README.md 6.51 KB
Newer Older
grasswolfs's avatar
grasswolfs committed
1
English | [简体中文](README_ch.md)
WenmuZhou's avatar
WenmuZhou committed
2

WenmuZhou's avatar
update  
WenmuZhou committed
3
4
5
6
7
8
9
10
11
12
13
- [1. Introduction](#1)
- [2. Update log](#2)
- [3. Features](#3)
- [4. Results](#4)
  * [4.1 Layout analysis and table recognition](#41)
  * [4.2 DOC-VQA](#42)
- [5. Quick start](#5)
- [6. PP-Structure System](#6)
  * [6.1 Layout analysis and table recognition](#61)
  * [6.2 DOC-VQA](#62)
- [7. Model List](#7)
WenmuZhou's avatar
opt doc  
WenmuZhou committed
14

WenmuZhou's avatar
update  
WenmuZhou committed
15
<a name="1"></a>
16

WenmuZhou's avatar
update  
WenmuZhou committed
17
## 1. Introduction
18

WenmuZhou's avatar
update  
WenmuZhou committed
19
PP-Structure is an OCR toolkit that can be used for document analysis and processing with complex structures, designed to help developers better complete document understanding tasks
20

WenmuZhou's avatar
update  
WenmuZhou committed
21
<a name="2"></a>
22

WenmuZhou's avatar
update  
WenmuZhou committed
23
24
## 2. Update log
* 2021.12.07 add [DOC-VQA SER and RE tasks](vqa/README.md)
grasswolfs's avatar
grasswolfs committed
25

WenmuZhou's avatar
update  
WenmuZhou committed
26
<a name="3"></a>
27

WenmuZhou's avatar
update  
WenmuZhou committed
28
## 3. Features
29

WenmuZhou's avatar
update  
WenmuZhou committed
30
The main features of PP-Structure are as follows:
grasswolfs's avatar
grasswolfs committed
31

WenmuZhou's avatar
update  
WenmuZhou committed
32
33
34
35
36
37
- Support the layout analysis of documents, divide the documents into 5 types of areas **text, title, table, image and list** (conjunction with Layout-Parser)
- Support to extract the texts from the text, title, picture and list areas (used in conjunction with PP-OCR)
- Support to extract excel files from the table areas
- Support python whl package and command line usage, easy to use
- Support custom training for layout analysis and table structure tasks
- Support Document Visual Question Answering (DOC-VQA) tasks: Semantic Entity Recognition (SER) and Relation Extraction (RE)
38

WenmuZhou's avatar
opt doc  
WenmuZhou committed
39

WenmuZhou's avatar
update  
WenmuZhou committed
40
<a name="4"></a>
WenmuZhou's avatar
WenmuZhou committed
41

WenmuZhou's avatar
update  
WenmuZhou committed
42
## 4. Results
43

WenmuZhou's avatar
update  
WenmuZhou committed
44
<a name="41"></a>
grasswolfs's avatar
grasswolfs committed
45

WenmuZhou's avatar
update  
WenmuZhou committed
46
### 4.1 Layout analysis and table recognition
WenmuZhou's avatar
WenmuZhou committed
47

WenmuZhou's avatar
update  
WenmuZhou committed
48
<img src="../doc/table/ppstructure.GIF" width="100%"/>
grasswolfs's avatar
grasswolfs committed
49

WenmuZhou's avatar
update  
WenmuZhou committed
50
The figure shows the pipeline of layout analysis + table recognition. The image is first divided into four areas of image, text, title and table by layout analysis, and then OCR detection and recognition is performed on the three areas of image, text and title, and the table is performed table recognition, where the image will also be stored for use.
grasswolfs's avatar
grasswolfs committed
51

WenmuZhou's avatar
update  
WenmuZhou committed
52
<a name="42"></a>
WenmuZhou's avatar
WenmuZhou committed
53

WenmuZhou's avatar
update  
WenmuZhou committed
54
### 4.2 DOC-VQA
WenmuZhou's avatar
WenmuZhou committed
55

WenmuZhou's avatar
update  
WenmuZhou committed
56
* SER
grasswolfs's avatar
grasswolfs committed
57

