/s]
eval model::  55%|█████▍    | 274/500 [00:13<00:11, 19.12it/s]
eval model::  55%|█████▌    | 276/500 [00:13<00:13, 16.52it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:12, 17.75it/s]
eval model::  56%|█████▋    | 282/500 [00:14<00:11, 19.27it/s]
eval model::  57%|█████▋    | 285/500 [00:14<00:13, 16.13it/s]
eval model::  57%|█████▋    | 287/500 [00:14<00:12, 16.59it/s]
eval model::  58%|█████▊    | 290/500 [00:14<00:11, 18.40it/s]
eval model::  59%|█████▊    | 293/500 [00:14<00:10, 19.16it/s]
eval model::  59%|█████▉    | 295/500 [00:14<00:11, 18.25it/s]
eval model::  60%|█████▉    | 298/500 [00:15<00:10, 19.75it/s]
eval model::  60%|██████    | 301/500 [00:15<00:10, 19.27it/s]
eval model::  61%|██████    | 304/500 [00:15<00:10, 19.53it/s]
eval model::  61%|██████▏   | 307/500 [00:15<00:09, 19.53it/s]
eval model::  62%|██████▏   | 310/500 [00:15<00:09, 21.04it/s]
eval model::  63%|██████▎   | 313/500 [00:15<00:09, 20.47it/s]
eval model::  63%|██████▎   | 316/500 [00:15<00:08, 20.46it/s]
eval model::  64%|██████▍   | 319/500 [00:16<00:09, 19.61it/s]
eval model::  64%|██████▍   | 322/500 [00:16<00:08, 19.88it/s]
eval model::  65%|██████▌   | 325/500 [00:16<00:09, 19.38it/s]
eval model::  65%|██████▌   | 327/500 [00:16<00:09, 18.85it/s]
eval model::  66%|██████▌   | 329/500 [00:16<00:09, 18.32it/s]
eval model::  66%|██████▌   | 331/500 [00:16<00:09, 18.38it/s]
eval model::  67%|██████▋   | 334/500 [00:16<00:08, 19.37it/s]
eval model::  67%|██████▋   | 337/500 [00:17<00:08, 20.26it/s]
eval model::  68%|██████▊   | 340/500 [00:17<00:08, 18.98it/s]
eval model::  69%|██████▊   | 343/500 [00:17<00:07, 20.28it/s]
eval model::  69%|██████▉   | 346/500 [00:17<00:08, 17.80it/s]
eval model::  70%|██████▉   | 348/500 [00:17<00:08, 17.76it/s]
eval model::  70%|███████   | 351/500 [00:17<00:08, 18.05it/s]
eval model::  71%|███████   | 354/500 [00:17<00:07, 18.96it/s]
eval model::  71%|███████   | 356/500 [00:18<00:07, 18.01it/s]
eval model::  72%|███████▏  | 358/500 [00:18<00:08, 17.55it/s]
eval model::  72%|███████▏  | 360/500 [00:18<00:07, 17.99it/s]
eval model::  72%|███████▏  | 362/500 [00:18<00:07, 17.72it/s]
eval model::  73%|███████▎  | 364/500 [00:18<00:08, 16.43it/s]
eval model::  73%|███████▎  | 366/500 [00:18<00:07, 17.00it/s]
eval model::  74%|███████▍  | 369/500 [00:18<00:07, 17.94it/s]
eval model::  74%|███████▍  | 372/500 [00:18<00:06, 18.95it/s]
eval model::  75%|███████▌  | 375/500 [00:19<00:06, 19.78it/s]
eval model::  75%|███████▌  | 377/500 [00:19<00:06, 19.53it/s]
eval model::  76%|███████▌  | 380/500 [00:19<00:06, 18.26it/s]
eval model::  77%|███████▋  | 383/500 [00:19<00:05, 20.14it/s]
eval model::  77%|███████▋  | 386/500 [00:19<00:07, 16.17it/s]
eval model::  78%|███████▊  | 389/500 [00:19<00:06, 17.95it/s]
eval model::  78%|███████▊  | 392/500 [00:20<00:05, 19.45it/s]
eval model::  79%|███████▉  | 395/500 [00:20<00:05, 19.86it/s]
eval model::  80%|███████▉  | 398/500 [00:20<00:04, 20.54it/s]
eval model::  80%|████████  | 401/500 [00:20<00:05, 19.22it/s]
eval model::  81%|████████  | 404/500 [00:20<00:04, 19.20it/s]
eval model::  81%|████████  | 406/500 [00:20<00:04, 19.07it/s]
eval model::  82%|████████▏ | 409/500 [00:20<00:04, 20.30it/s]
eval model::  82%|████████▏ | 412/500 [00:21<00:04, 20.26it/s]
eval model::  83%|████████▎ | 415/500 [00:21<00:04, 20.19it/s]
eval model::  84%|████████▎ | 418/500 [00:21<00:04, 18.52it/s]
eval model::  84%|████████▍ | 420/500 [00:21<00:04, 16.99it/s]
eval model::  85%|████████▍ | 423/500 [00:21<00:04, 18.02it/s]
eval model::  85%|████████▌ | 426/500 [00:21<00:03, 19.03it/s]
eval model::  86%|████████▌ | 429/500 [00:21<00:03, 21.21it/s]
eval model::  86%|████████▋ | 432/500 [00:22<00:03, 20.07it/s]
eval model::  87%|████████▋ | 435/500 [00:22<00:03, 19.79it/s]
eval model::  88%|████████▊ | 438/500 [00:22<00:02, 21.32it/s]
eval model::  88%|████████▊ | 441/500 [00:22<00:03, 19.27it/s]
eval model::  89%|████████▉ | 444/500 [00:22<00:02, 20.76it/s]
eval model::  89%|████████▉ | 447/500 [00:22<00:02, 20.12it/s]
eval model::  90%|█████████ | 450/500 [00:22<00:02, 19.26it/s]
eval model::  91%|█████████ | 453/500 [00:23<00:02, 19.03it/s]
eval model::  91%|█████████ | 456/500 [00:23<00:02, 19.94it/s]
eval model::  92%|█████████▏| 459/500 [00:23<00:02, 19.79it/s]
eval model::  92%|█████████▏| 462/500 [00:23<00:01, 20.30it/s]
eval model::  93%|█████████▎| 465/500 [00:23<00:01, 18.01it/s]
eval model::  94%|█████████▎| 468/500 [00:23<00:01, 19.89it/s]
eval model::  94%|█████████▍| 471/500 [00:24<00:01, 19.17it/s]
eval model::  95%|█████████▍| 474/500 [00:24<00:01, 19.01it/s]
eval model::  95%|█████████▌| 477/500 [00:24<00:01, 19.77it/s]
eval model::  96%|█████████▌| 480/500 [00:24<00:01, 19.67it/s]
eval model::  97%|█████████▋| 483/500 [00:24<00:00, 20.82it/s]
eval model::  97%|█████████▋| 486/500 [00:24<00:00, 18.78it/s]
eval model::  98%|█████████▊| 489/500 [00:24<00:00, 20.06it/s]
eval model::  98%|█████████▊| 492/500 [00:25<00:00, 21.18it/s]
eval model::  99%|█████████▉| 495/500 [00:25<00:00, 22.90it/s]
eval model:: 100%|█████████▉| 498/500 [00:25<00:00, 22.15it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.65it/s]
[2024/08/01 20:40:49] ppocr INFO: cur metric, precision: 0.2540322580645161, recall: 0.09099662975445354, hmean: 0.13399503722084366, fps: 42.71231614973914
[2024/08/01 20:40:49] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/08/01 20:40:49] ppocr INFO: best metric, hmean: 0.13399503722084366, precision: 0.2540322580645161, recall: 0.09099662975445354, fps: 42.71231614973914, best_epoch: 20
[2024/08/01 20:40:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:40:56] ppocr INFO: epoch: [21/100], global_step: 63, lr: 0.001000, loss: 5.356770, loss_shrink_maps: 3.767826, loss_threshold_maps: 0.888486, loss_binary_maps: 0.718283, avg_reader_cost: 1.65713 s, avg_batch_cost: 1.95343 s, avg_samples: 12.5, ips: 6.39899 samples/s, eta: 0:35:32
[2024/08/01 20:40:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:41:04] ppocr INFO: epoch: [22/100], global_step: 66, lr: 0.001000, loss: 5.220206, loss_shrink_maps: 3.682492, loss_threshold_maps: 0.865904, loss_binary_maps: 0.696989, avg_reader_cost: 1.52186 s, avg_batch_cost: 1.78401 s, avg_samples: 12.5, ips: 7.00669 samples/s, eta: 0:34:33
[2024/08/01 20:41:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:41:11] ppocr INFO: epoch: [23/100], global_step: 69, lr: 0.001000, loss: 4.714974, loss_shrink_maps: 3.318467, loss_threshold_maps: 0.875278, loss_binary_maps: 0.576473, avg_reader_cost: 1.53847 s, avg_batch_cost: 1.78187 s, avg_samples: 12.5, ips: 7.01511 samples/s, eta: 0:33:37
[2024/08/01 20:41:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:41:17] ppocr INFO: epoch: [24/100], global_step: 70, lr: 0.001000, loss: 4.706698, loss_shrink_maps: 3.283479, loss_threshold_maps: 0.882831, loss_binary_maps: 0.532320, avg_reader_cost: 0.43486 s, avg_batch_cost: 0.54496 s, avg_samples: 4.8, ips: 8.80805 samples/s, eta: 0:33:17
[2024/08/01 20:41:18] ppocr INFO: epoch: [24/100], global_step: 72, lr: 0.001000, loss: 4.494270, loss_shrink_maps: 3.141477, loss_threshold_maps: 0.882831, loss_binary_maps: 0.456164, avg_reader_cost: 1.18739 s, avg_batch_cost: 1.34246 s, avg_samples: 7.7, ips: 5.73572 samples/s, eta: 0:32:47
[2024/08/01 20:41:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:41:26] ppocr INFO: epoch: [25/100], global_step: 75, lr: 0.001000, loss: 4.048507, loss_shrink_maps: 2.767840, loss_threshold_maps: 0.874006, loss_binary_maps: 0.429532, avg_reader_cost: 1.52084 s, avg_batch_cost: 1.80214 s, avg_samples: 12.5, ips: 6.93618 samples/s, eta: 0:31:58
[2024/08/01 20:41:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:41:33] ppocr INFO: epoch: [26/100], global_step: 78, lr: 0.001000, loss: 3.948027, loss_shrink_maps: 2.651274, loss_threshold_maps: 0.870399, loss_binary_maps: 0.416558, avg_reader_cost: 1.56310 s, avg_batch_cost: 1.83148 s, avg_samples: 12.5, ips: 6.82508 samples/s, eta: 0:31:12
[2024/08/01 20:41:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:41:40] ppocr INFO: epoch: [27/100], global_step: 80, lr: 0.001000, loss: 3.898684, loss_shrink_maps: 2.620234, loss_threshold_maps: 0.875516, loss_binary_maps: 0.399731, avg_reader_cost: 0.93753 s, avg_batch_cost: 1.12413 s, avg_samples: 9.6, ips: 8.53991 samples/s, eta: 0:30:39
[2024/08/01 20:41:40] ppocr INFO: epoch: [27/100], global_step: 81, lr: 0.001000, loss: 3.892091, loss_shrink_maps: 2.594418, loss_threshold_maps: 0.866305, loss_binary_maps: 0.399731, avg_reader_cost: 0.61140 s, avg_batch_cost: 0.66923 s, avg_samples: 2.9, ips: 4.33336 samples/s, eta: 0:30:26
[2024/08/01 20:41:41] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:41:48] ppocr INFO: epoch: [28/100], global_step: 84, lr: 0.001000, loss: 3.733869, loss_shrink_maps: 2.431300, loss_threshold_maps: 0.858584, loss_binary_maps: 0.399731, avg_reader_cost: 1.62641 s, avg_batch_cost: 1.90622 s, avg_samples: 12.5, ips: 6.55749 samples/s, eta: 0:29:46
[2024/08/01 20:41:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:41:55] ppocr INFO: epoch: [29/100], global_step: 87, lr: 0.001000, loss: 3.568292, loss_shrink_maps: 2.341320, loss_threshold_maps: 0.851385, loss_binary_maps: 0.369127, avg_reader_cost: 1.55274 s, avg_batch_cost: 1.82403 s, avg_samples: 12.5, ips: 6.85294 samples/s, eta: 0:29:05
[2024/08/01 20:41:56] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:42:03] ppocr INFO: epoch: [30/100], global_step: 90, lr: 0.001000, loss: 3.275011, loss_shrink_maps: 2.119010, loss_threshold_maps: 0.842222, loss_binary_maps: 0.343508, avg_reader_cost: 1.53285 s, avg_batch_cost: 1.78708 s, avg_samples: 12.5, ips: 6.99466 samples/s, eta: 0:28:25
[2024/08/01 20:42:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:42:10] ppocr INFO: epoch: [31/100], global_step: 93, lr: 0.001000, loss: 3.181884, loss_shrink_maps: 2.018446, loss_threshold_maps: 0.842631, loss_binary_maps: 0.340795, avg_reader_cost: 1.58458 s, avg_batch_cost: 1.82994 s, avg_samples: 12.5, ips: 6.83084 samples/s, eta: 0:27:47
[2024/08/01 20:42:11] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:42:17] ppocr INFO: epoch: [32/100], global_step: 96, lr: 0.001000, loss: 3.135776, loss_shrink_maps: 1.934820, loss_threshold_maps: 0.842631, loss_binary_maps: 0.338562, avg_reader_cost: 1.60243 s, avg_batch_cost: 1.84715 s, avg_samples: 12.5, ips: 6.76719 samples/s, eta: 0:27:11
[2024/08/01 20:42:18] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:42:25] ppocr INFO: epoch: [33/100], global_step: 99, lr: 0.001000, loss: 3.129548, loss_shrink_maps: 1.934820, loss_threshold_maps: 0.842631, loss_binary_maps: 0.335990, avg_reader_cost: 1.57711 s, avg_batch_cost: 1.88426 s, avg_samples: 12.5, ips: 6.63392 samples/s, eta: 0:26:36
[2024/08/01 20:42:26] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:42:31] ppocr INFO: epoch: [34/100], global_step: 100, lr: 0.001000, loss: 3.099138, loss_shrink_maps: 1.920573, loss_threshold_maps: 0.842631, loss_binary_maps: 0.333742, avg_reader_cost: 0.41876 s, avg_batch_cost: 0.51803 s, avg_samples: 4.8, ips: 9.26596 samples/s, eta: 0:26:23
[2024/08/01 20:42:32] ppocr INFO: epoch: [34/100], global_step: 102, lr: 0.001000, loss: 3.070569, loss_shrink_maps: 1.905585, loss_threshold_maps: 0.847389, loss_binary_maps: 0.330582, avg_reader_cost: 1.13419 s, avg_batch_cost: 1.28982 s, avg_samples: 7.7, ips: 5.96980 samples/s, eta: 0:26:01
[2024/08/01 20:42:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:42:40] ppocr INFO: epoch: [35/100], global_step: 105, lr: 0.001000, loss: 3.057051, loss_shrink_maps: 1.886383, loss_threshold_maps: 0.847389, loss_binary_maps: 0.318210, avg_reader_cost: 1.53227 s, avg_batch_cost: 1.77748 s, avg_samples: 12.5, ips: 7.03243 samples/s, eta: 0:25:27
[2024/08/01 20:42:40] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:42:47] ppocr INFO: epoch: [36/100], global_step: 108, lr: 0.001000, loss: 2.912682, loss_shrink_maps: 1.747611, loss_threshold_maps: 0.836401, loss_binary_maps: 0.311897, avg_reader_cost: 1.57505 s, avg_batch_cost: 1.81993 s, avg_samples: 12.5, ips: 6.86840 samples/s, eta: 0:24:54
[2024/08/01 20:42:48] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:42:54] ppocr INFO: epoch: [37/100], global_step: 110, lr: 0.001000, loss: 2.912682, loss_shrink_maps: 1.756642, loss_threshold_maps: 0.836401, loss_binary_maps: 0.316587, avg_reader_cost: 0.95339 s, avg_batch_cost: 1.14480 s, avg_samples: 9.6, ips: 8.38573 samples/s, eta: 0:24:31
[2024/08/01 20:42:54] ppocr INFO: epoch: [37/100], global_step: 111, lr: 0.001000, loss: 2.912682, loss_shrink_maps: 1.756642, loss_threshold_maps: 0.836401, loss_binary_maps: 0.316587, avg_reader_cost: 0.62113 s, avg_batch_cost: 0.67932 s, avg_samples: 2.9, ips: 4.26901 samples/s, eta: 0:24:22
[2024/08/01 20:42:55] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:43:02] ppocr INFO: epoch: [38/100], global_step: 114, lr: 0.001000, loss: 2.902322, loss_shrink_maps: 1.747611, loss_threshold_maps: 0.834390, loss_binary_maps: 0.311266, avg_reader_cost: 1.55722 s, avg_batch_cost: 1.84691 s, avg_samples: 12.5, ips: 6.76806 samples/s, eta: 0:23:51
