simple_dataset.py 4.61 KB
Newer Older
dyning's avatar
dyning committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import numpy as np
import os
import random
import paddle
from paddle.io import Dataset
import time

from .imaug import transform, create_operators
dyning's avatar
dyning committed
23

dyning's avatar
dyning committed
24
25

class SimpleDataSet(Dataset):
dyning's avatar
dyning committed
26
    def __init__(self, config, mode, logger):
dyning's avatar
dyning committed
27
        super(SimpleDataSet, self).__init__()
dyning's avatar
dyning committed
28

dyning's avatar
dyning committed
29
30
31
32
        global_config = config['Global']
        dataset_config = config[mode]['dataset']
        loader_config = config[mode]['loader']
        batch_size = loader_config['batch_size_per_card']
dyning's avatar
dyning committed
33

dyning's avatar
dyning committed
34
35
36
37
38
39
40
        self.delimiter = dataset_config.get('delimiter', '\t')
        label_file_list = dataset_config.pop('label_file_list')
        data_source_num = len(label_file_list)
        if data_source_num == 1:
            ratio_list = [1.0]
        else:
            ratio_list = dataset_config.pop('ratio_list')
dyning's avatar
dyning committed
41

dyning's avatar
dyning committed
42
        assert sum(ratio_list) == 1, "The sum of the ratio_list should be 1."
dyning's avatar
dyning committed
43
44
45
        assert len(
            ratio_list
        ) == data_source_num, "The length of ratio_list should be the same as the file_list."
dyning's avatar
dyning committed
46
47
        self.data_dir = dataset_config['data_dir']
        self.do_shuffle = loader_config['shuffle']
dyning's avatar
dyning committed
48

dyning's avatar
dyning committed
49
50
51
52
53
54
        logger.info("Initialize indexs of datasets:%s" % label_file_list)
        self.data_lines_list, data_num_list = self.get_image_info_list(
            label_file_list)
        self.data_idx_order_list = self.dataset_traversal(
            data_num_list, ratio_list, batch_size)
        self.shuffle_data_random()
dyning's avatar
dyning committed
55

dyning's avatar
dyning committed
56
57
58
59
60
61
62
63
64
65
66
67
68
        self.ops = create_operators(dataset_config['transforms'], global_config)

    def get_image_info_list(self, file_list):
        if isinstance(file_list, str):
            file_list = [file_list]
        data_lines_list = []
        data_num_list = []
        for file in file_list:
            with open(file, "rb") as f:
                lines = f.readlines()
                data_lines_list.append(lines)
                data_num_list.append(len(lines))
        return data_lines_list, data_num_list
dyning's avatar
dyning committed
69

dyning's avatar
dyning committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
    def dataset_traversal(self, data_num_list, ratio_list, batch_size):
        select_num_list = []
        dataset_num = len(data_num_list)
        for dno in range(dataset_num):
            select_num = round(batch_size * ratio_list[dno])
            select_num = max(select_num, 1)
            select_num_list.append(select_num)
        data_idx_order_list = []
        cur_index_sets = [0] * dataset_num
        while True:
            finish_read_num = 0
            for dataset_idx in range(dataset_num):
                cur_index = cur_index_sets[dataset_idx]
                if cur_index >= data_num_list[dataset_idx]:
                    finish_read_num += 1
                else:
                    select_num = select_num_list[dataset_idx]
                    for sno in range(select_num):
                        cur_index = cur_index_sets[dataset_idx]
                        if cur_index >= data_num_list[dataset_idx]:
                            break
dyning's avatar
dyning committed
91
                        data_idx_order_list.append((dataset_idx, cur_index))
dyning's avatar
dyning committed
92
93
94
95
96
97
98
99
100
101
                        cur_index_sets[dataset_idx] += 1
            if finish_read_num == dataset_num:
                break
        return data_idx_order_list

    def shuffle_data_random(self):
        if self.do_shuffle:
            for dno in range(len(self.data_lines_list)):
                random.shuffle(self.data_lines_list[dno])
        return
dyning's avatar
dyning committed
102

dyning's avatar
dyning committed
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
    def __getitem__(self, idx):
        dataset_idx, file_idx = self.data_idx_order_list[idx]
        data_line = self.data_lines_list[dataset_idx][file_idx]
        data_line = data_line.decode('utf-8')
        substr = data_line.strip("\n").split(self.delimiter)
        file_name = substr[0]
        label = substr[1]
        img_path = os.path.join(self.data_dir, file_name)
        data = {'img_path': img_path, 'label': label}
        with open(data['img_path'], 'rb') as f:
            img = f.read()
            data['image'] = img
        outs = transform(data, self.ops)
        if outs is None:
            return self.__getitem__(np.random.randint(self.__len__()))
        return outs

    def __len__(self):
        return len(self.data_idx_order_list)