lmdb_dataset.py 4.31 KB
Newer Older
dyning's avatar
dyning committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import numpy as np
import os
import random
import paddle
from paddle.io import Dataset
import time
import lmdb
import cv2

from .imaug import transform, create_operators
dyning's avatar
dyning committed
25

dyning's avatar
dyning committed
26
27

class LMDBDateSet(Dataset):
dyning's avatar
dyning committed
28
    def __init__(self, config, mode, logger):
dyning's avatar
dyning committed
29
        super(LMDBDateSet, self).__init__()
dyning's avatar
dyning committed
30

dyning's avatar
dyning committed
31
32
33
34
35
36
        global_config = config['Global']
        dataset_config = config[mode]['dataset']
        loader_config = config[mode]['loader']
        batch_size = loader_config['batch_size_per_card']
        data_dir = dataset_config['data_dir']
        self.do_shuffle = loader_config['shuffle']
dyning's avatar
dyning committed
37

dyning's avatar
dyning committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
        self.lmdb_sets = self.load_hierarchical_lmdb_dataset(data_dir)
        logger.info("Initialize indexs of datasets:%s" % data_dir)
        self.data_idx_order_list = self.dataset_traversal()
        if self.do_shuffle:
            np.random.shuffle(self.data_idx_order_list)
        self.ops = create_operators(dataset_config['transforms'], global_config)

    def load_hierarchical_lmdb_dataset(self, data_dir):
        lmdb_sets = {}
        dataset_idx = 0
        for dirpath, dirnames, filenames in os.walk(data_dir + '/'):
            if not dirnames:
                env = lmdb.open(
                    dirpath,
                    max_readers=32,
                    readonly=True,
                    lock=False,
                    readahead=False,
                    meminit=False)
                txn = env.begin(write=False)
                num_samples = int(txn.get('num-samples'.encode()))
                lmdb_sets[dataset_idx] = {"dirpath":dirpath, "env":env, \
                    "txn":txn, "num_samples":num_samples}
                dataset_idx += 1
        return lmdb_sets
dyning's avatar
dyning committed
63

dyning's avatar
dyning committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
    def dataset_traversal(self):
        lmdb_num = len(self.lmdb_sets)
        total_sample_num = 0
        for lno in range(lmdb_num):
            total_sample_num += self.lmdb_sets[lno]['num_samples']
        data_idx_order_list = np.zeros((total_sample_num, 2))
        beg_idx = 0
        for lno in range(lmdb_num):
            tmp_sample_num = self.lmdb_sets[lno]['num_samples']
            end_idx = beg_idx + tmp_sample_num
            data_idx_order_list[beg_idx:end_idx, 0] = lno
            data_idx_order_list[beg_idx:end_idx, 1] \
                = list(range(tmp_sample_num))
            data_idx_order_list[beg_idx:end_idx, 1] += 1
            beg_idx = beg_idx + tmp_sample_num
        return data_idx_order_list
dyning's avatar
dyning committed
80

dyning's avatar
dyning committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
    def get_img_data(self, value):
        """get_img_data"""
        if not value:
            return None
        imgdata = np.frombuffer(value, dtype='uint8')
        if imgdata is None:
            return None
        imgori = cv2.imdecode(imgdata, 1)
        if imgori is None:
            return None
        return imgori

    def get_lmdb_sample_info(self, txn, index):
        label_key = 'label-%09d'.encode() % index
        label = txn.get(label_key)
        if label is None:
            return None
        label = label.decode('utf-8')
        img_key = 'image-%09d'.encode() % index
        imgbuf = txn.get(img_key)
        return imgbuf, label
dyning's avatar
dyning committed
102

dyning's avatar
dyning committed
103
104
105
106
    def __getitem__(self, idx):
        lmdb_idx, file_idx = self.data_idx_order_list[idx]
        lmdb_idx = int(lmdb_idx)
        file_idx = int(file_idx)
dyning's avatar
dyning committed
107
108
        sample_info = self.get_lmdb_sample_info(self.lmdb_sets[lmdb_idx]['txn'],
                                                file_idx)
dyning's avatar
dyning committed
109
        if sample_info is None:
dyning's avatar
dyning committed
110
            return self.__getitem__(np.random.randint(self.__len__()))
dyning's avatar
dyning committed
111
112
113
114
115
116
117
118
119
        img, label = sample_info
        data = {'image': img, 'label': label}
        outs = transform(data, self.ops)
        if outs is None:
            return self.__getitem__(np.random.randint(self.__len__()))
        return outs

    def __len__(self):
        return self.data_idx_order_list.shape[0]