module.py 3.8 KB
Newer Older
dyning's avatar
dyning committed
1
2
3
4
5
6
# -*- coding:utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
WenmuZhou's avatar
WenmuZhou committed
7
8
import sys
sys.path.insert(0, ".")
dyning's avatar
dyning committed
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

from paddlehub.common.logger import logger
from paddlehub.module.module import moduleinfo, runnable, serving
import cv2
import paddlehub as hub

from tools.infer.utility import base64_to_cv2
from tools.infer.predict_rec import TextRecognizer


@moduleinfo(
    name="ocr_rec",
    version="1.0.0",
    summary="ocr recognition service",
    author="paddle-dev",
    author_email="paddle-dev@baidu.com",
    type="cv/text_recognition")
class OCRRec(hub.Module):
27
    def _initialize(self, use_gpu=False, enable_mkldnn=False):
dyning's avatar
dyning committed
28
29
30
        """
        initialize with the necessary elements
        """
dyning's avatar
dyning committed
31
32
33
34
        from ocr_rec.params import read_params
        cfg = read_params()

        cfg.use_gpu = use_gpu
dyning's avatar
dyning committed
35
36
37
38
39
40
        if use_gpu:
            try:
                _places = os.environ["CUDA_VISIBLE_DEVICES"]
                int(_places[0])
                print("use gpu: ", use_gpu)
                print("CUDA_VISIBLE_DEVICES: ", _places)
dyning's avatar
dyning committed
41
                cfg.gpu_mem = 8000
dyning's avatar
dyning committed
42
43
44
45
            except:
                raise RuntimeError(
                    "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES via export CUDA_VISIBLE_DEVICES=cuda_device_id."
                )
dyning's avatar
dyning committed
46
        cfg.ir_optim = True
47
        cfg.enable_mkldnn = enable_mkldnn
dyning's avatar
dyning committed
48

dyning's avatar
dyning committed
49
        self.text_recognizer = TextRecognizer(cfg)
dyning's avatar
dyning committed
50
51
52
53
54
55
56
57
58
59
60
61
62

    def read_images(self, paths=[]):
        images = []
        for img_path in paths:
            assert os.path.isfile(
                img_path), "The {} isn't a valid file.".format(img_path)
            img = cv2.imread(img_path)
            if img is None:
                logger.info("error in loading image:{}".format(img_path))
                continue
            images.append(img)
        return images

WenmuZhou's avatar
WenmuZhou committed
63
    def predict(self, images=[], paths=[]):
dyning's avatar
dyning committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
        """
        Get the text box in the predicted images.
        Args:
            images (list(numpy.ndarray)): images data, shape of each is [H, W, C]. If images not paths
            paths (list[str]): The paths of images. If paths not images
        Returns:
            res (list): The result of text detection box and save path of images.
        """

        if images != [] and isinstance(images, list) and paths == []:
            predicted_data = images
        elif images == [] and isinstance(paths, list) and paths != []:
            predicted_data = self.read_images(paths)
        else:
            raise TypeError("The input data is inconsistent with expectations.")

        assert predicted_data != [], "There is not any image to be predicted. Please check the input data."
WenmuZhou's avatar
WenmuZhou committed
81

dyning's avatar
dyning committed
82
83
84
85
86
        img_list = []
        for img in predicted_data:
            if img is None:
                continue
            img_list.append(img)
WenmuZhou's avatar
WenmuZhou committed
87

dyning's avatar
dyning committed
88
        rec_res_final = []
dyning's avatar
dyning committed
89
        try:
dyning's avatar
dyning committed
90
            rec_res, predict_time = self.text_recognizer(img_list)
dyning's avatar
dyning committed
91
92
            for dno in range(len(rec_res)):
                text, score = rec_res[dno]
WenmuZhou's avatar
WenmuZhou committed
93
94
95
96
                rec_res_final.append({
                    'text': text,
                    'confidence': float(score),
                })
dyning's avatar
dyning committed
97
98
        except Exception as e:
            print(e)
dyning's avatar
dyning committed
99
100
101
102
            return [[]]

        return [rec_res_final]

dyning's avatar
dyning committed
103
104
105
106
107
108
    @serving
    def serving_method(self, images, **kwargs):
        """
        Run as a service.
        """
        images_decode = [base64_to_cv2(image) for image in images]
dyning's avatar
dyning committed
109
        results = self.predict(images_decode, **kwargs)
dyning's avatar
dyning committed
110
111
        return results

WenmuZhou's avatar
WenmuZhou committed
112

dyning's avatar
dyning committed
113
114
115
116
117
118
119
if __name__ == '__main__':
    ocr = OCRRec()
    image_path = [
        './doc/imgs_words/ch/word_1.jpg',
        './doc/imgs_words/ch/word_2.jpg',
        './doc/imgs_words/ch/word_3.jpg',
    ]
dyning's avatar
dyning committed
120
    res = ocr.predict(paths=image_path)
WenmuZhou's avatar
WenmuZhou committed
121
    print(res)