fce_postprocess.py 8.44 KB
Newer Older
zhiminzhang0830's avatar
zhiminzhang0830 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/open-mmlab/mmocr/blob/v0.3.0/mmocr/models/textdet/postprocess/wrapper.py
"""
zhiminzhang0830's avatar
zhiminzhang0830 committed
18
19
20

import cv2
import paddle
zhiminzhang0830's avatar
zhiminzhang0830 committed
21
import numpy as np
zhiminzhang0830's avatar
zhiminzhang0830 committed
22
from numpy.fft import ifft
zhiminzhang0830's avatar
zhiminzhang0830 committed
23
from ppocr.utils.poly_nms import poly_nms, valid_boundary
zhiminzhang0830's avatar
zhiminzhang0830 committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76


def fill_hole(input_mask):
    h, w = input_mask.shape
    canvas = np.zeros((h + 2, w + 2), np.uint8)
    canvas[1:h + 1, 1:w + 1] = input_mask.copy()

    mask = np.zeros((h + 4, w + 4), np.uint8)

    cv2.floodFill(canvas, mask, (0, 0), 1)
    canvas = canvas[1:h + 1, 1:w + 1].astype(np.bool)

    return ~canvas | input_mask


def fourier2poly(fourier_coeff, num_reconstr_points=50):
    """ Inverse Fourier transform
        Args:
            fourier_coeff (ndarray): Fourier coefficients shaped (n, 2k+1),
                with n and k being candidates number and Fourier degree
                respectively.
            num_reconstr_points (int): Number of reconstructed polygon points.
        Returns:
            Polygons (ndarray): The reconstructed polygons shaped (n, n')
        """

    a = np.zeros((len(fourier_coeff), num_reconstr_points), dtype='complex')
    k = (len(fourier_coeff[0]) - 1) // 2

    a[:, 0:k + 1] = fourier_coeff[:, k:]
    a[:, -k:] = fourier_coeff[:, :k]

    poly_complex = ifft(a) * num_reconstr_points
    polygon = np.zeros((len(fourier_coeff), num_reconstr_points, 2))
    polygon[:, :, 0] = poly_complex.real
    polygon[:, :, 1] = poly_complex.imag
    return polygon.astype('int32').reshape((len(fourier_coeff), -1))


class FCEPostProcess(object):
    """
    The post process for FCENet.
    """

    def __init__(self,
                 scales,
                 fourier_degree=5,
                 num_reconstr_points=50,
                 decoding_type='fcenet',
                 score_thr=0.3,
                 nms_thr=0.1,
                 alpha=1.0,
                 beta=1.0,
WenmuZhou's avatar
WenmuZhou committed
77
                 box_type='poly',
zhiminzhang0830's avatar
zhiminzhang0830 committed
78
79
80
81
82
83
84
85
86
87
                 **kwargs):

        self.scales = scales
        self.fourier_degree = fourier_degree
        self.num_reconstr_points = num_reconstr_points
        self.decoding_type = decoding_type
        self.score_thr = score_thr
        self.nms_thr = nms_thr
        self.alpha = alpha
        self.beta = beta
WenmuZhou's avatar
WenmuZhou committed
88
        self.box_type = box_type
zhiminzhang0830's avatar
zhiminzhang0830 committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

    def __call__(self, preds, shape_list):
        score_maps = []
        for key, value in preds.items():
            if isinstance(value, paddle.Tensor):
                value = value.numpy()
            cls_res = value[:, :4, :, :]
            reg_res = value[:, 4:, :, :]
            score_maps.append([cls_res, reg_res])

        return self.get_boundary(score_maps, shape_list)

    def resize_boundary(self, boundaries, scale_factor):
        """Rescale boundaries via scale_factor.

        Args:
            boundaries (list[list[float]]): The boundary list. Each boundary
            with size 2k+1 with k>=4.
            scale_factor(ndarray): The scale factor of size (4,).

        Returns:
            boundaries (list[list[float]]): The scaled boundaries.
        """
        boxes = []
        scores = []
        for b in boundaries:
            sz = len(b)
            valid_boundary(b, True)
            scores.append(b[-1])
            b = (np.array(b[:sz - 1]) *
                 (np.tile(scale_factor[:2], int(
                     (sz - 1) / 2)).reshape(1, sz - 1))).flatten().tolist()
            boxes.append(np.array(b).reshape([-1, 2]))

        return np.array(boxes, dtype=np.float32), scores

    def get_boundary(self, score_maps, shape_list):
        assert len(score_maps) == len(self.scales)
        boundaries = []
        for idx, score_map in enumerate(score_maps):
            scale = self.scales[idx]
            boundaries = boundaries + self._get_boundary_single(score_map,
                                                                scale)

