multi_languages.md 9.8 KB
Newer Older
tink2123's avatar
tink2123 committed
1
2
# 多语言模型

tink2123's avatar
tink2123 committed
3
**近期更新**
tink2123's avatar
tink2123 committed
4

andyjpaddle's avatar
andyjpaddle committed
5
- 2022.5.8 更新`PP-OCRv3`版 多语言检测和识别模型,平均识别准确率提升5%以上。
tink2123's avatar
tink2123 committed
6
7
- 2021.4.9 支持**80种**语言的检测和识别
- 2021.4.9 支持**轻量高精度**英文模型检测识别
tink2123's avatar
tink2123 committed
8

tink2123's avatar
tink2123 committed
9
10
11
12
PaddleOCR 旨在打造一套丰富、领先、且实用的OCR工具库,不仅提供了通用场景下的中英文模型,也提供了专门在英文场景下训练的模型,
和覆盖[80个语言](#语种缩写)的小语种模型。

其中英文模型支持,大小写字母和常见标点的检测识别,并优化了空格字符的识别:
tink2123's avatar
tink2123 committed
13

tink2123's avatar
tink2123 committed
14
<div align="center">
tink2123's avatar
tink2123 committed
15
    <img src="../imgs_results/multi_lang/img_12.jpg" width="900" height="300">
tink2123's avatar
tink2123 committed
16
17
18
19
20
</div>

小语种模型覆盖了拉丁语系、阿拉伯语系、中文繁体、韩语、日语等等:

<div align="center">
tink2123's avatar
tink2123 committed
21
22
    <img src="../imgs_results/multi_lang/japan_2.jpg" width="600" height="300">
    <img src="../imgs_results/multi_lang/french_0.jpg" width="300" height="300">
tink2123's avatar
tink2123 committed
23
24
    <img src="../imgs_results/multi_lang/korean_0.jpg" width="500" height="300">
    <img src="../imgs_results/multi_lang/arabic_0.jpg" width="300" height="300">
tink2123's avatar
tink2123 committed
25
26
</div>

tink2123's avatar
tink2123 committed
27

tink2123's avatar
tink2123 committed
28
29
本文档将简要介绍小语种模型的使用方法。

tink2123's avatar
tink2123 committed
30
31
32
33
34
35
36
- [1 安装](#安装)
    - [1.1 paddle 安装](#paddle安装)
    - [1.2 paddleocr package 安装](#paddleocr_package_安装)  

- [2 快速使用](#快速使用)
    - [2.1 命令行运行](#命令行运行)
    - [2.2 python 脚本运行](#python_脚本运行)
tink2123's avatar
tink2123 committed
37
- [3 自定义训练](#自定义训练)
tink2123's avatar
tink2123 committed
38
- [4 预测部署](#预测部署)
tink2123's avatar
tink2123 committed
39
- [4 支持语种及缩写](#语种缩写)
tink2123's avatar
tink2123 committed
40

tink2123's avatar
tink2123 committed
41
<a name="安装"></a>
tink2123's avatar
tink2123 committed
42
43
## 1 安装

tink2123's avatar
tink2123 committed
44
<a name="paddle安装"></a>
tink2123's avatar
tink2123 committed
45
46
47
48
49
50
### 1.1 paddle 安装
```
# cpu
pip install paddlepaddle

# gpu
tink2123's avatar
tink2123 committed
51
pip install paddlepaddle-gpu
tink2123's avatar
tink2123 committed
52
```
tink2123's avatar
tink2123 committed
53
54

<a name="paddleocr_package_安装"></a>
tink2123's avatar
tink2123 committed
55
56
57
58
59
### 1.2 paddleocr package 安装


pip 安装
```
tink2123's avatar
tink2123 committed
60
pip install "paddleocr>=2.0.6" # 推荐使用2.0.6版本
tink2123's avatar
tink2123 committed
61
62
63
64
65
66
```
本地构建并安装
```
python3 setup.py bdist_wheel
pip3 install dist/paddleocr-x.x.x-py3-none-any.whl # x.x.x是paddleocr的版本号
```
tink2123's avatar
tink2123 committed
67
68

