whl.md 18.3 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# paddleocr package使用说明

## 快速上手

### 安装whl包

pip安装
```bash
pip install paddleocr
```

本地构建并安装
```bash
python setup.py bdist_wheel
WenmuZhou's avatar
WenmuZhou committed
15
pip install dist/paddleocr-0.0.3-py3-none-any.whl
WenmuZhou's avatar
WenmuZhou committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
```
### 1. 代码使用

* 检测+识别全流程
```python
from paddleocr import PaddleOCR, draw_ocr
ocr = PaddleOCR(model_storage_directory='./model') # need to run only once to load model into memory
img_path = 'PaddleOCR/doc/imgs/11.jpg'
result = ocr.ocr(img_path)
for line in result:
    print(line)

# 显示结果
from PIL import Image
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
im_show = draw_ocr(image, boxes, txts, scores, font_path='/path/to/PaddleOCR/doc/simfang.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```
结果是一个list,每个item包含了文本框,文字和识别置信度
```bash
[[[24.0, 36.0], [304.0, 34.0], [304.0, 72.0], [24.0, 74.0]], ['纯臻营养护发素', 0.964739]]
[[[24.0, 80.0], [172.0, 80.0], [172.0, 104.0], [24.0, 104.0]], ['产品信息/参数', 0.98069626]]
[[[24.0, 109.0], [333.0, 109.0], [333.0, 136.0], [24.0, 136.0]], ['(45元/每公斤,100公斤起订)', 0.9676722]]
[[[22.0, 140.0], [284.0, 140.0], [284.0, 167.0], [22.0, 167.0]], ['每瓶22元,1000瓶起订)', 0.97444016]]
[[[22.0, 174.0], [85.0, 174.0], [85.0, 198.0], [22.0, 198.0]], ['【品牌】', 0.8187138]]
[[[89.0, 176.0], [301.0, 176.0], [301.0, 196.0], [89.0, 196.0]], [':代加工方式/OEMODM', 0.9421848]]
[[[23.0, 205.0], [85.0, 205.0], [85.0, 229.0], [23.0, 229.0]], ['【品名】', 0.76008326]]
[[[88.0, 204.0], [235.0, 206.0], [235.0, 229.0], [88.0, 227.0]], [':纯臻营养护发素', 0.9633639]]
[[[23.0, 236.0], [121.0, 236.0], [121.0, 261.0], [23.0, 261.0]], ['【产品编号】', 0.84101385]]
[[[110.0, 239.0], [239.0, 239.0], [239.0, 256.0], [110.0, 256.0]], ['1:YM-X-3011', 0.8621878]]
[[[414.0, 233.0], [430.0, 233.0], [430.0, 304.0], [414.0, 304.0]], ['ODM OEM', 0.9084018]]
[[[23.0, 268.0], [183.0, 268.0], [183.0, 292.0], [23.0, 292.0]], ['【净含量】:220ml', 0.9278281]]
[[[24.0, 301.0], [118.0, 301.0], [118.0, 321.0], [24.0, 321.0]], ['【适用人群】', 0.90901047]]
[[[127.0, 300.0], [254.0, 300.0], [254.0, 323.0], [127.0, 323.0]], [':适合所有肤质', 0.95465785]]
[[[24.0, 332.0], [117.0, 332.0], [117.0, 353.0], [24.0, 353.0]], ['【主要成分】', 0.88936955]]
[[[139.0, 332.0], [236.0, 332.0], [236.0, 352.0], [139.0, 352.0]], ['鲸蜡硬脂醇', 0.9447544]]
[[[248.0, 332.0], [345.0, 332.0], [345.0, 352.0], [248.0, 352.0]], ['燕麦B-葡聚', 0.89748293]]
[[[54.0, 363.0], [232.0, 363.0], [232.0, 383.0], [54.0, 383.0]], [' 椰油酰胺丙基甜菜碱', 0.902023]]
[[[25.0, 364.0], [64.0, 364.0], [64.0, 383.0], [25.0, 383.0]], ['糖、', 0.985203]]
[[[244.0, 363.0], [281.0, 363.0], [281.0, 382.0], [244.0, 382.0]], ['泛服', 0.44537082]]
[[[367.0, 367.0], [475.0, 367.0], [475.0, 388.0], [367.0, 388.0]], ['(成品包材)', 0.9834532]]
[[[24.0, 395.0], [120.0, 395.0], [120.0, 416.0], [24.0, 416.0]], ['【主要功能】', 0.88684446]]
[[[128.0, 397.0], [273.0, 397.0], [273.0, 414.0], [128.0, 414.0]], [':可紧致头发磷层', 0.9342501]]
[[[265.0, 395.0], [361.0, 395.0], [361.0, 415.0], [265.0, 415.0]], ['琴,从而达到', 0.8253762]]
[[[25.0, 425.0], [372.0, 425.0], [372.0, 448.0], [25.0, 448.0]], ['即时持久改善头发光泽的效果,给干燥的头', 0.97785276]]
[[[26.0, 457.0], [137.0, 457.0], [137.0, 477.0], [26.0, 477.0]], ['发足够的滋养', 0.9577897]]
```
结果可视化

<div align="center">
    <img src="../imgs_results/whl/11_det_rec.jpg" width="800">
</div>

* 单独执行检测
```python
from paddleocr import PaddleOCR, draw_ocr
ocr = PaddleOCR(model_storage_directory='./model') # need to run only once to load model into memory
img_path = 'PaddleOCR/doc/imgs/11.jpg'
result = ocr.ocr(img_path,rec=False)
for line in result:
    print(line)