[2024/08/01 20:43:03] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:43:09] ppocr INFO: epoch: [39/100], global_step: 117, lr: 0.001000, loss: 2.847789, loss_shrink_maps: 1.705968, loss_threshold_maps: 0.828564, loss_binary_maps: 0.302142, avg_reader_cost: 1.54726 s, avg_batch_cost: 1.79328 s, avg_samples: 12.5, ips: 6.97048 samples/s, eta: 0:23:20
[2024/08/01 20:43:10] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:43:16] ppocr INFO: epoch: [40/100], global_step: 120, lr: 0.001000, loss: 2.783246, loss_shrink_maps: 1.661209, loss_threshold_maps: 0.827214, loss_binary_maps: 0.299705, avg_reader_cost: 1.56264 s, avg_batch_cost: 1.80875 s, avg_samples: 12.5, ips: 6.91086 samples/s, eta: 0:22:49

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 2/500 [00:00<00:35, 14.04it/s]
eval model::   1%|          | 5/500 [00:00<00:27, 17.96it/s]
eval model::   2%|▏         | 8/500 [00:00<00:27, 17.71it/s]
eval model::   2%|▏         | 11/500 [00:00<00:26, 18.53it/s]
eval model::   3%|▎         | 14/500 [00:00<00:25, 19.29it/s]
eval model::   3%|▎         | 17/500 [00:00<00:22, 21.15it/s]
eval model::   4%|▍         | 20/500 [00:01<00:22, 21.18it/s]
eval model::   5%|▍         | 23/500 [00:01<00:21, 21.81it/s]
eval model::   5%|▌         | 26/500 [00:01<00:22, 20.82it/s]
eval model::   6%|▌         | 29/500 [00:01<00:22, 20.78it/s]
eval model::   6%|▋         | 32/500 [00:01<00:23, 20.13it/s]
eval model::   7%|▋         | 35/500 [00:01<00:23, 19.91it/s]
eval model::   8%|▊         | 38/500 [00:01<00:22, 20.46it/s]
eval model::   8%|▊         | 41/500 [00:02<00:22, 20.74it/s]
eval model::   9%|▉         | 44/500 [00:02<00:22, 20.22it/s]
eval model::   9%|▉         | 47/500 [00:02<00:23, 19.16it/s]
eval model::  10%|█         | 50/500 [00:02<00:23, 19.42it/s]
eval model::  10%|█         | 52/500 [00:02<00:24, 18.36it/s]
eval model::  11%|█         | 55/500 [00:02<00:22, 19.92it/s]
eval model::  12%|█▏        | 58/500 [00:02<00:23, 18.96it/s]
eval model::  12%|█▏        | 61/500 [00:03<00:25, 17.38it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:27, 16.06it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:23, 18.53it/s]
eval model::  14%|█▍        | 70/500 [00:03<00:19, 22.22it/s]
eval model::  15%|█▍        | 73/500 [00:03<00:20, 21.01it/s]
eval model::  15%|█▌        | 76/500 [00:03<00:19, 21.55it/s]
eval model::  16%|█▌        | 79/500 [00:03<00:19, 22.09it/s]
eval model::  16%|█▋        | 82/500 [00:04<00:19, 22.00it/s]
eval model::  17%|█▋        | 85/500 [00:04<00:21, 19.74it/s]
eval model::  18%|█▊        | 88/500 [00:04<00:20, 20.01it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:22, 18.46it/s]
eval model::  19%|█▉        | 94/500 [00:04<00:21, 19.04it/s]
eval model::  19%|█▉        | 96/500 [00:04<00:21, 19.07it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:20, 19.49it/s]
eval model::  20%|██        | 101/500 [00:05<00:21, 18.41it/s]
eval model::  21%|██        | 105/500 [00:05<00:18, 21.78it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:18, 21.66it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:19, 19.60it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:18, 21.10it/s]
eval model::  23%|██▎       | 117/500 [00:05<00:18, 21.08it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:18, 20.34it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:16, 22.30it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:17, 20.94it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:17, 20.74it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:19, 19.21it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:19, 19.16it/s]
eval model::  28%|██▊       | 138/500 [00:06<00:17, 20.41it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:18, 19.76it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:16, 21.41it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:17, 19.92it/s]
eval model::  30%|███       | 150/500 [00:07<00:17, 20.24it/s]
eval model::  31%|███       | 153/500 [00:07<00:17, 19.32it/s]
eval model::  31%|███▏      | 157/500 [00:07<00:16, 21.12it/s]
eval model::  32%|███▏      | 160/500 [00:07<00:16, 20.79it/s]
eval model::  33%|███▎      | 163/500 [00:08<00:16, 20.88it/s]
eval model::  33%|███▎      | 166/500 [00:08<00:15, 21.56it/s]
eval model::  34%|███▍      | 169/500 [00:08<00:16, 19.97it/s]
eval model::  34%|███▍      | 172/500 [00:08<00:15, 21.29it/s]
eval model::  35%|███▌      | 175/500 [00:08<00:15, 21.59it/s]
eval model::  36%|███▌      | 178/500 [00:08<00:14, 22.28it/s]
eval model::  36%|███▌      | 181/500 [00:09<00:16, 19.05it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:15, 20.30it/s]
eval model::  37%|███▋      | 187/500 [00:09<00:15, 20.82it/s]
eval model::  38%|███▊      | 190/500 [00:09<00:15, 20.53it/s]
eval model::  39%|███▊      | 193/500 [00:09<00:15, 19.64it/s]
eval model::  39%|███▉      | 196/500 [00:09<00:17, 17.80it/s]
eval model::  40%|███▉      | 199/500 [00:09<00:16, 18.45it/s]
eval model::  40%|████      | 201/500 [00:10<00:16, 18.25it/s]
eval model::  41%|████      | 204/500 [00:10<00:15, 19.65it/s]
eval model::  41%|████▏     | 207/500 [00:10<00:19, 15.17it/s]
eval model::  42%|████▏     | 209/500 [00:10<00:18, 15.89it/s]
eval model::  42%|████▏     | 211/500 [00:10<00:17, 16.44it/s]
eval model::  43%|████▎     | 213/500 [00:10<00:16, 17.06it/s]
eval model::  43%|████▎     | 215/500 [00:10<00:18, 15.75it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:19, 14.77it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:15, 18.01it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:15, 18.27it/s]
eval model::  45%|████▌     | 225/500 [00:11<00:13, 19.89it/s]
eval model::  46%|████▌     | 228/500 [00:11<00:13, 19.83it/s]
eval model::  46%|████▌     | 231/500 [00:11<00:12, 22.23it/s]
eval model::  47%|████▋     | 234/500 [00:11<00:11, 22.77it/s]
eval model::  47%|████▋     | 237/500 [00:11<00:11, 23.22it/s]
eval model::  48%|████▊     | 240/500 [00:12<00:10, 23.73it/s]
eval model::  49%|████▊     | 243/500 [00:12<00:11, 22.88it/s]
eval model::  49%|████▉     | 246/500 [00:12<00:11, 23.07it/s]
eval model::  50%|████▉     | 249/500 [00:12<00:12, 19.50it/s]
eval model::  50%|█████     | 252/500 [00:12<00:12, 20.55it/s]
eval model::  51%|█████     | 255/500 [00:12<00:11, 20.91it/s]
eval model::  52%|█████▏    | 258/500 [00:12<00:11, 20.33it/s]
eval model::  52%|█████▏    | 261/500 [00:13<00:12, 19.39it/s]
eval model::  53%|█████▎    | 264/500 [00:13<00:12, 18.58it/s]
eval model::  53%|█████▎    | 267/500 [00:13<00:11, 19.54it/s]
eval model::  54%|█████▍    | 270/500 [00:13<00:11, 20.44it/s]
eval model::  55%|█████▍    | 273/500 [00:13<00:11, 20.63it/s]
eval model::  55%|█████▌    | 276/500 [00:13<00:11, 18.90it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:11, 19.20it/s]
eval model::  56%|█████▋    | 282/500 [00:14<00:10, 19.92it/s]
eval model::  57%|█████▋    | 285/500 [00:14<00:13, 16.00it/s]
eval model::  58%|█████▊    | 289/500 [00:14<00:11, 19.01it/s]
eval model::  59%|█████▊    | 293/500 [00:14<00:09, 22.02it/s]
eval model::  59%|█████▉    | 296/500 [00:14<00:10, 19.95it/s]
eval model::  60%|██████    | 300/500 [00:15<00:09, 21.38it/s]
eval model::  61%|██████    | 303/500 [00:15<00:09, 21.72it/s]
eval model::  61%|██████    | 306/500 [00:15<00:08, 21.95it/s]
eval model::  62%|██████▏   | 309/500 [00:15<00:08, 21.29it/s]
eval model::  62%|██████▏   | 312/500 [00:15<00:08, 21.86it/s]
eval model::  63%|██████▎   | 315/500 [00:15<00:09, 19.82it/s]
eval model::  64%|██████▎   | 318/500 [00:15<00:08, 20.94it/s]
eval model::  64%|██████▍   | 321/500 [00:16<00:08, 20.83it/s]
eval model::  65%|██████▍   | 324/500 [00:16<00:09, 18.82it/s]
eval model::  65%|██████▌   | 327/500 [00:16<00:08, 19.85it/s]
eval model::  66%|██████▌   | 330/500 [00:16<00:09, 17.78it/s]
eval model::  67%|██████▋   | 333/500 [00:16<00:08, 19.39it/s]
eval model::  67%|██████▋   | 336/500 [00:16<00:08, 19.83it/s]
eval model::  68%|██████▊   | 339/500 [00:17<00:08, 19.96it/s]
eval model::  68%|██████▊   | 342/500 [00:17<00:08, 18.01it/s]
eval model::  69%|██████▉   | 345/500 [00:17<00:07, 19.69it/s]
eval model::  70%|██████▉   | 348/500 [00:17<00:07, 20.42it/s]
eval model::  70%|███████   | 351/500 [00:17<00:07, 19.07it/s]
eval model::  71%|███████   | 354/500 [00:17<00:07, 20.73it/s]
eval model::  71%|███████▏  | 357/500 [00:17<00:07, 19.25it/s]
eval model::  72%|███████▏  | 360/500 [00:18<00:06, 20.93it/s]
eval model::  73%|███████▎  | 363/500 [00:18<00:06, 20.79it/s]
eval model::  73%|███████▎  | 366/500 [00:18<00:07, 19.13it/s]
eval model::  74%|███████▍  | 369/500 [00:18<00:06, 20.37it/s]
eval model::  74%|███████▍  | 372/500 [00:18<00:06, 21.16it/s]
eval model::  75%|███████▌  | 375/500 [00:18<00:05, 22.21it/s]
eval model::  76%|███████▌  | 378/500 [00:18<00:05, 21.79it/s]
eval model::  76%|███████▌  | 381/500 [00:19<00:05, 22.38it/s]
eval model::  77%|███████▋  | 384/500 [00:19<00:05, 19.61it/s]
eval model::  77%|███████▋  | 387/500 [00:19<00:07, 14.50it/s]
eval model::  78%|███████▊  | 390/500 [00:19<00:06, 16.61it/s]
eval model::  79%|███████▊  | 393/500 [00:19<00:05, 18.12it/s]
eval model::  79%|███████▉  | 396/500 [00:19<00:05, 19.78it/s]
eval model::  80%|███████▉  | 399/500 [00:20<00:04, 21.54it/s]
eval model::  80%|████████  | 402/500 [00:20<00:04, 21.10it/s]
eval model::  81%|████████  | 405/500 [00:20<00:04, 22.38it/s]
eval model::  82%|████████▏ | 408/500 [00:20<00:04, 20.85it/s]
eval model::  82%|████████▏ | 411/500 [00:20<00:04, 20.51it/s]
eval model::  83%|████████▎ | 414/500 [00:20<00:04, 19.51it/s]
eval model::  83%|████████▎ | 417/500 [00:21<00:04, 18.78it/s]
eval model::  84%|████████▍ | 419/500 [00:21<00:04, 18.52it/s]
eval model::  84%|████████▍ | 421/500 [00:21<00:05, 15.78it/s]
eval model::  85%|████████▍ | 424/500 [00:21<00:04, 16.93it/s]
eval model::  85%|████████▌ | 426/500 [00:21<00:04, 17.57it/s]
eval model::  86%|████████▌ | 429/500 [00:21<00:03, 19.45it/s]
eval model::  86%|████████▋ | 432/500 [00:21<00:03, 20.91it/s]
eval model::  87%|████████▋ | 435/500 [00:21<00:02, 21.81it/s]
eval model::  88%|████████▊ | 438/500 [00:22<00:02, 21.52it/s]
eval model::  88%|████████▊ | 441/500 [00:22<00:02, 20.07it/s]
eval model::  89%|████████▉ | 444/500 [00:22<00:02, 20.77it/s]
eval model::  89%|████████▉ | 447/500 [00:22<00:02, 19.88it/s]
eval model::  90%|█████████ | 450/500 [00:22<00:02, 19.22it/s]
eval model::  91%|█████████ | 453/500 [00:22<00:02, 20.21it/s]
eval model::  91%|█████████ | 456/500 [00:23<00:02, 20.16it/s]
eval model::  92%|█████████▏| 459/500 [00:23<00:02, 20.35it/s]
eval model::  92%|█████████▏| 462/500 [00:23<00:01, 19.79it/s]
eval model::  93%|█████████▎| 464/500 [00:23<00:01, 19.43it/s]
eval model::  93%|█████████▎| 466/500 [00:23<00:01, 18.41it/s]
eval model::  94%|█████████▍| 469/500 [00:23<00:01, 20.84it/s]
eval model::  94%|█████████▍| 472/500 [00:23<00:01, 21.37it/s]
eval model::  95%|█████████▌| 475/500 [00:24<00:01, 18.35it/s]
eval model::  96%|█████████▌| 478/500 [00:24<00:01, 19.49it/s]
eval model::  96%|█████████▌| 481/500 [00:24<00:00, 19.33it/s]
eval model::  97%|█████████▋| 484/500 [00:24<00:00, 20.07it/s]
eval model::  97%|█████████▋| 487/500 [00:24<00:00, 18.92it/s]
eval model::  98%|█████████▊| 489/500 [00:24<00:00, 18.41it/s]
eval model::  98%|█████████▊| 491/500 [00:24<00:00, 18.06it/s]
eval model::  99%|█████████▉| 494/500 [00:24<00:00, 19.29it/s]
eval model::  99%|█████████▉| 497/500 [00:25<00:00, 20.86it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 22.67it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.84it/s]
[2024/08/01 20:43:42] ppocr INFO: cur metric, precision: 0.5422365245374094, recall: 0.32450649975926815, hmean: 0.4060240963855421, fps: 43.44324831682561
[2024/08/01 20:43:42] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/08/01 20:43:42] ppocr INFO: best metric, hmean: 0.4060240963855421, precision: 0.5422365245374094, recall: 0.32450649975926815, fps: 43.44324831682561, best_epoch: 40
[2024/08/01 20:43:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:43:49] ppocr INFO: epoch: [41/100], global_step: 123, lr: 0.001000, loss: 2.783246, loss_shrink_maps: 1.659631, loss_threshold_maps: 0.826001, loss_binary_maps: 0.299705, avg_reader_cost: 1.62283 s, avg_batch_cost: 1.92650 s, avg_samples: 12.5, ips: 6.48844 samples/s, eta: 0:22:21
[2024/08/01 20:43:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:43:57] ppocr INFO: epoch: [42/100], global_step: 126, lr: 0.001000, loss: 2.724448, loss_shrink_maps: 1.604308, loss_threshold_maps: 0.825066, loss_binary_maps: 0.297598, avg_reader_cost: 1.56961 s, avg_batch_cost: 1.82470 s, avg_samples: 12.5, ips: 6.85045 samples/s, eta: 0:21:52
[2024/08/01 20:43:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:44:04] ppocr INFO: epoch: [43/100], global_step: 129, lr: 0.001000, loss: 2.724448, loss_shrink_maps: 1.617960, loss_threshold_maps: 0.821252, loss_binary_maps: 0.297598, avg_reader_cost: 1.52608 s, avg_batch_cost: 1.78059 s, avg_samples: 12.5, ips: 7.02016 samples/s, eta: 0:21:23