<a name="快速使用"></a>
tink2123's avatar
tink2123 committed
69
70
## 2 快速使用

tink2123's avatar
tink2123 committed
71
<a name="命令行运行"></a>
tink2123's avatar
tink2123 committed
72
73
74
75
76
77
78
79
### 2.1 命令行运行

查看帮助信息

```
paddleocr -h
```

tink2123's avatar
tink2123 committed
80
* 整图预测(检测+识别)
tink2123's avatar
tink2123 committed
81
82
83
84
85

Paddleocr目前支持80个语种,可以通过修改--lang参数进行切换,具体支持的[语种](#语种缩写)可查看表格。

``` bash

tink2123's avatar
tink2123 committed
86
paddleocr --image_dir doc/imgs_en/254.jpg --lang=en
tink2123's avatar
tink2123 committed
87
```
tink2123's avatar
tink2123 committed
88
89

<div align="center">
tink2123's avatar
tink2123 committed
90
91
    <img src="../imgs_en/254.jpg" width="300" height="600">
    <img src="../imgs_results/multi_lang/img_02.jpg" width="600" height="600">
tink2123's avatar
tink2123 committed
92
93
</div>

tink2123's avatar
tink2123 committed
94
95
96

结果是一个list,每个item包含了文本框,文字和识别置信度
```text
tink2123's avatar
tink2123 committed
97
98
99
100
101
102
103
[('PHO CAPITAL', 0.95723116), [[66.0, 50.0], [327.0, 44.0], [327.0, 76.0], [67.0, 82.0]]]
[('107 State Street', 0.96311164), [[72.0, 90.0], [451.0, 84.0], [452.0, 116.0], [73.0, 121.0]]]
[('Montpelier Vermont', 0.97389287), [[69.0, 132.0], [501.0, 126.0], [501.0, 158.0], [70.0, 164.0]]]
[('8022256183', 0.99810505), [[71.0, 175.0], [363.0, 170.0], [364.0, 202.0], [72.0, 207.0]]]
[('REG 07-24-201706:59 PM', 0.93537045), [[73.0, 299.0], [653.0, 281.0], [654.0, 318.0], [74.0, 336.0]]]
[('045555', 0.99346405), [[509.0, 331.0], [651.0, 325.0], [652.0, 356.0], [511.0, 362.0]]]
[('CT1', 0.9988654), [[535.0, 367.0], [654.0, 367.0], [654.0, 406.0], [535.0, 406.0]]]
tink2123's avatar
tink2123 committed
104
105
106
......
```

tink2123's avatar
tink2123 committed
107
* 识别预测
tink2123's avatar
tink2123 committed
108
109

```bash
tink2123's avatar
tink2123 committed
110
paddleocr --image_dir doc/imgs_words_en/word_308.png --det false --lang=en
tink2123's avatar
tink2123 committed
111
```
tink2123's avatar
tink2123 committed
112

tink2123's avatar
tink2123 committed
113
114
115
结果是一个tuple,返回识别结果和识别置信度

```text
tink2123's avatar
tink2123 committed
116
(0.99879867, 'LITTLE')
tink2123's avatar
tink2123 committed
117
118
```

tink2123's avatar
tink2123 committed
119
* 检测预测
tink2123's avatar
tink2123 committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133

```
paddleocr --image_dir PaddleOCR/doc/imgs/11.jpg --rec false
```

结果是一个list,每个item只包含文本框

```
[[26.0, 457.0], [137.0, 457.0], [137.0, 477.0], [26.0, 477.0]]
[[25.0, 425.0], [372.0, 425.0], [372.0, 448.0], [25.0, 448.0]]
[[128.0, 397.0], [273.0, 397.0], [273.0, 414.0], [128.0, 414.0]]
......
```

tink2123's avatar
tink2123 committed
134
<a name="python_脚本运行"></a>
tink2123's avatar
tink2123 committed
135
136
### 2.2 python 脚本运行

tink2123's avatar
tink2123 committed
137
ppocr 也支持在python脚本中运行,便于嵌入到您自己的代码中 :
tink2123's avatar
tink2123 committed
138

