"src/targets/vscode:/vscode.git/clone" did not exist on "b717b473023c5a971e123a677acd6ed20ebf2674"
db_fpn.py 3.87 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
from paddle import nn
import paddle.nn.functional as F
from paddle import ParamAttr


dyning's avatar
dyning committed
25
class DBFPN(nn.Layer):
WenmuZhou's avatar
WenmuZhou committed
26
    def __init__(self, in_channels, out_channels, **kwargs):
dyning's avatar
dyning committed
27
        super(DBFPN, self).__init__()
WenmuZhou's avatar
WenmuZhou committed
28
        self.out_channels = out_channels
29
        weight_attr = paddle.nn.initializer.KaimingUniform()
WenmuZhou's avatar
WenmuZhou committed
30

dyning's avatar
dyning committed
31
        self.in2_conv = nn.Conv2D(
WenmuZhou's avatar
WenmuZhou committed
32
33
34
            in_channels=in_channels[0],
            out_channels=self.out_channels,
            kernel_size=1,
littletomatodonkey's avatar
littletomatodonkey committed
35
            weight_attr=ParamAttr(initializer=weight_attr),
WenmuZhou's avatar
WenmuZhou committed
36
            bias_attr=False)
dyning's avatar
dyning committed
37
        self.in3_conv = nn.Conv2D(
WenmuZhou's avatar
WenmuZhou committed
38
39
40
            in_channels=in_channels[1],
            out_channels=self.out_channels,
            kernel_size=1,
littletomatodonkey's avatar
littletomatodonkey committed
41
            weight_attr=ParamAttr(initializer=weight_attr),
WenmuZhou's avatar
WenmuZhou committed
42
            bias_attr=False)
dyning's avatar
dyning committed
43
        self.in4_conv = nn.Conv2D(
WenmuZhou's avatar
WenmuZhou committed
44
45
46
            in_channels=in_channels[2],
            out_channels=self.out_channels,
            kernel_size=1,
littletomatodonkey's avatar
littletomatodonkey committed
47
            weight_attr=ParamAttr(initializer=weight_attr),
WenmuZhou's avatar
WenmuZhou committed
48
            bias_attr=False)
dyning's avatar
dyning committed
49
        self.in5_conv = nn.Conv2D(
WenmuZhou's avatar
WenmuZhou committed
50
51
52
            in_channels=in_channels[3],
            out_channels=self.out_channels,
            kernel_size=1,
littletomatodonkey's avatar
littletomatodonkey committed
53
            weight_attr=ParamAttr(initializer=weight_attr),
WenmuZhou's avatar
WenmuZhou committed
54
            bias_attr=False)
dyning's avatar
dyning committed
55
        self.p5_conv = nn.Conv2D(
WenmuZhou's avatar
WenmuZhou committed
56
57
58
59
            in_channels=self.out_channels,
            out_channels=self.out_channels // 4,
            kernel_size=3,
            padding=1,
littletomatodonkey's avatar
littletomatodonkey committed
60
            weight_attr=ParamAttr(initializer=weight_attr),
WenmuZhou's avatar
WenmuZhou committed
61
            bias_attr=False)
dyning's avatar
dyning committed
62
        self.p4_conv = nn.Conv2D(
WenmuZhou's avatar
WenmuZhou committed
63
64
65
66
            in_channels=self.out_channels,
            out_channels=self.out_channels // 4,
            kernel_size=3,
            padding=1,
littletomatodonkey's avatar
littletomatodonkey committed
67
            weight_attr=ParamAttr(initializer=weight_attr),
WenmuZhou's avatar
WenmuZhou committed
68
            bias_attr=False)
dyning's avatar
dyning committed
69
        self.p3_conv = nn.Conv2D(
WenmuZhou's avatar
WenmuZhou committed
70
71
72
73
            in_channels=self.out_channels,
            out_channels=self.out_channels // 4,
            kernel_size=3,
            padding=1,
littletomatodonkey's avatar
littletomatodonkey committed
74
            weight_attr=ParamAttr(initializer=weight_attr),
WenmuZhou's avatar
WenmuZhou committed
75
            bias_attr=False)
dyning's avatar
dyning committed
76
        self.p2_conv = nn.Conv2D(
WenmuZhou's avatar
WenmuZhou committed
77
78
79
80
            in_channels=self.out_channels,
            out_channels=self.out_channels // 4,
            kernel_size=3,
            padding=1,
littletomatodonkey's avatar
littletomatodonkey committed
81
            weight_attr=ParamAttr(initializer=weight_attr),
WenmuZhou's avatar
WenmuZhou committed
82
83
84
85
86
87
88
89
90
91
            bias_attr=False)

    def forward(self, x):
        c2, c3, c4, c5 = x

        in5 = self.in5_conv(c5)
        in4 = self.in4_conv(c4)
        in3 = self.in3_conv(c3)
        in2 = self.in2_conv(c2)

WenmuZhou's avatar
WenmuZhou committed
92
93
94
95
96
97
        out4 = in4 + F.upsample(
            in5, scale_factor=2, mode="nearest", align_mode=1)  # 1/16
        out3 = in3 + F.upsample(
            out4, scale_factor=2, mode="nearest", align_mode=1)  # 1/8
        out2 = in2 + F.upsample(
            out3, scale_factor=2, mode="nearest", align_mode=1)  # 1/4
WenmuZhou's avatar
WenmuZhou committed
98
99
100
101
102

        p5 = self.p5_conv(in5)
        p4 = self.p4_conv(out4)
        p3 = self.p3_conv(out3)
        p2 = self.p2_conv(out2)
WenmuZhou's avatar
WenmuZhou committed
103
104
105
        p5 = F.upsample(p5, scale_factor=8, mode="nearest", align_mode=1)
        p4 = F.upsample(p4, scale_factor=4, mode="nearest", align_mode=1)
        p3 = F.upsample(p3, scale_factor=2, mode="nearest", align_mode=1)
WenmuZhou's avatar
WenmuZhou committed
106
107
108

        fuse = paddle.concat([p5, p4, p3, p2], axis=1)
        return fuse