[2024/08/01 20:44:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:44:10] ppocr INFO: epoch: [44/100], global_step: 130, lr: 0.001000, loss: 2.724448, loss_shrink_maps: 1.617960, loss_threshold_maps: 0.825066, loss_binary_maps: 0.297598, avg_reader_cost: 0.41998 s, avg_batch_cost: 0.51207 s, avg_samples: 4.8, ips: 9.37365 samples/s, eta: 0:21:13
[2024/08/01 20:44:11] ppocr INFO: epoch: [44/100], global_step: 132, lr: 0.001000, loss: 2.691556, loss_shrink_maps: 1.578372, loss_threshold_maps: 0.821252, loss_binary_maps: 0.295709, avg_reader_cost: 1.12152 s, avg_batch_cost: 1.27632 s, avg_samples: 7.7, ips: 6.03295 samples/s, eta: 0:20:55
[2024/08/01 20:44:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:44:19] ppocr INFO: epoch: [45/100], global_step: 135, lr: 0.001000, loss: 2.671915, loss_shrink_maps: 1.572094, loss_threshold_maps: 0.820098, loss_binary_maps: 0.295709, avg_reader_cost: 1.51533 s, avg_batch_cost: 1.77187 s, avg_samples: 12.5, ips: 7.05470 samples/s, eta: 0:20:27
[2024/08/01 20:44:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:44:26] ppocr INFO: epoch: [46/100], global_step: 138, lr: 0.001000, loss: 2.646094, loss_shrink_maps: 1.562257, loss_threshold_maps: 0.794736, loss_binary_maps: 0.293802, avg_reader_cost: 1.57409 s, avg_batch_cost: 1.81942 s, avg_samples: 12.5, ips: 6.87031 samples/s, eta: 0:20:00
[2024/08/01 20:44:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:44:33] ppocr INFO: epoch: [47/100], global_step: 140, lr: 0.001000, loss: 2.637463, loss_shrink_maps: 1.554586, loss_threshold_maps: 0.789567, loss_binary_maps: 0.292961, avg_reader_cost: 0.95502 s, avg_batch_cost: 1.19001 s, avg_samples: 9.6, ips: 8.06717 samples/s, eta: 0:19:41
[2024/08/01 20:44:34] ppocr INFO: epoch: [47/100], global_step: 141, lr: 0.001000, loss: 2.623577, loss_shrink_maps: 1.551246, loss_threshold_maps: 0.789567, loss_binary_maps: 0.291383, avg_reader_cost: 0.64371 s, avg_batch_cost: 0.70164 s, avg_samples: 2.9, ips: 4.13316 samples/s, eta: 0:19:34
[2024/08/01 20:44:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:44:41] ppocr INFO: epoch: [48/100], global_step: 144, lr: 0.001000, loss: 2.632892, loss_shrink_maps: 1.554586, loss_threshold_maps: 0.786388, loss_binary_maps: 0.292961, avg_reader_cost: 1.58798 s, avg_batch_cost: 1.83293 s, avg_samples: 12.5, ips: 6.81970 samples/s, eta: 0:19:07
[2024/08/01 20:44:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:44:49] ppocr INFO: epoch: [49/100], global_step: 147, lr: 0.001000, loss: 2.592569, loss_shrink_maps: 1.536291, loss_threshold_maps: 0.783840, loss_binary_maps: 0.285392, avg_reader_cost: 1.56364 s, avg_batch_cost: 1.81345 s, avg_samples: 12.5, ips: 6.89293 samples/s, eta: 0:18:41
[2024/08/01 20:44:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:44:56] ppocr INFO: epoch: [50/100], global_step: 150, lr: 0.001000, loss: 2.566654, loss_shrink_maps: 1.516177, loss_threshold_maps: 0.778304, loss_binary_maps: 0.284495, avg_reader_cost: 1.54188 s, avg_batch_cost: 1.80278 s, avg_samples: 12.5, ips: 6.93375 samples/s, eta: 0:18:15
[2024/08/01 20:44:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:45:04] ppocr INFO: epoch: [51/100], global_step: 153, lr: 0.001000, loss: 2.569175, loss_shrink_maps: 1.505052, loss_threshold_maps: 0.778945, loss_binary_maps: 0.281441, avg_reader_cost: 1.55684 s, avg_batch_cost: 1.80260 s, avg_samples: 12.5, ips: 6.93443 samples/s, eta: 0:17:50
[2024/08/01 20:45:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:45:11] ppocr INFO: epoch: [52/100], global_step: 156, lr: 0.001000, loss: 2.569175, loss_shrink_maps: 1.505052, loss_threshold_maps: 0.779307, loss_binary_maps: 0.281441, avg_reader_cost: 1.54383 s, avg_batch_cost: 1.83553 s, avg_samples: 12.5, ips: 6.81004 samples/s, eta: 0:17:25
[2024/08/01 20:45:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:45:18] ppocr INFO: epoch: [53/100], global_step: 159, lr: 0.001000, loss: 2.566143, loss_shrink_maps: 1.499647, loss_threshold_maps: 0.788902, loss_binary_maps: 0.278595, avg_reader_cost: 1.52118 s, avg_batch_cost: 1.76964 s, avg_samples: 12.5, ips: 7.06359 samples/s, eta: 0:16:59
[2024/08/01 20:45:19] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:45:24] ppocr INFO: epoch: [54/100], global_step: 160, lr: 0.001000, loss: 2.566143, loss_shrink_maps: 1.499647, loss_threshold_maps: 0.788902, loss_binary_maps: 0.278595, avg_reader_cost: 0.40304 s, avg_batch_cost: 0.52002 s, avg_samples: 4.8, ips: 9.23037 samples/s, eta: 0:16:50
[2024/08/01 20:45:26] ppocr INFO: epoch: [54/100], global_step: 162, lr: 0.001000, loss: 2.566143, loss_shrink_maps: 1.499647, loss_threshold_maps: 0.786143, loss_binary_maps: 0.278595, avg_reader_cost: 1.13790 s, avg_batch_cost: 1.29345 s, avg_samples: 7.7, ips: 5.95306 samples/s, eta: 0:16:34
[2024/08/01 20:45:27] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:45:33] ppocr INFO: epoch: [55/100], global_step: 165, lr: 0.001000, loss: 2.571414, loss_shrink_maps: 1.505488, loss_threshold_maps: 0.789632, loss_binary_maps: 0.281441, avg_reader_cost: 1.55802 s, avg_batch_cost: 1.81638 s, avg_samples: 12.5, ips: 6.88183 samples/s, eta: 0:16:10
[2024/08/01 20:45:34] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:45:41] ppocr INFO: epoch: [56/100], global_step: 168, lr: 0.001000, loss: 2.575551, loss_shrink_maps: 1.505488, loss_threshold_maps: 0.791204, loss_binary_maps: 0.284019, avg_reader_cost: 1.57602 s, avg_batch_cost: 1.88392 s, avg_samples: 12.5, ips: 6.63512 samples/s, eta: 0:15:46
[2024/08/01 20:45:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:45:48] ppocr INFO: epoch: [57/100], global_step: 170, lr: 0.001000, loss: 2.597019, loss_shrink_maps: 1.519064, loss_threshold_maps: 0.794226, loss_binary_maps: 0.284019, avg_reader_cost: 0.97628 s, avg_batch_cost: 1.18943 s, avg_samples: 9.6, ips: 8.07106 samples/s, eta: 0:15:30
[2024/08/01 20:45:48] ppocr INFO: epoch: [57/100], global_step: 171, lr: 0.001000, loss: 2.664136, loss_shrink_maps: 1.574778, loss_threshold_maps: 0.793856, loss_binary_maps: 0.290017, avg_reader_cost: 0.64351 s, avg_batch_cost: 0.70215 s, avg_samples: 2.9, ips: 4.13016 samples/s, eta: 0:15:23
[2024/08/01 20:45:49] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:45:56] ppocr INFO: epoch: [58/100], global_step: 174, lr: 0.001000, loss: 2.849042, loss_shrink_maps: 1.687109, loss_threshold_maps: 0.799458, loss_binary_maps: 0.310994, avg_reader_cost: 1.56601 s, avg_batch_cost: 1.85099 s, avg_samples: 12.5, ips: 6.75315 samples/s, eta: 0:14:59
[2024/08/01 20:45:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:46:03] ppocr INFO: epoch: [59/100], global_step: 177, lr: 0.001000, loss: 2.752444, loss_shrink_maps: 1.647073, loss_threshold_maps: 0.798242, loss_binary_maps: 0.309962, avg_reader_cost: 1.56931 s, avg_batch_cost: 1.81561 s, avg_samples: 12.5, ips: 6.88475 samples/s, eta: 0:14:35
[2024/08/01 20:46:04] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:46:11] ppocr INFO: epoch: [60/100], global_step: 180, lr: 0.001000, loss: 2.727903, loss_shrink_maps: 1.626835, loss_threshold_maps: 0.797147, loss_binary_maps: 0.305596, avg_reader_cost: 1.57890 s, avg_batch_cost: 1.82352 s, avg_samples: 12.5, ips: 6.85487 samples/s, eta: 0:14:12

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:51,  9.71it/s]
eval model::   1%|          | 3/500 [00:00<00:34, 14.41it/s]
eval model::   1%|          | 6/500 [00:00<00:24, 19.96it/s]
eval model::   2%|▏         | 8/500 [00:00<00:26, 18.76it/s]
eval model::   2%|▏         | 11/500 [00:00<00:24, 19.99it/s]
eval model::   3%|▎         | 13/500 [00:00<00:24, 19.98it/s]
eval model::   3%|▎         | 15/500 [00:00<00:24, 19.78it/s]
eval model::   4%|▍         | 19/500 [00:00<00:22, 21.22it/s]
eval model::   4%|▍         | 22/500 [00:01<00:22, 21.44it/s]
eval model::   5%|▌         | 25/500 [00:01<00:21, 21.92it/s]
eval model::   6%|▌         | 28/500 [00:01<00:22, 20.83it/s]
eval model::   6%|▌         | 31/500 [00:01<00:24, 19.08it/s]
eval model::   7%|▋         | 34/500 [00:01<00:24, 19.07it/s]
eval model::   7%|▋         | 37/500 [00:01<00:22, 20.75it/s]
eval model::   8%|▊         | 40/500 [00:02<00:23, 19.66it/s]
eval model::   9%|▊         | 43/500 [00:02<00:22, 20.10it/s]
eval model::   9%|▉         | 46/500 [00:02<00:23, 19.26it/s]
eval model::  10%|█         | 50/500 [00:02<00:20, 21.74it/s]
eval model::  11%|█         | 53/500 [00:02<00:21, 21.11it/s]
eval model::  11%|█         | 56/500 [00:02<00:21, 20.84it/s]
eval model::  12%|█▏        | 59/500 [00:02<00:20, 21.26it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:22, 19.29it/s]
eval model::  13%|█▎        | 64/500 [00:03<00:23, 18.62it/s]
eval model::  14%|█▎        | 68/500 [00:03<00:19, 22.05it/s]
eval model::  14%|█▍        | 71/500 [00:03<00:19, 21.50it/s]
eval model::  15%|█▍        | 74/500 [00:03<00:20, 20.69it/s]
eval model::  15%|█▌        | 77/500 [00:03<00:20, 20.15it/s]
eval model::  16%|█▌        | 80/500 [00:03<00:18, 22.18it/s]
eval model::  17%|█▋        | 83/500 [00:04<00:19, 21.25it/s]
eval model::  17%|█▋        | 86/500 [00:04<00:19, 20.94it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:20, 20.33it/s]
eval model::  18%|█▊        | 92/500 [00:04<00:20, 19.90it/s]
eval model::  19%|█▉        | 95/500 [00:04<00:20, 20.05it/s]
eval model::  20%|█▉        | 98/500 [00:04<00:19, 20.92it/s]
eval model::  20%|██        | 101/500 [00:04<00:20, 19.54it/s]
eval model::  21%|██        | 104/500 [00:05<00:18, 21.37it/s]
eval model::  21%|██▏       | 107/500 [00:05<00:18, 21.70it/s]
eval model::  22%|██▏       | 110/500 [00:05<00:17, 21.72it/s]
eval model::  23%|██▎       | 113/500 [00:05<00:17, 21.88it/s]
eval model::  23%|██▎       | 116/500 [00:05<00:18, 20.86it/s]
eval model::  24%|██▍       | 119/500 [00:05<00:17, 21.17it/s]
eval model::  24%|██▍       | 122/500 [00:05<00:18, 20.06it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:18, 20.58it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:17, 21.37it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:18, 20.24it/s]
eval model::  27%|██▋       | 134/500 [00:06<00:17, 20.65it/s]
eval model::  27%|██▋       | 137/500 [00:06<00:18, 19.33it/s]
eval model::  28%|██▊       | 140/500 [00:06<00:18, 19.30it/s]
eval model::  29%|██▊       | 143/500 [00:07<00:17, 19.99it/s]
eval model::  29%|██▉       | 146/500 [00:07<00:17, 20.27it/s]
eval model::  30%|██▉       | 149/500 [00:07<00:17, 20.05it/s]
eval model::  30%|███       | 152/500 [00:07<00:18, 18.75it/s]
eval model::  31%|███       | 155/500 [00:07<00:16, 20.45it/s]
eval model::  32%|███▏      | 158/500 [00:07<00:15, 22.22it/s]
eval model::  32%|███▏      | 161/500 [00:07<00:15, 21.77it/s]
eval model::  33%|███▎      | 164/500 [00:07<00:15, 22.22it/s]
eval model::  33%|███▎      | 167/500 [00:08<00:15, 20.98it/s]
eval model::  34%|███▍      | 170/500 [00:08<00:16, 20.18it/s]
eval model::  35%|███▍      | 173/500 [00:08<00:16, 19.80it/s]
eval model::  35%|███▌      | 176/500 [00:08<00:17, 18.10it/s]
eval model::  36%|███▌      | 179/500 [00:08<00:17, 18.55it/s]
eval model::  36%|███▌      | 181/500 [00:08<00:18, 17.47it/s]
eval model::  37%|███▋      | 184/500 [00:09<00:15, 19.77it/s]
eval model::  37%|███▋      | 187/500 [00:09<00:15, 20.19it/s]
eval model::  38%|███▊      | 190/500 [00:09<00:16, 19.13it/s]
eval model::  39%|███▊      | 193/500 [00:09<00:15, 19.52it/s]
eval model::  39%|███▉      | 195/500 [00:09<00:17, 17.82it/s]
eval model::  39%|███▉      | 197/500 [00:09<00:16, 18.13it/s]
eval model::  40%|████      | 200/500 [00:09<00:14, 20.70it/s]
eval model::  41%|████      | 203/500 [00:10<00:14, 20.93it/s]
eval model::  41%|████      | 206/500 [00:10<00:21, 13.46it/s]
eval model::  42%|████▏     | 208/500 [00:10<00:20, 14.01it/s]
eval model::  42%|████▏     | 210/500 [00:10<00:19, 15.00it/s]
eval model::  43%|████▎     | 213/500 [00:10<00:16, 17.56it/s]
eval model::  43%|████▎     | 216/500 [00:11<00:18, 15.47it/s]
eval model::  44%|████▎     | 218/500 [00:11<00:18, 14.96it/s]
eval model::  44%|████▍     | 221/500 [00:11<00:16, 16.85it/s]
eval model::  45%|████▍     | 224/500 [00:11<00:14, 19.31it/s]
eval model::  45%|████▌     | 227/500 [00:11<00:13, 19.90it/s]
eval model::  46%|████▌     | 230/500 [00:11<00:12, 21.49it/s]
eval model::  47%|████▋     | 233/500 [00:11<00:11, 22.32it/s]
eval model::  47%|████▋     | 236/500 [00:11<00:11, 22.19it/s]
eval model::  48%|████▊     | 239/500 [00:12<00:11, 22.69it/s]
eval model::  48%|████▊     | 242/500 [00:12<00:12, 21.36it/s]
eval model::  49%|████▉     | 245/500 [00:12<00:11, 21.38it/s]
eval model::  50%|████▉     | 248/500 [00:12<00:11, 22.75it/s]
eval model::  50%|█████     | 251/500 [00:12<00:12, 19.86it/s]
eval model::  51%|█████     | 254/500 [00:12<00:11, 21.70it/s]
eval model::  51%|█████▏    | 257/500 [00:12<00:11, 21.79it/s]
eval model::  52%|█████▏    | 260/500 [00:12<00:10, 23.66it/s]
eval model::  53%|█████▎    | 263/500 [00:13<00:10, 22.55it/s]
eval model::  53%|█████▎    | 266/500 [00:13<00:11, 20.04it/s]
eval model::  54%|█████▍    | 269/500 [00:13<00:10, 21.66it/s]
eval model::  54%|█████▍    | 272/500 [00:13<00:10, 20.95it/s]
eval model::  55%|█████▌    | 275/500 [00:13<00:12, 18.72it/s]
eval model::  56%|█████▌    | 278/500 [00:13<00:11, 19.87it/s]
eval model::  56%|█████▌    | 281/500 [00:14<00:10, 20.24it/s]