tink2123's avatar
tink2123 committed
139
* 整图预测(检测+识别)
tink2123's avatar
tink2123 committed
140
141
142
143
144
145
146
147

```
from paddleocr import PaddleOCR, draw_ocr

# 同样也是通过修改 lang 参数切换语种
ocr = PaddleOCR(lang="korean") # 首次执行会自动下载模型文件
img_path = 'doc/imgs/korean_1.jpg '
result = ocr.ocr(img_path)
tink2123's avatar
tink2123 committed
148
149
150
# 可通过参数控制单独执行识别、检测
# result = ocr.ocr(img_path, det=False) 只执行识别
# result = ocr.ocr(img_path, rec=False) 只执行检测
tink2123's avatar
tink2123 committed
151
152
153
154
155
156
157
158
159
160
# 打印检测框和识别结果
for line in result:
    print(line)

# 可视化
from PIL import Image
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
tink2123's avatar
tink2123 committed
161
im_show = draw_ocr(image, boxes, txts, scores, font_path='/path/to/PaddleOCR/doc/fonts/korean.ttf')
tink2123's avatar
tink2123 committed
162
163
164
165
166
167
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```

结果可视化:

tink2123's avatar
tink2123 committed
168
169
170
<div align="center">
    <img src="https://raw.githubusercontent.com/PaddlePaddle/PaddleOCR/release/2.1/doc/imgs_results/korean.jpg" width="800">
</div>
tink2123's avatar
tink2123 committed
171

tink2123's avatar
tink2123 committed
172
ppocr 还支持方向分类, 更多使用方式请参考:[whl包使用说明](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.0/doc/doc_ch/whl.md)
tink2123's avatar
tink2123 committed
173

tink2123's avatar
tink2123 committed
174
175
<a name="自定义训练"></a>
## 3 自定义训练
tink2123's avatar
tink2123 committed
176
177
178
179

ppocr 支持使用自己的数据进行自定义训练或finetune, 其中识别模型可以参考 [法语配置文件](../../configs/rec/multi_language/rec_french_lite_train.yml)
修改训练数据路径、字典等参数。

tink2123's avatar
tink2123 committed
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
详细数据准备、训练过程可参考:[文本识别](../doc_ch/recognition.md)[文本检测](../doc_ch/detection.md)

假设已经准备好了训练数据,可根据以下步骤快速启动训练:

- 修改配置文件

`rec_french_lite_train.yml` 为例:

```
Global:
  ...
  # 添加自定义字典,如修改字典请将路径指向新字典
  character_dict_path: ./ppocr/utils/dict/french_dict.txt
  ...
  # 识别空格
  use_space_char: True

...

Train:
  dataset:
    # 数据集格式,支持LMDBDataSet以及SimpleDataSet
    name: SimpleDataSet
    # 数据集路径
    data_dir: ./train_data/
    # 训练集标签文件
    label_file_list: ["./train_data/french_train.txt"]
    ...

Eval:
  dataset:
    # 数据集格式,支持LMDBDataSet以及SimpleDataSet
    name: SimpleDataSet
    # 数据集路径
    data_dir: ./train_data
    # 验证集标签文件
    label_file_list: ["./train_data/french_val.txt"]
    ...
```

- 启动训练:

```
# 下载预训练模型
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/french_mobile_v2.0_rec_train.tar
tar -xf french_mobile_v2.0_rec_train.tar

#加载预训练模型 单卡训练
python3 tools/train.py -c configs/rec/rec_french_lite_train.yml -o Global.pretrained_model=french_mobile_v2.0_rec_train/best_accuracy

