quickstart_en.md 10.2 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey committed
1

Leif's avatar
Leif committed
2
# PaddleOCR Quick Start
littletomatodonkey's avatar
littletomatodonkey committed
3

Leif's avatar
Leif committed
4
[PaddleOCR Quick Start](#paddleocr-quick-start)
littletomatodonkey's avatar
littletomatodonkey committed
5

Leif's avatar
Leif committed
6
+ [1. Install PaddleOCR Whl Package](#1-install-paddleocr-whl-package)
Leif's avatar
Leif committed
7
* [2. Easy-to-Use](#2-easy-to-use)
8
  + [2.1 Use by Command Line](#21-use-by-command-line)
Leif's avatar
Leif committed
9
10
    - [2.1.1 English and Chinese Model](#211-english-and-chinese-model)
    - [2.1.2 Multi-language Model](#212-multi-language-model)
Leif's avatar
Leif committed
11
    - [2.1.3 Layout Analysis](#213-layoutAnalysis)
Leif's avatar
Leif committed
12
13
  + [2.2 Use by Code](#22-use-by-code)
    - [2.2.1 Chinese & English Model and Multilingual Model](#221-chinese---english-model-and-multilingual-model)
Leif's avatar
Leif committed
14
    - [2.2.2 Layout Analysis](#222-layoutAnalysis)
littletomatodonkey's avatar
littletomatodonkey committed
15
16
17



Leif's avatar
Leif committed
18
<a name="1-install-paddleocr-whl-package"></a>
WenmuZhou's avatar
WenmuZhou committed
19

Leif's avatar
Leif committed
20
## 1. Install PaddleOCR Whl Package
Leif's avatar
Leif committed
21
22
23

```bash
pip install "paddleocr>=2.0.1" # Recommend to use version 2.0.1+
littletomatodonkey's avatar
littletomatodonkey committed
24
25
```

Leif's avatar
Leif committed
26
- **For windows users:** If you getting this error `OSError: [WinError 126] The specified module could not be found` when you install shapely on windows. Please try to download Shapely whl file [here](http://www.lfd.uci.edu/~gohlke/pythonlibs/#shapely).
Leif's avatar
Leif committed
27

Leif's avatar
Leif committed
28
  Reference: [Solve shapely installation on windows](https://stackoverflow.com/questions/44398265/install-shapely-oserror-winerror-126-the-specified-module-could-not-be-found)
Leif's avatar
Leif committed
29

Leif's avatar
Leif committed
30
- **For layout analysis users**, run the following command to install **Layout-Parser**
littletomatodonkey's avatar
littletomatodonkey committed
31

Leif's avatar
Leif committed
32
33
34
35
36
37
38
39
40
41
  ```bash
  pip3 install -U https://paddleocr.bj.bcebos.com/whl/layoutparser-0.0.0-py3-none-any.whl
  ```

<a name="2-easy-to-use"></a>

## 2. Easy-to-Use

<a name="21-use-by-command-line"></a>

42
### 2.1 Use by Command Line
Leif's avatar
Leif committed
43

Leif's avatar
Leif committed
44
PaddleOCR provides a series of test images, click [here](https://paddleocr.bj.bcebos.com/dygraph_v2.1/ppocr_img.zip) to download, and then switch to the corresponding directory in the terminal
Leif's avatar
Leif committed
45
46

```bash
Leif's avatar
Leif committed
47
cd /path/to/ppocr_img
littletomatodonkey's avatar
littletomatodonkey committed
48
```
Leif's avatar
Leif committed
49

Leif's avatar
Leif committed
50
If you do not use the provided test image, you can replace the following `--image_dir` parameter with the corresponding test image path
Leif's avatar
Leif committed
51

Leif's avatar
Leif committed
52
<a name="211-english-and-chinese-model"></a>
Leif's avatar
Leif committed
53

Leif's avatar
Leif committed
54
#### 2.1.1 Chinese and English Model
Leif's avatar
Leif committed
55