eval model::  57%|█████▋    | 284/500 [00:14<00:10, 21.05it/s]
eval model::  57%|█████▋    | 287/500 [00:14<00:13, 15.96it/s]
eval model::  58%|█████▊    | 289/500 [00:14<00:12, 16.68it/s]
eval model::  58%|█████▊    | 292/500 [00:14<00:11, 18.90it/s]
eval model::  59%|█████▉    | 295/500 [00:14<00:11, 17.68it/s]
eval model::  60%|█████▉    | 298/500 [00:15<00:10, 19.75it/s]
eval model::  60%|██████    | 301/500 [00:15<00:10, 18.48it/s]
eval model::  61%|██████    | 304/500 [00:15<00:09, 19.83it/s]
eval model::  61%|██████▏   | 307/500 [00:15<00:09, 21.20it/s]
eval model::  62%|██████▏   | 310/500 [00:15<00:08, 21.84it/s]
eval model::  63%|██████▎   | 313/500 [00:15<00:08, 21.81it/s]
eval model::  63%|██████▎   | 316/500 [00:15<00:08, 21.59it/s]
eval model::  64%|██████▍   | 320/500 [00:15<00:07, 24.05it/s]
eval model::  65%|██████▍   | 323/500 [00:16<00:07, 23.17it/s]
eval model::  65%|██████▌   | 326/500 [00:16<00:07, 23.73it/s]
eval model::  66%|██████▌   | 329/500 [00:16<00:07, 21.68it/s]
eval model::  66%|██████▋   | 332/500 [00:16<00:07, 21.58it/s]
eval model::  67%|██████▋   | 335/500 [00:16<00:07, 21.99it/s]
eval model::  68%|██████▊   | 338/500 [00:16<00:08, 18.76it/s]
eval model::  68%|██████▊   | 340/500 [00:17<00:09, 16.24it/s]
eval model::  69%|██████▊   | 343/500 [00:17<00:08, 18.75it/s]
eval model::  69%|██████▉   | 346/500 [00:17<00:07, 20.05it/s]
eval model::  70%|██████▉   | 349/500 [00:17<00:07, 20.88it/s]
eval model::  70%|███████   | 352/500 [00:17<00:07, 20.43it/s]
eval model::  71%|███████   | 355/500 [00:17<00:06, 20.92it/s]
eval model::  72%|███████▏  | 358/500 [00:17<00:06, 20.57it/s]
eval model::  72%|███████▏  | 361/500 [00:18<00:06, 20.69it/s]
eval model::  73%|███████▎  | 364/500 [00:18<00:07, 18.95it/s]
eval model::  73%|███████▎  | 367/500 [00:18<00:07, 18.96it/s]
eval model::  74%|███████▍  | 370/500 [00:18<00:06, 19.69it/s]
eval model::  75%|███████▍  | 373/500 [00:18<00:06, 20.65it/s]
eval model::  75%|███████▌  | 376/500 [00:18<00:05, 22.30it/s]
eval model::  76%|███████▌  | 379/500 [00:18<00:05, 23.03it/s]
eval model::  76%|███████▋  | 382/500 [00:19<00:05, 21.32it/s]
eval model::  77%|███████▋  | 385/500 [00:19<00:05, 21.48it/s]
eval model::  78%|███████▊  | 388/500 [00:19<00:07, 14.28it/s]
eval model::  78%|███████▊  | 391/500 [00:19<00:06, 16.35it/s]
eval model::  79%|███████▉  | 394/500 [00:19<00:06, 17.65it/s]
eval model::  79%|███████▉  | 397/500 [00:19<00:05, 19.19it/s]
eval model::  80%|████████  | 400/500 [00:20<00:04, 20.28it/s]
eval model::  81%|████████  | 404/500 [00:20<00:04, 22.86it/s]
eval model::  81%|████████▏ | 407/500 [00:20<00:04, 22.59it/s]
eval model::  82%|████████▏ | 410/500 [00:20<00:03, 23.35it/s]
eval model::  83%|████████▎ | 413/500 [00:20<00:03, 22.45it/s]
eval model::  83%|████████▎ | 416/500 [00:20<00:03, 22.29it/s]
eval model::  84%|████████▍ | 419/500 [00:20<00:03, 21.75it/s]
eval model::  84%|████████▍ | 422/500 [00:21<00:04, 19.05it/s]
eval model::  85%|████████▍ | 424/500 [00:21<00:03, 19.19it/s]
eval model::  85%|████████▌ | 426/500 [00:21<00:04, 17.86it/s]
eval model::  86%|████████▌ | 429/500 [00:21<00:03, 18.95it/s]
eval model::  86%|████████▋ | 432/500 [00:21<00:03, 20.78it/s]
eval model::  87%|████████▋ | 435/500 [00:21<00:02, 22.87it/s]
eval model::  88%|████████▊ | 438/500 [00:21<00:02, 23.11it/s]
eval model::  88%|████████▊ | 441/500 [00:21<00:02, 21.66it/s]
eval model::  89%|████████▉ | 444/500 [00:22<00:02, 23.14it/s]
eval model::  89%|████████▉ | 447/500 [00:22<00:02, 22.29it/s]
eval model::  90%|█████████ | 450/500 [00:22<00:02, 21.28it/s]
eval model::  91%|█████████ | 453/500 [00:22<00:02, 22.11it/s]
eval model::  91%|█████████ | 456/500 [00:22<00:02, 20.94it/s]
eval model::  92%|█████████▏| 459/500 [00:22<00:01, 21.15it/s]
eval model::  92%|█████████▏| 462/500 [00:23<00:02, 18.46it/s]
eval model::  93%|█████████▎| 464/500 [00:23<00:01, 18.37it/s]
eval model::  93%|█████████▎| 466/500 [00:23<00:02, 16.82it/s]
eval model::  94%|█████████▍| 469/500 [00:23<00:01, 19.19it/s]
eval model::  94%|█████████▍| 472/500 [00:23<00:01, 19.56it/s]
eval model::  95%|█████████▌| 475/500 [00:23<00:01, 20.98it/s]
eval model::  96%|█████████▌| 478/500 [00:23<00:00, 22.08it/s]
eval model::  96%|█████████▌| 481/500 [00:23<00:00, 21.75it/s]
eval model::  97%|█████████▋| 484/500 [00:24<00:00, 22.42it/s]
eval model::  97%|█████████▋| 487/500 [00:24<00:00, 21.82it/s]
eval model::  98%|█████████▊| 490/500 [00:24<00:00, 21.24it/s]
eval model::  99%|█████████▊| 493/500 [00:24<00:00, 21.02it/s]
eval model::  99%|█████████▉| 496/500 [00:24<00:00, 20.48it/s]
eval model:: 100%|█████████▉| 499/500 [00:24<00:00, 22.58it/s]
eval model:: 100%|██████████| 500/500 [00:24<00:00, 20.17it/s]
[2024/08/01 20:46:36] ppocr INFO: cur metric, precision: 0.581670362158167, recall: 0.3789118921521425, hmean: 0.45889212827988335, fps: 43.358808284451044
[2024/08/01 20:46:36] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/08/01 20:46:36] ppocr INFO: best metric, hmean: 0.45889212827988335, precision: 0.581670362158167, recall: 0.3789118921521425, fps: 43.358808284451044, best_epoch: 60
[2024/08/01 20:46:36] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:46:44] ppocr INFO: epoch: [61/100], global_step: 183, lr: 0.001000, loss: 2.727903, loss_shrink_maps: 1.626835, loss_threshold_maps: 0.797147, loss_binary_maps: 0.305596, avg_reader_cost: 1.76529 s, avg_batch_cost: 2.11084 s, avg_samples: 12.5, ips: 5.92182 samples/s, eta: 0:13:51
[2024/08/01 20:46:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:46:51] ppocr INFO: epoch: [62/100], global_step: 186, lr: 0.001000, loss: 2.653604, loss_shrink_maps: 1.587689, loss_threshold_maps: 0.791640, loss_binary_maps: 0.295319, avg_reader_cost: 1.61684 s, avg_batch_cost: 1.86155 s, avg_samples: 12.5, ips: 6.71484 samples/s, eta: 0:13:28
[2024/08/01 20:46:52] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:46:59] ppocr INFO: epoch: [63/100], global_step: 189, lr: 0.001000, loss: 2.604734, loss_shrink_maps: 1.534816, loss_threshold_maps: 0.783087, loss_binary_maps: 0.292783, avg_reader_cost: 1.56857 s, avg_batch_cost: 1.81687 s, avg_samples: 12.5, ips: 6.87996 samples/s, eta: 0:13:05
[2024/08/01 20:47:00] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:47:05] ppocr INFO: epoch: [64/100], global_step: 190, lr: 0.001000, loss: 2.604734, loss_shrink_maps: 1.534816, loss_threshold_maps: 0.783087, loss_binary_maps: 0.292783, avg_reader_cost: 0.43771 s, avg_batch_cost: 0.52786 s, avg_samples: 4.8, ips: 9.09327 samples/s, eta: 0:12:56
[2024/08/01 20:47:07] ppocr INFO: epoch: [64/100], global_step: 192, lr: 0.001000, loss: 2.547395, loss_shrink_maps: 1.500137, loss_threshold_maps: 0.777121, loss_binary_maps: 0.283142, avg_reader_cost: 1.15394 s, avg_batch_cost: 1.30954 s, avg_samples: 7.7, ips: 5.87993 samples/s, eta: 0:12:42
[2024/08/01 20:47:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:47:14] ppocr INFO: epoch: [65/100], global_step: 195, lr: 0.001000, loss: 2.488178, loss_shrink_maps: 1.454525, loss_threshold_maps: 0.763219, loss_binary_maps: 0.272721, avg_reader_cost: 1.52187 s, avg_batch_cost: 1.76736 s, avg_samples: 12.5, ips: 7.07270 samples/s, eta: 0:12:19
[2024/08/01 20:47:15] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:47:21] ppocr INFO: epoch: [66/100], global_step: 198, lr: 0.001000, loss: 2.518005, loss_shrink_maps: 1.475866, loss_threshold_maps: 0.767357, loss_binary_maps: 0.280372, avg_reader_cost: 1.54674 s, avg_batch_cost: 1.79196 s, avg_samples: 12.5, ips: 6.97562 samples/s, eta: 0:11:56
[2024/08/01 20:47:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:47:28] ppocr INFO: epoch: [67/100], global_step: 200, lr: 0.001000, loss: 2.541465, loss_shrink_maps: 1.500137, loss_threshold_maps: 0.769918, loss_binary_maps: 0.285934, avg_reader_cost: 0.95519 s, avg_batch_cost: 1.14914 s, avg_samples: 9.6, ips: 8.35410 samples/s, eta: 0:11:41
[2024/08/01 20:47:29] ppocr INFO: epoch: [67/100], global_step: 201, lr: 0.001000, loss: 2.518005, loss_shrink_maps: 1.475866, loss_threshold_maps: 0.769918, loss_binary_maps: 0.280372, avg_reader_cost: 0.62362 s, avg_batch_cost: 0.68173 s, avg_samples: 2.9, ips: 4.25389 samples/s, eta: 0:11:33
[2024/08/01 20:47:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:47:37] ppocr INFO: epoch: [68/100], global_step: 204, lr: 0.001000, loss: 2.433255, loss_shrink_maps: 1.403903, loss_threshold_maps: 0.760605, loss_binary_maps: 0.264343, avg_reader_cost: 1.54981 s, avg_batch_cost: 1.84099 s, avg_samples: 12.5, ips: 6.78982 samples/s, eta: 0:11:11
[2024/08/01 20:47:37] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:47:45] ppocr INFO: epoch: [69/100], global_step: 207, lr: 0.001000, loss: 2.475808, loss_shrink_maps: 1.427868, loss_threshold_maps: 0.762031, loss_binary_maps: 0.268611, avg_reader_cost: 1.64020 s, avg_batch_cost: 1.94210 s, avg_samples: 12.5, ips: 6.43633 samples/s, eta: 0:10:50
[2024/08/01 20:47:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:47:52] ppocr INFO: epoch: [70/100], global_step: 210, lr: 0.001000, loss: 2.430012, loss_shrink_maps: 1.407200, loss_threshold_maps: 0.760605, loss_binary_maps: 0.268170, avg_reader_cost: 1.56204 s, avg_batch_cost: 1.82756 s, avg_samples: 12.5, ips: 6.83972 samples/s, eta: 0:10:27
[2024/08/01 20:47:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:48:00] ppocr INFO: epoch: [71/100], global_step: 213, lr: 0.001000, loss: 2.475808, loss_shrink_maps: 1.427868, loss_threshold_maps: 0.756791, loss_binary_maps: 0.270736, avg_reader_cost: 1.60055 s, avg_batch_cost: 1.86241 s, avg_samples: 12.5, ips: 6.71172 samples/s, eta: 0:10:06
[2024/08/01 20:48:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:48:07] ppocr INFO: epoch: [72/100], global_step: 216, lr: 0.001000, loss: 2.505378, loss_shrink_maps: 1.438713, loss_threshold_maps: 0.765093, loss_binary_maps: 0.275271, avg_reader_cost: 1.54199 s, avg_batch_cost: 1.78683 s, avg_samples: 12.5, ips: 6.99563 samples/s, eta: 0:09:43
[2024/08/01 20:48:08] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:48:15] ppocr INFO: epoch: [73/100], global_step: 219, lr: 0.001000, loss: 2.421255, loss_shrink_maps: 1.396981, loss_threshold_maps: 0.764118, loss_binary_maps: 0.268848, avg_reader_cost: 1.62814 s, avg_batch_cost: 1.95705 s, avg_samples: 12.5, ips: 6.38716 samples/s, eta: 0:09:22
[2024/08/01 20:48:16] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:48:21] ppocr INFO: epoch: [74/100], global_step: 220, lr: 0.001000, loss: 2.399778, loss_shrink_maps: 1.382538, loss_threshold_maps: 0.764118, loss_binary_maps: 0.264474, avg_reader_cost: 0.42929 s, avg_batch_cost: 0.53496 s, avg_samples: 4.8, ips: 8.97265 samples/s, eta: 0:09:15
[2024/08/01 20:48:23] ppocr INFO: epoch: [74/100], global_step: 222, lr: 0.001000, loss: 2.431408, loss_shrink_maps: 1.405608, loss_threshold_maps: 0.771490, loss_binary_maps: 0.269414, avg_reader_cost: 1.16761 s, avg_batch_cost: 1.32330 s, avg_samples: 7.7, ips: 5.81877 samples/s, eta: 0:09:00
[2024/08/01 20:48:24] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:48:30] ppocr INFO: epoch: [75/100], global_step: 225, lr: 0.001000, loss: 2.442910, loss_shrink_maps: 1.407722, loss_threshold_maps: 0.771490, loss_binary_maps: 0.270123, avg_reader_cost: 1.55600 s, avg_batch_cost: 1.81452 s, avg_samples: 12.5, ips: 6.88889 samples/s, eta: 0:08:39
[2024/08/01 20:48:31] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:48:38] ppocr INFO: epoch: [76/100], global_step: 228, lr: 0.001000, loss: 2.431408, loss_shrink_maps: 1.405608, loss_threshold_maps: 0.768721, loss_binary_maps: 0.269414, avg_reader_cost: 1.65663 s, avg_batch_cost: 1.91094 s, avg_samples: 12.5, ips: 6.54128 samples/s, eta: 0:08:17
[2024/08/01 20:48:39] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:48:45] ppocr INFO: epoch: [77/100], global_step: 230, lr: 0.001000, loss: 2.453468, loss_shrink_maps: 1.409376, loss_threshold_maps: 0.771676, loss_binary_maps: 0.272417, avg_reader_cost: 0.92286 s, avg_batch_cost: 1.10983 s, avg_samples: 9.6, ips: 8.64994 samples/s, eta: 0:08:03
[2024/08/01 20:48:45] ppocr INFO: epoch: [77/100], global_step: 231, lr: 0.001000, loss: 2.453468, loss_shrink_maps: 1.409376, loss_threshold_maps: 0.774981, loss_binary_maps: 0.272417, avg_reader_cost: 0.60426 s, avg_batch_cost: 0.66224 s, avg_samples: 2.9, ips: 4.37909 samples/s, eta: 0:07:56
[2024/08/01 20:48:46] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:48:53] ppocr INFO: epoch: [78/100], global_step: 234, lr: 0.001000, loss: 2.497799, loss_shrink_maps: 1.450939, loss_threshold_maps: 0.777236, loss_binary_maps: 0.280438, avg_reader_cost: 1.59808 s, avg_batch_cost: 1.84174 s, avg_samples: 12.5, ips: 6.78706 samples/s, eta: 0:07:34
[2024/08/01 20:48:54] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:49:01] ppocr INFO: epoch: [79/100], global_step: 237, lr: 0.001000, loss: 2.453468, loss_shrink_maps: 1.409376, loss_threshold_maps: 0.780754, loss_binary_maps: 0.273164, avg_reader_cost: 1.59169 s, avg_batch_cost: 1.84730 s, avg_samples: 12.5, ips: 6.76663 samples/s, eta: 0:07:13