#加载预训练模型  多卡训练,通过--gpus参数指定卡号
python3 -m paddle.distributed.launch --gpus '0,1,2,3'  tools/train.py -c configs/rec/rec_french_lite_train.yml -o Global.pretrained_model=french_mobile_v2.0_rec_train/best_accuracy
```


更多功能如预测部署、数据标注等功能可以阅读完整的[文档教程](../../README_ch.md)
tink2123's avatar
tink2123 committed
236

tink2123's avatar
tink2123 committed
237
238
239
240
241
242
243
244
245
246
247
248
<a name="预测部署"></a>
## 4 预测部署

除了安装whl包进行快速预测,ppocr 也提供了多种预测部署方式,如有需求可阅读相关文档:
- [基于Python脚本预测引擎推理](./inference.md)
- [基于C++预测引擎推理](../../deploy/cpp_infer/readme.md)
- [服务化部署](../../deploy/hubserving/readme.md)
- [端侧部署](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/deploy/lite/readme.md)
- [Benchmark](./benchmark.md)



tink2123's avatar
tink2123 committed
249
<a name="语种缩写"></a>
tink2123's avatar
tink2123 committed
250
251
252
253
254
255
256
257
## 5 支持语种及缩写

| 语种 | 描述 | 缩写 | | 语种 | 描述 | 缩写 |
| --- | --- | --- | ---|--- | --- | --- |
|中文|chinese and english|ch| |保加利亚文|Bulgarian |bg|
|英文|english|en| |乌克兰文|Ukranian|uk|
|法文|french|fr| |白俄罗斯文|Belarusian|be|
|德文|german|german| |泰卢固文|Telugu |te|
andyjpaddle's avatar
andyjpaddle committed
258
|日文|japan|japan| | 阿巴扎文 |Abaza | abq |
tink2123's avatar
tink2123 committed
259
|韩文|korean|korean| |泰米尔文|Tamil |ta|
Leif's avatar
Leif committed
260
|中文繁体|chinese traditional |chinese_cht| |南非荷兰文 |Afrikaans |af|
tink2123's avatar
tink2123 committed
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
|意大利文| Italian |it| |阿塞拜疆文 |Azerbaijani    |az|
|西班牙文|Spanish |es| |波斯尼亚文|Bosnian|bs|
|葡萄牙文| Portuguese|pt| |捷克文|Czech|cs|
|俄罗斯文|Russia|ru| |威尔士文 |Welsh |cy|
|阿拉伯文|Arabic|ar| |丹麦文 |Danish|da|
|印地文|Hindi|hi| |爱沙尼亚文 |Estonian |et|
|维吾尔|Uyghur|ug| |爱尔兰文 |Irish |ga|
|波斯文|Persian|fa| |克罗地亚文|Croatian |hr|
|乌尔都文|Urdu|ur| |匈牙利文|Hungarian |hu|
|塞尔维亚文(latin)| Serbian(latin) |rs_latin| |印尼文|Indonesian|id|
|欧西坦文|Occitan |oc| |冰岛文 |Icelandic|is|
|马拉地文|Marathi|mr| |库尔德文 |Kurdish|ku|
|尼泊尔文|Nepali|ne| |立陶宛文|Lithuanian |lt|
|塞尔维亚文(cyrillic)|Serbian(cyrillic)|rs_cyrillic| |拉脱维亚文 |Latvian |lv|
|毛利文|Maori|mi| | 达尔瓦文|Dargwa |dar|
|马来文 |Malay|ms| | 因古什文|Ingush |inh|
|马耳他文 |Maltese |mt| | 拉克文|Lak |lbe|
|荷兰文 |Dutch |nl| | 莱兹甘文|Lezghian |lez|
|挪威文 |Norwegian |no| |塔巴萨兰文 |Tabassaran |tab|
|波兰文|Polish |pl| | 比尔哈文|Bihari |bh|
| 罗马尼亚文|Romanian |ro| | 迈蒂利文|Maithili |mai|
| 斯洛伐克文|Slovak |sk| | 昂加文|Angika |ang|
| 斯洛文尼亚文|Slovenian |sl| | 孟加拉文|Bhojpuri |bho|
| 阿尔巴尼亚文|Albanian |sq| | 摩揭陀文 |Magahi |mah|
| 瑞典文|Swedish |sv| | 那格浦尔文|Nagpur |sck|
| 西瓦希里文|Swahili |sw| | 尼瓦尔文|Newari |new|
| 塔加洛文|Tagalog |tl| | 保加利亚文 |Goan Konkani|gom|
| 土耳其文|Turkish |tr| | 沙特阿拉伯文|Saudi Arabia|sa|
| 乌兹别克文|Uzbek |uz| | 阿瓦尔文|Avar |ava|
| 越南文|Vietnamese |vi| | 阿瓦尔文|Avar |ava|
| 蒙古文|Mongolian |mn| | 阿迪赫文|Adyghe |ady|