        # nms
        boundaries = poly_nms(boundaries, self.nms_thr)
        boundaries, scores = self.resize_boundary(
            boundaries, (1 / shape_list[0, 2:]).tolist()[::-1])

        boxes_batch = [dict(points=boundaries, scores=scores)]
        return boxes_batch

    def _get_boundary_single(self, score_map, scale):
        assert len(score_map) == 2
        assert score_map[1].shape[1] == 4 * self.fourier_degree + 2

zhiminzhang0830's avatar
zhiminzhang0830 committed
145
        return self.fcenet_decode(
zhiminzhang0830's avatar
zhiminzhang0830 committed
146
147
148
149
150
151
            preds=score_map,
            fourier_degree=self.fourier_degree,
            num_reconstr_points=self.num_reconstr_points,
            scale=scale,
            alpha=self.alpha,
            beta=self.beta,
WenmuZhou's avatar
WenmuZhou committed
152
            box_type=self.box_type,
zhiminzhang0830's avatar
zhiminzhang0830 committed
153
154
            score_thr=self.score_thr,
            nms_thr=self.nms_thr)
zhiminzhang0830's avatar
zhiminzhang0830 committed
155
156
157
158
159
160
161
162

    def fcenet_decode(self,
                      preds,
                      fourier_degree,
                      num_reconstr_points,
                      scale,
                      alpha=1.0,
                      beta=2.0,
WenmuZhou's avatar
WenmuZhou committed
163
                      box_type='poly',
zhiminzhang0830's avatar
zhiminzhang0830 committed
164
165
166
167
168
169
170
171
172
173
174
175
176
177
                      score_thr=0.3,
                      nms_thr=0.1):
        """Decoding predictions of FCENet to instances.

        Args:
            preds (list(Tensor)): The head output tensors.
            fourier_degree (int): The maximum Fourier transform degree k.
            num_reconstr_points (int): The points number of the polygon
                reconstructed from predicted Fourier coefficients.
            scale (int): The down-sample scale of the prediction.
            alpha (float) : The parameter to calculate final scores. Score_{final}
                    = (Score_{text region} ^ alpha)
                    * (Score_{text center region}^ beta)
            beta (float) : The parameter to calculate final score.
WenmuZhou's avatar
WenmuZhou committed
178
            box_type (str):  Boundary encoding type 'poly' or 'quad'.
zhiminzhang0830's avatar
zhiminzhang0830 committed
179
180
181
182
183
184
185
186
187
188
            score_thr (float) : The threshold used to filter out the final
                candidates.
            nms_thr (float) :  The threshold of nms.

        Returns:
            boundaries (list[list[float]]): The instance boundary and confidence
                list.
        """
        assert isinstance(preds, list)
        assert len(preds) == 2
WenmuZhou's avatar
WenmuZhou committed
189
        assert box_type in ['poly', 'quad']
zhiminzhang0830's avatar
zhiminzhang0830 committed
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

        cls_pred = preds[0][0]
        tr_pred = cls_pred[0:2]
        tcl_pred = cls_pred[2:]

        reg_pred = preds[1][0].transpose([1, 2, 0])
        x_pred = reg_pred[:, :, :2 * fourier_degree + 1]
        y_pred = reg_pred[:, :, 2 * fourier_degree + 1:]

        score_pred = (tr_pred[1]**alpha) * (tcl_pred[1]**beta)
        tr_pred_mask = (score_pred) > score_thr
        tr_mask = fill_hole(tr_pred_mask)

        tr_contours, _ = cv2.findContours(
            tr_mask.astype(np.uint8), cv2.RETR_TREE,
            cv2.CHAIN_APPROX_SIMPLE)  # opencv4

        mask = np.zeros_like(tr_mask)
        boundaries = []
        for cont in tr_contours:
            deal_map = mask.copy().astype(np.int8)
            cv2.drawContours(deal_map, [cont], -1, 1, -1)

            score_map = score_pred * deal_map
            score_mask = score_map > 0
            xy_text = np.argwhere(score_mask)
            dxy = xy_text[:, 1] + xy_text[:, 0] * 1j

            x, y = x_pred[score_mask], y_pred[score_mask]
            c = x + y * 1j
            c[:, fourier_degree] = c[:, fourier_degree] + dxy
            c *= scale

            polygons = fourier2poly(c, num_reconstr_points)
            score = score_map[score_mask].reshape(-1, 1)
            polygons = poly_nms(np.hstack((polygons, score)).tolist(), nms_thr)

            boundaries = boundaries + polygons

        boundaries = poly_nms(boundaries, nms_thr)

WenmuZhou's avatar
WenmuZhou committed
231
        if box_type == 'quad':
zhiminzhang0830's avatar
zhiminzhang0830 committed
232
233
234
235
236
237
238
            new_boundaries = []
            for boundary in boundaries:
                poly = np.array(boundary[:-1]).reshape(-1, 2).astype(np.float32)
                score = boundary[-1]
                points = cv2.boxPoints(cv2.minAreaRect(poly))
                points = np.int0(points)
                new_boundaries.append(points.reshape(-1).tolist() + [score])
WenmuZhou's avatar
WenmuZhou committed
239
                boundaries = new_boundaries
zhiminzhang0830's avatar
zhiminzhang0830 committed
240
241

        return boundaries