[2024/08/01 20:49:02] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:49:08] ppocr INFO: epoch: [80/100], global_step: 240, lr: 0.001000, loss: 2.461310, loss_shrink_maps: 1.430295, loss_threshold_maps: 0.773340, loss_binary_maps: 0.278059, avg_reader_cost: 1.54411 s, avg_batch_cost: 1.81454 s, avg_samples: 12.5, ips: 6.88878 samples/s, eta: 0:06:52

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:50,  9.90it/s]
eval model::   1%|          | 4/500 [00:00<00:27, 18.35it/s]
eval model::   1%|▏         | 7/500 [00:00<00:24, 20.50it/s]
eval model::   2%|▏         | 9/500 [00:00<00:24, 20.08it/s]
eval model::   2%|▏         | 11/500 [00:00<00:25, 19.20it/s]
eval model::   3%|▎         | 14/500 [00:00<00:24, 19.47it/s]
eval model::   3%|▎         | 17/500 [00:00<00:23, 21.00it/s]
eval model::   4%|▍         | 20/500 [00:01<00:24, 19.30it/s]
eval model::   5%|▍         | 23/500 [00:01<00:22, 20.87it/s]
eval model::   5%|▌         | 26/500 [00:01<00:25, 18.30it/s]
eval model::   6%|▌         | 29/500 [00:01<00:24, 18.89it/s]
eval model::   6%|▌         | 31/500 [00:01<00:25, 18.40it/s]
eval model::   7%|▋         | 34/500 [00:01<00:25, 18.31it/s]
eval model::   7%|▋         | 37/500 [00:01<00:24, 18.95it/s]
eval model::   8%|▊         | 39/500 [00:02<00:27, 16.76it/s]
eval model::   8%|▊         | 42/500 [00:02<00:25, 18.24it/s]
eval model::   9%|▉         | 45/500 [00:02<00:24, 18.51it/s]
eval model::   9%|▉         | 47/500 [00:02<00:25, 17.78it/s]
eval model::  10%|█         | 50/500 [00:02<00:23, 19.19it/s]
eval model::  11%|█         | 53/500 [00:02<00:22, 19.72it/s]
eval model::  11%|█         | 55/500 [00:02<00:22, 19.49it/s]
eval model::  11%|█▏        | 57/500 [00:03<00:23, 18.94it/s]
eval model::  12%|█▏        | 60/500 [00:03<00:20, 21.06it/s]
eval model::  13%|█▎        | 63/500 [00:03<00:23, 18.69it/s]
eval model::  13%|█▎        | 66/500 [00:03<00:20, 21.05it/s]
eval model::  14%|█▍        | 69/500 [00:03<00:20, 21.38it/s]
eval model::  14%|█▍        | 72/500 [00:03<00:20, 21.11it/s]
eval model::  15%|█▌        | 75/500 [00:03<00:19, 21.55it/s]
eval model::  16%|█▌        | 78/500 [00:04<00:21, 19.45it/s]
eval model::  16%|█▌        | 81/500 [00:04<00:20, 20.09it/s]
eval model::  17%|█▋        | 84/500 [00:04<00:21, 19.57it/s]
eval model::  17%|█▋        | 87/500 [00:04<00:22, 18.49it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:22, 18.15it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:22, 17.82it/s]
eval model::  19%|█▉        | 94/500 [00:04<00:21, 19.04it/s]
eval model::  19%|█▉        | 97/500 [00:05<00:19, 21.01it/s]
eval model::  20%|██        | 100/500 [00:05<00:21, 18.97it/s]
eval model::  21%|██        | 103/500 [00:05<00:20, 19.50it/s]
eval model::  21%|██        | 106/500 [00:05<00:20, 19.62it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:20, 19.09it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:19, 19.46it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:19, 19.57it/s]
eval model::  23%|██▎       | 117/500 [00:06<00:20, 18.89it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:20, 18.14it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:19, 19.27it/s]
eval model::  25%|██▌       | 125/500 [00:06<00:20, 18.10it/s]
eval model::  26%|██▌       | 128/500 [00:06<00:18, 19.91it/s]
eval model::  26%|██▌       | 131/500 [00:06<00:18, 19.51it/s]
eval model::  27%|██▋       | 134/500 [00:06<00:17, 20.38it/s]
eval model::  27%|██▋       | 137/500 [00:07<00:19, 18.48it/s]
eval model::  28%|██▊       | 139/500 [00:07<00:19, 18.64it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:19, 18.34it/s]
eval model::  29%|██▊       | 143/500 [00:07<00:19, 18.51it/s]
eval model::  29%|██▉       | 145/500 [00:07<00:18, 18.74it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:20, 17.08it/s]
eval model::  30%|███       | 150/500 [00:07<00:18, 18.58it/s]
eval model::  30%|███       | 152/500 [00:07<00:19, 17.41it/s]
eval model::  31%|███       | 156/500 [00:08<00:16, 21.02it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:14, 23.14it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:17, 19.52it/s]
eval model::  33%|███▎      | 165/500 [00:08<00:17, 19.44it/s]
eval model::  34%|███▎      | 168/500 [00:08<00:17, 18.81it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:17, 18.88it/s]
eval model::  35%|███▍      | 173/500 [00:09<00:17, 18.98it/s]
eval model::  35%|███▌      | 175/500 [00:09<00:20, 15.87it/s]
eval model::  36%|███▌      | 178/500 [00:09<00:17, 18.33it/s]
eval model::  36%|███▌      | 180/500 [00:09<00:19, 16.27it/s]
eval model::  37%|███▋      | 183/500 [00:09<00:17, 18.16it/s]
eval model::  37%|███▋      | 186/500 [00:09<00:16, 18.96it/s]
eval model::  38%|███▊      | 188/500 [00:09<00:16, 19.15it/s]
eval model::  38%|███▊      | 191/500 [00:09<00:14, 20.60it/s]
eval model::  39%|███▉      | 194/500 [00:10<00:13, 22.10it/s]
eval model::  39%|███▉      | 197/500 [00:10<00:15, 19.91it/s]
eval model::  40%|████      | 200/500 [00:10<00:13, 22.03it/s]
eval model::  41%|████      | 203/500 [00:10<00:12, 23.51it/s]
eval model::  41%|████      | 206/500 [00:10<00:19, 14.85it/s]
eval model::  42%|████▏     | 208/500 [00:10<00:19, 14.76it/s]
eval model::  42%|████▏     | 210/500 [00:11<00:18, 15.42it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:16, 17.35it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:17, 16.35it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:18, 15.65it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:15, 17.62it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:16, 17.34it/s]
eval model::  45%|████▌     | 225/500 [00:11<00:14, 18.90it/s]
eval model::  46%|████▌     | 228/500 [00:12<00:13, 19.54it/s]
eval model::  46%|████▌     | 231/500 [00:12<00:12, 20.91it/s]
eval model::  47%|████▋     | 234/500 [00:12<00:13, 20.30it/s]
eval model::  47%|████▋     | 237/500 [00:12<00:12, 21.36it/s]
eval model::  48%|████▊     | 240/500 [00:12<00:11, 21.88it/s]
eval model::  49%|████▊     | 243/500 [00:12<00:12, 20.13it/s]
eval model::  49%|████▉     | 246/500 [00:12<00:11, 21.89it/s]
eval model::  50%|████▉     | 249/500 [00:13<00:12, 20.47it/s]
eval model::  50%|█████     | 252/500 [00:13<00:12, 20.36it/s]
eval model::  51%|█████     | 255/500 [00:13<00:11, 21.09it/s]
eval model::  52%|█████▏    | 258/500 [00:13<00:11, 21.44it/s]
eval model::  52%|█████▏    | 261/500 [00:13<00:12, 19.67it/s]
eval model::  53%|█████▎    | 264/500 [00:13<00:12, 18.37it/s]
eval model::  53%|█████▎    | 266/500 [00:13<00:12, 18.28it/s]
eval model::  54%|█████▍    | 269/500 [00:14<00:11, 19.84it/s]
eval model::  54%|█████▍    | 272/500 [00:14<00:11, 19.85it/s]
eval model::  55%|█████▌    | 275/500 [00:14<00:11, 19.54it/s]
eval model::  55%|█████▌    | 277/500 [00:14<00:11, 19.56it/s]
eval model::  56%|█████▌    | 279/500 [00:14<00:11, 18.97it/s]
eval model::  56%|█████▋    | 282/500 [00:14<00:10, 21.66it/s]
eval model::  57%|█████▋    | 285/500 [00:15<00:16, 13.36it/s]
eval model::  58%|█████▊    | 288/500 [00:15<00:13, 15.49it/s]
eval model::  58%|█████▊    | 291/500 [00:15<00:11, 17.69it/s]
eval model::  59%|█████▉    | 294/500 [00:15<00:11, 18.47it/s]
eval model::  59%|█████▉    | 297/500 [00:15<00:11, 17.81it/s]
eval model::  60%|██████    | 300/500 [00:15<00:11, 17.18it/s]
eval model::  60%|██████    | 302/500 [00:16<00:12, 16.10it/s]
eval model::  61%|██████    | 304/500 [00:16<00:11, 16.74it/s]
eval model::  61%|██████▏   | 307/500 [00:16<00:10, 19.00it/s]
eval model::  62%|██████▏   | 310/500 [00:16<00:09, 20.17it/s]
eval model::  63%|██████▎   | 313/500 [00:16<00:09, 20.74it/s]
eval model::  63%|██████▎   | 316/500 [00:16<00:09, 20.39it/s]
eval model::  64%|██████▍   | 319/500 [00:16<00:08, 20.32it/s]
eval model::  64%|██████▍   | 322/500 [00:16<00:08, 20.63it/s]
eval model::  65%|██████▌   | 325/500 [00:17<00:07, 22.64it/s]
eval model::  66%|██████▌   | 328/500 [00:17<00:08, 21.25it/s]
eval model::  66%|██████▌   | 331/500 [00:17<00:07, 21.38it/s]
eval model::  67%|██████▋   | 334/500 [00:17<00:07, 23.27it/s]
eval model::  67%|██████▋   | 337/500 [00:17<00:07, 22.46it/s]
eval model::  68%|██████▊   | 340/500 [00:17<00:08, 18.81it/s]
eval model::  69%|██████▊   | 343/500 [00:17<00:07, 20.05it/s]
eval model::  69%|██████▉   | 346/500 [00:18<00:07, 21.52it/s]
eval model::  70%|██████▉   | 349/500 [00:18<00:06, 23.47it/s]
eval model::  70%|███████   | 352/500 [00:18<00:06, 22.77it/s]
eval model::  71%|███████   | 355/500 [00:18<00:06, 21.88it/s]
eval model::  72%|███████▏  | 358/500 [00:18<00:06, 22.21it/s]
eval model::  72%|███████▏  | 361/500 [00:18<00:07, 18.95it/s]
eval model::  73%|███████▎  | 364/500 [00:18<00:07, 18.54it/s]
eval model::  73%|███████▎  | 366/500 [00:19<00:07, 18.82it/s]
eval model::  74%|███████▍  | 369/500 [00:19<00:06, 20.27it/s]
eval model::  74%|███████▍  | 372/500 [00:19<00:06, 18.85it/s]
eval model::  75%|███████▍  | 374/500 [00:19<00:06, 18.91it/s]
eval model::  75%|███████▌  | 376/500 [00:19<00:06, 17.76it/s]
eval model::  76%|███████▌  | 378/500 [00:19<00:06, 17.93it/s]
eval model::  76%|███████▌  | 380/500 [00:19<00:06, 17.45it/s]
eval model::  77%|███████▋  | 383/500 [00:19<00:05, 20.40it/s]
eval model::  77%|███████▋  | 386/500 [00:20<00:08, 13.04it/s]
eval model::  78%|███████▊  | 389/500 [00:20<00:07, 14.97it/s]
eval model::  78%|███████▊  | 392/500 [00:20<00:06, 16.52it/s]
eval model::  79%|███████▉  | 394/500 [00:20<00:06, 16.75it/s]
eval model::  79%|███████▉  | 396/500 [00:20<00:06, 17.24it/s]
eval model::  80%|███████▉  | 399/500 [00:20<00:05, 19.09it/s]
eval model::  80%|████████  | 402/500 [00:21<00:05, 18.52it/s]
eval model::  81%|████████  | 405/500 [00:21<00:04, 19.75it/s]
eval model::  82%|████████▏ | 408/500 [00:21<00:04, 21.03it/s]
eval model::  82%|████████▏ | 411/500 [00:21<00:04, 21.77it/s]
eval model::  83%|████████▎ | 414/500 [00:21<00:03, 22.95it/s]
eval model::  83%|████████▎ | 417/500 [00:21<00:03, 21.48it/s]
eval model::  84%|████████▍ | 420/500 [00:21<00:04, 18.74it/s]
eval model::  85%|████████▍ | 423/500 [00:22<00:03, 19.91it/s]
eval model::  85%|████████▌ | 426/500 [00:22<00:03, 18.62it/s]
eval model::  86%|████████▌ | 429/500 [00:22<00:03, 19.55it/s]
eval model::  86%|████████▋ | 432/500 [00:22<00:03, 18.90it/s]
eval model::  87%|████████▋ | 435/500 [00:22<00:03, 20.43it/s]
eval model::  88%|████████▊ | 438/500 [00:22<00:03, 20.34it/s]
eval model::  88%|████████▊ | 441/500 [00:23<00:02, 19.69it/s]
eval model::  89%|████████▉ | 444/500 [00:23<00:02, 21.43it/s]
eval model::  89%|████████▉ | 447/500 [00:23<00:02, 21.85it/s]
eval model::  90%|█████████ | 450/500 [00:23<00:02, 21.52it/s]
eval model::  91%|█████████ | 453/500 [00:23<00:02, 20.96it/s]
eval model::  91%|█████████ | 456/500 [00:23<00:02, 21.99it/s]
eval model::  92%|█████████▏| 459/500 [00:23<00:01, 21.61it/s]
eval model::  92%|█████████▏| 462/500 [00:24<00:01, 19.45it/s]
eval model::  93%|█████████▎| 465/500 [00:24<00:02, 17.15it/s]
eval model::  94%|█████████▎| 468/500 [00:24<00:01, 18.60it/s]
eval model::  94%|█████████▍| 471/500 [00:24<00:01, 19.72it/s]
eval model::  95%|█████████▍| 474/500 [00:24<00:01, 18.87it/s]
eval model::  95%|█████████▌| 477/500 [00:24<00:01, 20.40it/s]
eval model::  96%|█████████▌| 480/500 [00:24<00:00, 21.25it/s]
eval model::  97%|█████████▋| 483/500 [00:25<00:00, 22.28it/s]
eval model::  97%|█████████▋| 486/500 [00:25<00:00, 20.47it/s]
eval model::  98%|█████████▊| 489/500 [00:25<00:00, 20.38it/s]
eval model::  98%|█████████▊| 492/500 [00:25<00:00, 22.09it/s]
eval model::  99%|█████████▉| 495/500 [00:25<00:00, 22.78it/s]
eval model:: 100%|█████████▉| 498/500 [00:25<00:00, 23.45it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.38it/s]
[2024/08/01 20:49:34] ppocr INFO: cur metric, precision: 0.5636743215031316, recall: 0.38998555609051516, hmean: 0.4610130904951622, fps: 42.94456567617779
[2024/08/01 20:49:34] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/08/01 20:49:34] ppocr INFO: best metric, hmean: 0.4610130904951622, precision: 0.5636743215031316, recall: 0.38998555609051516, fps: 42.94456567617779, best_epoch: 80
[2024/08/01 20:49:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:49:41] ppocr INFO: epoch: [81/100], global_step: 243, lr: 0.001000, loss: 2.438268, loss_shrink_maps: 1.406485, loss_threshold_maps: 0.771731, loss_binary_maps: 0.273164, avg_reader_cost: 1.50712 s, avg_batch_cost: 1.75234 s, avg_samples: 12.5, ips: 7.13331 samples/s, eta: 0:06:31
[2024/08/01 20:49:42] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:49:49] ppocr INFO: epoch: [82/100], global_step: 246, lr: 0.001000, loss: 2.420612, loss_shrink_maps: 1.395546, loss_threshold_maps: 0.767611, loss_binary_maps: 0.269850, avg_reader_cost: 1.66567 s, avg_batch_cost: 1.95431 s, avg_samples: 12.5, ips: 6.39611 samples/s, eta: 0:06:10
[2024/08/01 20:49:50] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:49:56] ppocr INFO: epoch: [83/100], global_step: 249, lr: 0.001000, loss: 2.414640, loss_shrink_maps: 1.369166, loss_threshold_maps: 0.759276, loss_binary_maps: 0.265700, avg_reader_cost: 1.53040 s, avg_batch_cost: 1.77482 s, avg_samples: 12.5, ips: 7.04296 samples/s, eta: 0:05:49
