rec_ctc_head.py 1.86 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
LDOUBLEV's avatar
LDOUBLEV committed
2
#
WenmuZhou's avatar
WenmuZhou committed
3
4
5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
LDOUBLEV's avatar
LDOUBLEV committed
6
7
8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
WenmuZhou's avatar
WenmuZhou committed
9
10
11
12
13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
LDOUBLEV's avatar
LDOUBLEV committed
14
15
16
17
18
19
20
21

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math

import paddle
WenmuZhou's avatar
WenmuZhou committed
22
from paddle import ParamAttr, nn
23
from paddle.nn import functional as F
WenmuZhou's avatar
WenmuZhou committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51


def get_para_bias_attr(l2_decay, k, name):
    regularizer = paddle.fluid.regularizer.L2Decay(l2_decay)
    stdv = 1.0 / math.sqrt(k * 1.0)
    initializer = nn.initializer.Uniform(-stdv, stdv)
    weight_attr = ParamAttr(
        regularizer=regularizer, initializer=initializer, name=name + "_w_attr")
    bias_attr = ParamAttr(
        regularizer=regularizer, initializer=initializer, name=name + "_b_attr")
    return [weight_attr, bias_attr]


class CTC(nn.Layer):
    def __init__(self, in_channels, out_channels, fc_decay=1e-5, **kwargs):
        super(CTC, self).__init__()
        weight_attr, bias_attr = get_para_bias_attr(
            l2_decay=fc_decay, k=in_channels, name='ctc_fc')
        self.fc = nn.Linear(
            in_channels,
            out_channels,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            name='ctc_fc')
        self.out_channels = out_channels

    def forward(self, x, labels=None):
        predicts = self.fc(x)
52
53
        if not self.training:
            predicts = F.softmax(predicts, axis=2)
LDOUBLEV's avatar
LDOUBLEV committed
54
        return predicts