# 显示结果
from PIL import Image

image = Image.open(img_path).convert('RGB')
im_show = draw_ocr(image, result, txts=None, scores=None, font_path='/path/to/PaddleOCR/doc/simfang.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```
结果是一个list,每个item只包含文本框
```bash
[[26.0, 457.0], [137.0, 457.0], [137.0, 477.0], [26.0, 477.0]]
[[25.0, 425.0], [372.0, 425.0], [372.0, 448.0], [25.0, 448.0]]
[[128.0, 397.0], [273.0, 397.0], [273.0, 414.0], [128.0, 414.0]]
[[265.0, 395.0], [361.0, 395.0], [361.0, 415.0], [265.0, 415.0]]
[[24.0, 395.0], [120.0, 395.0], [120.0, 416.0], [24.0, 416.0]]
[[367.0, 367.0], [475.0, 367.0], [475.0, 388.0], [367.0, 388.0]]
[[54.0, 363.0], [232.0, 363.0], [232.0, 383.0], [54.0, 383.0]]
[[25.0, 364.0], [64.0, 364.0], [64.0, 383.0], [25.0, 383.0]]
[[244.0, 363.0], [281.0, 363.0], [281.0, 382.0], [244.0, 382.0]]
[[248.0, 332.0], [345.0, 332.0], [345.0, 352.0], [248.0, 352.0]]
[[139.0, 332.0], [236.0, 332.0], [236.0, 352.0], [139.0, 352.0]]
[[24.0, 332.0], [117.0, 332.0], [117.0, 353.0], [24.0, 353.0]]
[[127.0, 300.0], [254.0, 300.0], [254.0, 323.0], [127.0, 323.0]]
[[24.0, 301.0], [118.0, 301.0], [118.0, 321.0], [24.0, 321.0]]
[[23.0, 268.0], [183.0, 268.0], [183.0, 292.0], [23.0, 292.0]]
[[110.0, 239.0], [239.0, 239.0], [239.0, 256.0], [110.0, 256.0]]
[[23.0, 236.0], [121.0, 236.0], [121.0, 261.0], [23.0, 261.0]]
[[414.0, 233.0], [430.0, 233.0], [430.0, 304.0], [414.0, 304.0]]
[[88.0, 204.0], [235.0, 206.0], [235.0, 229.0], [88.0, 227.0]]
[[23.0, 205.0], [85.0, 205.0], [85.0, 229.0], [23.0, 229.0]]
[[89.0, 176.0], [301.0, 176.0], [301.0, 196.0], [89.0, 196.0]]
[[22.0, 174.0], [85.0, 174.0], [85.0, 198.0], [22.0, 198.0]]
[[22.0, 140.0], [284.0, 140.0], [284.0, 167.0], [22.0, 167.0]]
[[24.0, 109.0], [333.0, 109.0], [333.0, 136.0], [24.0, 136.0]]
[[24.0, 80.0], [172.0, 80.0], [172.0, 104.0], [24.0, 104.0]]
[[24.0, 36.0], [304.0, 34.0], [304.0, 72.0], [24.0, 74.0]]
```
结果可视化


