"vscode:/vscode.git/clone" did not exist on "70ea536a12c5ba549f1057267aa15bee90f9408c"
multiheadAttention.py 14.5 KB
Newer Older
Topdu's avatar
Topdu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import paddle
from paddle import nn
import paddle.nn.functional as F
from paddle.nn import Linear
from paddle.nn.initializer import XavierUniform as xavier_uniform_
from paddle.nn.initializer import Constant as constant_
from paddle.nn.initializer import XavierNormal as xavier_normal_

zeros_ = constant_(value=0.)
ones_ = constant_(value=1.)

class MultiheadAttention(nn.Layer):
    r"""Allows the model to jointly attend to information
    from different representation subspaces.
    See reference: Attention Is All You Need

    .. math::
        \text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O
        \text{where} head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)

    Args:
        embed_dim: total dimension of the model
        num_heads: parallel attention layers, or heads

    Examples::

        >>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
        >>> attn_output, attn_output_weights = multihead_attn(query, key, value)
    """

    def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False):
        super(MultiheadAttention, self).__init__()
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.dropout = dropout
        self.head_dim = embed_dim // num_heads
        assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
        self.scaling = self.head_dim ** -0.5

        self.out_proj = Linear(embed_dim, embed_dim, bias_attr=bias)

        if add_bias_kv:
            self.bias_k = self.create_parameter(
            shape=(1, 1, embed_dim), default_initializer=zeros_)
            self.add_parameter("bias_k", self.bias_k)
            self.bias_v = self.create_parameter(
            shape=(1, 1, embed_dim), default_initializer=zeros_)
            self.add_parameter("bias_v", self.bias_v)
        else:
            self.bias_k = self.bias_v = None

        self.add_zero_attn = add_zero_attn

        self._reset_parameters()

        self.conv1 = paddle.nn.Conv2D(in_channels=embed_dim, out_channels=embed_dim, kernel_size=(1, 1))
        self.conv2 = paddle.nn.Conv2D(in_channels=embed_dim, out_channels=embed_dim * 2, kernel_size=(1, 1))
        self.conv3 = paddle.nn.Conv2D(in_channels=embed_dim, out_channels=embed_dim * 3, kernel_size=(1, 1))

    def _reset_parameters(self):


        xavier_uniform_(self.out_proj.weight)
        if self.bias_k is not None:
            xavier_normal_(self.bias_k)
        if self.bias_v is not None:
            xavier_normal_(self.bias_v)

    def forward(self, query, key, value, key_padding_mask=None, incremental_state=None,
                need_weights=True, static_kv=False, attn_mask=None, qkv_ = [False,False,False]):
        """
        Inputs of forward function
            query: [target length, batch size, embed dim]
            key: [sequence length, batch size, embed dim]
            value: [sequence length, batch size, embed dim]
            key_padding_mask: if True, mask padding based on batch size
            incremental_state: if provided, previous time steps are cashed
            need_weights: output attn_output_weights
            static_kv: key and value are static

        Outputs of forward function
            attn_output: [target length, batch size, embed dim]
            attn_output_weights: [batch size, target length, sequence length]
        """
        qkv_same = qkv_[0]
        kv_same = qkv_[1]

        tgt_len, bsz, embed_dim = query.shape
        assert embed_dim == self.embed_dim
        assert list(query.shape) == [tgt_len, bsz, embed_dim]
        assert key.shape == value.shape

        if qkv_same:
            # self-attention
            q, k, v = self._in_proj_qkv(query)
        elif kv_same:
            # encoder-decoder attention
            q = self._in_proj_q(query)
            if key is None:
                assert value is None
                k = v = None
            else:
                k, v = self._in_proj_kv(key)
        else:
            q = self._in_proj_q(query)
            k = self._in_proj_k(key)
            v = self._in_proj_v(value)
        q *= self.scaling

        if self.bias_k is not None:
            assert self.bias_v is not None
            self.bias_k = paddle.concat([self.bias_k for i in range(bsz)],axis=1)
            self.bias_v = paddle.concat([self.bias_v for i in range(bsz)],axis=1)
            k = paddle.concat([k, self.bias_k])
            v = paddle.concat([v, self.bias_v])
            if attn_mask is not None:
                attn_mask = paddle.concat([attn_mask, paddle.zeros([attn_mask.shape[0], 1],dtype=attn_mask.dtype)], axis=1)
            if key_padding_mask is not None:
                key_padding_mask = paddle.concat(
                    [key_padding_mask,paddle.zeros([key_padding_mask.shape[0], 1],dtype=key_padding_mask.dtype)], axis=1)

        q = q.reshape([tgt_len, bsz * self.num_heads, self.head_dim]).transpose([1, 0, 2])
        if k is not None:
            k = k.reshape([-1, bsz * self.num_heads, self.head_dim]).transpose([1, 0, 2])
        if v is not None:
            v = v.reshape([-1, bsz * self.num_heads, self.head_dim]).transpose([1, 0, 2])