[2024/08/01 20:49:57] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:50:03] ppocr INFO: epoch: [84/100], global_step: 250, lr: 0.001000, loss: 2.414640, loss_shrink_maps: 1.369166, loss_threshold_maps: 0.745490, loss_binary_maps: 0.265700, avg_reader_cost: 0.42916 s, avg_batch_cost: 0.52838 s, avg_samples: 4.8, ips: 9.08444 samples/s, eta: 0:05:41
[2024/08/01 20:50:04] ppocr INFO: epoch: [84/100], global_step: 252, lr: 0.001000, loss: 2.415588, loss_shrink_maps: 1.395546, loss_threshold_maps: 0.745490, loss_binary_maps: 0.269850, avg_reader_cost: 1.15417 s, avg_batch_cost: 1.30932 s, avg_samples: 7.7, ips: 5.88091 samples/s, eta: 0:05:28
[2024/08/01 20:50:05] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:50:12] ppocr INFO: epoch: [85/100], global_step: 255, lr: 0.001000, loss: 2.459939, loss_shrink_maps: 1.426752, loss_threshold_maps: 0.757676, loss_binary_maps: 0.276341, avg_reader_cost: 1.52448 s, avg_batch_cost: 1.77864 s, avg_samples: 12.5, ips: 7.02784 samples/s, eta: 0:05:07
[2024/08/01 20:50:12] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:50:19] ppocr INFO: epoch: [86/100], global_step: 258, lr: 0.001000, loss: 2.459939, loss_shrink_maps: 1.404818, loss_threshold_maps: 0.745490, loss_binary_maps: 0.272018, avg_reader_cost: 1.60046 s, avg_batch_cost: 1.87842 s, avg_samples: 12.5, ips: 6.65452 samples/s, eta: 0:04:46
[2024/08/01 20:50:20] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:50:26] ppocr INFO: epoch: [87/100], global_step: 260, lr: 0.001000, loss: 2.466542, loss_shrink_maps: 1.404818, loss_threshold_maps: 0.763679, loss_binary_maps: 0.272018, avg_reader_cost: 0.92273 s, avg_batch_cost: 1.11271 s, avg_samples: 9.6, ips: 8.62761 samples/s, eta: 0:04:32
[2024/08/01 20:50:27] ppocr INFO: epoch: [87/100], global_step: 261, lr: 0.001000, loss: 2.466542, loss_shrink_maps: 1.404818, loss_threshold_maps: 0.766895, loss_binary_maps: 0.272018, avg_reader_cost: 0.60545 s, avg_batch_cost: 0.66356 s, avg_samples: 2.9, ips: 4.37037 samples/s, eta: 0:04:25
[2024/08/01 20:50:28] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:50:34] ppocr INFO: epoch: [88/100], global_step: 264, lr: 0.001000, loss: 2.463130, loss_shrink_maps: 1.404818, loss_threshold_maps: 0.766895, loss_binary_maps: 0.272018, avg_reader_cost: 1.57404 s, avg_batch_cost: 1.82020 s, avg_samples: 12.5, ips: 6.86739 samples/s, eta: 0:04:04
[2024/08/01 20:50:35] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:50:42] ppocr INFO: epoch: [89/100], global_step: 267, lr: 0.001000, loss: 2.473382, loss_shrink_maps: 1.427150, loss_threshold_maps: 0.769132, loss_binary_maps: 0.276879, avg_reader_cost: 1.65844 s, avg_batch_cost: 1.90183 s, avg_samples: 12.5, ips: 6.57262 samples/s, eta: 0:03:44
[2024/08/01 20:50:43] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:50:50] ppocr INFO: epoch: [90/100], global_step: 270, lr: 0.001000, loss: 2.473382, loss_shrink_maps: 1.427150, loss_threshold_maps: 0.769132, loss_binary_maps: 0.276879, avg_reader_cost: 1.58836 s, avg_batch_cost: 1.85405 s, avg_samples: 12.5, ips: 6.74200 samples/s, eta: 0:03:23
[2024/08/01 20:50:51] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:50:58] ppocr INFO: epoch: [91/100], global_step: 273, lr: 0.001000, loss: 2.473382, loss_shrink_maps: 1.417273, loss_threshold_maps: 0.769132, loss_binary_maps: 0.273429, avg_reader_cost: 1.56582 s, avg_batch_cost: 1.81649 s, avg_samples: 12.5, ips: 6.88139 samples/s, eta: 0:03:03
[2024/08/01 20:50:59] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:51:05] ppocr INFO: epoch: [92/100], global_step: 276, lr: 0.001000, loss: 2.424851, loss_shrink_maps: 1.381032, loss_threshold_maps: 0.772215, loss_binary_maps: 0.267047, avg_reader_cost: 1.52217 s, avg_batch_cost: 1.77300 s, avg_samples: 12.5, ips: 7.05018 samples/s, eta: 0:02:42
[2024/08/01 20:51:06] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:51:13] ppocr INFO: epoch: [93/100], global_step: 279, lr: 0.001000, loss: 2.452345, loss_shrink_maps: 1.410766, loss_threshold_maps: 0.772215, loss_binary_maps: 0.271741, avg_reader_cost: 1.56874 s, avg_batch_cost: 1.84708 s, avg_samples: 12.5, ips: 6.76745 samples/s, eta: 0:02:22
[2024/08/01 20:51:14] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:51:20] ppocr INFO: epoch: [94/100], global_step: 280, lr: 0.001000, loss: 2.464357, loss_shrink_maps: 1.414756, loss_threshold_maps: 0.772215, loss_binary_maps: 0.273429, avg_reader_cost: 0.45853 s, avg_batch_cost: 0.57801 s, avg_samples: 4.8, ips: 8.30436 samples/s, eta: 0:02:15
[2024/08/01 20:51:21] ppocr INFO: epoch: [94/100], global_step: 282, lr: 0.001000, loss: 2.464357, loss_shrink_maps: 1.414756, loss_threshold_maps: 0.768259, loss_binary_maps: 0.273429, avg_reader_cost: 1.25570 s, avg_batch_cost: 1.41299 s, avg_samples: 7.7, ips: 5.44944 samples/s, eta: 0:02:01
[2024/08/01 20:51:22] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:51:29] ppocr INFO: epoch: [95/100], global_step: 285, lr: 0.001000, loss: 2.454833, loss_shrink_maps: 1.415065, loss_threshold_maps: 0.770599, loss_binary_maps: 0.273573, avg_reader_cost: 1.56922 s, avg_batch_cost: 1.84096 s, avg_samples: 12.5, ips: 6.78992 samples/s, eta: 0:01:41
[2024/08/01 20:51:30] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:51:37] ppocr INFO: epoch: [96/100], global_step: 288, lr: 0.001000, loss: 2.454833, loss_shrink_maps: 1.417728, loss_threshold_maps: 0.770599, loss_binary_maps: 0.275876, avg_reader_cost: 1.57027 s, avg_batch_cost: 1.82948 s, avg_samples: 12.5, ips: 6.83254 samples/s, eta: 0:01:20
[2024/08/01 20:51:38] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:51:44] ppocr INFO: epoch: [97/100], global_step: 290, lr: 0.001000, loss: 2.427815, loss_shrink_maps: 1.388478, loss_threshold_maps: 0.775569, loss_binary_maps: 0.269373, avg_reader_cost: 0.96548 s, avg_batch_cost: 1.18847 s, avg_samples: 9.6, ips: 8.07763 samples/s, eta: 0:01:07
[2024/08/01 20:51:44] ppocr INFO: epoch: [97/100], global_step: 291, lr: 0.001000, loss: 2.388184, loss_shrink_maps: 1.340367, loss_threshold_maps: 0.776688, loss_binary_maps: 0.260988, avg_reader_cost: 0.64337 s, avg_batch_cost: 0.70148 s, avg_samples: 2.9, ips: 4.13409 samples/s, eta: 0:01:00
[2024/08/01 20:51:45] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:51:52] ppocr INFO: epoch: [98/100], global_step: 294, lr: 0.001000, loss: 2.356419, loss_shrink_maps: 1.305153, loss_threshold_maps: 0.762152, loss_binary_maps: 0.253402, avg_reader_cost: 1.54520 s, avg_batch_cost: 1.80006 s, avg_samples: 12.5, ips: 6.94423 samples/s, eta: 0:00:40
[2024/08/01 20:51:53] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:51:59] ppocr INFO: epoch: [99/100], global_step: 297, lr: 0.001000, loss: 2.326334, loss_shrink_maps: 1.302818, loss_threshold_maps: 0.753306, loss_binary_maps: 0.253402, avg_reader_cost: 1.53852 s, avg_batch_cost: 1.79637 s, avg_samples: 12.5, ips: 6.95846 samples/s, eta: 0:00:20
[2024/08/01 20:52:01] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:52:07] ppocr INFO: epoch: [100/100], global_step: 300, lr: 0.001000, loss: 2.273604, loss_shrink_maps: 1.267670, loss_threshold_maps: 0.744179, loss_binary_maps: 0.246552, avg_reader_cost: 1.54928 s, avg_batch_cost: 1.81224 s, avg_samples: 12.5, ips: 6.89753 samples/s, eta: 0:00:00

eval model::   0%|          | 0/500 [00:00<?, ?it/s]
eval model::   0%|          | 1/500 [00:00<00:53,  9.36it/s]
eval model::   1%|          | 3/500 [00:00<00:32, 15.25it/s]
eval model::   1%|          | 6/500 [00:00<00:27, 18.05it/s]
eval model::   2%|▏         | 8/500 [00:00<00:28, 17.55it/s]
eval model::   2%|▏         | 11/500 [00:00<00:26, 18.64it/s]
eval model::   3%|▎         | 14/500 [00:00<00:24, 20.18it/s]
eval model::   3%|▎         | 17/500 [00:00<00:22, 21.17it/s]
eval model::   4%|▍         | 20/500 [00:01<00:25, 18.46it/s]
eval model::   5%|▍         | 23/500 [00:01<00:23, 20.72it/s]
eval model::   5%|▌         | 26/500 [00:01<00:23, 19.95it/s]
eval model::   6%|▌         | 29/500 [00:01<00:23, 20.34it/s]
eval model::   6%|▋         | 32/500 [00:01<00:23, 19.91it/s]
eval model::   7%|▋         | 35/500 [00:01<00:24, 18.81it/s]
eval model::   8%|▊         | 38/500 [00:01<00:23, 20.01it/s]
eval model::   8%|▊         | 41/500 [00:02<00:23, 19.83it/s]
eval model::   9%|▉         | 44/500 [00:02<00:23, 19.48it/s]
eval model::   9%|▉         | 46/500 [00:02<00:24, 18.82it/s]
eval model::  10%|▉         | 49/500 [00:02<00:21, 21.04it/s]
eval model::  10%|█         | 52/500 [00:02<00:21, 21.08it/s]
eval model::  11%|█         | 55/500 [00:02<00:21, 20.56it/s]
eval model::  12%|█▏        | 58/500 [00:02<00:22, 19.66it/s]
eval model::  12%|█▏        | 60/500 [00:03<00:23, 19.00it/s]
eval model::  12%|█▏        | 62/500 [00:03<00:26, 16.66it/s]
eval model::  13%|█▎        | 65/500 [00:03<00:23, 18.83it/s]
eval model::  14%|█▎        | 68/500 [00:03<00:20, 20.94it/s]
eval model::  14%|█▍        | 71/500 [00:03<00:20, 21.24it/s]
eval model::  15%|█▍        | 74/500 [00:03<00:21, 19.94it/s]
eval model::  15%|█▌        | 77/500 [00:03<00:22, 18.47it/s]
eval model::  16%|█▌        | 80/500 [00:04<00:20, 20.00it/s]
eval model::  17%|█▋        | 83/500 [00:04<00:19, 20.91it/s]
eval model::  17%|█▋        | 86/500 [00:04<00:20, 19.83it/s]
eval model::  18%|█▊        | 89/500 [00:04<00:22, 18.14it/s]
eval model::  18%|█▊        | 91/500 [00:04<00:23, 17.54it/s]
eval model::  19%|█▊        | 93/500 [00:04<00:23, 16.97it/s]
eval model::  19%|█▉        | 96/500 [00:04<00:21, 18.98it/s]
eval model::  20%|█▉        | 99/500 [00:05<00:20, 19.58it/s]
eval model::  20%|██        | 101/500 [00:05<00:21, 18.16it/s]
eval model::  21%|██        | 104/500 [00:05<00:19, 19.98it/s]
eval model::  22%|██▏       | 108/500 [00:05<00:17, 21.80it/s]
eval model::  22%|██▏       | 111/500 [00:05<00:19, 20.37it/s]
eval model::  23%|██▎       | 114/500 [00:05<00:17, 22.48it/s]
eval model::  23%|██▎       | 117/500 [00:05<00:18, 20.61it/s]
eval model::  24%|██▍       | 120/500 [00:06<00:18, 20.13it/s]
eval model::  25%|██▍       | 123/500 [00:06<00:17, 21.83it/s]
eval model::  25%|██▌       | 126/500 [00:06<00:18, 20.73it/s]
eval model::  26%|██▌       | 129/500 [00:06<00:17, 21.55it/s]
eval model::  26%|██▋       | 132/500 [00:06<00:19, 18.97it/s]
eval model::  27%|██▋       | 135/500 [00:06<00:18, 19.47it/s]
eval model::  28%|██▊       | 138/500 [00:07<00:17, 20.35it/s]
eval model::  28%|██▊       | 141/500 [00:07<00:17, 20.35it/s]
eval model::  29%|██▉       | 144/500 [00:07<00:17, 20.87it/s]
eval model::  29%|██▉       | 147/500 [00:07<00:18, 19.48it/s]
eval model::  30%|███       | 150/500 [00:07<00:16, 21.05it/s]
eval model::  31%|███       | 153/500 [00:07<00:18, 19.21it/s]
eval model::  31%|███       | 156/500 [00:07<00:16, 20.95it/s]
eval model::  32%|███▏      | 159/500 [00:08<00:15, 22.19it/s]
eval model::  32%|███▏      | 162/500 [00:08<00:17, 18.80it/s]
eval model::  33%|███▎      | 165/500 [00:08<00:16, 19.88it/s]
eval model::  34%|███▎      | 168/500 [00:08<00:17, 19.09it/s]
eval model::  34%|███▍      | 171/500 [00:08<00:16, 19.62it/s]
eval model::  35%|███▍      | 174/500 [00:08<00:17, 18.75it/s]
eval model::  35%|███▌      | 176/500 [00:08<00:17, 18.94it/s]
eval model::  36%|███▌      | 179/500 [00:09<00:16, 19.79it/s]
eval model::  36%|███▋      | 182/500 [00:09<00:17, 18.55it/s]
eval model::  37%|███▋      | 185/500 [00:09<00:15, 21.00it/s]
eval model::  38%|███▊      | 188/500 [00:09<00:15, 19.68it/s]
eval model::  38%|███▊      | 191/500 [00:09<00:17, 17.76it/s]
eval model::  39%|███▉      | 194/500 [00:09<00:15, 19.90it/s]
eval model::  39%|███▉      | 197/500 [00:10<00:16, 18.12it/s]
eval model::  40%|████      | 200/500 [00:10<00:16, 18.70it/s]
eval model::  41%|████      | 203/500 [00:10<00:15, 19.45it/s]
eval model::  41%|████      | 206/500 [00:10<00:19, 14.90it/s]
eval model::  42%|████▏     | 208/500 [00:10<00:18, 15.41it/s]
eval model::  42%|████▏     | 210/500 [00:10<00:18, 15.31it/s]
eval model::  43%|████▎     | 213/500 [00:11<00:17, 16.27it/s]
eval model::  43%|████▎     | 215/500 [00:11<00:18, 15.56it/s]
eval model::  43%|████▎     | 217/500 [00:11<00:18, 14.96it/s]
eval model::  44%|████▍     | 220/500 [00:11<00:15, 17.57it/s]
eval model::  44%|████▍     | 222/500 [00:11<00:16, 16.58it/s]
eval model::  45%|████▌     | 226/500 [00:11<00:14, 18.51it/s]
eval model::  46%|████▌     | 229/500 [00:11<00:13, 20.51it/s]
eval model::  46%|████▋     | 232/500 [00:12<00:12, 21.54it/s]
eval model::  47%|████▋     | 235/500 [00:12<00:12, 21.55it/s]
eval model::  48%|████▊     | 238/500 [00:12<00:12, 21.38it/s]
eval model::  48%|████▊     | 241/500 [00:12<00:11, 21.67it/s]
eval model::  49%|████▉     | 244/500 [00:12<00:12, 20.40it/s]
eval model::  49%|████▉     | 247/500 [00:12<00:11, 21.09it/s]
eval model::  50%|█████     | 250/500 [00:12<00:13, 18.99it/s]
eval model::  51%|█████     | 253/500 [00:13<00:12, 20.56it/s]
eval model::  51%|█████     | 256/500 [00:13<00:11, 21.04it/s]
eval model::  52%|█████▏    | 259/500 [00:13<00:10, 22.41it/s]
eval model::  52%|█████▏    | 262/500 [00:13<00:10, 22.52it/s]
eval model::  53%|█████▎    | 265/500 [00:13<00:11, 19.66it/s]
eval model::  54%|█████▎    | 268/500 [00:13<00:11, 20.95it/s]
eval model::  54%|█████▍    | 271/500 [00:13<00:10, 21.36it/s]
