rec_nrtr_optim_head.py 33.3 KB
Newer Older
Topdu's avatar
Topdu committed
1
2
3
4
5
6
7
8
9
import math
import paddle
import copy
from  paddle import nn
import paddle.nn.functional as F
from paddle.nn import LayerList
from paddle.nn.initializer import XavierNormal as xavier_uniform_
from paddle.nn import Dropout, Linear, LayerNorm, Conv2D
import numpy as np
Topdu's avatar
Topdu committed
10
<<<<<<< HEAD
Topdu's avatar
Topdu committed
11
from ppocr.modeling.heads.multiheadAttention import MultiheadAttentionOptim
Topdu's avatar
Topdu committed
12
13
14
=======
from ppocr.modeling.backbones.multiheadAttention import MultiheadAttentionOptim
>>>>>>> 9c67a7f... add rec_nrtr
Topdu's avatar
Topdu committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
from paddle.nn.initializer import Constant as constant_
from paddle.nn.initializer import XavierNormal as xavier_normal_

zeros_ = constant_(value=0.)
ones_ = constant_(value=1.)

class TransformerOptim(nn.Layer):
    r"""A transformer model. User is able to modify the attributes as needed. The architechture
    is based on the paper "Attention Is All You Need". Ashish Vaswani, Noam Shazeer,
    Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and
    Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information
    Processing Systems, pages 6000-6010.

    Args:
        d_model: the number of expected features in the encoder/decoder inputs (default=512).
        nhead: the number of heads in the multiheadattention models (default=8).
        num_encoder_layers: the number of sub-encoder-layers in the encoder (default=6).
        num_decoder_layers: the number of sub-decoder-layers in the decoder (default=6).
        dim_feedforward: the dimension of the feedforward network model (default=2048).
        dropout: the dropout value (default=0.1).
        custom_encoder: custom encoder (default=None).
        custom_decoder: custom decoder (default=None).

    Examples::
        >>> transformer_model = nn.Transformer(src_vocab, tgt_vocab)
        >>> transformer_model = nn.Transformer(src_vocab, tgt_vocab, nhead=16, num_encoder_layers=12)
    """

    def __init__(self, d_model=512, nhead=8, num_encoder_layers=6, beam_size=0,
                 num_decoder_layers=6, dim_feedforward=1024, attention_dropout_rate=0.0, residual_dropout_rate=0.1,
                 custom_encoder=None, custom_decoder=None,in_channels=0,out_channels=0,dst_vocab_size=99,scale_embedding=True):
        super(TransformerOptim, self).__init__()
        self.embedding = Embeddings(
            d_model=d_model,
            vocab=dst_vocab_size,
            padding_idx=0,
            scale_embedding=scale_embedding
        )
        self.positional_encoding = PositionalEncoding(
            dropout=residual_dropout_rate,
            dim=d_model,
        )
        if custom_encoder is not None:
            self.encoder = custom_encoder
        else:
            if num_encoder_layers > 0 :
                encoder_layer = TransformerEncoderLayer(d_model, nhead, dim_feedforward, attention_dropout_rate, residual_dropout_rate)
            
                self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers)
            else:
                self.encoder = None

        if custom_decoder is not None:
            self.decoder = custom_decoder
        else:
            decoder_layer = TransformerDecoderLayer(d_model, nhead, dim_feedforward, attention_dropout_rate, residual_dropout_rate)
            self.decoder = TransformerDecoder(decoder_layer, num_decoder_layers)

        self._reset_parameters()
        self.beam_size = beam_size
        self.d_model = d_model
        self.nhead = nhead
        self.tgt_word_prj = nn.Linear(d_model, dst_vocab_size, bias_attr=False)
        w0 = np.random.normal(0.0, d_model**-0.5,(d_model, dst_vocab_size)).astype(np.float32)
        self.tgt_word_prj.weight.set_value(w0)
        self.apply(self._init_weights)
       

    def _init_weights(self, m):
        
        if isinstance(m, nn.Conv2D):
            xavier_normal_(m.weight)
            if m.bias is not None:
                zeros_(m.bias)

    def forward_train(self,src,tgt):
            tgt = tgt[:, :-1]