 

        src_len = k.shape[1]

        if key_padding_mask is not None:
            assert key_padding_mask.shape[0] == bsz
            assert key_padding_mask.shape[1] == src_len

        if self.add_zero_attn:
            src_len += 1
            k = paddle.concat([k, paddle.zeros((k.shape[0], 1) + k.shape[2:],dtype=k.dtype)], axis=1)
            v = paddle.concat([v, paddle.zeros((v.shape[0], 1) + v.shape[2:],dtype=v.dtype)], axis=1)
            if attn_mask is not None:
                attn_mask = paddle.concat([attn_mask, paddle.zeros([attn_mask.shape[0], 1],dtype=attn_mask.dtype)], axis=1)
            if key_padding_mask is not None:
                key_padding_mask = paddle.concat(
                    [key_padding_mask, paddle.zeros([key_padding_mask.shape[0], 1],dtype=key_padding_mask.dtype)], axis=1)
        attn_output_weights = paddle.bmm(q, k.transpose([0,2,1]))
        assert list(attn_output_weights.shape) == [bsz * self.num_heads, tgt_len, src_len]

        if attn_mask is not None:
            attn_mask = attn_mask.unsqueeze(0)
            attn_output_weights += attn_mask
        if key_padding_mask is not None:
            attn_output_weights = attn_output_weights.reshape([bsz, self.num_heads, tgt_len, src_len])
            key = key_padding_mask.unsqueeze(1).unsqueeze(2).astype('float32')
            y = paddle.full(shape=key.shape, dtype='float32', fill_value='-inf')
            y = paddle.where(key==0.,key, y)
            attn_output_weights += y
            attn_output_weights = attn_output_weights.reshape([bsz*self.num_heads, tgt_len, src_len])

        attn_output_weights = F.softmax(
            attn_output_weights.astype('float32'), axis=-1,
            dtype=paddle.float32 if attn_output_weights.dtype == paddle.float16 else attn_output_weights.dtype)
        attn_output_weights = F.dropout(attn_output_weights, p=self.dropout, training=self.training)

        attn_output = paddle.bmm(attn_output_weights, v)
        assert list(attn_output.shape) == [bsz * self.num_heads, tgt_len, self.head_dim]
        attn_output = attn_output.transpose([1, 0,2]).reshape([tgt_len, bsz, embed_dim])
        attn_output = self.out_proj(attn_output)
        if need_weights:
            # average attention weights over heads
            attn_output_weights = attn_output_weights.reshape([bsz, self.num_heads, tgt_len, src_len])
            attn_output_weights = attn_output_weights.sum(axis=1) / self.num_heads
        else:
            attn_output_weights = None

        return attn_output, attn_output_weights

    def _in_proj_qkv(self, query):
        query = query.transpose([1, 2, 0])
        query = paddle.unsqueeze(query, axis=2)
        res = self.conv3(query)
        res = paddle.squeeze(res, axis=2)
        res = res.transpose([2, 0, 1])
        return res.chunk(3, axis=-1)

    def _in_proj_kv(self, key):
        key = key.transpose([1, 2, 0])
        key = paddle.unsqueeze(key, axis=2)
        res = self.conv2(key)
        res = paddle.squeeze(res, axis=2)
        res = res.transpose([2, 0, 1])
        return res.chunk(2, axis=-1)

    def _in_proj_q(self, query):
        query = query.transpose([1, 2, 0])
        query = paddle.unsqueeze(query, axis=2)
        res = self.conv1(query)
        res = paddle.squeeze(res, axis=2)
        res = res.transpose([2, 0, 1])
        return res

    def _in_proj_k(self, key):
        
        key = key.transpose([1, 2, 0])
        key = paddle.unsqueeze(key, axis=2)
        res = self.conv1(key)
        res = paddle.squeeze(res, axis=2)
        res = res.transpose([2, 0, 1])
        return res

    def _in_proj_v(self, value):
        
        value = value.transpose([1,2,0])#(1, 2, 0)
        value = paddle.unsqueeze(value, axis=2)
        res = self.conv1(value)
        res = paddle.squeeze(res, axis=2)
        res = res.transpose([2, 0, 1])
        return res



class MultiheadAttentionOptim(nn.Layer):
    r"""Allows the model to jointly attend to information
    from different representation subspaces.
    See reference: Attention Is All You Need

    .. math::
        \text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O
        \text{where} head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)

    Args:
        embed_dim: total dimension of the model
        num_heads: parallel attention layers, or heads

    Examples::

