rec_mv3_tps_bilstm_att.yml 2.2 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
Global:
tink2123's avatar
tink2123 committed
2
  use_gpu: True
LDOUBLEV's avatar
LDOUBLEV committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
  epoch_num: 72
  log_smooth_window: 20
  print_batch_step: 10
  save_model_dir: ./output/rec/rec_mv3_tps_bilstm_att/
  save_epoch_step: 3
  # evaluation is run every 5000 iterations after the 4000th iteration
  eval_batch_step: [0, 2000]
  cal_metric_during_train: True
  pretrained_model:
  checkpoints:
  save_inference_dir:
  use_visualdl: False
  infer_img: doc/imgs_words/ch/word_1.jpg
  # for data or label process
  character_dict_path: 
  character_type: en
  max_text_length: 25
  infer_mode: False
  use_space_char: False
littletomatodonkey's avatar
littletomatodonkey committed
22
  save_res_path: ./output/rec/predicts_mv3_tps_bilstm_att.txt
LDOUBLEV's avatar
LDOUBLEV committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67


Optimizer:
  name: Adam
  beta1: 0.9
  beta2: 0.999
  lr:
    learning_rate: 0.0005
  regularizer:
    name: 'L2'
    factor: 0.00001

Architecture:
  model_type: rec
  algorithm: RARE
  Transform:
    name: TPS
    num_fiducial: 20
    loc_lr: 0.1
    model_name: small
  Backbone:
    name: MobileNetV3
    scale: 0.5
    model_name: large
  Neck:
    name: SequenceEncoder
    encoder_type: rnn 
    hidden_size: 96
  Head:
    name: AttentionHead  
    hidden_size: 96
    

Loss:
  name: AttentionLoss

PostProcess:
  name: AttnLabelDecode

Metric:
  name: RecMetric
  main_indicator: acc

Train:
  dataset:
tink2123's avatar
tink2123 committed
68
    name: LMDBDataSet
WenmuZhou's avatar
WenmuZhou committed
69
    data_dir: ./train_data/data_lmdb_release/training/
LDOUBLEV's avatar
LDOUBLEV committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - AttnLabelEncode: # Class handling label
      - RecResizeImg:
          image_shape: [3, 32, 100]
      - KeepKeys:
          keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
  loader:
    shuffle: True
    batch_size_per_card: 256
    drop_last: True
    num_workers: 8

Eval:
  dataset:
tink2123's avatar
tink2123 committed
87
    name: LMDBDataSet
WenmuZhou's avatar
WenmuZhou committed
88
    data_dir: ./train_data/data_lmdb_release/validation/
LDOUBLEV's avatar
LDOUBLEV committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - AttnLabelEncode: # Class handling label
      - RecResizeImg:
          image_shape: [3, 32, 100]
      - KeepKeys:
          keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
  loader:
    shuffle: False
    drop_last: False
    batch_size_per_card: 256
    num_workers: 1