            
 
            tgt_key_padding_mask = self.generate_padding_mask(tgt)
            tgt = self.embedding(tgt).transpose([1, 0, 2])
            tgt = self.positional_encoding(tgt)
            tgt_mask = self.generate_square_subsequent_mask(tgt.shape[0])

            if self.encoder is not None :
                src = self.positional_encoding(src.transpose([1, 0, 2]))
                memory = self.encoder(src)
            else:
                memory = src.squeeze(2).transpose([2, 0, 1])
            output = self.decoder(tgt, memory, tgt_mask=tgt_mask, memory_mask=None,
                                tgt_key_padding_mask=tgt_key_padding_mask,
                                memory_key_padding_mask=None)
            output = output.transpose([1, 0, 2])
            logit = self.tgt_word_prj(output)
            return logit

    def forward(self, src, tgt=None):
        r"""Take in and process masked source/target sequences.

        Args:
            src: the sequence to the encoder (required).
            tgt: the sequence to the decoder (required).
            src_mask: the additive mask for the src sequence (optional).
            tgt_mask: the additive mask for the tgt sequence (optional).
            memory_mask: the additive mask for the encoder output (optional).
            src_key_padding_mask: the ByteTensor mask for src keys per batch (optional).
            tgt_key_padding_mask: the ByteTensor mask for tgt keys per batch (optional).
            memory_key_padding_mask: the ByteTensor mask for memory keys per batch (optional).

        Shape:
            - src: :math:`(S, N, E)`.
            - tgt: :math:`(T, N, E)`.
            - src_mask: :math:`(S, S)`.
            - tgt_mask: :math:`(T, T)`.
            - memory_mask: :math:`(T, S)`.
            - src_key_padding_mask: :math:`(N, S)`.
            - tgt_key_padding_mask: :math:`(N, T)`.
            - memory_key_padding_mask: :math:`(N, S)`.

            Note: [src/tgt/memory]_mask should be filled with
            float('-inf') for the masked positions and float(0.0) else. These masks
            ensure that predictions for position i depend only on the unmasked positions
            j and are applied identically for each sequence in a batch.
            [src/tgt/memory]_key_padding_mask should be a ByteTensor where True values are positions
            that should be masked with float('-inf') and False values will be unchanged.
            This mask ensures that no information will be taken from position i if
            it is masked, and has a separate mask for each sequence in a batch.

            - output: :math:`(T, N, E)`.

            Note: Due to the multi-head attention architecture in the transformer model,
            the output sequence length of a transformer is same as the input sequence
            (i.e. target) length of the decode.

            where S is the source sequence length, T is the target sequence length, N is the
            batch size, E is the feature number

        Examples:
            >>> output = transformer_model(src, tgt, src_mask=src_mask, tgt_mask=tgt_mask)
        """
        if tgt is not None:
            return self.forward_train(src, tgt)
        else:
            if self.beam_size > 0 :
                return self.forward_beam(src)
            else:
                return self.forward_test(src)

    def forward_test(self, src):
        bs = src.shape[0]
        if self.encoder is not None :
            src = self.positional_encoding(src.transpose([1, 0, 2]))
            memory = self.encoder(src)
        else:
            memory = src.squeeze(2).transpose([2, 0, 1])
        dec_seq = paddle.full((bs,1), 2, dtype=paddle.int64)
        for len_dec_seq in range(1, 25):
            src_enc = memory.clone()
            tgt_key_padding_mask = self.generate_padding_mask(dec_seq)
            dec_seq_embed = self.embedding(dec_seq).transpose([1, 0, 2])
            dec_seq_embed = self.positional_encoding(dec_seq_embed)
            tgt_mask = self.generate_square_subsequent_mask(dec_seq_embed.shape[0])
            output = self.decoder(dec_seq_embed, src_enc, tgt_mask=tgt_mask, memory_mask=None,
                                tgt_key_padding_mask=tgt_key_padding_mask,
                                memory_key_padding_mask=None)
            dec_output = output.transpose([1, 0, 2])
            
            dec_output = dec_output[:, -1, :]  # Pick the last step: (bh * bm) * d_h
            word_prob = F.log_softmax(self.tgt_word_prj(dec_output), axis=1)
            word_prob = word_prob.reshape([1, bs, -1])
            preds_idx = word_prob.argmax(axis=2)
            
            if paddle.equal_all(preds_idx[-1],paddle.full(preds_idx[-1].shape,3,dtype='int64')):
                break

            preds_prob = word_prob.max(axis=2)
            dec_seq = paddle.concat([dec_seq,preds_idx.reshape([-1,1])],axis=1)

        return dec_seq   

    def forward_beam(self,images):
             