WenmuZhou's avatar
update  
WenmuZhou committed
58
59
![](./vqa/images/result_ser/zh_val_0_ser.jpg) | ![](./vqa/images/result_ser/zh_val_42_ser.jpg)
---|---
WenmuZhou's avatar
WenmuZhou committed
60

WenmuZhou's avatar
update  
WenmuZhou committed
61
Different colored boxes in the figure represent different categories. For xfun dataset, there are three categories: query, answer and header:
WenmuZhou's avatar
opt doc  
WenmuZhou committed
62

WenmuZhou's avatar
update  
WenmuZhou committed
63
64
65
* Dark purple: header
* Light purple: query
* Army green: answer
WenmuZhou's avatar
WenmuZhou committed
66

WenmuZhou's avatar
update  
WenmuZhou committed
67
The corresponding category and OCR recognition results are also marked at the top left of the OCR detection box.
WenmuZhou's avatar
WenmuZhou committed
68
69


WenmuZhou's avatar
update  
WenmuZhou committed
70
* RE
WenmuZhou's avatar
WenmuZhou committed
71

WenmuZhou's avatar
update  
WenmuZhou committed
72
73
![](./vqa/images/result_re/zh_val_21_re.jpg) | ![](./vqa/images/result_re/zh_val_40_re.jpg)
---|---
WenmuZhou's avatar
WenmuZhou committed
74
75


WenmuZhou's avatar
update  
WenmuZhou committed
76
In the figure, the red box represents the question, the blue box represents the answer, and the question and answer are connected by green lines. The corresponding category and OCR recognition results are also marked at the top left of the OCR detection box.
WenmuZhou's avatar
WenmuZhou committed
77
78


WenmuZhou's avatar
update  
WenmuZhou committed
79
<a name="5"></a>
WenmuZhou's avatar
WenmuZhou committed
80

WenmuZhou's avatar
update  
WenmuZhou committed
81
## 5. Quick start
WenmuZhou's avatar
WenmuZhou committed
82

WenmuZhou's avatar
update  
WenmuZhou committed
83
Start from [Quick Installation](./docs/quickstart.md)
WenmuZhou's avatar
opt doc  
WenmuZhou committed
84

WenmuZhou's avatar
update  
WenmuZhou committed
85
<a name="6"></a>
WenmuZhou's avatar
opt doc  
WenmuZhou committed
86

WenmuZhou's avatar
update  
WenmuZhou committed
87
## 6. PP-Structure System
WenmuZhou's avatar
opt doc  
WenmuZhou committed
88

WenmuZhou's avatar
update  
WenmuZhou committed
89
<a name="61"></a>
WenmuZhou's avatar
opt doc  
WenmuZhou committed
90

WenmuZhou's avatar
update  
WenmuZhou committed
91
### 6.1 Layout analysis and table recognition
WenmuZhou's avatar
opt doc  
WenmuZhou committed
92

WenmuZhou's avatar
update  
WenmuZhou committed
93
![pipeline](../doc/table/pipeline.jpg)
WenmuZhou's avatar
WenmuZhou committed
94

WenmuZhou's avatar
update  
WenmuZhou committed
95
In PP-Structure, the image will be divided into 5 types of areas **text, title, image list and table**. For the first 4 types of areas, directly use PP-OCR system to complete the text detection and recognition. For the table area, after the table structuring process, the table in image is converted into an Excel file with the same table style.
WenmuZhou's avatar
opt doc  
WenmuZhou committed
96

WenmuZhou's avatar
update  
WenmuZhou committed
97
#### 6.1.1 Layout analysis
WenmuZhou's avatar
opt doc  
WenmuZhou committed
98

WenmuZhou's avatar
update  
WenmuZhou committed
99
Layout analysis classifies image by region, including the use of Python scripts of layout analysis tools, extraction of designated category detection boxes, performance indicators, and custom training layout analysis models. For details, please refer to [document](layout/README.md).
WenmuZhou's avatar
opt doc  
WenmuZhou committed
100

WenmuZhou's avatar
update  
WenmuZhou committed
101
#### 6.1.2 Table recognition
WenmuZhou's avatar
opt doc  
WenmuZhou committed
102