        >>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
        >>> attn_output, attn_output_weights = multihead_attn(query, key, value)
    """

    def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False):
        super(MultiheadAttentionOptim, self).__init__()
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.dropout = dropout
        self.head_dim = embed_dim // num_heads
        assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
        self.scaling = self.head_dim ** -0.5

        self.out_proj = Linear(embed_dim, embed_dim, bias_attr=bias)

        self._reset_parameters()

        self.conv1 = paddle.nn.Conv2D(in_channels=embed_dim, out_channels=embed_dim, kernel_size=(1, 1))
        self.conv2 = paddle.nn.Conv2D(in_channels=embed_dim, out_channels=embed_dim, kernel_size=(1, 1))
        self.conv3 = paddle.nn.Conv2D(in_channels=embed_dim, out_channels=embed_dim, kernel_size=(1, 1))

    def _reset_parameters(self):


        xavier_uniform_(self.out_proj.weight)


    def forward(self, query, key, value, key_padding_mask=None, incremental_state=None,
                need_weights=True, static_kv=False, attn_mask=None):
        """
        Inputs of forward function
            query: [target length, batch size, embed dim]
            key: [sequence length, batch size, embed dim]
            value: [sequence length, batch size, embed dim]
            key_padding_mask: if True, mask padding based on batch size
            incremental_state: if provided, previous time steps are cashed
            need_weights: output attn_output_weights
            static_kv: key and value are static

        Outputs of forward function
            attn_output: [target length, batch size, embed dim]
            attn_output_weights: [batch size, target length, sequence length]
        """


        tgt_len, bsz, embed_dim = query.shape
        assert embed_dim == self.embed_dim
        assert list(query.shape) == [tgt_len, bsz, embed_dim]
        assert key.shape == value.shape

        q = self._in_proj_q(query)
        k = self._in_proj_k(key)
        v = self._in_proj_v(value)
        q *= self.scaling


        q = q.reshape([tgt_len, bsz * self.num_heads, self.head_dim]).transpose([1, 0, 2])
        k = k.reshape([-1, bsz * self.num_heads, self.head_dim]).transpose([1, 0, 2])
        v = v.reshape([-1, bsz * self.num_heads, self.head_dim]).transpose([1, 0, 2])


        src_len = k.shape[1]

        if key_padding_mask is not None:
            assert key_padding_mask.shape[0] == bsz
            assert key_padding_mask.shape[1] == src_len

        
        attn_output_weights = paddle.bmm(q, k.transpose([0,2,1]))
        assert list(attn_output_weights.shape) == [bsz * self.num_heads, tgt_len, src_len]

        if attn_mask is not None:
            attn_mask = attn_mask.unsqueeze(0)
            attn_output_weights += attn_mask
        if key_padding_mask is not None:
            attn_output_weights = attn_output_weights.reshape([bsz, self.num_heads, tgt_len, src_len])
            key = key_padding_mask.unsqueeze(1).unsqueeze(2).astype('float32')
            
            y = paddle.full(shape=key.shape, dtype='float32', fill_value='-inf')
           
            y = paddle.where(key==0.,key, y)

            attn_output_weights += y
            attn_output_weights = attn_output_weights.reshape([bsz*self.num_heads, tgt_len, src_len])

        attn_output_weights = F.softmax(
            attn_output_weights.astype('float32'), axis=-1,
            dtype=paddle.float32 if attn_output_weights.dtype == paddle.float16 else attn_output_weights.dtype)
        attn_output_weights = F.dropout(attn_output_weights, p=self.dropout, training=self.training)

        attn_output = paddle.bmm(attn_output_weights, v)
        assert list(attn_output.shape) == [bsz * self.num_heads, tgt_len, self.head_dim]
        attn_output = attn_output.transpose([1, 0,2]).reshape([tgt_len, bsz, embed_dim])
        attn_output = self.out_proj(attn_output)

        if need_weights:
            # average attention weights over heads
            attn_output_weights = attn_output_weights.reshape([bsz, self.num_heads, tgt_len, src_len])
            attn_output_weights = attn_output_weights.sum(axis=1) / self.num_heads
        else:
            attn_output_weights = None

        return attn_output, attn_output_weights


    def _in_proj_q(self, query):
        query = query.transpose([1, 2, 0])
        query = paddle.unsqueeze(query, axis=2)
        res = self.conv1(query)
        res = paddle.squeeze(res, axis=2)
        res = res.transpose([2, 0, 1])
        return res

    def _in_proj_k(self, key):
        
        key = key.transpose([1, 2, 0])
        key = paddle.unsqueeze(key, axis=2)
        res = self.conv2(key)
        res = paddle.squeeze(res, axis=2)
        res = res.transpose([2, 0, 1])
        return res

    def _in_proj_v(self, value):
        
        value = value.transpose([1,2,0])#(1, 2, 0)
        value = paddle.unsqueeze(value, axis=2)
        res = self.conv3(value)
        res = paddle.squeeze(res, axis=2)
        res = res.transpose([2, 0, 1])
        return res