<div align="center">
    <img src="../imgs_results/whl/11_det.jpg" width="800">
</div>

* 单独执行识别
```python
from paddleocr import PaddleOCR
ocr = PaddleOCR(model_storage_directory='./model') # need to run only once to load model into memory
img_path = 'PaddleOCR/doc/imgs_words/ch/word_1.jpg'
result = ocr.ocr(img_path,det=False)
for line in result:
    print(line)
```
结果是一个list,每个item只包含识别结果和识别置信度
```bash
['韩国小馆', 0.9907421]
```

### 通过命令行使用

查看帮助信息
```bash
paddleocr -h
```

* 检测+识别全流程
```bash
paddleocr --image_dir PaddleOCR/doc/imgs/11.jpg
```
结果是一个list,每个item包含了文本框,文字和识别置信度
```bash
[[[24.0, 36.0], [304.0, 34.0], [304.0, 72.0], [24.0, 74.0]], ['纯臻营养护发素', 0.964739]]
[[[24.0, 80.0], [172.0, 80.0], [172.0, 104.0], [24.0, 104.0]], ['产品信息/参数', 0.98069626]]
[[[24.0, 109.0], [333.0, 109.0], [333.0, 136.0], [24.0, 136.0]], ['(45元/每公斤,100公斤起订)', 0.9676722]]
[[[22.0, 140.0], [284.0, 140.0], [284.0, 167.0], [22.0, 167.0]], ['每瓶22元,1000瓶起订)', 0.97444016]]
[[[22.0, 174.0], [85.0, 174.0], [85.0, 198.0], [22.0, 198.0]], ['【品牌】', 0.8187138]]
[[[89.0, 176.0], [301.0, 176.0], [301.0, 196.0], [89.0, 196.0]], [':代加工方式/OEMODM', 0.9421848]]
[[[23.0, 205.0], [85.0, 205.0], [85.0, 229.0], [23.0, 229.0]], ['【品名】', 0.76008326]]
[[[88.0, 204.0], [235.0, 206.0], [235.0, 229.0], [88.0, 227.0]], [':纯臻营养护发素', 0.9633639]]
[[[23.0, 236.0], [121.0, 236.0], [121.0, 261.0], [23.0, 261.0]], ['【产品编号】', 0.84101385]]
[[[110.0, 239.0], [239.0, 239.0], [239.0, 256.0], [110.0, 256.0]], ['1:YM-X-3011', 0.8621878]]
[[[414.0, 233.0], [430.0, 233.0], [430.0, 304.0], [414.0, 304.0]], ['ODM OEM', 0.9084018]]
[[[23.0, 268.0], [183.0, 268.0], [183.0, 292.0], [23.0, 292.0]], ['【净含量】:220ml', 0.9278281]]
[[[24.0, 301.0], [118.0, 301.0], [118.0, 321.0], [24.0, 321.0]], ['【适用人群】', 0.90901047]]
[[[127.0, 300.0], [254.0, 300.0], [254.0, 323.0], [127.0, 323.0]], [':适合所有肤质', 0.95465785]]
[[[24.0, 332.0], [117.0, 332.0], [117.0, 353.0], [24.0, 353.0]], ['【主要成分】', 0.88936955]]
[[[139.0, 332.0], [236.0, 332.0], [236.0, 352.0], [139.0, 352.0]], ['鲸蜡硬脂醇', 0.9447544]]
[[[248.0, 332.0], [345.0, 332.0], [345.0, 352.0], [248.0, 352.0]], ['燕麦B-葡聚', 0.89748293]]
[[[54.0, 363.0], [232.0, 363.0], [232.0, 383.0], [54.0, 383.0]], [' 椰油酰胺丙基甜菜碱', 0.902023]]
[[[25.0, 364.0], [64.0, 364.0], [64.0, 383.0], [25.0, 383.0]], ['糖、', 0.985203]]
[[[244.0, 363.0], [281.0, 363.0], [281.0, 382.0], [244.0, 382.0]], ['泛服', 0.44537082]]
[[[367.0, 367.0], [475.0, 367.0], [475.0, 388.0], [367.0, 388.0]], ['(成品包材)', 0.9834532]]
[[[24.0, 395.0], [120.0, 395.0], [120.0, 416.0], [24.0, 416.0]], ['【主要功能】', 0.88684446]]
[[[128.0, 397.0], [273.0, 397.0], [273.0, 414.0], [128.0, 414.0]], [':可紧致头发磷层', 0.9342501]]
[[[265.0, 395.0], [361.0, 395.0], [361.0, 415.0], [265.0, 415.0]], ['琴,从而达到', 0.8253762]]
[[[25.0, 425.0], [372.0, 425.0], [372.0, 448.0], [25.0, 448.0]], ['即时持久改善头发光泽的效果,给干燥的头', 0.97785276]]
[[[26.0, 457.0], [137.0, 457.0], [137.0, 477.0], [26.0, 477.0]], ['发足够的滋养', 0.9577897]]
```