WenmuZhou's avatar
update  
WenmuZhou committed
103
Table recognition converts table images into excel documents, which include the detection and recognition of table text and the prediction of table structure and cell coordinates. For detailed instructions, please refer to [document](table/README.md)
WenmuZhou's avatar
opt doc  
WenmuZhou committed
104

WenmuZhou's avatar
update  
WenmuZhou committed
105
<a name="62"></a>
WenmuZhou's avatar
opt doc  
WenmuZhou committed
106

WenmuZhou's avatar
update  
WenmuZhou committed
107
### 6.2 DOC-VQA
WenmuZhou's avatar
WenmuZhou committed
108

WenmuZhou's avatar
update  
WenmuZhou committed
109
Document Visual Question Answering (DOC-VQA) if a type of Visual Question Answering (VQA), which includes Semantic Entity Recognition (SER) and Relation Extraction (RE) tasks. Based on SER task, text recognition and classification in images can be completed. Based on THE RE task, we can extract the relation of the text content in the image, such as judge the problem pair. For details, please refer to [document](vqa/README.md)
WenmuZhou's avatar
WenmuZhou committed
110

WenmuZhou's avatar
WenmuZhou committed
111

WenmuZhou's avatar
update  
WenmuZhou committed
112
<a name="7"></a>
WenmuZhou's avatar
WenmuZhou committed
113

WenmuZhou's avatar
update  
WenmuZhou committed
114
## 7. Model List
115

WenmuZhou's avatar
update  
WenmuZhou committed
116
PP-Structure系列模型列表(更新中)
117

WenmuZhou's avatar
update  
WenmuZhou committed
118
* Layout analysis model
119
120
121

|model name|description|download|
| --- | --- | --- |
WenmuZhou's avatar
update  
WenmuZhou committed
122
| ppyolov2_r50vd_dcn_365e_publaynet | The layout analysis model trained on the PubLayNet dataset can divide image into 5 types of areas **text, title, table, picture, and list** | [PubLayNet](https://paddle-model-ecology.bj.bcebos.com/model/layout-parser/ppyolov2_r50vd_dcn_365e_publaynet.tar) |
123

WenmuZhou's avatar
update  
WenmuZhou committed
124
125

* OCR and table recognition model
126
127
128

|model name|description|model size|download|
| --- | --- | --- | --- |
WenmuZhou's avatar
WenmuZhou committed
129
130
|ch_ppocr_mobile_slim_v2.0_det|Slim pruned lightweight model, supporting Chinese, English, multilingual text detection|2.6M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_det_prune_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_det_prune_infer.tar) |
|ch_ppocr_mobile_slim_v2.0_rec|Slim pruned and quantized lightweight model, supporting Chinese, English and number recognition|6M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_slim_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_slim_train.tar) |
WenmuZhou's avatar
update  
WenmuZhou committed
131
132
|en_ppocr_mobile_v2.0_table_structure|Table structure prediction of English table scene trained on PubLayNet dataset|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.1/table/en_ppocr_mobile_v2.0_table_structure_train.tar) |

WenmuZhou's avatar
update  
WenmuZhou committed
133
* DOC-VQA model
134

WenmuZhou's avatar
update  
WenmuZhou committed
135
136
137
138
|model name|description|model size|download|
| --- | --- | --- | --- |
|PP-Layout_v1.0_ser_pretrained|SER model trained on xfun Chinese dataset based on LayoutXLM|1.4G|[inference model coming soon]() / [trained model](https://paddleocr.bj.bcebos.com/pplayout/PP-Layout_v1.0_ser_pretrained.tar) |
|PP-Layout_v1.0_re_pretrained|RE model trained on xfun Chinese dataset based on LayoutXLM|1.4G|[inference model coming soon]() / [trained model](https://paddleocr.bj.bcebos.com/pplayout/PP-Layout_v1.0_re_pretrained.tar) |
LDOUBLEV's avatar
LDOUBLEV committed
139

WenmuZhou's avatar
update  
WenmuZhou committed
140
If you need to use other models, you can download the model in [PPOCR model_list](../doc/doc_en/models_list_en.md) and  [PPStructure model_list](./docs/model_list.md)