        ''' Translation work in one batch '''

        def get_inst_idx_to_tensor_position_map(inst_idx_list):
            ''' Indicate the position of an instance in a tensor. '''
            return {inst_idx: tensor_position for tensor_position, inst_idx in enumerate(inst_idx_list)}

        def collect_active_part(beamed_tensor, curr_active_inst_idx, n_prev_active_inst, n_bm):
            ''' Collect tensor parts associated to active instances. '''

            _, *d_hs = beamed_tensor.shape
            n_curr_active_inst = len(curr_active_inst_idx)
            new_shape = (n_curr_active_inst * n_bm, *d_hs)

            beamed_tensor = beamed_tensor.reshape([n_prev_active_inst, -1])#contiguous()
            beamed_tensor = beamed_tensor.index_select(paddle.to_tensor(curr_active_inst_idx),axis=0)
            beamed_tensor = beamed_tensor.reshape([*new_shape])

            return beamed_tensor


        def collate_active_info(
                src_enc, inst_idx_to_position_map, active_inst_idx_list):
            # Sentences which are still active are collected,
            # so the decoder will not run on completed sentences.
           
            n_prev_active_inst = len(inst_idx_to_position_map)
            active_inst_idx = [inst_idx_to_position_map[k] for k in active_inst_idx_list]
            active_inst_idx = paddle.to_tensor(active_inst_idx, dtype='int64')
            active_src_enc = collect_active_part(src_enc.transpose([1, 0, 2]), active_inst_idx, n_prev_active_inst, n_bm).transpose([1, 0, 2])
            active_inst_idx_to_position_map = get_inst_idx_to_tensor_position_map(active_inst_idx_list)
            return active_src_enc, active_inst_idx_to_position_map

        def beam_decode_step(
                inst_dec_beams, len_dec_seq, enc_output, inst_idx_to_position_map, n_bm, memory_key_padding_mask):
            ''' Decode and update beam status, and then return active beam idx '''

            def prepare_beam_dec_seq(inst_dec_beams, len_dec_seq):
                dec_partial_seq = [b.get_current_state() for b in inst_dec_beams if not b.done]
                dec_partial_seq = paddle.stack(dec_partial_seq)
                
                dec_partial_seq = dec_partial_seq.reshape([-1, len_dec_seq])
                return dec_partial_seq

            def prepare_beam_memory_key_padding_mask(inst_dec_beams, memory_key_padding_mask, n_bm):
                keep = []
                for idx in (memory_key_padding_mask):
                    if not inst_dec_beams[idx].done:
                        keep.append(idx)
                memory_key_padding_mask = memory_key_padding_mask[paddle.to_tensor(keep)]
                len_s = memory_key_padding_mask.shape[-1]
                n_inst = memory_key_padding_mask.shape[0]
                memory_key_padding_mask = paddle.concat([memory_key_padding_mask for i in range(n_bm)],axis=1)
                memory_key_padding_mask = memory_key_padding_mask.reshape([n_inst * n_bm, len_s])#repeat(1, n_bm)
                return memory_key_padding_mask

            def predict_word(dec_seq, enc_output, n_active_inst, n_bm, memory_key_padding_mask):
                tgt_key_padding_mask = self.generate_padding_mask(dec_seq)
                dec_seq = self.embedding(dec_seq).transpose([1, 0, 2])
                dec_seq = self.positional_encoding(dec_seq)
                tgt_mask = self.generate_square_subsequent_mask(dec_seq.shape[0])
                dec_output = self.decoder(
                    dec_seq, enc_output,
                    tgt_mask=tgt_mask,
                    tgt_key_padding_mask=tgt_key_padding_mask,
                    memory_key_padding_mask=memory_key_padding_mask,
                ).transpose([1, 0, 2])
                dec_output = dec_output[:, -1, :]  # Pick the last step: (bh * bm) * d_h
                word_prob = F.log_softmax(self.tgt_word_prj(dec_output), axis=1)
                word_prob = word_prob.reshape([n_active_inst, n_bm, -1])
                return word_prob