* 单独执行检测
```bash
paddleocr --image_dir PaddleOCR/doc/imgs/11.jpg --rec false
```
结果是一个list,每个item只包含文本框
```bash
[[26.0, 457.0], [137.0, 457.0], [137.0, 477.0], [26.0, 477.0]]
[[25.0, 425.0], [372.0, 425.0], [372.0, 448.0], [25.0, 448.0]]
[[128.0, 397.0], [273.0, 397.0], [273.0, 414.0], [128.0, 414.0]]
[[265.0, 395.0], [361.0, 395.0], [361.0, 415.0], [265.0, 415.0]]
[[24.0, 395.0], [120.0, 395.0], [120.0, 416.0], [24.0, 416.0]]
[[367.0, 367.0], [475.0, 367.0], [475.0, 388.0], [367.0, 388.0]]
[[54.0, 363.0], [232.0, 363.0], [232.0, 383.0], [54.0, 383.0]]
[[25.0, 364.0], [64.0, 364.0], [64.0, 383.0], [25.0, 383.0]]
[[244.0, 363.0], [281.0, 363.0], [281.0, 382.0], [244.0, 382.0]]
[[248.0, 332.0], [345.0, 332.0], [345.0, 352.0], [248.0, 352.0]]
[[139.0, 332.0], [236.0, 332.0], [236.0, 352.0], [139.0, 352.0]]
[[24.0, 332.0], [117.0, 332.0], [117.0, 353.0], [24.0, 353.0]]
[[127.0, 300.0], [254.0, 300.0], [254.0, 323.0], [127.0, 323.0]]
[[24.0, 301.0], [118.0, 301.0], [118.0, 321.0], [24.0, 321.0]]
[[23.0, 268.0], [183.0, 268.0], [183.0, 292.0], [23.0, 292.0]]
[[110.0, 239.0], [239.0, 239.0], [239.0, 256.0], [110.0, 256.0]]
[[23.0, 236.0], [121.0, 236.0], [121.0, 261.0], [23.0, 261.0]]
[[414.0, 233.0], [430.0, 233.0], [430.0, 304.0], [414.0, 304.0]]
[[88.0, 204.0], [235.0, 206.0], [235.0, 229.0], [88.0, 227.0]]
[[23.0, 205.0], [85.0, 205.0], [85.0, 229.0], [23.0, 229.0]]
[[89.0, 176.0], [301.0, 176.0], [301.0, 196.0], [89.0, 196.0]]
[[22.0, 174.0], [85.0, 174.0], [85.0, 198.0], [22.0, 198.0]]
[[22.0, 140.0], [284.0, 140.0], [284.0, 167.0], [22.0, 167.0]]
[[24.0, 109.0], [333.0, 109.0], [333.0, 136.0], [24.0, 136.0]]
[[24.0, 80.0], [172.0, 80.0], [172.0, 104.0], [24.0, 104.0]]
[[24.0, 36.0], [304.0, 34.0], [304.0, 72.0], [24.0, 74.0]]
```

