train.py 4.02 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys
LDOUBLEV's avatar
LDOUBLEV committed
21
22
23
__dir__ = os.path.dirname(__file__)
sys.path.append(__dir__)
sys.path.append(os.path.join(__dir__, '..'))
LDOUBLEV's avatar
LDOUBLEV committed
24
25
26
27
28
29
30
31
32
33


def set_paddle_flags(**kwargs):
    for key, value in kwargs.items():
        if os.environ.get(key, None) is None:
            os.environ[key] = str(value)


# NOTE(paddle-dev): All of these flags should be
# set before `import paddle`. Otherwise, it would
tink2123's avatar
tink2123 committed
34
# not take any effect.
LDOUBLEV's avatar
LDOUBLEV committed
35
36
37
38
set_paddle_flags(
    FLAGS_eager_delete_tensor_gb=0,  # enable GC to save memory
)

39
import tools.program as program
LDOUBLEV's avatar
LDOUBLEV committed
40
41
42
43
44
from paddle import fluid
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from ppocr.data.reader_main import reader_main
from ppocr.utils.save_load import init_model
lyl120117's avatar
lyl120117 committed
45
from paddle.fluid.contrib.model_stat import summary
LDOUBLEV's avatar
LDOUBLEV committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73


def main():
    train_build_outputs = program.build(
        config, train_program, startup_program, mode='train')
    train_loader = train_build_outputs[0]
    train_fetch_name_list = train_build_outputs[1]
    train_fetch_varname_list = train_build_outputs[2]
    train_opt_loss_name = train_build_outputs[3]

    eval_program = fluid.Program()
    eval_build_outputs = program.build(
        config, eval_program, startup_program, mode='eval')
    eval_fetch_name_list = eval_build_outputs[1]
    eval_fetch_varname_list = eval_build_outputs[2]
    eval_program = eval_program.clone(for_test=True)

    train_reader = reader_main(config=config, mode="train")
    train_loader.set_sample_list_generator(train_reader, places=place)

    eval_reader = reader_main(config=config, mode="eval")

    exe = fluid.Executor(place)
    exe.run(startup_program)

    # compile program for multi-devices
    train_compile_program = program.create_multi_devices_program(
        train_program, train_opt_loss_name)
lyl120117's avatar
lyl120117 committed
74
75
76

    # dump mode structure
    if config['Global']['debug']:
77
        if train_alg_type == 'rec' and 'attention' in config['Global']['loss_type']:
lyl120117's avatar
lyl120117 committed
78
79
80
81
            logger.warning('Does not suport dump attention...')
        else:
            summary(train_program)

LDOUBLEV's avatar
LDOUBLEV committed
82
83
84
85
86
87
88
89
90
91
92
93
94
    init_model(config, train_program, exe)

    train_info_dict = {'compile_program':train_compile_program,\
        'train_program':train_program,\
        'reader':train_loader,\
        'fetch_name_list':train_fetch_name_list,\
        'fetch_varname_list':train_fetch_varname_list}

    eval_info_dict = {'program':eval_program,\
        'reader':eval_reader,\
        'fetch_name_list':eval_fetch_name_list,\
        'fetch_varname_list':eval_fetch_varname_list}

shaohua.zhang's avatar
shaohua.zhang committed
95
    if train_alg_type == 'det':
LDOUBLEV's avatar
LDOUBLEV committed
96
97
98
99
100
        program.train_eval_det_run(config, exe, train_info_dict, eval_info_dict)
    else:
        program.train_eval_rec_run(config, exe, train_info_dict, eval_info_dict)


101
def test_reader():
littletomatodonkey's avatar
littletomatodonkey committed
102
    logger.info(config)
103
104
105
106
107
108
109
110
111
112
    train_reader = reader_main(config=config, mode="train")
    import time
    starttime = time.time()
    count = 0
    try:
        for data in train_reader():
            count += 1
            if count % 1 == 0:
                batch_time = time.time() - starttime
                starttime = time.time()
littletomatodonkey's avatar
littletomatodonkey committed
113
                logger.info("reader:", count, len(data), batch_time)
114
    except Exception as e:
LDOUBLEV's avatar
LDOUBLEV committed
115
116
        logger.info(e)
    logger.info("finish reader: {}, Success!".format(count))
117
118


LDOUBLEV's avatar
LDOUBLEV committed
119
if __name__ == '__main__':
shaohua.zhang's avatar
shaohua.zhang committed
120
    startup_program, train_program, place, config, train_alg_type = program.preprocess()
LDOUBLEV's avatar
LDOUBLEV committed
121
122
    main()
#     test_reader()