            def collect_active_inst_idx_list(inst_beams, word_prob, inst_idx_to_position_map):
                active_inst_idx_list = []
                for inst_idx, inst_position in inst_idx_to_position_map.items():
                    is_inst_complete = inst_beams[inst_idx].advance(word_prob[inst_position])
                    if not is_inst_complete:
                        active_inst_idx_list += [inst_idx]

                return active_inst_idx_list

            n_active_inst = len(inst_idx_to_position_map)
            dec_seq = prepare_beam_dec_seq(inst_dec_beams, len_dec_seq)
            memory_key_padding_mask = None
            word_prob = predict_word(dec_seq, enc_output, n_active_inst, n_bm, memory_key_padding_mask)
            # Update the beam with predicted word prob information and collect incomplete instances
            active_inst_idx_list = collect_active_inst_idx_list(
                inst_dec_beams, word_prob, inst_idx_to_position_map)
            return active_inst_idx_list

        def collect_hypothesis_and_scores(inst_dec_beams, n_best):
            all_hyp, all_scores = [], []
            for inst_idx in range(len(inst_dec_beams)):
                scores, tail_idxs = inst_dec_beams[inst_idx].sort_scores()
                all_scores += [scores[:n_best]]
                hyps = [inst_dec_beams[inst_idx].get_hypothesis(i) for i in tail_idxs[:n_best]]
                all_hyp += [hyps]
            return all_hyp, all_scores

        with paddle.no_grad():
            #-- Encode
 
            if self.encoder is not None :
                src = self.positional_encoding(images.transpose([1, 0, 2]))
                src_enc = self.encoder(src).transpose([1, 0, 2])
            else:
                src_enc = images.squeeze(2).transpose([0, 2, 1])

            #-- Repeat data for beam search
            n_bm = self.beam_size
            n_inst, len_s, d_h = src_enc.shape
            src_enc = paddle.concat([src_enc for i in range(n_bm)],axis=1)
            src_enc = src_enc.reshape([n_inst * n_bm, len_s, d_h]).transpose([1, 0, 2])#repeat(1, n_bm, 1)
            #-- Prepare beams
            inst_dec_beams = [Beam(n_bm) for _ in range(n_inst)]

            #-- Bookkeeping for active or not
            active_inst_idx_list = list(range(n_inst))
            inst_idx_to_position_map = get_inst_idx_to_tensor_position_map(active_inst_idx_list)
            #-- Decode
            for len_dec_seq in range(1, 25):
                src_enc_copy = src_enc.clone()
                active_inst_idx_list = beam_decode_step(
                    inst_dec_beams, len_dec_seq, src_enc_copy, inst_idx_to_position_map, n_bm, None)
                if not active_inst_idx_list:
                    break  # all instances have finished their path to <EOS>
                src_enc, inst_idx_to_position_map = collate_active_info(
                    src_enc_copy, inst_idx_to_position_map, active_inst_idx_list)
        batch_hyp, batch_scores = collect_hypothesis_and_scores(inst_dec_beams, 1)
        result_hyp = []
        for bs_hyp in batch_hyp:
            bs_hyp_pad =bs_hyp[0]+[3]*(25-len(bs_hyp[0]))
            result_hyp.append(bs_hyp_pad)
        return paddle.to_tensor(np.array(result_hyp),dtype=paddle.int64)

    def generate_square_subsequent_mask(self, sz):
        r"""Generate a square mask for the sequence. The masked positions are filled with float('-inf').
            Unmasked positions are filled with float(0.0).
        """
        mask = paddle.zeros([sz, sz],dtype='float32')
        mask_inf = paddle.triu(paddle.full(shape=[sz,sz], dtype='float32', fill_value='-inf'),diagonal=1)
        mask = mask+mask_inf
        return mask

    def generate_padding_mask(self, x):
        padding_mask = x.equal(paddle.to_tensor(0,dtype=x.dtype))
        return padding_mask

    def _reset_parameters(self):
        r"""Initiate parameters in the transformer model."""

        for p in self.parameters():
            if p.dim() > 1:
                xavier_uniform_(p)


class TransformerEncoder(nn.Layer):
    r"""TransformerEncoder is a stack of N encoder layers

    Args:
        encoder_layer: an instance of the TransformerEncoderLayer() class (required).
        num_layers: the number of sub-encoder-layers in the encoder (required).
        norm: the layer normalization component (optional).

