infer_cls.py 2.55 KB
Newer Older
zhoujun's avatar
zhoujun committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np

import os
import sys

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))

28
29
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

zhoujun's avatar
zhoujun committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import paddle

from ppocr.data import create_operators, transform
from ppocr.modeling.architectures import build_model
from ppocr.postprocess import build_post_process
from ppocr.utils.save_load import init_model
from ppocr.utils.utility import get_image_file_list
import tools.program as program


def main():
    global_config = config['Global']

    # build post process
    post_process_class = build_post_process(config['PostProcess'],
                                            global_config)

    # build model
    model = build_model(config['Architecture'])

littletomatodonkey's avatar
littletomatodonkey committed
50
    init_model(config, model)
zhoujun's avatar
zhoujun committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

    # create data ops
    transforms = []
    for op in config['Eval']['dataset']['transforms']:
        op_name = list(op)[0]
        if 'Label' in op_name:
            continue
        elif op_name == 'KeepKeys':
            op[op_name]['keep_keys'] = ['image']
        transforms.append(op)
    global_config['infer_mode'] = True
    ops = create_operators(transforms, global_config)

    model.eval()
    for file in get_image_file_list(config['Global']['infer_img']):
        logger.info("infer_img: {}".format(file))
        with open(file, 'rb') as f:
            img = f.read()
            data = {'image': img}
        batch = transform(data, ops)

        images = np.expand_dims(batch[0], axis=0)
        images = paddle.to_tensor(images)
        preds = model(images)
        post_result = post_process_class(preds)
        for rec_reuslt in post_result:
            logger.info('\t result: {}'.format(rec_reuslt))
    logger.info("success!")


if __name__ == '__main__':
    config, device, logger, vdl_writer = program.preprocess()
    main()