* 单独执行识别
```bash
paddleocr --image_dir PaddleOCR/doc/imgs_words/ch/word_1.jpg --det false
```

结果是一个list,每个item只包含识别结果和识别置信度
```bash
['韩国小馆', 0.9907421]
```

## 参数说明

| 字段                    | 说明                                                                                                                                                                                                                 | 默认值                  |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| use_gpu                 | 是否使用GPU                                                                                                                                                                                                          | TRUE                    |
| gpu_mem                 | 初始化占用的GPU内存大小                                                                                                                                                                                              | 8000M                   |
| image_dir               | 通过命令行调用时执行预测的图片或文件夹路径                                                                                                                                                                           |                         |
| det_algorithm           | 使用的检测算法类型                                                                                                                                                                                                   | DB                      |
| det_model_name          | 有两种使用方式: 1. 检测算法名称,此名称必须在支持列表内(目前只内置了ch_det_mv3_db),传入错误参数时会显示支持的列表 2. 自己转换好的inference模型路径,此时模型路径下必须包含model和params文件。选择此方式时,需要手动指定det_algorithm的值 | ch_det_mv3_db           |
| det_max_side_len        | 检测算法前向时图片长边的最大尺寸,当长边超出这个值时会将长边resize到这个大小,短边等比例缩放                                                                                                                         | 960                     |
| det_db_thresh           | DB模型输出预测图的二值化阈值                                                                                                                                                                                         | 0.3                     |
| det_db_box_thresh       | DB模型输出框的阈值,低于此值的预测框会被丢弃                                                                                                                                                                           | 0.5                     |
| det_db_unclip_ratio     | DB模型输出框扩大的比例                                                                                                                                                                                               | 2                       |
| det_east_score_thresh   | EAST模型输出预测图的二值化阈值                                                                                                                                                                                       | 0.8                     |
| det_east_cover_thresh   | EAST模型输出框的阈值,低于此值的预测框会被丢弃                                                                                                                                                                         | 0.1                     |
| det_east_nms_thresh     | EAST模型输出框NMS的阈值                                                                                                                                                                                              | 0.2                     |
| rec_algorithm           | 使用的识别算法类型                                                                                                                                                                                                   | CRNN                    |
| rec_model_name          | 有两种使用方式: 1. 识别算法名称,此名称必须在支持列表内(目前支持CRNN,Rosetta,STAR,RARE等算法,但是内置的只有ch_rec_mv3_crnn_enhance),传入错误参数时会显示支持的列表 2. 自己转换好的inference模型路径,此时模型路径下必须包含model和params文件。选择此方式时,需要手动指定rec_algorithm的值 | ch_rec_mv3_crnn_enhance |
| rec_image_shape         | 识别算法的输入图片尺寸                                                                                                                                                                                             | "3,32,320"              |
| rec_char_type           | 识别算法的字符类型,中文(ch)或英文(en)                                                                                                                                                                               | ch                      |
| rec_batch_num           | 进行识别时,同时前向的图片数                                                                                                                                                                                         | 30                      |
| rec_char_dict_path      | 识别模型字典路径,当rec_model_name使用方式2传参时需要修改为自己的路径                                                                                                                                                |                         |
| use_space_char          | 是否识别空格                                                                                                                                                                                                         | TRUE                    |
| enable_mkldnn           | 是否启用mkldnn                                                                                                                                                                                                       | FALSE                   |
| model_storage_directory | 下载模型保存路径                                                                                                                                                                                                     | ~/.paddleocr                |
| det                     | 前向时使用启动检测                                                                                                                                                                                                   | TRUE                    |
| rec                     | 前向时是否启动识别                                                                                                                                                                                                   | TRUE                    |