    Examples::
        >>> encoder_layer = nn.TransformerEncoderLayer(d_model, nhead)
        >>> transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers)
    """

    def __init__(self, encoder_layer, num_layers):
        super(TransformerEncoder, self).__init__()
        self.layers = _get_clones(encoder_layer, num_layers)
        self.num_layers = num_layers


    def forward(self, src):
        r"""Pass the input through the endocder layers in turn.

        Args:
            src: the sequnce to the encoder (required).
            mask: the mask for the src sequence (optional).
            src_key_padding_mask: the mask for the src keys per batch (optional).

        Shape:
            see the docs in Transformer class.
        """
        output = src

        for i in range(self.num_layers):
            output = self.layers[i](output, src_mask=None,
                                    src_key_padding_mask=None)

        return output


class TransformerDecoder(nn.Layer):
    r"""TransformerDecoder is a stack of N decoder layers

    Args:
        decoder_layer: an instance of the TransformerDecoderLayer() class (required).
        num_layers: the number of sub-decoder-layers in the decoder (required).
        norm: the layer normalization component (optional).

    Examples::
        >>> decoder_layer = nn.TransformerDecoderLayer(d_model, nhead)
        >>> transformer_decoder = nn.TransformerDecoder(decoder_layer, num_layers)
    """

    def __init__(self, decoder_layer, num_layers):
        super(TransformerDecoder, self).__init__()
        self.layers = _get_clones(decoder_layer, num_layers)
        self.num_layers = num_layers
        

    def forward(self, tgt, memory, tgt_mask=None,
                memory_mask=None, tgt_key_padding_mask=None,
                memory_key_padding_mask=None):
        r"""Pass the inputs (and mask) through the decoder layer in turn.

        Args:
            tgt: the sequence to the decoder (required).
            memory: the sequnce from the last layer of the encoder (required).
            tgt_mask: the mask for the tgt sequence (optional).
            memory_mask: the mask for the memory sequence (optional).
            tgt_key_padding_mask: the mask for the tgt keys per batch (optional).
            memory_key_padding_mask: the mask for the memory keys per batch (optional).

        Shape:
            see the docs in Transformer class.
        """
        output = tgt
        for i in range(self.num_layers):
            output = self.layers[i](output, memory, tgt_mask=tgt_mask,
                                    memory_mask=memory_mask,
                                    tgt_key_padding_mask=tgt_key_padding_mask,
                                    memory_key_padding_mask=memory_key_padding_mask)

        return output

class TransformerEncoderLayer(nn.Layer):
    r"""TransformerEncoderLayer is made up of self-attn and feedforward network.
    This standard encoder layer is based on the paper "Attention Is All You Need".
    Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
    Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
    Neural Information Processing Systems, pages 6000-6010. Users may modify or implement
    in a different way during application.

    Args:
        d_model: the number of expected features in the input (required).
        nhead: the number of heads in the multiheadattention models (required).
        dim_feedforward: the dimension of the feedforward network model (default=2048).
        dropout: the dropout value (default=0.1).

    Examples::
        >>> encoder_layer = nn.TransformerEncoderLayer(d_model, nhead)
    """

    def __init__(self, d_model, nhead, dim_feedforward=2048, attention_dropout_rate=0.0, residual_dropout_rate=0.1):
        super(TransformerEncoderLayer, self).__init__()
        self.self_attn = MultiheadAttentionOptim(d_model, nhead, dropout=attention_dropout_rate)

        self.conv1 = Conv2D(in_channels=d_model, out_channels=dim_feedforward, kernel_size=(1, 1))
        self.conv2 = Conv2D(in_channels=dim_feedforward, out_channels=d_model, kernel_size=(1, 1))

        self.norm1 = LayerNorm(d_model)
        self.norm2 = LayerNorm(d_model)
        self.dropout1 = Dropout(residual_dropout_rate)
        self.dropout2 = Dropout(residual_dropout_rate)

    def forward(self, src, src_mask=None, src_key_padding_mask=None):
        r"""Pass the input through the endocder layer.