56
* Detection, direction classification and recognition: set the parameter`--use_gpu false` to disable the gpu device
Leif's avatar
Leif committed
57

Leif's avatar
Leif committed
58
  ```bash
59
  paddleocr --image_dir ./imgs_en/img_12.jpg --use_angle_cls true --lang en --use_gpu false
Leif's avatar
Leif committed
60
  ```
littletomatodonkey's avatar
littletomatodonkey committed
61

Leif's avatar
Leif committed
62
  Output will be a list, each item contains bounding box, text and recognition confidence
littletomatodonkey's avatar
littletomatodonkey committed
63

Leif's avatar
Leif committed
64
65
66
67
68
69
70
71
72
73
74
75
  ```bash
  [[[442.0, 173.0], [1169.0, 173.0], [1169.0, 225.0], [442.0, 225.0]], ['ACKNOWLEDGEMENTS', 0.99283075]]
  [[[393.0, 340.0], [1207.0, 342.0], [1207.0, 389.0], [393.0, 387.0]], ['We would like to thank all the designers and', 0.9357758]]
  [[[399.0, 398.0], [1204.0, 398.0], [1204.0, 433.0], [399.0, 433.0]], ['contributors whohave been involved in the', 0.9592447]]
  ......
  ```

* Only detection: set `--rec` to `false`

  ```bash
  paddleocr --image_dir ./imgs_en/img_12.jpg --rec false
  ```
Leif's avatar
Leif committed
76

Leif's avatar
Leif committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
  Output will be a list, each item only contains bounding box

  ```bash
  [[756.0, 812.0], [805.0, 812.0], [805.0, 830.0], [756.0, 830.0]]
  [[820.0, 803.0], [1085.0, 801.0], [1085.0, 836.0], [820.0, 838.0]]
  [[393.0, 801.0], [715.0, 805.0], [715.0, 839.0], [393.0, 836.0]]
  ......
  ```

* Only recognition: set `--det` to `false`

  ```bash
  paddleocr --image_dir ./imgs_words_en/word_10.png --det false --lang en
  ```

  Output will be a list, each item contains text and recognition confidence

  ```bash
  ['PAIN', 0.990372]
  ```

98
If you need to use the 2.0 model, please specify the parameter `--version PP-OCR`, paddleocr uses the 2.1 model by default(`--versioin PP-OCRv2`). More whl package usage can be found in [whl package](./whl_en.md)
Leif's avatar
Leif committed
99
<a name="212-multi-language-model"></a>
Leif's avatar
Leif committed
100
101
102

#### 2.1.2 Multi-language Model

Leif's avatar
Leif committed
103
Paddleocr currently supports 80 languages, which can be switched by modifying the `--lang` parameter.
Leif's avatar
Leif committed
104
105
106

``` bash
paddleocr --image_dir ./doc/imgs_en/254.jpg --lang=en
littletomatodonkey's avatar
littletomatodonkey committed
107
108
```

Leif's avatar
Leif committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
<div align="center">
    <img src="../imgs_en/254.jpg" width="300" height="600">
    <img src="../imgs_results/multi_lang/img_02.jpg" width="600" height="600">
</div>
The result is a list, each item contains a text box, text and recognition confidence

```text
[('PHO CAPITAL', 0.95723116), [[66.0, 50.0], [327.0, 44.0], [327.0, 76.0], [67.0, 82.0]]]
[('107 State Street', 0.96311164), [[72.0, 90.0], [451.0, 84.0], [452.0, 116.0], [73.0, 121.0]]]
[('Montpelier Vermont', 0.97389287), [[69.0, 132.0], [501.0, 126.0], [501.0, 158.0], [70.0, 164.0]]]
[('8022256183', 0.99810505), [[71.0, 175.0], [363.0, 170.0], [364.0, 202.0], [72.0, 207.0]]]
[('REG 07-24-201706:59 PM', 0.93537045), [[73.0, 299.0], [653.0, 281.0], [654.0, 318.0], [74.0, 336.0]]]
[('045555', 0.99346405), [[509.0, 331.0], [651.0, 325.0], [652.0, 356.0], [511.0, 362.0]]]
[('CT1', 0.9988654), [[535.0, 367.0], [654.0, 367.0], [654.0, 406.0], [535.0, 406.0]]]
......
```
littletomatodonkey's avatar
littletomatodonkey committed
125