eval model::  55%|█████▍    | 274/500 [00:14<00:10, 21.40it/s]
eval model::  55%|█████▌    | 277/500 [00:14<00:11, 20.12it/s]
eval model::  56%|█████▌    | 280/500 [00:14<00:10, 20.48it/s]
eval model::  57%|█████▋    | 283/500 [00:14<00:10, 21.34it/s]
eval model::  57%|█████▋    | 286/500 [00:14<00:14, 14.87it/s]
eval model::  58%|█████▊    | 289/500 [00:14<00:12, 16.49it/s]
eval model::  58%|█████▊    | 292/500 [00:15<00:11, 18.43it/s]
eval model::  59%|█████▉    | 295/500 [00:15<00:11, 17.41it/s]
eval model::  60%|█████▉    | 298/500 [00:15<00:10, 19.56it/s]
eval model::  60%|██████    | 301/500 [00:15<00:10, 19.48it/s]
eval model::  61%|██████    | 304/500 [00:15<00:09, 21.21it/s]
eval model::  61%|██████▏   | 307/500 [00:15<00:08, 22.61it/s]
eval model::  62%|██████▏   | 310/500 [00:15<00:08, 22.56it/s]
eval model::  63%|██████▎   | 313/500 [00:16<00:08, 21.93it/s]
eval model::  63%|██████▎   | 316/500 [00:16<00:09, 20.41it/s]
eval model::  64%|██████▍   | 319/500 [00:16<00:08, 20.40it/s]
eval model::  64%|██████▍   | 322/500 [00:16<00:09, 19.64it/s]
eval model::  65%|██████▌   | 325/500 [00:16<00:08, 21.45it/s]
eval model::  66%|██████▌   | 328/500 [00:16<00:08, 19.69it/s]
eval model::  66%|██████▌   | 331/500 [00:16<00:08, 19.48it/s]
eval model::  67%|██████▋   | 334/500 [00:17<00:07, 21.35it/s]
eval model::  67%|██████▋   | 337/500 [00:17<00:07, 21.00it/s]
eval model::  68%|██████▊   | 340/500 [00:17<00:09, 16.27it/s]
eval model::  69%|██████▊   | 343/500 [00:17<00:08, 18.69it/s]
eval model::  69%|██████▉   | 346/500 [00:17<00:07, 20.09it/s]
eval model::  70%|██████▉   | 349/500 [00:17<00:06, 21.72it/s]
eval model::  70%|███████   | 352/500 [00:17<00:06, 22.33it/s]
eval model::  71%|███████   | 355/500 [00:18<00:06, 21.75it/s]
eval model::  72%|███████▏  | 358/500 [00:18<00:06, 21.29it/s]
eval model::  72%|███████▏  | 361/500 [00:18<00:06, 20.11it/s]
eval model::  73%|███████▎  | 364/500 [00:18<00:07, 18.82it/s]
eval model::  73%|███████▎  | 367/500 [00:18<00:06, 19.41it/s]
eval model::  74%|███████▍  | 370/500 [00:18<00:06, 20.05it/s]
eval model::  75%|███████▍  | 373/500 [00:19<00:06, 20.53it/s]
eval model::  75%|███████▌  | 376/500 [00:19<00:05, 22.20it/s]
eval model::  76%|███████▌  | 379/500 [00:19<00:05, 20.24it/s]
eval model::  76%|███████▋  | 382/500 [00:19<00:05, 20.37it/s]
eval model::  77%|███████▋  | 385/500 [00:19<00:05, 19.60it/s]
eval model::  78%|███████▊  | 388/500 [00:19<00:07, 15.70it/s]
eval model::  78%|███████▊  | 391/500 [00:20<00:05, 18.18it/s]
eval model::  79%|███████▉  | 394/500 [00:20<00:05, 19.40it/s]
eval model::  79%|███████▉  | 397/500 [00:20<00:05, 20.14it/s]
eval model::  80%|████████  | 400/500 [00:20<00:04, 20.93it/s]
eval model::  81%|████████  | 403/500 [00:20<00:04, 21.31it/s]
eval model::  81%|████████  | 406/500 [00:20<00:04, 21.15it/s]
eval model::  82%|████████▏ | 409/500 [00:20<00:04, 22.16it/s]
eval model::  82%|████████▏ | 412/500 [00:20<00:04, 20.64it/s]
eval model::  83%|████████▎ | 415/500 [00:21<00:04, 19.84it/s]
eval model::  84%|████████▎ | 418/500 [00:21<00:04, 18.55it/s]
eval model::  84%|████████▍ | 420/500 [00:21<00:04, 17.11it/s]
eval model::  85%|████████▍ | 423/500 [00:21<00:04, 18.73it/s]
eval model::  85%|████████▌ | 425/500 [00:21<00:04, 17.51it/s]
eval model::  86%|████████▌ | 428/500 [00:21<00:03, 19.34it/s]
eval model::  86%|████████▌ | 431/500 [00:22<00:03, 19.97it/s]
eval model::  87%|████████▋ | 434/500 [00:22<00:03, 21.49it/s]
eval model::  87%|████████▋ | 437/500 [00:22<00:02, 22.49it/s]
eval model::  88%|████████▊ | 440/500 [00:22<00:02, 21.00it/s]
eval model::  89%|████████▉ | 444/500 [00:22<00:02, 22.56it/s]
eval model::  89%|████████▉ | 447/500 [00:22<00:02, 23.20it/s]
eval model::  90%|█████████ | 450/500 [00:22<00:02, 20.78it/s]
eval model::  91%|█████████ | 453/500 [00:23<00:02, 20.93it/s]
eval model::  91%|█████████ | 456/500 [00:23<00:02, 19.49it/s]
eval model::  92%|█████████▏| 458/500 [00:23<00:02, 18.24it/s]
eval model::  92%|█████████▏| 460/500 [00:23<00:02, 18.57it/s]
eval model::  92%|█████████▏| 462/500 [00:23<00:02, 17.77it/s]
eval model::  93%|█████████▎| 465/500 [00:23<00:02, 16.89it/s]
eval model::  94%|█████████▎| 468/500 [00:23<00:01, 18.61it/s]
eval model::  94%|█████████▍| 471/500 [00:24<00:01, 19.92it/s]
eval model::  95%|█████████▍| 474/500 [00:24<00:01, 19.25it/s]
eval model::  95%|█████████▌| 477/500 [00:24<00:01, 21.15it/s]
eval model::  96%|█████████▌| 480/500 [00:24<00:00, 23.08it/s]
eval model::  97%|█████████▋| 483/500 [00:24<00:00, 22.46it/s]
eval model::  97%|█████████▋| 486/500 [00:24<00:00, 20.27it/s]
eval model::  98%|█████████▊| 489/500 [00:24<00:00, 20.15it/s]
eval model::  98%|█████████▊| 492/500 [00:25<00:00, 19.40it/s]
eval model::  99%|█████████▉| 494/500 [00:25<00:00, 19.19it/s]
eval model::  99%|█████████▉| 496/500 [00:25<00:00, 19.32it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 23.12it/s]
eval model:: 100%|██████████| 500/500 [00:25<00:00, 19.72it/s]
[2024/08/01 20:52:33] ppocr INFO: cur metric, precision: 0.6058032554847842, recall: 0.4121328839672605, hmean: 0.4905444126074499, fps: 42.257599655773625
[2024/08/01 20:52:33] ppocr INFO: save best model is to ./output/db_mv3/best_accuracy
[2024/08/01 20:52:33] ppocr INFO: best metric, hmean: 0.4905444126074499, precision: 0.6058032554847842, recall: 0.4121328839672605, fps: 42.257599655773625, best_epoch: 100
[2024/08/01 20:52:33] ppocr INFO: save model in ./output/db_mv3/latest
[2024/08/01 20:52:33] ppocr INFO: best metric, hmean: 0.4905444126074499, precision: 0.6058032554847842, recall: 0.4121328839672605, fps: 42.257599655773625, best_epoch: 100
I0801 20:52:34.822872 174058 tcp_store.cc:289] receive shutdown event and so quit from MasterDaemon run loop
[2024/08/01 21:50:46] ppocr INFO: Architecture : 
[2024/08/01 21:50:46] ppocr INFO:     Backbone : 
[2024/08/01 21:50:46] ppocr INFO:         model_name : large
[2024/08/01 21:50:46] ppocr INFO:         name : MobileNetV3
[2024/08/01 21:50:46] ppocr INFO:         scale : 0.5
[2024/08/01 21:50:46] ppocr INFO:     Head : 
[2024/08/01 21:50:46] ppocr INFO:         k : 50
[2024/08/01 21:50:46] ppocr INFO:         name : DBHead
[2024/08/01 21:50:46] ppocr INFO:     Neck : 
[2024/08/01 21:50:46] ppocr INFO:         name : DBFPN
[2024/08/01 21:50:46] ppocr INFO:         out_channels : 256
[2024/08/01 21:50:46] ppocr INFO:     Transform : None
[2024/08/01 21:50:46] ppocr INFO:     algorithm : DB
[2024/08/01 21:50:46] ppocr INFO:     model_type : det
[2024/08/01 21:50:46] ppocr INFO: Eval : 
[2024/08/01 21:50:46] ppocr INFO:     dataset : 
[2024/08/01 21:50:46] ppocr INFO:         data_dir : /datasets/icdar2015/text_localization/
[2024/08/01 21:50:46] ppocr INFO:         label_file_list : ['/datasets/icdar2015/text_localization/test_icdar2015_label.txt']
[2024/08/01 21:50:46] ppocr INFO:         name : SimpleDataSet
[2024/08/01 21:50:46] ppocr INFO:         transforms : 
[2024/08/01 21:50:46] ppocr INFO:             DecodeImage : 
[2024/08/01 21:50:46] ppocr INFO:                 channel_first : False
[2024/08/01 21:50:46] ppocr INFO:                 img_mode : BGR
[2024/08/01 21:50:46] ppocr INFO:             DetLabelEncode : None
[2024/08/01 21:50:46] ppocr INFO:             DetResizeForTest : 
[2024/08/01 21:50:46] ppocr INFO:                 image_shape : [736, 1280]
[2024/08/01 21:50:46] ppocr INFO:             NormalizeImage : 
[2024/08/01 21:50:46] ppocr INFO:                 mean : [0.485, 0.456, 0.406]
[2024/08/01 21:50:46] ppocr INFO:                 order : hwc
[2024/08/01 21:50:46] ppocr INFO:                 scale : 1./255.
[2024/08/01 21:50:46] ppocr INFO:                 std : [0.229, 0.224, 0.225]
[2024/08/01 21:50:46] ppocr INFO:             ToCHWImage : None
[2024/08/01 21:50:46] ppocr INFO:             KeepKeys : 
[2024/08/01 21:50:46] ppocr INFO:                 keep_keys : ['image', 'shape', 'polys', 'ignore_tags']
[2024/08/01 21:50:46] ppocr INFO:     loader : 
[2024/08/01 21:50:46] ppocr INFO:         batch_size_per_card : 1
[2024/08/01 21:50:46] ppocr INFO:         drop_last : False
[2024/08/01 21:50:46] ppocr INFO:         num_workers : 0
[2024/08/01 21:50:46] ppocr INFO:         shuffle : False
[2024/08/01 21:50:46] ppocr INFO:         use_shared_memory : True
[2024/08/01 21:50:46] ppocr INFO: Global : 
[2024/08/01 21:50:46] ppocr INFO:     cal_metric_during_train : False
[2024/08/01 21:50:46] ppocr INFO:     checkpoints : None
[2024/08/01 21:50:46] ppocr INFO:     distributed : True
[2024/08/01 21:50:46] ppocr INFO:     epoch_num : 100
[2024/08/01 21:50:46] ppocr INFO:     eval_batch_step : [0, 60]
[2024/08/01 21:50:46] ppocr INFO:     infer_img : doc/imgs_en/img_10.jpg
[2024/08/01 21:50:46] ppocr INFO:     log_smooth_window : 20
[2024/08/01 21:50:46] ppocr INFO:     pretrained_model : ./pretrain_models/MobileNetV3_large_x0_5_pretrained
[2024/08/01 21:50:46] ppocr INFO:     print_batch_step : 10
[2024/08/01 21:50:46] ppocr INFO:     save_epoch_step : 1200
[2024/08/01 21:50:46] ppocr INFO:     save_inference_dir : None
[2024/08/01 21:50:46] ppocr INFO:     save_model_dir : ./output/db_mv3/
[2024/08/01 21:50:46] ppocr INFO:     save_res_path : ./output/det_db/predicts_db.txt
[2024/08/01 21:50:46] ppocr INFO:     use_gpu : True
[2024/08/01 21:50:46] ppocr INFO:     use_visualdl : False
[2024/08/01 21:50:46] ppocr INFO:     use_xpu : False
[2024/08/01 21:50:46] ppocr INFO: Loss : 
[2024/08/01 21:50:46] ppocr INFO:     alpha : 5
[2024/08/01 21:50:46] ppocr INFO:     balance_loss : True
[2024/08/01 21:50:46] ppocr INFO:     beta : 10
[2024/08/01 21:50:46] ppocr INFO:     main_loss_type : DiceLoss
[2024/08/01 21:50:46] ppocr INFO:     name : DBLoss
[2024/08/01 21:50:46] ppocr INFO:     ohem_ratio : 3
[2024/08/01 21:50:46] ppocr INFO: Metric : 
[2024/08/01 21:50:46] ppocr INFO:     main_indicator : hmean
[2024/08/01 21:50:46] ppocr INFO:     name : DetMetric
[2024/08/01 21:50:46] ppocr INFO: Optimizer : 
[2024/08/01 21:50:46] ppocr INFO:     beta1 : 0.9
[2024/08/01 21:50:46] ppocr INFO:     beta2 : 0.999
[2024/08/01 21:50:46] ppocr INFO:     lr : 
[2024/08/01 21:50:46] ppocr INFO:         learning_rate : 0.001
[2024/08/01 21:50:46] ppocr INFO:     name : Adam
[2024/08/01 21:50:46] ppocr INFO:     regularizer : 
[2024/08/01 21:50:46] ppocr INFO:         factor : 0
[2024/08/01 21:50:46] ppocr INFO:         name : L2
[2024/08/01 21:50:46] ppocr INFO: PostProcess : 
[2024/08/01 21:50:46] ppocr INFO:     box_thresh : 0.6
[2024/08/01 21:50:46] ppocr INFO:     max_candidates : 1000
[2024/08/01 21:50:46] ppocr INFO:     name : DBPostProcess
[2024/08/01 21:50:46] ppocr INFO:     thresh : 0.3
[2024/08/01 21:50:46] ppocr INFO:     unclip_ratio : 1.5
[2024/08/01 21:50:46] ppocr INFO: Train : 
[2024/08/01 21:50:46] ppocr INFO:     dataset : 
[2024/08/01 21:50:46] ppocr INFO:         data_dir : /datasets/icdar2015/text_localization/
[2024/08/01 21:50:46] ppocr INFO:         label_file_list : ['/datasets/icdar2015/text_localization/train_icdar2015_label.txt']
[2024/08/01 21:50:46] ppocr INFO:         name : SimpleDataSet
[2024/08/01 21:50:46] ppocr INFO:         ratio_list : [1.0]
[2024/08/01 21:50:46] ppocr INFO:         transforms : 
[2024/08/01 21:50:46] ppocr INFO:             DecodeImage : 
[2024/08/01 21:50:46] ppocr INFO:                 channel_first : False
[2024/08/01 21:50:46] ppocr INFO:                 img_mode : BGR
[2024/08/01 21:50:46] ppocr INFO:             DetLabelEncode : None
[2024/08/01 21:50:46] ppocr INFO:             IaaAugment : 
[2024/08/01 21:50:46] ppocr INFO:                 augmenter_args : 
[2024/08/01 21:50:46] ppocr INFO:                     args : 
[2024/08/01 21:50:46] ppocr INFO:                         p : 0.5
[2024/08/01 21:50:46] ppocr INFO:                     type : Fliplr
[2024/08/01 21:50:46] ppocr INFO:                     args : 
[2024/08/01 21:50:46] ppocr INFO:                         rotate : [-10, 10]
[2024/08/01 21:50:46] ppocr INFO:                     type : Affine
[2024/08/01 21:50:46] ppocr INFO:                     args : 
[2024/08/01 21:50:46] ppocr INFO:                         size : [0.5, 3]
[2024/08/01 21:50:46] ppocr INFO:                     type : Resize
[2024/08/01 21:50:46] ppocr INFO:             EastRandomCropData : 
[2024/08/01 21:50:46] ppocr INFO:                 keep_ratio : True
[2024/08/01 21:50:46] ppocr INFO:                 max_tries : 50
[2024/08/01 21:50:46] ppocr INFO:                 size : [640, 640]
[2024/08/01 21:50:46] ppocr INFO:             MakeBorderMap : 
[2024/08/01 21:50:46] ppocr INFO:                 shrink_ratio : 0.4
[2024/08/01 21:50:46] ppocr INFO:                 thresh_max : 0.7
[2024/08/01 21:50:46] ppocr INFO:                 thresh_min : 0.3
[2024/08/01 21:50:46] ppocr INFO:             MakeShrinkMap : 
[2024/08/01 21:50:46] ppocr INFO:                 min_text_size : 8
[2024/08/01 21:50:46] ppocr INFO:                 shrink_ratio : 0.4
[2024/08/01 21:50:46] ppocr INFO:             NormalizeImage : 
[2024/08/01 21:50:46] ppocr INFO:                 mean : [0.485, 0.456, 0.406]
[2024/08/01 21:50:46] ppocr INFO:                 order : hwc
[2024/08/01 21:50:46] ppocr INFO:                 scale : 1./255.