        Args:
            src: the sequnce to the encoder layer (required).
            src_mask: the mask for the src sequence (optional).
            src_key_padding_mask: the mask for the src keys per batch (optional).

        Shape:
            see the docs in Transformer class.
        """
        src2 = self.self_attn(src, src, src, attn_mask=src_mask,
                              key_padding_mask=src_key_padding_mask)[0]
        src = src + self.dropout1(src2)
        src = self.norm1(src)

        src = src.transpose([1, 2, 0])
        src = paddle.unsqueeze(src, 2)
        src2 = self.conv2(F.relu(self.conv1(src)))
        src2 = paddle.squeeze(src2, 2)
        src2 = src2.transpose([2, 0, 1])
        src = paddle.squeeze(src, 2)
        src = src.transpose([2, 0, 1])

        src = src + self.dropout2(src2)
        src = self.norm2(src)
        return src

class TransformerDecoderLayer(nn.Layer):
    r"""TransformerDecoderLayer is made up of self-attn, multi-head-attn and feedforward network.
    This standard decoder layer is based on the paper "Attention Is All You Need".
    Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
    Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
    Neural Information Processing Systems, pages 6000-6010. Users may modify or implement
    in a different way during application.

    Args:
        d_model: the number of expected features in the input (required).
        nhead: the number of heads in the multiheadattention models (required).
        dim_feedforward: the dimension of the feedforward network model (default=2048).
        dropout: the dropout value (default=0.1).

    Examples::
        >>> decoder_layer = nn.TransformerDecoderLayer(d_model, nhead)
    """

    def __init__(self, d_model, nhead, dim_feedforward=2048, attention_dropout_rate=0.0, residual_dropout_rate=0.1):
        super(TransformerDecoderLayer, self).__init__()
        self.self_attn = MultiheadAttentionOptim(d_model, nhead, dropout=attention_dropout_rate)
        self.multihead_attn = MultiheadAttentionOptim(d_model, nhead, dropout=attention_dropout_rate)

        self.conv1 = Conv2D(in_channels=d_model, out_channels=dim_feedforward, kernel_size=(1, 1))
        self.conv2 = Conv2D(in_channels=dim_feedforward, out_channels=d_model, kernel_size=(1, 1))

        self.norm1 = LayerNorm(d_model)
        self.norm2 = LayerNorm(d_model)
        self.norm3 = LayerNorm(d_model)
        self.dropout1 = Dropout(residual_dropout_rate)
        self.dropout2 = Dropout(residual_dropout_rate)
        self.dropout3 = Dropout(residual_dropout_rate)

    def forward(self, tgt, memory, tgt_mask=None, memory_mask=None,
                tgt_key_padding_mask=None, memory_key_padding_mask=None):
        r"""Pass the inputs (and mask) through the decoder layer.

        Args:
            tgt: the sequence to the decoder layer (required).
            memory: the sequnce from the last layer of the encoder (required).
            tgt_mask: the mask for the tgt sequence (optional).
            memory_mask: the mask for the memory sequence (optional).
            tgt_key_padding_mask: the mask for the tgt keys per batch (optional).
            memory_key_padding_mask: the mask for the memory keys per batch (optional).

        Shape:
            see the docs in Transformer class.
        """
        tgt2 = self.self_attn(tgt, tgt, tgt, attn_mask=tgt_mask,
                              key_padding_mask=tgt_key_padding_mask)[0]
        tgt = tgt + self.dropout1(tgt2)
        tgt = self.norm1(tgt)
        tgt2 = self.multihead_attn(tgt, memory, memory, attn_mask=memory_mask,
                                   key_padding_mask=memory_key_padding_mask)[0]
        tgt = tgt + self.dropout2(tgt2)
        tgt = self.norm2(tgt)