Leif's avatar
Leif committed
126
Commonly used multilingual abbreviations include
littletomatodonkey's avatar
littletomatodonkey committed
127

Leif's avatar
Leif committed
128
129
130
131
132
| Language            | Abbreviation |      | Language | Abbreviation |      | Language | Abbreviation |
| ------------------- | ------------ | ---- | -------- | ------------ | ---- | -------- | ------------ |
| Chinese & English   | ch           |      | French   | fr           |      | Japanese | japan        |
| English             | en           |      | German   | german       |      | Korean   | korean       |
| Chinese Traditional | chinese_cht  |      | Italian  | it           |      | Russian  | ru           |
littletomatodonkey's avatar
littletomatodonkey committed
133

Leif's avatar
Leif committed
134
A list of all languages and their corresponding abbreviations can be found in [Multi-Language Model Tutorial](./multi_languages_en.md)
Leif's avatar
Leif committed
135
<a name="213-layoutAnalysis"></a>
littletomatodonkey's avatar
littletomatodonkey committed
136

Leif's avatar
Leif committed
137
138
139
#### 2.1.3 Layout Analysis

Layout analysis refers to the division of 5 types of areas of the document, including text, title, list, picture and table. For the first three types of regions, directly use the OCR model to complete the text detection and recognition of the corresponding regions, and save the results in txt. For the table area, after the table structuring process, the table picture is converted into an Excel file of the same table style. The picture area will be individually cropped into an image.
littletomatodonkey's avatar
littletomatodonkey committed
140

Leif's avatar
Leif committed
141
142
143
144
To use the layout analysis function of PaddleOCR, you need to specify `--type=structure`

```bash
paddleocr --image_dir=../doc/table/1.png --type=structure
littletomatodonkey's avatar
littletomatodonkey committed
145
146
```

Leif's avatar
Leif committed
147
- **Results Format**
Leif's avatar
Leif committed
148

Leif's avatar
Leif committed
149
  The returned results of PP-Structure is a list composed of a dict, an example is as follows
Leif's avatar
Leif committed
150

Leif's avatar
Leif committed
151
152
153
154
155
156
157
158
159
  ```shell
  [
    {   'type': 'Text',
        'bbox': [34, 432, 345, 462],
        'res': ([[36.0, 437.0, 341.0, 437.0, 341.0, 446.0, 36.0, 447.0], [41.0, 454.0, 125.0, 453.0, 125.0, 459.0, 41.0, 460.0]],
                  [('Tigure-6. The performance of CNN and IPT models using difforen', 0.90060663), ('Tent  ', 0.465441)])
    }
  ]
  ```
Leif's avatar
Leif committed
160

Leif's avatar
Leif committed
161
  The description of each field in dict is as follows
Leif's avatar
Leif committed
162

Leif's avatar
Leif committed
163
164
165
166
167
  | Parameter | Description                                                  |
  | --------- | ------------------------------------------------------------ |
  | type      | Type of image area                                           |
  | bbox      | The coordinates of the image area in the original image, respectively [left upper x, left upper y, right bottom x, right bottom y] |
  | res       | OCR or table recognition result of image area。<br> Table: HTML string of the table; <br> OCR: A tuple containing the detection coordinates and recognition results of each single line of text |
littletomatodonkey's avatar
littletomatodonkey committed
168

Leif's avatar
Leif committed
169
- **Parameter Description:**
littletomatodonkey's avatar
littletomatodonkey committed
170

