infer_ser_e2e.py 4.29 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
import json
import cv2
import numpy as np
from copy import deepcopy
from PIL import Image

import paddle
from paddlenlp.transformers import LayoutXLMModel, LayoutXLMTokenizer, LayoutXLMForTokenClassification

# relative reference
zhoujun's avatar
zhoujun committed
27
from utils import parse_args, get_image_file_list, draw_ser_results, get_bio_label_maps
littletomatodonkey's avatar
littletomatodonkey committed
28

zhoujun's avatar
zhoujun committed
29
from utils import pad_sentences, split_page, preprocess, postprocess, merge_preds_list_with_ocr_info
littletomatodonkey's avatar
littletomatodonkey committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50


def trans_poly_to_bbox(poly):
    x1 = np.min([p[0] for p in poly])
    x2 = np.max([p[0] for p in poly])
    y1 = np.min([p[1] for p in poly])
    y2 = np.max([p[1] for p in poly])
    return [x1, y1, x2, y2]


def parse_ocr_info_for_ser(ocr_result):
    ocr_info = []
    for res in ocr_result:
        ocr_info.append({
            "text": res[1][0],
            "bbox": trans_poly_to_bbox(res[0]),
            "poly": res[0],
        })
    return ocr_info


WenmuZhou's avatar
add re  
WenmuZhou committed
51
52
class SerPredictor(object):
    def __init__(self, args):
53

WenmuZhou's avatar
add re  
WenmuZhou committed
54
55
56
57
58
59
60
61
62
63
        self.max_seq_length = args.max_seq_length

        # init ser token and model
        self.tokenizer = LayoutXLMTokenizer.from_pretrained(
            args.model_name_or_path)
        self.model = LayoutXLMForTokenClassification.from_pretrained(
            args.model_name_or_path)
        self.model.eval()

        # init ocr_engine
64
65
        from paddleocr import PaddleOCR

WenmuZhou's avatar
add re  
WenmuZhou committed
66
        self.ocr_engine = PaddleOCR(
67
68
            rec_model_dir=args.rec_model_dir,
            det_model_dir=args.det_model_dir,
WenmuZhou's avatar
add re  
WenmuZhou committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
            use_angle_cls=False,
            show_log=False)
        # init dict
        label2id_map, self.id2label_map = get_bio_label_maps(
            args.label_map_path)
        self.label2id_map_for_draw = dict()
        for key in label2id_map:
            if key.startswith("I-"):
                self.label2id_map_for_draw[key] = label2id_map["B" + key[1:]]
            else:
                self.label2id_map_for_draw[key] = label2id_map[key]

    def __call__(self, img):
        ocr_result = self.ocr_engine.ocr(img, cls=False)

        ocr_info = parse_ocr_info_for_ser(ocr_result)

        inputs = preprocess(
            tokenizer=self.tokenizer,
            ori_img=img,
            ocr_info=ocr_info,
            max_seq_len=self.max_seq_length)

        outputs = self.model(
            input_ids=inputs["input_ids"],
            bbox=inputs["bbox"],
            image=inputs["image"],
            token_type_ids=inputs["token_type_ids"],
            attention_mask=inputs["attention_mask"])

        preds = outputs[0]
        preds = postprocess(inputs["attention_mask"], preds, self.id2label_map)
        ocr_info = merge_preds_list_with_ocr_info(
            ocr_info, inputs["segment_offset_id"], preds,
            self.label2id_map_for_draw)
        return ocr_info, inputs
littletomatodonkey's avatar
littletomatodonkey committed
105
106


WenmuZhou's avatar
add re  
WenmuZhou committed
107
108
109
if __name__ == "__main__":
    args = parse_args()
    os.makedirs(args.output_dir, exist_ok=True)
littletomatodonkey's avatar
littletomatodonkey committed
110
111
112
113
114

    # get infer img list
    infer_imgs = get_image_file_list(args.infer_imgs)

    # loop for infer
WenmuZhou's avatar
add re  
WenmuZhou committed
115
    ser_engine = SerPredictor(args)
WenmuZhou's avatar
WenmuZhou committed
116
117
118
119
    with open(
            os.path.join(args.output_dir, "infer_results.txt"),
            "w",
            encoding='utf-8') as fout:
littletomatodonkey's avatar
littletomatodonkey committed
120
        for idx, img_path in enumerate(infer_imgs):
WenmuZhou's avatar
add re  
WenmuZhou committed
121
            print("process: [{}/{}], {}".format(idx, len(infer_imgs), img_path))
littletomatodonkey's avatar
littletomatodonkey committed
122
123
124

            img = cv2.imread(img_path)

WenmuZhou's avatar
add re  
WenmuZhou committed
125
            result, _ = ser_engine(img)
littletomatodonkey's avatar
littletomatodonkey committed
126
127
            fout.write(img_path + "\t" + json.dumps(
                {
WenmuZhou's avatar
add re  
WenmuZhou committed
128
                    "ser_resule": result,
littletomatodonkey's avatar
littletomatodonkey committed
129
130
                }, ensure_ascii=False) + "\n")

WenmuZhou's avatar
add re  
WenmuZhou committed
131
            img_res = draw_ser_results(img, result)
littletomatodonkey's avatar
littletomatodonkey committed
132
133
134
135
            cv2.imwrite(
                os.path.join(args.output_dir,
                             os.path.splitext(os.path.basename(img_path))[0] +
                             "_ser.jpg"), img_res)