        # default
        tgt = tgt.transpose([1, 2, 0])
        tgt = paddle.unsqueeze(tgt, 2)
        tgt2 = self.conv2(F.relu(self.conv1(tgt)))
        tgt2 = paddle.squeeze(tgt2, 2)
        tgt2 = tgt2.transpose([2, 0, 1])
        tgt = paddle.squeeze(tgt, 2)
        tgt = tgt.transpose([2, 0, 1])

        tgt = tgt + self.dropout3(tgt2)
        tgt = self.norm3(tgt)
        return tgt


def _get_clones(module, N):
    return LayerList([copy.deepcopy(module) for i in range(N)])



class PositionalEncoding(nn.Layer):
    r"""Inject some information about the relative or absolute position of the tokens
        in the sequence. The positional encodings have the same dimension as
        the embeddings, so that the two can be summed. Here, we use sine and cosine
        functions of different frequencies.
    .. math::
        \text{PosEncoder}(pos, 2i) = sin(pos/10000^(2i/d_model))
        \text{PosEncoder}(pos, 2i+1) = cos(pos/10000^(2i/d_model))
        \text{where pos is the word position and i is the embed idx)
    Args:
        d_model: the embed dim (required).
        dropout: the dropout value (default=0.1).
        max_len: the max. length of the incoming sequence (default=5000).
    Examples:
        >>> pos_encoder = PositionalEncoding(d_model)
    """

    def __init__(self, dropout, dim, max_len=5000):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(p=dropout)

        pe = paddle.zeros([max_len, dim])
        position = paddle.arange(0, max_len, dtype=paddle.float32).unsqueeze(1)
        div_term = paddle.exp(paddle.arange(0, dim, 2).astype('float32') * (-math.log(10000.0) / dim))
        pe[:, 0::2] = paddle.sin(position * div_term)
        pe[:, 1::2] = paddle.cos(position * div_term)
        pe = pe.unsqueeze(0)
        pe = pe.transpose([1, 0, 2])
        self.register_buffer('pe', pe)

    def forward(self, x):
        r"""Inputs of forward function
        Args:
            x: the sequence fed to the positional encoder model (required).
        Shape:
            x: [sequence length, batch size, embed dim]
            output: [sequence length, batch size, embed dim]
        Examples:
            >>> output = pos_encoder(x)
        """
        x = x + self.pe[:x.shape[0], :]
        return self.dropout(x)


class PositionalEncoding_2d(nn.Layer):
    r"""Inject some information about the relative or absolute position of the tokens
        in the sequence. The positional encodings have the same dimension as
        the embeddings, so that the two can be summed. Here, we use sine and cosine
        functions of different frequencies.
    .. math::
        \text{PosEncoder}(pos, 2i) = sin(pos/10000^(2i/d_model))
        \text{PosEncoder}(pos, 2i+1) = cos(pos/10000^(2i/d_model))
        \text{where pos is the word position and i is the embed idx)
    Args:
        d_model: the embed dim (required).
        dropout: the dropout value (default=0.1).
        max_len: the max. length of the incoming sequence (default=5000).
    Examples:
        >>> pos_encoder = PositionalEncoding(d_model)
    """

    def __init__(self, dropout, dim, max_len=5000):
        super(PositionalEncoding_2d, self).__init__()
        self.dropout = nn.Dropout(p=dropout)

        pe = paddle.zeros([max_len, dim])
        position = paddle.arange(0, max_len, dtype=paddle.float32).unsqueeze(1)
        div_term = paddle.exp(paddle.arange(0, dim, 2).astype('float32') * (-math.log(10000.0) / dim))
        pe[:, 0::2] = paddle.sin(position * div_term)
        pe[:, 1::2] = paddle.cos(position * div_term)
        pe = pe.unsqueeze(0).transpose([1, 0, 2])
        self.register_buffer('pe', pe)

        self.avg_pool_1 = nn.AdaptiveAvgPool2D((1, 1))
        self.linear1 = nn.Linear(dim, dim)
        self.linear1.weight.data.fill_(1.)
        self.avg_pool_2 = nn.AdaptiveAvgPool2D((1, 1))
        self.linear2 = nn.Linear(dim, dim)
        self.linear2.weight.data.fill_(1.)