[2024/08/01 21:50:46] ppocr INFO:                 std : [0.229, 0.224, 0.225]
[2024/08/01 21:50:46] ppocr INFO:             ToCHWImage : None
[2024/08/01 21:50:46] ppocr INFO:             KeepKeys : 
[2024/08/01 21:50:46] ppocr INFO:                 keep_keys : ['image', 'threshold_map', 'threshold_mask', 'shrink_map', 'shrink_mask']
[2024/08/01 21:50:46] ppocr INFO:     loader : 
[2024/08/01 21:50:46] ppocr INFO:         batch_size_per_card : 48
[2024/08/01 21:50:46] ppocr INFO:         drop_last : False
[2024/08/01 21:50:46] ppocr INFO:         num_workers : 8
[2024/08/01 21:50:46] ppocr INFO:         shuffle : True
[2024/08/01 21:50:46] ppocr INFO:         use_shared_memory : True
[2024/08/01 21:50:46] ppocr INFO: profiler_options : None
[2024/08/01 21:50:46] ppocr INFO: train with paddle 2.5.2 and device Place(gpu:0)
======================= Modified FLAGS detected =======================
FLAGS(name='FLAGS_selected_gpus', current_value='0', default_value='')
FLAGS(name='FLAGS_cudnn_batchnorm_spatial_persistent', current_value=True, default_value=False)
=======================================================================
I0801 21:50:46.192216 227381 tcp_utils.cc:181] The server starts to listen on IP_ANY:55563
I0801 21:50:46.192469 227381 tcp_utils.cc:130] Successfully connected to 10.8.145.246:55563
I0801 21:50:49.315490 227381 process_group_nccl.cc:120] ProcessGroupNCCL pg_timeout_ 1800000
[2024/08/01 21:50:49] ppocr INFO: Initialize indexs of datasets:['/datasets/icdar2015/text_localization/train_icdar2015_label.txt']
[2024/08/01 21:50:49] ppocr INFO: Initialize indexs of datasets:['/datasets/icdar2015/text_localization/test_icdar2015_label.txt']
W0801 21:50:49.327540 227381 gpu_resources.cc:119] Please NOTE: device: 0, GPU Compute Capability: 90.2, Driver API Version: 50724.2, Runtime API Version: 50724.2
[2024/08/01 21:50:50] ppocr INFO: load pretrain successful from ./pretrain_models/MobileNetV3_large_x0_5_pretrained
[2024/08/01 21:50:50] ppocr INFO: train dataloader has 3 iters
[2024/08/01 21:50:50] ppocr INFO: valid dataloader has 500 iters
[2024/08/01 21:50:50] ppocr INFO: During the training process, after the 0th iteration, an evaluation is run every 60 iterations
[2024/08/01 21:51:13] ppocr INFO: epoch: [1/100], global_step: 3, lr: 0.001000, loss: 9.386772, loss_shrink_maps: 4.923290, loss_threshold_maps: 3.477082, loss_binary_maps: 0.985261, avg_reader_cost: 5.99922 s, avg_batch_cost: 6.59723 s, avg_samples: 12.5, ips: 1.89474 samples/s, eta: 1:48:51
[2024/08/01 21:51:14] ppocr INFO: save model in ./output/db_mv3/latest
root's avatar
root committed
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
RuntimeError: module compiled against ABI version 0x1000009 but this version of numpy is 0x2000000
RuntimeError: module compiled against ABI version 0x1000009 but this version of numpy is 0x2000000
Traceback (most recent call last):
  File "/root/paddle_dbnet/tools/train.py", line 30, in <module>
    from ppocr.data import build_dataloader
  File "/root/paddle_dbnet/ppocr/data/__init__.py", line 35, in <module>
    from ppocr.data.imaug import transform, create_operators
  File "/root/paddle_dbnet/ppocr/data/imaug/__init__.py", line 19, in <module>
    from .iaa_augment import IaaAugment
  File "/root/paddle_dbnet/ppocr/data/imaug/iaa_augment.py", line 24, in <module>
    import imgaug
  File "/root/anaconda3/envs/dbnet_test/lib/python3.10/site-packages/imgaug/__init__.py", line 7, in <module>
    from imgaug.imgaug import *  # pylint: disable=redefined-builtin
  File "/root/anaconda3/envs/dbnet_test/lib/python3.10/site-packages/imgaug/imgaug.py", line 18, in <module>
    import cv2
ImportError: numpy.core.multiarray failed to import
[2024/08/09 17:16:34] ppocr INFO: Architecture : 
[2024/08/09 17:16:34] ppocr INFO:     Backbone : 
[2024/08/09 17:16:34] ppocr INFO:         model_name : large
[2024/08/09 17:16:34] ppocr INFO:         name : MobileNetV3
[2024/08/09 17:16:34] ppocr INFO:         scale : 0.5
[2024/08/09 17:16:34] ppocr INFO:     Head : 
[2024/08/09 17:16:34] ppocr INFO:         k : 50
[2024/08/09 17:16:34] ppocr INFO:         name : DBHead
[2024/08/09 17:16:34] ppocr INFO:     Neck : 
[2024/08/09 17:16:34] ppocr INFO:         name : DBFPN
[2024/08/09 17:16:34] ppocr INFO:         out_channels : 256
[2024/08/09 17:16:34] ppocr INFO:     Transform : None
[2024/08/09 17:16:34] ppocr INFO:     algorithm : DB
[2024/08/09 17:16:34] ppocr INFO:     model_type : det
[2024/08/09 17:16:34] ppocr INFO: Eval : 
[2024/08/09 17:16:34] ppocr INFO:     dataset : 
[2024/08/09 17:16:34] ppocr INFO:         data_dir : /datasets/icdar2015/text_localization/
[2024/08/09 17:16:34] ppocr INFO:         label_file_list : ['/datasets/icdar2015/text_localization/test_icdar2015_label.txt']
[2024/08/09 17:16:34] ppocr INFO:         name : SimpleDataSet
[2024/08/09 17:16:34] ppocr INFO:         transforms : 
[2024/08/09 17:16:34] ppocr INFO:             DecodeImage : 
[2024/08/09 17:16:34] ppocr INFO:                 channel_first : False
[2024/08/09 17:16:34] ppocr INFO:                 img_mode : BGR
[2024/08/09 17:16:34] ppocr INFO:             DetLabelEncode : None
[2024/08/09 17:16:34] ppocr INFO:             DetResizeForTest : 
[2024/08/09 17:16:34] ppocr INFO:                 image_shape : [736, 1280]
[2024/08/09 17:16:34] ppocr INFO:             NormalizeImage : 
[2024/08/09 17:16:34] ppocr INFO:                 mean : [0.485, 0.456, 0.406]
[2024/08/09 17:16:34] ppocr INFO:                 order : hwc
[2024/08/09 17:16:34] ppocr INFO:                 scale : 1./255.
[2024/08/09 17:16:34] ppocr INFO:                 std : [0.229, 0.224, 0.225]
[2024/08/09 17:16:34] ppocr INFO:             ToCHWImage : None
[2024/08/09 17:16:34] ppocr INFO:             KeepKeys : 
[2024/08/09 17:16:34] ppocr INFO:                 keep_keys : ['image', 'shape', 'polys', 'ignore_tags']
[2024/08/09 17:16:34] ppocr INFO:     loader : 
[2024/08/09 17:16:34] ppocr INFO:         batch_size_per_card : 1
[2024/08/09 17:16:34] ppocr INFO:         drop_last : False
[2024/08/09 17:16:34] ppocr INFO:         num_workers : 0
[2024/08/09 17:16:34] ppocr INFO:         shuffle : False
[2024/08/09 17:16:34] ppocr INFO:         use_shared_memory : True
[2024/08/09 17:16:34] ppocr INFO: Global : 
[2024/08/09 17:16:34] ppocr INFO:     cal_metric_during_train : False
[2024/08/09 17:16:34] ppocr INFO:     checkpoints : None
[2024/08/09 17:16:34] ppocr INFO:     distributed : True
[2024/08/09 17:16:34] ppocr INFO:     epoch_num : 100
[2024/08/09 17:16:34] ppocr INFO:     eval_batch_step : [0, 60]
[2024/08/09 17:16:34] ppocr INFO:     infer_img : doc/imgs_en/img_10.jpg
[2024/08/09 17:16:34] ppocr INFO:     log_smooth_window : 20
[2024/08/09 17:16:34] ppocr INFO:     pretrained_model : ./pretrain_models/MobileNetV3_large_x0_5_pretrained
[2024/08/09 17:16:34] ppocr INFO:     print_batch_step : 10
[2024/08/09 17:16:34] ppocr INFO:     save_epoch_step : 1200
[2024/08/09 17:16:34] ppocr INFO:     save_inference_dir : None
[2024/08/09 17:16:34] ppocr INFO:     save_model_dir : ./output/db_mv3/
[2024/08/09 17:16:34] ppocr INFO:     save_res_path : ./output/det_db/predicts_db.txt
[2024/08/09 17:16:34] ppocr INFO:     use_gpu : True
[2024/08/09 17:16:34] ppocr INFO:     use_visualdl : False
[2024/08/09 17:16:34] ppocr INFO:     use_xpu : False
[2024/08/09 17:16:34] ppocr INFO: Loss : 
[2024/08/09 17:16:34] ppocr INFO:     alpha : 5
[2024/08/09 17:16:34] ppocr INFO:     balance_loss : True
[2024/08/09 17:16:34] ppocr INFO:     beta : 10
[2024/08/09 17:16:34] ppocr INFO:     main_loss_type : DiceLoss
[2024/08/09 17:16:34] ppocr INFO:     name : DBLoss
[2024/08/09 17:16:34] ppocr INFO:     ohem_ratio : 3
[2024/08/09 17:16:34] ppocr INFO: Metric : 
[2024/08/09 17:16:34] ppocr INFO:     main_indicator : hmean
[2024/08/09 17:16:34] ppocr INFO:     name : DetMetric
[2024/08/09 17:16:34] ppocr INFO: Optimizer : 
[2024/08/09 17:16:34] ppocr INFO:     beta1 : 0.9
[2024/08/09 17:16:34] ppocr INFO:     beta2 : 0.999
[2024/08/09 17:16:34] ppocr INFO:     lr : 
[2024/08/09 17:16:34] ppocr INFO:         learning_rate : 0.001
[2024/08/09 17:16:34] ppocr INFO:     name : Adam
[2024/08/09 17:16:34] ppocr INFO:     regularizer : 
[2024/08/09 17:16:34] ppocr INFO:         factor : 0
[2024/08/09 17:16:34] ppocr INFO:         name : L2
[2024/08/09 17:16:34] ppocr INFO: PostProcess : 
[2024/08/09 17:16:34] ppocr INFO:     box_thresh : 0.6
[2024/08/09 17:16:34] ppocr INFO:     max_candidates : 1000
[2024/08/09 17:16:34] ppocr INFO:     name : DBPostProcess
[2024/08/09 17:16:34] ppocr INFO:     thresh : 0.3
[2024/08/09 17:16:34] ppocr INFO:     unclip_ratio : 1.5
[2024/08/09 17:16:34] ppocr INFO: Train : 
[2024/08/09 17:16:34] ppocr INFO:     dataset : 
[2024/08/09 17:16:34] ppocr INFO:         data_dir : /datasets/icdar2015/text_localization/
[2024/08/09 17:16:34] ppocr INFO:         label_file_list : ['/datasets/icdar2015/text_localization/train_icdar2015_label.txt']
[2024/08/09 17:16:34] ppocr INFO:         name : SimpleDataSet
[2024/08/09 17:16:34] ppocr INFO:         ratio_list : [1.0]
[2024/08/09 17:16:34] ppocr INFO:         transforms : 
[2024/08/09 17:16:34] ppocr INFO:             DecodeImage : 
[2024/08/09 17:16:34] ppocr INFO:                 channel_first : False
[2024/08/09 17:16:34] ppocr INFO:                 img_mode : BGR
[2024/08/09 17:16:34] ppocr INFO:             DetLabelEncode : None
[2024/08/09 17:16:34] ppocr INFO:             IaaAugment : 
[2024/08/09 17:16:34] ppocr INFO:                 augmenter_args : 
[2024/08/09 17:16:34] ppocr INFO:                     args : 
[2024/08/09 17:16:34] ppocr INFO:                         p : 0.5
[2024/08/09 17:16:34] ppocr INFO:                     type : Fliplr
[2024/08/09 17:16:34] ppocr INFO:                     args : 
[2024/08/09 17:16:34] ppocr INFO:                         rotate : [-10, 10]
[2024/08/09 17:16:34] ppocr INFO:                     type : Affine
[2024/08/09 17:16:34] ppocr INFO:                     args : 
[2024/08/09 17:16:34] ppocr INFO:                         size : [0.5, 3]
[2024/08/09 17:16:34] ppocr INFO:                     type : Resize
[2024/08/09 17:16:34] ppocr INFO:             EastRandomCropData : 
[2024/08/09 17:16:34] ppocr INFO:                 keep_ratio : True
[2024/08/09 17:16:34] ppocr INFO:                 max_tries : 50
[2024/08/09 17:16:34] ppocr INFO:                 size : [640, 640]
[2024/08/09 17:16:34] ppocr INFO:             MakeBorderMap : 
[2024/08/09 17:16:34] ppocr INFO:                 shrink_ratio : 0.4
[2024/08/09 17:16:34] ppocr INFO:                 thresh_max : 0.7
[2024/08/09 17:16:34] ppocr INFO:                 thresh_min : 0.3
[2024/08/09 17:16:34] ppocr INFO:             MakeShrinkMap : 
[2024/08/09 17:16:34] ppocr INFO:                 min_text_size : 8
[2024/08/09 17:16:34] ppocr INFO:                 shrink_ratio : 0.4
[2024/08/09 17:16:34] ppocr INFO:             NormalizeImage : 
[2024/08/09 17:16:34] ppocr INFO:                 mean : [0.485, 0.456, 0.406]
[2024/08/09 17:16:34] ppocr INFO:                 order : hwc
[2024/08/09 17:16:34] ppocr INFO:                 scale : 1./255.
[2024/08/09 17:16:34] ppocr INFO:                 std : [0.229, 0.224, 0.225]
[2024/08/09 17:16:34] ppocr INFO:             ToCHWImage : None
[2024/08/09 17:16:34] ppocr INFO:             KeepKeys : 
[2024/08/09 17:16:34] ppocr INFO:                 keep_keys : ['image', 'threshold_map', 'threshold_mask', 'shrink_map', 'shrink_mask']
[2024/08/09 17:16:34] ppocr INFO:     loader : 
[2024/08/09 17:16:34] ppocr INFO:         batch_size_per_card : 48
[2024/08/09 17:16:34] ppocr INFO:         drop_last : False
[2024/08/09 17:16:34] ppocr INFO:         num_workers : 8
[2024/08/09 17:16:34] ppocr INFO:         shuffle : True
[2024/08/09 17:16:34] ppocr INFO:         use_shared_memory : True
[2024/08/09 17:16:34] ppocr INFO: profiler_options : None
[2024/08/09 17:16:34] ppocr INFO: train with paddle 2.5.2 and device Place(gpu:0)
======================= Modified FLAGS detected =======================
FLAGS(name='FLAGS_selected_gpus', current_value='0', default_value='')
FLAGS(name='FLAGS_cudnn_batchnorm_spatial_persistent', current_value=True, default_value=False)
=======================================================================
I0809 17:16:34.721122 262680 tcp_utils.cc:181] The server starts to listen on IP_ANY:40029
I0809 17:16:34.721213 262680 tcp_utils.cc:130] Successfully connected to 127.0.0.1:40029
I0809 17:16:37.839859 262680 process_group_nccl.cc:120] ProcessGroupNCCL pg_timeout_ 1800000
[2024/08/09 17:16:37] ppocr INFO: Initialize indexs of datasets:['/datasets/icdar2015/text_localization/train_icdar2015_label.txt']
Traceback (most recent call last):
  File "/root/paddle_dbnet/tools/train.py", line 198, in <module>
    main(config, device, logger, vdl_writer)
  File "/root/paddle_dbnet/tools/train.py", line 53, in main
    train_dataloader = build_dataloader(config, 'Train', device, logger)
  File "/root/paddle_dbnet/ppocr/data/__init__.py", line 65, in build_dataloader
    dataset = eval(module_name)(config, mode, logger, seed)
  File "/root/paddle_dbnet/ppocr/data/simple_dataset.py", line 47, in __init__
    self.data_lines = self.get_image_info_list(label_file_list, ratio_list)
  File "/root/paddle_dbnet/ppocr/data/simple_dataset.py", line 61, in get_image_info_list
    with open(file, "rb") as f:
FileNotFoundError: [Errno 2] No such file or directory: '/datasets/icdar2015/text_localization/train_icdar2015_label.txt'
I0809 17:16:38.108440 262914 tcp_store.cc:289] receive shutdown event and so quit from MasterDaemon run loop