Leif's avatar
Leif committed
171
172
173
174
175
176
  | Parameter       | Description                                                  | Default value                                |
  | --------------- | ------------------------------------------------------------ | -------------------------------------------- |
  | output          | The path where excel and recognition results are saved       | ./output/table                               |
  | table_max_len   | The long side of the image is resized in table structure model | 488                                          |
  | table_model_dir | inference model path of table structure model                | None                                         |
  | table_char_type | dict path of table structure model                           | ../ppocr/utils/dict/table_structure_dict.txt |
Leif's avatar
Leif committed
177

Leif's avatar
Leif committed
178
<a name="22-use-by-code"></a>
Leif's avatar
Leif committed
179

Leif's avatar
Leif committed
180
181
### 2.2 Use by Code
<a name="221-chinese---english-model-and-multilingual-model"></a>
Leif's avatar
Leif committed
182

Leif's avatar
Leif committed
183
#### 2.2.1 Chinese & English Model and Multilingual Model
Leif's avatar
Leif committed
184

Leif's avatar
Leif committed
185
* detection, angle classification and recognition:
Leif's avatar
Leif committed
186

Leif's avatar
Leif committed
187
188
189
190
191
192
193
```python
from paddleocr import PaddleOCR,draw_ocr
# Paddleocr supports Chinese, English, French, German, Korean and Japanese.
# You can set the parameter `lang` as `ch`, `en`, `fr`, `german`, `korean`, `japan`
# to switch the language model in order.
ocr = PaddleOCR(use_angle_cls=True, lang='en') # need to run only once to download and load model into memory
img_path = './imgs_en/img_12.jpg'
Leif's avatar
Leif committed
194
195
196
197
198
result = ocr.ocr(img_path, cls=True)
for line in result:
    print(line)


Leif's avatar
Leif committed
199
200
# draw result
from PIL import Image
Leif's avatar
Leif committed
201
202
203
204
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
Leif's avatar
Leif committed
205
im_show = draw_ocr(image, boxes, txts, scores, font_path='./fonts/simfang.ttf')
Leif's avatar
Leif committed
206
207
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
littletomatodonkey's avatar
littletomatodonkey committed
208
```
Leif's avatar
Leif committed
209

Leif's avatar
Leif committed
210
Output will be a list, each item contains bounding box, text and recognition confidence
Leif's avatar
Leif committed
211
212

```bash
Leif's avatar
Leif committed
213
214
215
[[[442.0, 173.0], [1169.0, 173.0], [1169.0, 225.0], [442.0, 225.0]], ['ACKNOWLEDGEMENTS', 0.99283075]]
[[[393.0, 340.0], [1207.0, 342.0], [1207.0, 389.0], [393.0, 387.0]], ['We would like to thank all the designers and', 0.9357758]]
[[[399.0, 398.0], [1204.0, 398.0], [1204.0, 433.0], [399.0, 433.0]], ['contributors whohave been involved in the', 0.9592447]]
Leif's avatar
Leif committed
216
......
littletomatodonkey's avatar
littletomatodonkey committed
217
218
```

Leif's avatar
Leif committed
219
Visualization of results
littletomatodonkey's avatar
littletomatodonkey committed
220

Leif's avatar
Leif committed
221
<div align="center">
Leif's avatar
Leif committed
222
    <img src="../imgs_results/whl/12_det_rec.jpg" width="800">
Leif's avatar
Leif committed
223
</div>
Leif's avatar
Leif committed
224
<a name="222-layoutAnalysis"></a>
littletomatodonkey's avatar
littletomatodonkey committed
225

Leif's avatar
Leif committed
226
#### 2.2.2 Layout Analysis
Leif's avatar
Leif committed
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

```python
import os
import cv2
from paddleocr import PPStructure,draw_structure_result,save_structure_res

table_engine = PPStructure(show_log=True)

save_folder = './output/table'
img_path = './table/1.png'
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder,os.path.basename(img_path).split('.')[0])

for line in result:
    line.pop('img')
    print(line)

from PIL import Image

font_path = './fonts/simfang.ttf'
image = Image.open(img_path).convert('RGB')
im_show = draw_structure_result(image, result,font_path=font_path)
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```