    def forward(self, x):
        r"""Inputs of forward function
        Args:
            x: the sequence fed to the positional encoder model (required).
        Shape:
            x: [sequence length, batch size, embed dim]
            output: [sequence length, batch size, embed dim]
        Examples:
            >>> output = pos_encoder(x)
        """
        w_pe = self.pe[:x.shape[-1], :]
        w1 = self.linear1(self.avg_pool_1(x).squeeze()).unsqueeze(0)
        w_pe = w_pe * w1
        w_pe = w_pe.transpose([1, 2, 0])
        w_pe = w_pe.unsqueeze(2)

        h_pe = self.pe[:x.shape[-2], :]
        w2 = self.linear2(self.avg_pool_2(x).squeeze()).unsqueeze(0)
        h_pe = h_pe * w2
        h_pe = h_pe.transpose([1, 2, 0])
        h_pe = h_pe.unsqueeze(3)

        x = x + w_pe + h_pe
        x = x.reshape([x.shape[0], x.shape[1], x.shape[2] * x.shape[3]]).transpose([2,0,1])

        return self.dropout(x)


class Embeddings(nn.Layer):
    def __init__(self, d_model, vocab, padding_idx, scale_embedding):
        super(Embeddings, self).__init__()
        self.embedding = nn.Embedding(vocab, d_model, padding_idx=padding_idx)
        w0 = np.random.normal(0.0, d_model**-0.5,(vocab, d_model)).astype(np.float32)
        self.embedding.weight.set_value(w0) 
        self.d_model = d_model
        self.scale_embedding = scale_embedding

    def forward(self, x):
        if self.scale_embedding:
            x = self.embedding(x)
            return x * math.sqrt(self.d_model)
        return self.embedding(x)





class Beam():
    ''' Beam search '''

    def __init__(self, size, device=False):

        self.size = size
        self._done = False
        # The score for each translation on the beam.
        self.scores = paddle.zeros((size,), dtype=paddle.float32)
        self.all_scores = []
        # The backpointers at each time-step.
        self.prev_ks = []
        # The outputs at each time-step.
        self.next_ys =  [paddle.full((size,), 0, dtype=paddle.int64)]
        self.next_ys[0][0] = 2

    def get_current_state(self):
        "Get the outputs for the current timestep."
        return self.get_tentative_hypothesis()

    def get_current_origin(self):
        "Get the backpointers for the current timestep."
        return self.prev_ks[-1]

    @property
    def done(self):
        return self._done

    def advance(self, word_prob):
        "Update beam status and check if finished or not."
        num_words = word_prob.shape[1]

        # Sum the previous scores.
        if len(self.prev_ks) > 0:
            beam_lk = word_prob + self.scores.unsqueeze(1).expand_as(word_prob)
        else:
            beam_lk = word_prob[0]

        flat_beam_lk = beam_lk.reshape([-1])
        best_scores, best_scores_id = flat_beam_lk.topk(self.size, 0, True, True) # 1st sort
        self.all_scores.append(self.scores)
        self.scores = best_scores

        # bestScoresId is flattened as a (beam x word) array,
        # so we need to calculate which word and beam each score came from
        prev_k = best_scores_id // num_words
        self.prev_ks.append(prev_k)
        
        self.next_ys.append(best_scores_id - prev_k * num_words) 

        # End condition is when top-of-beam is EOS.
        if self.next_ys[-1][0] == 3 :
            self._done = True
            self.all_scores.append(self.scores)
      

        return self._done

    def sort_scores(self):
        "Sort the scores."
        return self.scores, paddle.to_tensor([i for i in range(self.scores.shape[0])],dtype='int32')

    def get_the_best_score_and_idx(self):
        "Get the score of the best in the beam."
        scores, ids = self.sort_scores()
        return scores[1], ids[1]

    def get_tentative_hypothesis(self):
        "Get the decoded sequence for the current timestep."

        if len(self.next_ys) == 1:
            dec_seq = self.next_ys[0].unsqueeze(1)
        else:
            _, keys = self.sort_scores()
            hyps = [self.get_hypothesis(k) for k in keys]
            hyps = [[2] + h for h in hyps]
            dec_seq = paddle.to_tensor(hyps, dtype='int64')

        return dec_seq

    def get_hypothesis(self, k):
        """ Walk back to construct the full hypothesis. """
        hyp = []
        for j in range(len(self.prev_ks) - 1, -1, -1):
            hyp.append(self.next_ys[j+1][k])
            k = self.prev_ks[j][k]
        return list(map(lambda x: x.item(), hyp[::-1]))