predictors.py 5.04 KB
Newer Older
weishengyu's avatar
weishengyu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import cv2
import math
import paddle
weishengyu's avatar
weishengyu committed
18
import platform
weishengyu's avatar
weishengyu committed
19
20
21
22
23
24
25
26

from arch import style_text_rec
from utils.sys_funcs import check_gpu
from utils.logging import get_logger


class StyleTextRecPredictor(object):
    def __init__(self, config):
weishengyu's avatar
weishengyu committed
27
        self.logger = get_logger()
weishengyu's avatar
weishengyu committed
28
29
30
31
        algorithm = config['Predictor']['algorithm']
        assert algorithm in ["StyleTextRec"
                             ], "Generator {} not supported.".format(algorithm)
        use_gpu = config["Global"]['use_gpu']
weishengyu's avatar
weishengyu committed
32
33
        if use_gpu and paddle.is_compiled_with_cuda() and platform.system()=="Windows":
            self.logger.error("GPU mode on Windows is not supported.")
weishengyu's avatar
weishengyu committed
34
        check_gpu(use_gpu)
35
        paddle.set_device('gpu' if use_gpu else 'cpu')
weishengyu's avatar
weishengyu committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
        self.generator = getattr(style_text_rec, algorithm)(config)
        self.height = config["Global"]["image_height"]
        self.width = config["Global"]["image_width"]
        self.scale = config["Predictor"]["scale"]
        self.mean = config["Predictor"]["mean"]
        self.std = config["Predictor"]["std"]
        self.expand_result = config["Predictor"]["expand_result"]

    def predict(self, style_input, text_input):
        style_input = self.rep_style_input(style_input, text_input)
        tensor_style_input = self.preprocess(style_input)
        tensor_text_input = self.preprocess(text_input)
        style_text_result = self.generator.forward(tensor_style_input,
                                                   tensor_text_input)
        fake_fusion = self.postprocess(style_text_result["fake_fusion"])
        fake_text = self.postprocess(style_text_result["fake_text"])
        fake_sk = self.postprocess(style_text_result["fake_sk"])
        fake_bg = self.postprocess(style_text_result["fake_bg"])
        bbox = self.get_text_boundary(fake_text)
        if bbox:
            left, right, top, bottom = bbox
            fake_fusion = fake_fusion[top:bottom, left:right, :]
            fake_text = fake_text[top:bottom, left:right, :]
            fake_sk = fake_sk[top:bottom, left:right, :]
            fake_bg = fake_bg[top:bottom, left:right, :]

        # fake_fusion = self.crop_by_text(img_fake_fusion, img_fake_text)
        return {
            "fake_fusion": fake_fusion,
            "fake_text": fake_text,
            "fake_sk": fake_sk,
            "fake_bg": fake_bg,
        }

    def preprocess(self, img):
        img = (img.astype('float32') * self.scale - self.mean) / self.std
        img_height, img_width, channel = img.shape
        assert channel == 3, "Please use an rgb image."
        ratio = img_width / float(img_height)
        if math.ceil(self.height * ratio) > self.width:
            resized_w = self.width
        else:
            resized_w = int(math.ceil(self.height * ratio))
        img = cv2.resize(img, (resized_w, self.height))

        new_img = np.zeros([self.height, self.width, 3]).astype('float32')
        new_img[:, 0:resized_w, :] = img
        img = new_img.transpose((2, 0, 1))
        img = img[np.newaxis, :, :, :]
        return paddle.to_tensor(img)

    def postprocess(self, tensor):
        img = tensor.numpy()[0]
        img = img.transpose((1, 2, 0))
        img = (img * self.std + self.mean) / self.scale
        img = np.maximum(img, 0.0)
        img = np.minimum(img, 255.0)
        img = img.astype('uint8')
        return img

    def rep_style_input(self, style_input, text_input):
        rep_num = int(1.2 * (text_input.shape[1] / text_input.shape[0]) /
                      (style_input.shape[1] / style_input.shape[0])) + 1
        style_input = np.tile(style_input, reps=[1, rep_num, 1])
        max_width = int(self.width / self.height * style_input.shape[0])
        style_input = style_input[:, :max_width, :]
        return style_input

    def get_text_boundary(self, text_img):
        img_height = text_img.shape[0]
        img_width = text_img.shape[1]
        bounder = 3
        text_canny_img = cv2.Canny(text_img, 10, 20)
        edge_num_h = text_canny_img.sum(axis=0)
        no_zero_list_h = np.where(edge_num_h > 0)[0]
        edge_num_w = text_canny_img.sum(axis=1)
        no_zero_list_w = np.where(edge_num_w > 0)[0]
        if len(no_zero_list_h) == 0 or len(no_zero_list_w) == 0:
            return None
        left = max(no_zero_list_h[0] - bounder, 0)
        right = min(no_zero_list_h[-1] + bounder, img_width)
        top = max(no_zero_list_w[0] - bounder, 0)
        bottom = min(no_zero_list_w[-1] + bounder, img_height)
        return [left, right, top, bottom]